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and Harinath Bijjala at Growy for offering a warm welcome and a helping hand in my

six months at the company. I want to thank my co-intern Mojde for all the brainstorm

sessions, nice walks and encouragement. My thesis would not have been possible without

everyone supporting me.

1



Abstract

Vertical farming introduces modern challenges in monitoring plant health. Man-

ual stress detection is time-consuming for biologists at Growy and results in

inaccuracies. To avoid inaccurate manual labeling of stress, the idea of automatic

stress detection is introduced. Images of dwarf blue kale, paksoi, salad rocket

and thyme are collected, cleaned and segmented using a combination of depth

estimation, thresholding and training a U-Net model. Background segmentation

achieved a F1-score of 0.875 while an unstable validation loss of the U-Net model

suggests a lack of generalisability. Feature extraction and piecewise-segmented

regression are utilised to extract various nutrient deficiency features from images

over time and pinpoint the onset of stress. The dataset is split up into two classes:

healthy and nutrient-deficient. Due to minimal differences in mean feature values,

change point tc cannot be detected and the dataset is split using visual markers of

stress. Image classification models ResNet50, EfficientNet-B0, and DenseNet-121

are trained on the dataset. DenseNet-121 consistently outperformed ResNet50 and

EfficientNet-B0 and achieved over 90% accuracy. GRAD-CAM analysis suggests

that models trained on background-removed images primarily focus on leaf area

when predicting classes instead of relying on background information. The code

is available at https://github.com/growx-tech/growy-data-intern-nutrient-stress for

the growy-data-users team.

Keywords: machine learning, computer vision, nutrient deficiency, stress de-

tection, image classification, image segmentation, feature extraction
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I INTRODUCTION

Agriculture plays an important role in food production. Climate change, population growth

and limited water resources form challenging problems for traditional farms [1]. Pests,

insects, diseases and harsh climates create sub-optimal growth conditions for crops. Tra-

ditionally, crops are monitored by humans who increase the well-being of crops with

pesticides, fertilizer and regular inspections.

Vertical farming offers a practical and durable approach to the problems of traditional

farms [2]. Vertical farms grow crops in vertically stacked layers and incorporate soilless

farming techniques within a controlled environment. By creating a separate ecosystem for

crops to grow in, vertical farms protect against external factors such as climate, disease

and insects. Vertical farms focus on crops which require little space to increase efficiency

and optimise limited space. Vertical farms may grow cultivars to optimize their growth

process and taste. Cultivars are varieties of crops produced by breeding.

Vertical farming faces unique challenges in the agricultural sector such as temperature

regulation, nutrient mix optimization and system design for efficient water use [3]. Cultivars

grow in volatile environments while vertical farms face these unique challenges. Conse-

quently, vertical farms require quality assurance inspections during the growth process. To

perform quality assurance inspections throughout the farm, robots are often deployed to

automatically capture images of cultivars. Cultivar images are analyzed by biologists to

optimize the growth process and the vertical farming system.

Biologists spend time manually analyzing cultivar images. Sifting through heaps of images

is time-consuming and reduces time spent on effective analysis. Manual stress detection

is also prone to human errors. To help biologists save time and reduce human errors in

detecting stress, the idea of automatic stress detection in cultivar images is introduced.

I-A Research Approach

The research goal is reducing stressful living conditions for cultivars in the farm. Automatic

stress detection can focus on abiotic stress such as drought and nutrient deficiency or biotic

stress such as pests and diseases. Vertical farming hardly ever suffers from biotic stress due

to a controlled environment, so the focus lies on abiotic stress. This thesis will investigate

nutrient deficiency symptom detection in cultivar images. A complex image background

may influence the detection of nutrient deficiency symptoms. For this reason, finding a

method to effectively detect and remove the background of cultivar images is explored. A

test group of cultivars will artificially receive stress and a control group of cultivars will

not. To determine the time of stress initiation of the test group and whether images contain

nutrient deficient or healthy cultivars, pixel-level feature extraction and regression are
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explored to achieve this. To automatically detect nutrient deficiency symptoms in images,

three models will be trained on a dataset with labeled images containing nutrient deficient or

healthy cultivars. The trained models will learn to predict the class labels of unseen images

and therefore detect nutrient deficiency symptoms. In summary, five research questions are

investigated:

• RQ1: Is it possible to effectively detect and remove the background in cultivar images?

• RQ2: Which textural features predict nutrient deficiency symptoms in cultivar images?

• RQ3: Is it possible to separate images of healthy cultivars from images of nutrient

deficient cultivars through pixel-level feature extraction and regression?

• RQ4: Which image classification model achieves a higher accuracy than other state-

of-the-art out-of-the-box models detecting nutrient deficiency symptoms?

• RQ5: Does background segmentation of cultivar images improve the accuracy of

image classification models detecting nutrient deficiency symptoms?

I-B Outline

The structure of the remainder of the thesis is as follows: Chapter II gives background

information to understand the problem setting, Chapter III describes important related

work, and Chapter IV gives a detailed overview of the methodology. Chapter V details the

results. Chapter VI addresses the discussion of our research questions, the limitations of

our research and introduces ideas for future work. Finally, Chapter VII draws conclusions.
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II BACKGROUND

II-A Growy

Growy is a vertical farming company that produces a large selection of cultivars con-

sisting of herbs, salads, and microgreens. Cultivars are grown in four phases consisting

of germination, pre-growth, growth and pre-harvest. Phases differentiate between optimal

environments to optimise the life cycle of cultivars. Cultivars are grown in soilless gutters

that contain growfoam as substrate. Growy uses an active hydroponic system called nutrient

film technique. The system circulates nutrient solution through the gutters allowing the plant

roots to directly absorb nutrients and reuse water from the reservoir. The gutters are placed

on a small slope which allows nutrient solution to automatically flow through the gutters.

Growy uses a specific nutrient mix which is being refined to optimize growth. The pH,

electrical conductivity and temperature of the nutrient solution are consistently measured

multiple times per day.

Figure 1a showcases Growy farm operations. All products are grown in cells containing

multiple vertical layers on which cultivars grow in gutters. Carbon dioxide is blown through

the cell to facilitate photosynthesis. Lighting is controlled by white, blue and red LEDs. In

Figure 1b, a sample image of basil is captured in white LED light. Visually, green algae

grow on the growfoam substrate which blends in with green cultivars.

(a) (b)

Fig. 1: (a) Farm operations in a cell showing vertically grown cultivars under a combination

of red and blue LED light at Growy (photo: Ramon van Flymen) and (b) a top view image

taken of basil growing in a gutter with green algae growing on the growfoam substrate.

Growy sells to supermarkets and restaurants, so the product cannot contain discolored or

wilted plants. At the moment, a substantial amount of product cannot be sold due to poor

quality. Growy wants to prevent discoloration and wilting through custom plant profiles,

nutrient mixes or environment variables. To address this problem, stress detection and
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analysis are needed. In Figure 2, the workflow for stress detection and analysis is shown.

Automatic stress symptom detection aims to help biologists fully focus on analysis of

stressed cultivars and omitting images of healthy cultivars. An added benefit is that stress

symptoms may be detected before biologists observe stress with the naked eye.

Fig. 2: Workflow for stress detection and analysis. The original workflow is described in

yellow and an addition to the workflow is described in blue. Images are captured and

biologists analyse them to adjust the plant profiles or environmental conditions.

II-B Hardware

Remote-controlled farm robots are deployed to routinely water and capture images of

cultivars. The images were taken with a camera board containing a Raspberry Pi Zero 2

W and Raspberry Pi Camera Module 3 NoIR (using the picamera2 library) illustrated in

Figure 3a. The camera boards are mounted on layer robots that receive commands from

a Raspberry Pi 4 shown in Figure 3b. The farm robots experience occasional difficulties

such as movement during image capture, loss of camera focus, synchronization of robot

commands and improper lighting settings.

II-C Datastructures

A pipeline has been developed to store captured images in the cloud on Amazon Web

Services. AWS Simple Storage Service (S3), Sagemaker AI and Athena make up an integral

part of this Extract, Transform, Load pipeline. Cloud storage provides a landing area for

images to be accessed. Sagemaker AI provides access to notebooks with CPU and GPU

compute for model training and access to labeling jobs. Athena retrieves structured data

from the database based on SQL queries.

PlantManager is a platform which allows users to plan, visualise and manage the pro-

cesses happening in the farm. The key functionalities of PlantManager are split into four

catagories:

8



(a) (b)

Fig. 3: (a) Camera board containing a Raspberry Pi Zero 2 W and Raspberry Pi Camera

Module 3 NoIR to capture images below and (b) a layer robot that moves horizontally

across a layer. It is equipped with a mounted camera board and a watering system. Images

taken from Growy.

• Planning: Organises scheduling of growth cycles.

• Lifecycle: Visualises what gutters are being seeded and harvested per day. Also,

displays information about growth cycle IDs such as plant profile, location history

and harvesting date.

• Manage: Consists of creating new plant profiles, managing layer robots, viewing details

of inventory and displaying incidents of the past 24 hours.

• Grafana: Displays exploratory data analysis (EDA) dashboards.

Grafana consists of multiple dashboards which display company metrics guiding decision-

making processes. For instance, the air quality and water system are monitored using

various sensors which are displayed with bar charts and graphs. Various camera and

plant metadata is accessed through the CameraMetaData and PlantMetaData classes in

Sagemaker AI notebooks provided by Growy.
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III RELATED WORK

It is essential to understand the current state of research surrounding early stress detection.

Plant stress detection includes research in many domains such as nutrient deficiency detec-

tion, depth estimation, image segmentation and image classification. The section Related

Work provides an overview of prior research on these topics and highlights techniques that

help implement a stress detection pipeline.

III-A Nutrient Deficiency Detection

Nutrient deficiencies in plants can manifest visually and can be detected by the naked

eye. Yellowing or browning of leaves, stunted growth and abnormal leaf patterns are all

indicative signs of nutrient deficiency [4]. Nevertheless, visual inspection can be deceptive

or symptoms can be misinterpreted. Relying solely on visual inspection may result in

misdiagnosis, because symptoms of nutrient deficiency may resemble symptoms caused by

pests, diseases or environmental stress. Also, Growy produces differently colored cultivars

which may express varying stress symptoms and hinder nutrient deficiency detection. When

nutrient deficiency is not yet visible to the naked eye, stress already affects plant growth

[5]. This makes visual inspection a sub-optimal approach.

Soil testing is a reliable method to detect nutrient deficiencies. Soil acidity and alkalinity

affect nutrient uptake due to variance in pH [6]. Soil salinity also impacts the rate at which

nutrients are absorbed by plants which is measured using electrical conductivity (EC).

Growy uses growfoam substrate instead of soil which cannot be evaluated using traditional

soil pH meters or EC probes. However, the nutrient solution added to the gutters can be

measured in terms of pH and EC.

Nutrient deficiency can also be detected using laboratory testing. This method can confirm

or deny the intuition that a plant is nutrient deficient from plant and soil analysis [7].

Although laboratory testing is a thorough method, our problem requires both quick and

accurate nutrient deficiency detection.

Textural feature analysis methods such as local binary patterns (LBP) [8] and grey level

co-occurence matrices (GLCM) [9] analyse the spatial relationship of pixel values between

neighbouring pixels. LBP and GLCM calculate various textural features of leaves which

are predictors for nutrient deficiency. Waghmare et al. [10] uses fractal-based features for

disease detection and classification in grape leaves and achieve an accuracy of 96.6%.

Fractal-based features are locally invariant in nature and therefore patterns of diseases can

be distinguished. In another paper by Sabri et al. [11] magnesium, nitrogen and potassium

deficiencies are classified using GLCM, hu-histogram and color histogram as parameters.

The random forest classifier achieved an accuracy of 78.35%. Sulastri et al. [12] performs
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feature extraction with a GLCM to predict nutrient deficiency using the Learning Vector

Quantization (LVQ) method. This method assigns data points called prototypes to represent

a class and move them during training to better represent the class. After training, a data

point is assigned the class of the closest prototype. LVQ achieved an accuracy of 87.5%

for nutrient deficiency detection of nitrogen, phosphorus and potassium.

III-B Depth Estimation

Metric and relative depth estimation techniques perform a per-pixel regression task to

estimate the absolute or relative depth of objects in images. State-of-the-art depth estimation

models have been trained on large datasets of depth maps. Time-of-Flight and Light

Detection and Ranging (LiDAR) are two popular depth sensing technologies to create

depth maps.

MiDaS [13], [14] was one of the first robust monocular depth estimation models. MiDaS

v3.1 uses vision transformers as image encoders to improve its quality and runtime. Bhat et

al. [15] created ZoeDepth which has excellent generalization capabilities while maintaining

metric scale, combining both metric and relative depth estimation. Marigold by Ke et

al. [16] uses a diffusion model to perform depth estimation. Marigold relies on the rich

latent space of diffusion models to gain knowledge about the intrinsic structure of images.

Bochkovskii et al. [17] created Depth Pro which outputs high frequency details and high

resolution results compared to earlier models.

III-C Image Segmentation

Traditional image segmentation consists of region- and edge-based segmentation methods.

Region-based methods include thresholding [18] and split-and-merge [19]–[21]. Thresh-

olding splits images into foreground and background based on a threshold value. Local

thresholding utilizes a tile-based approach to find thresholds locally. Global thresholding

finds one global threshold for the whole image. Split-and-merge splits images into smaller

regions based on a homogeneity criterion and similarly homogeneous regions are merged

to create the segmented result.

Edge-based methods include the Canny edge detector [22], Sobel edge detector [23] and

Marr-Hildreth edge detector [24]. Edges are places in an image where the intensity rapidly

changes. Edge detectors use first derivatives or second derivatives of abrupt changes in pixel

intensity to detect edges. First derivatives measure the rate of change of pixel intensities

throughout an image. Second derivatives measure the rate of change of the first derivative

which often indicates an edge.

Modern image segmentation consists of neural network-based segmentation methods. Vi-

sion transformers (ViT) [25] are large neural network-based models which specialize in

object detection, segmentation, classification or pose estimation, or all of them. For instance,
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the Segment Anything Model (SAM) and SAM 2 [26], [27] use vision transformers as

image encoders. In the context of image segmentation, Kirilllov et al. perform object

segmentation in images using a text prompt to decide which objects to segment. SAM 2 is

trained on both image and video data and introduces real-time video processing. Grounded-

SAM [28] uses GroundingDINO [29] and SAM to combine object segmentation with

bounding box regression. GroudingDINO predicts bounding boxes for objects using one

or multiple text prompts. Non-max suppression [30] is utilized to remove overlapping,

redundant bounding boxes in Grounded-SAM. FastSAM [31] aims to solve the huge

computation costs of SAM. FastSAM achieves comparable results to SAM at 50 times

higher run-time speed.

Fig. 4: Overview of Grounded-SAM. The input ”Horse. Clouds. Grasses. Sky. Hill.”

instructs GroundingDINO to find instances of all mentioned objects and draw bounding

boxes around them. SAM generates segmentation masks by segmenting the objects within

bounding boxes. Image taken from Ren et al. [28]

III-D Image Classification

Convolutional neural networks (CNNs) [32] perform state-of-the-art image classification in

a variety of tasks. CNNs use convolutional layers to perform convolution operations on an

image and output a feature map. Convolution operations slide a window, called a kernel

or filter, across the image. The dot product between the values of the kernel and the input

of each position in the image is computed and stored in a fixed-size feature map. The

outputted feature map contains detected features of the image. Detected features consist

of areas of interest such as edges, textures or shapes. CNNs are mostly useful for image

classification, because spatial information is lost after the dense layers of the network. As

opposed to CNNs, fully convolutional networks (FCNs) [33] preserve spatial information

of the input and produce per-pixel predictions which is ideal for image segmentation tasks.

Image classification models predict the class of a whole image. Models are trained using

large datasets of labeled images such as the MNIST [34], CIFAR-10/100 [35] and ImageNet

[36] datasets. Transfer learning is a technique where a pre-trained model which has already

learned general features is further trained using task-specific data. Consequently, a model

does not have to be trained from scratch anymore.
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Several models that started the rise of deep learning are called AlexNet [37], GoogLeNet

[38] and VGG16 [39]. AlexNet adopted ReLU activations and large fully connected layers

which resulted in a large amount of parameters. AlexNet reduced the top-5 error in the

ImageNet dataset from 2̃6% to 15%. GoogLeNet adopted the Inception module, a combined

block of parallel convolutions and max pooling, and was much more computationally

effective than other state-of-the-art models. Global average pooling was used instead of the

standard fully connected layers. VGG16 showed that deeper layered models outperformed

shallow models. VGG16 had 16 layers and a massive amount of parameters which makes

training the model from scratch computationally heavy. However, VGG16 is commonly

used in transfer learning tasks which require only small-scale training.

13



IV METHODOLOGY

IV-A Dataset Collection

Farm robots collect images of four cultivars: dwarf blue kale (brassica oleracea), paksoi

(brassica rapa var. chinensis), salad rocket (eruca sativa) and thyme (thymus vulgaris).

Biologists at Growy selected cultivars based on their plant profiles and their weakness to

nutrient deficiency. Plant profiles are defined as the number of days needed in each phase

to complete a lifecycle. For the selected four cultivars shown in Figure 5, plant profiles

are defined as:

• Dwarf Blue Kale - 3x germination, 5x pre-growth, 10x growth, 2x pre-harvest

• Paksoi - 4x germination, 4x pre-growth, 10x growth, 2x pre-harvest

• Salad Rocket - 3x germination, 3x pre-growth, 10x growth, 2x pre-harvest

• Thyme - 5x germination, 8x pre-growth, 10x growth, 2x pre-harvest

(a) (b)

(c) (d)

Fig. 5: Selected cultivars: (a) dwarf blue kale, (b) paksoi, (c) salad rocket and (d) thyme.

An experiment layer is reserved to conduct photoruns of gutters. Photoruns consist of five

images (4608x2592 pixels) per gutter for every day the cultivars remain in the growth

layer. Images are taken over a timeframe of ten days to examine stressed cultivars for a
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prolonged period. Photoruns are executed at night using LEDs for consistent lighting. The

gutters are divided into a test group and a control group. For each cultivar, one batch,

which is equal to six gutters, is manually seeded per group. The control group receives the

standard nutrient solution mix of Growy throughout the lifecycle. Instead of the nutrient

solution mix, the test group receives pH-balanced water in the growth phase, lowering the

nutrient uptake of cultivars. The EC of pH-balanced water fluctuates between 0.5 and 0.7

dS/m and the EC of Growy’s nutrient solution mix fluctuates between 1.8 and 2.0 dS/m.

Optimal EC levels are crucial for efficient nutrient uptake which means giving cultivars

pH-balanced water causes nutrient deficiency stress. Appendix A showcases test group

images of cultivars visually changing over time.

Biologists at Growy manually analysed test group images to indicate the day of stress

initiation in cultivars. Salad rocket and dwarf blue kale are visibly stressed from day 5

although the difference between groups is minimal. Paksoi is not visibly stressed after 10

days of suboptimal nutrient uptake. Unfortunately, a robot error caused multiple photoruns

of thyme to fail and therefore the decision has been made to exclude thyme from further

experiments.

IV-B Data Cleaning

After visual inspection, unwanted cultivar images are removed to improve data quality.

Images are not usable for pixel-level feature extraction or model training for one of four

reasons:

• Movement blur,

• Loss of camera focus,

• Improper lighting,

• Empty gutter image due to imbalanced distribution of seeds across gutter.

In Table I, the number of total images before and after data cleaning and the number of

cleaned images as a percentage of the total number of images are displayed. For pixel-

level feature extraction, the duplicate and incomplete photoruns are also excluded as these

photoruns skew the mean feature values across gutters. However, these photoruns are useful

training data for model training.

TABLE I: Overview of image counts before and after data cleaning for each cultivar. The

table includes the total number of images, the number remaining after data cleaning and

the proportion of cleaned images relative to the total dataset.

Dwarf Blue Kale Paksoi Salad Rocket

Total images 774 810 797

Images after cleaning 725 774 751

Cleaning as % of total 6.33% 4.44% 5.77%
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IV-C Image Preprocessing

Depth estimation, thresholding, and model training are combined to segment the back-

ground of cultivar images. In many cases, the original images contain green algae growing

on the growfoam. Green algae could interfere with the accurate detection and classification

of cultivars. To address this, Depth Anything v2 [40] is used to estimate the relative depth

of objects in the images. This model combines DINOv2 [41] as the encoder for feature

extraction and DPT [42] as the decoder for depth regression. The pre-trained model from

Hugging Face is used to generate depth maps from the original RGB images. To separate

the algae from the background, Otsu’s method [43] is applied to the depth maps. This

method automatically determines the optimal global threshold by minimizing the weighted

intra-class variance between foreground and background regions. Thresholding on the

optimal global threshold extracts the foreground from the image. Combining relative depth

estimation with Otsu’s method produces promising results in background segmentation.

However, some algae and metal edges still appear in the segmentation masks. To remove

the artifacts, a U-Net [44] is trained using a small manually annotated dataset. A total of

18 ground truth binary masks are created by cleaning the segmentation masks from Depth

Anything V2 and Otsu’s method. The algae and metal are removed from the binary masks

using the GIMP image editor [45] to then serve as training data. This allows the model to

learn how to filter out unwanted artifacts and improve the overall segmentation quality.

A U-Net is an u-shaped architecture which employs a fully convolutional network for

image segmentation. The network consists of an encoder and decoder which contain

contracting and expanding paths of convolutional layers. The encoder captures the context

using downsampling and the decoder upsamples the features back to the original size. In

Figure 6, the U-Net architecture is displayed. The U-Net was trained on resized images

of 896x512 pixels and their respective binary masks. The input images are rectangular to

maintain the aspect ratio of the original images. The model ran for 100 epochs with a

batch size of 6 as a result of the small annotated dataset. The U-Net contains a sigmoid

activation and binary crossentropy is used as loss for pixel-level accuracy.

Data augmentation is utilised to increase the size of the dataset available for model training.

The implemented data augmentation methods include vertical flip, horizontal flip, transla-

tion, rotation, crop and resize, and elastic deformation. For elastic deformation, alpha is 34

and sigma is 4. The values are chosen based on the original U-Net implementation. Every

image is turned into six images by data augmentation consisting of the original image and

five augmented images. The augmentations all have a 50% chance of occurring per image,

allowing for multiple augmentations per image.

IV-D Feature Extraction

A grey level co-occurence matrix (GLCM) [9] is a method which extracts textural features

from images. The matrix is defined as the distribution of co-occuring greyscale pixel values
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Fig. 6: U-Net architecture. Each blue box represents a multi-channel feature map, with

the number of channels indicated above the box. The spatial dimensions are shown at

the bottom left corner. White boxes indicate feature maps that have been copied. Arrows

illustrate the different operations. Image taken from Ronneberger et al. [44]

at a given offset and angle. The given offset used is 1 pixel, because spatial relationships

between directly neighbouring pixels are most important. Because our textural analysis does

not care about rotational variance, the angles consist of regular angles i.e. 0, 45, 90, and

135 degrees. GLCM only has to calculate a matrix for angles 0, 45 90 and 135 because the

matrices of directly opposite angles can be obtained by transposing the matrices of angles 0,

45, 90 and 135. Various textural characteristics can be calculated from the GLCM matrix.

GLCM calculates textural characteristics per patch in an image. To determine a fitting

patch size, three patch sizes are compared in their results. The compared patch sizes are

32x32, 64x64 and 128x128 pixels. A small patch size detects small-scale texture details

and a large patch size detects coarse textures in images. Additionally, the top gutter in each

image was removed by cropping 600 pixels from the top edge of the background-removed

images.

The matrix is normalized to get the probability of finding neighboring pixel values instead

of the number of instances. Equation 1 calculates the normalized matrix by dividing each

value V by the sum of the values in the matrix.

P (i, j) =
V (i, j)

∑N−1

i,j=0
V (i, j)

(1)
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where

• i is the row number for the reference pixel value and j is the column number for the

neighbour pixel value,

• V (i, j) is the number of co-occurrences for pixel values (i, j),
• P (i, j) is the probability of co-occurrences for pixel values (i, j),
• N is the specified number of pixel values.

Fig. 7: A right-neighbor GLCM examines the neighbor pixel value j immediately to the

right of each reference pixel i and counts how often each pair of gray levels occurs. In this

example, (3,1) is counted once and (3,2) is counted twice as the arrows point out. These

counts are then normalized to represent the probability P (i, j) of a specific neighboring

pixel value occurring next to a given reference pixel.

The characteristics that have been proven to indicate nutrient deficiency symptoms in

cucumber seedlings are top projected canopy area (TPCA), entropy, energy, homogeneity

and contrast [46], [47]. With the exception of TPCA, the characteristics are related to the

contrast and orderliness of the images. The orderliness of an image indicates the presence

of structure and harmony or a lack thereof. A detailed explanation of each characteristic

is provided below:

1) TPCA

TPCA indicates leaf area. A higher TPCA value indicates a more pronounced growth

pattern. In each image mask, white pixels represent 1 and black pixels represent 0. By

summing the values of the white pixels across the image, we can determine the number of

foreground pixels, which corresponds to the total leaf area. The TPCA feature of an image

is defined in Equation 2.

TPCA =
∑

i,j

I(i, j) (2)
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2) Entropy

Entropy indicates texture and information complexity. Higher entropy indicates higher

texture or information complexity. The Entropy feature of an image is defined in Equation

3.

Entropy =

N−1∑

i,j=0

−ln(P (i, j)) ∗ P (i, j) (3)

3) Energy

Energy (or Angular Second Moment) represents the orderliness or homogeneity of the

image. High energy values indicate more uniform texture. The Energy feature of an image

is defined in Equation 4.

Energy =

N−1∑

i,j=0

P (i, j)2 (4)

4) Homogeneity

Homogeneity reflects the closeness of the distribution of elements in the GLCM to the

GLCM diagonal. High homogeneity values indicate that elements are concentrated along

the diagonal, suggesting a more uniform texture. The Homogeneity feature of an image is

defined in Equation 5.

Homogeneity =

N−1∑

i,j=0

P (i, j)

1 + (i− j)2
(5)

5) Contrast

Contrast returns a measure of the intensity contrast between a pixel and its neighbor over

the whole image. The Contrast feature of an image is defined in Equation 6.

Contrast =

N−1∑

i,j=0

P (i, j) ∗ (i− j)2 (6)

For each image, feature values are computed by averaging the values across all patches.

Then, the mean feature values of each gutter are computed by averaging the values over

all gutter images of a singular gutter. Last, the mean feature value of the entire batch is

computed by averaging the values over all gutters. Incomplete sets of gutter images due

to data cleaning are excluded in the feature extraction results to prevent skewing the mean

feature values of singular gutters. Naturally, this creates an imbalance in the data. Using

the mean feature values of each batch per day, the progression of feature values in the

test and control group can be displayed. Ideally, the feature values of the test and control

group diverge due to the onset of nutrient deficiency stress.

19



IV-E Piecewise-segmented Regression Analysis

Piecewise-segmented regression [48] is used to identify the onset of stress caused by

nutrient deficiency affecting cultivar growth. The algorithm iteratively tests every possible

combination of two intervals across the data. For each combination of intervals, the sum of

squared errors (SSE) is calculated for each of the line segments that are fitted on the data

points in the intervals. The meeting point between the two line segments with the lowest

combined error constitutes the change point tc of stress initiation. Before calculating change

point tc, the difference between mean textural features of the test group and control group

are calculated. Equation 7 shows how Z is calculated. Ft and Fc are the mean values of the

test and control group features at day ti of the experiment. Equations 8 and 9 represent two

line segments which follow the linear formula y = ax+b where α and β are the slope and

intercept parameters respectively and t represents independent variable x. These equations

show how the change point tc and predicted dependent variable Zbreak are calculated.

Z(ti) = Ft(ti)− Fc(ti) (7)

Zbreak = α0t+ β0,when t < tc (8)

Zbreak = α1t+ β1,when t > tc (9)

To ensure a fair comparison, data points are plotted based on the exact timestamp each

image was captured, rather than by day, since photoruns are occasionally delayed due to

robot errors. The dataset is divided into two classes, nutrient-deficient and healthy, using

the change point tc calculated from piecewise-segmented regression. The need for manual

labeling is removed and human labeling errors are prevented.

IV-F Image Classification Models

Image classification models are deep convolutional neural networks that are trained on

datasets of labeled images. This training process uses backpropagation to adjust the model

weights and minimise the loss based on a loss function. Gradients tell the model how to

adjust its weights to reduce the error during training. Deep networks may contain gradients

that become extremely small or large during training which is called the vanishing gradient

problem. This makes it difficult for earlier layers to learn useful feature representations.

ResNet50 [49] is a deep residual network with 50 layers that addresses this problem. Skip

connections reduce the impact of vanishing gradients and enable the successful training of

deeper models for image classification.

DenseNet-121 [50] is a convolutional neural network that uses dense connections between

layers to improve feature learning. In DenseNet, each layer receives the feature maps of all

preceding layers as additional input. This structure helps preserve information throughout
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the network and encourages feature reuse and leads to more efficient learning. Conse-

quently, DenseNet creates detailed representations that are useful for identifying specific

patterns in images. This makes the model especially effective at capturing small details in

image classification tasks.

EfficientNet-B0 [51] is a family of models designed to balance accuracy and efficiency. It

was developed using neural architecture search, an automated method that explores different

network designs to find the best one for a given task. EfficientNet balances depth, width

and resolution of the network to create a strong model with fewer parameters and lower

computational cost. Compared to many other image classification models, EfficientNet is

relatively small while still maintaining high accuracy.

The models are used as feature extractors and trained from scratch. The network is im-

plemented without the original classification layers. Then, a global average pooling layer

is applied to the output of the models to receive a 1-dimensional feature vector. Next, a

fully connected Dense layer with ReLU activation is added to learn high level features. A

Dropout layer is added to reduce overfitting by resetting 50% of the neurons during training.

The final Dense layer uses a softmax activation to output a probability distribution over the

two classes, nutrient-deficient and healthy. The input size of all three models is 224x224

pixels. The images are cropped using a sliding window. The sliding window moves across

the image and calculates the number of green pixels per window. The window with the

largest number of green pixels is cropped, resulting in images containing many leaves.

IV-G Training Configuration

The models are implemented and executed on a ml.g4dn.xlarge instance in a AWS Jupyter

Lab notebook. The specifications of the instance include:

• Compute: 4 virtual CPUs,

• Memory: 16 GiB of RAM,

• GPU: Nvidia T4 GPU,

• Processor: Intel Xeon Family,

• Clock Speed: 2.5 GHz.

The pre-defined models are loaded from the Keras Applications library inside the Tensor-

Flow pip package [52]. The datasets of all cultivars are divided into training, validation

and test sets. For each cultivar, the training set is 72.25% of the dataset, the validation set

is 12.75% and the test set is 15%. The models run for 50 epochs with a batch size of 16.

The models uses the Adam optimizer with a learning rate of 0.0001. The loss function is

categorical crossentropy, because the two target labels are not binary but instead categorical

classes.
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IV-H Evaluation Metrics

To evaluate the image segmentation and classification models, several evaluation metrics

are introduced. True and false positives and negatives are used to calculate precision, recall,

F1-score and accuracy. Precision is the proportion of all positive classifications that were

actually positive and is defined in Equation 10. Recall, also called true positive rate (TPR),

is the proportion of all true positives that were correctly classified as positive and is defined

in Equation 11. F1-score is the harmonic mean of precision and recall and is defined in

Equation 12. Accuracy is the proportion of classifications that were correctly classified

as either positive or negative and is defined in Equation 13. In addition to these metrics,

intersection over union (IoU) is calculated to further quantify the image segmentation

techniques and is defined in Equation 14. A represents the ground truth binary mask and

B represents the predicted segmentation mask.

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

F1-score =
2 · Precision · Recall

Precision + Recall
(12)

Accuracy =
TP + TN

TP + TN + FP + FN
(13)

IoU =
A ∩ B

A ∪ B
(14)

Two visualisation methods to better understand model performance are the AUC-ROC

curve and the confusion matrix. The ROC curve plots the true positive rate against the

false positive rate at different classification thresholds. The AUC value is the area under

the ROC-curve which indicates overall performance of the classifier and its degree of

separability between the classes. The confusion matrix is a table which summarizes the

performance of a classification model by showing the true positive, true negative, false

positive and false negative predictions.

GRAD-CAM [53] is a gradient-based localization method to visualise class activations

in image classification models. To better understand the differences between classifying

original images and background-removed images, GRAD-CAM generates a heatmap to

highlight influential regions of the image for the class prediction of a model. In Figure

22



8, GRAD-CAM is utilised to visualise the class activations of a trained ResNet50 model

classifying the original image in Figure 8a as the class ’dog’ in 8b and as the class ’cat’

in Figure 8c.

(a) Original image of dog and cat (b) Class ’dog’ (c) Class ’cat’

Fig. 8: GRAD-CAM heatmap visualisations of a trained ResNet50 model classifying the

(a) original image as (b) the class ’dog’ and (c) the class ’cat’. Images taken from pytorch

GRAD-CAM implementation [54].
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V RESULTS

V-A Background Segmentation

The background segmentation method is illustrated in Figure 9 containing all four steps

in the process. Figure 9a contains the original image. In Figure 9b, the relative depth map

of the original image is displayed using Depth Anything V2. Next, Figure 9c shows the

binary segmentation mask after thresholding the relative depth map using Otsu’s method.

Only the foreground including metal edges remains with the horizontal metal edges located

at the bottom of the image. Finally, Figure 9d depicts the segmentation output obtained by

training the U-Net model on the training images and their respective binary segmentation

masks and predicting on previously unseen images.

(a) (b)

(c) (d)

Fig. 9: Background segmentation example: (a) original input image, (b) relative depth map

generated with Depth Anything V2, (c) foreground extraction using Otsu’s thresholding,

and (d) segmentation output from trained U-Net model.

Using relative depth estimation and Otsu’s thresholding already returns promising results.

However, green algae and metal edges remain in a substantial number of images and are in-

correctly classified as foreground. This problem occurs because the metal edges are upright

and measured at the same depth as the cultivars growing in the gutter. Additionally, green
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algae are sometimes incorrectly included, because Otsu’s method struggles to differentiate

between the green hues of algae and cultivars. After visual inspection, the segmentation

results indicate that the U-Net model removes metal edges and green algae more effectively

and creates more accurate segmentation masks overall. In Table II, the trained U-Net model

is evaluated using performance metrics. However, the performance metrics do not capture

the full picture.

TABLE II: Performance metrics of background segmentation using trained U-Net model.

The performance metrics are computed by comparing segmentation predictions to ground

truth binary segmentation masks.

Accuracy Precision Recall F1-score IoU

Trained U-Net model 0.856 0.783 0.992 0.875 0.778

To further investigate the performance of the trained U-Net model, the validation accuracy

and loss of the trained U-Net model are visualised in Figure 10. The model has high training

accuracy but poor validation loss suggesting a lack of generalisability. This may be the

result of segmenting three different cultivars using a single U-Net model. Training just one

model was deemed necessary, because manually cleaning binary masks using an image

editor to obtain training data was time-consuming. Consequently, there was not enough

training data to train three separate models. Table III contains the validation accuracy and

loss across five folds of k-fold cross-validation of the U-Net model. The mean and standard

deviation of the validation loss further suggest that the model is unstable and this was not

an isolated run.

Fig. 10: Train accuracy, train loss, val-

idation accuracy and validation loss of

trained U-Net model.

TABLE III: K-fold cross-validation of trained

U-Net model. Validation accuracy and loss

are calculated for k=5 folds including the

mean and standard deviation across all folds.

Validation Accuracy Validation Loss

Fold 1 0.8946 0.2857

Fold 2 0.9463 0.1422

Fold 3 0.9148 0.2206

Fold 4 0.8637 0.3701

Fold 5 0.8890 0.2508

Mean ± std 0.9017 ± 0.0276 0.2539 ± 0.0750
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V-B Detection of Stress Initiation

The GLCM produced the most accurate results using a patch size of 32×32 pixels. Com-

pletely black patches were excluded to avoid skewing the results with informationless data.

Larger patch sizes, such as 64×64 and 128×128 pixels, were less likely to consist entirely

of black pixels. Since the method relies on calculating the mean across the entire patch,

these larger patch sizes diluted the information. Therefore, a 32×32 pixel patch size was

selected as the most effective.

In Figure 11, the control and test group mean feature values are plotted for dwarf blue kale,

paksoi and salad rocket across ten days. The results show that the control and test groups

are not distinguishable based on mean feature values. Control and test group values are

initially expected to have similar values and diverge at the point when stress is introduced.

The TPCA, entropy and homogeneity feature values exhibit no significant divergence, but

instead are nearly identical across all cultivars. Although the energy feature values show

some divergence in salad rocket and the contrast feature values show some divergence in

paksoi, the other features do not indicate that stress was introduced.

Fig. 11: Test group and control group mean feature values are plotted over a period of

ten days. Mean values of TPCA, entropy, energy, contrast and homogeneity using GLCM

patch size of 32x32 pixels.

Since no clear overall divergence in any of the features can be observed across cultivars, it

is impossible to determine a change point tc using piecewise-segmented regression. As a

result, the dataset is not being split based on an observed point of stress initiation. Instead,

the assessment conducted by biologists at Growy may serve as an indication for visible

stress. Therefore, the test group is divided into days 1–5 and days 6–10 which represent
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the healthy and nutrient-deficient classes respectively.

V-C Image Classification Models

Tables IV and V present the performance of ResNet50, EfficientNet-B0, and DenseNet-121

in binary image classification of cultivar images between healthy cultivars in days 1–5 and

visibly stressed cultivars in days 6–10 across dwarf blue kale, paksoi and salad rocket.

DenseNet-121 consistently achieved the highest F1-scores, with background-removed im-

ages having the best results overall. Interestingly, DenseNet-121 had the highest F1-score

of 0.895 for salad rocket using original images. Also interesting to note that DenseNet-121

had the lowest F1-score of 0.632 for paksoi using original images. Dwarf blue kale was

classified most accurately across all models and paksoi was the most challenging, especially

for DenseNet-121. The standard deviations remain consistent within a margin between

original and background-removed images. DenseNet-121 has the largest standard deviations

while EfficientNet-B0 has the smallest standard deviations. The difference between the

standard deviations of DenseNet-121 with dwarf blue kale and paksoi and DenseNet-121

with salad rocket is considerable.

Segmentation clearly improved model performance, especially for ResNet50. F1-scores

increased by over 12% in the case of paksoi. EfficientNet-B0 and DenseNet-121 were

less affected by background segmentation, but still slightly benefited from segmentation.

This suggests that background information in the original images may have introduced

noise that disproportionately affected the least complex model which is ResNet50. The

performance difference between cultivars remained consistent across models. Dwarf blue

kale was generally the easiest to classify, followed by salad rocket and paksoi. Appendices

B and C contain additional ROC-AUC curves and confusion matrices for each cultivar and

model combination trained on the background-removed images.

TABLE IV: Image classification of original images using ResNet50, EfficientNet-B0 and

DenseNet-121 models for two classes: healthy cultivars between day 1–5 and visibly

stressed cultivars between day 6–10. The mean and standard deviation of accuracy,

precision, recall and F1-score are averaged across five runs.

Model Cultivar Accuracy Precision Recall F1-score

ResNet50

Salad Rocket 0.796 ± 0.075 0.814 ± 0.068 0.796 ± 0.075 0.791 ± 0.080

Dwarf Blue Kale 0.868 ± 0.048 0.867 ± 0.052 0.868 ± 0.048 0.866 ± 0.051

Paksoi 0.744 ± 0.107 0.748 ± 0.109 0.744 ± 0.107 0.742 ± 0.107

EfficientNetB0

Salad Rocket 0.807 ± 0.017 0.813 ± 0.015 0.807 ± 0.017 0.805 ± 0.018

Dwarf Blue Kale 0.875 ± 0.017 0.879 ± 0.017 0.875 ± 0.017 0.875 ± 0.017

Paksoi 0.782 ± 0.042 0.784 ± 0.043 0.782 ± 0.042 0.782 ± 0.041

DenseNet121

Salad Rocket 0.895 ± 0.015 0.901 ± 0.015 0.895 ± 0.015 0.895 ± 0.016

Dwarf Blue Kale 0.822 ± 0.150 0.824 ± 0.152 0.822 ± 0.150 0.796 ± 0.201

Paksoi 0.700 ± 0.177 0.727 ± 0.217 0.700 ± 0.177 0.632 ± 0.235
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TABLE V: Image classification of background-removed images using ResNet50,

EfficientNet-B0 and DenseNet-121 models for two classes: healthy cultivars between day

1–5 and visibly stressed cultivars between day 6–10. The mean and standard deviation of

accuracy, precision, recall and F1-score are averaged across five runs.

Model Cultivar Accuracy Precision Recall F1-score

ResNet50

Salad Rocket 0.841 ± 0.053 0.810 ± 0.077 0.801 ± 0.090 0.788 ± 0.076

Dwarf Blue Kale 0.900 ± 0.049 0.890 ± 0.059 0.888 ± 0.062 0.890 ± 0.044

Paksoi 0.838 ± 0.050 0.795 ± 0.127 0.764 ± 0.142 0.778 ± 0.128

EfficientNetB0

Salad Rocket 0.825 ± 0.039 0.811 ± 0.041 0.810 ± 0.047 0.810 ± 0.041

Dwarf Blue Kale 0.888 ± 0.012 0.876 ± 0.014 0.873 ± 0.018 0.876 ± 0.014

Paksoi 0.817 ± 0.035 0.786 ± 0.041 0.769 ± 0.053 0.788 ± 0.040

DenseNet121

Salad Rocket 0.907 ± 0.014 0.887 ± 0.021 0.884 ± 0.025 0.892 ± 0.018

Dwarf Blue Kale 0.855 ± 0.155 0.824 ± 0.178 0.780 ± 0.229 0.824 ± 0.178

Paksoi 0.769 ± 0.228 0.760 ± 0.173 0.722 ± 0.225 0.758 ± 0.173

V-D GRAD-CAM Analysis

To understand how the best performing model makes decisions, GRAD-CAM visualises

the class activations of DenseNet-121. For each cultivar, two images were chosen to

represent their original and background-removed versions. Images were selected based

on the composition of leaves and background, and all images were taken from days 5-6 to

create ambiguity. Figure 12 presents Grad-CAM heatmap visualisations to assess DenseNet-

121 classification decisions for original and background-removed images of cultivars.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 12: GRAD-CAM heatmap visualisations of DenseNet-121 classifying both an original

image and a background-removed image of salad rocket (a-b), dwarf blue kale (c-d) and

paksoi (e-f) as days 6-10. The heatmaps in (g-l) visualise the class activation regions of

both DenseNet-121 models (trained on original images and background-removed images

respectively).
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From the left to the right, the images contain salad rocket, dwarf blue kale and paksoi

with two images per cultivar. The GRAD-CAM heatmap visualisations in Figures 12g,

12i and 12k indicate that the model trained on original images partially relies on available

background information for the classification of the images. For instance, in Figure 12g the

model’s classification decision is primarily influenced by green algae in the background

unlike in Figure 12h. The heatmaps of the background-removed images indicate that the

DenseNet-121 model trained on background-removed images focuses mainly on leaf area

and outer edges of leaves when no background information is available.
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VI DISCUSSION

The U-Net model achieved a F1-score of 0.875 in background segmentation. However,

the validation loss is unstable suggesting a lack of generalisability. Training a model to

segment three cultivars turned out to be suboptimal. However, given the limited time and

the time-consuming process of manually cleaning segmentation masks to remove metal

edges and artifacts, it was not feasible to train separate models for each cultivar. In the

end, a single U-Net model was trained across all cultivars and outperformed the simpler

method of using relative depth estimation and Otsu’s thresholding.

Feature extraction using the GLCM failed to distinguish the control group from the test

group. No clear feature divergence was observed between the two groups. No features

were identified as predictors for nutrient deficiency symptoms in dwarf blue kale, paksoi

or salad rocket. The feature extraction results indicate that the test group cultivars were not

sufficiently stressed to produce observable symptoms. One possible explanation is that the

pH-balanced water still had an electrical conductivity (EC) level too high to sufficiently

stress cultivars. Another possibility is that the U-Net model poorly segmented images, due

to an unstable validation loss, and consequently distorted the GLCM features. No clear

change point tc could be calculated due to these limitations.

The image classification results show that healthy and nutrient-deficient cultivars can be

distinguished with high accuracy. DenseNet-121 consistently outperformed both ResNet50

and EfficientNet-B0 across cultivars. This suggests that deeper architectures with more

interconnected layers are better suited for this task. Interestingly, DenseNet-121 achieved

both the highest F1-score for salad rocket and the lowest F1-score for paksoi. These major

differences underline the importance of training cultivar-specific models.

The GRAD-CAM analysis suggests that background segmentation increases the perfor-

mance of image classification models. The qualitative comparison between original and

background-removed images suggests that the model trained on background-removed im-

ages relies on available background information for classification. This may confuse models

resulting in a lower accuracy and F1-score. However, the model trained on background-

removed images cannot be influenced by background information and therefore focuses

the model’s attention to leaf areas for classification.

To conclude, this thesis presents an approach for segmenting cultivar images from complex

backgrounds. Background segmentation helps to build more accurate and interpretable

image classification models. DenseNet-121 was the best model for distinguishing between

healthy and visibly stressed cultivars. Growy can use this knowledge to build cultivar-

specific models for stress detection. This ultimately helps identifying stressful farm condi-
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tions which leads to a more efficient vertical farming system.

VI-A Limitations

Various limitations of the vertical farming system may have influenced the experiments.

Data collection at Growy was challenging having only one available experiment layer

and limited time to conduct experiments. Robot errors resulted in unusable images which

may have affected mean feature values. The farm faces unstable climate conditions and

conducting control group and test group experiments simultaneously on the same layer was

not feasible. The water system can either supply a nutrient solution or pH-balanced water

to a layer without being able to differentiate between gutters or batches. Consequently,

data collection was time-consuming, so there was no opportunity to repeat experiments

and complete another full growth cycle for the cultivars.

Despite using data augmentation, the labeled dataset used to train the U-Net model was

relatively small and therefore lacked accuracy and generalisability. Piecewise-segmented

regression could not determine the change point tc due to minimal differences in mean

feature values between the test group and control group. The image classification models

were trained on data from days 1-5 and days 6-10 which makes it unclear whether the

models are learning to differentiate between the ages of the cultivars or the visual symptoms

of stress. Further research is needed to separate these factors and better understand what

the models are actually detecting. There is also the possibility that stress might arise at

different change points across cultivars.

VI-B Future Work

In future research, separate U-Net models should be trained for each cultivar using larger

datasets. These models will likely have a more stable validation loss and higher accuracy

in segmentation tasks. The data quality may improve if the control group and test group

captured images simultaneously in the same environment. The pH-balanced water may not

have produced enough stress, so lower EC levels should be used to widen the gap between

the test group and control group EC levels. This will hopefully lead to more diverging

measurements of feature values between the test group and control group.

Additional cultivars could be investigated to get more insight into which features predict

stress. Additionally, other methods such as hyperspectral or thermal imaging may be able

to identify early stress symptoms not visible in RGB images. Furthermore, cultivar-specific

segmentation and classification models for each cultivar may result in more reliable stress

detection, image segmentation and image classification. Lastly, a region-based CNN could

be trained to gain more information about the location of stress in the images.
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VII CONCLUSION

This thesis demonstrates the potential of deep learning techniques, such as U-Net for image

segmentation and DenseNet-121 for image classification, in the vertical farming industry.

Growy aims to automate stress detection to reduce the time spent manually searching the

farm for stressed cultivars. This gives biologists at Growy the time to focus their efforts

on finding the causes of stress rather than locating stressed cultivars.

The instability of the U-Net validation loss and the feature extraction limitations highlight

some challenges in the approach presented in this thesis. The feature extraction results

suggest that the cultivars in the test group may not have experienced sufficient nutrient

stress. This could potentially be caused by insufficiently low EC levels in pH-balanced

water. Another reason could be that the U-Net model does not segment images sufficiently

skewing the GLCM feature values.

Even though the feature extraction results are underwhelming, the binary image classifica-

tion models are able to accurately distinguish between healthy and visibly stressed cultivars.

GRAD-CAM heatmap visualisations indicate that DenseNet-121 trained on background-

removed images focuses more on relevant leaf area while DenseNet-121 trained on original

images relies more on available background information.

The identification of stress symptoms and specific features that indicate and predict nutrient

deficiency was limited. However, being able to distinguish healthy from visibly stressed

cultivars using image classification models indicates it is possible to apply cultivar-specific

stress detection models. Future work could focus on larger datasets, cultivar-specific seg-

mentation models and non-RGB methods to predict stress in cultivars. Future work could

ultimately lead to building robust models capable of automating stress detection in vertical

farming systems.
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APPENDIX A

NUTRIENT DEFICIENCY IN CULTIVARS OVER TIME

(a) Dwarf Blue Kale – Day 1 (b) Dwarf Blue Kale – Day 10

(c) Paksoi – Day 1 (d) Paksoi – Day 10

(e) Salad Rocket – Day 1 (f) Salad Rocket – Day 10

Fig. 13: Cultivar stress in test group over time: day 1 (left) to day 10 (right).
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APPENDIX B

ROC-AUC CURVES

(a) Dwarf Blue Kale

(ResNet50) (b) Paksoi (ResNet50) (c) Salad Rocket (ResNet50)

(d) Dwarf Blue Kale

(EfficientNet-B0) (e) Paksoi (EfficientNet-B0)

(f) Salad Rocket (EfficientNet-

B0)

(g) Dwarf Blue Kale

(DenseNet-121) (h) Paksoi (DenseNet-121)

(i) Salad Rocket (DenseNet-

121)

Fig. 14: ROC-AUC curves of cultivars across three models - ResNet50 (top row),

EfficientNet-B0 (middle row) and DenseNet-121 (bottom row) - trained on background-

removed images.
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APPENDIX C

CONFUSION MATRICES

(a) Dwarf Blue Kale

(ResNet50) (b) Paksoi (ResNet50) (c) Salad Rocket (ResNet50)

(d) Dwarf Blue Kale

(EfficientNet-B0) (e) Paksoi (EfficientNet-B0)

(f) Salad Rocket (EfficientNet-

B0)

(g) Dwarf Blue Kale

(DenseNet-121) (h) Paksoi (DenseNet-121)

(i) Salad Rocket (DenseNet-

121)

Fig. 15: Confusion matrices of cultivars across three models - ResNet50 (top row),

EfficientNet-B0 (middle row) and DenseNet-121 (bottom row) - trained on background-

removed images.
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