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Abstract

We evaluate Bayesian hyperparameter optimization (HPO) for the Min–Max Ant System
(MMAS) applied to the Traveling Salesman Problem (TSP), comparing different acquisition
functions for single-objective optimization against the multi-objective approaches ParEGO and
Expected Hypervolume Improvement (EHVI). Hyperparameters were tuned for the objectives
of Anytime Fitness (AF) and the Best-Found Solution (BFS). All Bayesian Optimization
(BO) frameworks are implemented using BoTorch. Our findings demonstrate that optimized
hyperparameter configurations consistently outperform the default settings in terms of final
solution quality. Furthermore, AF is shown to be a more reliable performance metric than
solely optimizing the final best solution. For optimizing the objectives AF and BFS, we
recommend HPO-UCB, tuned for AF, or ParEGO-UCB, due to their better convergence
properties in the tuning process. However, EHVI is also a viable alternative.
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1 Introduction

Meta-heuristic algorithms, such as Ant Colony Optimization (ACO), have demonstrated notable
performance on combinatorial optimization problems, including the Traveling Salesman Problem
(TSP) (MM15). Among these, the Min–Max Ant System (MMAS) (SH00) is widely used due to
its strong performance. However, it heavily relies on hyperparameters to balance exploration and
exploitation (PFM06). Selecting appropriate hyperparameter configurations is crucial for achieving
high-quality solutions, but is often time-consuming and problem-dependent.

Hyperparameter optimization (HPO) aims to automate this search, making HPO accessible to
inexperienced practitioners and often results in better performance (KPM+23). While Traditional
HPO approaches typically focus on a single-objective (YDWB21), real-world optimization problems
require balancing multiple potentially conflicting objectives.

Multi-objective hyperparameter optimization (MOHPO) methods have been proposed to address
multiple objectives simultaneously. Techniques, including grid search, random search, scalarization-
based methods, and evolutionary algorithms (EAs), have been extended to tackle the multi-objective
setting (KPM+23). However, model-based methods such as Multi-Objective Bayesian Optimization
(MOBO) methods offer a promising alternative due to their sample efficiency in black-box optimiza-
tion tasks (RC25). MOBO has demonstrated success in various domains, including aerodynamic
design (ZPS19) and MOHPO (CPA22). Despite this, its application for tuning the hyperparameters
of meta-heuristic solvers for combinatorial optimization problems remains relatively under-explored.

Previous work on hyperparameter tuning of meta-heuristic algorithms has focused on single-objective
HPO. Opez-Ibáñez et al. propose automated tuning for a MMAS using Anytime Fitness (AF) as
an objective (OIS12), while Yin and Wijk (YW21) apply Bayesian Optimization (BO) to ACO,
optimizing for the Best-Found Solution (BFS). Ye et al. (YDWB21) compare different HPO methods
for tuning a Genetic Algorithm (GA) for Expected Running Time (ERT) and AF respectively, and
propose a multi-objective approach to HPO for meta-heuristics.

Building on these foundations, this thesis investigates the application of MOBO to tune the hyper-
parameters of an MMAS for the TSP using two objectives, AF and BFS. Our research evaluates the
performance of MMAS across multiple TSPLIB benchmark instances (Rei91), comparing MOBO
to random search and single-objective methods.

This research aims to address the following research question:

How can Multi-Objective Bayesian Optimization be used to optimize hyperparameters
for TSP solvers?

To investigate this, we consider the following sub-questions:

• Can multi-objective hyperparameter optimization enhance the performance of ACO-based
TSP solvers?
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• How do MOBO methods compare to methods like random search and traditional hyper-
parameter optimization when applied to a multi-objective hyperparameter optimization
task?

• What objectives can be considered for the multi-objective hyperparameter optimization of
ACO-based TSP solvers?

Addressing these questions, this research makes the following contributions:

• We apply Multi-Objective Bayesian Optimization to tune the hyperparameters of a Min–Max
Ant System for solving TSP instances from the TSPLIB library.

• We compare Multi-Objective Bayesian Optimization with traditional hyperparameter opti-
mization methods, including random search and single-objective BO.

• We evaluate solver performance based on Anytime Fitness and the Best-Found Solution.

The code repository of this thesis can be accessed via the following link: https://github.com/
LeonAQA/BachelorThesis_MOHPO. This thesis is organized as follows. This chapter contains the
introduction; Section 2 discusses related work; Section 3 describes the methodology. Section 4
describes the experiments; Section 5 demonstrates the results; Section 6 concludes this thesis, and
suggests potential directions for further research.
This bachelor’s thesis was conducted at the Leiden Institute of Advanced Computer Science (LIACS),
Leiden University, under the supervision of Dr. Furong Ye and Dr. Elena Raponi.

2 Related Work

In this section, we discuss prior research conducted on HPO, BO, MOHPO, and meta-heuristic
solvers for the TSP. We focus on methods relevant to our application of MOBO to tuning meta-
heuristic algorithms.

2.1 Hyperparameter Optimization

Grid and random search are commonly used baseline methods for HPO. Grid search is an exhaustive
search method that systematically evaluates all combinations from a user-specified hyperparameter
grid. This process is computationally expensive and can miss high-performing configurations that
lie in between grid points (YZ20).

Random search samples configurations from an underlying distribution and is often preferred due
to better empirical performance (BB12). However, both methods treat evaluations independently
and do not use prior evaluations to influence future searches.

In contrast, evolutionary algorithms (EAs) guide the search following evolutionary-inspired princi-
ples such as generations, parents, offspring, recombination, and selection (YDWB21). While this
form of guided search outperforms the naive baselines (BBL+21), it lacks an approximation of the
underlying objective function. BO uses probabilistic surrogates to model the objective function and
an acquisition function to select promising configurations (SSW+16).
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2.2 Bayesian Optimization

BO is a surrogate-based framework known for its sample efficiency in solving expensive black-box
optimization problems (HLGR+16). BO constructs and updates a probabilistic model of the objec-
tive function and selects new evaluation points by maximizing an acquisition function that balances
exploration and exploitation (SSW+16).

There are several possible acquisition functions, including Probability Improvement (PI), Expected
Improvement (EI), and Upper Confidence Bounds (UCB). De Ath et al. find UCB and EI to
comparatively balance the exploration-exploitation tradeoff effectively, highlighting the importance
of a mostly greedy search approach (DAERF21).

Gaussian processes are widely used as surrogate models (KPM+23). However, they can struggle in
higher-dimensional spaces, leading to the search for alternative surrogates such as random forests
(HB16). Neural network-based surrogates have been proposed for improved scalability with an
increasing number of observations (SRS+15).

BO has been successfully applied to reinforcement learning (BCdF10), combinatorial optimization
(HHLB11), and hyperparameter tuning (WCZ+19). Although traditional BO focuses on single-
objective optimization, recent work extends it for multi-objective optimization (MOO), providing
a broader perspective of objective interactions by constructing a Pareto front of non-dominated
solutions (MJ11).

2.3 Multi-Objective Hyperparameter Optimization

Single-objective random search, grid search, evolutionary algorithms, and model-based methods
can be extended to MOHPO (KPM+23).

Multi-objective evolutionary algorithms (MOEAs) are a well-established family of MOHPO meth-
ods (KPM+23). Popular MOEAs include Pareto-based methods, such as NSGA-II (DPAM02),
decomposition-based methods, like MOEA/D (ZL07), and indicator-based methods, with SMS-
EMOA (HNE07). While MOEAs demonstrate competitive performance (TIO17) on a wide range
of tasks and generate new candidate solutions more rapidly than MOBO (LTRE20), they are
often sample-inefficient, due to the reliance on many objective-evaluation calls to find competitive
solutions (RC25). This limits their suitability for black-box optimization problems, motivating the
application of MOBO.

2.4 Multi-Objective Bayesian Optimization

MOBO acquisition strategies are categorized into scalarization-based approaches, combining multi-
ple objectives into a singular one, and Pareto-based approaches, using one surrogate per objective
(KPM+23).
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A common scalarization-based method is ParEGO (Kno06), which uses a set of weight vectors
to explore the search space. It uses a variation of the Tchebycheff function to combine multiple
objectives into a single scalarized objective (Kno06).

In contrast, Expected Hypervolume Improvement (EHVI) utilizes a separate surrogate for each
objective, optimizing the expected increase in the Hypervolume (HV) dominated by the Pareto
front. This strategy quantifies the gain of volume relative to a reference point to predict new
candidate solutions (EGN06a).

Zuhal et al. (ZPS19) compare ParEGO and EHVI across multiple material design optimization
problems. Their work demonstrates that EHVI offers a more diverse Pareto front, while ParEGO is
more computationally efficient.

Despite its strengths, EHVI’s computational complexity suffers in high-dimensional problem settings,
as it scales poorly with the number of objectives (BKJ+20). Variations such as qEHVI (DBB20a)
try to mitigate this by extending EHVI to enable parallel evaluations leveraging differentiation.

Recent strategies such as PESMO (HLHLSA16) and USeMO (BDJD22) offer improved decision-
making under uncertainty and in higher-dimensional scenarios. However, PESMO requires nested
Monte Carlo entropy estimates, and USeMO relies on multiple surrogate optimizations per objective,
making them computationally expensive in resource-constrained settings.

2.5 Combinatorial Optimization and TSP-solvers

The TSP is a classical combinatorial NP-hard problem. Slightly modified, it has wide-ranging
applications in fields such as logistics, network design, and DNA sequencing (GTSS22). The solution
space of a TSP scales factorially with the number of cities, making exhaustive search methods
infeasible for large instances (KNRS24).

To tackle such instances, meta-heuristic methods such as Simulated Annealing (SA) (And90), GAs
(GP03), and ACO (DMC96) have been proposed to approximate near-optimal solutions.

Among these, the ACO, particularly the MMAS variant, shows the best performance (SH00),
finding better solutions compared to GA and SA under the same budget (TGHD22).

Recent Works have explored HPO methods for combinatorial solvers (OIS12; YW21; PSB10).
Pellegrini et al. compare online and offline tuning methods on an MMAS, finding that offline
approaches yield superior results (PSB10). Opez-Ibáñez et al. apply automated tuning methods to
MMAS for optimizing anytime performance (OIS12), while Yin and Wijk apply BO for an ACO
TSP-solver focusing on BFS (YW21).

However, these works limit their focus to a single objective. Our work addresses this gap by applying
MOBO to tune the hyperparameters of an MMAS for solving a TSP. We optimize for AF and BFS
across multiple TSPLIB benchmark instances (Rei91).
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3 Methodology

This work focuses on MOBO for tuning a variation of the MMAS applied to symmetric TSPs. We
compare the performance of single- and multi-objective BO, with both approaches evaluated on
the objectives, AF, and the BFS.

For single-objective BO, we evaluate UCB and Log Expected Improvement (LogEI) as acquisition
functions. For multi-objective BO, we consider ParEGO applied with LogEI and UCB as well as
EHVI, a Pareto-based acquisition strategy. The following sections provide an overview of each
component.

3.1 Traveling-Salesman-Problem

The TSP is a classical NP-hard problem. Given a weighted graph V and a distance function D,
the goal is to find a tour π visiting each city exactly once and returning to the starting point,
minimizing the total travel cost.

Variants of the TSP include symmetric and asymmetric versions. In the symmetric TSP, distances
are direction-independent: D(v1, v2) = D(v2, v1). In contrast, the asymmetric TSP allows direction-
dependent distances: D(v1, v2) ̸= D(v2, v1).

We focus on the symmetric TSP with Euclidean distances. Meta-heuristic algorithms such as ACO
achieve more reliable convergence and better solution quality (OKN+17) on such instances. These
properties make the symmetric TSP well-suited for benchmarking.

3.2 Meta-heuristic Algorithms

Meta-heuristic Algorithms include a wide range of algorithms, such as GAs, SA, and ACO. These
algorithms do not guarantee optimality but can approximate a near-optimal solution. This makes
them suitable for large search spaces where exact methods become infeasible.

Meta-heuristics rely on various hyperparameters to strike a balance between exploration and
exploitation. These parameters must be carefully tuned to ensure robust convergence (OIS12).

3.2.1 Ant Colony Optimization

ACO was first proposed by Dorigo et al. (DMC96) and is inspired by the foraging behavior of ants.
Tosoni et al. (TGHD22) found that ACO outperforms other meta-heuristic algorithms, such as
Particle Swarm Optimization, SA, Tabu search, and GAs, on TSP benchmarks.

When applied to the TSP, artificial ants construct solutions by probabilistically selecting the next
node based on pheromone levels. Pheromone levels are updated each iteration, with better solutions
receiving higher pheromone levels. As such, frequented paths receive higher reinforcement, making
them more likely to be traversed in subsequent iterations.
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The probabilistic selection p for ant k ∈ Nants for moving from node i to node j at iteration t is
based on the current pheromone level τij raised to the power of α and the heuristic term ηij raised
to a power of β. For the TSP, ηij is defined as the inverse of the distance between i and j (SH00).
With Ni denoting the set of cities not yet visited pij is given by:

pkij(t) =
[τij(t)]

α · [ηij]β∑
l∈N k

i
[τil(t)]

α · [ηil]β
if j ∈ N k

i (1)

Multiple variants of ACO have been proposed, including the Rank-based Ant System (BHS99), and
the MMAS (SH00). MMAS extends the original ACO by aiming to exploit the BFS more strongly
and avoid premature convergence (SH00), making the MMAS particularly effective on large TSP
instances.

The MMAS uses a modified pheromone update that only reinforces the global best solution (SH00).
Here τij denotes the pheromone level on edge (i, j) and ρ is the evaporation.

τij(t+ 1) = (1− ρ) · τij(t) +
Nants∑
k=1

∆τ bestij (t) (2)

∆τbestij (t) =

{
1

Lbest
, if edge (i, j) is in the best tour

0, otherwise
(3)

The pheromone levels τ are limited to the range between τmin and τmax, to avoid premature
convergence (SH00).

τmin ≤ τ ≤ τmax (4)

τmin and τmax are dynamically updated based on the BFS. With N as the number of cities, we
follow Zhang et al.’s definition of τmin (ZCZ14) and with Lbest as the optimal tour, τmax (DS04) is
calculated by:

τmin =
τmax

2N
(5)

τmax =
1

ρ · Lbest

(6)

During initialization, the pheromone levels are set to τmax to encourage exploration. The optimal
tour length, Lbest, is initially estimated using the nearest neighbor greedy solution.

Additional enhancements include 3-opt local search, restart strategies, and candidate lists.

Our implementation is based on the core MMAS framework, but it uses a simplified version of
certain components. We replace 3-opt with 2-opt for local search, as well as omit the candidate list
and restart mechanisms. These modifications were chosen to balance our limited computational
resources while maintaining the core functionality of MMAS

All hyperparameters involved in the tuning process are listed in Table 1.
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Parameter Interpretation
α Relative importance of pheromone information
β Relative importance of heuristic trails
ρ Pheromone evaporation rate
NANTS Number of ants

Table 1: Hyperparameters used in MMAS.

3.3 Objective Functions for tuning ACO

The objectives used to evaluate the MMAS implementation for optimization are AF (YLC24) and
the BFS.

Given a TSP instance, the best found tour is denoted by π. We compute the average πavg over
independent runs R.

πavg =
1

R

R∑
r=1

π(r) (7)

We express best-found as the deviation from the optimal solution π∗ as a percentage clipped between
0 and 1, πdif .

πdif =
πavg − π∗

π∗ (8)

Because our optimization framework assumes maximization by default, we optimize for the negated
deviation −πdif to ensure higher values correspond to closer proximity to the optimal solution.

Our AF implementation follows the method proposed by Ye et. al (YLC24). AF calculates the
Empirical Cumulative Distribution Function (ECDF) for a given set of log-spaced targets {τ1, ..., τK}.
For each target τj and run r, we define hj,r ∈ [0, 1] as the fraction of total evaluations needed to
reach τj. With t ∈ [0, 1] as normalized evaluation time at which the target is reached, the ECDF is
computed as:

ECDF(t) =
1

KR

K∑
j=1

R∑
r=1

1 {hj,r ≤ t} , t ∈ [0, 1] (9)

The final AF is the Area Under the Curve (AUC) of the ECDF.

Anytime Fitness =

∫ 1

0

ECDF(t)dt (10)

We focus on the two objectives, AF and BFS. Combining both enables a more detailed evaluation
of the convergence behavior and the quality of the final solution.

For each configuration, both objectives are averaged over R = 5 runs per instance and aggregated
across all benchmark instances.
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3.4 Optimization Setup

This section introduces the optimization strategies employed, which include single-objective BO,
two MOBO methods — ParEGO and EHVI — as well as a random search baseline.

3.4.1 Bayesian Optimization

BO is a sample-efficient framework for global optimization of black-box problems. BO is based on
a probabilistic surrogate model and an acquisition function. The surrogate model quantifies the
uncertainty, and the acquisition function quantifies the importance of new samples.

This work focuses on the commonly applied Gaussian Process (GP) as a surrogate model. Rasmussen
(Ras04) defines the GP f as a distribution over functions, where for any set of inputs {x1, x2, ...xn}
the corresponding outputs f(x1), f(x2), f(xn) follow a multivariate normal distribution. The GP
consists of a mean and a kernel function.

The mean function m(x) represents the expected value of the function for an input x.

m(x) = E[f(x)] (11)

The kernel function k(x, x′) encodes both the uncertainty of the function and the similarity between
inputs.

k (x,x′) = E [(f(x)−m(x)) (f (x′)−m (x′))] (12)

The GP is defined as:

f(x) ∼ GP (m(x), k (x,x′)) (13)

Using the mean and kernel function, the GP provides both a prediction and the uncertainty estimate
for new inputs, which are critical for guiding the acquisition function.

The acquisition function, using the GP’s mean and variance, is optimized to strike a balance
between exploring uncertain regions and exploiting high-performing regions. For single-objective
optimization, we evaluate UCB, a standard acquisition function, and LogEI, a more robust variation
of Expected Improvement (ADE+25).

UCB has separate terms for exploration through predicted uncertainty (σ) and exploitation
through the predicted mean (µ). These can be balanced by adjusting the parameter β, scaling the
importance of sampling uncertain regions. De Ath et al. recommend prioritizing exploitation while
still encouraging occasional exploration (DAERF21). Aligning with this, we set the exploration
scalar in UCB to βucb = 0.2.

UCB(x) = µ(x) + βucbσ(x) (14)

EI quantifies the expected gain of the GP-prediction f(x) over the current best-observed value fbest.
LogEI modifies this by applying a logarithmic transformation, improving robustness, particularly
in flat regions of the objective space (ADE+25).
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LogEI(x) = log

(
E
[
max

(
f(x)− fbest, 0

)])
(15)

Initial sampling provides the training data to fit the GP, with more samples leading to a better
initial approximation. However, in a fixed-budget experiment, this comes at the cost of fewer
Bayesian evaluation steps. Balancing this tradeoff is crucial for initializing a Bayesian framework
(DOW+22).

To minimize the discrepancy of random initial samples, we use Sobol sampling. Sobol sampling is
a quasi-random, low-discrepancy sequence offering better space-filling capabilities than uniform
random sampling. Tarantola et al. recommend Sobol for globally sensitive methods (TBZ12). Our
setup utilizes 5 Sobol-initialized samples, which are shared across all Bayesian approaches to reduce
computation and ensure fairness.

3.4.2 Multi-Objective Bayesian Optimization

The MOBO methods we consider are ParEGO (Kno06) and EHVI (EGN06b). These are popular
methods in MOBO and follow different approaches to multiple objectives, making a comparison
relevant. Both are available in BoTorch, allowing for a direct comparison using a single framework.

More recent methods, such as PESMO (HLHLSA16) and UseMO (BDJD22), are not considered
due to their computational and implementation complexity, making them less suitable for our
experimental setting.

ParEGO is a scalarization-based MOBO method introduced by Knowles (Kno06). It converts
multiple objectives into a single objective by sampling weight vectors λ to express scalarization
preferences on our k objectives f1, ..., fk at each iteration. The weight vectors and our objectives
are combined into a single objective through the augmented Tchebycheff function (Kno06).

fλ(x) =
k

max
j=1

(λj.fj(x)) + ρpgo

k∑
j=1

λj.fj(x) (16)

The max term ensures we can attain non-supported Pareto-optimal points while the ρpgo-scaled
linear term penalizes solutions weakly dominated by the Pareto-front. We set ρpgo = 0.05, following
the original implementation by Knowles (Kno06).

We compare ParEGO using LogEI and UCB. Over iterations, this process provides a diverse set
of solutions, each optimized using a different weighting of the objectives. The collected solutions
approximate a Pareto front by covering different trade-offs in the objective space. To reduce
randomness and ensure the search space is fairly represented, we use Sobol sampling to generate
weight vectors.

Because ParEGO uses scaling to combine multiple objectives into a singular one, objectives must
be normalized, posing difficulties for the BFS when optimal solutions are unknown. A common
workaround is to estimate the BFS using long runs. In our case, we use benchmark TSP instances
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with known optima, avoiding the need for heuristic estimation, which allows us to focus on evaluating
the feasibility and comparative performance of different MOBO methods under controlled conditions.

Expected Hypervolume Improvement, proposed by Emmerich et al. (EGN06b), is a Pareto-
based acquisition function that optimizes for the expected gain in HV. EHVI fits an independent
surrogate model for each objective and computes the EI in dominated volume relative to the current
Pareto set P and a reference point r for a candidate x.

HV of a Pareto front P = {y1, . . . ,yn} for a reference point r is defined as the volume of the region
in the d-dimensional objective space dominated by P and bounded by r (YEDB19). With λd as
the Lebesgue measure, HV is defined as:

HV(P) = λd (∪y∈P [r,y]) (17)

Given a predicted objective f(x) for a candidate x the hypervolume improvement (HVI) (YEDB19)
is:

HVI(f(x),P) = HV(P ∪ {f(x)})− HV(P) (18)

EHVI uses the expectation of this improvement under the GP (DBB20b):

EHVI(x) = E[HVI(P ∪ {f(x)})] (19)

We use a static reference point set to [−0.05,−1.05], chosen to lie below all feasible objective values.
This ensures that even marginal improvements in the worst-case regions contribute to the HV gain.
The use of a static reference point ensures consistency and aligns with the approach proposed by
Yang et al. (YEDB19).

EHVI is well suited for problems with conflicting objectives, as it explicitly targets improvements
to the Pareto front and encourages solutions that are diverse and well-balanced (ZPS19). While
EHVI becomes computationally expensive in many-objective settings due to the complexity of HV
computations, its cost remains manageable in our bi-objective setup (BKJ+20).

Zuhal et al. (ZPS19) evaluate ParEGO and EHVI on different bi-objective material design problems.
They find that EHVI consistently outperforms ParEGO in terms of HV and the quality of the Pareto
front. However, their results show that ParEGO remains a viable alternative in computationally
constrained settings, offering faster acquisition steps and competitive performance. These findings
support the decision to compare these methods in an HPO setting, optimizing for AF and BFS.

3.4.3 Random Search

Random Search provides a simple baseline optimization strategy that samples configurations
uniformly from a predefined search space. It has been shown to outperform grid search methods
for HPO in high-dimensional spaces (BB12). In this thesis, we use random search as a baseline
for both HPO and MOHPO methods. Random search uniformly samples a hyperparameter tuple
(α, β, ρ,NANTS) from our predefined bounds. This configuration is then evaluated on the test set
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based on AF and BFS. We use the same budgets and hyperparameter bounds as for our Bayesian
methods to ensure a fair comparison.

3.5 Experimental Setup

All tuning methods were given 50 iterations. Each MMAS was evaluated under a budget of 500
and 2000 function evaluations.

3.5.1 TSP-Instances

We evaluated each optimization framework on 14 TSP instances of varying sizes. To reduce the
inherent variance of meta-heuristic algorithms, each configuration was run 5 times per instance,
using unique deterministic seeds to ensure the reproducibility of the experiment and independence
for separate runs.

To assess generalization, the performance was tested on five separate test instances not used during
optimization. Each configuration was run 10 times on the test instances to ensure the reliability of
the findings.

The training instances were selected to span a range of varying numbers of cities and distances.
The number of cities and optimal tour lengths are reported in Table 2.

Instance Cities Optimum
st70 70 675
kroA100 100 21282
eil101 101 629
lin105 105 14379
bier127 127 118282
ch130 130 6110
u159 159 42080
d198 198 15780
tsp225 225 3916
gil262 262 2378
a280 280 2579
rd400 400 15281
fl417 417 11861
p654 654 34643

Table 2: Selected TSPLIB instances for training sorted by increasing number of cities, showing the
known optimum.

Test instances (Table 3) were chosen to reflect the diversity of the training set, while avoiding
overlap with training instance families.
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Instance Cities Optimum
berlin52 52 7542
pr152 152 73682
ts225 225 126643
pcb442 442 14379
d657 657 50778

Table 3: Selected TSPLIB instances for testing sorted by increasing number of cities, showing the
known optimum.

3.5.2 Hyperparameter Ranges

The Hyperparameter ranges are summarized in Table 4. These are derived from Pellegrini et al.’s
study on the effect of parameters for MMAS (PFM06), López-Ibáñez and Stützle’s HPO method
(OIS12), and the default parameter settings for the MMAS (OIS12).

The bounds for α combine the default parameters mentioned by López-Ibáñez and Stützle (OIS12)
and the values proposed by Pelligrini et al. (PFM06), expanded to explore larger and finer-grained
parameter interactions. For ρ, β and Nants we adopt the ranges of López-Ibáñez and Stützle (OIS12)
excluding extreme values (ρ = 1, β = 0, α = 0) to prevent complete pheromone loss or neglect of
either heuristic or pheromone information.

Parameter Our Bounds Effect of Parameters HPO Default Settings
α [0.5, 5.0] {1, 2, 3} Not specified 1.0
β [1.0, 20.0] {2, 3, 4, 5} [0, 20] 2.0
ρ [0.01, 0.99] {0.02, 0.04, 0.06, 0.08} [0.01, 1.0] 0.2
NANTS [1, 100] {0, 100, 200, 300} [1, 100] 25

Table 4: Hyperparameter ranges for MMAS with literature settings (OIS12; PFM06).

3.5.3 Tools

Initial sampling was performed using Sobol sampling provided by PyTorch. For the optimization
framework, we use BoTorch (BKJ+20), an open-source library built on PyTorch for BO.

For our single-objective and ParEGO methods, we use SingleTaskGP provided by BoTorch (BKJ+20)
as the Gaussian Process. SingleTaskGP uses the zero-mean function and a 5/2 maternal kernel by
default. For EHVI, we use ModelListGP and two separate SingleTaskGPs, one for each objective.
Furthermore, the acquisition functions logEI, UCB, and EHVI are provided by BoTorch. These are
optimized using optimize acqf (BKJ+20).

The TSP instances were sourced from TSPLIB (Rei91), a widely used benchmark library for
combinatorial optimization with known optimal solutions.
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4 Results

This section evaluates the performance of our optimization methods. We begin by comparing
the convergence behavior of our single-objective methods, UCB and LogEI, optimizing either
the BFS or AF. We evaluate our multi-objective methods by comparing ParEGO using UCB
and LogEI with EHVI in terms of convergence, HV, and the final Pareto front. Finally, we
compare the best hyperparameter configurations of each approach on the test set. From here on
out, EI will be used synonymously with LogEI. Furthermore, we introduce the notation method-
acquisition function-metric, where e.g., HPO-EI-AF stands for single-objective BO using the
Expected Improvement acquisition function focusing on Anytime Fitness, or EHVI-AF as Expected
Hypervolume Improvement focusing on Anytime Fitness.

4.1 Convergence Comparison

To visualize the difference in convergence behavior between objectives, we use separate convergence
plots for AF and the BFS. For the multi-objective methods, we also examine the HV increase to
understand how the different objectives impact the HV space.

4.1.1 Single-Objective

Figure 1 shows the average convergence curves for UCB and EI optimizing either the BFS or
AF under two different budgets, 500 (below) and 2000 (above) function evaluations. Each line
represents the best-observed objective value across iterations, averaged over five runs.

For 2000 function evaluations on the left, when observing AF, UCB-AF achieves the highest final
AF (∼0.79 ), followed by UCB-BF (∼0.78 ). Interestingly, EI-BF, while converging more slowly,
converges to a similar AF as EI-AF (∼0.77 ), indicating that when using EI, optimizing for BFS
can yield strong AF.

On the right, BFS, UCB-AF, and UCB-BF converge to a similar, low error value (∼0.6 ), with
EI-BF (∼ 0.75 ) achieving a slightly worse score. EI-AF converges more quickly and ends with a
similarly high error.

Random Search performs poorly on both metrics with minimal improvement over iterations.

The 500 function evaluation plots mirror the interactions observed for 2000 function evaluations, in
finding that UCB-based methods outperform their EI-based counterparts. However, terminating at
lower AF values and higher error rates. Interestingly, EI is more competitive in the 500-function
evaluation setting, outperforming the UCB-BF method on the AF objective.

Overall, UCB-based methods consistently outperform EI on both objectives, with UCB-AF achiev-
ing the highest AF and the lowest error.
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Figure 1: Comparison of the average Anytime Fitness (left) and Best Found Solution (right) during
the tuning process over 50 iterations for Single-Objective Bayesian Optimization methods (EI,
UCB) with a random search baseline. The results for tuning a Min-Max Ant-system with 500
function evaluations are shown below, and for 2000 function evaluations are shown above.

4.1.2 Multi-Objective

Convergence across objectives Figure 2 shows the best-so-far values for AF and BFS over 50
iterations for ParEGO using EI and UCB, EHVI and Random Search.

For 2000 function evaluations (above) on the left, ParEGO-UCB achieves the highest final AF
(∼0.78 ), followed by ParEGO-EI (∼0.775 ), with EHVI slightly below (∼0.77 ).

On the right, ParEGO-UCB again outperforms the other methods, achieving the lowest error value
(∼0.65 ), which indicates strong final solution quality. EHVI is competitive, achieving (∼0.67 ).
Interestingly, ParEGO-EI shows a similar performance to Random Search, both of which terminate
at around 0.75. These results indicate that ParEGO-UCB offers the strongest performance across
both objectives and EHVI is a competitive alternative.

Random Search exhibits poor anytime performance but is comparable to ParEGO-EI in terms of
final solution quality.
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The plots for 500 function evaluations also show ParEGO-UCB outperforming the other methods
on both metrics. EHVI exhibits competitive performance early on but stagnates after iteration 15.
ParEGO-EI converges more slowly early on but outperforms EHVI in later iterations. Random
Search is less competitive for 500 function evaluations than for 2000 function evaluations.

Overall, ParEGO-UCB performs best among the multi-objective methods.

Figure 2: Comparison of the average Anytime Fitness (left) and Best Found Solution (right)
during the tuning process over 50 iterations for Multi-Objective Bayesian Optimization methods
(ParEGO-EI, ParEGO-UCB, and EHVI) with a random search baseline. The results for tuning
a Min-Max Ant-system with 500 function evaluations are shown below, and for 2000 function
evaluations are shown above.

Hypervolume Figure 3 shows the HV increase over time, averaged across five runs. For 2000
function evaluations, ParEGO-EI initially achieves the steepest increase in HV, outperforming the
other methods up to iteration 11. After the 11th iteration, EHVI overtakes the other methods.
However, both ParEGO methods overtake EHVI in later iterations, with ParEGO achieving the
highest HV final hypervolume (∼0.838 ).

For 500 function evaluations, the plot shows that ParEGO-UCB achieves the highest HV and
the quickest increase. EHVI increases consistently but remains mostly behind ParEGO-UCB.
ParEGO-EI shows a weak early HV increase but overtakes EHVI in later iterations.
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Figure 3: Comparison of the average hypervolume during the tuning process over 50 iterations for
Multi-Objective Bayesian Optimization methods (ParEGO-EI, ParEGO-UCB, and EHVI). The
results for tuning a Min-Max Ant-system with 500 function evaluations are shown below, and for
2000 function evaluations are shown above.

Pareto Front Figure 4 shows the non-dominated solutions from EHVI, ParEGO-UCB, and
Random Search, as well as the non-dominated solutions obtained by single-objective HPO methods.
For 2000 function evaluations, EHVI provides a Pareto front of three configurations while ParEGO
provides five non-dominated points, offering minor trade-offs between AF and error.

The single-objective methods find multiple configurations dominating those found by the multi-
objective methods. HPO-UCB-AF finds the highest overall AF values (∼0.814 ), while HPO-UCB-BF
finds the lowest BFS value (∼0.0565 ).

Random Search contributes two non-dominated points that are dominated by almost all other
methods, indicating poor overall performance.

For 500 function evaluations, ParEGO-UCB finds two non-dominated configurations, with one being
practically dominant compared to the other, achieving an error of approximately 0.084. HPO-UCB-
AF again finds the configuration with the highest AF value. EHVI provides four non-dominated
configurations offering trade-offs between AF and the BFS. However, these are all dominated by
the configurations found by ParEGO-UCB. Again, random search is non-competitive.
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Figure 4: Non-dominated solutions and Pareto fronts identified by each method. The top plot
displays results for 2000 function evaluations, and the bottom plot shows results for 500 calls.
Orange stars: HPO-UCB optimizing Anytime Fitness (AF). Purple stars: HPO-UCB optimizing
Best-Found Solution (BFS). Cyan stars: HPO-EI-AF. Magenta stars: HPO-EI-BFS. Blue line and
crosses: Pareto front and solutions from ParEGO-UCB. Red line and circles: Pareto front and
solutions from EHVI. Brown diamonds: Random Search.

Full Comparison Figure 5 presents the convergence of the best-performing single-objective
method (UCB-AF ), the best scalarization-based MOBO method (ParEGO-UCB), the Pareto-based
method (EHVI ), and Random Search across AF and BFS.

For 2000 function evaluations, on the left, HPO-UCB-AF achieves the highest final AF, followed
closely by ParEGO-UCB. EHVI stabilizes at a lower AF.

On the right, HPO-UCB-AF again performs best, achieving the lowest BFS. ParEGO-UCB follows
closely with a slightly higher error, while EHVI trails slightly behind both.

Random Search exhibits the weakest performance across objectives, consistently lagging behind
other methods.

The plots for 500 function evaluations echo these findings.

Overall, HPO-UCB tuned for AF consistently outperforms the other methods on both objectives.
ParEGO-UCB offers competitive performance, trailing slightly. EHVI converges the slowest among
the guided methods, and random search is uncompetitive, unable to match the quality of the guided
methods.
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Figure 5: Comparison of the average Anytime Fitness (left) and Best Found Solution (right) during
the tuning process over 50 iterations for the best performing Bayesian Optimization methods
(HPO-UCB-AF, ParEGO-UCB, and EHVI) with a random search baseline. The results for tuning
a Min-Max Ant-system with 500 function evaluations are shown below, and for 2000 function
evaluations are shown above.

4.2 Tuned-ACO Comparison

To better understand the impact of hyperparameter tuning on an MMAS, we compare the con-
figurations with the highest AF and the lowest BFS found by each method against the default
settings mentioned by Stützle et al.(OIS12). Each configuration is evaluated on all test instances.
The average performance over evaluations is shown in Figure 7, and the best average tour lengths
are summarized in Table 5.
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Figure 6: Comparison of the test set performance of the configurations with the best respective AF
and BFS values obtained during the tuning process with a random search baseline for tuning a
Min-Max Ant-system with 2000 function evaluations.

Method berlin52 pr152 ts225 pcb442 d657
Optimal 7 542.00 73 682.00 126 643.00 50 778.00 48 912.00
Default 8 032.80 86 754.80 152 190.90 78 784.70 82 321.50
HPO-UCB-AF 7 687.90 77 281.30 131 877.90 56 610.00 57 165.60
HPO-UCB-BF 7 766.60 78 209.80 132 288.90 56 512.60 56 882.60
RS 7 699.70 77 026.90 131 477.40 57 161.40 56 405.60
EHVI AF 7 757.90 77 936.40 132 113.10 56 670.10 56 645.30
EHVI BF 7 772.10 76 851.50 131 005.30 57 227.10 58 544.60
ParEGO AF 7 710.60 77 805.20 131 742.70 56 736.90 56 489.90
ParEGO BF 7 740.80 78 613.10 131 301.80 57 379.50 57 358.40

Table 5: Average best-found tour lengths on the test set per instance over 2000 function evaluations
by hyperparameter-tuning method and TSPLIB optima.

For 2000 function evaluations, no one configuration performs best across all instances. Most perform
well in some instances and poorly in others. Interestingly, the best random search configuration is
quite competitive, even showing the best performance on d657. Across all instances the default
settings are not competitive.
Configurations with higher AF values outperform configurations found using BFS values on more
instances. ParEGO-AF has a lower average on d657, pcb442, berlin52, and pr152 compared to
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its BFS counterpart. A similar pattern holds for HPO-UCB-AF and HPO-UCB-BF, as well as
EHVI-AF and EHVI-BF, with the AF configurations performing better on three of the five test
instances.

Figure 7: Comparison of the test set performance of the configurations with the best respective AF
and BFS values obtained during the tuning process with a random search baseline for tuning a
Min-Max Ant-system with 500 function evaluations.

Method berlin52 pr152 ts225 pcb442 d657
Optimal 7 542.00 73 682.00 126 643.00 50 778.00 48 912.00
Default 9 058.00 101 932.40 180 355.30 91 050.80 94 672.10
HPO-UCB-AF 7 831.10 78 830.60 133 530.80 58 543.70 57 915.60
RS 7 790.10 79 185.90 133 283.10 57 782.30 57 669.80
EHVI AF 7 776.30 79 476.80 132 576.00 57 947.80 57 960.10
EHVI BF 7 840.20 79 584.00 133 365.30 58 306.10 58 666.70
ParEGO AF 7 860.00 78 841.40 133 509.20 58 034.10 57 120.30
ParEGO BF 7 816.40 78 441.20 132 726.90 58 458.90 58 326.50

Table 6: Average best-found tour lengths on the test set per instance over 500 function evaluations
by hyperparameter-tuning method and TSPLIB optima.

For 500 function evaluations, similar interactions arise. Again, random search is competitive, achiev-
ing low averages across the test set and the lowest average on pcb442. For EHVI, it holds that the
AF configuration outperforms the BF configuration, yielding lower averages across instances. For
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ParEGO, this is no longer the case, as the Bf configuration achieves lower averages than its AF
counterpart on four instances.

Table 7 shows the results of the Wilcoxon signed-rank test comparing all tuned configurations to the
default for 2000 function evaluations. The results show all tested methods significantly outperform
(p < 0.05) the default configuration, reinforcing the importance of hyperparameter tuning.

Comparison d657 ts225 pr152 pcb442 berlin52
HPO-UCB-AF vs Default 0.0020 0.0020 0.0020 0.0020 0.0020
HPO-UCB-BF vs Default 0.0020 0.0020 0.0020 0.0020 0.0059
RS vs Default 0.0020 0.0020 0.0020 0.0020 0.0039
EHVI AF vs Default 0.0020 0.0020 0.0020 0.0020 0.0098
EHVI BF vs Default 0.0020 0.0020 0.0020 0.0020 0.0371
ParEGO AF vs Default 0.0020 0.0020 0.0020 0.0020 0.0137
ParEGO BF vs Default 0.0020 0.0020 0.0020 0.0020 0.0059

Table 7: Wilcoxon signed-rank test p-values of final tour lengths for 2000 function evaluations:
Default vs. Other Methods (significant p < 0.05 in bold)

Table 8 shows that for 500 function evaluations, all methods also significantly outperform the
default configuration.

Method d657 ts225 pr152 pcb442 berlin52
HPO-UCB-AF 0.0020 0.0020 0.0020 0.0020 0.0020
RS 0.0020 0.0020 0.0020 0.0020 0.0020
EHVI AF 0.0020 0.0020 0.0020 0.0020 0.0020
EHVI BF 0.0020 0.0020 0.0020 0.0020 0.0020
ParEGO AF 0.0020 0.0020 0.0020 0.0020 0.0020
ParEGO BF 0.0020 0.0020 0.0020 0.0020 0.0020

Table 8: Wilcoxon signed-rank test p-values of final tour lengths for 500 function evaluations:
Default vs. Other Methods (significant p < 0.05 in bold)

Furthermore, we compare the configurations with the highest AF with those with the lowest BF
produced by the guided methods.

The results for 2000 function evaluations are reported in Table 9. These show only one significant
interaction between the EHVI methods, with the AF configuration outperforming EHVI-BF on
d657.
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Comparison d657 ts225 pr152 pcb442 berlin52
HPO-UCB-AF vs HPO-UCB-BF 0.5566 0.6953 0.6250 0.8457 0.2031
EHVI AF vs EHVI BF 0.0039 0.1055 0.1602 0.3750 0.6953
ParEGO AF vs ParEGO BF 0.0645 0.2754 0.3750 0.2754 0.6523

Table 9: Wilcoxon signed-rank test p-values of final tour lengths for Comparisons between the
highest AF and the lowest BFS between method families for 2000 function evaluations (significant
p < 0.05 in bold)

Table 10 shows the intra-family results of the Wilcoxon Signed-Rank Test for the multi-objective
configurations for 500 evaluations. The single-objective methods produced a single non-dominated
configuration, making a comparison between AF and BF versions obsolete. The results show that
ParEGO, with a higher AF value, significantly outperforms its counterpart on d567. For EHVI, no
configuration significantly outperforms the others.

Comparison d657 ts225 pr152 pcb442 berlin52
EHVI AF vs EHVI BF 0.4316 0.1309 0.8457 0.7695 0.3105
ParEGO AF vs ParEGO BF 0.0273 0.3750 0.6953 0.6953 0.4766

Table 10: Wilcoxon signed-rank test p-values of final tour lengths for Comparisons between the
highest AF and the lowest BFS between method families for 500 function evaluations (significant
p < 0.05 in bold)

Table 11 reports the results of the Wilcoxon signed-rank test comparing the single- and multi-
objective BO approaches.

The results show that for 2000 function evaluations, HPO-UCB-AF’s final tour length significantly
differs from EHVI-BF and ParEGO-AF on d657. HPO-UCB-AF outperforms EHVI-BF and is
outperformed by ParEGO-AF on this instance. HPO-UCB-BF achieves a lower final tour length on
d657, showing a significant difference from EHVI-BF.

Comparison d657 ts225 pr152 pcb442 berlin52
HPO-UCB-AF vs RS 0.2754 0.4316 0.8457 0.1602 0.7695
HPO-UCB-AF vs EHVI AF 0.1309 0.9219 0.2754 0.3750 0.0449
HPO-UCB-AF vs EHVI BF 0.0137 0.1055 0.5566 0.2754 0.4316
HPO-UCB-AF vs ParEGO AF 0.0371 0.6250 0.4922 0.7695 0.7344
HPO-UCB-AF vs ParEGO BF 0.5566 0.4316 0.1055 0.1602 0.3223
HPO-UCB-BF vs RS 0.4316 0.4316 0.1602 0.5566 0.4316
HPO-UCB-BF vs EHVI AF 0.7695 1.0000 0.9219 0.7695 0.9219
HPO-UCB-BF vs EHVI BF 0.0098 0.1602 0.1602 0.1934 0.7695
HPO-UCB-BF vs ParEGO AF 0.6250 1.0000 0.3750 0.4922 0.6250
HPO-UCB-BF vs ParEGO BF 0.4316 0.2754 0.6953 0.1602 0.7695

Table 11: Wilcoxon signed-rank test p-values of final tour lengths for Comparisons between single-
and multi-objective methods for 2000 function evaluations (significant p < 0.05 in bold)
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Table 12 shows the results of the Wilcoxon signed-rank test for single- and multi-objective methods
for 500 function evaluations. The results show no significant differences between methods.

Comparison d657 ts225 pr152 pcb442 berlin52
HPO-UCB-AF vs RS 0.6953 0.6250 0.9219 0.1602 0.6953
HPO-UCB-AF vs EHVI AF 1.0000 0.5566 0.6250 0.2754 0.3223
HPO-UCB-AF vs EHVI BF 0.3223 0.5566 0.5566 0.6953 0.9219
HPO-UCB-AF vs ParEGO AF 0.1055 0.6953 0.8457 0.3223 0.7695
HPO-UCB-AF vs ParEGO BF 0.4922 0.6953 0.9219 0.8457 0.6523

Table 12: Wilcoxon signed-rank test p-values of final tour lengths for Comparisons between single-
and multi-objective methods for 500 function evaluations(significant p < 0.05 in bold)

Figure 8 shows violin plots for the top-10 hyperparameter values across methods, separately for AF
and BFS, as well as for 500 and 2000 function evaluations.

The results indicate that high-performing configurations for both objectives tend to arise from low
α (∼1-3) and high β (∼13-17) values, with β being higher for 500 function evaluations. The number
of ants ranges between 1 and 15 for 2000 function evaluations. However, most top configurations
use Nants = 1. The evaporation rate ρ spans the entire range from 0.01 and 0.99 in both objectives.

Figure 8: Violin Plots showing the top-5 hyperparameter values per best performing method for
both objectives separately for 500 (right) and 2000 function evaluations (left)

5 Discussion

Across all benchmark instances, the default settings were non-competitive, resulting in substantially
worse solutions than those of any of the tuned methods. This confirms that HPO can significantly
enhance the performance of a ACO-based TSP solver. These findings align with Yin and van Wijk’s
results on applying BO to optimize the hyperparameters of an ACO (YW21) and Opez-Ibá nez
and Stützle’s work on automating the hyperparameter search for an MMAS (OIS12). Both find a
substantial improvement using tuned values over default settings.

The general trends for high-performing MMAS configurations indicate a preference for low α
values and high β values, consistent with Pellegrini et al.’s study on the MMAS hyperparameters
(PFM06). Our MMAS implementation was evaluated under 500 and 2000 evaluations, prioritizing
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early convergence. Pellegrini et al. similarly observed that configurations with low α and high β
promote faster exploitation for shorter runtimes. In line with their findings, ρ does not exhibit a
strong interaction with performance. However, in our experiments, high-performing configurations
were found across a broad range of values, including ranges not explored in Pellegrini et al.’s study.

The use of different acquisition functions for single-objective and ParEGO-based optimization shows
that UCB yields better results overall, often finding superior solutions than methods tuned using
EI. This suggests that UCB offers a more effective balance between exploration and exploitation in
the context of MMAS tuning.

While Random Search offers a competitive baseline, finding high-performing configurations that
outperform the default settings and the guided methods on some instances, its tuning convergence
is inconsistent and inferior to that of guided search methods.

Comparing the use of different objective functions in Figure 1 shows that single-objective tuned for
AF leads to better convergence, with BO finding configurations with higher final AF as well as a
lower final BFS earlier. Furthermore, configurations with a higher AF achieve a lower average on
the test set on most instances. This suggests that AF offers a more comprehensive optimization
target, resulting in more robust and high-quality solutions.

The success of the single-objective UCB tuned for AF in improving both objectives, as well as
the limited configurations on the Pareto front, indicate that AF and BFS show little conflict,
allowing scalarized and single-objective methods to perform well. In contrast, the Pareto-based
EHVI method, which attempts to balance both objectives simultaneously, appears to be less suited
in this setting.

5.1 Implications

Our findings demonstrate that both single-objective and multi-objective BO outperform random
search when tuning an MMAS for non-conflicting objectives. Furthermore, all tuned methods sig-
nificantly outperform the out-of-the-box methods on the test set. While none of the tuned methods
consistently achieves the best performance across all instances, we observe that single-objective
BO using UCB and tuning for AF yields the most reliable convergence towards high-performing
configurations for both objectives.

Additionally, we find that AF is a more stable and informative optimization target than final solution
quality. Tuning an MMAS for AF results in better tuning convergence and shorter final tours on
most instances. We argue that researchers and practitioners should adopt holistic performance
metrics, such as AF, when tuning meta-heuristic algorithms. While this conclusion is drawn from
MMAS for a TSP, it likely extends to other metaheuristics where convergence behavior matters
more than isolated final solutions.

Finally, our results suggest that the default parameters for the MMAS are insufficient for achieving
effective search performance. Relying on such out-of-the-box settings in practical settings introduces
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a risk of suboptimal solutions. Even a moderate investment in BO yields more robust and efficient
convergence, highlighting the importance of HPO.

5.2 Limitations

This study has multiple limitations that must be acknowledged. Firstly, all experiments were
conducted on symmetric TSP instances with Euclidean distance. As such, our findings may not
generalize to non-Euclidean TSP variations, asymmetric TSPs, or other combinatorial optimization
problems.

Second, the scope of hyperparameter tuning was limited to 4 parameters of an MMAS (α, β, ρ, nants).
While these are among the most influential parameters, MMAS variants with additional or alter-
native parameters were not considered. Moreover, by restricting the range of the search space,
potentially relevant interactions between a larger set of parameters may have been overlooked.

Furthermore, our study focuses exclusively on a bi-objective setting with minimally conflicting
objectives. While single-objective and scalarization-based methods are more effective, this may
not be reflected in many-objective or more conflicting multi-objective settings, where trade-offs
could be more pronounced. In such cases, the performance of Pareto-based or scalarization-based
methods may differ significantly. Our results should not be generalized to optimization problems
with more conflicting objectives.

Additionally, all our optimization methods were given a budget of 55 iterations, 5 Sobol samples,
and 50 further evaluations. We cannot claim that the performance hierarchy of our methods remains
the same when budgets are higher. Similarly, the preferred MMAS configurations identified for 500
and 2000 function evaluations may not generalize to scenarios with larger budgets or those using
fixed iteration limits.

Moreover, we employed Gaussian processes in BoTorch with LogEI, UCB, ParEGO, and EHVI.
Alternative surrogates, such as random forests, or acquisition functions, such as PES or NEHVI,
were not explored. These alternatives could recommend different configurations or exhibit improved
performance on certain instances.

Another limitation arises from the stochastic nature of MMAS. Due to limited computational
resources, each hyperparameter configuration was evaluated five times. This limited number of
replications may not fully capture the variance in performance across independent runs. As a result,
observed differences may be affected by randomness rather than algorithmic superiority.

Finally, our implementation focused on BO frameworks, due to their sample efficiency. However,
other optimization methods, such as NSGA-II or PesMO, were not included. These methods may
provide competitive performance or outperform the methods considered in certain scenarios.
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6 Conclusions and Further Research

This study demonstrated that hyperparameter optimization (HPO) and multi-objective hyperpa-
rameter optimization (MOHPO) find hyperparameter configurations for an Min–Max Ant System
(MMAS) that consistently outperform the default settings. While Expected Hypervolume Im-
provement (EHVI) and ParEGO provide a Pareto Front of trade-offs between objectives, the
configurations with higher Anytime Fitness (AF) values show better performance on more instances.
No single method outperforms all others across all instances, highlighting that all approaches are
viable. For the objectives AF and Best-Found Solution (BFS), we recommend HPO-UCB, tuned
for AF, or ParEGO-UCB, due to their better convergence properties in the tuning process.

Further research could explore higher-dimensional tuning, incorporating additional algorithmic com-
ponents, or expanding the search space. This would further test the capabilities of Multi-Objective
Bayesian Optimization (MOBO) and could yield novel hyperparameter interactions.

In addition, applying different surrogate and acquisition functions, particularly methods more
robust to noise, such as Random Forests or NEHVI, could provide valuable insights.

Finally, the use of different objectives should be explored. In particular, the use of more conflicting
objectives could produce differing results, highlighting the importance of a more diverse Pareto front.

By addressing these directions, future research could further validate and extend the use of MOHPO
for meta-heuristics.
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