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Abstract

Vertical farming introduces modern challenges in monitoring plant health. Man-
ual stress detection is time-consuming for biologists at Growy and results in
inaccuracies. To avoid inaccurate manual labeling of stress, the idea of automatic
stress detection is introduced. Images of dwarf blue kale, paksoi, salad rocket
and thyme are collected, cleaned and segmented using a combination of depth
estimation, thresholding and training a U-Net model. Background segmentation
achieved a F1-score of 0.875 while an unstable validation loss of the U-Net model
suggests a lack of generalisability. Feature extraction and piecewise-segmented
regression are utilised to extract various nutrient deficiency features from images
over time and pinpoint the onset of stress. The dataset is split up into two classes:
healthy and nutrient-deficient. Due to minimal differences in mean feature values,
change point ¢. cannot be detected and the dataset is split using visual markers of
stress. Image classification models ResNet50, EfficientNet-B0, and DenseNet-121
are trained on the dataset. DenseNet-121 consistently outperformed ResNet50 and
EfficientNet-B0O and achieved over 90% accuracy. GRAD-CAM analysis suggests
that models trained on background-removed images primarily focus on leaf area
when predicting classes instead of relying on background information. The code
is available at https://github.com/growx-tech/growy-data-intern-nutrient-stress for
the growy-data-users team.

Keywords: machine learning, computer vision, nutrient deficiency, stress de-
tection, image classification, image segmentation, feature extraction
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I INTRODUCTION

Agriculture plays an important role in food production. Climate change, population growth
and limited water resources form challenging problems for traditional farms [1]. Pests,
insects, diseases and harsh climates create sub-optimal growth conditions for crops. Tra-
ditionally, crops are monitored by humans who increase the well-being of crops with
pesticides, fertilizer and regular inspections.

Vertical farming offers a practical and durable approach to the problems of traditional
farms [2]. Vertical farms grow crops in vertically stacked layers and incorporate soilless
farming techniques within a controlled environment. By creating a separate ecosystem for
crops to grow in, vertical farms protect against external factors such as climate, disease
and insects. Vertical farms focus on crops which require little space to increase efficiency
and optimise limited space. Vertical farms may grow cultivars to optimize their growth
process and taste. Cultivars are varieties of crops produced by breeding.

Vertical farming faces unique challenges in the agricultural sector such as temperature
regulation, nutrient mix optimization and system design for efficient water use [3]. Cultivars
grow in volatile environments while vertical farms face these unique challenges. Conse-
quently, vertical farms require quality assurance inspections during the growth process. To
perform quality assurance inspections throughout the farm, robots are often deployed to
automatically capture images of cultivars. Cultivar images are analyzed by biologists to
optimize the growth process and the vertical farming system.

Biologists spend time manually analyzing cultivar images. Sifting through heaps of images
is time-consuming and reduces time spent on effective analysis. Manual stress detection
is also prone to human errors. To help biologists save time and reduce human errors in
detecting stress, the idea of automatic stress detection in cultivar images is introduced.

I-A  Research Approach

The research goal is reducing stressful living conditions for cultivars in the farm. Automatic
stress detection can focus on abiotic stress such as drought and nutrient deficiency or biotic
stress such as pests and diseases. Vertical farming hardly ever suffers from biotic stress due
to a controlled environment, so the focus lies on abiotic stress. This thesis will investigate
nutrient deficiency symptom detection in cultivar images. A complex image background
may influence the detection of nutrient deficiency symptoms. For this reason, finding a
method to effectively detect and remove the background of cultivar images is explored. A
test group of cultivars will artificially receive stress and a control group of cultivars will
not. To determine the time of stress initiation of the test group and whether images contain
nutrient deficient or healthy cultivars, pixel-level feature extraction and regression are



explored to achieve this. To automatically detect nutrient deficiency symptoms in images,
three models will be trained on a dataset with labeled images containing nutrient deficient or
healthy cultivars. The trained models will learn to predict the class labels of unseen images
and therefore detect nutrient deficiency symptoms. In summary, five research questions are
investigated:

o RQ1: Is it possible to effectively detect and remove the background in cultivar images?
o RQ2: Which textural features predict nutrient deficiency symptoms in cultivar images?

o RQ3: Is it possible to separate images of healthy cultivars from images of nutrient
deficient cultivars through pixel-level feature extraction and regression?

« RQ4: Which image classification model achieves a higher accuracy than other state-
of-the-art out-of-the-box models detecting nutrient deficiency symptoms?

o RQS5: Does background segmentation of cultivar images improve the accuracy of
image classification models detecting nutrient deficiency symptoms?

I-B  Outline

The structure of the remainder of the thesis is as follows: Chapter II gives background
information to understand the problem setting, Chapter III describes important related
work, and Chapter IV gives a detailed overview of the methodology. Chapter V details the
results. Chapter VI addresses the discussion of our research questions, the limitations of
our research and introduces ideas for future work. Finally, Chapter VII draws conclusions.



I BACKGROUND

II-A  Growy

Growy 1s a vertical farming company that produces a large selection of cultivars con-
sisting of herbs, salads, and microgreens. Cultivars are grown in four phases consisting
of germination, pre-growth, growth and pre-harvest. Phases differentiate between optimal
environments to optimise the life cycle of cultivars. Cultivars are grown in soilless gutters
that contain growfoam as substrate. Growy uses an active hydroponic system called nutrient
film technique. The system circulates nutrient solution through the gutters allowing the plant
roots to directly absorb nutrients and reuse water from the reservoir. The gutters are placed
on a small slope which allows nutrient solution to automatically flow through the gutters.
Growy uses a specific nutrient mix which is being refined to optimize growth. The pH,
electrical conductivity and temperature of the nutrient solution are consistently measured
multiple times per day.

Figure 1a showcases Growy farm operations. All products are grown in cells containing
multiple vertical layers on which cultivars grow in gutters. Carbon dioxide is blown through
the cell to facilitate photosynthesis. Lighting is controlled by white, blue and red LEDs. In
Figure 1b, a sample image of basil is captured in white LED light. Visually, green algae
grow on the growfoam substrate which blends in with green cultivars.

(a) (b)

Fig. 1: (a) Farm operations in a cell showing vertically grown cultivars under a combination
of red and blue LED light at Growy (photo: Ramon van Flymen) and (b) a top view image
taken of basil growing in a gutter with green algae growing on the growfoam substrate.

Growy sells to supermarkets and restaurants, so the product cannot contain discolored or
wilted plants. At the moment, a substantial amount of product cannot be sold due to poor
quality. Growy wants to prevent discoloration and wilting through custom plant profiles,
nutrient mixes or environment variables. To address this problem, stress detection and
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analysis are needed. In Figure 2, the workflow for stress detection and analysis is shown.
Automatic stress symptom detection aims to help biologists fully focus on analysis of
stressed cultivars and omitting images of healthy cultivars. An added benefit is that stress
symptoms may be detected before biologists observe stress with the naked eye.

Nutrient deficiency
—» symptom detection in
images

Adjust plant profile,
—_— = nutrient mix or
environment variables

Biologists analyse

Robots take images ——» -
images

Fig. 2: Workflow for stress detection and analysis. The original workflow is described in
yellow and an addition to the workflow is described in blue. Images are captured and
biologists analyse them to adjust the plant profiles or environmental conditions.

II-B  Hardware

Remote-controlled farm robots are deployed to routinely water and capture images of
cultivars. The images were taken with a camera board containing a Raspberry Pi Zero 2
W and Raspberry Pi Camera Module 3 NolIR (using the picamera2 library) illustrated in
Figure 3a. The camera boards are mounted on layer robots that receive commands from
a Raspberry Pi 4 shown in Figure 3b. The farm robots experience occasional difficulties
such as movement during image capture, loss of camera focus, synchronization of robot
commands and improper lighting settings.

II-C Datastructures

A pipeline has been developed to store captured images in the cloud on Amazon Web
Services. AWS Simple Storage Service (S3), Sagemaker Al and Athena make up an integral
part of this Extract, Transform, Load pipeline. Cloud storage provides a landing area for
images to be accessed. Sagemaker Al provides access to notebooks with CPU and GPU
compute for model training and access to labeling jobs. Athena retrieves structured data
from the database based on SQL queries.

PlantManager is a platform which allows users to plan, visualise and manage the pro-
cesses happening in the farm. The key functionalities of PlantManager are split into four
catagories:



(a) (b)

Fig. 3: (a) Camera board containing a Raspberry Pi Zero 2 W and Raspberry Pi Camera
Module 3 NolR to capture images below and (b) a layer robot that moves horizontally
across a layer. It is equipped with a mounted camera board and a watering system. Images
taken from Growy.

o Planning: Organises scheduling of growth cycles.

o Lifecycle: Visualises what gutters are being seeded and harvested per day. Also,
displays information about growth cycle IDs such as plant profile, location history
and harvesting date.

» Manage: Consists of creating new plant profiles, managing layer robots, viewing details
of inventory and displaying incidents of the past 24 hours.

o Grafana: Displays exploratory data analysis (EDA) dashboards.

Grafana consists of multiple dashboards which display company metrics guiding decision-
making processes. For instance, the air quality and water system are monitored using
various sensors which are displayed with bar charts and graphs. Various camera and
plant metadata is accessed through the CameraMetaData and PlantMetaData classes in
Sagemaker Al notebooks provided by Growy.



III' RELATED WORK

It is essential to understand the current state of research surrounding early stress detection.
Plant stress detection includes research in many domains such as nutrient deficiency detec-
tion, depth estimation, image segmentation and image classification. The section Related
Work provides an overview of prior research on these topics and highlights techniques that
help implement a stress detection pipeline.

III-A  Nutrient Deficiency Detection

Nutrient deficiencies in plants can manifest visually and can be detected by the naked
eye. Yellowing or browning of leaves, stunted growth and abnormal leaf patterns are all
indicative signs of nutrient deficiency [4]. Nevertheless, visual inspection can be deceptive
or symptoms can be misinterpreted. Relying solely on visual inspection may result in
misdiagnosis, because symptoms of nutrient deficiency may resemble symptoms caused by
pests, diseases or environmental stress. Also, Growy produces differently colored cultivars
which may express varying stress symptoms and hinder nutrient deficiency detection. When
nutrient deficiency is not yet visible to the naked eye, stress already affects plant growth
[5]. This makes visual inspection a sub-optimal approach.

Soil testing is a reliable method to detect nutrient deficiencies. Soil acidity and alkalinity
affect nutrient uptake due to variance in pH [6]. Soil salinity also impacts the rate at which
nutrients are absorbed by plants which is measured using electrical conductivity (EC).
Growy uses growfoam substrate instead of soil which cannot be evaluated using traditional
soil pH meters or EC probes. However, the nutrient solution added to the gutters can be
measured in terms of pH and EC.

Nutrient deficiency can also be detected using laboratory testing. This method can confirm
or deny the intuition that a plant is nutrient deficient from plant and soil analysis [7].
Although laboratory testing is a thorough method, our problem requires both quick and
accurate nutrient deficiency detection.

Textural feature analysis methods such as local binary patterns (LBP) [8] and grey level
co-occurence matrices (GLCM) [9] analyse the spatial relationship of pixel values between
neighbouring pixels. LBP and GLCM calculate various textural features of leaves which
are predictors for nutrient deficiency. Waghmare et al. [10] uses fractal-based features for
disease detection and classification in grape leaves and achieve an accuracy of 96.6%.
Fractal-based features are locally invariant in nature and therefore patterns of diseases can
be distinguished. In another paper by Sabri et al. [11] magnesium, nitrogen and potassium
deficiencies are classified using GLCM, hu-histogram and color histogram as parameters.
The random forest classifier achieved an accuracy of 78.35%. Sulastri et al. [12] performs
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feature extraction with a GLCM to predict nutrient deficiency using the Learning Vector
Quantization (LVQ) method. This method assigns data points called prototypes to represent
a class and move them during training to better represent the class. After training, a data
point is assigned the class of the closest prototype. LVQ achieved an accuracy of 87.5%
for nutrient deficiency detection of nitrogen, phosphorus and potassium.

III-B  Depth Estimation

Metric and relative depth estimation techniques perform a per-pixel regression task to
estimate the absolute or relative depth of objects in images. State-of-the-art depth estimation
models have been trained on large datasets of depth maps. Time-of-Flight and Light
Detection and Ranging (LiDAR) are two popular depth sensing technologies to create
depth maps.

MiDaS [13], [14] was one of the first robust monocular depth estimation models. MiDaS
v3.1 uses vision transformers as image encoders to improve its quality and runtime. Bhat et
al. [15] created ZoeDepth which has excellent generalization capabilities while maintaining
metric scale, combining both metric and relative depth estimation. Marigold by Ke et
al. [16] uses a diffusion model to perform depth estimation. Marigold relies on the rich
latent space of diffusion models to gain knowledge about the intrinsic structure of images.
Bochkovskii et al. [17] created Depth Pro which outputs high frequency details and high
resolution results compared to earlier models.

III-C Image Segmentation

Traditional image segmentation consists of region- and edge-based segmentation methods.
Region-based methods include thresholding [18] and split-and-merge [19]-[21]. Thresh-
olding splits images into foreground and background based on a threshold value. Local
thresholding utilizes a tile-based approach to find thresholds locally. Global thresholding
finds one global threshold for the whole image. Split-and-merge splits images into smaller
regions based on a homogeneity criterion and similarly homogeneous regions are merged
to create the segmented result.

Edge-based methods include the Canny edge detector [22], Sobel edge detector [23] and
Marr-Hildreth edge detector [24]. Edges are places in an image where the intensity rapidly
changes. Edge detectors use first derivatives or second derivatives of abrupt changes in pixel
intensity to detect edges. First derivatives measure the rate of change of pixel intensities
throughout an image. Second derivatives measure the rate of change of the first derivative
which often indicates an edge.

Modern image segmentation consists of neural network-based segmentation methods. Vi-

sion transformers (ViT) [25] are large neural network-based models which specialize in
object detection, segmentation, classification or pose estimation, or all of them. For instance,
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the Segment Anything Model (SAM) and SAM 2 [26], [27] use vision transformers as
image encoders. In the context of image segmentation, Kirilllov et al. perform object
segmentation in images using a text prompt to decide which objects to segment. SAM 2 is
trained on both image and video data and introduces real-time video processing. Grounded-
SAM [28] uses GroundingDINO [29] and SAM to combine object segmentation with
bounding box regression. GroudingDINO predicts bounding boxes for objects using one
or multiple text prompts. Non-max suppression [30] is utilized to remove overlapping,
redundant bounding boxes in Grounded-SAM. FastSAM [31] aims to solve the huge
computation costs of SAM. FastSAM achieves comparable results to SAM at 50 times
higher run-time speed.

Text Prompt: Grounding DINO: Grounded-SAM:
“Horse. Clouds. Grasses. Sky. Hill.” Detect Everything Detect and Segment Everything

Fig. 4: Overview of Grounded-SAM. The input “Horse. Clouds. Grasses. Sky. Hill.”
instructs GroundingDINO to find instances of all mentioned objects and draw bounding
boxes around them. SAM generates segmentation masks by segmenting the objects within
bounding boxes. Image taken from Ren et al. [28]

III-D  Image Classification

Convolutional neural networks (CNNs) [32] perform state-of-the-art image classification in
a variety of tasks. CNNs use convolutional layers to perform convolution operations on an
image and output a feature map. Convolution operations slide a window, called a kernel
or filter, across the image. The dot product between the values of the kernel and the input
of each position in the image is computed and stored in a fixed-size feature map. The
outputted feature map contains detected features of the image. Detected features consist
of areas of interest such as edges, textures or shapes. CNNs are mostly useful for image
classification, because spatial information is lost after the dense layers of the network. As
opposed to CNNs, fully convolutional networks (FCNs) [33] preserve spatial information
of the input and produce per-pixel predictions which is ideal for image segmentation tasks.
Image classification models predict the class of a whole image. Models are trained using
large datasets of labeled images such as the MNIST [34], CIFAR-10/100 [35] and ImageNet
[36] datasets. Transfer learning is a technique where a pre-trained model which has already
learned general features is further trained using task-specific data. Consequently, a model
does not have to be trained from scratch anymore.
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Several models that started the rise of deep learning are called AlexNet [37], GooglLeNet
[38] and VGG16 [39]. AlexNet adopted ReLLU activations and large fully connected layers
which resulted in a large amount of parameters. AlexNet reduced the top-5 error in the
ImageNet dataset from 26% to 15%. GoogLeNet adopted the Inception module, a combined
block of parallel convolutions and max pooling, and was much more computationally
effective than other state-of-the-art models. Global average pooling was used instead of the
standard fully connected layers. VGG16 showed that deeper layered models outperformed
shallow models. VGG16 had 16 layers and a massive amount of parameters which makes
training the model from scratch computationally heavy. However, VGG16 is commonly
used in transfer learning tasks which require only small-scale training.
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IV METHODOLOGY

IV-A Dataset Collection

Farm robots collect images of four cultivars: dwarf blue kale (brassica oleracea), paksoi
(brassica rapa var. chinensis), salad rocket (eruca sativa) and thyme (thymus vulgaris).
Biologists at Growy selected cultivars based on their plant profiles and their weakness to
nutrient deficiency. Plant profiles are defined as the number of days needed in each phase
to complete a lifecycle. For the selected four cultivars shown in Figure 5, plant profiles
are defined as:

o Dwarf Blue Kale - 3x germination, 5x pre-growth, 10x growth, 2x pre-harvest
Paksoi - 4x germination, 4x pre-growth, 10x growth, 2x pre-harvest

Salad Rocket - 3x germination, 3x pre-growth, 10x growth, 2x pre-harvest
Thyme - 5x germination, 8x pre-growth, 10x growth, 2x pre-harvest

(c) (d)
Fig. 5: Selected cultivars: (a) dwarf blue kale, (b) paksoi, (¢) salad rocket and (d) thyme.

An experiment layer is reserved to conduct photoruns of gutters. Photoruns consist of five
images (4608x2592 pixels) per gutter for every day the cultivars remain in the growth
layer. Images are taken over a timeframe of ten days to examine stressed cultivars for a
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prolonged period. Photoruns are executed at night using LEDs for consistent lighting. The
gutters are divided into a test group and a control group. For each cultivar, one batch,
which is equal to six gutters, is manually seeded per group. The control group receives the
standard nutrient solution mix of Growy throughout the lifecycle. Instead of the nutrient
solution mix, the test group receives pH-balanced water in the growth phase, lowering the
nutrient uptake of cultivars. The EC of pH-balanced water fluctuates between 0.5 and 0.7
dS/m and the EC of Growy’s nutrient solution mix fluctuates between 1.8 and 2.0 dS/m.
Optimal EC levels are crucial for efficient nutrient uptake which means giving cultivars
pH-balanced water causes nutrient deficiency stress. Appendix A showcases test group
images of cultivars visually changing over time.

Biologists at Growy manually analysed test group images to indicate the day of stress
initiation in cultivars. Salad rocket and dwarf blue kale are visibly stressed from day 5
although the difference between groups is minimal. Paksoi is not visibly stressed after 10
days of suboptimal nutrient uptake. Unfortunately, a robot error caused multiple photoruns
of thyme to fail and therefore the decision has been made to exclude thyme from further
experiments.

IV-B  Data Cleaning

After visual inspection, unwanted cultivar images are removed to improve data quality.
Images are not usable for pixel-level feature extraction or model training for one of four
reasons:

e Movement blur,

o Loss of camera focus,

o Improper lighting,

o Empty gutter image due to imbalanced distribution of seeds across gutter.

In Table I, the number of total images before and after data cleaning and the number of
cleaned images as a percentage of the total number of images are displayed. For pixel-
level feature extraction, the duplicate and incomplete photoruns are also excluded as these
photoruns skew the mean feature values across gutters. However, these photoruns are useful
training data for model training.

TABLE I: Overview of image counts before and after data cleaning for each cultivar. The
table includes the total number of images, the number remaining after data cleaning and
the proportion of cleaned images relative to the total dataset.

Dwarf Blue Kale | Paksoi | Salad Rocket
Total images 774 810 797
Images after cleaning 725 774 751
Cleaning as % of total 6.33% 4.44% 5.77%
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IV-C Image Preprocessing

Depth estimation, thresholding, and model training are combined to segment the back-
ground of cultivar images. In many cases, the original images contain green algae growing
on the growfoam. Green algae could interfere with the accurate detection and classification
of cultivars. To address this, Depth Anything v2 [40] is used to estimate the relative depth
of objects in the images. This model combines DINOv2 [41] as the encoder for feature
extraction and DPT [42] as the decoder for depth regression. The pre-trained model from
Hugging Face is used to generate depth maps from the original RGB images. To separate
the algae from the background, Otsu’s method [43] is applied to the depth maps. This
method automatically determines the optimal global threshold by minimizing the weighted
intra-class variance between foreground and background regions. Thresholding on the
optimal global threshold extracts the foreground from the image. Combining relative depth
estimation with Otsu’s method produces promising results in background segmentation.
However, some algae and metal edges still appear in the segmentation masks. To remove
the artifacts, a U-Net [44] is trained using a small manually annotated dataset. A total of
18 ground truth binary masks are created by cleaning the segmentation masks from Depth
Anything V2 and Otsu’s method. The algae and metal are removed from the binary masks
using the GIMP image editor [45] to then serve as training data. This allows the model to
learn how to filter out unwanted artifacts and improve the overall segmentation quality.

A U-Net is an u-shaped architecture which employs a fully convolutional network for
image segmentation. The network consists of an encoder and decoder which contain
contracting and expanding paths of convolutional layers. The encoder captures the context
using downsampling and the decoder upsamples the features back to the original size. In
Figure 6, the U-Net architecture is displayed. The U-Net was trained on resized images
of 896x512 pixels and their respective binary masks. The input images are rectangular to
maintain the aspect ratio of the original images. The model ran for 100 epochs with a
batch size of 6 as a result of the small annotated dataset. The U-Net contains a sigmoid
activation and binary crossentropy is used as loss for pixel-level accuracy.

Data augmentation is utilised to increase the size of the dataset available for model training.
The implemented data augmentation methods include vertical flip, horizontal flip, transla-
tion, rotation, crop and resize, and elastic deformation. For elastic deformation, alpha is 34
and sigma is 4. The values are chosen based on the original U-Net implementation. Every
image is turned into six images by data augmentation consisting of the original image and
five augmented images. The augmentations all have a 50% chance of occurring per image,
allowing for multiple augmentations per image.

IV-D Feature Extraction

A grey level co-occurence matrix (GLCM) [9] is a method which extracts textural features
from images. The matrix is defined as the distribution of co-occuring greyscale pixel values
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Fig. 6: U-Net architecture. Each blue box represents a multi-channel feature map, with
the number of channels indicated above the box. The spatial dimensions are shown at
the bottom left corner. White boxes indicate feature maps that have been copied. Arrows
illustrate the different operations. Image taken from Ronneberger et al. [44]

at a given offset and angle. The given offset used is 1 pixel, because spatial relationships
between directly neighbouring pixels are most important. Because our textural analysis does
not care about rotational variance, the angles consist of regular angles i.e. 0, 45, 90, and
135 degrees. GLCM only has to calculate a matrix for angles 0, 45 90 and 135 because the
matrices of directly opposite angles can be obtained by transposing the matrices of angles 0,
45, 90 and 135. Various textural characteristics can be calculated from the GLCM matrix.
GLCM calculates textural characteristics per patch in an image. To determine a fitting
patch size, three patch sizes are compared in their results. The compared patch sizes are
32x32, 64x64 and 128x128 pixels. A small patch size detects small-scale texture details
and a large patch size detects coarse textures in images. Additionally, the top gutter in each
image was removed by cropping 600 pixels from the top edge of the background-removed
images.

The matrix is normalized to get the probability of finding neighboring pixel values instead
of the number of instances. Equation 1 calculates the normalized matrix by dividing each
value V' by the sum of the values in the matrix.

- V (i, j)
P(i,j) = =1 (1)
Yo V(i g)
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where
1 1s the row number for the reference pixel value and j is the column number for the
neighbour pixel value,
e V(i,j) is the number of co-occurrences for pixel values (i, j),
« P(i,7) is the probability of co-occurrences for pixel values (i, j),
o N is the specified number of pixel values.

Image with numeric

gray levels Right neighbor GLCM Normalized GLCM P(i,j)

Meighbor pixel value (j) Meighbor pixel value (j)

2 Em 0 - . ] 5]

8| 0.25 | 0.17 0

H 0.25 0 0.08
1 2 0 0.08 | 0.17 0
<

’

- -

W
N
N
-

”

W
N
'w
1
1
# Reference plxel value (1)
L2
=)
'—L
Reference plxel value (1)

T

Fig. 7: A right-neighbor GLCM examines the neighbor pixel value j immediately to the
right of each reference pixel 2 and counts how often each pair of gray levels occurs. In this
example, (3,1) is counted once and (3,2) is counted twice as the arrows point out. These
counts are then normalized to represent the probability P(i,7) of a specific neighboring
pixel value occurring next to a given reference pixel.

The characteristics that have been proven to indicate nutrient deficiency symptoms in
cucumber seedlings are top projected canopy area (TPCA), entropy, energy, homogeneity
and contrast [46], [47]. With the exception of TPCA, the characteristics are related to the
contrast and orderliness of the images. The orderliness of an image indicates the presence
of structure and harmony or a lack thereof. A detailed explanation of each characteristic
is provided below:

1) TPCA

TPCA indicates leaf area. A higher TPCA value indicates a more pronounced growth
pattern. In each image mask, white pixels represent 1 and black pixels represent 0. By
summing the values of the white pixels across the image, we can determine the number of

foreground pixels, which corresponds to the total leaf area. The TPCA feature of an image
is defined in Equation 2.

TPCA =) (i, j) (2)

Y]
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2) Entropy
Entropy indicates texture and information complexity. Higher entropy indicates higher
texture or information complexity. The Entropy feature of an image is defined in Equation

3.
N-1

Entropy = Z —In(P(i, 7)) * P(i,7) (3)
i,j=0

3) Energy
Energy (or Angular Second Moment) represents the orderliness or homogeneity of the
image. High energy values indicate more uniform texture. The Energy feature of an image

is defined in Equation 4.
N-1

Energy = Y _ P(i, j)’ )

1,7=0

4) Homogeneity

Homogeneity reflects the closeness of the distribution of elements in the GLCM to the
GLCM diagonal. High homogeneity values indicate that elements are concentrated along
the diagonal, suggesting a more uniform texture. The Homogeneity feature of an image is

defined in Equation 5.
N-1

Homogeneity = Z
i,j=0

1+ (i =)

5) Contrast

Contrast returns a measure of the intensity contrast between a pixel and its neighbor over
the whole image. The Contrast feature of an image is defined in Equation 6.

N-1

Contrast = Z P(i,7) * (i — j)? (6)
i,j=0

For each image, feature values are computed by averaging the values across all patches.
Then, the mean feature values of each gutter are computed by averaging the values over
all gutter images of a singular gutter. Last, the mean feature value of the entire batch is
computed by averaging the values over all gutters. Incomplete sets of gutter images due
to data cleaning are excluded in the feature extraction results to prevent skewing the mean
feature values of singular gutters. Naturally, this creates an imbalance in the data. Using
the mean feature values of each batch per day, the progression of feature values in the
test and control group can be displayed. Ideally, the feature values of the test and control
group diverge due to the onset of nutrient deficiency stress.
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IV-E  Piecewise-segmented Regression Analysis

Piecewise-segmented regression [48] is used to identify the onset of stress caused by
nutrient deficiency affecting cultivar growth. The algorithm iteratively tests every possible
combination of two intervals across the data. For each combination of intervals, the sum of
squared errors (SSE) is calculated for each of the line segments that are fitted on the data
points in the intervals. The meeting point between the two line segments with the lowest
combined error constitutes the change point ¢, of stress initiation. Before calculating change
point t., the difference between mean textural features of the test group and control group
are calculated. Equation 7 shows how 7 is calculated. F; and F, are the mean values of the
test and control group features at day ¢; of the experiment. Equations 8 and 9 represent two
line segments which follow the linear formula y = ax + b where « and [ are the slope and
intercept parameters respectively and ¢ represents independent variable x. These equations
show how the change point ¢. and predicted dependent variable Zj,.,; are calculated.

Z(t;) = Fy(t;) — Fe(ty) (7)
Zyreak = ot + Po, when t < t. 8)
Zbreak: — alt + 517 when ¢ > tc (9)

To ensure a fair comparison, data points are plotted based on the exact timestamp each
image was captured, rather than by day, since photoruns are occasionally delayed due to
robot errors. The dataset is divided into two classes, nutrient-deficient and healthy, using
the change point ¢, calculated from piecewise-segmented regression. The need for manual
labeling is removed and human labeling errors are prevented.

IV-F Image Classification Models

Image classification models are deep convolutional neural networks that are trained on
datasets of labeled images. This training process uses backpropagation to adjust the model
weights and minimise the loss based on a loss function. Gradients tell the model how to
adjust its weights to reduce the error during training. Deep networks may contain gradients
that become extremely small or large during training which is called the vanishing gradient
problem. This makes it difficult for earlier layers to learn useful feature representations.
ResNet50 [49] is a deep residual network with 50 layers that addresses this problem. Skip
connections reduce the impact of vanishing gradients and enable the successful training of
deeper models for image classification.

DenseNet-121 [50] is a convolutional neural network that uses dense connections between
layers to improve feature learning. In DenseNet, each layer receives the feature maps of all
preceding layers as additional input. This structure helps preserve information throughout
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the network and encourages feature reuse and leads to more efficient learning. Conse-
quently, DenseNet creates detailed representations that are useful for identifying specific
patterns in images. This makes the model especially effective at capturing small details in
image classification tasks.

EfficientNet-BO [51] is a family of models designed to balance accuracy and efficiency. It
was developed using neural architecture search, an automated method that explores different
network designs to find the best one for a given task. EfficientNet balances depth, width
and resolution of the network to create a strong model with fewer parameters and lower
computational cost. Compared to many other image classification models, EfficientNet is
relatively small while still maintaining high accuracy.

The models are used as feature extractors and trained from scratch. The network is im-
plemented without the original classification layers. Then, a global average pooling layer
is applied to the output of the models to receive a 1-dimensional feature vector. Next, a
fully connected Dense layer with ReLLU activation is added to learn high level features. A
Dropout layer is added to reduce overfitting by resetting 50% of the neurons during training.
The final Dense layer uses a softmax activation to output a probability distribution over the
two classes, nutrient-deficient and healthy. The input size of all three models is 224x224
pixels. The images are cropped using a sliding window. The sliding window moves across
the image and calculates the number of green pixels per window. The window with the
largest number of green pixels is cropped, resulting in images containing many leaves.

IV-G  Training Configuration

The models are implemented and executed on a ml.g4dn.xlarge instance in a AWS Jupyter
Lab notebook. The specifications of the instance include:
o Compute: 4 virtual CPUs,
Memory: 16 GiB of RAM,
GPU: Nvidia T4 GPU,
Processor: Intel Xeon Family,
Clock Speed: 2.5 GHz.

The pre-defined models are loaded from the Keras Applications library inside the Tensor-
Flow pip package [52]. The datasets of all cultivars are divided into training, validation
and test sets. For each cultivar, the training set is 72.25% of the dataset, the validation set
1s 12.75% and the test set is 15%. The models run for 50 epochs with a batch size of 16.
The models uses the Adam optimizer with a learning rate of 0.0001. The loss function is
categorical crossentropy, because the two target labels are not binary but instead categorical
classes.
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IV-H Evaluation Metrics

To evaluate the image segmentation and classification models, several evaluation metrics
are introduced. True and false positives and negatives are used to calculate precision, recall,
Fl-score and accuracy. Precision is the proportion of all positive classifications that were
actually positive and is defined in Equation 10. Recall, also called true positive rate (TPR),
is the proportion of all true positives that were correctly classified as positive and is defined
in Equation 11. Fl-score is the harmonic mean of precision and recall and is defined in
Equation 12. Accuracy is the proportion of classifications that were correctly classified
as either positive or negative and is defined in Equation 13. In addition to these metrics,
intersection over union (IoU) is calculated to further quantify the image segmentation
techniques and is defined in Equation 14. A represents the ground truth binary mask and
B represents the predicted segmentation mask.

Procision — TP (10)
recision = TP £ FP
TP
= —— 11
Reca TP T FN (11)

2 - Precision - Recall
F1- = 12
SeoTe Precision + Recall (12)

Accuracy = 1P+ 1N (13)
Y= TP+ TN+ FP + FN
ANB
IoU = AUB (14)

Two visualisation methods to better understand model performance are the AUC-ROC
curve and the confusion matrix. The ROC curve plots the true positive rate against the
false positive rate at different classification thresholds. The AUC value is the area under
the ROC-curve which indicates overall performance of the classifier and its degree of
separability between the classes. The confusion matrix is a table which summarizes the
performance of a classification model by showing the true positive, true negative, false
positive and false negative predictions.

GRAD-CAM [53] 1s a gradient-based localization method to visualise class activations
in image classification models. To better understand the differences between classifying
original images and background-removed images, GRAD-CAM generates a heatmap to
highlight influential regions of the image for the class prediction of a model. In Figure
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8, GRAD-CAM is utilised to visualise the class activations of a trained ResNet50 model
classifying the original image in Figure 8a as the class ’dog’ in 8b and as the class ’cat’
in Figure 8c.

(a) Original image of dog and cat (b) Class ’dog’ (¢) Class ’cat’

Fig. 8: GRAD-CAM heatmap visualisations of a trained ResNet50 model classifying the
(a) original image as (b) the class ’dog’ and (¢) the class ’cat’. Images taken from pytorch
GRAD-CAM implementation [54].

23



V RESULTS

V-A  Background Segmentation

The background segmentation method is illustrated in Figure 9 containing all four steps
in the process. Figure 9a contains the original image. In Figure 9b, the relative depth map
of the original image is displayed using Depth Anything V2. Next, Figure 9c shows the
binary segmentation mask after thresholding the relative depth map using Otsu’s method.
Only the foreground including metal edges remains with the horizontal metal edges located
at the bottom of the image. Finally, Figure 9d depicts the segmentation output obtained by
training the U-Net model on the training images and their respective binary segmentation
masks and predicting on previously unseen images.

(b)

,.\-.‘(

/9// ﬂi

() (d)

Fig. 9: Background segmentation example: (a) original input image, (b) relative depth map
generated with Depth Anything V2, (¢) foreground extraction using Otsu’s thresholding,
and (d) segmentation output from trained U-Net model.

Using relative depth estimation and Otsu’s thresholding already returns promising results.
However, green algae and metal edges remain in a substantial number of images and are in-
correctly classified as foreground. This problem occurs because the metal edges are upright
and measured at the same depth as the cultivars growing in the gutter. Additionally, green
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algae are sometimes incorrectly included, because Otsu’s method struggles to differentiate
between the green hues of algae and cultivars. After visual inspection, the segmentation
results indicate that the U-Net model removes metal edges and green algae more effectively
and creates more accurate segmentation masks overall. In Table II, the trained U-Net model
is evaluated using performance metrics. However, the performance metrics do not capture
the full picture.

TABLE II: Performance metrics of background segmentation using trained U-Net model.
The performance metrics are computed by comparing segmentation predictions to ground
truth binary segmentation masks.

Accuracy | Precision | Recall | Fl-score | IoU
Trained U-Net model 0.856 0.783 0.992 0.875 0.778

To further investigate the performance of the trained U-Net model, the validation accuracy
and loss of the trained U-Net model are visualised in Figure 10. The model has high training
accuracy but poor validation loss suggesting a lack of generalisability. This may be the
result of segmenting three different cultivars using a single U-Net model. Training just one
model was deemed necessary, because manually cleaning binary masks using an image
editor to obtain training data was time-consuming. Consequently, there was not enough
training data to train three separate models. Table III contains the validation accuracy and
loss across five folds of k-fold cross-validation of the U-Net model. The mean and standard
deviation of the validation loss further suggest that the model is unstable and this was not
an isolated run.

> TABLE III: K-fold cross-validation of trained
_ U-Net model. Validation accuracy and loss
M vl are calculated for k=5 folds including the

— TainL lati
i mean and standard deviation across all folds.

— Val Loss

0.7 1

0.6

Value

0.5 A

0.4 -

Validation Accuracy | Validation Loss
031 Fold 1 0.8946 0.2857
021 e Y Fold 2 0.9463 0.1422
. . . ‘ B Fold 3 0.9148 0.2206
° 2 e 5 100 Fold 4 0.8637 0.3701
Fold 5 0.8890 0.2508
Fig. 10: Train accuracy, train loss, val- Mean =+ std | 0.9017 & 0.0276 | 0.2539 4 0.0750

idation accuracy and validation loss of
trained U-Net model.
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V-B Detection of Stress Initiation

The GLCM produced the most accurate results using a patch size of 32x32 pixels. Com-
pletely black patches were excluded to avoid skewing the results with informationless data.
Larger patch sizes, such as 64x64 and 128x128 pixels, were less likely to consist entirely
of black pixels. Since the method relies on calculating the mean across the entire patch,
these larger patch sizes diluted the information. Therefore, a 32x32 pixel patch size was
selected as the most effective.

In Figure 11, the control and test group mean feature values are plotted for dwarf blue kale,
paksoi and salad rocket across ten days. The results show that the control and test groups
are not distinguishable based on mean feature values. Control and test group values are
initially expected to have similar values and diverge at the point when stress is introduced.
The TPCA, entropy and homogeneity feature values exhibit no significant divergence, but
instead are nearly identical across all cultivars. Although the energy feature values show
some divergence in salad rocket and the contrast feature values show some divergence in
paksoi, the other features do not indicate that stress was introduced.

TPCA Entropy Energy Contrast Homogeneity

400000 - e A8 L= Control Group
@ 39 T TestGroup o . o
T | | ] —
& 300000 — 04 g 15 =
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i = W
@ 200000 4 3 o 03 10
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Fig. 11: Test group and control group mean feature values are plotted over a period of
ten days. Mean values of TPCA, entropy, energy, contrast and homogeneity using GLCM
patch size of 32x32 pixels.

Since no clear overall divergence in any of the features can be observed across cultivars, it
1s impossible to determine a change point ¢, using piecewise-segmented regression. As a
result, the dataset is not being split based on an observed point of stress initiation. Instead,
the assessment conducted by biologists at Growy may serve as an indication for visible
stress. Therefore, the test group is divided into days 1-5 and days 6-10 which represent
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the healthy and nutrient-deficient classes respectively.

V-C Image Classification Models

Tables IV and V present the performance of ResNet50, EfficientNet-B0O, and DenseNet-121
in binary image classification of cultivar images between healthy cultivars in days 1-5 and
visibly stressed cultivars in days 6-10 across dwarf blue kale, paksoi and salad rocket.
DenseNet-121 consistently achieved the highest Fl-scores, with background-removed im-
ages having the best results overall. Interestingly, DenseNet-121 had the highest F1-score
of 0.895 for salad rocket using original images. Also interesting to note that DenseNet-121
had the lowest Fl-score of 0.632 for paksoi using original images. Dwarf blue kale was
classified most accurately across all models and paksoi was the most challenging, especially
for DenseNet-121. The standard deviations remain consistent within a margin between
original and background-removed images. DenseNet-121 has the largest standard deviations
while EfficientNet-BO has the smallest standard deviations. The difference between the
standard deviations of DenseNet-121 with dwarf blue kale and paksoi and DenseNet-121
with salad rocket is considerable.

Segmentation clearly improved model performance, especially for ResNet50. Fl-scores
increased by over 12% in the case of paksoi. EfficientNet-BO and DenseNet-121 were
less affected by background segmentation, but still slightly benefited from segmentation.
This suggests that background information in the original images may have introduced
noise that disproportionately affected the least complex model which is ResNet50. The
performance difference between cultivars remained consistent across models. Dwarf blue
kale was generally the easiest to classify, followed by salad rocket and paksoi. Appendices
B and C contain additional ROC-AUC curves and confusion matrices for each cultivar and
model combination trained on the background-removed images.

TABLE IV: Image classification of original images using ResNet50, EfficientNet-BO and
DenseNet-121 models for two classes: healthy cultivars between day 1-5 and visibly
stressed cultivars between day 6-10. The mean and standard deviation of accuracy,
precision, recall and F1-score are averaged across five runs.

Model Cultivar Accuracy Precision Recall F1-score
Salad Rocket 0.796 + 0.075 | 0.814 £ 0.068 | 0.796 + 0.075 | 0.791 +£ 0.080
ResNet50 Dwarf Blue Kale | 0.868 £ 0.048 | 0.867 £ 0.052 | 0.868 &£ 0.048 | 0.866 + 0.051
Paksoi 0.744 £ 0.107 | 0.748 £ 0.109 | 0.744 £ 0.107 | 0.742 £ 0.107
Salad Rocket 0.807 + 0.017 | 0.813 £ 0.015 | 0.807 4+ 0.017 | 0.805 + 0.018
EfficientNetBO | Dwarf Blue Kale | 0.875 + 0.017 | 0.879 £+ 0.017 | 0.875 4+ 0.017 | 0.875 + 0.017
Paksoi 0.782 + 0.042 | 0.784 £ 0.043 | 0.782 4+ 0.042 | 0.782 £ 0.041
Salad Rocket 0.895 £+ 0.015 | 0.901 £ 0.015 | 0.895 + 0.015 | 0.895 + 0.016
DenseNet121 Dwarf Blue Kale | 0.822 4+ 0.150 | 0.824 4+ 0.152 | 0.822 £+ 0.150 | 0.796 £ 0.201
Paksoi 0.700 £ 0.177 | 0.727 £ 0.217 | 0.700 £ 0.177 | 0.632 £ 0.235
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TABLE V: Image classification of background-removed images using ResNet50,
EfficientNet-BO and DenseNet-121 models for two classes: healthy cultivars between day
1-5 and visibly stressed cultivars between day 6—10. The mean and standard deviation of

accuracy, precision, recall and Fl-score are averaged across five runs.

Model Cultivar Accuracy Precision Recall F1-score
Salad Rocket 0.841 + 0.053 | 0.810 £ 0.077 | 0.801 &+ 0.090 | 0.788 £ 0.076
ResNet50 Dwarf Blue Kale | 0.900 + 0.049 | 0.890 + 0.059 | 0.888 + 0.062 | 0.890 £ 0.044
Paksoi 0.838 + 0.050 | 0.795 £ 0.127 | 0.764 £+ 0.142 | 0.778 £ 0.128
Salad Rocket 0.825 £+ 0.039 | 0.811 £ 0.041 | 0.810 £ 0.047 | 0.810 £ 0.041
EfficientNetBO | Dwarf Blue Kale | 0.888 + 0.012 | 0.876 £ 0.014 | 0.873 + 0.018 | 0.876 £ 0.014
Paksoi 0.817 £ 0.035 | 0.786 £ 0.041 | 0.769 £ 0.053 | 0.788 £ 0.040
Salad Rocket 0.907 £ 0.014 | 0.887 £+ 0.021 | 0.884 + 0.025 | 0.892 £ 0.018
DenseNet121 Dwarf Blue Kale | 0.855 4+ 0.155 | 0.824 £+ 0.178 | 0.780 £ 0.229 | 0.824 £ 0.178
Paksoi 0.769 + 0.228 | 0.760 £ 0.173 | 0.722 + 0.225 | 0.758 £ 0.173

V-D GRAD-CAM Analysis

To understand how the best performing model makes decisions, GRAD-CAM visualises
the class activations of DenseNet-121. For each cultivar, two images were chosen to
represent their original and background-removed versions. Images were selected based
on the composition of leaves and background, and all images were taken from days 5-6 to
create ambiguity. Figure 12 presents Grad-CAM heatmap visualisations to assess DenseNet-
121 classification decisions for original and background-removed images of cultivars.

(2

Fig. 12: GRAD-CAM heatmap visualisations of DenseNet-121 classifying both an original
image and a background-removed image of salad rocket (a-b), dwarf blue kale (c-d) and
paksoi (e-f) as days 6-10. The heatmaps in (g-1) visualise the class activation regions of
both DenseNet-121 models (trained on original images and background-removed images
respectively).
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From the left to the right, the images contain salad rocket, dwarf blue kale and paksoi
with two images per cultivar. The GRAD-CAM heatmap visualisations in Figures 12g,
121 and 12k indicate that the model trained on original images partially relies on available
background information for the classification of the images. For instance, in Figure 12¢g the
model’s classification decision is primarily influenced by green algae in the background
unlike in Figure 12h. The heatmaps of the background-removed images indicate that the
DenseNet-121 model trained on background-removed images focuses mainly on leaf area
and outer edges of leaves when no background information is available.
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VI DISCUSSION

The U-Net model achieved a Fl-score of 0.875 in background segmentation. However,
the validation loss is unstable suggesting a lack of generalisability. Training a model to
segment three cultivars turned out to be suboptimal. However, given the limited time and
the time-consuming process of manually cleaning segmentation masks to remove metal
edges and artifacts, it was not feasible to train separate models for each cultivar. In the
end, a single U-Net model was trained across all cultivars and outperformed the simpler
method of using relative depth estimation and Otsu’s thresholding.

Feature extraction using the GLCM failed to distinguish the control group from the test
group. No clear feature divergence was observed between the two groups. No features
were identified as predictors for nutrient deficiency symptoms in dwarf blue kale, paksoi
or salad rocket. The feature extraction results indicate that the test group cultivars were not
sufficiently stressed to produce observable symptoms. One possible explanation is that the
pH-balanced water still had an electrical conductivity (EC) level too high to sufficiently
stress cultivars. Another possibility is that the U-Net model poorly segmented images, due
to an unstable validation loss, and consequently distorted the GLCM features. No clear
change point ¢, could be calculated due to these limitations.

The image classification results show that healthy and nutrient-deficient cultivars can be
distinguished with high accuracy. DenseNet-121 consistently outperformed both ResNet50
and EfficientNet-BO across cultivars. This suggests that deeper architectures with more
interconnected layers are better suited for this task. Interestingly, DenseNet-121 achieved
both the highest F1-score for salad rocket and the lowest F1-score for paksoi. These major
differences underline the importance of training cultivar-specific models.

The GRAD-CAM analysis suggests that background segmentation increases the perfor-
mance of image classification models. The qualitative comparison between original and
background-removed images suggests that the model trained on background-removed im-
ages relies on available background information for classification. This may confuse models
resulting in a lower accuracy and Fl-score. However, the model trained on background-
removed images cannot be influenced by background information and therefore focuses
the model’s attention to leaf areas for classification.

To conclude, this thesis presents an approach for segmenting cultivar images from complex
backgrounds. Background segmentation helps to build more accurate and interpretable
image classification models. DenseNet-121 was the best model for distinguishing between
healthy and visibly stressed cultivars. Growy can use this knowledge to build cultivar-
specific models for stress detection. This ultimately helps identifying stressful farm condi-
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tions which leads to a more efficient vertical farming system.

VI-A Limitations

Various limitations of the vertical farming system may have influenced the experiments.
Data collection at Growy was challenging having only one available experiment layer
and limited time to conduct experiments. Robot errors resulted in unusable images which
may have affected mean feature values. The farm faces unstable climate conditions and
conducting control group and test group experiments simultaneously on the same layer was
not feasible. The water system can either supply a nutrient solution or pH-balanced water
to a layer without being able to differentiate between gutters or batches. Consequently,
data collection was time-consuming, so there was no opportunity to repeat experiments
and complete another full growth cycle for the cultivars.

Despite using data augmentation, the labeled dataset used to train the U-Net model was
relatively small and therefore lacked accuracy and generalisability. Piecewise-segmented
regression could not determine the change point . due to minimal differences in mean
feature values between the test group and control group. The image classification models
were trained on data from days 1-5 and days 6-10 which makes it unclear whether the
models are learning to differentiate between the ages of the cultivars or the visual symptoms
of stress. Further research is needed to separate these factors and better understand what
the models are actually detecting. There is also the possibility that stress might arise at
different change points across cultivars.

VI-B  Future Work

In future research, separate U-Net models should be trained for each cultivar using larger
datasets. These models will likely have a more stable validation loss and higher accuracy
in segmentation tasks. The data quality may improve if the control group and test group
captured images simultaneously in the same environment. The pH-balanced water may not
have produced enough stress, so lower EC levels should be used to widen the gap between
the test group and control group EC levels. This will hopefully lead to more diverging
measurements of feature values between the test group and control group.

Additional cultivars could be investigated to get more insight into which features predict
stress. Additionally, other methods such as hyperspectral or thermal imaging may be able
to identify early stress symptoms not visible in RGB images. Furthermore, cultivar-specific
segmentation and classification models for each cultivar may result in more reliable stress
detection, image segmentation and image classification. Lastly, a region-based CNN could
be trained to gain more information about the location of stress in the images.

31



VII CONCLUSION

This thesis demonstrates the potential of deep learning techniques, such as U-Net for image
segmentation and DenseNet-121 for image classification, in the vertical farming industry.
Growy aims to automate stress detection to reduce the time spent manually searching the
farm for stressed cultivars. This gives biologists at Growy the time to focus their efforts
on finding the causes of stress rather than locating stressed cultivars.

The instability of the U-Net validation loss and the feature extraction limitations highlight
some challenges in the approach presented in this thesis. The feature extraction results
suggest that the cultivars in the test group may not have experienced sufficient nutrient
stress. This could potentially be caused by insufficiently low EC levels in pH-balanced
water. Another reason could be that the U-Net model does not segment images sufficiently
skewing the GLCM feature values.

Even though the feature extraction results are underwhelming, the binary image classifica-
tion models are able to accurately distinguish between healthy and visibly stressed cultivars.
GRAD-CAM heatmap visualisations indicate that DenseNet-121 trained on background-
removed images focuses more on relevant leaf area while DenseNet-121 trained on original
images relies more on available background information.

The identification of stress symptoms and specific features that indicate and predict nutrient
deficiency was limited. However, being able to distinguish healthy from visibly stressed
cultivars using image classification models indicates it is possible to apply cultivar-specific
stress detection models. Future work could focus on larger datasets, cultivar-specific seg-
mentation models and non-RGB methods to predict stress in cultivars. Future work could
ultimately lead to building robust models capable of automating stress detection in vertical
farming systems.
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APPENDIX A

NUTRIENT DEFICIENCY IN CULTIVARS OVER TIME

(e) Salad Rocket — Day 1 (f) Salad Rocket — Day 10

Fig. 13: Cultivar stress in test group over time: day 1 (left) to day 10 (right).
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ROC-AUC CURVES
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Fig. 14: ROC-AUC curves of cultivars across three models - ResNet50 (top row),
EfficientNet-BO (middle row) and DenseNet-121 (bottom row) - trained on background-

removed images.
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APPENDIX C

CONFUSION MATRICES
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Fig. 15: Confusion matrices of cultivars across three models - ResNet50 (top row),
EfficientNet-BO (middle row) and DenseNet-121 (bottom row) - trained on background-

removed images.

39



