
Master Computer Science

Quantum Circuit Equivalence Verification
Using the Generalized Stabilizer Formalism

Name: Lucas Allison
Student ID: s2348454

Date: December 9th, 2024

Specialisation: Foundations of Computing

1st Supervisor: Dr. Alfons Laarman

2nd Supervisor: Dr. Jan Martens
Daily supervisor: Arend-Jan Quist (MSc)

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Einsteinweg 55
2333 CC Leiden
The Netherlands

Abstract

Verifying the equivalence of quantum circuits plays a crucial role in the compilation
and optimization of quantum algorithms. Due to limitations of current quantum
hardware, quantum circuits must be compiled and optimized to run efficiently on
their target devices while adhering to hardware-specific constraints. Equivalence
verification ensures that the modifications introduced during these processes pre-
serve the functionality of the original circuit. Various methods have been proposed
to verify equivalence of quantum circuits such as decision diagrams, ZX-calculus
and weighted model counting, but as quantum computing advances, the increasing
size and complexity of quantum circuits demand the continuous development of
more efficient and scalable equivalence verification tools. This thesis presents a novel
tool for verifying the equivalence of quantum circuits based on a generalization of
the stabilizer formalism. While the traditional stabilizer formalism only applies
to stabilizer circuits, its generalized version extends its applicability to arbitrary
circuits by representing quantum states through their generalized stabilizers. We
introduce four data structures to encode these generalized stabilizers as bitstrings
in various configurations and use them to perform equivalence verification of arbi-
trary quantum circuits. We evaluate our tools performance through an empirical
comparison against several existing tools. The results demonstrate that for specific
quantum algorithms, such as the Deutsch-Jozsa, GHZ state, and Graph state
algorithms, our approach outperforms existing tools. Our tool verifies equivalence
for these algorithms faster, while using significantly less memory. For circuits
exceeding 1000 qubits, it can require over 800 times less memory. Additionally, we
show that our tool is robust against floating point inaccuracies, ensuring reliable
results. As quantum algorithms grow in complexity, our tool addresses the demand
for efficient quantum circuit equivalence verification by demonstrating scalable
performance, particularly in terms of memory, for certain circuit types.

Contents

1 Introduction 1

2 Preliminaries 4
2.1 Quantum Computing Fundamentals 4
2.2 Stabilizer Formalism . 6

2.2.1 Stabilizer States . 6
2.2.2 Stabilizer Circuits . 7
2.2.3 Simulation of Stabilizer Circuits 8
2.2.4 Arbitrary Quantum Circuit Simulation Using the Stabilizer

Formalism . 11
2.2.5 Quantum Circuit Equivalence 14

3 Data Structures for Representing Generalized Stabilizers 17
3.1 Generalized Stabilizer Abstract Data Type 17
3.2 Generalized Stabilizer ADT Implementations: Shared Functionality 19

3.2.1 Representing Pauli Strings 19
3.2.2 H and S Conjugations . 19
3.2.3 Numerical Stability . 21

3.3 Generalized Stabilizer ADT Implementations: Data Structures . . 23
3.3.1 Map . 23
3.3.2 Row-wise Bitvector . 24
3.3.3 Column-wise Bitvector . 26
3.3.4 Tree . 28

4 Experiments 33
4.1 Evaluating the Performance of Proposed Data Structures 33
4.2 Evaluating the Performance against Existing Tools 37

5 Related Work 42
5.1 Gottesman and Aaronson . 42
5.2 STIM . 43
5.3 ECMC . 44
5.4 QCEC . 46
5.5 Quipu . 48
5.6 Abstraqt . 52

1

6 Discussions 53
6.1 Equivalence Verification in the Pauli Basis 53
6.2 Simulating Measurements with the Generalized Stabilizer Formalism 53
6.3 Simulating Measurements with the Generalized Stabilizer Formalism:

Alternative Approach . 55

7 Conclusions and Future Research 58

Appendices 64

A Benchmark Results 65

Chapter 1

Introduction

Quantum computing is an area of great potential because it harnesses the principles
of quantum mechanics to perform calculations in a fundamentally different way
than classical computers. Quantum computers promise immense computational
power for tackling certain classes of problems that are intractable for classical
computers. Areas where quantum algorithms could provide significant advantages
include cryptography, search and optimization, simulation of quantum systems
and solving large linear equation systems [1, 2, 3].

Before quantum computing becomes practically feasible there are many chal-
lenges to overcome [4, 5]. Current quantum computers, often referred to as Noisy
Intermediate-Scale Quantum (NISQ) devices, are not yet fault tolerant [6, 7].
Noise and decoherence introduce strict constraints on qubit connectivity, the set
of available quantum gates, and the depth of circuits that can be executed [8, 9].
While quantum algorithms are typically developed at a high level without taking
these constraints into account [10, 11], to be run on actual hardware, they must be
“compiled” into circuits that adheres to the constraints of the target device [12].
Additionally, it is essential to optimize circuits as much as possible, as it reduces
resource usage — such the number of gates and qubits — enabling more com-
plex algorithms to run on today’s hardware. This optimization and compilation
introduces substantial transformations to a circuit, making it essential to verify
that the resulting circuit preserves the original functionality of the algorithm.
Ensuring this functional equivalence prevents errors that could alter the intended
quantum operations during execution [13, 14]. Additionally, equivalence verification
offers valuable insights into quantum complexity theory. Notably, determining the
equivalence of two quantum circuits is a QMA-complete problem [15]. Therefore,
attempting to solve this problem using classical methods can provide us with
insights into the relationship between classical and quantum complexity classes
and can deepen our understanding of the inherent difficulty of QMA problems.
While equivalence verification is an important aspect in the implementation of
quantum algorithms, it remains a challenging problem with no straightforward
solution [15]. As the capabilities of quantum computers increase, the size and
complexity of quantum circuits will continue to grow, which requires us to keep
developing better equivalence verification tools. In this thesis we address this need
by developing a novel tool aimed at providing more efficient and scalable quantum
circuit equivalence verification.

1

To achieve this we focus on optimizing two key metrics: runtime and memory usage,
which are critical for the efficiency and scalability of an equivalence verification
tool. This leads us to two core subproblems:

• Design a data structure that represents quantum states with a minimal
amount of memory.

• Design a data structure that enables efficient execution of quantum opera-
tions.

In this thesis we present several data structures aimed at optimizing memory
usage and execution efficiency, all based on a generalization of the stabilizer
formalism. The basic idea behind the stabilizer formalism is that a quantum
state can be described by a set of unitaries that “stabilize” the state, called its
stabilizers. The stabilizers form a group under multiplication, which means we can
represent the state by the generators of its stabilizers. Moreover, we can perform
quantum operations directly on the generators, instead of performing them on
the state. The formalism has proven powerful for a specific set of states referred
to as stabilizer states, which can be compactly represented by their stabilizer
generators. Circuits that are initialized in a stabilizer state and only contain
Clifford gates will always result in a stabilizer state and are therefore referred
to as stabilizer circuits [16]. These circuits are of particular interest because
they can be simulated in polynomial time [17, 18]. However, stabilizer circuits
represent only a subset of all quantum circuits. Consequently, prior research
has generalized the formalism to arbitrary — that is, both stabilizer and non-
stabilizer — quantum circuits [19]. This generalized stabilizer formalism is based
on the representation and manipulation of quantum states using their generalized
stabilizers. Unlike traditional stabilizers, which consist exclusively of Pauli strings,
generalized stabilizers can be expressed as linear combinations of Pauli strings. We
introduce four novel data structures designed to represent generalized stabilizers.
These data structures encode the Pauli string summands of a generalized stabilizer
as bitstrings and each of them stores these bitstrings in various ways. These data
structures support equivalence verification using the approach presented in [20],
which presents a method for verifying the equivalence of quantum circuits by
simulating them using the (generalized) stabilizer formalism. Additionally, we
must address floating-point inaccuracies. Since the coefficients of the generalized
stabilizers are represented as floating-point numbers, they introduce imprecisions
and rounding errors which can accumulate over time. This adds another crucial
subproblem:

• Ensure that floating point inaccuracies do not accumulate to the extent that
they impact the correctness of equivalence verification results.

We addressed this problem by creating a wrapper for the basic float-64 datatype
that keeps track of the number of operations performed on it. This count is then
used to dynamically adjust the error margin when comparing two floating-point
values.

2

We empirically compared our tool, using the best-performing data structure,
against the existing quantum circuit equivalence verification tools QCEC [14] and
ECMC [21]. Our results demonstrate that for certain quantum algorithms, such
as the Deutsch-Jozsa, GHZ state, and Graph state, our method outperforms these
tools. Specifically, our tool verifies equivalence faster, while using significantly
less memory. For circuits with over 1000 qubits, our tool’s maximum resident set
size over 800 times smaller than that of QCEC and could be up to 540 smaller
than ECMC. For the largest circuits of the aforementioned algorithms ECMC and
QCEC would either run out of memory or time out, while our tool continued to
successfully verify equivalence. Additionally, when verifying non-equivalent circuits,
we demonstrated that our tools classifications are very reliable, as it produced no
incorrect classifications in the benchmarks performed. This contrasts with both
QCEC and ECMC, which either misclassified some non-equivalent circuits as
equivalent or failed to produce results.

Our equivalence verification tool builds on the research presented in [20, 21, 19],
introducing two main contributions. First, we developed and empirically evaluated
four novel data structures capable of representing generalized stabilizers which can
be used for equivalence verification. In contrast to ECMC [19, 21], which relies on
a symbolic representation of generalized stabilizers, our data structures explicitly
store the Pauli string summands of a generalized stabilizer in memory. Second,
we address floating-point inaccuracies by introducing a method to dynamically
determine an error margin. We demonstrate the robustness of this approach, as it
produces no incorrect results across all tested benchmarks. Many other methods
have been proposed to verify equivalence of quantum circuits such as ZX-calculus
[22], boolean satisfiability [23, 24], path sums [25] and various types of decision
diagrams [14, 26, 27, 28, 29]. Our tool expands the existing set of equivalence
verification tools using these methods by offering a memory-efficient solution for
specific quantum algorithms.

The outline of this thesis will be as follows: in Chapter 2 we introduce the necessary
background on quantum computing, the stabilizer formalism and the problem
of quantum circuit equivalence verification. In Chapter 3 we present the data
structures we developed to store generalized stabilizer generators and how they are
used to verifying the equivalence of quantum circuits. In Chapter 4 we present and
discuss the results of our experiments and empirically compare our method with
existing tools, specifically QCEC [14] and ECMC [21]. In Chapter 5 we discuss
related work. In Chapter 6 we discuss additional theoretical aspects, primarily
focusing on extending our tool to support measurement simulation. Finally, in
Chapter 7 we present our conclusions and discuss future work.

3

Chapter 2

Preliminaries

In this chapter we introduce the necessary background knowledge used in the
remainder of the thesis. We begin by discussing the fundamentals of quantum
computing in Section 2.1, followed by an introduction to the stabilizer formalism
in Section 2.2. Finally, in Section 2.2.5, we define quantum circuit equivalence
and explain how the stabilizer formalism can be applied to verify the equivalence
of quantum circuits. Our preliminary discussions draw from the work presented
in [30, 16, 31, 21, 19, 20], which may be referred to for further elaboration.

2.1 Quantum Computing Fundamentals

A quantum computer operates on quantum bits or qubits. Unlike bits in classical
computing, which can only be in one of two states (0 or 1), the state of a qubit
can be described by a two-dimensional complex valued unit vector. If the the state
is represented by [αβ] this implies |α|2 + |β|2 = 1 must hold. The vectors [10] and
[01] are referred to as the computational basis states and can be represented using
Dirac notation as |0⟩ and |1⟩, respectively. In Dirac notation, a ket is written as
|ψ⟩ and represents a complex vector. The conjugate transpose of a ket is called a
bra and is written as ⟨ψ|. When the state of a qubit is a linear combination of the
two computational basis states, i.e., [αβ] = α|0⟩ + β|1⟩, we refer to the qubit as
being in a superposition of these states and call the complex values α and β the
amplitudes of the qubit.

We can combine an arbitrary number of qubits to create an n-qubit quantum
system. Its state is represented by the Kronecker or tensor product of the individual
qubits. The Kronecker product is an operation defined on two matrices of any
size, where each element of the first matrix is multiplied with the entire second
matrix, the results of which are combined in a larger block matrix. Specifically,
given an n×m matrix A and a p× q matrix B their Kronecker product yields a
block matrix of size np×mq:

A⊗B =

 a11B · · · a1mB
...

. . .
...

an1B · · · anmB

4

With n qubits, this produces a 2n dimensional complex unit vector. For example,
we can combine the qubits |0⟩, |1⟩ and |1⟩ to the 3-qubit state |0⟩ ⊗ |1⟩ ⊗ |1⟩.
Usually, it is simply written as |011⟩. States that are a Kronecker products of only
|0⟩ and |1⟩ are called computational basis states. As with single qubits, multi-qubit
states can exist in a superposition of computational basis states. Using Dirac
notation such a state can be written as the sum of computational basis states:
Σx∈{0,1}nαx|x⟩, where n denotes the number of qubits. Due to the state being a
unit vector, it must hold that Σ|αx|2 = 1. An example of a two-qubit state in
superposition is the Bell state: 1√

2
(|00⟩+ |11⟩).

An alternative way to represent a state vector is by its density matrix. It is a
way to represent the state of a quantum system as a matrix. The density matrix
of a quantum state |ψ⟩ is defined as |ψ⟩⟨ψ|. Here, |ψ⟩⟨ψ| is the outer product of
the state vector with itself. In many cases it can be useful to work with density
matrices instead of state vectors.

Quantum computers change the state of qubits using quantum gates. A quantum
gate is a 2n × 2n unitary matrix acting on an n-qubit state. A unitary matrix
is a matrix U such that U · U † = U † · U = I⊗n. Here ‘†’ denotes the conjugate
transpose of the matrix and I⊗n denotes the tensor product of n identity gates.
If the size of the identity gate is clear from the context we will only write I. For
instance, in the case above we would write I instead of I⊗n. A quantum gate U
can be applied to a state vector |ψ⟩ yielding a new state |ψ′⟩. The state |ψ′⟩ is
obtained by performing a matrix multiplication between U and |ψ⟩. We denote
this as U |ψ⟩ = U · |ψ⟩ = |ψ′⟩. If we are using the density matrix representation of
the state, then gates are applied by conjugating the density matrix with the gate.
That is, the new state is obtained by UρU †.

A quantum circuit is sequence of quantum gates, i.e., the circuit C = U1 ·U2 · · ·Uj

would be composed of j gates. A quantum state can evolve through the circuit by
sequentially applying each quantum gate. An important consequence of the unitary
property of quantum gates is that they are reversible and therefore quantum
circuits are too.

Quantum states are not actually observable, but we have to perform a measurement
to obtain information about it. A POVM (Positive Operator Valued Measure)
is set of positive semi-definite operators Mi that sum to the identity operator:
ΣiMi = I. A matrix M is positive semi-definite if for every non-zero real column
vector z the scalar z†Mz is positive or zero. When a quantum system is in a state
represented by the density matrix ρ and a measurement is performed, the state
collapses to one of these operators. The probability that the state will collapse to
Mj is given by Tr(ρMj), and after the collapse, the system transitions to the state
ρ′, where ρ′ is given by:

ρ′ =
MjρMj

Tr(ρMj)

5

To provide an example of computing a collapse probability, consider a single qubit
in the state |ψ⟩ = α|0⟩ + β|1⟩. To perform measurements in the computational
basis we use the POVM {M0 = |0⟩⟨0| ,M1 = |1⟩⟨1|}. The probability of collapsing
to M0 is computed as follows:

Tr(ρM0) = Tr
(
(α|0⟩ᾱ ⟨0|+ β|1⟩β̄ ⟨1|)M0

)
= Tr

(
|α|2|0⟩ ⟨0|0⟩ ⟨0|+ |β|2|1⟩ ⟨1|0⟩ ⟨0|

)
= |α|2.

The probability of collapsing to M1 is computed analogously.

2.2 Stabilizer Formalism

The key idea behind the stabilizer formalism is that we represent a quantum state
|ψ⟩ by a group of unitary operators that stabilize it. A unitary U stabilizes |ψ⟩ if
U |ψ⟩ = |ψ⟩, or in other words, |ψ⟩ is a plus one eigenvector of U . If both U and V
stabilize |ψ⟩ then so does UV and U−1 [16]. Therefore, the set of unitaries that
stabilize a given state form a group under matrix multiplication, which we will
denote as Stab(|ψ⟩). Although this group can uniquely identify a state, it generally
does not provide a more efficient representation than using the state vector itself.
However, there are some states that can be represented by a significantly smaller
subgroup of the unitaries that stabilize them. These states are known as stabilizer
states.

2.2.1 Stabilizer States

Before defining stabilizer states we need to define the Pauli group, but in order to
do so, we first need to define the Pauli matrices. There are four Pauli matrices
or gates: I = e0 = [1 0

0 1], X = e1 = [0 1
1 0], Y = e2 = [0 −i

i 0] and Z = e3 = [1 0
0 −1].

These gates form a group under matrix multiplication and can be applied to single
qubits. In general we can construct a Pauli group for the n-qubit case as follows:

Pn = {eiθπ/2ej1 ⊗ · · · ⊗ ejn | θ, jk ∈ {0, 1, 2, 3}}

In other words: Pn consists exactly of the matrices that can be obtained by taking
the Kronecker product of n Pauli matrices. These products are also referred to as
Pauli strings. When denoting Pauli strings we will omit the Kronecker product.
For example, we will write X ⊗Z ⊗Z as XZZ. When we encounter a Pauli string
composed of only identity gates except for one non-identity gate, we will represent
it by the single non-identity gate with a subscript indicating its position in the
Kronecker product. For instance, IIY I will be written as Y2, when the number of
qubits is clear from the context. Now that we have defined the the Pauli group,
we can define stabilizer states:

6

Definition 1 An n-qubit quantum state |ψ⟩ is a stabilizer state if there exists a
subgroup S ⊆ Stab(|ψ⟩) containing exactly 2n elements of the Pauli Group Pn.
The group S is referred to as a stabilizer group, and its elements are known as the
stabilizers of |ψ⟩.

The stabilizer group S of a stabilizer state |ψ⟩ uniquely defines the state and
therefore we can represent the state through S. Since S forms a group under
multiplication, the state can be represented by the generators of S. Given that
S contains 2n elements, and any finite group can be generated by a logarithmic
number of elements with respect to the size of the group, any stabilizer state can
be represented using n stabilizer generators. This is the reason stabilizer states
can be represented so efficiently: each generator is a Pauli string consisting of n
Pauli matrices, and it can be stored using 2n+ 1 bits — two bits per Pauli matrix
and one bit for the phase. Only a single bit is needed for the phase since stabilizers
can only have phases of ±1. If a stabilizer s ∈ S had a phase of ±i, then s2 would
also belong to the stabilizer group, but since s2 = −I, it would not stabilize any
state. Therefore, a stabilizer state can be stored using n(2n+ 1) ∈ O(n2) bits.

There is a class of quantum circuits in which every intermediate state is a stabilizer
state. This is especially useful because at any point in the circuits state can be
efficiently represented using its stabilizer generators. These circuits are known as
stabilizer circuits.

2.2.2 Stabilizer Circuits

Stabilizer circuits are a subset of quantum circuits which only use the following
elements:

• State preparation of the all-zero state.

• Clifford gates.

• Measurements in the computational basis.

A Clifford gate is an element of the Clifford group: Cn. This group consists of all
the unitaries that normalize the Pauli group, i.e. Cn = {V ∈ U2n | VPnV

† = Pn}.
The Clifford group can be generated by three gates, the Hadamard (H), phase
shift (S) and controlled-not (CNOT) gates, which are defined as follows:

H =
1√
2

[
1 1
1 −1

]
, S =

[
1 0
0 i

]
and CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

It is important to note that this set of gates does not form a universal basis
and therefore stabilizer circuits only comprise a subset of all quantum circuits.
These circuits are known as stabilizer circuits because the initial all-zero state is a
stabilizer state, and every intermediate state throughout the circuit also remains a

7

stabilizer state. This can be seen from the fact that the Clifford group normalizes
the Pauli group. Consider an arbitrary Clifford gate C, a stabilizer state |ψ⟩ and
one of its stabilizers s. Then the following holds:

C|ψ⟩ = Cs|ψ⟩ = CsC†C|ψ⟩

From this we can see that if s stabilizes the state |ψ⟩, then CsC† will stabilize
the transformed state C|ψ⟩. Additionally, if S is the stabilizer group of |ψ⟩, then
S ′ = {CvC† | v ∈ S} forms the stabilizer group of C|ψ⟩. Since the Clifford group
normalizes the Pauli group, S ′ will consist of exactly 2n Pauli strings, making it a
valid stabilizer group for the state C|ψ⟩. Therefore, the state C|ψ⟩ is a stabilizer
state.

Stabilizer circuits can be efficiently simulated on classical computers in polynomial
time, due to the Gottesman-Knill theorem [17]. These circuits play a key role in
various quantum computing applications, including quantum error correction and
quantum communication [30]. In the following section, we will explore the methods
for simulating stabilizer circuits.

2.2.3 Simulation of Stabilizer Circuits

To explain how stabilizer circuits are simulated with the stabilizer formalism we
will discuss how each element of a stabilizer circuit is simulated. Afterwards we
will explain why these simulations can be performed so efficiently. Consider a
stabilizer circuit C = C1C2C3 . . . Cl of n qubits. To simulate the circuit we perform
the following steps:

State Preparation

We start by representing the all-zero state by its stabilizer generators, which is the
set {Zi | i ∈ [0..n]}.

Gate Application

In Section 2.2.2 we saw that if a Clifford gate U is applied to a stabilizer state
|ψ⟩ with stabilizers S, then the transformed state U |ψ⟩ has stabilizers S ′ = USU †.
Moreover, if G are the generators of S, then UGU † are the generators of S ′. This
implies that to simulate the effect of a Clifford gate on a state, we need to conjugate
the stabilizer generators of the state, thereby obtaining the stabilizer generators
of the transformed state. Therefore, to simulate a Clifford circuit C, for each
Clifford gate Ci ∈ C we conjugate the stabilizer generators of Ci−1 . . . C1|0n⟩ with
Ci, thereby obtaining the stabilizer generators of CiCi−1 . . . C1|0n⟩. This set of
represents the state obtained by applying C1, . . . Ci to the all-zero state.

Measurements

Before we discuss how we obtain the measurement probabilities, we will first
explain how we can express the density matrix of a state in terms of its stabilizers.

8

In [16] it is shown that the density matrix of the all-zero state can be expressed
as a product of the generators of its stabilizers, the group G0 = {Zi | i ∈ [0..n]}.
Or, in other words, the density matrix of the all-zero state equals the sum of its
stabilizers:

|0n⟩⟨0n| = 1

2n

∏
Zj∈G0

(I + Zj)

=
1

2n

∑
g∈⟨G0⟩

g

Notice that after having applied any Clifford circuit C the following holds:

C|0n⟩⟨0n|C† = C

 1

2n

∑
g∈⟨G0⟩

g

C†

=
1

2n

∑
g∈⟨G0⟩

CgC† (2.1)

From this we can see that if a circuit starts in the all-zero state, then the density
matrix of a state obtained by applying a Clifford circuit to the all-zero state equals
the sum of the conjugated stabilizers of the all-zero state. Since we can obtain any
stabilizer state by applying Clifford gates to the all-zero state [16], this means that
the density matrix of any stabilizer state equals the sum of its stabilizers. This
fact will be useful when we discuss how to obtain the measurement probabilities.

The probability of measuring a |0⟩ for the ith qubit of a stabilizer state with density
matrix ρ and stabilizer generators G is given by the formula p0 = Tr(ρM0), where
M0 = I⊗i−1 ⊗ |0⟩⟨0| ⊗ I⊗n−i = I+Zi

2
, which expands to:

p0 = Tr(ρM0)

= Tr

 1

2n

∑
g∈⟨G⟩

g
I + Zi

2

=

1

2
Tr

 1

2n

∑
g∈⟨G⟩

g

+
1

2
Tr

 1

2n

∑
g∈⟨G⟩

gZi

=

1

2
Tr(ρ) +

1

2n+1

∑
g∈⟨G⟩

Tr (gZi)

=
1

2
+

1

2n+1

∑
g∈⟨G⟩

Tr (gZi) (2.2)

9

The probability of measuring a |1⟩ is computed analogously, but with M1 =
I−Zi

2
.

When measuring the ith qubit of a stabilizer state there are two possibilities:

1. Zi commutes with all the stabilizer generators and therefore in turn with all
of the stabilizers.

2. Zi anti-commutes with one or more of the stabilizer generators.

In the first case it follows that either Zi or −Zi is an element of the stabilizer
which yields a measurement of |0⟩ or |1⟩ respectively with probability 1 [30]. This
is the case because the only Pauli string that results in a non-zero trace is the one
consisting entirely of identity matrices. Any Pauli string containing at least one X
or Y matrix will have a trace of 0, as such matrices are anti-diagonal. If a Pauli
string contains no X or Y matrices but includes at least one Z matrix, it will be
diagonal but still have a trace of 0, as there will be an equal number of diagonal
elements that are 1 and −1. Therefore, the stabilizer ±Zi is the only stabilizer
that will yield an identity matrix for the product in the sum of Equation 2.2. For
this reason, if Zi is in the stabilizer the probability of measuring |0⟩ is 1:

p0 =
1

2
+

1

2n+1
Tr

∑
g∈⟨G⟩

gZi

=

1

2
+

1

2n+1
Tr (I)

= 1

In the case that −Zi is an element of the stabilizer, the probability of measuring
|1⟩ is computed analogously and yields 1. The measurement does not disturb the
state so the set of stabilizer generators remains unchanged.

In the second case, the probability of measuring |0⟩ and |1⟩ are both 1
2
. To show

why this holds we will use two facts. First, we can pick any stabilizer generator g
that anti-commutes with Zi, and ensure that it is the only stabilizer generator that
anti-commutes with Zi by replacing any other stabilizer generator g′ for which this
holds with gg′. Second, if we denote the current state as |ϕ⟩, then then it holds for
any generator g′′ |ϕ⟩ = g′′|ϕ⟩. Using these facts we obtain:

p0 = Tr(ρM0)

= Tr

(
|ϕ⟩⟨ϕ| I + Zi

2

)
= Tr

(
g|ϕ⟩⟨ϕ| I + Zi

2

)
= Tr

(
gρ
I + Zi

2

)

10

By using the fact that g = g†, which holds for any stabilizer, and by applying the
cyclic property of the trace we obtain:

p0 = Tr

(
ρ
I + Zi

2
g

)
= Tr

(
ρg
I − Zi

2

)
= Tr

(
ρg†M1

)
= Tr(ρM1)

= p1

Since it must hold that p0 + p1 = 1, we can deduce that both equal 1
2
. This

measurement does alter the state. Therefore, in order to correctly adjust the
stabilizer generators we substitute g with Zi or −Zi depending on whether we
simulated a measurement on |0⟩ or |1⟩, respectively.

Simulation Complexity

We can now see why these circuits can be simulated efficiently. We can efficiently
represent a stabilizer state by its stabilizer generators and each operation in a
stabilizer circuit can be perform efficiently: the generators of the stabilizers of the
all-zero state are n Pauli strings which can easily be constructed. Since Clifford
gates normalize the Pauli group, conjugating this set of generators with any number
of Clifford gates will always result in a set of n Pauli strings. Because conjugation
can be implemented in constant time, by applying the update rules specified in
Table 2.1, if we have k Clifford gates in the circuit, simulating them will take
O(n ·k) time. Finally, to simulate a measurement of the ith qubit in the worst case
Zi commutes with all the stabilizer generators. In this case determining whether
Zi or −Zi is a part of the stabilizer requires inverting a matrix, which in theory
has a time complexity of O(nω), where ω is the exponent of matrix multiplication,
but in practice has a time complexity of O(n3).

2.2.4 Arbitrary Quantum Circuit Simulation Using the
Stabilizer Formalism

A more negative interpretation of the Gottesman-Knill theorem is that stabilizer
circuits by themselves are not useful for producing superpolynomial quantum
speedups [31]. Therefore, various research has been conducted into using the
stabilizer formalism to simulate arbitrary quantum circuits [21, 32].

As mentioned in Section 2.2.2, the Clifford group can be generated by the H, S and
CNOT gates. While they do not form a universal set of basis gates, augmenting
them with the T gate, or more generally the Rz(θ) gate, we do obtain a universal
set of quantum gates [33]. These gates are defined as follows:

11

Table 2.1: Update rules for the transformation of Pauli ma-
trices under Clifford and Rz gate conjugation. Both tables
contain three columns. The third column contains the result
of conjugating the Pauli matrix depicted in the second column
with the gate depicted in the first column.

Gate Input Output

H = H†
X Z
Y -Y
Z X

S
X Y
Y -X
Z Z

S†
X -Y
Y X
Z Z

Rz(θ)
X cos(θ)X + sin(θ)Y
Y − sin(θ)X + cos(θ)Y
Z Z

Rz(θ)†
X cos(θ)X - sin(θ)Y
Y sin(θ)X + cos(θ)Y
Z Z

Gate Input Output

IcXt IcXt

IcYt ZcYt
IcZt ZcZt

XcIt XcXt

XcXt XcIt
XcYt YcZt

CNOT XcZt −YcYt
= YcIt YcXt

CNOT† YcXt YcIt
YcYt −XcZt

YcZt XcYt
ZcIt ZcIt
ZcXt ZcXt

ZcYt IcYt
ZcZt IcZt

T =

[
1 0
0 eiπ/4

]
and Rz(θ) =

[
1 0
0 eiθ

]
Since any quantum circuit can be constructed using the H, S, CNOT , and Rz

gates, we will limit our focus to this specific set of gates for the remainder of this
thesis. However, we will continue to use the T gate as a representative of the Rz

gate, as it is a special instance of the Rz gate, with θ = π/4.

In contrast to Clifford gates, when a Pauli string is conjugated with an Rz gate
it could yield a linear combination of Pauli strings. How Pauli strings transform
under Rz conjugation is depicted in Table 2.1. As an example, conjugating an X
matrix with a T gate will yield:

TXT † =
1√
2
(X + Y)

Consider a more complicated example, where we first conjugate the Pauli string
ZIXZX with T3 and subsequently with T5. The first conjugation yields:

T3(ZIXZX)T †
3 =

1√
2
(ZIXZX + ZIY ZX).

12

Subsequently, conjugating with T5 will give:

T5

(
1√
2
(ZIXZX + ZIY ZX)

)
T †
5 =

1

2
(ZIXZX+ZIXZY+ZIY ZX+ZIY ZY).

As we can see, the stabilizer formalism does not generally apply to arbitrary
quantum circuits, as conjugating a stabilizer group with an Rz gate does not
always yield another stabilizer group, thus violating the principles of the stabilizer
formalism. To address this limitation, previous research has introduced the gen-
eralized stabilizer formalism. This formalism defines the concept of a generalized
stabilizer group, which can represent generalized stabilizer states, encompassing all
quantum states [19, 34]:

Definition 2 In an n-qubit quantum system, a generalized stabilizer state |ψ⟩ is
the simultaneous eigenvector, with eigenvalue 1, of a group containing 2n commuting
unitary operators S. The set of S is a generalized stabilizer group.

To simulate arbitrary quantum circuits using the generalized stabilizer formal-
ism, we follow the same approach as for stabilizer circuits. However, instead of
representing each (intermediate) quantum state by the generators of its stabilizer
group, we describe it using the generators of its generalized stabilizer group. At
first glance, from Definition 2, it may appear that simulating arbitrary quantum
circuits is no more complex than simulating stabilizer circuits, since the generalized
stabilizer group also consists of 2n elements. The key difference is that the elements
of the generalized stabilizer group are not limited to Pauli strings; they can also
be linear combinations of these strings. This becomes clear through the following
example, where we initially represent the state |00⟩ using its generalized stabilizer
generators and then apply an H and T gate to the 0th qubit:

{
ZI
IZ

}
Apply H0−−−−−→

{
X
IZ

}
Apply T0−−−−−→

{ 1√
2
(IX + IY)

IZ

}
As illustrated, performing a simulation of an arbitrary n-qubit quantum circuit
using the generalized stabilizer formalism still requires us to keep track of n
generators, but the size of each generator potentially grows exponentially in the
number of Rz gates. This means that at any given point during the simulation
the obtained state is represented by the set of generalized stabilizer generators
{gi =

∑
αj · pj | i ∈ [0..n], αj ∈ R, pj ∈ Pn}. This means that conjugating a

generator that is a linear combination of j Pauli strings will take O(j) time. This is
because we have to conjugate each Pauli string in the sum individually. Therefore,
conjugating the generators at a given point in the simulation will now take O(n ·2r)
time, where r denotes the number of simulated Rz gates. Not only the complexity
of gate conjugation increases, but so does that of simulating measurements. We
discuss this extensively in Chapter 6.

13

2.2.5 Quantum Circuit Equivalence

In this section we first introduce the notion of quantum circuit equivalence and
subsequently discuss how the stabilizer formalism can be used to verify equivalence
of quantum circuits.

Before we formally define quantum circuit equivalence, it is important to note that
we will only consider circuits without measurements when verifying equivalence.
The reason we don’t need to consider measurements is because they only provide
us with information about a quantum state, while the unitary gates of the circuit
determine how the state evolves. The latter is what we are interested in, as we
want to know whether the quantum states produced by the unitary gates of two
circuits are equivalent. Omitting measurements does not limit the circuits for
which we can verify equivalence, even not for the circuits that contain intermediate
measurements. This is because of the principle of deferred measurement [30], which
allows us to push measurements to the end of a circuit without affecting the final
outcome probabilities.

Defining Quantum Circuit Equivalence

To understand quantum circuit equivalence we first have to understand the global
phase. Given a quantum state, the global phase refers to a complex multiplicative
factor that all amplitudes have in common. This factor does not have any observable
effects on the measurement probabilities of a state. Importantly, this implies that
two quantum states that only differ by a global phase are indistinguishable and
are therefore considered equivalent as we can see in the following example which
can be generalized:

Consider the two states |ψ⟩ = α|0⟩ + β|1⟩ and eiθ|ψ⟩ = |ψ′⟩ = eiθ (α|0⟩+ β|1⟩),
where θ is some real number. The probability of observing the state |0⟩ is given
by |α|2 and |eiθα|2 = (eiθα)(e−iθα∗) = |α|2 for the states |ψ⟩ and |ψ′⟩ respectively.
Here ‘∗’ denotes the complex conjugate. Since the probabilities of observing |1⟩ are
computed analogously we can see that the factor eiθ does change the measurement
probabilities.

We can now define quantum circuit equivalence. Two quantum circuits are consid-
ered to be equivalent if they produce the same output state for each possible input
state. That is, given two circuits, C1 and C2, and an arbitrary quantum state |ψ⟩
then C1 ≃ C2 if and only if C1|ψ⟩ = eiθC2|ψ⟩. If eiθ is non-zero we say they are
equivalent up to the global phase.

Verifying Quantum Circuit Equivalence Using the Generalized Stabilizer
Formalism

In [20] the authors demonstrate that the stabilizer formalism can be effectively
used to verify the equivalence of stabilizer circuits. Moreover, this approach can be
extended to verify the equivalence of arbitrary quantum circuits. Before we present

14

how the method works, it is important to introduce a key theorem of the paper:

Theorem 1 (Thanos et al. [20]) Let U , V be two unitaries on n ≥ 1 qubits.
Then U is equivalent to V if and only if the following conditions hold:

1. for all j ∈ {1, 2, . . . , n}, we have UZjU
† = V ZjV

†; and

2. for all j ∈ {1, 2, . . . , n}, we have UXjU
† = V XjV

†.

The original proof can be found in [20], but a concise version will be presented
here. For convenience, we will use the notation GZ = {Zi | i ∈ {0, 1, . . . , n}} and
GX = {Xi | i ∈ {0, 1, . . . , n}} for the remainder of this section.

Proof. If U ⋍ V , then U = cV for some coefficient c ∈ C with norm 1. In this case,
for all zj ∈ GZ , it follows that UzjU

† = cV zj(cV)
† = cV zjc

∗V † = |c|2V zjV † =
V zjV

†, where c∗ denotes the complex conjugate of c. The proof for the elements of
GX is analogous. The converse direction relies on the fact that any n-qubit state
|ϕ⟩ can be expressed as a sum of Pauli strings:

|ϕ⟩⟨ϕ| =
∑

Pj∈Pn

αjPj

We also know that each Pauli string can be expressed as a sum of Pauli strings
from the sets GZ and GX . In combination with the fact that UzjU

† = V zjV
† and

UxkU
† = V xkV

† holds, for all zj ∈ GZ and all xk ∈ GX , we know that U and V
coincide on all Pauli strings by conjugation. This implies that the following holds:

U |ϕ⟩⟨ϕ|U † =
∑

Pj∈Pn

αjUPjU
† =

∑
Pj∈Pn

αjV PjV
† = V |ϕ⟩⟨ϕ|V †

From this we know that U |ϕ⟩ = cV |ϕ⟩ and thus that V †U |ϕ⟩ = c|ϕ⟩, for some
constant c ∈ C with norm 1, or in other words, |ϕ⟩ is an eigenvector of V †U . Since
|ϕ⟩ is an arbitrary state, we can conclude that any vector is an eigenvector of V †U .
Therefore, it holds that V †U is a multiple of the identity operator. Let c be some
complex number with norm 1, then this yields:

V †U = cI ↔ U = cV

□

We can now see how the stabilizer formalism can be used in combination with
Theorem 1 to verify the equivalence of stabilizer circuits U and V . First, we
simulate both circuits using the stabilizer formalism starting from the all-zero
state. Since the stabilizer generators of the all zero-state are exactly Gz at the end
of the simulation we obtain the following sets:

15

{UZ0U
†, UZ1U

†, . . . , UZnU
†} and {V Z0V

†, V Z1V
†, . . . , V ZnV

†}

We can now easily verify that the first condition of Theorem 1 holds by checking
that for each j ∈ {0, 1, . . . , n} it holds that UZjU

† = V ZjV
†. Second, we repeat

this process, but start the simulations from the all-plus state, whose stabilizer
generators are exactly Gx. This state can be obtained by applying a Hadamard
gate to all the qubits of the all-zero state. This allows us to easily verify whether
the second condition holds.

This approach can be readily adapted to verify the equivalence of arbitrary
quantum circuits. The main difference is that instead of using stabilizer simulations,
we use the generalized stabilizer formalism for our simulations, as outlined in
Section 2.2.4. Additionally, we will use slightly modified, yet equivalent, conditions
from Theorem 1. The first condition can be restated as:

For all j ∈ {1, 2, . . . , n} it holds that V †UZjU
†V = Zj

In this case we can perform a generalized stabilizer simulation of the circuit UV †,
after which we obtain the following generalized stabilizer group:

{V †UZ0U
†V, V †UZ1U

†V, . . . , V †UZnU
†V }

This set can then be used to verify restated condition. The second condition from
Theorem 1 can be restated analogously. With this, we can now formally define
the main equivalence verification method of this thesis, which will be used in
Chapter 3:

Method 1 To verify the equivalence of two arbitrary quantum circuits U and V
perform the following steps:

1. Simulate the circuit UV † using the generalized stabilizer formalism, starting
from the all-zero state. Then, with the resulting generalized stabilizer group,
verify that for each j ∈ {0, 1, . . . , n}, the condition V †UZjU

†V = Zj holds.

2. Repeat step 1, but start the simulation from the all-plus state. Then, verify
that for each j ∈ {0, 1, . . . , n}, the condition V †UXjU

†V = Xj holds.

If all conditions hold, then the circuits U and V are equivalent, otherwise they are
not.

16

Chapter 3

Data Structures for Representing
Generalized Stabilizers

In this chapter we discuss the data structures and algorithms that are used to de-
velop our quantum circuit equivalence verification tool. Any further implementation
details can be viewed on Github [35]. To verify equivalence using the generalized
stabilizer formalism we use Method 1 described in Section 2.2.5. To do this we need
a data structure that can represent and conjugate a generalized stabilizer (GS). In
Section 3.1 we present the abstract data type that is capable of performing these
operations and show why the these operations are sufficient for our approach. In
Section 3.2 and Section 3.3 we discuss the four concrete implementations of the
ADT. In the former section we discuss all shared functionality, while in the latter
section we discuss the implementation details that are unique to each of them.

3.1 Generalized Stabilizer Abstract Data Type

To verify equivalence using Method 1, we need the ability to store and conjugate
generalized stabilizers. To achieve this, we define an Abstract Data Type (ADT)
that represents a single generalized stabilizer. This data type should support the
following operations:

• new(args: any)

Initialize the data structure with any required arguments.

• set stabilizer(stabilizer: List[(Pauli String, float)])

Set the data structure to represent a given generalized stabilizer. These
stabilizers are linear combinations of Pauli strings, so the function takes a
list of tuples, where each tuple represents on of its summands: a Pauli string
and its corresponding coefficient. The function enforces two constraints: first,
all Pauli strings must have the same length, and second, the sum of the
squared coefficients must be equal to one.

• equals stabilizer(stabilizer: List[(Pauli String, float)])

Checks if the provided generalized stabilizer (a list of Pauli string summands
and their corresponding coefficients) matches the stabilizer currently rep-
resented by the data structure. The function returns true if the provided
summands and coefficients are equivalent to those stored in the data struc-
ture, accounting for floating point imprecision. It only accepts stabilizer

17

https://github.com/lucasallison/ctqc

where the length of each Pauli string matches the length of the corresponding
strings in the data structure and the sum of the squared coefficients equals
one.

• conjugate(gate: Gate)

Conjugates the provided with the generalized stabilizer. Specifically, each
Pauli string summand is conjugated independently with this gate. Note that
conjugating a Pauli string can result in a linear combination of Pauli strings,
so this operation may increase the number of Pauli strings summands stored
in the data structure.

A graphical depiction of this functionality is provided in Figure 3.1.

IXI

1√
2
(IXI + IY I)

true

new(args)

set stabilizer([(IXI, 1.0)])

conjugate(T1)

equals stabilizer([(IXI, 1/
√
2), (IY I, 1/

√
2)])

Figure 3.1: Graphical example of the functionality of the ADT
of a generalized stabilizer. The arrows are labeled with the
executed functions, the boxes represent the contents of the
data type.

We will now explain why the functionality of this ADT is sufficient to perform
equivalence verification using Method 1. The key point is that this data type can
represent any generalized stabilizer. Specifically, to verify the equivalence of two
n-qubit quantum circuits, U and V , we need to perform a simulation using the
generalized stabilizer formalism of the circuit UV †, starting from both the all-zero
and all-plus states. We can represent these using the generators of their generalized
stabilizers which are the sets {Zi | i ∈ {0, 1, . . . , n}} and {Xi | i ∈ {0, 1, . . . , n}},
respectively. We can use the ADT to represent each individual element of these sets.
To perform the simulation, we simply need to conjugate the elements of these sets,
which is a functionality provided by the ADT. Finally, for each element produced in
the simulation, we must check whether it matches a specific generalized stabilizer,
which the ADT also supports.

18

In Algorithm 1 we provide pseudocode to verify equivalence using the discussed
ADT, but before we do so, there is one important observation to make. Note that
when a generator is conjugated with the circuits UV †, this operation does not
influence any of the other generators. As a result, the process of conjugating each
generator can be treated independently, making the task inherently parallelizable.
The “embarrassingly parallel” nature of this algorithm presents an excellent
opportunity for implementing the parallel conjugation of generators, allowing for
an easy optimization.

Algorithm 1 Quantum Circuit Equivalence

Input: U: Quantum Circuit, V: Quantum Circuit, n qubits: int
Output: Equivalent (Bool)

1: procedure CircuitEquivalence:
2: for Pi ∈ {Zk | k ∈ {0, 1, . . . , n}} ∪ {Xl | l ∈ {0, 1, . . . , n}} in parallel do
3: GS ← GeneralizedStabilizer.new()
4: GS.set stabilizer([(Pi, 1.0]))
5: for Uj ∈ UV † do
6: GS.conjugate(Uj)

7: if not GS.equals stabilizer([(Pi, 1.0])]) then
8: return false
9: return true

3.2 Generalized Stabilizer ADT Implementations:

Shared Functionality

Some functionality is shared between all the implementations of the generalized
stabilizer ADT. Before discussing implementation details unique to each of them,
we will first discuss the shared functionality.

3.2.1 Representing Pauli Strings

A single Pauli matrix can be stored using two bits. The I, X, Y , Z matrices are
encoded as 00, 10, 11, 01 respectively. The notation is taken from Gottesman and
Aaronson [16], where the matrix is XmsbZ lsb, where msb and lsb are the most and
least significant bits respectively. Storing Pauli matrices this way allows us to store
a Pauli string of length n in 2n bits.

3.2.2 H and S Conjugations

We can prevent the need to conjugate all the summands of a generalized stabilizer
with the H and S gates by storing the conjugations of the H and S gates in
an additional data structure. We store an array, where for each qubit we store
a triple of tuples of the form (Pauli matrix, sign). The ith triple represents the

19

transformations of the X, Y and Z Pauli matrices, respectively, by the H and S
gates that target the ith qubit. For example, if we want to conjugate the 2nd qubit
with a Hadamard gate, then we conjugate gates of the three tuples stored at index
1. These tuples now represent the changes to all the stored Pauli string summands,
without having to explicitly update them. If no previous H or S conjugations are
applied the tuples stored at index 1 in the array will be updated as follows:

Before H conjugation→ After conjugation

(X, 1), (Y, 1), (Z, 1)→ (Z, 1), (Y,−1), (X, 1)

The first tuple on the right hand side now indicates that whenever we encounter a
Pauli string with an X matrix at the 2nd qubit we should treat it as a Z matrix,
the second tuple indicates that we should treat a Y matrix at the 2nd qubit as a
−Y matrix and a final tuple indicates that we should treat a Z matrix at the 2nd

qubit as an X matrix. Any arbitrary number H and S gates can be be applied
this way. For example, if we now want to conjugate the second qubit with an S
gate the triple at index 1 in the array will be updated as follows:

Before S conjugation→ After conjugation

(Z, 1), (Y,−1), (X, 1)→ (Z, 1), (X, 1), (Y, 1)

Now the first tuple on the right hand side indicates that whenever we encounter a
Pauli string with an X matrix at the 2nd qubit we should treat it as a Z matrix,
the second tuple indicates that we should treat a Y matrix as an X matrix and
the final tuple indicates that we should treat a Z matrix as a Y matrix.

To make this more concrete consider the generalized stabilizer 0.8Y I + 0.6IZ and
a newly initialized H/S conjugations map. Below we have depicted the former as
a set of its summands and the latter as an array:

H/S conjugations map:
[
(X, 1), (Y, 1), (Z, 1), (X, 1), (Y, 1), (Z, 1)

]
Generalized Stabilizers:

{
0.8Y I
0.6IZ

}

Now conjugating the 2nd qubit with an H and subsequently an S gate will yield
the following:

H/S conjugations map:
[
(X, 1), (Y, 1), (Z, 1), (Z, 1), (X, 1), (Y, 1)

]
Generalized Stabilizers:

{
0.8Y I
0.6IZ

}
As we can see the summands of the generalized stabilizer that are stored in memory
are not updated, only the triples in the H/S conjugations map are. Say we now

20

want to conjugate the 2nd qubit with a T gate, then we must first apply the
compound H/S conjugations to the summands before we conjugate them:

{
0.8Y I
0.6IZ

}
Apply compound−−−−−−−−−−→
H/S conjugations

{
0.8Y I
0.6IY

}
Conjugate−−−−−→
T gate

{
0.8Y I

0.6√
2
(IY − IX)

}
The advantage of this approach is that H and S conjugates can now be performed
in O(1) time instead of O(2r) time, where r represents the number of Rz gates
in the circuit. However, each data structure using this method is responsible for
taking the H and S conjugations into account when conjugating or using the
generalized stabilizer it represents.

3.2.3 Numerical Stability

The coefficients of Pauli strings are stored as floating point numbers, and as
many floating point operations are performed on these coefficients (e.g., during
conjugation with an Rz gate), it is crucial to account for the error margins that
accumulate from floating point arithmetic. Initially, we used a constant error
margin for all comparisons, but we found that this approach was not robust. In
some cases, the error margin was too large, leading to false positives, while in
other cases it was too small, resulting in false negatives.

To address this we implemented a dynamic error margin that scales with the
number of operations performed on a floating-point number. Specifically, we
designed a wrapper around the standard 64-bit floating-point type that tracks
the number of floating-point operations applied to each value. Let N(x) be the
counter associated with the number of operations on the floating-point number x.
For two floating-point numbers x and y, we consider them equal if the absolute
difference between them satisfies:

|x− y| < max(ϵ, ϵ · (N(x) +N(y)))

where ϵ is the maximum error margin for a single floating-point operation, deter-
mined by the machine precision. This approach provides a sound overapproximation
of the accumulated error. By increasing the margin proportionally to the number
of operations, we ensure that the total error margin is large enough to account for
all accumulated errors from previous operations.

The downside of this approach is that it can lead to two numbers being incorrectly
considered equal when they are not, especially as the cumulative error margin
grows. Generally, this is not an issue: the exponential growth of summands limits
the number of gates that can be applied to the generators before the equivalence
verification process becomes prohibitively slow, preventing the error margin from
becoming excessively large. However, incorrect results can still occur. In particular,
overapproximation can cause errors when we remove summands during circuit

21

simulation. To save storage, we remove summands whenever their coefficients can
be considered zero based on the method above. Sometimes, due to rotational gates
(e.g., through the multiplication of the sine and cosine of an angle), a summand’s
coefficient may become very small. In such cases a summand could be removed,
not because it is truly zero, but because it is incorrectly considered so. This can
lead to errors, for instance, if the removed summand would have canceled out
another later on.

To address this issue, an additional field is introduced in the wrapper to store
the cumulative product of all multiplications from rotational gates. This allows
us to track and determine when a coefficient is close to zero due to successive
multiplications. The ‘FloatingPoint’ wrapper now has the following fields:

struct FloatingPoint {

value: f64;

ops: usize;

cumulative_product: f64;

};

When checking if a coefficient equals zero, we use the cumulative product field
to determine whether this product has become very small compared to the error
margin. If it has, it is likely not actually zero but simply very small. However, a
coefficient might still be zero as a result from other operations (e.g., addition).
Therefore, to ensure that we do not keep summands that are actually zero, if the
actual ‘value’ is smaller than the smallest positive float, we can confidently treat
it as zero. Determining if a coefficient equals zero is now done as follows:

fn Float ingPo int : : i s z e r o (s e l f) −> bool {
i f (s e l f . va lue . abs () < 2 f64 : : MIN POSITIVE)

return true ;

// Overest imate by a f a c t o r o f 100 to avoid
// boundary cases , e . g . , by f l o a t i n g −po in t
// e r ro r s in the cumula t ive product .
l et e r ro r marg in = 100 ∗ f64 : : EPSILON ∗ s e l f . ops ;
i f (s e l f . cumulat ive product . abs () < e r ro r marg in)

return fa l se ;

return se l f . va lue . abs () < f64 : : EPSILON ∗ s e l f . ops ;
}

It is important to note that this approach does not guarantee correct results. This
is something we discuss in more detail in Chapter 4.

22

3.3 Generalized Stabilizer ADT Implementations:

Data Structures

In the following sections we will discuss the various data structures we developed
that implement the functionality of the generalized stabilizer ADT.

3.3.1 Map

The map data structure stores all the Pauli string summands of a generalized
stabilizer in a key-value fashion. The key is the Pauli string itself and the value
is its associated coefficient. The data structure always keeps two equally sized
maps in memory to avoid the continuous allocation of new maps. We refer them
as the source and destination map. Below we present a representation of the data
structure:

struct GS_Map {

src_summands: map <PauliString , float64 >;

dst_summands: map <PauliString , float64 >;

};

The source map always contains the Pauli string summands of the generalized
stabilizer it represents, while the destination map is used to store the conjugated
summands from the source map. Whenever we conjugate all the Pauli string
summands, the source and destination maps are swapped afterwards and the
destination map is cleared: its memory is not deallocated, but it only marked as
empty.

Consider the case where the data structure represents the generalized stabilizer
0.8ZX + 0.6ZZ. When we conjugate the generalized stabilizer with a T gate
targeting the second qubit each summand of the generalized stabilizer is conjugated
individually. First, the summand 0.8ZX is conjugated from the source map, which
produces two Pauli strings: 0.8√

2
ZX and 0.8√

2
ZY . As both Pauli strings are not yet

present in the destination map, we add the Pauli strings as keys and associate their
coefficients as values. Second, we conjugate 0.6ZZ from the source map which
remains unchanged and can be directly stored in the destination map. Now all the
summands are conjugated, we swap the source and destination map and clear the
memory of the latter. This example is depicted in Figure 3.2.

23

(ZX) 0110

(ZZ) 0111

0.8

0.6

Keys Values

(ZX) 0110

(ZY) 0111

(ZZ) 0111

0.8/
√
2

0.8/
√
2

0.6

Keys Values

Conjugate with T1

Figure 3.2: Example of conjugating a generalized stabilizer
represented by the map-based data structure: The Pauli string
summands from the source map (top) are conjugated and
stored to the destination map (bottom).

3.3.2 Row-wise Bitvector

The row-wise bitvector data structure manges two vectors: one bitvector which
sequentially stores all the Pauli string summands of the generalized stabilizer it
represents and one vector containing the coefficient lists associated to each of the
summands. The coefficients are associated to the summands by their index, this
means that the ith coefficient stored in the vector is associated to the ith Pauli
string stored in the bitvector. Below we present a representation of the key fields
in the data structure:

struct GS_RowWiseBitvec {

summands: bitvec;

coefficients: vec <float64 >;

};

When conjugating stored Pauli string summands, we iterate over the bitvector
and extract the relevant bits from each Pauli string (i.e., the bits representing
the target matrix). If a CNOT conjugation is being performed, the bits of each
Pauli string are updated in place, and the coefficient list associated with the Pauli
string is updated accordingly. In the case of an Rz conjugation that produces
two Pauli strings, we copy the Pauli string that is being conjugated and its
associated coefficient and append it to the end of the bitvector and coefficient

24

vector, respectively. We set the target matrix of the original Pauli string to an
X matrix and that of the copied Pauli string to a Y matrix. We can do this to
because it does not matter whether the original target matrix was an X or Y
matrix, because in both cases will yield the same two Pauli strings. However, it
can be the case that the resulting Pauli strings have different coefficients so both
coefficients are updated independently. The reason we implemented it in this way
is because it prevents us from having to use an if statement. Substituting if

statements with code that always executes is called predication and can improve
the performance of the code [36].

0 1 1 0 0 1 1 1

ZX: 0.8 IY: 0.6

Conjugate with T1

0 1 1 0 0 1 1 0 0 1 1 1 0 1 1 1

ZX: 0.8√
2

IX: − 0.6√
2

ZY: 0.8√
2

IY: 0.6√
2

Figure 3.3: Example of conjugating a generalized stabilizer
represented by the row-wise bitvector data structure. Above
and below the centered arrow the sequence of bits represent
the bitvector that stores the Pauli string summands of the
generalized stabilizer before and after conjugation with the
gate T1, respectively. Each sequence of bits that represents a
Pauli string is surrounded by a dotted box and labeled with
the Pauli string it represents and its associated coefficient.

Consider the example depicted in Figure 3.3. Here we can see that our generalized
stabilizer consists of two summands: the Pauli strings 0.8ZX and 0.6ZY , which
will be conjugated with the gate T1. First, the Pauli string 0.8ZX is conjugated.
As the second qubit is an X matrix the conjugation produces two Pauli strings:
0.8√
2
ZX and 0.8√

2
ZY . We copy the bits representing the ZX Pauli string to the end

of the vector and set the second matrix of the original Pauli string to an X matrix
(which it already was) and that of the copied Pauli string to a Y matrix. The
coefficients are also copied and updated. Then we will conjugate the second Pauli
string, which will also yield two Pauli strings: − 0.6√

2
IX and 0.6√

2
IY . Again, we copy

the bits of the Pauli string representing IX, append it to the bitvector, set the
second matrix to of the original an copied Pauli string to X and Y respectively
and copy and update the coefficients.

Notice, that because Pauli strings are updated in place and new Pauli strings are
simply appended to the end of the bitvector it is possible that the same Pauli string
is stored more than once. For this reason it is important to periodically remove
duplicate Pauli strings from the data structure. We achieve this by sequentially

25

inserting each Pauli string and its associated coefficient into a map as key and
value, respectively. If we want to insert a Pauli string into the map that has already
been inserted (i.e., we have encountered a duplicate) we simply sum the coefficients.
After having gathered all unique Pauli strings and their coefficients into the map,
we scatter them back into a cleared bitvector and coefficient vector. The memory
of the vectors is not deallocated, but only marked as empty. We iterate over the
key-value pairs in the map and append the Pauli strings to the bitvector and the
coefficients to the coefficient vector. Any Pauli string that has a coefficient of zero
is ignored.

3.3.3 Column-wise Bitvector

The column-wise bitvector was initially implemented to optimize the conjugations
of Clifford gates. It is inspired by DuckDB [37] which uses a columnar storage
format: instead of storing the rows of a SQL table sequentially in memory, the
columns of the table are stored separately. The idea behind this is that in most
cases we only want to access the values of a few columns, in which case iterating
solely over the data in the columns as opposed to loading an entire row can be
much more efficient; we don’t load unnecessary data and it decreases cache misses.
The same holds for conjugating Pauli strings with Clifford gates: we do not need
to load the entire Pauli string to read and update one or two matrices.

If we are simulating n-qubit circuits, the Pauli strings we store will have a length
of n. Therefore, we maintain n bitvectors, which we will refer to as “columns”.
The ith bitvector stores the ith Pauli matrix of each Pauli string. Additionally, we
manage a separate vector that keeps track of the coefficients associated to each of
the Pauli strings. Below, we provide a representation data structure:

struct GS_ColWiseBitvec {

columns: array <bitvec >;

coefficients: vec <float64 >;

};

This approach is advantageous if we only need to access very few gates of each
Pauli string. For example, if we want to conjugate the Pauli string summands with
a CNOT with control and target qubit 4 and 5 respectively, then we only have to
iterate over the fifth and sixth bitvectors and can ignore the others. In addition,
as we know we will need to read and potentially update all the gates stored in
these bitvectors, so the subsequent bits that we read will likely be in the cache.

The primary limitation of this approach becomes apparent when we need to access
the an entire Pauli string. Say we want to read the entire jth Pauli string. Then we
would have to read and concatenate the jth matrix stored by each bitvector. As
each bitvector has a separate memory location, this makes the memory access very
inefficient. Consider the example in Figure 3.4. We have stored two Pauli strings

26

0.8ZX and 0.6IY . We iterate over the matrices stored in the second column as
the T gate targets the second qubit. The first matrix we encounter is an X matrix
(belonging to the Pauli string ZX), so the conjugation will produce two Pauli
strings. We now need to copy the first Pauli string and store it in the data structure.
To achieve this, we copy the first matrix stored in each column (or bitvector) and
append it to that column. In this case a Z is appended to the end of the first
column and a X to the second. We set the second matrix of the original Pauli
string to X and the second matrix of the newly stored Pauli string to Y . We clone
the associated coefficient and update it accordingly. We perform an analogous
process for when we encounter the Y matrix from the IY Pauli string.

0

1

0

0

Z
I

1

0

1

1

X
Y

ZX: 0.8

IY: 0.6

Conjugate with T1

0

1

0

0

0

1

0

0

Z
IZ
I

1

0

1

0

1

1

1

1

X
X
Y
Y

ZX: 0.8/
√
2

IX: 0.6/
√
2

ZY: 0.8/
√
2

IY: 0.6/
√
2

Figure 3.4: Example of conjugating a generalized stabilizer
represented by the column-wise bitvector data structure. To
the left of the centered arrow we can see how the data structure
stores the two Pauli strings summands 0.8ZI and 0.6XY and
to the right of it how they transform after a conjugation with
a T1 gate. Each dotted red box represents a column in the data
structure and its label indicates the stored Pauli matrices. The
black dotted boxes indicate how the columns are combined to
form a Pauli string, which are represented next to them with
their associated coefficient.

Similar to the row-wise bitvector it can occur that duplicate Pauli strings are
stored in it. Removing these duplicates is done in a similar fashion; we gather all
Pauli strings in a map and scatter them back in the data structure. For details see
Section 3.3.2.

27

It may seem that this data structure is only beneficial when conjugating the Pauli
strings with CNOT gates, but is was implemented before we started tracking H
and S conjugations separately (see Section 3.2.2). It was specifically designed for
circuits with predominantly Clifford gates, where the benefits of conjugating these
gates would outweigh the drawbacks of conjugation non-Clifford gates.

3.3.4 Tree

The tree based data structure is based on the work in [38]. In this data structure,
each Pauli string is stored as binary tree. The goal of this data structure is to
be as memory efficient as possible. The nodes and leaves of the tree are stored
in a table and their storage location is determined by hashing. This way, if two
different trees share a common subtree, the common subtree is only stored once.
Each tree is divided among three tables:

• Leaf table: The table is a bitvector with preallocated memory where all the
leafs of the tree are stored. Each entry in the leaf table stores a number of
Pauli matrices and one additional bit to indicate whether the bits in the leaf
table are taken which will prevent them from being overwritten when other
leaves are inserted. The number of Pauli matrices per leaf can be set upon
initialization (pmatrices per leaf).

• Node table: The table is a bitvector with preallocated memory where all
the internal nodes of the tree are stored. Each entry in the node table consists
of two “bookkeeping” bits and a number of “body” bits (node body bits).
In the body bits we store two integers, which represent the offsets in either
the node table or the leaf table of the child nodes or leaves. One of the
bookkeeping bits is used to indicate this distinction. This offset can be used
to find a child node or a leaf. The other bookkeeping bit is set once a node
is inserted into the table to mark the bits in the table as occupied.

• Root table: The table is an expandable bitvector where each entry stores
an offset to the root node of a tree in the node table. This way each entry
represents a Pauli string and allows us to keep track of more Pauli strings
than we actually store in the node and leaf table. The root table is also used
to associate a coefficient with each of the stored Pauli strings.

A representation of the data structure is provided below and an example of
how these tables are used to store the generalized stabilizer 0.8ZXXXZY +
0.6ZY XXZY is depicted in Figure 3.5.

28

struct GS_Tree {

coefficients: vec <float64 >;

root_table: bitvec;

node_table: bitvec;

leaf_table: bitvec;

};

0.8

L R

0.6

L

ZX XX ZY

R

L R
L

L
R

Root Table

Node Table

Leaf Table

Figure 3.5: Example of storing the generalized stabilizer
0.8ZXXXZY + 0.6ZY XXZY using the tree based data
structure. The dotted rectangles depict the various tables.
Rectangles in these tables represent the entries. The edges
from the nodes in the node table contain labels to indicate if
the edge is to a right (R) or left (L) child. In the entires of
the root table the associated coefficients are depicted, in the
entries of the leaf table the stored Pauli matrices.

Both the number of body bits of a node, which we will denote with n, and number
of Pauli matrices per leaf, which we will denote with p, can be set upon initialization
of the data structure. By default they are set to 24 and the number of qubits
divided by four (with a lower bound of 2), respectively. The number of body bits
of the nodes predominantly determines the structure of the tree. Since the body
bits store two offsets, each individual offset is a number stored within n/2 bits.
This means that we can store a maximum of 2n/2 nodes in the node table. Since
each node contains 2 + n bits we allocate 2n/2(2 + n) total bits. As we can address
an equal number of leaf nodes and each leaf consists of 2(p+ 1) bits — two bits
per Pauli matrix and one to indicate wether the entry is taken — we allocate
2n/2 · 2(p+ 1) bits for the leaf table.

Note that it is not strictly necessary to have two separate tables for the leaves and
for the nodes, however, we have chosen to use two different tables in order to size
the leaves and nodes differently. Alternatively, we could have stored the nodes and
leaves in a single table, and padded the leaves with zeros to make them the same
size as the nodes. However, as we are trying to optimize memory usage, we have

29

chosen to store the nodes and leaves in separate tables, therefore eliminating the
need for pad bits.

Inserting Pauli strings

Inserting a Pauli string is done in a bottom-up fashion. We recursively split the
Pauli string into two halves until we reach leaf-sized segments (Pauli strings of
length pmatrices per leaf). These segments are inserted into the leaf table and
the offset (or index) of the table entry they are inserted in is returned. Two of these
offsets are then combined to form a node, which is inserted into the node table.
As the recursion unwinds, each inserted node returns its offset which we pair to
form new parent nodes. This process of combining child node offsets continues up
the call stack, creating and inserting parent nodes, thus constructing the complete
tree structure from leaves to root.

To insert a leaf we hash the bit representation of the Pauli matrices we want to
insert and take the hash modulo the maximum number of storable leafs. This
gives us an offset within the leaf table. We insert the bits in the leaf table using
linear probing. This is a collision resolution technique where, upon encountering
an occupied table entry, we check subsequent entries sequentially until we find a
suitable entry. Specifically, in our case there are three possibilities that can occur
at the determined offset:

1. The entry is not marked as taken. We write the bits to that location, mark
it as taken and return the offset of the table entry we have written.

2. The entry is marked as taken and the bits at the offset are equal to the bits
we want to insert. We return the offset of the table entry without performing
any other operations.

3. The entry is marked as taken and the bits at the offset do not equal the bits
we want to insert. We increment the offset and repeat this process until we
find an entry that satisfies one of the first two conditions.

Nodes are inserted in a similar fashion into the node table as the leafs, but there
we determine the hash of the body bits of the node and take this hash modulo the
maximum number of storable nodes. This offset is used to insert the node with
linear probing and the actual offset of the entry that the node was inserted in is
returned. The final offset that is returned is simply appended to the root table, no
hashing is performed to insert it.

Updating Pauli Strings

To update a specific matrix in a Pauli string we first recursively traverse the tree
to find the leaf that contains the matrix we want to update. Because we know how
many Pauli matrices are stored in each leaf, at each recursive call we know which
subtree we need to continue to traverse. Once we arrive at the leaf, we copy the
Pauli matrices stored in the leaf to a new leaf variable and update the matrix we
want to change. We write the new, updated leaf back to the leaf table and return

30

its offset. Now we need to propagate the changes up the tree. As the recursion
unwinds we update each node by reading the body bits of the node into a new
node, updating one of the two offsets to store the offset of the newly updated leaf
or child node and inserting the node into the node table. The offset of the written
node is returned up the call stack, where it is used to update the parent node.
This process continues until we reach the root node.

It is important to note that whenever we update a leaf or a node we do not update
the entry in place, but we insert a new entry in the table. This is because we
do not know whether any other node is pointing to the leaf or node we want to
update. If we would update the entry in place, we would potentially break the
structure of another tree.

Conjugations

To conjugate the stored Pauli strings with a CNOT gate, we iterate through
the root table and for each entry we find and update the target Pauli matrices
through the process described above. To ensure that the tree only stores unique
root table entries we take a slightly different approach to perform Rz conjugations.
We initialize an empty map where we store a root table entry and its location in
the root table as a key-value pair. For each entry in the root table we recursively
check whether the target matrix is an X or Y matrix. If this is not the case, we
simply leave the entry unchanged but add its location in the map. If this is the case
we update the target matrix of the Pauli string that the entry references to either
an X or Y matrix depending on whether the target matrix of the currently stored
Pauli string is a Y or an X matrix, respectively. This update will not remove the
existing tree structure or its root table entry, but will only add additional nodes
and leaves to ensure that the updated Pauli string is stored. This means that the
root table entry of the original entry is still valid and that there will be two trees
present representing the original and updated Pauli string. The update function
returns a reference to the latter, which will serve as the root table entry for the
updated Pauli string. If the entry is already present in the map, we simply sum
the coefficient of the newly obtained Pauli string with that of the existing entry,
and if it is not present we append the entry to the root table.

Garbage Collection

It is possible for leafs or nodes to be present in their respective table without being
referenced by any other nodes. This is a result of performing updates on the stored
trees. If there are many unreferenced entries in the tables, this can considerably
slow down inserting entries or even prevent an entry from being inserted if the table
is full. To ensure we don’t encounter these problems we will sporadically perform
garbage collection by removing all unreferenced nodes. We maintain counters for
both the node and leaf tables, tracking the number of entries in each. Based on
these values, we initiate garbage collection at two specific points:

1. Whenever the number of entries in the node or the leaf table exceeds 80
percent of the maximum storable entries in their respective table.

31

2. Before inserting or updating a Pauli string we check if there are enough
available entries to guarantee we can complete the operation, if this is not the
case we initiate garbage collection. As we can easily compute the maximum
number of nodes and leafs that will be inserted in the table, we can easily
check if we will not exceed the maximum available entries of each table.

Garbage collection is performed by recursively retrieving each stored Pauli string
and inserting them into newly allocated tables. Inserting the entire Pauli string as
opposed to merely copying the referenced nodes and leafs is important, because
the hashes of the nodes and leafs are then recomputed. After inserting all Pauli
strings, the current tables are deallocated and replaced by the newly populated
ones. This process ensures that the node and leaf tables contain only the nodes
and leaves that are referenced.

Resizing

It is possible that even after garbage collection the node or leaf table is too full
(i.e., we cannot perform an insert or update operation). In this case we need to
resize the data structure. We do this by allocating new, larger tables and inserting
each stored Pauli string into these new tables. Specifically, each time we resize we
increase the number of body bits of a node by 8 (recall that the size of the all
three tables follows from this value). The current tables are then replaced by the
newly populated tables.

32

Chapter 4

Experiments

In this chapter we evaluate the performance of our equivalence verification tool,
CTQC. This tool implements the data structures introduced in Chapter 3 and
applies them to verify equivalence using the algorithm detailed in the same chapter.
The choice of data structure can be manually specified, but if none is provided, the
map-based implementation is selected for non-Clifford circuits, while the row-wise
bitvector implementation is used for Clifford circuits. We begin by evaluating the
performance of each data structure, followed by benchmarking the “out-of-the-
box” version of CTQC against existing equivalence verification tools QCEC [14],
developed by the TU Munich, and ECMC [21] from Leiden University. The results
of the data structure comparison are discussed in Section 4.1 and the results of the
benchmarking with other tools in Section 4.2. All circuits used in the benchmarks
were obtained from the MQT Benchmark set or generated by the accompanying
code [39] and then transpiled and optimized using Qiskit. All benchmarks where
run on a Dell XPS 15 with an Intel i7-9750H chip.

4.1 Evaluating the Performance of Proposed Data

Structures

We first compare the performance of our tool, which implements the proposed
generalized stabilizer generator data structures and equivalence verification method
discussed in Chapter 3. The full results can be found in Appendix A but a subset
of the results is presented in Table 4.1. We specifically benchmarked two properties:
runtime and memory usage. The runtime measures the total time it takes for the
tool using one of the implemented data structures to verify equivalence, including
the time it takes to read the circuits and perform any preprocessing steps. The
memory usage is measured in terms of the maximum RSS (Resident Set Size) in
megabytes. The maximum RSS is the peak amount of physical RAM a program
uses during its execution. It’s a good measure for memory usage because it shows
the actual impact on system resources, reflecting how much memory is actively in
use.

To compactly present the results we use heatmaps as shown in Figure 4.1. These
offer a concise way to display the performance of a data structure relative to
the others. The “relative performance” of each data structure implementation is
determined per algorithm rather than per circuit. Performance, based on runtime

33

Table 4.1: Benchmark results of the various data structures
for the largest DJ, GHZ and Graph state circuits and a repre-
sentative subset of the non-stabilizer circuits from the MQT
benchmark set.

Algorithm #Qubits
Map Col-wise BV Row-wise BV Tree

t(sec) mem(mbs) t(sec) mem(mbs) t(sec) mem(mbs) t(sec) mem(mbs)
211 14.4055 13.9 2.2259 22.0 1.731 9.3 16.2668 22.0

Deutsch-Josza 212 123.141 16.3 11.1899 62.8 7.8248 13.3 107.1632 38.7
213 T T 53.195 216.9 31.3367 23.5 T T
212 124.6941 20.7 5.8267 60.1 2.3891 11.2 125.2532 47.3

GHZ State 213 T T 33.1645 212.9 10.649 16.3 T T
214 222.8422 802.8 42.5643 27.4
215 T T 176.4379 53.0
212 127.7919 15.1 8.9611 61.5 5.4273 12.2 108.3978 37.1

Graph State 213 T T 43.0963 214.5 22.3909 18.6 T T
214 253.1204 807.3 90.0806 32.1
215 T T 364.7836 60.7
23 0.0068 0.0 0.0027 0.0 0.038 5.4 0.0025 0.0

QAOA 24 0.0071 5.1 0.0041 0.0 0.0365 5.1 0.0044 0.0
23 27.0075 642.2 15.0561 238.5 322.8196 337.2 20.7199 647.0

Quantum Neural Network 24 M M M M - - M M
23 0.7183 74.8 0.2531 13.4 5.6078 18.0 0.5871 60.3

Exact Quantum Phase Estimation 24 M M M M - - M M
23 15.6331 647.8 9.5276 233.7 289.0859 280.5 11.9401 573.2

SU Random Circuit 24 M M M M - - M M
23 0.0051 0.0 0.002 0.0 0.0163 0.0 0.0051 0.0

W State 24 0.0157 0.0 0.0031 0.0 0.0444 5.1 0.0118 0.0
25 M M M M - - M M

or memory usage, is determined as follows: For each circuit, the implementation
with the lowest time or memory usage receives a score of 1, the next lowest a score
of 2, and so forth. These scores are summed for each implementation across all the
circuits of a specific algorithm, with lower scores indicating better performance.
This method provides a compact overview of implementation performance across
the benchmarks, but it is important to keep in mind that it may not capture
detailed performance variations of the individual circuits

Discussions. Figure 4.1 shows that the map based implementation outperforms the
others in terms of both time and memory usage for most circuits. This advantage
is likely because the map based implementation only stores unique Pauli strings
as bitvectors, which can easily be retrieved and conjugated, whereas the other
implementations may store duplicates or require tree traversal for conjugation.
Furthermore, the map based implementation performs especially well for circuits
where equivalence can verified up to 16 qubits. In these circuits the generators are
relatively small and can be hashed efficiently.

Notably, there are only three algorithms for which any of the implementations
can verify equivalence for circuits with more than 16 qubits: the Deutsch-Josza,
GHZ and Graph state algorithms. For these algorithms, even significantly larger
circuits can be verified, as is shown in Table 4.1. The strong performance on the
GHZ and Graph state circuits can be easily attributed to the fact that both are
Clifford circuits. We already know that the (generalized) stabilizer formalism is
particularly effective for Clifford circuits, so the performance for these circuits is
unsurprising. The more interesting result is the performance on the Deutsch-Josza
circuits, which contain nearly 47% rotational gates. Initially, we hypothesized that

34

Figure 4.1: Heatmaps for the relative runtime and memory
performance of various data structure implementations for the
MQT benchmark set, comparing the original and optimized
circuits. The algorithms are depicted the vertical axis, the
implementations on the horizontal axis. Green indicates lowest
time/memory usage, while red indicates the highest, with ties
sharing the same color.

this performance could be due to the relatively low circuit depth, averaging 5.6
gates per qubit, which could inherently limit the growth of the number of Pauli
strings. However, after further analysis, this explanation seemed unlikely. In a DJ
circuit with 212 qubits there are approximately 5.6 · 212 gates and as nearly half
of them are rotational gates this would be enough to have the number of Pauli
strings blow up to the point that the equivalence verification process becomes
unfeasible. As it turns out, this behavior is due to the gates that appear in the
circuits: the rotational gates in the Deutsch-Jozsa (DJ) circuits only use angles of
π and π/2 modulo π. A rotational gate with the former angle equals the Z gate
and with the latter angle corresponds to the ±S gate, where the sign of the S gate
depends on the polarity of the sine of the angle. This means the DJ circuits are
effectively Clifford circuits and which explains the performance on these circuits.

Although the map based implementation generally performs best, it does perform
best across all circuit types; specifically, it is significantly outperformed by the
row-wise bitvector implementation for the Deutsch-Jozsa, GHZ, and Graph state
circuits. As shown in Figure 4.1, the data structure verifies equivalence faster,
while requiring less memory. This advantage is most apparent for the DJ, GHZ
and Graph state circuits, where it also scales to much larger circuits, as seen in

35

Table 4.1. The better performance of the row-wise bitvector on these circuits is
likely due to the fact that these circuits are Clifford circuits and the generators
will therefore always remain Pauli strings throughout the circuit conjugation. This
means the row-wise bitvector allocates a fixed number of bits for each generator,
with updates made in place for each conjugation, resulting in a fast, cache-friendly,
and memory-efficient process. In contrast, the map based method requires rehashing
the generator after each conjugation and the tree based method involves extensive
memory management, both of which introduce overhead. This is also why the
column-wise bitvector scales better for these circuits: for each generator, we allocate
all bitvectors (columns) once, and then we only need to access the first two bits of
each of the bitvectors for conjugation. Although accessing each matrix through
different bitvectors — and therefore different memory locations — is less efficient
than repeatedly accessing the same bitvector, it remains faster than the map and
tree based methods for very large Clifford circuits. Consequently, both bitvector
methods can verify equivalence for much larger DJ, GHZ and Graph state circuits.

The tree based generator set performs worst in runtime for nearly all circuits, but
generally outperforms both the row-wise and column-wise bitvectors in memory
usage. The slow runtime is likely due to the fact that conjugating a Pauli string
cannot be done in constant time, as is the case with the other implementations,
because it requires traversing the tree. The reason we believe that the tree based
implementation does not outperform the map based implementation is two fold.
First, in the case where equivalence could only be verified for smaller circuits
(≤ 16 qubits), maintaining the tree structure costs significantly more memory than
just storing the bits sequentially, thereby negating the benefits of only storing
unique subtrees. Second, in the case where equivalence could be verified for large
circuits (DJ, GHZ, Graph state) the generators are always Pauli strings. As a
consequence the overhead of maintaining the tree structures is again likely more
costly than just storing the Pauli strings as sequential bits. We surmise that for
circuits where the number of Pauli string summands grow exponentially, the tree
based implementation would be the most memory efficient for large circuits as
it would be able to utilize its compression capabilities to an even greater extent.
However, unfortunately in those cases the runtime would be prohibitively slow.

Since the row-wise bitvector outperforms the map based implementation for Clifford
circuits, in the final tool we automatically select the appropriate data structure
if non is specified. The row-wise bitvector is used for Clifford circuits, while the
map is used for non-Clifford circuits. We will benchmark its performance against
existing tools in the next section.

36

4.2 Evaluating the Performance against Existing

Tools

We now compare our complete tool, called CTQC, with the existing tools QCEC
and ECMC. The full results of all the benchmarks can be found in Appendix A,
but a subset is presented in Table 4.2. Analogous to the benchmarks in Section 4.1
we benchmarked the runtime and memory usage, where the runtime includes the
time it takes to read the circuits and perform any preprocessing steps and the
memory usage is measured in terms of the maximum RSS usage.

Table 4.2: Benchmark results of the various equivalence verifi-
cation tools for the largest DJ, GHZ and Graph state circuits
and a representative subset of the non-stabilizer circuits from
the MQT benchmark set.

Algorithm #Qubits
CTQC QCEC ECMC

t(sec) mem(mbs) t(sec) mem(mbs) t(sec) mem(mbs)
210 0.455 6.8 1.0208 5682.2 11.5656 1298.0

Deutsch-Josza 211 1.731 9.3 M M 43.7122 5036.4
212 7.8248 13.3 - - - -
213 31.3367 23.5 - - - -
210 0.1479 6.2 0.9386 5812.3 2.4931 153.1

GHZ State 211 0.6239 8.1 M M 9.6961 519.5
212 2.3891 11.2 - - 36.9711 1907.9
213 10.649 16.3 - - 149.2334 7502.5
214 42.5643 27.4 - - M M
215 176.4379 53.0 - - - -
210 0.3727 6.4 1.0076 5522.0 169.1951 127.2

Graph State 211 1.3467 8.1 M M 209.2035 242.2
212 5.4273 12.2 - - - -
213 22.3909 18.6 - - - -
214 90.0806 32.1 - - - -
215 364.7836 60.7 - - - -
23 - - 0.2069 280.0 - -

Grover’s Algorithm without Ancilla 24 - - - - - -
23 25.0507 216.3 0.0324 78.1 - -

Portfolio Optimization using QAOA 24 M M 0.0518 87.1 - -
23 0.0027 0.0 0.0283 78.2 - -

QAOA 24 0.0041 0.0 0.036 86.0 - -
23 15.0561 238.5 0.0339 87.6 M M

Quantum Neural Network 24 M M 0.0513 152.6 - -
25 - - 0.1052 85.4 - -
26 - - 0.2954 364.7 - -
27 - - 1.164 1193.7 - -
28 - - 5.592 2248.3 - -
23 0.2531 13.4 0.0256 77.9 - -

Exact Quantum Phase Estimation 24 M M 0.0617 88.5 - -
25 - - - - - -
23 0.002 0.0 0.0256 77.8 0.133 31.3

W State 24 0.0031 0.0 0.0355 85.6 0.5789 49.2
25 M M 0.0577 288.7 2.3315 127.9
26 - - 0.101 579.3 7.4094 346.4
27 - - 0.2338 948.4 54.9538 2513.5
28 - - 0.6115 1673.5 579.513 7218.0
29 - - 1.4435 2744.6 M M
210 - - 6.8719 6066.4 - -
211 - - M M - -

37

Discussions. The heatmaps in Figure 4.2 show that our tool is outperformed by
QCEC for most circuits. While our tool remains competitive for circuits with fewer
qubits, often achieving similar runtimes to QCEC, it generally struggles to scale
to circuits with a larger number of qubits. This fact is depicted in Figure 4.3. Here
we can see that see that for most algorithms QCEC is able verify equivalence for
larger circuits, while our tool and ECMC have already exceed the time limit or
ran out of memory.

Although our tool does not perform well on most circuits, there are three algorithms
for which it performs particularly well: the Deutsch-Jozsa, GHZ state and Graph
state algorithms. Table 4.2 illustrates that our tool verifies equivalence faster for
the circuits of these algorithms, while it also uses less memory. The memory usage
for the largest circuits can even be significantly less: up to 800 times less than
QCEC and up to 540 less than ECMC. This performance allows our tool to verify
equivalence for circuits of these algorithms with much more qubits: our tool is able
to verify equivalence for the largest DJ, GHZ and Graph state circuits, while, for
example, QCEC runs out of memory for the circuits with 210 qubits. The reason
for the strong performance on these circuits is discussed in Section 4.1.

In addition to benchmarking equivalent circuits, we also evaluated non-equivalent
circuits. For this, we used the same pairs of original and optimized circuits from
the MQT benchmark set, but introduced four types of errors into the optimized
circuits:

• Flipped : The control and target qubits of a random CNOT gate are swapped.

• Gate missing : A random gate is removed from the circuit.

• Shift-4 : An offset of 10−4 is added to the angle of each rotational gate.

• Shift-7 : An offset of 10−7 is added to the angle of each rotational gate.

The performance of the tools on various algorithms is generally consistent with
that of standard optimized circuits. However, for some circuits, the tools perform
slightly better since the equivalence verification process can stop as soon as a
“counter-example” is found. More interesting results from these benchmarks are
shown in Table 4.3, which presents the number of correctly and incorrectly classified
circuit pairs or instances where no information can be provided.

We consider a classification incorrect if the tool indicates the circuits are equivalent.
Before we discuss the results it is important to discuss how we know that a
classification is incorrect. After all, what if the error we introduced did not actually
alter the functionality of the circuit? While formally verifying (in)correctness is
out of the scope of this thesis, we have two reasons to denote certain classifications
as incorrect. First, if a tool classifies a circuit pair as equivalent, but the other
tools classify it as non-equivalent, we consider the former classification incorrect.
Second, specifically in the case of QCEC, we verified equivalence between the
original circuit and the optimized version with an error, but if for that circuit we

38

Figure 4.2: Heatmaps for the relative time and memory perfor-
mance of various equivalence verification tools for circuits from
the MQT benchmark set based on the equivalence verification
of the original and optimized circuits. Green indicates the
lowest relative time/memory usage, while red indicates the
highest relative time/memory usage.

Figure 4.3: Plot showing the largest circuits (in terms of qubits)
for which each tool can verify equivalence of each algorithm.
The x-axis represents the algorithm, while the y-axis indicates
the number of qubits in the circuit.

39

verified equivalence with QCEC between the optimized circuit and the optimized
circuit with an error, QCEC would classify them as non-equivalent.

A classification is deemed incorrect if the tool indicates that the circuits are
equivalent, while we “know” they are not. Before presenting the results, it is
important to clarify how we determine whether a classification is incorrect. This is
particularly relevant because the error we introduced might not necessarily affect
the circuit’s functionality. Although formally verifying (in)correctness is beyond
the scope of this thesis, we rely on two key criteria to identify certain classifications
as incorrect. First, if a tool classifies a circuit pair as equivalent while other tools
classify the same pair as non-equivalent, we consider the former classification
incorrect. The second criteria applies specifically to QCEC. We verified equivalence
between the original circuit and its optimized version with an error and, for some
circuits pairs, QCEC classified them as equivalent, but when verifying equivalence
between the optimized version of this circuit and its error-introduced counterpart,
QCEC classified them as non-equivalent. This indicates that the error we introduced
did affect the functionality and its original classification is incorrect.

Table 4.3: Table showing the equivalence classifications for the
QCEC, CTQC, and ECMC tools on non-equivalence bench-
marks. For each type of non-equivalent circuit and verification
tool, the table lists the number of circuits correctly identified
as non-equivalent (true negatives), incorrectly identified as
equivalent (false positives), or where information could not be
determined (no information).

Error type Classification CTQC QCEC ECMC
true-negative 53 50 36

Flipped false-positive 4
no information 3
true-negative 53 48 34

Gate Missing false-positive 4
no information 5
true-negative 25 13 16

Shift-4 false-positive
no information 2
true-negative 25 1 8

Shift-7 false-positive 8
no information 10

As we can see QCEC frequently fails to provide information or incorrectly classifies
circuits as equivalent, while ECMC often misclassifies circuits with shift-7 errors.
We believe this is due to how each tool handles floating point inaccuracies. Floating
point numbers are common in quantum circuit equivalence verification, leading
to situations where calculations yield only approximate results. To address this,

40

tolerance thresholds for floating point comparisons are necessary. The choice
and application of these thresholds can significantly impact the classification. To
illustrate the effects of this in more detail consider the following two circuits:

HRz

(π
4

)
Rz

(
− π

4 + α

)
and H

When α = 0 the circuits are trivially equivalent. However, when α = 0.1 they are
not, and all tools correctly classify it as such. However, as we make α smaller the
tools start giving wrong results. Specifically, CTQC, QCEC, and ECMC incorrectly
classify the circuits as equivalent when α is 10−15, 10−7, and 10−4, respectively.
Our tool, which uses a dynamic error margin that adjusts based on the number
of operations (see Section 3.2.3), may even begin to yield incorrect results sooner
as the number of gates in the circuits, and thus the error margin, increases. For
instance, if we add 8000 T gates between the H and Rz gates, our tool would
incorrectly classify the circuits as equivalent when α = 10−10.

For ECMC is it rather apparent that the incorrect classifications are caused by
floating point approximations, as all incorrectly classified circuits contain very
small errors in the rotational gates, but we believe this is also the cause for QCEC’s
misclassifications. Although the flipped and (in some cases) gate missing errors
may not appear directly related to floating point inaccuracies, we suspect they are
a contributing factor in this case. The effects of the circuit errors might be very
minimal and these small deviations could be misinterpreted as negligible floating
point inaccuracies. Notably, all of QCEC’s misclassifications occur in the W state
circuits with 128 qubits or more. We believe this is due to the high number of
rotational gates in these circuits, which can produce small floating point values in
state representations such as the state vector or density matrix, and as the number
of qubits increases so does the number of gates. Consequently, an error from a single
gate may have a minimal impact on these already small floating point values. The
only other circuits with rotational gates and more than 64 qubits for which QCEC
does not time out or exceed memory are the DJ circuits. The reasons mentioned
earlier could explain why QCEC is unable to provide information for most of these
circuits. In all other cases where QCEC cannot provide any information we also
think this is due to floating point inaccuracies. It can be the case that the other
methods used by QCEC, such as the simulation, classify the circuits as equivalent,
while the ZX-checker indicates that they are not. The ZX-checker cannot prove
non-equivalence, but these false-negatives are very rare, thus throwing an exception
informing us that no information can be provided.

41

Chapter 5

Related Work

In this chapter we discuss various related work. In Section 5.1 we describe the
improvements suggested by Gottesman and Aaronson to previous stabilizer sim-
ulation methods. In Section 5.2 we discuss the STIM simulator, which is a high
performant stabilizer circuit simulator. In Section 5.3 we discuss ECMC, a quan-
tum circuit simulator and equivalence verification tool based on the stabilizer
formalism. In Section 5.4 we discuss QCEC, an equivalence verification tool that
uses different methods in parallel to verify equivalence. In Section 5.5 we discuss
the Quipu simulator, which uses a novel concept called “stabilizer frames” to
simulate arbitrary quantum circuits using the generalized stabilizer formalism.
Finally, in Section 5.6 we discuss the quantum circuit simulator “Abstraqt”, which
is based on the generalized stabilizer formalism and limits the exponential growth
of Pauli strings by compression multiple summands into a single abstract element.

5.1 Gottesman and Aaronson

In the paper “Improved simulation of stabilizer circuits” [16] Gottessman and
Aaronson suggest several improvements for the stabilizer-based simulation de-
scribed in paper of the Gottesman-Knill theorem [17]. As the stabilizer formalism
is extensively discussed in Chapter 2, we focus here on the most important im-
provement they suggest: keeping track of the destabilizers generators in addition
to the the stabilizers generators.

The destabilizers generators are all the operators that in combination with the
stabilizer generators generate the complete Pauli group. Recall, that in the case
of a deterministic measurement determining whether Zi or −Zi is a part of the
stabilizer requires inverting a matrix which in practice has a time complexity
of O(n3). Keeping track of the destabilizer generators allows us to simulate de-
terministic measurements in O(n2) time. To explain why this is the case define
S = {Z0, Z1, . . . , Zn} and D = {X0, X1, . . . , Xn} as the ordered sets of stabilizer
generators and destabilizer generators of the initial state, respectively. For these
sets it holds that sj ∈ S anti-commutes with dj ∈ D, but commutes with all
other destabilizers. After any number of Clifford gates this fact will still hold.
We know that either Z or −Z is in the stabilizer, but not both, as in that case
−ZZ = −I would be in the stabilizer, which is a contradiction. Therefore, there
exists a subset of the stabilizer generators that, when multiplied together, will
yield ±Z. To find which generators are part of this product we can use the fact

42

that Zi will anti-commute with the jth destabiliser generator if and only if the jth

stabilizer generator is a part of the generators that comprise the product of ±Za.

Proof. Assume Zi anti-commutes with the jth destabiliser generator, dj. Since dj
anti-commutes only with sj it follows that sj must be part of the product in order
for djZi = −Zidj to hold. Now assume sj is part of generators that comprise the
product of Zi. Since dj anti-commutes with sj and does not anti-commute with
any other stabilizer generator it follows that Zi must anti-commute with dj. □

Now to determine whether Zi or −Zi is in the stabilizer, we multiply all the
stabilizer generators sj for which it holds that dj anti-commutes with Zj. This
product will produce ±Z which immediately provides us with the result of the
measurement.

Tracking the destabilizers is particularly useful for simulations but not for our
equivalence verification method. While verifying the equivalence of two circuits,
U and V , we do verify that they coincide on conjugation on the Pauli strings
{X0, X1, . . . , Xn}, or the destabilizers. However, performing this verification in-
dividually for each Pauli string produces the same outcome as verifying them
simultaneously, with no direct advantage gained from the simultaneous approach.

5.2 STIM

STIM [18] is a high performant stabilizer circuit simulator. It has been shown that
it can be effectively used to verify equivalence between stabilizer circuits in [20].
The simulator is based upon the work from Gottesman and Aaronson presented
in [16], but has three main improvements:

1. The time complexity of deterministic measurements is improved from quadratic
to linear.

2. A cache friendly layout is used to store the stabilizer generators and SIMD
(Single Instruction, Multiple Data) instructions are used to update them.
SIMD instructions allow for the execution of the same operation on multiple
data elements simultaneously, typically within a single processor cycle, which
can greatly enhance performance.

3. The circuit is fully simulated up until a measurement and the reference state
is used to bulk sample the measurement outcomes.

The first improvement is achieved by simulating the circuit “backwards”. STIM
relies on the fact that measuring an observable M after some Clifford circuit C is
equivalent to measuring C†MC at the start of the circuit. Consider that we want
to simulate a measurement of the ath qubit. If we denote ρ as the density matrix
of the all-zero state and define M0 =

1
2
(I + Za), then the probability of measuring

|0⟩ for the ath qubit is given by:

43

Tr(ρCM0C
−1) =

1

2
+

1

2
Tr

(
ρC†ZaC

)
Using the fact that the Clifford group normalizes the Pauli group — which implies
that C†ZaC is a Pauli string — and the fact that the density matrix of the all-zero
state is the sum of all the Pauli strings that consist exclusively of I and Z matrices,
it is not difficult to show that the probability of measuring |0⟩ simplifies to two
cases:

1. If C†ZaC is a Pauli string with only I and Z matrices, the measurement is
deterministic and the probability of measuring |0⟩ is zero if the sign of the
C†ZaC negative and one otherwise.

2. If C†ZaC is a Pauli string with at least oneX or Y matrices, the measurement
is non-deterministic and the probability of measuring |0⟩ is 1

2
.

Notice, that in the deterministic case the complexity of the measurement is linear,
as it only requires us to check whether all Pauli matrices in the observable are I
or Z matrices. This is in contrast to the previous work where the complexity was
quadratic.

The second improvement is achieved by storing the Pauli strings in a matrix where
the ith row contains the ith matrix of each Pauli string. This allows contiguous
memory access when conjugating specific matrices of the Pauli strings and SIMD
instructions can be used to update multiple strings at once. For locality reasons, it
is important that for each Pauli matrix, which is stored using an x and a z bit
(See Section 3.2.1), the x and z bits are stored together. This is in contrast to
the approach in [16], where first all the x bits are stored and subsequently all the
z bits. Finally, STIM uses a dense representation of the matrix, that is, all bits
are stored explicitly. These aspects allow predictable, sequentially memory access
allowing for efficient cache usage and SIMD instructions.

The third improvement is achieved by fully simulating the circuit up until a
measurement and using this reference state to bulk sample the measurement
outcomes. STIM can perform hundreds of simulations in parallel due to its use of
SIMD instructions, making bulk sampling very efficient.

5.3 ECMC

ECMC [19, 21] is a quantum circuit simulator and equivalence verification tool
of arbitrary quantum circuits based on the stabilizer formalism. We compared
the performance of ECMC with our method in Chapter 4. Instead of explicitly
storing the stabilizer generators, a symbolic representation is used. Pauli strings
are encoded using 2n+1 boolean variables. The jth matrix in the string is encoded
by the variables xj and zj and a single variable r is used to encode the sign.
These variables are combined to a single boolean formula by concatenating them

44

with the “and” operator. A Pauli string can be recovered from this formula by
determining a satisfying assignment, where the assignment of a and a′ to xj and
zj represents the Pauli matrix XaZa′ and the assignment of 0 or 1 to r represents
1 or -1, respectively. For example, the Pauli string −ZY is encoded by the formula
rx̄1z1x2z2 as its only satisfying assignment is r = 1, x1 = 0, z1 = 1, x2 = 1
and z2 = 1. Conjugations of Clifford gates can easily be performed by negating
variables, but T gate conjugations are slightly more complex. Whenever a Pauli
string is conjugated with Tj and xj is present in the boolean formula of the Pauli
string (i.e., the jth matrix is either an X or Y matrix), we know the result will
produce a sum of Pauli strings. Both can still easily be represented by a boolean
formula, but an additional variable ui is added to indicate that the ith matrix
conjugation produced this string, and as it is part of a sum it thus has a coefficient
of 1√

2
. For example, the result of the conjugation of −ZY with T1 is represented by

the formulas rx̄1z1x2z2ui and rx̄1z1x2z̄2ui, representing the Pauli strings − 1√
2
ZY

and − 1√
2
ZX, respectively. This method easily extends to the rotational gates, but

then two additional variables are used, ui1 and ui2, which, upon an assignment of
1, represent the cosine and sin of the angle of the gate, respectively.

This symbolic approach is combined with weighted model counting (WMC) to
perform equivalence verification. WMC is a generalization of model counting.
In model counting, we determine the number of satisfying assignments for a
Boolean formula φ. Given φ with n Boolean variables, there are 2n possible truth
assignments, and model counting identifies how many of these satisfy φ. In WMC,
each assignment x⃗ is associated with a weight W (x⃗), and the goal is to compute
the weighted sum of all satisfying assignments. For a formula φ with satisfying
assignments x⃗ |= φ, WMC computes:

∑
x⃗|=φ

W (
⇀
x)

In ECMC the weight function W is defined as W (rlk) = −1,W (rlk) = 1,W (u0) =
W (u1) = 1√

2
and W (u0) = W (u1) = 1. Given a unitary operator U , any Pauli

string P 0 and define Pm = UP 0U †. Let FPm be its symbolic representation as
previously discussed. In [21] it is shown that, using this weight function, the weight
of any Pauli string summand P of Pm can be obtained viaMCW (FPm∧FP), where
MCW denotes performing weighted model counting with the weight function W ,
and FP is the symbolic representation of P . This allows us to compute 1

2n
Tr(PmP).

Furthermore, it is demonstrated that if 1
2n

Tr(PmP) = 1, then Pm = P . Combining
this with Theorem 1, equivalence verification through weighted model counting
reduces to verifying that for all j ∈ {1, 2, . . . , n} and G ∈ {Z,X}, the following
holds:

MCW (FGm
j
∧ FGj

) = 1

45

5.4 QCEC

QCEC [40] is a quantum circuit equivalence verification tool. We compared the
performance of QCEC with our method in Chapter 4. The tool verifies equivalence
based on two different methods.

The first method is proposed in [14] and is based on the use of decision diagrams.
Decision diagrams store data in a tree structure where each node corresponds to a
variable and the edges denote possible values for these variables. The value found
at a leaf node, obtained by traversing a specific path through the tree, represents
the value associated with the variable assignment defined by that path. In decision
diagrams equivalent subtrees are merged, which often results in a very compact
representation of the data. Matrices can be represented using decision diagrams
by recursively dividing the matrix into four submatrices. A node in the decision
diagram represents a (sub)matrix and an edge from that node will yield a node
representing on of its four submatrices or a leaf containing an actual complex
numbers from the entire matrix. An example of the identity matrix stored using a
decision diagram is provided in Figure 5.1. Not only can matrices be represented
using decision diagrams, but matrix operations can also be defined on them. This
allows them to be used for tasks such as simulating quantum circuits.

Figure 5.1: Example of the identity matrix stored as a decision
diagram. Taken from [14].

The method relies on verifying equivalence in two stages. In the first stage, simula-
tions using decision diagrams and random inputs are performed to check whether
both circuits produce the same state. This stage can not guarantee equivalence,
unless the entire input space is simulated, but a counterexample can be discovered,
showing that the circuits are not equivalent. The authors of [14] show that contrary
to classical circuits, where the chance of finding a counterexample using this
approach is very small, this method can be quite effective for quantum circuits. If
no counterexample is found, QCEC moves on to the second stage, referred to as
“alternating equivalence verification”. In this stage, the authors use the fact that
decision diagrams are an efficient data structures for representing sparse matrices,
such as the identity matrix, and they leverage a fundamental property of quantum
circuits: reversibility. The authors note that if two circuits, U and V are equivalent,
then sequentially multiplying the gates of U and V −1 should yield the identity gate
again, i.e., U · V −1 = I. However, the key observation is that this can expressed as
follows: U · V −1 = U · I · V −1. Due to the associativity of matrix multiplication

46

gates of U or V −1 can be multiplied with the identity gate in arbitrary order, as
long as the gates of U are “applied from the left” and the gates of V −1 are “applied
from the right”. If the circuits are equivalent it is possible to apply the gates in
such a fashion that will frequently yield the identity gate. Since sparse matrices
(e.g. the identity matrix) can be efficiently represented by decision diagrams and
matrix multiplication can be efficiently implemented for them, this allows for a
very fast way of verifying equivalence. It is important to note however that if the
two circuits are not equivalent the first stage will not always find a counterexample.
In this case the decision diagram representing the “middle” matrix can still grow
exponentially, prohibiting fast equivalence verification.

The second method is proposed in [22] and is based on ZX-calculus. ZX-calculus
is a graphical language that can be used to represent and reason about quantum
circuits using diagrams made up of “spiders” connected by “wires”. Spiders are
nodes in a diagram that represent specific quantum operations, and wires represent
qubits or quantum states to which these operations are applied. A Z spider is
depicted by a green node and represents operations in the Z-basis and a X spider
is depicted by a red node and represents operations in the X-basis. Which specific
operation it represents is determined by an additional parameter α. Specifically, if
the spider has k inputs and l output, then the operations are defined as follows:

Z(α) =
∣∣0k〉+ eiα

∣∣1l〉 and X(α) =
∣∣+k

〉
+ eiα

∣∣−l
〉

Wires connect spiders and represent qubits. A wire can be seen as a qubit to
which the operations (spiders) are applied. Quantum gates are translated into a
corresponding combination of spiders and wires. An example of a circuit represented
using ZX calculus can be seen in Figure 5.2.

Figure 5.2: Example simulation of a small quantum circuit
using abstractions. Taken from [41].

The diagrams allow for equivalent transformations to simplify or modify the
quantum circuit without altering the underlying quantum operations. This is
particularly useful for circuit optimization and proving equivalence between quan-
tum circuits. In [42] it an algorithm is provided that transforms diagrams into
their reduced gadget form. For two Clifford circuits represented by ZX-diagrams
C and C ′ it holds that they are equivalent if the reduced gadget form of the
diagram C†C ′ equals the identity diagram. This result does not extend to arbitrary
quantum circuits, where it is possible for two equivalent circuits U and U ′ that the
reduced gadget form of U †U ′ does not equal the identity diagram. This implies
that for arbitrary quantum circuit a reduction to reduced gadget form can prove
equivalence, but can not prove non-equivalence.

47

In [22] various benchmarks have been run from which conclusions could be drawn
about the performance of the two approaches. Reducing ZX-diagrams will always
finish in polynomial time and have a guaranteed maximum memory usage. The
downsides of this is that it does not scale very well for large circuits. The per-
formance of decision diagrams depends highly on the specific circuits. For some
circuits, even if they are very large, the circuit structure allows for a compact
representation with decision diagrams, while for other circuits this is not the case.
Because of this simulation and equivalence verification with decision diagrams
can be much faster, but this is not guaranteed. This led to QCEC using using a
hybrid strategy of both methods. First, a few simulations with decision diagrams
are performed with random inputs. If the two circuits yield different states for
any of these simulations, we know the circuits are not equivalent. Second, the
alternating equivalence verification method and the ZX-calculus based approach
are run along side each other. If the former approach finds a quick solution, which
can be the case if the decision diagram stays compact, then we do not have to
wait for the ZX reduction, but but if the decision diagrams grows exponentially,
then the ZX-calculus provides a reliable alternative with consistent runtime.

5.5 Quipu

Quipu [32] is a quantum circuit simulator based on the stabilizer formalism
that uses a novel concept called stabilizer frames to more compactly represent
stabilizer generators. Although this thesis focuses on equivalence verification,
methods for simulating circuits using the stabilizer formalism remain relevant,
as the only difference between simulating a circuit and verifying equivalence is
the measurements. For this reason, we will discuss the method proposed in [32].
The key difference between the approach used in this thesis and Quipu lies in
how the stabilizer generators are stored. In our method, all stabilizer generators
are stored explicitly, whereas in Quipu, they may be stored implicitly and can be
derived from the stabilizer frame. This compact representation can be beneficial
for circuits where the stabilizer generators frequently increase in size due to the
application of non-Clifford gates, but it also introduces additional overhead when
updating the stabilizer generators.

Before we can define stabilizer frames we first need to provide some definitions. The
cofactor of the jth qubit of a quantum state |ψ⟩ is a projection of the jth qubit onto
the computational basis states |0⟩ or |1⟩ indicated by |ψj=0⟩ or |ψj=1⟩ respectively.
In other words |ψj=0⟩ and |ψj=1⟩ are exactly the states after a measurement in
the computational basis results in |0⟩ and |1⟩, respectively.

A stabilizer matrixM associated to a state stabilizer state is a matrix containing
the stabilizer generators of the state. An important observation the authors make, is
that the phases of the generators are imperative to identifying the state. Therefore,
if we store a single stabilizer matrixM and two phase vectors σi and σj we can
actually represent two stabilizer states: The state identified by the generators σiM

48

and σjM. More generally, using a single stabilizer matrix it is possible to represent
2n different stabilizer states by using associated phase vectors.

A stabilizer frame represents a quantum state |ψ⟩ as a sum of stabilizer states. A
single stabilizer state is identified in the frame by the stabilizer matrixM, a phase
vector σj and a global phase aj . Consider Figure 5.3. Here we can see that the state
|ψ⟩ consists of a sum of two stabilizer states a1(|00⟩ + |01⟩) and a2(|10⟩ + |11⟩)
identified by the stabilizer generators σ1M and σ2M and two global phases a1
and a2 in the sum. Note that usually we do not need to store the global phase of a
stabilizer state, however as we are representing a state as a sum of stabilizer states
the global phases of the individual stabilizer states becomes relative and must be
stored.

Figure 5.3: A two qubit state |ψ⟩ represented using a stabilizer
frame. Taken from [32].

To manipulate a state represented by a frame several frame operations are defined.
First, ROTATE(F, C) simulates the application of a Clifford gate C on a quantum
state represented by the stabilizer frame F by updating the stabilizer generators
stored in its stabilizer matrixM and the associated phase vectors through the
usual update rules (See Section 2.2.4). The global phases also have to be updated
accordingly. Second, COFACTOR(F, c) explicitly represents a state as a sum of
the its cofactors of the cth qubit. The necessity for this operation is twofold: it
facilitates measurements and allows for the simulation of non-Clifford gates. For
the latter, consider Figure 5.4. Here we can see that the the state |Ψ⟩ which is
represented by a single stabilizer matrix and phase vector can be represented by
the sum of the cofactors of its first two qubits (represented within the dotted box).
To apply a non-Clifford gate we only need to update each cofactor individually. In
the example figure, to simulate a Toffoli gate we only update the cofactor |Ψc1c2=11⟩
to represent |111⟩ (indicated by the arrow), as the states represented by the other
cofactors remain unchanged. To simulate measurements the outcome probability
is calculated as the sum of the normalized outcome probabilities of each state.

Although a single stabilizer frame is sufficient, it can be beneficial to store a single
frame as multiple frames. The operation COALESCE(F) provides this functionality.
It searches for multiple phase vectors associated to the same stabilizer matrix,
which can be coalesced into a single phase vector associated to another stabilizer
matrix. An example is provided in Figure 5.5. The dotted rectangles indicate the
phase vectors that are merged into a new frame pointed to by the arrows. The gates
above the arrows indicate how the generators in the stabilizer matrix transform.

49

Figure 5.4: Cofactoring the state |ψ⟩ and applying a Toffoli
gate. Taken from [32].

When we have two frames with equivalent stabilizer frames we can merge them
into a single frame again.

Figure 5.5: Derivation of multiple frames from a single stabi-
lizer frame. Taken from [32].

To better illustrate how these operations can be used to simulate a quantum circuit
we will explain the example depicted in Figure 5.61.

In the top left we see the example circuit and intermediate states. In the bottom
left we can see the frame F which represents the state |Ψ⟩. We first explain how
the Toffoli gate is applied to the state |Ψ⟩, which can also depicted in Figure 5.4,
but here we will provide a more detailed explanation using Figure 5.6. In order to
apply a Tollofi gate to obtain the state |Ψ′⟩ we first determine the cofactors of F
for each qubit and apply the Toffoli gate to them. If we cofactor F for each qubit
— i.e., perform the operation COFACTOR(F, c) for each c ∈ {0, 1, 2} — we are
explicitly representing each state |j⟩, with j ∈ {0, 1}3, with a non-zero coefficient
in the stabilizer frame as a combination of the stabilizer matrix and phase vectors.
This means that we obtain the stabilizer matrixM = Z⊗3 with the phase vectors
σ1 = (+,+,+), σ2 = (+,−,+), σ3 = (−,+,+) and σ4 = (−,−,+) representing
the states |000⟩, |010⟩, |100⟩, |110⟩. All states have an associated global phase
variable ai = 0.5 associated to them to account for the amplitudes of the states
in |Ψ⟩. Now that we have cofactored F , we can apply the Toffoli gate to each
individual cofactor. Since the Toffoli gate only changes the summand .5|110⟩ in

1Note that in the upper left box the final summand of the states |Ψ′⟩ and |Ψ′′⟩ should be
.5|111⟩ instead of .5|110⟩

50

Figure 5.6: Example simulation of a small quantum circuit
using stabilizer frames. Taken from [32].

|ψ⟩ to .5|111⟩, we only need to update σ4 in our cofactored frame from (−,−,+)
to (−,−,−). The resulting frame F ′ can be seen in the bottom-middle rectangle
of the figure.

We can coalesce F ′ into F ′
1 and F ′

2. This is depicted by the arrows in the bottom-
middle rectangle. Both arrows indicate that two phase vectors, which are sur-
rounded by a dotted box, are merged into a single phase vector associated to a
different stabilizer matrix. F ′

1 and F ′
2 now represent the summands 0.5(|000⟩+|010⟩)

and 0.5(|100⟩+ |111⟩) of |ψ′⟩, respectively.

To apply the T gate to the state |Ψ⟩′ we first cofactor both F ′
1 and F ′

2 into F ′′
1

and F ′′
2 and update each cofactor individually. In F ′′

1 the phase vectors σ1 and
σ2 represent the summand 0.5|000⟩ and 0.5|010⟩ of the state |ψ′⟩. The T gate
changes the amplitude of |010⟩ from 0.5 to 1+i√

2
, so we associate the coefficients

a1 = 0.5 and a2 =
1+i√

2
to σ1 and σ2, respectively, to indicate this change. In F ′′

2

we perform an analogously operation, except here the phase vectors σ1 and σ2
represent the summands 0.5|100⟩ and 0.5|111⟩ of the state |ψ′⟩. The T gate changes
the amplitude of |111⟩ from 0.5 to 1+i√

2
, so we associate the coefficients a1 = 0.5

and a2 =
1+i√

2
to σ1 and σ2, respectively, to indicate this change. These stabilizer

frames already represent the state |ψ′′⟩, but it is possible to use a more compact
representation. Since F ′′

1 and F ′′
2 both contain the same stabilizer matrix, we can

merge them into F ′′
1 . Afterwards, we can coalesce F ′′

1 back into two stabilizer
frames F ′′

1 and F ′′
2 to obtain the final representation of the state |ψ′′⟩.

51

5.6 Abstraqt

Abstraqt is a stabilizer based quantum circuit simulator. In order to limit the
exponential growth of stabilizers due to the simulation of non-Clifford gates
abstraqt merges multiple Pauli strings into a single “abstract element”.

An abstraction consist of an abstract set (X ,≤), which is ordered set where
each element represents elements from a concrete set (2X ,≤), which is also an
ordered set. Concrete elements can be obtained from abstract elements through
the concretization function γ : X 7→ 2X . An abstract transformer f# : X 7→ X
defines how an operation transforms abstract elements.

In abstraqt real numbers are abstracted through intervals. In this case X = R and
X is the set of of intervals on R. An element [l, u] ∈ X represents the elements
γ([l, u]) = {x | x ∈ [l, u]} ∈ X . In turn complex numbers can be abstracted by
using polar notation and using intervals to abstract the real parts of the numbers.
In this case the abstract complex number e[l1,u1]+[l2,u2]i represents the complex
numbers {er1+r2i | r1 ∈ [l1, u1], r2 ∈ [l2, u2]}.

Pauli strings can be abstracted as P = iv · P(0) ⊗ P(1) ⊗ · · · ⊗ P(n−1), where
v ∈ Z4 and P(k) ⊆ {X, Y, Z, I}. Here Z4 denotes the abstract set of the concrete
set Z4. The elements of Z4 are sets consisting of elements of Z4 and can therefore
represent multiple complex numbers of the form ix with x ∈ Z4. The abstract
element P can therefore represent the following set of Pauli strings:

γ(P) = {iv · ⊗n−1
i=0 P(i) | v ∈ v,P(i) ∈ P(i)}

In turn, as we can abstract Pauli strings, we can also abstract density matrices.
This is because the density matrix of any pure state can be expressed as a sum of
Pauli strings.

To facilitate simulation using these abstract representations various abstract
transformers have been defined, such as gate conjugation and compression. In the
former the Pauli strings of the abstract element P are conjugated and in the latter
intervals and abstract Pauli strings are merged by taking their “union”.

Since multiple elements are merged into a single abstract representation, the
measurements obtained will only be approximations. However, this is not a bug,
but a feature: the tool trades precision for efficiency. This makes it particularly
useful in scenarios where a full simulation is intractable, as Abstraqt may still be
able to provide valuable insights into specific circuit properties.

52

Chapter 6

Discussions

In this Chapter we discuss an alternative way too look at Method 1 and discuss
the theory of simulating measurements using the generalized stabilizer formalism,
which can be used in future research. We discuss the former in Section 6.1 and the
latter in Section 6.2 and Section 6.3.

6.1 Equivalence Verification in the Pauli Basis

While Method 1 uses the (generalized) stabilizer formalism to perform equivalence
verification with Theorem 1, it worth noting that verifying equivalence using
Theorem 1 does not inherently require the (generalized) stabilizer formalism.
In [21] an alternative perspective is presented, showing that the density matrix
of any pure quantum state can be expressed as a sum of Pauli strings. This
implies that if two circuits coincide on conjugation of the Pauli basis, they must be
equivalent. While the method to verify equivalence in both cases remains exactly
the same, it is an elegant way to explain the method, as it avoids the complexity
of the stabilizer formalism.

6.2 Simulating Measurements with the General-

ized Stabilizer Formalism

In Section 2.2 we showed that the density matrix of a state obtained by applying a
Clifford circuit to the all-zero state can be represented as a sum of the conjugated
stabilizers of the initial all-zero state, which is expressed by Equation (2.1). This
result remains valid when an arbitrary quantum circuit is applied. However, in
this case, the stabilizers we obtain may be linear combinations of Pauli strings.
Recall that the probability of measuring a |0⟩ for a quantum state with density
matrix ρ and stabilizer generators G, obtained by conjugating the Pauli stabilizer
generators of the all-zero state, is computed by:

p0 =
1

2
Tr(ρ) +

1

2n+1

∑
g∈⟨G⟩

Tr (g · Zi)

Per definition Tr(ρ) = 1 and each g ∈ ⟨G⟩ might be a sum of Pauli strings, i.e.,
g = x1p1 + · · ·+ xjpj, where xk and pk denote the coefficient and the Pauli string

53

of the kth summand of g. Also, recall that for any Pauli string p it holds that
Tr(pZi) = 2n if p = Zi and Tr(pZi) = 0 otherwise. Using these facts we can further
rewrite the equation above. To do this concisely, we will use Iverson Notation: A
bracket with a boolean statement, e.g. [x = y], has a value of 1 if the condition is
true and 0 if it is false [43].

p0 =
1

2
+

1

2n+1

∑
g∈⟨G⟩

∑
k

Tr (xkpkZi)

=
1

2
+

1

2n+1

∑
g∈⟨G⟩

∑
k

xk Tr(pkZi)

=
1

2
+

1

2n+1

∑
g∈⟨G⟩

∑
k

xk Tr(I) · [pk = Zi]

=
1

2
+

1

2n+1

∑
g∈⟨G⟩

∑
k

xk2
n · [pk = Zi]

=
1

2
+

1

2

∑
g∈⟨G⟩

∑
k

xk · [pk = Zi]

As we can see, in order to determine the probability of measuring |0⟩ we have to
sum the coefficients of each Pauli string summand of each stabilizer that is equal to
Zi. If we perform a simulation by only storing the stabilizer generators of a state,
we can not easily sum the coefficients of stabilizer summands. If we naively want
to construct the entire generalized stabilizer group, we would have to compute the
product of any subset of the stabilizer generators. In the worst case, a stabilizer
generator consist of 2t Pauli strings summands, where t is the number of T gates
in the circuit. This means that computing the entire generalized stabilizer group
will take O(2nt) time, where n is the number of qubits in the circuit. In practice,
this is infeasible for any circuit with more than a few qubits.

In addition to this, each measurement potentially increases the size of the gen-
eralized stabilizer group by a factor of four. Assume the simulated measurement
outcome is 0, then the state is updated by the following formula:

ρ′ =
M0ρM0

p0

=
1

p0

(
I + Z

2
· ρ · I + Z

2

)
=

1

4p0
(ρ+ Zρ+ ρZ + ZρZ)

54

The state update is analogous when a measurement outcome of 1 is simulated, but
then M1 and p1 = 1− p0 are used instead of M0 and p0, respectively.

6.3 Simulating Measurements with the Gener-

alized Stabilizer Formalism: Alternative Ap-

proach

The stabilizer circuit simulator “STIM” uses an alternative approach to simulate
measurements, which we discuss in Section 5.2. In this section, we will discuss how
this approach can be applied to arbitrary quantum circuits.

Let U be any arbitrary quantum circuit with n qubits, M an arbitrary observable
and denote ρ to be the density matrix of the all-zero state. If we start in the
all-zero state and apply the quantum circuit U , then the probability of measuring
the observable M is given by the following formula:

Tr
(
UρU †Ma

)
= Tr

(
ρU †MaU

)
As we can see the probability of measuring the observable M after applying the
circuit U is the same as the probability of measuring the observable U †MaU for
the all-zero state. This can be quite convenient if we want to know the probability
of measuring |0⟩ for the ath qubit after applying the circuit U . In this case the
observable would be 1

2
(I + Za), which give us the following formula:

Tr

(
ρU † I + Za

2
U

)
=

1

2
Tr

(
ρU †IU

)
+

1

2
Tr

(
ρU †ZaU

)
=

1

2
Tr (ρ) +

1

2
Tr

(
ρU †ZaU

)
=

1

2
+

1

2
Tr

(
ρU †ZaU

)
There are two observations which will allow us to rewrite this formula further.
First, we know that ρ equals the sum of the stabilizers of the all-zero state (See
Section 2.2.3). These are exactly all the Pauli strings that are a tensor product of
only I and Z matrices. We will denote this set of stabilizers as Stab(|0n⟩). Second,
as U is any arbitrary quantum circuit, we know that U †ZaU might be a sum of
Pauli strings. Using these facts we obtain the following:

55

1

2
+

1

2
Tr

(
ρU †ZaU

)
=

1

2
+

1

2
Tr (ρΣjαjPj)

=
1

2
+

1

2
Σjαj Tr (ρPj)

=
1

2
+

1

2
Σjαj Tr

(
ΣSk∈Stab(|0n⟩)SkPj

)
=

1

2
+

1

2
ΣjαjΣSk∈Stab(|0n⟩) Tr(SkPj)

=
1

2
+

1

2
Σjαj[∃Sk ∈ Stab(|0n⟩) s.t. Sk = Pj]

Notice that once we have determined U †ZaU , we can easily determine the proba-
bility of measuring |0⟩ for the ath qubit. This is because we only have to sum the
coefficients of all the Pauli string summands of U †ZaU that are a tensor product
of exclusively I and Z matrices, because we know that these Pauli strings are
elements of Stab(|0n⟩). Additionally, we only need to conjugate the Pauli string
Za as I commutes with all Pauli strings.

If we denote the number of T gates in a circuit with t, then this method reduces
the complexity of simulating a single measurement to O(2t), which is a significant
improvement over the O(2nt) complexity of the previous approach. This means
that, if it is tractable for a given circuit to conjugate its gates with the Pauli
string Za, then it is also possible to obtain the measurement probabilities of the
ath qubit.

The challenge of this approach is not how to determine a single measurement, it is
how to determine all measurements. Consider, that we simulated a measurement
of the ath qubit and we now want to determine the measurement probabilities
of the bth qubit. We can not simply use the observable 1

2
(I + Zb), as this would

not take our simulated result of qubit a into account. STIM solves this problem
by changing the circuit in such a way that qubit a is forced to be in the state
|0⟩ or |1⟩, depending on the simulated measurement, and then simulating the
measurement of qubit b. For stabilizer circuits this can easily be done using a
Hadamard and X gate, but for circuits that contain rotational gates, this is not
possible. However, it is possible to use a different observable. Consider that we
simulated a measurement of |0⟩ for the ath qubit, then we could determine the
probability of measuring |0⟩ for both the ath and bth qubit using the observable
1
2
(I +Za)⊗ 1

2
(I +Zb). Similarly, we can determine the probability of measuring |0⟩

for the ath qubit and |1⟩ for the bth qubit using the observable 1
2
(I+Za)⊗ 1

2
(I−Zb).

Notice that from these probabilities we can deduce the measurement probabilities
for the bth qubit, given a measurement of |0⟩ for the ath qubit. This method can be
generalized to determine the measurement probabilities of any qubit, while taking
any number of prior simulated measurements into account. The problem with this
approach is that the number of Pauli strings in the observable grows exponentially

56

in the number of simulated measurements: for a given measurement we have to
factor in the result of all previous measurements in the observable, which requires
us to tensor 1

2
(I ± Zj) for each qubit j that has been measured. As a result, the

complexity of simulating all measurements of a circuit using this approach does
not improve over the previous approach and remains O(2nt).

57

Chapter 7

Conclusions and Future Research

In this thesis we introduced four novel data structures which can be used to
verify the equivalence of arbitrary quantum circuits using the generalized stabilizer
formalism. We implemented and empirically benchmarked these data structures,
comparing their performance. These results contributed to the development of our
equivalence verification tool, CTQC, which dynamically selects the most suitable
data structure based on whether the circuits contain exclusively Clifford gates.
We evaluated CTQC against two existing tools: QCEC [14] and ECMC[21]. Our
experiments demonstrated that for certain quantum algorithms — such as the
Deutsch-Josza, GHZ state, and Graph state algorithms — our method outperforms
these existing tools. Specifically, CTQC verifies equivalence faster, while using
significantly less memory. For circuits with more than 1000 qubits from the
aforementioned algorithms, the maximum resident set size of our tool was up to
540 times smaller than ECMC and 800 times smaller than QCEC. Additionally,
when verifying equivalence between non-equivalent circuits we showed that CTQC’s
classifications are very reliable, as there where no incorrect classifications in the
performed benchmarks. This is in contrast to both QCEC and ECMC, which
incorrectly classified some non-equivalent circuits as equivalent or failed to provide
results.

While the benchmarks demonstrate that CTQC only outperforms QCEC on
Clifford circuits — which is unsurprising given the efficiency of the stabilizer
formalism for these circuits — we believe our tool can also be more effective for
certain non-Clifford circuits. Future research could focus on developing a metric
to determine an upper bound on the number of Rz gates for each qubit that may
lead to a duplication in the number of summands of a generator. For instance, if
multiple consecutive Rz gates target the same qubit, the number of summands
in a generator will at most double. Similarly, if the ith qubit is not (potentially)
entangled with the jth qubit, any Rz gate targeting the jth qubit would not affect
the number of summands in the generators Zi andXi during the verification process.
Experiments could be conducted to identify thresholds under which our tool —
or, more broadly, equivalence verification tools based on generalized stabilizers —
remain effective. This metric could enable the development of a hybrid approach
that combines multiple methods for equivalence verification.

Future work could also focus on refining floating point error management to
further improve the accuracy of equivalence verification tools. Our approach, which
uses a dynamic error margin and takes additional precautions with small values

58

produced by rotational gates, has demonstrated robustness across the benchmarks.
However, for circuits with rotational gates our tool can only verify equivalence for
small circuits (in terms of qubit count) and as the number of gates increases, the
cumulative error margin is overestimated proportionally, potentially causing errors.
Future research could examine if the approach can be effectively used in other
equivalence verification techniques, such as decision diagram-based simulations
used in QCEC, and evaluate its scalability for larger circuits.

Another possibility for future research is to explore more efficient techniques for
simulating measurements using our method. While we have thoroughly covered
the theoretical aspects in Chapter 6, we also highlighted the challenges associated
with simulating measurements in practice. It would be valuable to explore more
efficient methods for simulating measurements, as this would allow us to not only
verify the equivalence of quantum circuits but also to simulate them.

As the capabilities of quantum computers increase, the number of qubits and the
complexity of circuits will also grow. Consequently, verifying equivalence will place
increasing demands on both time and memory resources, highlighting the need
for efficient equivalence verification tools. We empirically show that our tool, for
specific circuit types, will offer better scalability compared to current solutions,
making it a valuable contribution to the suite of quantum circuit equivalence
verification tools.

59

Bibliography

[1] A. Montanaro, “Quantum algorithms: an overview,” npj Quantum Information,
vol. 2, p. 15023, Jan 2016.

[2] A. M. Dalzell, S. McArdle, M. Berta, P. Bienias, C.-F. Chen, A. Gilyén, C. T.
Hann, M. J. Kastoryano, E. T. Khabiboulline, A. Kubica, G. Salton, S. Wang,
and F. G. S. L. Brandão, “Quantum algorithms: A survey of applications and
end-to-end complexities,” 2023.

[3] S. Zhang and L. Li, “A brief introduction to quantum algorithms,” CCF
Transactions on High Performance Computing, vol. 4, p. 53–62, Feb. 2022.

[4] A. D. Corcoles, A. Kandala, A. Javadi-Abhari, D. T. McClure, A. W. Cross,
K. Temme, P. D. Nation, M. Steffen, and J. M. Gambetta, “Challenges and
opportunities of near-term quantum computing systems,” Proceedings of the
IEEE, vol. 108, p. 1338–1352, Aug. 2020.

[5] G. Kalai, “The argument against quantum computers,” 2019.

[6] J. W. Z. Lau, K. H. Lim, H. Shrotriya, and L. C. Kwek, “Nisq computing:
where are we and where do we go?,” AAPPS Bulletin, vol. 32, p. 27, Sep 2022.

[7] S. Brandhofer, S. Devitt, T. Wellens, and I. Polian, “Special session: Noisy
intermediate-scale quantum (nisq) computers—how they work, how they
fail, how to test them?,” in 2021 IEEE 39th VLSI Test Symposium (VTS),
pp. 1–10, 2021.

[8] J. Preskill, “Quantum computing in the nisq era and beyond,” Quantum,
vol. 2, p. 79, Aug. 2018.

[9] W. Finigan, M. Cubeddu, T. Lively, J. Flick, and P. Narang, “Qubit allocation
for noisy intermediate-scale quantum computers,” 2018.

[10] D. A. Sofge, “A survey of quantum programming languages: History, methods,
and tools,” 2008.

[11] P. Selinger, “A brief survey of quantum programming languages,” in Functional
and Logic Programming (Y. Kameyama and P. J. Stuckey, eds.), (Berlin,
Heidelberg), pp. 1–6, Springer Berlin Heidelberg, 2004.

[12] A. W. Cross, L. S. Bishop, J. A. Smolin, and J. M. Gambetta, “Open quantum
assembly language,” 2017.

60

[13] M. Amy and V. Gheorghiu, “staq — a full-stack quantum processing toolkit,”
Quantum Science and Technology, vol. 5, p. 034016, June 2020.

[14] T. Peham, L. Burgholzer, and R. Wille, “Equivalence checking of quantum
circuits with the zx-calculus,” IEEE Journal on Emerging and Selected Topics
in Circuits and Systems, vol. 12, p. 662–675, Sept. 2022.

[15] D. Janzing, P. Wocjan, and T. Beth, ““non-identity-check” is qma-complete,”
International Journal of Quantum Information (IJQI), vol. 3, 09 2005.

[16] S. Aaronson and D. Gottesman, “Improved simulation of stabilizer circuits,”
Physical Review A, vol. 70, Nov. 2004.

[17] D. Gottesman, “Stabilizer codes and quantum error correction,” 1997.

[18] C. Gidney, “Stim: a fast stabilizer circuit simulator,” Quantum, vol. 5, p. 497,
July 2021.

[19] J. Mei, M. Bonsangue, and A. Laarman, “Simulating quantum circuits by
model counting,” 2024.

[20] D. Thanos, T. Coopmans, and A. Laarman, “Fast equivalence checking of
quantum circuits of clifford gates,” 2023.

[21] J. Mei, T. Coopmans, M. Bonsangue, and A. Laarman, “Equivalence checking
of quantum circuits by model counting,” 2024.

[22] T. Peham, L. Burgholzer, and R. Wille, “Equivalence checking of quantum
circuits with the zx-calculus,” IEEE Journal on Emerging and Selected Topics
in Circuits and Systems, vol. 12, p. 662–675, Sept. 2022.

[23] L. Berent, L. Burgholzer, and R. Wille, “Towards a sat encoding for quantum
circuits: A journey from classical circuits to clifford circuits and beyond,”
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

[24] R. Wille, N. Przigoda, and R. Drechsler, “A compact and efficient sat encoding
for quantum circuits,” in IEEE AFRICON 2013, IEEE AFRICON Conference,
Institute of Electrical and Electronics Engineers Inc., 2013. IEEE AFRICON
2013 ; Conference date: 09-09-2013 Through 12-09-2013.

[25] M. Amy, “Towards large-scale functional verification of universal quantum
circuits,” Electronic Proceedings in Theoretical Computer Science, vol. 287,
p. 1–21, Jan. 2019.

[26] L. Burgholzer and R. Wille, “Improved dd-based equivalence checking of
quantum circuits,” in ASP-DAC 2020 - 25th Asia and South Pacific Design
Automation Conference, Proceedings, Proceedings of the Asia and South
Pacific Design Automation Conference, ASP-DAC, pp. 127–132, Institute of
Electrical and Electronics Engineers Inc., Jan. 2020. Publisher Copyright:
© 2020 IEEE.; 25th Asia and South Pacific Design Automation Conference,
ASP-DAC 2020 ; Conference date: 13-01-2020 Through 16-01-2020.

61

[27] G. F. Viamontes, I. L. Markov, and J. P. Hayes, “Checking equivalence of
quantum circuits and states,” 2007.

[28] L. Vinkhuijzen, T. Coopmans, D. Elkouss, V. Dunjko, and A. Laarman,
“Limdd: A decision diagram for simulation of quantum computing including
stabilizer states,” Quantum, vol. 7, p. 1108, Sept. 2023.

[29] C.-Y. Wei, Y.-H. Tsai, C.-S. Jhang, and J.-H. R. Jiang, “Accurate bdd-
based unitary operator manipulation for scalable and robust quantum circuit
verification,” in Proceedings of the 59th ACM/IEEE Design Automation
Conference, DAC ’22, (New York, NY, USA), p. 523–528, Association for
Computing Machinery, 2022.

[30] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Infor-
mation: 10th Anniversary Edition. Cambridge University Press, 2011.

[31] S. Aaronson, “Lecture 28, tues may 2: Stabilizer formalism.” https://www.

scottaaronson.com/qclec/28.pdf. Accessed: 2023-10-11.

[32] H. J. Garćıa and I. L. Markov, “Simulation of quantum circuits via stabilizer
frames,” 2017.

[33] C. M. Dawson and M. A. Nielsen, “The solovay-kitaev algorithm,” 2005.

[34] Y. Zhang, Y. Tang, Y. Zhou, and X. Ma, “Efficient entanglement generation
and detection of generalized stabilizer states,” Phys. Rev. A, vol. 103, p. 052426,
May 2021.

[35] L. Allison, “ctqc.” https://github.com/lucasallison/ctqc, 2024.

[36] A. Clements, Computer Organization and Architecture: Themes and Varia-
tions. United States: Cengage Learning, international ed. ed., 2014.

[37] M. Raasveldt and H. Mühleisen, “Duckdb: an embeddable analytical database,”
in Proceedings of the 2019 International Conference on Management of Data,
SIGMOD ’19, (New York, NY, USA), p. 1981–1984, Association for Computing
Machinery, 2019.

[38] A. Laarman, J. van de Pol, and M. Weber, “Parallel recursive state compression
for free,” CoRR, vol. abs/1104.3119, 2011.

[39] N. Quetschlich, L. Burgholzer, and R. Wille, “MQT Bench: Benchmarking
software and design automation tools for quantum computing,” Quantum,
2023. MQT Bench is available at https://www.cda.cit.tum.de/mqtbench/.

[40] T. M. Chair for Design Automation, “mqt-qcec.” https://github.com/

cda-tum/mqt-qcec, 2024.

[41] B. Bichsel, A. Paradis, M. Baader, and M. Vechev, “Abstraqt: Analysis of
quantum circuits via abstract stabilizer simulation,” Quantum, vol. 7, p. 1185,
Nov. 2023.

62

https://www.scottaaronson.com/qclec/28.pdf
https://www.scottaaronson.com/qclec/28.pdf
https://github.com/lucasallison/ctqc
https://www.cda.cit.tum.de/mqtbench/
https://github.com/cda-tum/mqt-qcec
https://github.com/cda-tum/mqt-qcec

[42] A. Kissinger and J. van de Wetering, “Reducing the number of non-clifford
gates in quantum circuits,” Physical Review A, vol. 102, Aug. 2020.

[43] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics: A
Foundation for Computer Science. USA: Addison-Wesley Longman Publishing
Co., Inc., 2nd ed., 1994.

63

Appendices

64

Appendix A

Benchmark Results

In this chapter we present the benchmark complete results for the MQT benchmark
set. The first columns of the tables list the various algorithms that occur in the
benchmark set. Each algorithm has multiple instances, each with a different number
of qubits. This is indicated in the second column. The third and fourth columns
show the total number of gates #G and the percentage of which are Rz (#Rz)
gates in the original circuit. In the following two columns, the same information
is shown for the circuit types that are used to verify equivalence against. This is
either the optimized version (opt) or the optimized version with an introduced
error (See Section 4.2). The last columns show the time and RSS usage of the
various tools. In each row the best time and memory usage is highlighted in green.
The following symbols are used throughout the tables:

• ‘-’: Indicates a timeout, or if preceeded by a timeout or exception it indi-
cates that the verification process was not executed for this circuit. When
benchmarking equivalent circuits a timeout of 10 minutes was used, while
benchmarking non-equivalent circuits a timeout of 3 minutes was used.

• ‘M’: Indicates that the tool exceeded the 8GB RSS memory limit.

• ‘E’: The tool encountered an exception.

• ‘N’: No result could be determined by the tool. This is specific to QCEC,
which sometimes cannot assess the equivalence of the circuits.

• ‘W’: The circuits were incorrectly classified as equivalent or non-equivalent.

65

Table A.1: Results for verifying equivalence between original
and optimized circuits from the MQT benchmark set using
the proposed generalized stabilizer datastructures

Algorithm #Qubits
transp opt Col-wise BV Map Tree Row-wise BV

#G %Rz #G %Rz t(sec) mem(mbs) t(sec) mem(mbs) t(sec) mem(mbs) t(sec) mem(mbs)
23 296 67 296 67 1.5878 70.7 0.4801 22.9 10.056 31.3 0.9996 59.9

Amplitude Estimation 24 924 65 924 65 M M M M - - M M
23 66 67 33 34 0.0035 0.0 0.0009 0.0 0.0012 0.0 0.0037 0.0

Deutsch-Josza 24 114 60 63 27 0.0044 0.0 0.0016 0.0 0.0016 0.0 0.0013 0.0
25 242 62 131 29 0.0017 0.0 0.0016 0.0 0.0043 0.0 0.0026 0.0
26 466 60 259 27 0.0033 0.0 0.0039 0.0 0.0152 5.3 0.0034 0.0
27 890 58 509 25 0.0097 5.1 0.0115 5.2 0.0515 6.0 0.0117 5.1
28 1762 57 1015 25 0.0808 5.7 0.0505 5.7 0.1933 6.8 0.0298 5.3
29 3402 55 2001 24 0.1166 6.6 0.2845 7.0 0.5905 8.8 0.1016 5.2
210 7058 57 4067 25 0.5258 9.9 1.8669 9.0 2.7325 13.2 0.455 6.8
211 14114 57 8135 25 2.2259 22.0 14.4055 13.9 16.2668 22.0 1.731 9.3
212 28362 57 16305 25 11.1899 62.8 123.141 16.3 107.1632 38.7 7.8248 13.3
213 57058 57 32695 25 53.195 216.9 - - - - 31.3367 23.5
23 8 0 8 0 0.0025 0.0 0.0008 0.0 0.0013 0.0 0.001 0.0

GHZ State 24 16 0 16 0 0.0012 0.0 0.0009 0.0 0.0046 0.0 0.0027 0.0
25 32 0 32 0 0.0019 0.0 0.0016 0.0 0.0063 0.0 0.0019 0.0
26 64 0 64 0 0.0065 0.0 0.0036 0.0 0.0095 0.0 0.0021 0.0
27 128 0 128 0 0.015 0.0 0.0079 0.0 0.0322 5.5 0.0074 0.0
28 256 0 256 0 0.0487 5.0 0.0351 5.2 0.1302 6.4 0.0171 4.8
29 512 0 512 0 0.133 6.1 0.2647 6.4 0.6244 8.3 0.0673 5.1
210 1024 0 1024 0 0.3004 9.4 2.0184 8.4 3.2457 12.7 0.1479 6.2
211 2048 0 2048 0 1.1636 20.6 15.7728 12.3 18.5608 25.0 0.6239 8.1
212 4096 0 4096 0 5.8267 60.1 124.6941 20.7 125.6565 47.4 2.3891 11.2
213 8192 0 8192 0 33.1645 212.9 - - - - 10.649 16.3
214 16384 0 16384 0 222.8422 802.8 - - - - 42.5643 27.4
215 32768 0 32768 0 - - - - - - 176.4379 53.0
23 32 0 16 0 0.0012 0.0 0.0011 0.0 0.0014 0.0 0.0011 0.0

Graph State 24 64 0 32 0 0.0017 0.0 0.0031 0.0 0.0043 0.0 0.0019 0.0
25 128 0 64 0 0.002 0.0 0.0043 0.0 0.0036 0.0 0.0026 0.0
26 256 0 128 0 0.0027 0.0 0.0062 0.0 0.0133 0.0 0.0053 0.0
27 512 0 256 0 0.0215 0.0 0.0116 0.0 0.0338 5.9 0.0107 0.0
28 1024 0 512 0 0.0787 5.0 0.0468 5.3 0.1394 6.5 0.0334 4.8
29 2048 0 1024 0 0.179 6.1 0.3184 6.6 0.6543 8.5 0.1383 5.1
210 4096 0 2048 0 0.4867 9.4 2.3934 8.6 3.3359 12.8 0.3727 6.4
211 8192 0 4096 0 1.9565 20.7 16.777 12.8 18.1756 20.9 1.3467 8.1
212 16384 0 8192 0 8.9611 61.5 127.7919 15.1 108.2165 37.2 5.4273 12.2
213 32768 0 16384 0 43.0963 214.5 - - - - 22.3909 18.6
214 65536 0 32768 0 253.1204 807.3 - - - - 90.0806 32.1
215 131072 0 65536 0 - - - - - - 364.7836 60.7
23 508 56 508 56 41.8186 654.9 25.0507 216.3 425.7628 353.2 32.8958 640.6

Portfolio Optimization using QAOA 24 1592 48 1592 48 M M M M - - M M
23 540 42 414 55 3.7859 135.3 2.3047 100.1 39.2353 106.6 2.7049 156.6

Portfolio Optimization using VQE 24 1656 28 1026 44 M M M M - - M M
23 200 64 200 64 0.0068 0.0 0.0027 0.0 0.038 5.4 0.0025 0.0

QAOA 24 400 64 400 64 0.0071 5.1 0.0041 0.0 0.0365 5.1 0.0044 0.0
23 160 53 139 46 1.0216 76.0 0.3548 19.4 8.9193 22.4 0.7166 74.8

Quantum Fourier Transform 24 640 57 535 48 M M M M - - M M
23 168 50 147 43 1.9677 146.5 0.5833 36.4 13.7146 46.9 1.5016 213.1

Entangled Quantum Fourier Transform 24 656 55 551 47 M M M M - - M M
23 399 59 323 44 27.0075 642.2 15.0561 238.5 322.8196 337.2 20.7199 647.0

Quantum Neural Network 24 1183 51 1002 40 M M M M - - M M
23 167 51 167 51 0.7183 74.8 0.2531 13.4 5.6078 18.0 0.5871 60.3

Exact Quantum Phase Estimation 24 655 55 655 55 M M M M - - M M
23 167 51 167 51 1.7367 107.4 0.4857 20.6 12.5797 29.7 1.2877 116.9

Inexact Quantum Phase Estimation 24 655 55 655 55 M M M M - - M M
23 372 61 241 39 2.4271 108.2 1.5944 61.2 31.0792 70.2 1.7019 75.7

Real Amplitude Random Circuit 24 936 48 677 28 M M M M - - M M
23 372 61 241 39 15.6331 647.8 9.5276 233.7 289.0859 280.5 11.9401 573.2

SU Random Circuit 24 936 48 680 29 M M M M - - M M
23 372 61 372 61 2.5611 61.7 1.6087 62.4 29.6189 67.7 1.7495 52.0

Two-Local Random Circuit 24 936 48 936 48 M M M M - - M M
23 230 74 230 74 0.7186 97.7 0.313 50.1 5.05 68.5 0.4716 89.7

Variational Quantum Eigensolver 24 462 73 462 73 M M M M - - M M
23 158 63 141 51 0.0051 0.0 0.002 0.0 0.0163 0.0 0.0051 0.0

W State 24 334 63 301 51 0.0157 0.0 0.0031 0.0 0.0444 5.1 0.0118 0.0
25 686 64 621 51 M M M M - - M M

66

Table A.2: Results for verifying equivalence between original
and optimized circuits from the MQT benchmark set.

Algorithm #Qubits
transp opt CTQC QCEC ECMC

#G %Rz #G %Rz t(sec) mem(mbs) t(sec) mem(mbs) t(sec) mem(mbs)
23 296 67 296 67 0.4801 22.9 0.0299 78.3 - -

Amplitude Estimation 24 924 65 924 65 M M 0.0469 89.1 - -
25 3140 63 3140 63 - - 0.0829 102.3 - -
26 11412 62 11412 62 - - E E - -
23 66 67 33 34 0.0037 0.0 0.0245 78.0 0.0196 7.6

Deutsch-Josza 24 114 60 63 27 0.0013 0.0 0.0307 78.2 0.0278 7.5
25 242 62 131 29 0.0026 0.0 0.0438 84.9 0.0558 7.5
26 466 60 259 27 0.0034 0.0 0.0701 141.0 0.1372 26.8
27 890 58 509 25 0.0117 5.1 0.1214 740.8 0.4621 41.7
28 1762 57 1015 25 0.0298 5.3 0.2299 1271.8 2.2228 65.9
29 3402 55 2001 24 0.1016 5.2 0.4627 2600.1 12.9232 348.2
210 7058 57 4067 25 0.455 6.8 1.0208 5682.2 11.5656 1298.0
211 14114 57 8135 25 1.731 9.3 M M 43.7122 5036.4
212 28362 57 16305 25 7.8248 13.3 - - - -
213 57058 57 32695 25 31.3367 23.5 - - - -
23 8 0 8 0 0.001 0.0 0.0259 200.5 0.0103 7.6

GHZ State 24 16 0 16 0 0.0027 0.0 0.0304 84.3 0.0123 7.6
25 32 0 32 0 0.0019 0.0 0.0433 84.5 0.0176 7.6
26 64 0 64 0 0.0021 0.0 0.0697 262.0 0.0329 7.6
27 128 0 128 0 0.0074 0.0 0.1246 754.4 0.0717 15.4
28 256 0 256 0 0.0171 4.8 0.2345 1513.1 0.2016 38.3
29 512 0 512 0 0.0673 5.1 0.4612 2928.5 0.671 62.4
210 1024 0 1024 0 0.1479 6.2 0.9386 5812.3 2.4931 153.1
211 2048 0 2048 0 0.6239 8.1 M M 9.6961 519.5
212 4096 0 4096 0 2.3891 11.2 - - 36.9711 1907.9
213 8192 0 8192 0 10.649 16.3 - - 149.2334 7502.5
214 16384 0 16384 0 42.5643 27.4 - - M M
215 32768 0 32768 0 176.4379 53.0 - - - -
23 32 0 16 0 0.0011 0.0 0.0246 84.2 0.0129 7.5

Graph State 24 64 0 32 0 0.0019 0.0 0.0306 84.6 0.0194 7.6
25 128 0 64 0 0.0026 0.0 0.0444 84.5 0.0302 7.6
26 256 0 128 0 0.0053 0.0 0.072 522.9 0.0684 7.5
27 512 0 256 0 0.0107 0.0 0.1257 718.2 0.1548 31.8
28 1024 0 512 0 0.0334 4.8 0.234 1218.6 1.9509 42.7
29 2048 0 1024 0 0.1383 5.1 0.4897 2682.9 0.9034 57.3
210 4096 0 2048 0 0.3727 6.4 1.0076 5522.0 169.1951 127.2
211 8192 0 4096 0 1.3467 8.1 M M 209.2035 242.2
212 16384 0 8192 0 5.4273 12.2 - - - -
213 32768 0 16384 0 22.3909 18.6 - - - -
214 65536 0 32768 0 90.0806 32.1 - - - -
215 131072 0 65536 0 364.7836 60.7 - - - -
23 10736 63 10736 63 - - 0.2069 280.0 - -

Grover’s Algorithm without Ancilla 24 2087278 67 2087278 67 - - - - - -
23 7799 62 7757 63 M M 0.1542 103.3 - -

Grover’s Algorithm with V-Chain 24 1174493 66 1171391 66 - - - - - -
23 508 56 508 56 25.0507 216.3 0.0324 78.1 - -

Portfolio Optimization using QAOA 24 1592 48 1592 48 M M 0.0518 87.1 - -
23 540 42 414 55 2.3047 100.1 0.0326 84.3 - -

Portfolio Optimization using VQE 24 1656 28 1026 44 M M 0.0471 88.4 - -
23 200 64 200 64 0.0027 0.0 0.0283 78.2 - -

QAOA 24 400 64 400 64 0.0041 0.0 0.036 86.0 - -
23 160 53 139 46 0.3548 19.4 0.0259 77.6 - -

Quantum Fourier Transform 24 640 57 535 48 M M 1.9776 417.0 - -
25 2560 59 1675 49 - - - - - -
23 168 50 147 43 0.5833 36.4 0.0268 78.2 - -

Entangled Quantum Fourier Transform 24 656 55 551 47 M M 1.6494 423.0 - -
25 2592 58 1707 48 - - - - - -
23 399 59 323 44 15.0561 238.5 0.0339 87.6 M M

Quantum Neural Network 24 1183 51 1002 40 M M 0.0513 152.6 - -
25 3903 44 3512 37 - - 0.1052 85.4 - -
26 13951 39 13144 36 - - 0.2954 364.7 - -
27 52479 37 50835 35 - - 1.164 1193.7 - -
28 203263 35 199958 34 - - 5.592 2248.3 - -
23 167 51 167 51 0.2531 13.4 0.0256 77.9 - -

Exact Quantum Phase Estimation 24 655 55 655 55 M M 0.0617 88.5 - -
25 2591 58 2591 58 - - - - - -
23 167 51 167 51 0.4857 20.6 0.0314 78.1 - -

Inexact Quantum Phase Estimation 24 655 55 655 55 M M 0.061 89.0 - -
25 2591 58 2591 58 - - - - - -
23 10937 62 10913 62 - - 0.2166 275.6 - -

Quantum Walk without Ancilla 24 219567 66 219543 66 - - 27.5308 752.5 - -
25 2453631 67 2453607 67 - - - - - -

67

Table A.3: Results for verifying equivalence between original
and optimized circuits from the MQT benchmark set (contin-
ued).

Algorithm #Qubits
transp opt CTQC QCEC ECMC

#G %Rz #G %Rz t(sec) mem(mbs) t(sec) mem(mbs) t(sec) mem(mbs)
23 2337 42 2085 48 - - 0.0547 87.7 - -

Quantum Walk with V-Chain 24 11457 44 10213 49 - - 0.2228 393.2 - -
25 50433 44 44901 50 - - 1.594 620.6 - -
26 211329 45 188005 50 - - 15.4077 1337.9 - -
27 864897 45 769125 50 - - 210.4146 3409.1 - -
23 372 61 241 39 1.5944 61.2 0.028 78.2 - -

Real Amplitude Random Circuit 24 936 48 677 28 M M 0.0442 89.6 - -
25 2640 34 2125 18 - - 0.0831 133.4 - -
26 8352 22 7325 11 - - 0.1995 505.8 - -
27 28992 13 26941 6 - - 0.7351 1083.1 - -
28 107136 7 103037 3 - - 3.2834 2063.6 - -
23 372 61 241 39 9.5276 233.7 0.028 85.6 - -

SU Random Circuit 24 936 48 680 29 M M 0.0434 160.4 - -
25 2640 34 2127 19 - - 0.0879 370.0 - -
26 8352 22 7327 11 - - 0.2103 614.1 - -
27 28992 13 26944 6 - - 0.7619 1084.8 - -
28 107136 7 103039 3 - - 3.9336 2127.2 - -
23 372 61 372 61 1.6087 62.4 0.0287 78.2 - -

Two-Local Random Circuit 24 936 48 936 48 M M 0.0429 86.7 - -
25 2640 34 2640 34 - - 0.0781 257.2 - -
26 8352 22 8352 22 - - 0.1895 199.0 - -
27 28992 13 28992 13 - - 0.6302 989.7 - -
28 107136 7 107136 7 - - 2.7349 1936.1 - -
29 410880 4 410880 4 - - 14.7887 4238.4 - -
23 230 74 230 74 0.313 50.1 0.0293 78.2 0.9504 61.4

Variational Quantum Eigensolver 24 462 73 462 73 M M 0.0369 78.2 3.7851 185.3
23 158 63 141 51 0.002 0.0 0.0256 77.8 0.133 31.3

W State 24 334 63 301 51 0.0031 0.0 0.0355 85.6 0.5789 49.2
25 686 64 621 51 M M 0.0577 288.7 2.3315 127.9
26 1390 64 1261 51 - - 0.101 579.3 7.4094 346.4
27 2798 64 2541 51 - - 0.2338 948.4 54.9538 2513.5
28 5614 64 5101 51 - - 0.6115 1673.5 579.513 7218.0
29 11246 64 10221 51 - - 1.4435 2744.6 M M
210 22510 64 20461 51 - - 6.8719 6066.4 - -
211 45038 64 40941 51 - - M M - -

68

Table A.4: Results for verifying equivalence between circuits
from the MQT benchmark set. The optimized circuits contain
an error: the control and target qubit of random CNOT gate
have been flipped.

Algorithm #Qubits
transp flipped CTQC QCEC ECMC

#G %Rz #G %Rz t(sec) mem(mbs) t(sec) mem(mbs) t(sec) mem(mbs)
23 296 67 296 67 0.2429 14.3 0.0286 78.3 - -

Amplitude Estimation 24 924 65 924 65 M M 0.0682 91.3 - -
25 3140 63 3140 63 - - - - - -
23 66 67 33 34 0.001 0.0 0.0247 84.5 0.0173 7.4

Deutsch-Josza 24 114 60 63 27 0.0012 0.0 0.0315 84.7 0.0359 7.1
25 242 62 131 29 0.0013 0.0 0.0446 85.0 0.0626 7.3
26 466 60 259 27 0.0016 0.0 0.0721 159.2 0.1763 23.9
27 890 58 509 25 0.0016 0.0 N N 0.8161 25.4
28 1762 57 1015 25 0.0021 0.0 N N 2.5174 69.5
29 3402 55 2001 24 0.0032 5.5 N N 10.0384 329.9
210 7058 57 4067 25 0.0034 5.0 1.3625 6034.4 13.7428 1241.9
211 14114 57 8135 25 0.0079 5.0 M M 34.9062 374.1
212 28362 57 16305 25 0.0099 5.1 - - - -
213 57058 57 32695 25 0.0248 22.9 - - - -
23 8 0 8 0 0.0008 0.0 0.025 84.2 0.0098 7.7

GHZ State 24 16 0 16 0 0.0016 0.0 0.031 84.2 0.0119 7.6
25 32 0 32 0 0.001 0.0 0.044 84.6 0.0167 7.6
26 64 0 64 0 0.0014 0.0 0.069 228.1 0.0283 7.6
27 128 0 128 0 0.002 0.0 0.1188 761.1 0.0577 7.6
28 256 0 256 0 0.0055 0.0 0.2507 1178.0 0.1489 33.2
29 512 0 512 0 0.006 0.0 0.5689 3137.2 0.5091 61.4
210 1024 0 1024 0 0.0177 6.3 2.3329 6069.8 1.7283 152.6
211 2048 0 2048 0 0.0839 7.9 M M 6.7064 506.5
212 4096 0 4096 0 0.3583 11.1 - - 21.1165 1295.4
213 8192 0 8192 0 1.1832 17.9 - - 128.0016 7148.8
214 16384 0 16384 0 0.0421 6.4 - - - -
215 32768 0 32768 0 65.0309 53.4 - - - -
23 32 0 16 0 0.0016 0.0 0.0251 84.3 0.012 7.6

Graph State 24 64 0 32 0 0.0021 0.0 0.0321 84.8 0.0165 7.6
25 128 0 64 0 0.0027 0.0 0.0453 84.8 0.0282 7.6
26 256 0 128 0 0.0022 0.0 0.0746 410.8 0.0599 7.7
27 512 0 256 0 0.0024 0.0 0.1763 814.8 0.1314 33.4
28 1024 0 512 0 0.0055 0.0 0.2412 963.5 0.3034 45.3
29 2048 0 1024 0 0.0157 5.1 0.5753 3088.6 0.983 84.7
210 4096 0 2048 0 0.0736 6.4 1.2388 6026.7 2.216 130.3
211 8192 0 4096 0 0.3099 8.2 M M 10.8704 241.3
212 16384 0 8192 0 0.0134 10.3 - - - -
213 32768 0 16384 0 2.3162 17.5 - - - -
214 65536 0 32768 0 20.4039 30.5 - - - -
215 131072 0 65536 0 25.1613 57.5 - - - -
23 508 56 508 56 14.0081 181.3 1.2703 349.9 - -

Portfolio Optimization using QAOA 24 1592 48 1592 48 M M - - - -
23 540 42 414 55 1.153 84.2 0.1899 298.3 - -

Portfolio Optimization using VQE 24 1656 28 1026 44 M M - - - -
23 200 64 200 64 0.0023 0.0 0.0274 84.9 - -

QAOA 24 400 64 400 64 0.002 0.0 0.0477 87.5 - -
23 160 53 139 46 0.2761 16.4 0.0264 84.7 - -

Quantum Fourier Transform 24 640 57 535 48 M M 1.6507 423.0 - -
25 2560 59 1675 49 - - - - - -
23 168 50 147 43 0.2583 14.6 0.0356 229.9 - -

Entangled Quantum Fourier Transform 24 656 55 551 47 M M 18.5828 852.1 - -
25 2592 58 1707 48 - - - - - -
23 399 59 323 44 8.9276 179.4 0.0355 243.3 M M

Quantum Neural Network 24 1183 51 1002 40 M M - - - -
23 167 51 167 51 0.091 5.8 0.0403 85.2 - -

Exact Quantum Phase Estimation 24 655 55 655 55 M M 0.1542 381.1 - -
25 2591 58 2591 58 - - - - - -
23 167 51 167 51 0.1955 12.1 0.0305 79.4 - -

Inexact Quantum Phase Estimation 24 655 55 655 55 M M 1.215 545.7 - -
25 2591 58 2591 58 - - - - - -
23 10937 62 10913 62 - - 0.2953 306.1 - -

Quantum Walk without Ancilla 24 219567 66 219543 66 - - 78.5985 902.5 - -
25 2453631 67 2453607 67 - - - - - -
23 2337 42 2085 48 M M 0.7978 334.4 - -

Quantum Walk with V-Chain 24 11457 44 10213 49 - - - - - -
23 372 61 241 39 0.7915 45.5 0.666 324.4 - -

Real Amplitude Random Circuit 24 936 48 677 28 M M 0.0508 90.4 - -
25 2640 34 2125 18 - - - - - -
23 372 61 241 39 4.9076 166.1 0.03 85.4 - -

SU Random Circuit 24 936 48 680 29 M M 0.3222 410.6 - -
25 2640 34 2127 19 - - - - - -

69

Table A.5: Results for verifying equivalence between circuits
from the MQT benchmark set. The optimized circuits contain
an error: the control and target qubit of random CNOT gate
have been flipped (continued).

Algorithm #Qubits
transp flipped CTQC QCEC ECMC

#G %Rz #G %Rz t(sec) mem(mbs) t(sec) mem(mbs) t(sec) mem(mbs)
23 372 61 372 61 0.826 47.5 0.2275 307.4 - -

Two-Local Random Circuit 24 936 48 936 48 M M - - - -
23 230 74 230 74 0.145 36.3 0.0289 85.2 1.0014 61.8

Variational Quantum Eigensolver 24 462 73 462 73 M M 0.2391 350.5 3.8236 184.4
23 158 63 141 51 0.0023 0.0 0.0268 84.8 0.1531 31.1

W State 24 334 63 301 51 0.6741 356.8 0.0389 85.0 0.9942 64.8
25 686 64 621 51 M M 0.0567 91.0 2.5579 132.7
26 1390 64 1261 51 - - 0.1033 455.6 10.6007 568.1
27 2798 64 2541 51 - - W W 94.3515 4679.7
28 5614 64 5101 51 - - W W - -
29 11246 64 10221 51 - - W W - -
210 22510 64 20461 51 - - W W - -
211 45038 64 40941 51 - - M M - -

70

Table A.6: Results for verifying equivalence between circuits
from the MQT benchmark set. The optimized circuits contain
an error: a random gate has been removed from the circuit.

Algorithm #Qubits
transp gm CTQC QCEC ECMC

#G %Rz #G %Rz t(sec) mem(mbs) t(sec) mem(mbs) t(sec) mem(mbs)
23 296 67 295 67 0.2728 14.0 0.0294 85.3 - -

Amplitude Estimation 24 924 65 923 65 M M 0.1949 322.6 - -
25 3140 63 3139 63 - - 0.0976 403.5 - -
26 11412 62 11411 62 - - E E - -
23 66 67 32 35 0.0011 0.0 0.0263 84.5 0.0192 7.4

Deutsch-Josza 24 114 60 62 26 0.0016 0.0 0.035 84.7 0.0276 7.5
25 242 62 130 29 0.0016 0.0 0.046 85.2 0.0566 7.4
26 466 60 258 27 0.002 0.0 0.078 88.9 0.1367 26.4
27 890 58 508 25 0.0022 0.0 N N 0.4779 39.7
28 1762 57 1014 25 0.0276 5.1 N N 2.2064 65.1
29 3402 55 2000 24 0.0195 5.0 N N 13.7389 351.3
210 7058 57 4066 25 0.1852 6.8 2.2781 6040.0 4.7257 320.0
211 14114 57 8134 25 0.2555 9.3 M M 44.4552 5036.5
212 28362 57 16304 25 3.9314 13.3 - - - -
213 57058 57 32694 25 24.6788 23.0 - - - -
23 8 0 7 0 0.0011 0.0 0.0259 84.3 0.0099 7.5

GHZ State 24 16 0 15 0 0.0022 0.0 0.0324 84.6 0.0122 7.4
25 32 0 31 0 0.0028 0.0 0.0454 84.5 0.0176 7.4
26 64 0 63 0 0.0021 0.0 0.0706 271.7 0.0284 7.4
27 128 0 127 0 0.0034 0.0 0.1196 863.5 0.0681 15.3
28 256 0 255 0 0.0039 0.0 0.2427 1061.8 0.1588 33.1
29 512 0 511 0 0.0091 0.0 0.4945 2698.5 0.4131 51.7
210 1024 0 1023 0 0.053 6.1 0.9044 5311.3 2.0838 146.3
211 2048 0 2047 0 0.0138 7.8 M M 7.5323 490.2
212 4096 0 4095 0 0.8347 10.9 - - 27.3429 1838.0
213 8192 0 8191 0 3.612 16.1 - - 81.4822 5037.6
214 16384 0 16383 0 5.5478 28.4 - - - -
215 32768 0 32767 0 10.8387 49.8 - - - -
23 32 0 15 0 0.001 0.0 0.0243 78.1 0.0126 7.4

Graph State 24 64 0 31 0 0.0026 0.0 0.0324 84.8 0.0204 7.4
25 128 0 63 0 0.0031 0.0 0.0465 86.5 0.0304 7.4
26 256 0 127 0 0.0024 0.0 0.0726 361.3 0.0702 15.3
27 512 0 255 0 0.0035 0.0 0.1742 762.7 0.1888 34.6
28 1024 0 511 0 0.0036 0.0 0.317 1704.3 0.3105 39.9
29 2048 0 1023 0 0.0151 4.8 0.5213 3097.3 1.2434 76.4
210 4096 0 2047 0 0.0816 6.4 1.8085 6028.3 - -
211 8192 0 4095 0 0.2891 8.2 M M - -
212 16384 0 8191 0 1.1335 12.1 - - - -
213 32768 0 16383 0 9.5845 17.8 - - - -
214 65536 0 32767 0 15.1475 32.8 - - - -
215 131072 0 65535 0 59.8538 59.1 - - - -
23 508 56 507 57 14.1299 181.3 2.0959 349.7 - -

Portfolio Optimization using QAOA 24 1592 48 1591 48 M M - - - -
23 540 42 413 54 2.3722 127.0 N N - -

Portfolio Optimization using VQE 24 1656 28 1025 44 M M - - - -
23 200 64 199 65 0.0016 0.0 0.032 88.6 - -

QAOA 24 400 64 399 64 0.003 0.0 0.0374 85.4 - -
23 160 53 138 46 0.2177 16.1 0.0274 84.8 - -

Quantum Fourier Transform 24 640 57 534 48 M M N N - -
23 168 50 146 44 0.2705 19.3 0.0318 192.1 - -

Entangled Quantum Fourier Transform 24 656 55 550 47 M M 1.3519 522.8 - -
25 2592 58 1706 48 - - - - - -
23 399 59 322 44 8.9272 179.8 0.6876 303.7 M M

Quantum Neural Network 24 1183 51 1001 40 M M - - - -
23 167 51 166 50 0.2089 12.0 0.0277 85.0 - -

Exact Quantum Phase Estimation 24 655 55 654 56 M M 0.344 497.8 - -
25 2591 58 2590 58 - - - - - -
23 167 51 166 50 0.1816 12.3 0.0285 79.0 - -

Inexact Quantum Phase Estimation 24 655 55 654 56 M M 118.2213 1418.2 - -
25 2591 58 2590 58 - - - - - -
23 10937 62 10912 62 - - 0.5104 324.0 - -

Quantum Walk without Ancilla 24 219567 66 219542 66 - - 137.1825 1113.3 - -
25 2453631 67 2453606 67 - - - - - -
23 2337 42 2084 48 M M 2.571 327.2 - -

Quantum Walk with V-Chain 24 11457 44 10212 49 - - - - - -
23 372 61 240 39 0.7904 45.0 0.0322 89.0 - -

Real Amplitude Random Circuit 24 936 48 676 28 M M - - - -
23 372 61 240 39 4.8355 171.4 0.2042 316.2 - -

SU Random Circuit 24 936 48 679 29 M M - - - -
23 372 61 371 61 0.769 45.8 0.5172 335.8 - -

Two-Local Random Circuit 24 936 48 935 48 M M 0.0699 180.4 - -
25 2640 34 2639 34 - - - - - -
23 230 74 229 73 0.1734 42.1 0.0288 85.3 0.9661 62.1

Variational Quantum Eigensolver 24 462 73 461 73 M M W W W W

71

Table A.7: Results for verifying equivalence between circuits
from the MQT benchmark set. The optimized circuits contain
an error: a random gate has been removed from the circuit
(continued).

Algorithm #Qubits
transp gm CTQC QCEC ECMC

#G %Rz #G %Rz t(sec) mem(mbs) t(sec) mem(mbs) t(sec) mem(mbs)
23 158 63 140 51 0.0012 0.0 0.0276 84.7 0.1683 31.2

W State 24 334 63 300 51 0.0017 0.0 0.0348 85.2 0.5926 48.6
25 686 64 620 50 M M 0.0644 159.2 2.379 129.1
26 1390 64 1260 50 - - 0.1124 594.3 7.3463 346.7
27 2798 64 2540 51 - - W W 84.7567 3237.0
28 5614 64 5100 50 - - W W - -
29 11246 64 10220 50 - - W W - -
210 22510 64 20460 50 - - W W - -
211 45038 64 40940 51 - - M M - -

Table A.8: Results for verifying equivalence between circuits
from the MQT benchmark set. The optimized circuits contain
an error: 10−4 has been added to the phases of the rotation
gates.

Algorithm #Qubits
transp shift4 CTQC QCEC ECMC

#G %Rz #G %Rz t(sec) mem(mbs) t(sec) mem(mbs) t(sec) mem(mbs)
23 296 67 296 67 2.0323 87.5 - - - -

Amplitude Estimation 24 924 65 924 65 M M - - - -
23 66 67 33 34 0.0008 0.0 N N 0.0234 7.4

Deutsch-Josza 24 114 60 63 27 0.0015 0.0 N N 0.0344 7.4
25 242 62 131 29 0.002 0.0 - - 0.0765 31.0
26 466 60 259 27 0.0026 0.0 - - 0.1863 37.8
27 890 58 509 25 0.0075 5.1 - - 0.5697 40.5
28 1762 57 1015 25 0.0306 5.4 - - 2.6792 94.6
29 3402 55 2001 24 0.2189 6.5 - - 4.1621 358.9
210 7058 57 4067 25 1.5348 9.0 - - 17.1163 1324.2
211 14114 57 8135 25 12.1692 14.0 - - 67.7668 5111.2
212 28362 57 16305 25 17.8883 16.6 - - - -
213 57058 57 32695 25 - - - - - -
23 508 56 508 56 19.9938 181.3 83.676 349.8 - -

Portfolio Optimization using QAOA 24 1592 48 1592 48 M M - - - -
23 540 42 414 55 10.2394 165.8 132.0622 349.4 - -

Portfolio Optimization using VQE 24 1656 28 1026 44 M M - - - -
23 200 64 200 64 0.36 40.9 2.2478 286.7 - -

QAOA 24 400 64 400 64 0.9671 95.1 - - - -
23 160 53 139 46 0.241 17.8 0.026 78.2 - -

Quantum Fourier Transform 24 640 57 535 48 M M - - - -
23 168 50 147 43 0.2788 23.8 0.0509 267.3 - -

Entangled Quantum Fourier Transform 24 656 55 551 47 M M - - - -
23 399 59 323 44 10.3287 188.0 4.3314 307.6 M M

Quantum Neural Network 24 1183 51 1002 40 M M - - - -
23 167 51 167 51 0.1237 11.2 0.0838 274.3 - -

Exact Quantum Phase Estimation 24 655 55 655 55 - - - - - -
23 167 51 167 51 0.2569 14.3 0.0927 267.7 - -

Inexact Quantum Phase Estimation 24 655 55 655 55 M M - - - -
23 372 61 241 39 4.7936 168.3 147.5878 331.6 - -

Real Amplitude Random Circuit 24 936 48 677 28 M M - - - -
23 372 61 241 39 5.7147 185.1 9.3239 329.0 - -

SU Random Circuit 24 936 48 680 29 M M - - - -
23 372 61 372 61 8.5217 165.4 91.7066 321.9 - -

Two-Local Random Circuit 24 936 48 936 48 M M - - - -
23 230 74 230 74 3.5237 160.5 66.1867 287.6 1.2429 68.2

Variational Quantum Eigensolver 24 462 73 462 73 M M - - 4.8133 229.2
23 158 63 141 51 0.5853 62.0 0.0268 85.1 0.1941 34.2

W State 24 334 63 301 51 M M - - 0.7208 55.1
25 686 64 621 51 - - - - 3.108 148.9
26 1390 64 1261 51 - - - - 9.5291 416.1
27 2798 64 2541 51 - - - - 96.5288 3419.6
28 5614 64 5101 51 - - - - - -

72

Table A.9: Results for verifying equivalence between circuits
from the MQT benchmark set. The optimized circuits contain
an error: 10−7 has been added to the phases of the rotation
gates.

Algorithm #Qubits
transp shift7 CTQC QCEC ECMC

#G %Rz #G %Rz t(sec) mem(mbs) t(sec) mem(mbs) t(sec) mem(mbs)
23 296 67 296 67 1.905 90.1 N N - -

Amplitude Estimation 24 924 65 924 65 M M - - - -
23 66 67 33 34 0.0011 0.0 0.0261 81.8 W W

Deutsch-Josza 24 114 60 63 27 0.0012 0.0 N N W W
25 242 62 131 29 0.0011 0.0 - - W W
26 466 60 259 27 0.0025 0.0 - - W W
27 890 58 509 25 0.0072 5.1 - - W W
28 1762 57 1015 25 0.0305 5.6 - - W W
29 3402 55 2001 24 0.2006 6.8 - - 4.083 358.6
210 7058 57 4067 25 1.387 9.2 - - 16.6816 1324.5
211 14114 57 8135 25 12.2582 13.9 - - 65.4598 5111.8
212 28362 57 16305 25 71.5098 17.1 - - - -
213 57058 57 32695 25 - - - - - -
23 508 56 508 56 19.7688 189.6 - - - -

Portfolio Optimization using QAOA 24 1592 48 1592 48 M M - - - -
23 540 42 414 55 10.2377 166.0 - - - -

Portfolio Optimization using VQE 24 1656 28 1026 44 M M - - - -
23 200 64 200 64 0.359 43.7 N N - -

QAOA 24 400 64 400 64 0.9396 81.1 - - - -
23 160 53 139 46 0.2385 18.8 N N - -

Quantum Fourier Transform 24 640 57 535 48 M M - - - -
23 168 50 147 43 0.2831 22.9 N N - -

Entangled Quantum Fourier Transform 24 656 55 551 47 M M - - - -
23 399 59 323 44 10.3185 179.4 N N M M

Quantum Neural Network 24 1183 51 1002 40 M M - - - -
23 167 51 167 51 0.1161 10.9 N N - -

Exact Quantum Phase Estimation 24 655 55 655 55 - - - - - -
23 167 51 167 51 0.2436 13.4 N N - -

Inexact Quantum Phase Estimation 24 655 55 655 55 M M - - - -
23 372 61 241 39 4.6352 165.7 - - - -

Real Amplitude Random Circuit 24 936 48 677 28 M M - - - -
23 372 61 241 39 5.9306 168.2 - - - -

SU Random Circuit 24 936 48 680 29 M M - - - -
23 372 61 372 61 8.2396 170.2 - - - -

Two-Local Random Circuit 24 936 48 936 48 M M - - - -
23 230 74 230 74 3.5347 155.1 N N 1.1873 70.1

Variational Quantum Eigensolver 24 462 73 462 73 M M - - 5.0224 230.3
23 158 63 141 51 0.5992 62.0 N N W W

W State 24 334 63 301 51 M M - - W W
25 686 64 621 51 - - - - 3.1131 149.1
26 1390 64 1261 51 - - - - 8.927 416.7
27 2798 64 2541 51 - - - - 94.8188 3419.5
28 5614 64 5101 51 - - - - - -

73

	Introduction
	Preliminaries
	Quantum Computing Fundamentals
	Stabilizer Formalism
	Stabilizer States
	Stabilizer Circuits
	Simulation of Stabilizer Circuits
	Arbitrary Quantum Circuit Simulation Using the Stabilizer Formalism
	Quantum Circuit Equivalence

	Data Structures for Representing Generalized Stabilizers
	Generalized Stabilizer Abstract Data Type
	Generalized Stabilizer ADT Implementations: Shared Functionality
	Representing Pauli Strings
	H and S Conjugations
	Numerical Stability

	Generalized Stabilizer ADT Implementations: Data Structures
	Map
	Row-wise Bitvector
	Column-wise Bitvector
	Tree

	Experiments
	Evaluating the Performance of Proposed Data Structures
	Evaluating the Performance against Existing Tools

	Related Work
	Gottesman and Aaronson
	STIM
	ECMC
	QCEC
	Quipu
	Abstraqt

	Discussions
	Equivalence Verification in the Pauli Basis
	Simulating Measurements with the Generalized Stabilizer Formalism
	Simulating Measurements with the Generalized Stabilizer Formalism: Alternative Approach

	Conclusions and Future Research
	Appendices
	Benchmark Results

