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Abstract

Unlike traditional AI techniques, explainable AI (XAI) removes the ‘black-box’
nature of machine learning algorithms and adds explanations to its decisions.
This enables users to subject the predictions to their own reasoning which
is essential for decision-makers to assess the reliability of a trained XAI. In
this project, we investigated whether the explainability of a drug repurpos-
ing XAI algorithm applied on the rare disease Duchenne muscular dystrophy
(DMD) can be improved. To attempt this, a conceptual modelling approach
has been developed that relies on the use of foundational ontologies to fa-
cilitate the conveyance of the conceptual model towards domain experts for
reaching consensus. Following this approach, the concepts and relations found
in the knowledge graph serving as the input of the XAI algorithm have been
aligned to the relevant domain in order to attempt generating explanations
that show more recognizable information paths to reason about why a cer-
tain prediction has been made. By decomposing the term explainability into
multiple aspects and including them in questionnaires, explanations have been
compared assessing whether the explainability has improved after aligning the
input knowledge graph to the newly designed conceptual model. No significant
changes in the explainability of the generated explanations have been found by
adding the developed conceptual modelling approach to the drug repurposing
pipeline. The findings of this project did lead to a new perspective as they have
shown that the explainability might not get improved solely on changing the
conceptual structure of the explanations. Instead, the explainability needs to
be improved by also taking into account the representation of the explanations
which highlights the need for further user-centric development of XAI.
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Chapter 1

Introduction

1.1 Explainable AI

In this day and age, the collection and access of vast amounts of data are
indispensable across many fields in science. The sheer quantity of data neces-
sitates researchers to utilize tools that are capable working with these enor-
mous amounts of information and subsequently yield insight from it. In the
last decade, the use of machine learning as such a tool has massively increased
in popularity due to its proven ability [16] to learn from large quantities of
data catching complex correlations that are beyond human comprehension.
Although the predictive power of AI methods is advancing and machine learn-
ing applications are increasingly prevalent across many domains, the ability for
humans to understand how an AI model arrives at a certain prediction, lags
behind. For example, a deep learning model consisting of many layers has to
adjust its millions of parameters in order to deliver a prediction about the given
dataset. The high-complexity causes deep learning models to have a “black-
box” nature. It poses an issue when “black-box” predictors are being used for
solving problems in high-risk and high-impact fields such as healthcare [5].

To fully realize the potential of AI techniques on high-impact failure-sensitive
tasks, a new field has arisen that conducts research on explainable AI (XAI).
Developed XAI methods aim to remove the “black-box” nature of machine
learning by adding explanations to its decisions. This enables users to subject
the predictions to their own reasoning and knowledge which is essential for
decision-makers to assess the reliability of the predictions from a XAI.
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Chapter 1. Introduction 1.2. Drug Repurposing for DMD

1.2 Drug Repurposing for Duchenne Muscu-

lar Dystrophy

In a previous project, a method is proposed which “obtains drug candidates
that can be used to treat symptoms related to the rare disease Duchenne
muscular dystrophy (DMD)” [57]. A XAI method has been applied in order
to generate explanations that can be assessed by clinicians and researchers. In
this way, experts can accept or reject the yielded predictions by evaluating the
explanations using their knowledge and reasoning.

The disease DMD is classified as a rare disease affecting 1 in 3,600 male live-
born infants. Due to the disease being X-linked recessive, male infants are
more frequently afflicted in comparison to female infants. This rare disease
is caused by a mutation in the dystrophin gene DMD which is one of the
largest genes found in the human genome. The disease does not have to be
inherited and can be caused by a new mutation in this gene instead. DMD
provides the production of the protein dystrophin which is severely impeded
or even disabled by duplications, deletions or point mutations in the gene se-
quence. Dystrophin deficiency causes degeneration of muscle fiber leading to
cardiac and orthopedic complications. Patients have a low life expectancy,
less than thirty years, as the disease causes fatal problems resulting from pro-
gressive muscle loss such as respiratory muscle weakness and cardiomyopathy.
Currently, there is no known treatment that can stop the progression of this
disease. [64]

Development of new treatment for people that suffer from this disease is dif-
ficult and unappealing as pharmaceutical companies need to recoup the costs
of research and clinical trials for a new orphan drug1 from the relatively small
pool of patients that suffer from DMD [37]. While research is done on new
treatments for DMD, clinicians also attempt to treat the symptoms that are
found in the clinical picture of this disease.

Datasets are accessible that provide researchers with information about drugs
already marketed and used for treating certain symptoms such as the online
drug information resource DrugCentral [62]. Also, biomedical and genomic
data can be retrieved from many different data sources that are easily accessed
using for example the National Center for Biotechnology Information (NCBI)
services [2]. These large amounts of data generated from already completed
research can be utilized to explore possible new links between a marketed
drug and a symptom that is related to the rare disease DMD applying XAI
techniques.

1An orphan drug is defined as a drug that is used to treat or prevent a life-threatening
rare disease or a drug that is expected to generate insufficient profit which does not justify
the costs of the development and research of the treatment.
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Chapter 1. Introduction 1.3. Project Objective

1.3 Project Objective

For explanations generated by XAI to be interpretable and trusted by users,
it is important that they are conceptually clear and sound. Users might per-
ceive an explanation to have better explainability when reasoning patterns are
included that are favoured and often used by the users with expertise in the
relevant domain of the problem. Thus, a conceptual model needs to be built
that represents the domain knowledge as accurately as possible while it is ad-
justed to the available concepts and relations in the input data. By using a
Foundational Ontology, we facilitate the process of arriving at a conceptual
model that might increase explainability when the input data is aligned to
it. This is because a Foundational Ontology provides well-defined domain-
independent conceptual primitives that enable precise and consistent expres-
sion of the model.

Via ontology-based conceptual modelling, the improvement in the structure
of the data would not only improve explainability, but also support the FAIR
principles [27]. These FAIR guiding principles have been set up to maximize
the value of shared data, covering the notions Findability, Accessibility, In-
teroperability and Reusability [66]. Providing a clear and precise conceptual
structure of the data allows for interoperability. Due to aligning the dataset
to the created conceptual model, new users of the data will have a facilitated
understanding about how new concepts and relations can be harmonized with
the existing conceptual structure.

Given these findings, the following research question is asked that we attempt
to answer during this project: Does the use of Foundational Ontologies improve
the explainability of explainable AI algorithms?

The research question will be answered by revisiting the drug repurposing
pipeline on symptoms of the rare disease DMD developed in the project [57]
mentioned in the previous section (Section 1.2). This project is referred to as
the eXplainable AI DMD Drug Repurposing (XAI-DMD-DR) project through-
out the remainder of the thesis. In this current project, we investigate whether
the explainability of the explanations generated by the XAI algorithm can
be improved by enhancing the structure of the input data. Deciding which
changes need to be made is enabled due to applying a Foundational Ontol-
ogy which has not been done in the XAI-DMD-DR project. The explanations
are compared that result from the XAI drug repurposing pipeline with the
original dataset from the previous project as input and with the restructured
dataset as input. Based on this comparison focusing on the explainability of
the explanations, we come to a conclusion for the research question.

3



Chapter 2

Background Information

2.1 Ontologies

The term “ontology” is often associated with metaphysics, which is one of the
disciplines in philosophy studying the fundamental nature of reality. Nowa-
days, this term appears increasingly often in computer science literature due to
the growing interest in giving well-defined meanings to the vast amount of data
that has become available on the World Wide Web. An “ontology” can be de-
fined as “a formal, explicit specification of a shared conceptualization”[23, 61].
In context of ontologies used in the field of computer science, we often talk
about conceptual models [18]. A conceptual model has the purpose of clearing
out ambiguities and improving the knowledge representation within a dataset.

Figure 2.1: The diagram that shows the relations between “conceptualization”, “abstrac-
tion”, “modelling language” and “model” taken from [26].

In Figure 2.1 the relations are shown that exist between “conceptualization”,
“abstraction”, “modelling language” and “model”. Conceptualization and ab-
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Chapter 2. Background Information 2.2. Foundational Ontologies

straction are phenomena existing in the minds of users. With conceptualiza-
tion it is meant that a user forms ideas or principles in their mind which is
used to represent their idea about any domain by cognitive processes such as
categorization and reasoning. This idea about how a specific domain is struc-
tured and what all entities in this domain mean, forms an abstraction. The
abstraction created by one user compared to another about the same domain
can differ as humans often have varying views on reality that conflict with each
other in various degrees. Here, the need of a conceptual model arises that can
communicate one’s abstraction about a certain domain to others. This model
is composed by a modelling language that allows representing all elements in
a concise, complete and unambiguous way [26].

2.2 Foundational Ontologies

There exist different types of ontologies as they differ in types of domains that
are represented by them as well as the level of formalism provided by the on-
tology. The different ontologies are classified based on the specificity level or
for which purpose they are used [18]. This classification is shown in Figure 2.2
starting with the top level ontologies. Top level ontologies are also known
as foundational ontologies [18]. These ontologies describe the most general
concepts such as objects, events and provide fundamental types of relations.
Thus, the concepts and relation types given by a foundational ontology are
domain-independent. Domain ontologies and task ontologies utilize the terms
that are given by top level ontologies in order to describe a generic domain or
task, respectively. Application ontologies specialize both domain and task on-
tologies to describe concepts that depend on a specific domain and a task [24].
To exemplify, a domain ontology might be developed to capture the concepts
and relations that describe the field of medicine, including concepts such as
diseases, symptoms and treatments. A task ontology related to the medical
field might represent concepts such as diagnostics and monitoring patients. In
the same context, an application ontology could describe the requirements for
a specific healthcare system which will include concepts and relations from
domain and task ontologies such as the mentioned examples.

Foundational ontologies provide generic modelling aspects that can be applied
during ontology development [39]. There exist different foundational ontologies
that typically contain some way of categorizing all entities as well as specifying
the nature of the relationships that are found between them. Some examples
of foundational ontologies are Unified Foundational Ontology (UFO) [28], Ba-
sic Formal Ontology (BFO) [60], General Formal Ontology (GFO) [47] and
Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE) [11].

By having these generic building blocks with which an domain-specific on-
tology can be built, the interoperability between ontologies can be greatly
improved [10]. This is because ontologies built using the same foundational on-
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Chapter 2. Background Information 2.3. UFO

Figure 2.2: The diagram showing the classification of ontologies based on specificity level
where the arrows show the specialization relationships taken from [24].

tology share the same domain-independent conceptual components and rules,
improving on interpretability of the models despite being domain agnostic
artefacts. Parts from one ontology can be incorporated into other related on-
tologies as modules, introducing facilitated reusability. Due to the well-defined
modelling elements of foundational ontologies, they also provide a precise and
unambiguous way of describing the types of concepts and relations present in
the domain. In this way, the quality of the designed ontology can be guaran-
teed.

2.3 Unified Foundational Ontology

As a top level ontology, UFO provides a set of basic categories and relations
that all have a clear and consistent meaning. These clear definitions and
distinctions between the ontological elements allow for building specialized
ontologies in a robust and unambiguous way.

UFO is known for its fundamental distinction between endurants and perdu-
rants, where endurants are individuals that exist in time without loosing their
identity when it goes through qualitative changes (e.g., objects). Perdurants
are individuals that are an accumulation of temporal parts that have unfolded
throughout time (e.g., processes). This distinction allows for classification of
entities based on their temporal persistence [28]. Endurants can vary in rigidity
for which we have the classes rigid, anti-rigid and semi-rigid. Rigid endurants
stay unchanged over time while anti-rigid endurants will cease to exist. For ex-
ample, a person cannot stop being a person without ceasing to exist. However,
a person can be a student for a certain amount of time without this person
losing their identity. Semi-rigid endurants are entities that stay unchanged
over time for some and can cease to exist for others. Take as an example a
music band that will cease to exist when it does not have any music artist as
member while a person can stop being a music artist and still exists.

6



Chapter 2. Background Information 2.4. OntoUML

Another distinction that UFO follows is between substantial and dependent
entities. The former can exist independently while the latter depend on the
existence of other entities.

For the different relationship classes, UFO enables modelling the multiplicity
of relationships between entities as well as the dependency expressing how
entities are related to each other and how the relation is constrained.

These are just a few principles provided by UFO. To get an idea about how
extensive the theory is behind this foundational ontology, a general overview
of the categories for entities described and provided in UFO are shown in the
taxonomy tree that includes the categories around endurants and perdurants
in Figure 2.3.

Figure 2.3: The taxonomy of UFO taken from [28].

2.4 OntoUML: An Ontology-based Conceptual

Modelling Language

OntoUML is a conceptual modelling language that helps to define concept
structures that comply with the theories embedded by UFO, including its
categories and axioms [29]. The modelling language facilitates building a
domain-specific model since it enables expressing a model in a concise way
using well-defined domain-independent concepts and rules.

7



Chapter 2. Background Information 2.4. OntoUML

OntoUML distinguishes between ‘Types’ and ‘Individuals’ which enables clas-
sification of entities. ‘Individuals’ are instantiated from ‘Types’ and share
characteristics with other instances from the same type. In a model built with
OntoUML, only the ‘Types’ are included in the ontology schema while instan-
tiated individuals are not specified. A ‘Type’ can have a generalization relation
with other types such that it is a supertype of multiple subtypes or a subtype
of a supertype. This means that individuals can instantiate for multiple types.
For example, an ‘Individual’ would be Sesam and the ‘Type’ of this entity is
a dog.

Another important aspect in OntoUML is whether the ‘Type’ provides the
identity principle to an entity or not. The identity principle says that each
‘Individual’ has its own identity carried throughout its whole existence. In our
simple example, Sesam would not exist when he stops being a dog. This means
that the ‘Type’ dog provides his identity. This identity can be defined using
identity conditions such that it is clear when an entity is the same as another
entity based on their attribute values. This identity principle adds constraints
on how the hierarchy between ‘Types’ can be constructed.

Each ‘Type’ can have a certain stereotype that specifies which additional rules
apply to this ‘Type’. For example, when a ‘Type’ provides the identity prin-
ciple to an entity it can be a ‘Kind’, ‘Collective’ or ‘Relator’. A ‘Kind’ is a
construct that represents a functional complex, meaning that the entity is a
whole with parts that all contribute differently to its functionality. Concepts
that represent entities with an homogeneous internal structure in which each
part is perceived the same way are ‘Collectives’. The stereotype ‘Relator’ is
used to represent an entity that exists merely to connect two or more individu-
als to each other via a material relation. Thus, referring back to our example,
a dog is made out of many different body cells working together in order to live
its life which leads to us considering this ‘Type’ having ‘Kind’ as stereotype.
Sesam is a dog owned by a person where this ownership only exists for con-
necting the dog to the owner. This implies that ownership can be stereotyped
as a ‘Relator’.

Another group of stereotypes can contain instances that possibly follow dif-
ferent identity principles. Stereotypes that allow this include ‘Categories’. In
our simple example, we could say that dogs as well as cats are domesticated
animals. A cat would be a different ‘Kind’ instantiating ‘Individuals’ with
different characteristics and identity principles compared to dogs. However,
we can categorize cats and dogs using the concept domesticated animals. This
means that the ‘Individuals’ of the ‘Kind’ dog and cat will also share some
features such as the definition that dogs and cats are both animals suitable for
being held as a pet.

Stereotypes, such as ‘Role’ and ‘SubKind’ do not provide the identity principle,
but carry them over although the rule applies here that these stereotypes can

8



Chapter 2. Background Information 2.4. OntoUML

only be associated to one identity provider. For example, Sesam is a Shiba
Inu which is a ‘Subkind’ of the ‘Kind’ dog. This ‘Subkind’ cannot be related
to another identity provider. In this case, a Shiba Inu can only be a dog and
never be a cat. Here, we also need to address another property of ‘Types’ being
rigidity. A ‘Type’ is rigid when an ‘Individual’ instantiates for this ‘Type’
throughout its whole existence. Rigid types thus define characteristics that
are essential for their instances. Some rigid stereotypes are ‘Kind’, ‘Subkind’,
‘Relator’, ‘Category’ and ‘Collective’. An ‘Individual’ can stop instantiating
for an anti-rigid type while still existing as the characteristics provided by
this ‘Type’ are non-essential. An anti-rigid type would for example be ‘Role’.
Considering the example again, it can be said that the dog Sesam can stop
being a pet without him losing its existence which concludes that pet is a
‘Role’.

In OntoUML, ‘Individuals’ can be tied together by some relation [25]. Each
relation has a number of relata which are the entities that are connected to
each other. Relations are classified into two categories being the ‘Material’
and ‘Formal’ relations. In ‘Material’ relations, there exists an instance being
a ‘Relator’ that mediates the relation between relata. ‘Formal’ relations only
need the relata themselves to hold. For a ‘Material’ relation, it can be exem-
plified by the relation of a pet owner owning a pet. For this relation to hold,
there must exist ownership.

Figure 2.4: The OntoUML schema expressing a simple example scenario about pets to show
a few key principles of applying OntoUML to an abstraction.

The OntoUML model resulting from the discussed example is shown in Fig-
ure 2.4. There are numerous other distinctions, rules, class and relationship
stereotypes provided by OntoUML. However, in this thesis only the elements
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Chapter 2. Background Information 2.5. Goal Modelling

have been discussed and exemplified that are the most prominent in the con-
ceptual models designed throughout this project and to give an idea about the
general principles of the application of OntoUML.

2.5 Goal Modelling

Goal modelling is a method often used in software engineering, a field that
necessitates a lot of attention to the elicitation, specification, analysis and
validation of software requirements [19]. This method allows to create a hi-
erarchical model that shows what goals need to be reached according to all
stakeholders and organizes how these goals are achieved.

2.5.1 iStar Modelling Language

For goal modelling in this project, the i* modelling language is used which
adapts a lot of similarities to conceptual modelling languages as it focuses
on intentional, social and strategic dimensions [15]. It can answer questions
such as why goals need to be achieved, who requires which objectives and how
these goals are achieved. Thus, the i* modelling language is goal-oriented as
well as actor-oriented. To give an idea about the usage of this goal modelling
framework, a summary will be given of the guideline of the iStar tool [15]
discussing the elements that are used during this project.

The first class of entities included in this framework is actors. Actors are active
and autonomous who aim at achieving goals. This class can be subdivided into
role and agent where role is used for an abstract characterization and agent
represents an entity that has a physical or concrete manifestation. Distinguish-
ing between these two classes of actors is not obligatory when these types are
not relevant for the scenario that is modelled. In the framework, actors are
graphically depicted as circles shown in Figure 2.5. All the intentions of an
actor are contained inside the actor boundary. In this grey area, all elements
and relationships related to the intentions of that actor are placed (Fig. 2.6).

Figure 2.5: Examples of an actor, role and agent using the graphical notation of iStar
framework.

Actors can have relations between each other. Using the is-a actor link, roles
can be specializations into other roles. For example, a traveller is either a
traveller by train or plane. The second actor link is participates-in that relates
two actors representing any kind of association except for specialization. Due
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Chapter 2. Background Information 2.5. Goal Modelling

Figure 2.6: Example of an actor boundary using the graphical notation of iStar framework.

to this broad representation, multiple meanings can be attached to this type
of link and depends on the context of the scenario. It could be said that
it connects between an agent and role indicating a plays relationship. To
exemplify, the hotel named Hotel Poseidon in the current scenario can play a
role as an all-inclusive resort. It is also possible to have a part-of relation where
both relata are of the same actor type. We can connect the agent swimming
pool to Hotel Poseidon to show that this swimming pool is part of the hotel.
These relations and given examples are shown in Figure 2.7.

Figure 2.7: Examples of actor association links using the graphical notation of iStar frame-
work.

Actors have intentions which are things that they want. Requirements that
are demanded by a certain actor are represented with intentional elements
contained by its actor boundary. One of these elements is the goal which is
a state that needs to be achieved and can only be reached when its defined
criteria have been met. A goal would be to book tickets for a train which has a
clear criterium that the traveller receives their ticket. The element quality is a
state that is desired to be achieved at some level. For example, the comfort of
hotel guests, which can be achieved at different levels. The intentional element
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Chapter 2. Background Information 2.6. Knowledge Graphs

task is an action that needs to be performed in order to achieve a goal such
as paying for a ticket. Lastly, resource refers to the entity that is required to
perform a certain task. A ticket can only be paid using some kind of payment
method.

Intentional elements can be connected to each other using one of four types
of links being refinement, needed-by, contribution and qualification. The first
link, refinement, relates one intentional element as the parent to one or more
children elements. A refinement can be an AND-refinement or OR-refinement.
The former says that the parent intentional element is fulfilled when all its
children elements are fulfilled. For a parent linked to children via an OR-
refinement, the parent is fulfilled in the case that at least one of the child
elements is fulfilled. Using our examples, tickets can only be received by a
traveller when they are booked and then sent by the relevant travel agency.
This is indicated by the AND-refinement. For the OR-refinement link, we
could say that as soon as the traveller has paid for the tickets, the goal of
booking a ticket has been achieved.

The needed-by relationship means that a resource is needed to perform a task
to which it is linked. Paying for tickets can be performed when there is a
payment method at hand.

Qualities can be linked to intentional elements with the contribution links.
A quality is considered fulfilled or satisfied when there is sufficient positive
evidence. In the case of existing negative evidence, a quality can be denied.
There are multiple types for contribution links for the different levels of positive
or negative evidence it provides. The types make and help indicate that the
intentional element gives positive evidence for the fulfilment of the parent
quality to a sufficient or partial degree, respectively. This is the same case for
the types break and hurt. However, they bring evidence against the fulfilment
of the target leading to denial of the quality when there is sufficient negative
evidence. For example, providing comfortable beds and quality food helps to
have comfortable hotel guests while a crowded swimming pool counteracts.

Linking a quality to another intentional element with the qualification relation,
it is expressed that the achievement of the target intentional element needs to
be performed with a desired quality in mind. For instance, if the all-inclusive
resort is to achieve its goal of increasing profits, it must do so while providing
the guests a high level of comfort.

In Figure 2.8, the goal models are shown that result from the given examples.

2.6 Knowledge Graphs

Information is often stored in tabular data. In each row of a data table, an
identifier is stored along with the attributes of this data entry. A table is re-
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Figure 2.8: Examples of intentional elements and their links using the graphical notation of
iStar framework.

stricted to storing entries with the same properties. To allow relations between
different data points, a relational database is used. In these databases, it is
difficult to add new categories as you need to add new tables with properties
that comply with the added categories. Relations between these tables need
to be predefined before queries can be performed. In contrast to tabular data,
knowledge graphs allow for the addition of new data and relationships with-
out needing any changes to the structural schema of the database. That is
why knowledge graphs offer greater flexibility for structuring data than tab-
ular data. Therefore, when handling conceptually rich and variable data, the
preferred option would be to employ a knowledge graph as data structure.

A graph is a data structure consisting of nodes and edges. A node represents an
entity while an edge links one node with another node expressing the existence
of some relation between the entities. A graph can be described as being
directed or undirected. For directed graphs, all edges have a specific direction
leading from one node to another. When there is no direction specified for each
edge, the graph is categorized as undirected. The relations between entities
in an undirected graph are reciprocal while there is a clear object and subject
role for relations expressed in directed graphs.

A knowledge graph [33] is a data structure that is suitable for representing data
that is rich with different concepts and relations in a concise and intuitive way.
This is enabled due to all nodes and edges being labelled. A graph with nodes
and edges of different types is generally known as a heterogeneous graph, as
opposed to homogeneous graphs which consist of a single type of node and a
single type of edge. Using the various types for expressing classes of entities
and different relations, the conceptual model to which the data is aligned
can be retained while the data instances are being stored in a graph data
structure. The differences between an undirected homogeneous graph and a
directed knowledge graph are illustrated in Figure 2.9.
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Figure 2.9: At the left, an example of an undirected graph is shown in which edges and
nodes have one type. At the right, a directed knowledge graph is illustrated with four node
types and four edge types present. The node types are distinguished by colour. The different
edge types can be discerned based on their edge labels.

2.7 Graph-based Deep Learning

Particularly in the bioinformatics and biomedical fields, interest in the research
on graph neural networks (GNNs) has grown [55]. One of the reasons would
be that the application of GNNs enables integration of knowledge graphs into
the prediction pipeline. This allows for conceptual enrichment added to the
training of a machine learning algorithm.

For graph learning tasks there are three types of tasks that are often per-
formed [68]. The first tasks are at node-level, including node classification.
Another group contains edge-level tasks referring to edge classification or link
prediction. Lastly, there are graph-level tasks such as graph classification and
graph matching.

For the drug repurposing task during this project, link prediction will be per-
formed by the implemented GNN model in order to find potential connections
between drugs and symptoms that are related to the disease DMD.

For neural networks (NNs) that accept grid-structured data such as tabular
data, sequences and images, all input samples go through the exact same archi-
tecture. In contrast to this, the architecture of a GNN changes for each node.
In a GNN model, node representations are iteratively updated which is done
by passing and aggregating messages of neighbouring nodes [42]. First, there
is the message passing part of the model, during which a message vector for
each neighbour node is acquired. There exists multiple ways to calculate these
message vectors ranging from simple operations to neural networks. Now, the
message vectors of each neighbouring node are aggregated resulting into a sin-
gle vector that will have captured for example topological information from
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the local neighbourhood of a node. There are a lot of options for the aggrega-
tion function such as taking the mean, using the summation or max-pooling
over the message vectors. For the update function, the current representation
of each node is combined with the aggregated messages extracted from its
neighbours which results in a new node representation. An illustration of the
architecture of a GNN model given a simple example of a graph can be found
in Figure 2.10.

In a supervised learning setting, after each batch of input, the GNN trains using
gradient-based optimization methods that will adjust the model parameters
such that the difference between the predicted and true values is minimized.

Adapting the architecture of the GNN model will adjust the size of the neigh-
bourhood on which the message-passing process is performed. As each layer
of the architecture represents a new message-passing process, an added layer
will find the neighbouring nodes of the previously found neighbours. Thus,
using a total of two layers in the GNN model architecture enables capturing
information from the nodes that are two hops away.

2.8 Explainable AI Methods

In order to justify the use of AI methods for performing tasks from domains in
which ethical regulations play a major role, their outcomes need to be verified
by human decision makers. This would be relevant for fields such as healthcare
where decisions need to be made that have direct impact on the well-being of
people [49]. By removing the ‘black-box’ nature of AI, transparency of AI
systems can be improved, approaching the development of trustworthy AI.
Trustworthy AI systems need to adhere to lawfulness, ethicality and robust-
ness. This term is defined by the High-Level Group on AI. The European
Commission has formed this independent group of experts [6].

To remove this ‘black-box’ from AI systems, explainable AI methods are being
developed and improved. These methods need to give users insight about how
an AI model arrives at a certain prediction while the accuracy and robustness
of its predictive performance are kept at a high level.

The vast collection of explainable AI methods can be split into two groups
being the model-specific and model-agnostic methods [49, 46]. Explanations
are generated natively by the AI model itself when referring to model-specific
methods. This means that machine learning models are created from scratch,
implementing the generation of explanations in the architecture of the models.
In this way, the explainability of the AI system aligns very closely to the
model architecture which makes the explanations more accurately describe the
model. The drawback of a self-explaining model lies in its inferior predictive
performance when compared to machine learning models that have undergone
extensive performance-driven research [8]. This is why development has been
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Figure 2.10: A diagram of the architecture of a GNN with two layers illustrating node
C as input inspired from diagrams shown in [42]. The nodes in the GNN architecture
diagram correspond to the graph above this illustration. Message Transformation: The
message passing part ranging from being a simple operation to a neural network. Message
Aggregation: The message aggregation part in which the aggregation is often done using a
summation, taking the average or max-pooling.

focused on the other category of explainable AI methods being the model-
agnostic approaches that can be applied to AI systems with already optimized
predictive performance.

Model-agnostic methods can be used to generate explanations for predictions
resulting from any trained AI model. These approaches often try to derive a
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less complex surrogate model for the trained ‘black-box’ model that needs to
be explained [34]. Due to this, the explanations will be less faithful to the
original model than the ones created using the model-specific approach.

Another important distinction is the scale of interpretation [46]. A local ex-
plainable AI method can provide explanations for specific prediction instances.
Global methods explains how the model arrives at its predictions given any
input.

For this project, the explainable AI method GNNExplainer [67] is used. A pre-
diction obtained from any trained graph-based machine learning model serves
as input of the GNNExplainer. Given the prediction in the form of a link
prediction, node- or graph classification, the importance of node features and
edges can be calculated. The GNNExplainer outputs a node or edge mask
that shows which node features or edges in the GNN model are considered to
be the most impactful for arriving at the given explanation. Considering the
aforementioned classification of explainable AI methods, the GNNExplainer is
a local model-agnostic approach.

2.9 Explainability

Explainability in the context of XAI can be described using the following
definition:

An AI system is explainable if the task model is intrinsically interpretable (here
the AI system is the task model) or if the non-interpretable task model is com-
plemented with an interpretable and faithful explanation (here the AI system
also contains a post-hoc explanation). [49]

In the given definition above, there is a distinction between AI systems in which
the explanation is provided by the system itself and predictor models that are
accompanied by a post-hoc explanation. For the latter, the explanation gives
insight without having the knowledge about the mechanisms that are used in
the predictor model. To relate to the classification of XAI methods, model-
specific approaches are intrinsically interpretable while mode-agnostic methods
provide post-hoc explanations.

For an AI system reaching explainability, both interpretability as well as fi-
delity are necessary [49]. Interpretability of an explanation is used as a measure
of how understandable this explanation is for humans. The second measure-
ment, fidelity, is about how accurately the explanation represents the behaviour
of the model. A set of practical definitions has been created that can be utilized
for measuring the level of explainability of an explanation.

As explainability can be split into interpretability and fidelity, these aspects
can also be subdivided [49]. An explanation is considered to be interpretable
if it is unambiguous and not too complex. The former is known as the clarity
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of the explanation while the latter is referred to as parsimony. Given these
aspects, interpretability is about how a human can understand an explanation.
Fidelity can be divided into completeness and soundness, representing the
descriptive accuracy of an explanation. For completeness, the explanations
need to provide sufficient information that tell how the model has acquired
its output given the input. Explanations have soundness when it represents
the inner workings of the model truthfully. In Figure 2.11, the hierarchy of all
mentioned aspects of explainability is shown.

Figure 2.11: A hierarchical view of all aspects of explainability including their definitions
taken from [49].

Since model-agnostic XAI methods compromise on the accuracy as they need
to simplify the function learned by the task model to a less complex one, it
can be expected that the explanations generated from these approaches will
score less on the fidelity in comparison to model-specific XAI. This aspect of
fidelity is however modified in order to create a more user-centric measurement
on explainability. This means that with the fidelity aspect we try to measure
in this project whether the explanations match how the user would explain the
given prediction based on their knowledge and reasoning.
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Method

The method of this project enables the comparison of the explanations gener-
ated from the drug repurposing pipeline that uses as input a knowledge graph
that complies to the conceptual structure from the XAI-DMD-DR project and
the explanations from the pipeline using the restructured knowledge graph as
input. To minimize the possibility that a difference in explainability between
these sets of explanations is caused by a process that is not related to design-
ing a new conceptual model, the drug repurposing pipeline has been kept the
same. The overview of all steps performed to answer the research question is
illustrated in Figure 3.1. The process is started by acquiring and aggregating
data from multiple data sources resulting in a knowledge graph containing the
necessary information for the drug repurposing task. This knowledge graph
complies to the same conceptual structure as the input of the drug repurpos-
ing pipeline in the XAI-DMD-DR project. By applying the conceptual model
design approach developed in this project, a restructured knowledge graph is
created. Now, there are two knowledge graphs that can be used as input of
the drug repurposing pipeline. Performing the processes in the pipeline for
both input datasets, two sets of explanations are generated. To compare the
explainability of these explanations, an explanation validation step has been
added that will help us answer the research question of this project.

In the following method descriptions, the term original is used to refer to the
variation of the drug repurposing pipeline that attempts to replicate that of
the XAI-DMD-DR project [57]. The terms restructured or new are used for
referring to the drug repurposing pipeline variation created during this project
using another knowledge graph as input.

The implementation of the methods described in this chapter can be found at
https://github.com/rosazwart/XAIFO-ThesisProject.
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Figure 3.1: The schema that shows the summary of the method used in this project. The
drug repurposing pipeline has the knowledge graph aligned to the conceptual model from
the XAI-DMD-DR project as input or the knowledge graph that is restructured using the
conceptual model design process of this project.

3.1 Data Aggregation

To facilitate performing the drug repurposing task, it is needed to collect dif-
ferent entities linked by various relations. For correlating symptoms related
to DMD with drugs, genetic and phenotypic information as well as interac-
tions between proteins and drug components are needed. This information
is gathered by using multiple data sources being the Monarch Initiative data
platform [59], DrugCentral [62] and the Therapeutic Target Database [69]. The
same data sources have been consulted in the XAI-DMD-DR project. By com-
bining the data from these sources and aligning it to our conceptual model,
the knowledge graph that serves as the new input of the drug repurposing
predictor was built.

The data aggregation process consists of multiple steps in order to collect and
aggregate the information that populates the knowledge graph from multiple
data sources. A global overview of this method is displayed in Figure 3.2.
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Figure 3.2: The schema that shows the collection of datasets used to build the knowl-
edge graph. Three data sources are utilized being the Monarch Initiative data platform
(https://monarchinitiative.org/), DrugCentral (https://drugcentral.org/) and
Therapeutic Target Database (https://db.idrblab.net/ttd/). For genetic and pheno-
typic information, data is fetched using the API service of Monarch Initiative. To acquire
the relevant information for the drug repurposing task, the already existing tool known as
Bioknowledge Reviewer is applied. For drug-phenotype interactions, data is collected from
DrugCentral. From TTD, drug-protein interactions are acquired. The data instances from
all sources are aggregated such that a single knowledge graph is created that can be used in
the next steps.

3.1.1 Bioknowledge Reviewer and Monarch Initiative

The Monarch Initiative provides an open-source data platform from which in-
formation can be retrieved about genes, variants, genotypes, phenotypes and
diseases. Many widely used ontologies have been integrated into this platform
which enables connecting the data from many different data sources into one
large knowledge graph. This allows complex querying throughout various bio-
logical concepts and semantic relations. Genotype-phenotype associations are
collected from a dozen of data sources covering over 100 species and originate
from basic as well as clinical research [59].

For fetching the relevant data from the Monarch Initiative data platform used
in the original knowledge graph, we reused the method from the XAI-DMD-
DR project. This fetcher is part of the Bioknowledge Reviewer, a tool that
collects knowledge from multiple sources and aggregates it to create a knowl-
edge graph [56]. In this case, only the component of Bioknowledge Reviewer
is used that extracts information from Monarch Initiative.

For the tool to extract data from Monarch Initiative, seeds must be provided
in the form of identifiers. These identifiers are formatted differently for each
category of entity. As information needs to be collected related to the rare dis-
ease DMD, the seeds given to the tool are MONDO:0010679 and HGNC:2928.
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The first identifier represents the disease Duchenne muscular dystrophy and
the second refers to the gene DMD. Based on the prefixes of their identifiers
the latter entity is defined in the Mondo Disease Ontology (Mondo) [63]. The
identifier prefix of the gene DMD indicates that the entity is recognized by the
HUGO Gene Nomenclature Committee (HGNC) as an identified human gene
approved by experts [58].

The Monarch Initiative data platform offers an API service that allows users
to query its knowledge graph. Due to the data being represented in a sin-
gle large knowledge graph, users can query and fetch entities of a particular
category connected by specific relations. Given the seeds that serve as the
initial nodes in the knowledge graph used for the drug repurposing pipeline,
the Bioknowledge Reviewer fetches their first-order neighbouring nodes. From
these neighbours, the orthologs of and the phenotypes associated to one of
the seeds are collected and added to our knowledge graph. This step is re-
peated by obtaining the orthologs and associated phenotypes of these newly
added nodes. Lastly, all first-order neighbours are collected given the seeds
and nodes obtained by the previous steps.

Given the first steps of the Monarch Initiative fetcher, the focus is on building
the base of our knowledge graph on orthologs1 related to the gene DMD.

Fetching data used for building the restructured knowledge graph follows the
same principles from the XAI-DMD-DR project for gathering relevant informa-
tion from the Monarch Initiative data platform. However, some changes have
been made to categorize the retrieved nodes. In the Bioknowledge Reviewer,
the class of an entity is determined by the prefix of its identifier. Based on this
method, it needs to be presumed that the prefix is exclusively used for a spe-
cific category. Inspecting the API service of Monarch Initiative, the responses
include the class of the fetched entities. The edited version of the Bioknowl-
edge Reviewer performed for building the restructured knowledge graph uses
this information instead for categorizing the obtained nodes in order to stay
true to the information provision of Monarch Initiative itself.

In this project, version 2.0 of the Bioknowledge Reviewer is used and can be
found at https://github.com/NuriaQueralt/bioknowledge-reviewer/bl
ob/master/bioknowledge\_reviewer/monarch.py.

The original knowledge graph is populated by fetching information from the
Monarch Initiative on the 20th of February 2023. For the restructured knowl-
edge graph, information has been fetched on the 8th of March 2023.

1A gene is orthologous to another gene when both genes are found in different species
and are derived from a common ancestral gene. Genes that are orthologous to each other
often have a similar function. These associations are of great value for the drug repurposing
model when predicting new drug candidates.
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3.1.2 DrugCentral

The open-access online drug compendium DrugCentral provides pharmaceuti-
cal information that is collected from different online public resources. Along-
side the collection from multiple data sources, information also originates from
manual curation of literature [62].

DrugCentral offers downloadable datasets found at https://drugcentral.

org/download. For our knowledge graphs, the drug-target interactions are
retrieved in a text file. It is worth noting that the download page does not
provide the date on which the content of the file has been updated. Based on
the modified date of the downloaded file itself, we can infer that the dataset
originates from the 29th of October 2021. Each line in the document contains
the name of the drug and the disease for which the drug is known to get
prescribed. The diseases are only described using its name or short descrip-
tion, lacking identifiers. Therefore we mapped these labels to an identifier of
the disease. In the XAI-DMD-DR project this is done by using the System
for Ontology-based Re-coding and Technical Annotation (SORTA) [54]. This
tool returns the most probable term from the Human Phenotype Ontology
(HPO) [40] for each given disease label. Now, the entries can be associated
with a phenotype represented by an identifier. Using a threshold for the scores
of the matches, the obtained phenotypes can be aggregated with the phenotype
nodes fetched from the Monarch Initiative data platform.

We used the described method for adding the drug-phenotype interactions to
both the original and restructured knowledge graph.

3.1.3 Therapeutic Target Database

The Therapeutic Target Database (TTD) is a database that provides known
drug targets. These targets can be proteins, pathways or diseases.

On the download page found at https://db.idrblab.net/ttd/full-data-d
ownload a tab-separated values file can be retrieved. Again, the page does not
inform the user about the date of the most recent update of the downloaded
file. Unlike the file from DrugCentral, the file from TTD only shows the date
on which the user downloaded the dataset. The entries show the drug and
the protein it is targeting. Each entry also shows the gene that produces this
protein. The targets are identified with accession numbers used by the Uniprot
Knowledgebase (UnitProtKB). In order to aggregate the targeted genes with
the gene nodes retrieved from Monarch Initiative, these accession numbers
have been mapped to the identifiers that are assigned to the same genes by
the organism specific databases such as HGNC for the genes found in the
human species. UniProt [13] provides a tool that enables the mapping from
the UniProtKB gene identifiers to those used by the Monarch Initiative data
platform.
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The drug entities were aggregated with the already obtained drug nodes from
the DrugCentral dataset using the names of the drugs. Ideally, this would
need to have been done with identifiers instead. However, no method has been
developed in the XAI-DMD-DR project and this project to enable this.

The described method is used for adding the drug-protein interactions in both
the original and restructured knowledge graph. The file containing the inter-
actions was accessed on the 15th of February 2023.

3.2 Conceptual Model Design

The conceptual model design process has been split into a top-down and a
bottom-up approach visualized in Figure 3.3.

Step one of the process is an approach where the sources are limited by ex-
cluding the datasets and only referring to the known information about the
overarching domain of the data. This can be considered as a top-down method
as the expressed concepts and relations using a foundational ontology are de-
rived from collected knowledge about the relevant domain. This first step leads
to the creation of the domain (reference) model/domain-based model.

The second step is the bottom-up approach which entails that a model is
aligned to the concepts and relations found in exclusively the dataset itself re-
sulting in the data-based model. For this, the dataset is considered that results
from solely fetching and linking the data entries coming from the Monarch
Initiative, DrugCentral and TTD databases. This is the method used in the
XAI-DMD-DR project during which no additional changes have been applied
to the conceptual structure of the composed knowledge graph used as input of
the drug repurposing predictor. This graph will be referred to as the original
knowledge graph throughout the research project.

The final conceptual model is built by comparing and finding consensus be-
tween the domain reference model and the data-based model. This is referenced
as the third step in Figure 3.3. Comparing the two draft models facilitates val-
idation of the data-based model as we can compare its concepts and conceptual
structures to those expressed in the domain reference model. This is especially
useful when the dataset is composed of entries originating from sources that
comply with different ontologies. This hybrid approach harmonizes [48] the
heterogeneity of the dataset since a mapping will be yielded during compari-
son of the domain-based and data-based model. By aligning the dataset with
the concepts and relations in the final conceptual intermediary model, a re-
structured dataset is acquired that will be used as the new input of the drug
repurposing predictor. This dataset is referred to as the restructured knowledge
graph in this project.

For all conceptual models built throughout the conceptual model design pro-
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Figure 3.3: The schema inspired by [48] that shows the hybrid approach towards creating
a conceptual model to which the original dataset can be mapped. The steps include a top-
down (step 1) and bottom-up approach (step 2) resulting in a domain-based and data-based
model, respectively. The two draft models are compared and a consensus is found between
them yielding a final conceptual model (step 3).

cess, the OntoUML plugin (version 0.5.3) for Visual Paradigm is used. This
plugin can be accessed via https://github.com/OntoUML/ontouml-vp-plu

gin. Visual Paradigm found at https://www.visual-paradigm.com/ is a
software tool that can be used for many different modelling approaches and
enables the addition of plugins to even further increase the variety of models
that can be built.

3.2.1 Top-down Approach

Multiple steps need to be performed in order to build an accurate conceptual
model representing the relevant domain. This model must also provide the
concepts and relations that are sufficient for reaching the main objective. All
steps of this design process are shown in Figure 3.4.

Defining the Main Objective

For step 1a in Figure 3.4, the main objective is defined. Since this project builds
upon the XAI-DMD-DR project, the main objective of this previous project
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Figure 3.4: An excerpt of the diagram from Figure 3.3. It shows the needed steps for
designing the domain model. Step 1a: The main objective is defined. Step 1b: By briefly
analysing the dataset, collecting relevant definitions and applying goal modelling, the needed
scope of the domain is identified and justified. Step 1c: Existing conceptual models are
searched for that can be partially or completely reused in the domain model. Step 1d: the
structure and content of the model is designed based on all acquired findings. Step 1e: To
express the intended meanings contained in the model, the model is aligned to a foundational
ontology. Step 1f: The last step is the validation of the accuracy of the model by domain-
experts. In case of the model being rejected by the experts, the previous steps need to be
reiterated while incorporating the received feedback.

is replicated which is “obtaining drug candidates that can treat the symptoms
observed with the disease DMD based on their already known targets” [57].

Defining the Scope

The domain to be modelled can be extended into the smallest details. Thus, it
should be cared for that the granularity of concepts and relations between them
is defined. It is needed to balance between providing sufficient information and
making it doable to capture all the required details. Thus, the scope of the
domain needs to be defined which is step 1b in Figure 3.4.

The scope can be determined by briefly looking at the general structure of the
available data in order to get an initial notion about the minimum granularity
that can be achieved.

During this project, it was initially difficult for the consulted experts to un-
derstand the scope and purpose of the domain model due to their complexity.
Using goal modelling, the scope can be identified and justified by splitting
the main objective into multiple manageable subgoals. It also helped clearly
showing how the scope of the domain represented in the conceptual model is
established based on our main objective of the drug repurposing pipeline. The
hierarchical goal model is included in Figure 3.5 and will be discussed in the
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next paragraphs.

As mentioned before, the main objective would be to find drug candidates for
the disease DMD. In order to obtain these, drugs need to be investigated that
are known to treat other diseases. This is done by training a GNN model that
yields probability scores of a drug treating a DMD-related symptom. Ideally,
for each drug candidate prediction an explanation can be generated that is rich
and provides good explainability because it needs to support decision making.

Two subgoals (Fig. 3.5) have been described that are assumed to provide
sufficient information for the XAI algorithm to predict new links between DMD
or its associated phenotypes and drugs. Also, this information would enable the
user to make sense out of the generated explanations as it will be constructed
with a manageable but informative amount of concepts and relations.

The first subgoal would be to collect data such that it is possible to find associ-
ations between drugs that target gene products and genes linked to DMD. For
obtaining this information, the mentioned Therapeutic Target Database and
Monarch Initiative data platform are referred to, replicating the data fetching
method of the previous project. The former database provides data instances
that represent drugs being known to target certain gene products. The data
platform Monarch offers genetic and phenotypic information that is helpful for
finding various entities of different concepts that are associated in some way
with DMD. The second subgoal states that data needs to be collected in order
to be able to find associations between drugs that are used to treat certain dis-
eases or symptoms and diseases or phenotypes that are associated with DMD.
From DrugCentral, information is gathered that shows for what phenotypes or
diseases certain drugs are used. Again, associations between phenotypes and
DMD can be discovered with the genetic and phenotypic information gathered
from Monarch Initiative.
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Figure 3.5: Goal model using the iStar Framework [15]. The rounded shapes are goals,
rectangles are resources, hexagons are tasks and the cloud-shaped icons represent quality.
For the different relations between these elements, there is the AND-relation specified with
a dash through the edge. The contribution links are shown with a regular arrow together
with an edge label. Lastly, the edge with a dot shows the needed-by relation. This goal
model specifies the main objective and its breakdown into multiple high level sub goals.
Given this model, the main goal is to determine drug candidates that can potentially treat
symptoms of DMD. This objective is reached in turn by using explainable AI to predict
these drug candidates. The goal model also shows how predictions and rich explanations of
the explainable AI algorithm are achieved by requiring as input data associations between
drugs, genes, phenotypes and DMD gathered from multiple sources. A higher quality version
of this goal model can be found at https://github.com/rosazwart/XAIFO-ThesisProje
ct/tree/main/images.

Considering the mentioned subgoals will not help with specifying the needed
scope of the domain yet but it can be seen as a useful foundation upon which
new subgoals can be built again. The first subgoal is split into more specific
goals shown in Figure 3.6 in order to show how associations between genes
and the disease DMD can possibly be found taking into account the informa-
tion that can be gathered from the Monarch Initiative data platform. The
information can come in the form of entities that belong to semantic groups
representing genes, diseases, biological processes, anatomical structures, phe-
notypes, variants and genotypes. DMD has direct associations with genes, as
they can be causal or correlated to this disease. There might also exist asso-
ciations between DMD and genes that are not explicitly expressed in the data
set. It can be hypothesized that these indirect associations are considered as
informative paths for the prediction of new links between DMD and drugs by
the XAI:

� Genes can interact with other genes, as the product of one gene can
have an effect on another gene due to regulatory functionalities or the
products of both genes are present in the same biological mechanism such
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as a pathway. Genes can thus interact with the genes that are associated
with DMD which relates genes to DMD while they were initially not
connected with the disease.

� Genes found in other species can have an orthologous relation with a gene
found in the human genome. This means that the genes are evolutionary
related to each other, as they are derived from the same gene found in
the ancestor of both species [51]. It often occurs that genes orthologous
to each other fulfil the same functionalities. Genes that are orthologous
to causal or correlated genes of DMD, can possibly be associations useful
for the predictions aimed for.

� The disease DMD can be involved in biological processes. It can be
speculated that genes expressing in the same biological processes are
associated in some way with DMD.

� Based on all variants associated with DMD, the genes can be inferred of
which the variants are known to be an allele. These are paths that might
be informative for predicting as it highlights possible new associations
between DMD and genes.

� Lastly, links between genes and DMD can be inferred from associations
between this disease and phenotypes or other diseases. As there is also
information about which variants or genes cause certain phenotypes or
diseases, it is possible to find new associations between DMD and genes
following these information paths.
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Figure 3.6: Goal model specifying all possibly useful information paths for associating genetic
data entities with the disease entity DMD that can be used by the XAI algorithm in order to
yield accurate drug repurposing predictions generating rich explanations. A higher quality
version of this goal model can be found at https://github.com/rosazwart/XAIFO-Thesi
sProject/tree/main/images.

Based on the data available from the Monarch Initiative dataset, phenotypes
can be associated with diseases. This is specified in the model as the second
subgoal that needs to be achieved in order to investigate drugs that are known
to treat other diseases (Fig. 3.5). This subgoal has been extended into multiple
goals and tasks shown in Figure 3.7. In addition to direct associations, asso-
ciations between DMD and phenotypes or other diseases may also be inferred
indirectly in the following ways:

� The group of genes associated directly or indirectly with DMD can be
linked to the information about what phenotypes are caused by what
genes. This also includes for example genes orthologous to genes associ-
ated with DMD.

� It can be considered that it is also possible to find links between DMD and
phenotypes by looking at all phenotypes describing a biological process
in which the disease DMD is involved. These connections alone are weak,
but might help supporting associations from other inferences.

� Informative paths can also be found looking at variant information.
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There are direct connections between DMD and variants. The dataset
also provides which phenotypes are caused by which variants when this
is known.

� It is possible that a single variant does not cause any phenotype interest-
ing for forming the drug repurposing predictions. However, combining
this variant with variants of other genes does cause relevant phenotypes.
This is why genotypic information should be included in the training set
of the GNN. It might be possible to relate sets of variants associated with
DMD to genotypes. From these connections, phenotypes can be found
that are known to be caused by these genotypes. Specifically for the case
of DMD, this association path might be less informative due to the fact
that DMD is known as a disease caused by a mutation in a single gene.

� Lastly, other diseases can be related to DMD when there is a large overlap
of associated phenotypes between them.

Figure 3.7: Goal model specifying all possibly useful information paths for associating phe-
notypic data entities with the disease entity DMD that can be used by the XAI in order to
yield accurate drug repurposing predictions generating rich explanations. A higher quality
version of this goal model can be found at https://github.com/rosazwart/XAIFO-Thesi
sProject/tree/main/images.

It is not possible to say that all these information paths are used by the GNN
model to produce its predictions. However, these associations are hypothesized
to be potentially informative for the model to use for arriving at its predictions.
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This might be in the form of utilizing single conceptual information paths or
using associations from many different inferences mentioned in the goal models
(Fig. 3.6 and 3.7).

Collecting Definitions of Concepts

Definitions of the relevant concepts need to be found that are considered to
have a high consensus among the experts of the domain. For instance, defini-
tions of basic concepts can be collected from well-known textbooks that cover
the relevant domain. There exist tools that use heuristic and machine learn-
ing approaches in order to extract excerpts of definitions for a given concept
originating from various published literature in the forms of articles, reviews
and books. This functionality is for example provided by Elsevier’s platform
of peer-reviewed scholarly literature known as ScienceDirect.

Reusing Existing Models

Applying a foundational ontology to the designing process of the domain model
facilitates using already existing models aligned to the same foundational on-
tology. Reusing parts of established models increases the quality of the newly
built model while benefiting from the reusability feature provided by the ap-
plication of a foundational ontology. From literature studies a model (Fig. 3.8)
is found that covers a part of the relevant domain [50] and has been aligned to
the foundational ontology Unified Foundational Ontology (UFO). This model
expressing variation in the human genome shows concepts that are not cov-
ered by the defined scope, such as the sequence of nucleotides forming an allele.
However, the part that expresses that an allele is either an allelic reference or
variant can be included in the domain reference model. Based on the defined
scope, the part of the model that states that multiple alleles represent a gene
as a group can be considered to be added to the conceptual model that we are
developing.
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Figure 3.8: A conceptual model that represents gene variation expressed with OntoUML [50].
The concepts of an allele being either an allelic reference or a variant and a gene represented
by multiple alleles have been added to our domain reference model.

Design Model

Considering the previous steps, information has been acquired that is needed
for designing the model itself. All found terms and relations that can exist
between them are included in the model. After completing this design step,
the model is aligned to a foundational ontology.

Aligning Model to a Foundational Ontology

The model is aligned to a foundational ontology to improve the reality ad-
herence of its conceptual structure. To achieve this, we utilize OntoUML
that helps to define concept structures that comply with the categorization
and axiomization of UFO [29]. OntoUML facilitates building a model since
it enables expressing a model in a concise way using well-defined domain-
independent conceptual elements. This domain-independent foundation upon
which models can be built, increases understandability of the concepts despite
its domain-specific content.

The complete overview of the domain model can be seen in Figure A.1. For
better understandability, the view is also split into multiple modules to explain
the content of the model.

The model expresses the following statements in the partial view provided in
Figure 3.9:

� An allele is defined as being a DNA sequence found at a specific site on
a chromosome implying that an allele is some variation of a certain gene.
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A collection of alleles represents a gene.

� A gene is found in one species.

� An allele is a reference allele when it has been recorded as the reference.
Otherwise, an allele is a variant allele.

� A reference allele and a variant allele differ because of one or multiple
sequence variations.

� A gene of one species can be orthologous to a gene of another species
due to a speciation divergence that is known to have happened at some
point in time. This is called an ortholog gene.

� A genotype specifies a genome with a set of variants along the genetic
background. A genotype can be specified by this collection of variant
alleles that represent different genes.

Figure 3.9: A partial view of the domain model expressed with OntoUML. This part of the
model consists of the concepts genes, orthologous genes, gene variants and genotype.

In Figure 3.10, the part of the model is shown containing the concepts biological
process, gene and anatomical structure:

� A biological process is any process that occurs in a living organism. Such
a process can exist of multiple interactions between molecules. Thus,
a biological process can be either a complex or atomic process. The
former indicates any process associated with multiple subprocesses while
the latter represents the lowest level of processes that are not known to
have subprocesses related to them.

� The biological processes are observed to take place in one or more anatom-
ical entities. The definition of an anatomical entity is taken from the
Common Anatomical Reference Ontology [30] defining this concept as
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being entities that are a part of a cellular organism and have a granular-
ity level above protein complexes.

� A gene can participate at some level in biological processes. Its product
can have different functionalities during a process, such as serving as a
regulator.

� Genes are known to express in one or more anatomical entities.

Figure 3.10: A partial view of the domain model expressed with OntoUML. This part of the
model consists of the concepts biological process, anatomical structure and gene.

In the last part of the model shown in Figure 3.11, the concepts phenotype,
disease and drug are introduced:

� A phenotype can be defined as “the observable characteristic of an or-
ganism which arises from complex interactions between its genotype and
its environment” [22]. Considering the current scope of the dataset, en-
vironmental data entries are not available. This means that the focus
lies on the genetic influence on occurrences of phenotypes. This influ-
ence can originate from several factors. A gene can contribute to one
or more phenotypes. This might be the case due to its product playing
an important role in a biological process that is involved in enabling the
relevant phenotype. A specific variant of a gene can also be known to
cause specific phenotypes. A change in the protein structure caused by
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the mutation in the gene can result in a phenotype that is different from
the phenotype that would occur in the absence of this gene variance.
A phenotype might be the result of the presence of a set of variants of
different genes which is expressed by stating that a genotype is observed
to cause one or more phenotypes.

� Phenotypes can be classified into phenotypes that describe a physiolog-
ical process or an anatomical aspect [22].

� The concept disease is not very informative when it comes to connecting
one disease to another. A disease can be specified by the set of pheno-
types associated to them which represents its known clinical picture.

� A disease can be further specified by including a connection to one or
more biological processes since diseases might be known to affect some
specific processes.

� It can be stated that a gene contributes to a disease. More specifically,
it could be said that a gene variant causes a disease. The presence of a
combination of multiple variants might cause a disease while only having
one of these variants in a genome does not give rise to the same disease.
This substantiates the need of connections that indicate a possible causal
relation between genotypes and diseases.

� A drug needs to treat at least one disease in order to consider the sub-
stance to be a drug. Drugs can be known to specifically have an effect
on one or more phenotypes. Also, the substance might target specific
products of genes which is represented by the connection between the
concepts drug and gene.
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Figure 3.11: A partial view of the domain model expressed with OntoUML. This part of the
model consists of the concepts gene, variants, genotype, phenotype, disease and drug.

Model Validation

A discussion has been held with multiple members of the Leiden University
Medical Center (LUMC) Biosemantics group. This group consists of people
who are researchers on rare diseases or experts in ontology modelling. Many
members also work extensively with medical and genetic data. For exam-
ple, one member contributes to the Leiden Open-source Variation Database
(LOVD). The LOVD is an open-source tool for collecting, displaying and cu-
rating genomic variants and phenotypes [20]. Due to this, they have been
considered experts suitable for giving feedback about our designed domain
model.

The implementation of presenting the scope of the domain model in a goal
model format did result in a better understanding of the presented domain
model, resulting in experts being able to give feedback that is relevant to the
objective that needs to be achieved using this model.

The design steps had to be reiterated in order to implement the received feed-
back. Finally, this resulted in a validated domain model that can be compared
with the data-based model in order to acquire the final conceptual model.
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3.2.2 Bottom-up Approach

For the second step of the hybrid approach, the model is built using the avail-
able data instances as reference for the concepts and relations that need to be
included in the data-based model. In order to do this, the overall structure of
the set of data instances needs to be analysed. The original dataset contains
a total of eight concepts. In Figure 3.12 a graph is included that shows the
original structure of this dataset. In this graph, the edges indicate that the
concepts are connected to each other by one or more relations. This is the
state of the dataset before aligning the data to the final conceptual model.
The specifications of which relations are linking which concepts are shown in
Table C.1 in the appendix.

All concepts and relations found in the original dataset have been included in
the conceptual model shown in Figure A.2 in the appendix. Again, OntoUML
has been applied to express the structure.

Figure 3.12: A graph in which each edge represents one or more relations that exist between
the two connected concepts present in the original dataset acquired by using the data fetch
scripts from the previous project [57]. In this figure VARI stands for variants, DISO for
diseases, ORTH for orthologs, ANAT for anatomical structures, PHYS for physiological
functions and GENO for genotypes.

38



Chapter 3. Method 3.2. Conceptual Model Design

3.2.3 Aligning Domain-based Model with Data-based
Model

The domain model (Fig. A.1) and data-based model (Fig. A.2) are compared
to each other yielding the final middle-level conceptual model shown in Fig-
ure A.3.

The decisions that have been made during the alignment are based on sugges-
tions from domain experts and literature, avoiding as much decision-making
by ourselves. The decisions are based on the goal to avoid over-complexity, as
we hypothesise that this may introduce too much noise and thus negatively
affect predictive and explanatory performance.

In this section, we often refer to the relations and their definitions. For read-
ability, the references are excluded here when citing the definitions. Instead,
the identifiers and annotations of these relations have been collected in an
overview in Table B.1 showing their ontology source.

Concepts

There are some differences between the concepts present in the data-based
model and the domain model :

� In the data-based model, orthologous genes are considered a different
concept from the concept gene. In the domain model, it is highlighted
that an ortholog is not different from a gene except for the occurrence
of at least one link to another gene entity that indicates an orthologous
relationship between them. The emphasis of an ortholog being a gene is
also included in the final conceptual model by removing ortholog being
a separate concept from gene. In the final model, an entity of concept
gene can have as subtype ortholog when it is known to have an orthology
relationship with another gene.

� The concept phenotype cannot be found in the data-based model, because
all phenotype entities are considered to belong to the concept disease. In
the domain model, a disease is seen as an entity that can be associated
with a collection of phenotypes. Some disease-associated phenotypes
might play a more prominent role than other phenotypes in the clinical
picture of the disease which implies that a disease is conceptually seen as
a functional complex. This will also be emphasized in the final model by
considering the disease as the OntoUML class stereotype Kind. Also, the
concept phenotype is added to the model and can have a relation with
a disease entity when it is considered to belong in the clinical picture of
that disease.

� Based on the connection graph in Figure 3.12, the anatomical entity
concept has associations with very few other concepts. In the domain
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model, it is expressed that phenotypes, diseases, biological processes and
genes can be linked in some informative way with an anatomical entity.
However, the data-based model shows that there are only associations
between anatomical entities and genes. Since this concept already carries
a low granularity as a very large number of processes can take place in
an anatomical entity, the presence of these entities in the dataset will
not help with inferences about for example gene similarity, Thus, this
concept has been excluded in the final conceptual model.

� In the domain model, the species in which genes are found is included
while this is not the case in the data-based model. In the original dataset,
it is already specified by categorizing the entity under ortholog instead of
gene when this gene is found in a species other than the human species.
In the final conceptual model, orthologs are subtypes of the concept gene.
Because of this, it is needed to specify in what species the gene is found
which is done by including the concept species to the final model.

Relations

Looking at the data-based model, it can be noticed that there is a large number
of relations existing between the same pairs of semantic groups while this is
not the case in the domain model. Some of these relations refer to information
that will not add anything that improves the drug repurposing predictions
considering the concepts available in the dataset. On the contrary, by including
relations that are very similar to other relations given the limiting granularity
that can be reached, it would only cause more noise to the dataset. Thus, it is
investigated whether the relations in the data-based model hold the same level
of information considering the scope defined by the goal model. A relation will
be levelled to its ancestor when it is concluded that for the given scope the
occurrence of the descendant relation in the dataset will not yield additional
information.

The relations present in the dataset are defined in different ontologies being
the OBO Relations Ontology [52] and the GENO Ontology [12]. The Ontology
Lookup Service [38] provides a querier that is able to collect all ancestors
and descendants of given relation entities from various ontology sources. This
querier has been implemented such that it could be used for deciding whether
relations present in the dataset can be merged with other relations.
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Figure 3.13: The hierarchy between relations in the original dataset based on the OBO Re-
lations Ontology and the Genotype Ontology. All relations except for causes or contributes
to condition can be found between some concept entities in the dataset. The arrows point
towards the child of the relation.

Figure 3.14: The relations that are children of the relation has affected feature based on the
Genotype Ontology.

Figure 3.13 shows the hierarchy present in the original dataset. Based on the
scope taken into account, it can be decided whether some relations need to be
replaced by its parent relation in order to reach the desired granularity:

� The parent relation has affected feature is defined as “a relation that
holds between an instance of a genetic variation and a genomic feature
(typically a gene class) that is affected in its sequence or expression”.
This indicates that an edge of relation has affected feature connects a
node of concept variant with a node of concept gene since the dataset
does not include any other concept that can be considered as a genomic
feature. All children of this relation have been collected (Fig. 3.14). One
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of the children is the relation included in the original data as well being
is allele of, while the other relations are not found between the concept
entities.

The included relation labeled as is allele of has the definition of “A rela-
tion linking an instance of a variable feature (aka an allele) to a genomic
location/locus it occupies which is typically a gene locus”. Based on this
definition, relation is allele of should exclusively link a variant to a gene
taking into account all semantic groups that are available in the dataset.

Using has affected feature instead of is allele of is due to a divergence
in the meaning of the connection between a variant and gene. For the
relation has affected feature, the variant is either an allele of the gene or
influences due to its altered sequence the expression of another gene. This
could be the case with for example gene regulatory pathways in which
one gene produces a protein that regulates the expression of another
gene.

Following the current information granularity, the relation is allele of be-
tween a variant and gene indicates that this variant is a version of that
gene, indicating both entities to be associated with the same functionali-
ties, orthology relations and gene interactions excluding the consequences
of the mutations that the variant brings. When a variant is linked with
a gene by the relation has affected feature, it can be the case that the
variant is associated with this gene in another way, having something to
do with interaction between different genes as this variant does not nec-
essarily contain an altered sequence of that connected gene. Thus, the
relation is allele of cannot be replaced by its parent relation has affected
feature.

In the built domain model, a gene and variant is also connected by the
relation that implies that a variant is an allele of a gene. However, the
relation has affected feature had not been included. Given the compari-
son between the definitions of the two relations has affected feature and
is allele of, both relations are included in the final model : We cannot
generalize is allele of to has affected feature associations because there
is a risk of losing information as the specification between these relations
is informative given the granularity.

� Two genes can be orthologous to each other in a one-to-one and in a
one-to-many manner. The former means that both genes of the orthol-
ogous pair do not have more genes in the other species to which they
are orthologous. The latter implies that one gene of the pair has more
orthologous genes in the other species. This would mean that the gene
has been duplicated in the other species after the speciation divergence.

Based on the goals set during defining of the scope, it is only needed

42



Chapter 3. Method 3.2. Conceptual Model Design

to convey the information that orthologous genes most likely share the
same functionalities. The distinction between one-to-one, one-to-many
and many-to-many orthologous gene pairs should not carry much more
information that would benefit reaching the goal of yielding drug repur-
posing predictions and generating clear explanations. Thus, the child
relation in 1 to 1 orthology relationship with is discarded and replaced
by its parent relation in orthology relationship with. This change com-
plies to the domain model, in which also a single relation exists between
a gene and its ortholog.

� The relation contributes to condition is “a relationship between an entity
such as a genotype or genetic variation and a condition represented as
a phenotype or disease where the entity has some contributing role that
influences the condition”. The other relation causes condition implies “a
relationship between an entity such as a genotype or genetic variation
and a condition being a phenotype or disease where the entity has some
causal role for the condition”. From these definitions some statements
can be made.

Firstly, both relations and their subrelations connect some subject with
an object that is exclusively belonging to either the disease or phenotype
concept. The object can be a gene, gene variant or a genotype.

The distinction between the relations contributes to condition and causes
condition lays in the correlative and causative nature, respectively. It can
be said that these relations are needed to be distinguishable in the final
conceptual model as well, since the relations carry the information of a
genetic entity having a certain level of effect on the condition. Now,
it needs to be investigated whether their subrelations carry information
that are sufficiently distinguishable from each other taking into account
the defined scope.

– The relation is causal germline mutation partially giving rise to “re-
lates a gene to condition, such that a mutation in this gene partially
contributes to the presentation of this condition.” Attempting to
decrease the density of relations between concepts, we criticize that
there is insufficient distinguishment between the parent relation con-
tributes to condition and this subrelation. Specifically allowing the
relation contributes to condition to have as subject an entity of con-
cept gene, genotype or variant, the merging of the relation into its
parent relation is enabled.

– The relation is causal germline mutation in is a child of relation
causes condition and “relates a gene to condition, such that a mu-
tation in this gene is sufficient to produce the condition and that can
be passed on the offspring”. The relation indicates that a mutation
in this gene is causal to the condition which is already indicated
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by its parent relation causes condition. The information that dis-
tinguishes the two relations is that the mutation of the gene can
be passed on to offspring. This is exceeding the granularity con-
cluded from the goal modelling step and thus, this subrelation can
be replaced by its parent.

– For the relations pathogenic for condition and likely pathogenic for
condition annotated definitions could not be found. Based on their
labels, it is very closely resembling the information held by causes
condition giving no reason to keep these subrelations being explic-
itly different from their parent relation. However, it can be observed
that the subrelations differ in level of certainty of the causal effect on
a condition. This distinction will be included in the final conceptual
model by introducing a relation labeled as likely causes condition.

In this way, the certainty level is made explicit while also removing re-
lations that hold similar information used in the drug repurposing pre-
dictions. In the domain model, the difference between causality and
correlation of a genetic entity as well as the certainty level have not been
included. Due to its presence in the dataset and consideration of their
importance, it has been realized that these relations are useful to include
to the final conceptual model.

The analysis of shared ancestors between relations did not yield information
for all relations in the original dataset. Some other relations that connect the
same pairs of semantic groups are looked into as well:

� The relation labeled as is marker for with URI RO:0002607 has the
following definition: “C is marker for d if and only if the presence or
occurrence of d is correlated with the presence or occurrence of c, and
the observation of c is used to infer the presence or occurrence of d”. This
relation is very closely resembling the relation contributes to condition
that also indicates a correlation of an entity with a condition. Due to this
resemblance, it has been chosen to replace is marker for with contributes
to condition.

� The relations involved in (RO:0002331 ), enables (RO:0002327 ) and is
part of (BFO:0000050 ) have been found to connect the same semantic
groups. “An entity c involved in p holds if and only if c enables some
process p’, and p’ is part of p”. “An entity c enables p if and only if
c is capable of p and c acts to execute p”. The relation is part of is a
“core relation that holds between a part and its whole”. Based on the
original dataset, all three relations connect an entity to an entity that is
exclusively of semantic group physiological process. Ideally, these rela-
tions are distinguished from each other on the basis of linking processes
to other processes forming complex processes built of atomic ones as was
done in the domain model. For example, the relation involved in could
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be removed and replaced by the entity connecting to the subprocess in-
stead. However, the data-based model does not include any relations
linking physiological process entities together. This indicates a lack of
information to distinguish between the three relations in a conceptually
clearer way. Based on their definitions, enables has a higher level of
participation of the entity in the process than involved in. The relation
involved in has a stronger association in participation than is part of.

� Relation contributes to (RO:0002326 ) is considered to hold the same
information as relation contributes to condition given the observation
that both relations have the same pair of semantic groups, being gene
and condition which is either a disease or phenotype.

� Relation has phenotype (RO:0002200 ) is “a relationship that holds be-
tween a biological entity and a phenotype. The subject of this rela-
tionship can be a genomic entity such as a gene if modifications of the
gene causes the phenotype.” This suggests a strong similarity with the
relation causes condition that can serve as the substitute relation.

Inconsistencies

By comparing the two drafted models and taking a thorough look at the defi-
nitions of all relations found between the concepts, some inconsistencies were
found in the data-based model looking at all existing triples (Table C.1):

� The relation contributes to condition links genotypes and genes to a
genotype entity. As previously determined, the relation can only have a
phenotype of disease as the object.

� The relation has phenotype links orthologs to genotype entities while the
definition of the relation only allows phenotypes as objects.

� The relation has affected feature has restrictions that are violated looking
at the triples found in the original dataset. Based on its definitions
mentioned before, the subject can only be a genetic variation while a
triplet for this relation is present with as subject a genotype entity.

� The relation has genotype (GENO:0000222 ) is “a relationship that holds
between a biological entity and some level of genetic variation present
in its genome. The biological entity can be an organism, a group of
organisms that shares a common genotype or organism-derived entities
such as cell lines or biospecimens.” In the dataset this relation has
as subject exclusively a genotype and the object can be an ortholog,
genotype or disease. Given the definition of the relation, these triples
are incorrect. Interestingly, this relation indicates a new concept that
has been overlooked before, as there are no concepts included yet that
represent any form of the mentioned biological entity examples.
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� The relation in (1 to 1) orthology relationship with is allowed to only
link gene entities together when complying to the meaning of being in
an orthology relationship. It is also clear from the domain model that the
orthology relationship is expected to only be relevant to genes. The orig-
inal dataset shows inconsistencies for these relations, because its triples
also contain genotype entities as subject and object.

� The relation is allele of should have as subject a variant entity and
as object an entity of the semantic group gene. However, the original
dataset has a triplet including this relation and the possibility of the
subject to be a disease entity.

� The relation source (dc:source) has something to do with “a related re-
source from which the described class/term’s annotations are derived”.
This definition indicates the presence of entities that represent a publica-
tion. However, the concept publication is not and should not be included
in both draft models as it will not provide information that is helpful for
the drug repurposing predictions. The triplet that contains this relation
has as subject physiological process entities and as object gene entities
indicating some inconsistencies in the dataset.

The inconsistencies found in the data-based model are excluded from the final
conceptual model by solving the problem that has caused this. In order to solve
the problem, it should be investigated how these inconsistencies have occurred.
The data fetching step used in previous research [57] has been revised to find
out why these inconsistencies are present in the dataset. The outcome of this
revision is described in one of the next sections.

Undefined Relations

There are triples with undefined relations. It is possible to speculate what
information these relations may carry by referring to the domain model. The
conceptual inconsistencies in the dataset will complicate making correct infer-
ences, increasing the risk of forming incorrect assumptions about the meaning
of these relations. So, this step will be performed after the problem of concep-
tual inconsistencies in the dataset has been solved.

3.2.4 Recreation of Data Fetching

The first step of the restructuring process has already been performed in or-
der to verify the cause of the conceptual inconsistencies found in the original
dataset. The data fetching steps from the Monarch Initiative Data platform,
Therapeutic Target Database and DrugCentral have been recreated resulting
in the connection graph shown in Figure 3.15. All triples found in this new
dataset are shown in Table C.2. During revising the data fetching steps of
the original data instances, the concepts of each entity has been derived from
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the prefix of its identifier. This method might result in unreliable categoriza-
tion of entities as the meaning of the identifier prefix can change throughout
time. This is why this step has been replaced by directly fetching the category
assigned to the entity by the data platform itself.

Figure 3.15: A graph in which each edge represents one or more relations that exist between
the two connected concepts present in the dataset acquired by the newly built fetcher.

The concepts gene, variant and genotype have a set of relations in common.
This enables categorization of these concepts that will be indicated as biological
entity. This set of shared relations has to do with the correlative or causative
associations with a phenotype or disease.

Due to acquiring the categories of the data entities from the source instead
of deducing it from the identifier prefixes, some new concepts appeared in the
new dataset that were not present in the original dataset. Thus, we need to
figure out how these new concepts fit onto the data-based model. This can be
done by comparing the triples of the original dataset with the ones of the new
dataset, as we do know that the entities of the new concepts were categorized
as other concepts in the original dataset. Also, it is investigated how the new
concepts will be incorporated into the final conceptual model.

� The concepts cellular component, molecular function and pathway were
not included in the original dataset. The entities categorized as cellular
component are grouped into the concept physiological process in the
original dataset. This is the case because both categories are found in
triples with relation is part of. The entities of concept molecular function
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are connected to other entities by the relation enables which indicates
that the original dataset has included these instances in the physiological
process semantic group as well. Given the identified triples in the new
dataset, the relation involved in exclusively connects a gene or disease
to a pathway or a biological process. These findings oblige us to retract
the previous statements about the three relationships carrying a different
level of participation to a biological process as it now shows that the usage
of relations merely differs based on the concept the object entity has.
This changes the perspective as concepts have appeared that were not
considered in either the data-based and domain model. As the concept
physiological process from the original dataset has been split into four
different semantic groups, it has been realized that these entities carry
less information than initially thought. Given the connection graph in
Figure 3.12, the concept physiological process seemed to associate with
several other semantically grouped entities. Considering the triples of
the new dataset, it can be seen that the concepts molecular function and
cellular component are only associated with genes. The goals that need to
be reached for yielding drug repurposing predictions (Fig. 3.6 and 3.7)
indicated that connections between these concepts and phenotypes or
diseases are needed to enable inferences. These goals cannot be reached
with the current dataset. Despite this, the concepts are still included in
the final conceptual model as they can contribute to finding genes similar
to other genes. The concepts pathway and biological process are both
able to be associated to genes as well as diseases. It has been chosen to
merge these concepts together and consider this as the concept biological
process since their meanings are quite similar: A pathway can be seen
as a process in itself.

� The concept model did not appear in the previous data model. Also,
this concept has not been thought of during the design of the domain
model. Looking at the relations the model entities appear with, it might
be possible to infer what this semantic group entails. It has been noticed
before that the relation has genotype indicated a concept group that was
not present in the original data model. In fact, this concept group would
have to do with an organism or cell line as biological entity, being the
required group of entities as subject of this relation. However, there are
also indications that the concept model can be of the same nature as
other concepts when looking at the constraints of some relations. The
concept model appears as subject of relations that are heavily associated
with the concept gene, such as enables, in 1 to 1 orthology relationship
with, interacts with and is part of. Also, the concept also appears as a
subject for the relation has phenotype. Due to this, the concept model
is included in the final conceptual model as a new anti-rigid class in-
cluding all biological entity concepts as members of this class. During
the restructuring step, the entities originally assigned to model might be
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reorganized and distributed over all the biological entity concepts based
on the set of relations the entities are associated with. The anti-rigidity
comes from the fact that a model entity is only considered a model when
it has a role in modeling at least one disease. When an entity that is
originally of concept model is associated with a genotype or other vari-
ation via relation has genotype, the entity will be an instance of a new
concept. This new concept needs to represent a collection of cells or an
organism of a certain species in order to accord with the definition of
has genotype. In the final conceptual model, this new concept is called
organism/cell line.

As it was noticed before, there are some undefined relations between some
concepts. The meaning of a few of these relations can be hypothesized while
others cannot:

� The undefined relation between the pairs genotype and gene, variant and
model, model and gene found in the new dataset (Table C.2) cannot be
inferred given the domain model.

� The undefined relation between variant and genotype entities (Table C.2)
does exist in the domain model as it depicts which variants are contained
by which genotype. The relation will be expressed as is variant in.

� The meaning of the relation between chemical and disease might be hy-
pothesized as well. The concepts chemical and drug are similar to each
other, because a drug is a chemical component. Thus, the relation is
substance that treats will be used and the concept chemical is replaced
by drug.

Resulting Model

The complete overview of the final conceptual model can be seen in Figure A.3.
For better understandability, the view is split into several parts.

The following statements have been expressed in the model in the partial view
provided in Figure 3.16:

� A gene can interact with other genes or be colocalized with other genes.

� A gene is found in one specific species.

� A gene can be ortholog to another gene of another species.

� A variant is a variant version of one gene.

� A variant can affect the expression or sequence of a gene. The latter
option should ideally be indicated by connecting a variant entity with a
gene entity using the relation is allele of. However, it cannot be ruled
out that a variant being the variant version of a gene is expressed by the
relation has affected feature given the data instances.
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� A genotype consists of one or multiple variants of different genes.

� An organism or cell line is of a species and is known to have a genotype
or its genome to contain a certain variant.

� Genes, variants, genotypes and organisms/cell lines are considered to be
biological entities.

Figure 3.16: A partial view of the final conceptual model expressed with OntoUML. This
part of the model is related to the biological entity concepts.

The next statements are expressed in another part of the model shown in
Figure 3.17:

� A gene can be part of some cellular components.

� A gene can enable some molecular functions.

� A gene or disease can be involved in some biological processes.
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Figure 3.17: A partial view of the final conceptual model expressed with OntoUML. This
part of the model consists of the concepts related to biological processes.

In Figure 3.18, the following statements are expressed:

� A phenotype can be associated with one or multiple diseases.

� A drug can be a substance that treats a disease or phenotype.

� A drug can target one or multiple gene products which are products of
genes.

� A biological entity is a model when it has a role in modeling at least one
disease.

� A biological entity can be correlated with or has a (likely) causal role in
the appearance of a disease or phenotype.
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Figure 3.18: A partial view of the final conceptual model expressed with OntoUML. This
part of the model is related to the concepts disease and drug.

3.3 Drug Repurposing Pipeline

Using a knowledge graph as input, a graph neural network can be trained. In
order to acquire predictions and explanations for these outcomes, several steps
have to be taken, as shown in Figure 3.19b.

Before a graph neural network model is trained on the input graph, the char-
acteristics of the nodes need to be obtained and represented. These features
need to capture the heterogeneous neighbourhood of a node which can for ex-
ample help express the semantic similarities or differences between other nodes
in the graph. The use of the embedding methods provides a way to efficiently
extract the characteristics of the nodes into a low dimension feature space de-
spite having to deal with a graph that contains a large number of nodes and
edges.

After this node embedding step, the GNN model can be trained such that
new links can be predicted in the given input graph between a node that
represents a phenotype or disease, and a drug node. Explanations are as follows
generated for the most interesting drug repurposing predictions by applying
the GNNExplainer method onto the trained GNN model.

In the next sections, the mentioned steps and their used methods will be
discussed in more detail.

3.3.1 Node Embedding

The input graph for this prediction task is a knowledge graph which means
that the graph holds various types of nodes and edges. These types majorly
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(a) This is a copy of the summary of all steps of this project seen in Figure 3.1. The steps
highlighted with the blue rectangle are the processes that will be discussed in this section. In
Figure 3.19b the details are shown of these steps.

(b) A diagram of the steps that are taken to acquire predictions and their explanations. For the graph to
be compatible as input for the graph neural network, embeddings of the nodes are acquired that represent
the heterogeneous structure of their neighbourhoods in the graph. The training, validation and test sets are
created using transductive splits. After the graph neural network is trained, predictions are yielded relevant
to the drug repurposing problem. Utilizing the GNNExplainer method, explanations are generated for the
acquired predictions.

Figure 3.19: The diagrams that clarify the details and the position of generating the drug
repurposing predictions and explanations in the overall project pipeline.
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convey the meaning of the data as different relations need to be expressed
between different biological concepts. The semantic nature of this data is
crucial in order to represent its complex knowledge domain and thus, using a
node embedding method that retains the rich heterogeneity of the graph is a
priority. That is why the edge2vec [21] method is used.

For the first step, this graph representation method yields an edge-type transi-
tion matrix that contains the weights of transitions between all different edge
types during a random walk process (Fig. 3.19b, step 1a). In this way, edge
types that occur in the graph less frequently while being highly informative can
still appear often in random walks because they have high transition weights
with other edge types. Thus, the topological structure as well as the edge
semantics of the network are considered. For calculating the edge-type tran-
sition matrix, the first step is setting all transition weights to the same value
such that transition probabilities between all edge types are equal. The transi-
tion weights are then optimized following the Expectation-Maximization (EM)
principles. In the Maximization step (M-step), a collection of random walk
paths is generated constrained by the current edge-type transition matrix. In
the Expectation step (E-step), the edge-type transition matrix is updated and
optimized using the newly obtained biased random walks as feedback. From
these walks, the number of occurrences of each edge type per path can be ex-
tracted and used for calculating the pairwise correlation scores between all edge
types. A high correlation between a pair of edge types translates to a high tran-
sition probability between these edge types. The correlation scores are normal-
ized such that the values are restricted to the transition probability range from
0 to 1. Now, these normalized scores are used as the updated transition weights
of the edge-type transition matrix. The Expectation-Maximization steps can
be iterated until the transition matrix is optimized sufficiently (Fig. 3.19b,
step 1b). The total number of iterations that is needed for optimization that
yields the best performance depends on the application and thus, needs to be
included in the parameter tuning process. There are other parameters that
need to be optimized related to the creation of the edge-type transition matrix
such as the number of walks per node and the length of these paths in the
M-step.

The second step of the edge2vec method is the training of a skip-gram model
known as word2vec (Fig. 3.19b, step 1c). This is done by generating a series
of biased random walks following the transition probabilities given by the pre-
viously optimized edge-type transition matrix. Skip-gram models are neural
network-based models generally used for generating word embeddings. These
embeddings represent words such that the words that are found in similar
contexts are close to each other in the feature space. The architecture of the
skip-gram model consists of one hidden layer. The input layer receives a one-
hot encoded vector representing the target word. This vector has the size equal
to the total number of unique words in the corpus. The neural network needs to
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predict which words have a high probability of occurring in the context of the
target word. During the training process, the hidden layer learns the embed-
ding representation of the given input target words. Thus, after training, this
hidden layer provides the feature vector of the input word. In the case of node
embeddings, the corpus is replaced by the collection of biased random walks in
the form of node sequences. By using these paths, the skip-gram model learns
to predict the contexts of the given target nodes. Now, the hidden layer of the
trained model gives the node embedding which captures features of the target
node. By inputting each node of the graph into the trained skip-gram model,
the hidden layer can be used to extract the embeddings for all nodes in the
graph (Fig. 3.19b, step 1d).

This node embedding process requires tuning of a set of hyperparameters to
optimize the performance of this step in the pipeline. This set includes param-
eters such as the number of walks per node, the length of these walks and the
probability expressed in p of returning to the previous node. Also, parameter
q can be tuned, representing the probability that controls whether the random
walks comply with a breadth-first or depth-first search.

The source code of the edge2vec method can be accessed from https://gith

ub.com/RoyZhengGao/edge2vec. This algorithm has been modified to work
with Python 3 in the XAI-DMD-DR project. The resulting updated method
is also included in this project and can be accessed at https://github.com
/rosazwart/XAIFO-ThesisProject.

3.3.2 Training Graph Neural Network Model

For training the GNN the dataset needs to be split into a training, validation
and test set (Fig. 3.19b, step 2a). For a link prediction task, the goal is to
predict whether edges between nodes in the graph exist or not. To capture both
the presence and absence of edges, negative sampling needs to be included.
This means that all splits contain edges labeled as 0 or 1. The former means
that the edge does not exist in the given graph and the latter represents an
existing edge. For each positive sample in a split, one negative sample is taken
from the graph. In this way, both classes are represented equally well. The
used method for splitting the data is the transductive split [43]. This means
that for each split, the whole input graph can be observed and used when
computing the output of the model. The actual splitting is done on the labels
of the edges which is a process with multiple steps in order to prevent any data
leakage from the test set into the training or validation set. Firstly, the edges
in the graph are divided into two types of edges being message and supervision
edges. Message edges are fed into the GNN. The supervision edges are only
used for determining the loss of the predictions throughout the training process
of the model. The graph including only the message edges serves as the input
graph of the GNN. The supervision edges are split into a training, validation
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and test set.

For the pipeline that splits the graph dataset into a training, validation and
test set with negative sampling, the library DeepSNAP (Version 0.2.1) [1] is
used.

3.3.3 Graph Neural Network Model Architecture

The architecture of the GNN consists of several GraphSAGE convolutional
layers [32], each followed by a batch normalization layer. Each GraphSAGE
convolutional layer samples and aggregates messages from the neighbours of
each node. In this way, a function is learned that generates an embedding for
any node that has been given as input [32]. The batch normalization layers
allow the use of higher learning rates as it stabilizes the training process by
normalizing the activation vectors of the hidden layers [35].

The number of layers that decides on the size of the neighbourhood considered
in the message passing step of the GNN model is one of the hyperparameters
that can be tuned to optimize the performance. Also, optimization can be done
by tuning the hyperparameters such as the aggregation function, learning rate,
the number of epochs and the size of the hidden and output layers.

For building the GNN model that will obtain the link predictions after training,
several Python packages have been used. The tensor library for deep learning
PyTorch (Version 1.11.0) [3] is applied to building the GNN model itself. For
the implementation of the GraphSAGEmodule, the library PyTorch Geometric
(Version 2.0.4) is used. This package has been built upon PyTorch in order to
facilitate the building and training of GNNs.

3.3.4 Obtaining Predictions

The input of the GNN model are the node embeddings that have captured the
heterogeneity due to using the edge2vec method. The GNN model outputs new
embeddings for each node in a list. To acquire the prediction of an edge existing
or not, the dot product2 is calculated between the newly generated embeddings
of the head and tail nodes. Next, the sigmoid function3 is applied to this value,
resulting in the confidence of the edge existing ranging between 0 and 1. The
closer to 1, the higher the confidence of the prediction that the nodes are
connected to each other in the graph (Fig. 3.19b, step 4). These confidence
values can be compared to the labels of the supervision edges. Since the task

2The dot product receives two vectors with equal length n being a = [a1, ..., an] and

b = [b1, ..., bn]. The dot product is defined as a · b =
∑i=1

n aibi = a1b1 + ...+ anbn. In this
context, vectors a and b are the node embeddings where n is equal to the embedding size.

3The sigmoid function is commonly used in machine learning for transforming values to
a probabilistic range. This logistic function has an S-shaped curve mapping any real-valued
number to a value ranging between 0 and 1.
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involves binary classification, the Binary Cross Entropy loss function [4] is used
during the training process (Fig. 3.19b, step 2b).

3.3.5 Hyperparameter Optimization

Numerous hyperparameters from multiple subprocesses in the pipeline need
to be tuned in order to optimize the performance of the GNN model on the
knowledge graphs. The framework RayTune provides parallel processing of
the hyperparameter tuning [44]. Random Search is applied to the hyperpa-
rameter optimization process. This means that for each search trial, a random
combination of parameter values is used.

The version of RayTune that is used in this project is 2.3.1 and can be accessed
at https://docs.ray.io/en/releases-2.3.1/tune/index.html.

3.3.6 Generating Explanations

For generating explanations given the trained graph-based deep learning model,
the method GNNExplainer [67] is used (Fig. 3.19b, step 5). In this project, the
GNNExplainer outputs a subgraph of the input knowledge graph that explains
a given link prediction. This explaining subgraph is constructed by eliminat-
ing the edges that do not affect the outcome of the trained model. This is
decided by looking at the difference between the confidence value predicted by
the GNN using the full graph as input and the subgraph. If this difference is
small, a subgraph has been found that contains all edges that have the most
influence on the prediction result for the given link.

In practice, the GNNExplainer algorithm uses a binary mask over the edges
to keep track of their importance. By masking an edge with a zero, it is
not contained by the current subgraph. The optimization problem that the
GNNExplainer method solves, is to obtain a mask representing a subgraph
that maximizes the Mutual Information (MI) [67]. Here, MI quantifies the
statistical dependence between the output of the GNN model and the inclusion
or exclusion of edges in the input graph.

max
GS

MI(Y, (GS, XS))) = H(Y )−H(Y |G = GS, X = XS) (3.1)

In the formulation of the optimization problem given in the equation above
(Eq. 3.1 [67]), GS is the subgraph of the complete input graph of the GNN
model Φ represented as GC . For calculating MI, the entropy is considered of
the initial prediction H(Y ) and the entropy of the prediction using the sub-
graph GS. GNNExplainer can also consider importances of node features by
including a subset of the node features to the optimization problem. However,
in the drug repurposing input knowledge graph, there are no node features to
consider in the explanation.
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The entropy term H(Y ) in Equation 3.1 is fixed as the GNN model Φ is trained
and outputs the same predictions given the same input. Thus, maximizing the
mutual information can be simplified as it is equivalent to the minimization
of the conditional entropy H(Y |G = GS, X = XS). This implies that the
found explanation for a prediction ŷ is a subgraph and optionally a subset of
node features that minimize the uncertainty associated with predicting this
output ŷ by Φ. In other words, the GNNExplainer finds the subgraph GS and
subset of node features XS that maximize the probability of the GNN model
Φ predicting ŷ.

The GNNExplainer method accepts parameters that set the size of the ex-
planation subgraph. This parameter KM will include the edges that give the
KM highest mutual information given the prediction. In this project the size
has been kept equal to that of the XAI-DMD-DR project. To replicate the
explanation generating step from this previous project as much as possible, the
number of epochs used by the GNNExplainer and the learning rate to optimize
on the mutual information are also kept the same.

The modified version of the GNNExplainer from the XAI-DMD-DR project is
used as it added a function that enabled the generation of explanations for link
prediction tasks. Also, the explanations that result from the GNNExplainer
algorithm, are only accepted as obtained explanation when the subgraph is
‘complete’. A ‘complete’ explanation is defined as a subgraph in which a
path exists between the nodes that are connected by the predicted link that is
explained.

The original version of the method comes from version 2.0.4 of PyTorch Geo-
metric and can be accessed from https://pytorch-geometric.readthedo

cs.io/en/2.0.4/_modules/torch_geometric/nn/models/gnn_explainer.

html#GNNExplainer.

3.4 Comparing Explanations

To answer our research question, the generated explanations need to be com-
pared by measuring their explainability. This is a measurement that is best
done by collecting subjective assessments from the intended user group of the
DMD drug repurposing XAI system.

We acquired subjective evaluations from researchers that fall under the profile
of a potential user of the drug repurposer by designing a questionnaire for
evaluating the explanations. The requirement for participating in the survey
is that the candidate needs to have a background in related to DMD or drug
repurposing research. This ensures that answers are obtained from persons
that can represent the intended user group and are grounded by relevant expert
knowledge. To assess the level of explainability of a given explanation, a set
of statements is developed to evaluate the different aspects of explainability

58



Chapter 3. Method 3.5. Predictive Performance Metrics

being clarity, parsimony, completeness, and soundness in the perspective of
the user:

� For assessing clarity, it has been asked whether the participant believes
that the explanation is unambiguous regarding the use of concepts and
relations.

� For assessing parsimony, it has been asked whether the participant be-
lieves that the explanation is presented in a way that is not too complex.

� For assessing completeness, it has been asked whether the participant
believes that the explanation provides sufficient information to explain
a new drug candidate.

� For assessing soundness, it has been asked whether the participant be-
lieves that the information paths shown in the explanations are useful
for finding potential drug candidates.

The candidates need to assess these statements using Likert scaled scores [45]
ranging from one to five where a score of one stands for strongly disagreeing
with the given statement and five means that the person strongly agrees.

Considering the time constraint of the project and the specific candidate re-
quirements, we anticipated on a limited number of participants being available
to complete the questionnaires. Due to this, two questionnaires are created for
both the model trained on the original knowledge graph and the model trained
on the restructured knowledge graph. Each questionnaire consists of a single
randomly chosen explanation from the set of all generated explanations.

The results of the distributed questionnaires will be shown and discussed in
Section 4.4. Due to time constraints, we aim to collect more participants
in future research in order to reach statistical significance for comparing the
explanations.

3.5 Predictive Performance Metrics

The performance of the GNN model is measured by using the AUC-ROC
score [53] which is a suitable performance metric when both the sensitivity
and specificity of the model are important. A high sensitivity means that
the model performs well in finding a large proportion of existing edges (true
positives) while minimizing predicting positive edges being non-existent (false
negatives). A high specificity shows that the model can find a large proportion
of non-existing edges (true negatives) while it avoids classifying non-existing
edges to be positive (false positives).

Some other performance metrics have been applied on the predictions of the
trained model. The ROC curve is drawn showing the classification performance
on the test set. The True Positive Rate (TPR, Eq. 3.2) and the False Positive
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Rate (FPR, Eq. 3.3) are plotted against each other for different classification
thresholds.

TPR =
TP

TP + FN
(3.2)

FPR =
FP

FP + TN
(3.3)

The lower the classification threshold, the less edges are predicted as positive
which leads to a lower TPR and FPR. A curve that approaches the upper left
corner of the graph indicates a classifier with high accuracy as the sensitivity
of the predictions approaches the maximum score of 1 and a maximal speci-
ficity [53]. The latter is the case because a FPR score of 0 equals a specificity
of 1. The ROC curve has a close relation with the aforementioned AUC-ROC
score, as this score is the area under the ROC curve. The closer the area under
the curve is to 1, the more the curve fills the upper left corner of the graph.

Another measure is the F1-score in order to quantify the classification per-
formance. In the F1-score the precision and recall are included with equal
importance. The precision represents the proportion of correctly classified
edges. A high recall indicates that a large proportion of edges labeled as a
class, has been correctly predicted to belong to this class. By maximizing
both the precision and recall, the model can identify all edges that belong to
the current class while it does not assign this class to edges of the other class.

In Section 4.2.1 the Figures 4.7, 4.7 and 4.9 show the AUC-ROC score measure-
ments used for assessing the performance of the GNN models. In Figure 4.10
the classification performance is expressed in F1-scores.
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Results

Results are presented that help assess the impact of the added methods to
the drug repurposing pipeline of the XAI-DMD-DR project. The results are
shown from the different steps of the whole method. First, the results of the
graph analysis are presented to show the effect of the restructuring step on
the structure of the knowledge graph. Next, the predictive performance and
the predictions of the GNN models trained on both knowledge graph variants
are shown enabling comparison on these aspects between the input variations.
Lastly, objective and subjective measurements are used to analyse and compare
the sets of explanations generated by the GNNExplainer.

In this section the term original is used to refer to the variation of the drug
repurposing pipeline that attempts to replicate that of the XAI-DMD-DR
project [57]. The term restructured is used for referring to the drug repurposing
pipeline variation created during this project using the restructured knowledge
graph as input.

4.1 Graph Analysis

The original and restructured knowledge graphs were compared using various
measurements that assess the structure of the networks.

4.1.1 Node and Edge Composition

The occurrences of each node type in the graphs have been calculated and
can be found in Tables 4.1 and 4.2. The restructuring of the graph results in
the splitting of the concept physiological process represented by PHYS from
the original network (Table 4.1) into several different concepts being biological
process, cellular component and molecular function (Table 4.2). The original
graph has a total of eight concepts and is increased in the restructured graph to
12 concepts. A total of 26 taxon nodes are included in the restructured graph
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showing that genes and biological artifacts originate from numerous different
species. This information has been excluded from the original graph as it can
only indicate whether a gene is found in either humans or non-human species
depicted with GENE and ORTH, respectively.

The original knowledge graph consists of 72 triples shown in Table C.1 in the
Appendix. The restructured knowledge graph has 37 triples and can be found
in Table C.3.

For each node type, the average degree has been calculated including in- and
out-degrees. While the node types cellular component and molecular function
introduced in the restructured graph have the lowest presence rate (Table 4.2),
these nodes appear to have very high average degrees. This indicates that
although there are very few nodes belonging to these semantic classes, they
are highly connected to other nodes. The highest average degree of 140.45
belongs to the concept disease. In the previous graph the node type DISO
only has an average degree of 3.07. This can be explained by the restructuring
step in which a distinction has been set between diseases and phenotypes. The
nodes that represent diseases or phenotypes, are considered to be part of the
same concept DISO in the original knowledge graph. In this concept class the
disease nodes form the minority of the class, causing the average degree to
differ between the node type DISO in the original graph and disease in the
restructured graph. One of the seeds used to fetch data from the Monarch
Initiative belongs to the disease node type and is the outlier with a degree of
1319 that causes the high average degree. The group of nodes that represents
genes (GENE and gene) shows an increase in average degree after the graph
has been restructured. This can be considered as a result of the alignment to
the final conceptual model since new edges have been created between gene
nodes and nodes that belong to the class gene product or taxon.

Table 4.1: Number of nodes per type, the percentage considering the total number of nodes
and the average and median degree per node type in the original graph.

Node Type Count Percentage Average Degree Median Degree

DISO 5146 51.29% 3.07 1.0
ORTH 2880 28.70% 41.26 32.0
VARI 1125 11.21% 1.98 2.0
GENO 409 4.08% 12.17 2.0
DRUG 202 2.01% 1.23 1.0
GENE 202 2.01% 99.37 79.5
PHYS 50 0.50% 52.96 22.5
ANAT 20 0.20% 49.05 27.0

While the collection of concepts has been expanded, the restructuring process
has led to a reduction of the number of edge types. To be specific, the original
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Table 4.2: Number of nodes per type and the percentage considering the total number of
nodes and the average and median degree per node type in the restructured graph.

Node Type Count Percentage Average Degree Median Degree

phenotype 5311 51.69% 2.86 1.0
gene 3163 30.78% 45.73 35.0
variant 1277 12.43% 2.30 2.0
drug 291 2.83% 1.45 1.0
biological artifact 71 0.69% 2.35 2.0
gene product 38 0.37% 10.39 5.0
genotype 36 0.35% 15.94 11.5
taxon 26 0.25% 124.38 154.5
biological process 24 0.23% 16.88 8.5
cellular component 17 0.17% 78.94 50.0
disease 12 0.12% 130.42 18.5
molecular function 9 0.09% 96.89 38.0

graph consisted of 24 different edge types, while the restructured graph has
21 types. The edge types with the lowest occurrences in the original graph
(Table 4.3) are not found in the restructured graph (Table 4.4). The most
occurring edge type in 1 to 1 orthology relationship with has also been excluded
from the new graph as this edge type has been replaced by the relation in
orthology relationship with as explained in Section 3.2.3. This results in a
large majority of the edges in the graph to be of type in orthology relationship
with.

Figure 4.1 indicates the overall connections found between concepts in the
original graph (Fig. 4.1a) and in the restructured graph (Fig. 4.1b). Again,
it can be observed that there are more concepts found in the new graph.
Another interesting finding is that the conceptual restructuring resulted in
less self-loops. In the original graph there were relations that connected pairs
of nodes belonging to the same concept class. As has been discussed before
in Section 3.2, these self-loops were conceptually incorrect given all present
relations and their definitions.

4.1.2 Global Statistics

The node degree distributions of the knowledge graph before and after restruc-
turing are shown in Figure 4.2. There are no striking differences between the
distributions, except for a slight increase in frequency of nodes that have a
degree total in the higher end. From node degree distributions, the class of
the network can be determined. Scale-free networks are networks that show
a decrease that approximates a power law when looking at the frequency of
nodes with higher degrees [41]. Formally, the degree distribution P (x) with x
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Table 4.3: Number of edges per type and the percentage considering the total number of
edges in the original graph.

Edge Type Count Percentage

in 1 to 1 orthology relationship with 29817 35.95%
in orthology relationship with 24020 28.96%
has phenotype 14520 17.51%
interacts with 7813 9.42%
is part of 1342 1.62%
has affected feature 1106 1.33%
pathogenic for condition 986 1.19%
expressed in 981 1.18%
enables 872 1.05%
involved in 405 0.49%
targets 239 0.29%
likely pathogenic for condition 185 0.22%
contributes to condition 177 0.21%
has role in modeling 134 0.16%
is allele of 96 0.12%
colocalizes with 60 0.07%
is substance that treats 31 0.04%
source 29 0.03%
is causal germline mutation in 16 0.02%
has genotype 7 0.01%
contributes to 4 0.00%
causes condition 3 0.00%
is marker for 1 0.00%
is causal germline mutation partially giving rise to 1 0.00%

representing the degree value, would thus be considered as:

P (x) ∝ x−α

This property shows the presence of ’hubs’ in the network which are the
few highest-degree nodes connecting the large number of low-degree nodes
together. A lot of real-world networks such as networks representing interac-
tions in various contexts are classified as scale-free networks. In order to assess
whether the original and restructured knowledge graphs can be considered to
be scale-free networks as well, their degree distributions are fitted onto a power
law distribution. The functionalities of the Python library powerlaw enabled
us to find the parameter α for the degree distributions, yielding α = 1.81
for the original graph (Fig. 4.3a) and α = 1.69 for the restructured graph
(Fig. 4.3b). The typical range of parameter α is 2 < α < 3.
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Table 4.4: Number of edges per type and the percentage considering the total number of
edges in the restructured graph.

Edge Type Count Percentage

in orthology relationship with 53837 62.61%
causes condition 15361 17.86%
interacts with 7813 9.09%
found in 3163 3.68%
is part of 1342 1.56%
has affected feature 1106 1.29%
enables 872 1.01%
contributes to condition 786 0.91%
involved in 451 0.52%
targets 357 0.42%
has role in modeling 188 0.22%
likely causes condition 185 0.22%
associated with phenotype 103 0.12%
is allele of 96 0.11%
is of 71 0.08%
is substance that treats 66 0.08%
colocalizes with 60 0.07%
expresses gene 56 0.07%
is product of 38 0.04%
is variant in 34 0.04%
has genotype 7 0.01%

Table 4.5: Global statistics calculated for the original knowledge graph and the restructured
knowledge graph. Functionalities provided by the Python library networkx [31] have been
used for calculation of the graph feature values.

Property Original Graph Restructured Graph

Number of Nodes 10034 10275
Number of Directed Edges 82899 85878
Average Degree 16,524 16,716
Highest Degree 1660 1637
Diameter of Undirected Network 7 7
Average Shortest Path Length of Undirected Network 3,777 3,753
Average Clustering Coefficient 0,325 0,299

Other features of both graphs have been calculated using the functionalities
from the Python library networkx [31] shown in Table 4.5. The restructured
graph has an increased total of nodes and edges. The average degree of nodes
in the restructured graph is slightly higher than the average degree in the
original graph. The highest degree found in the network is highest in the orig-
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inal graph. Also, the diameter has been calculated which entails the shortest
path length between the nodes that have the largest distance between each
other in the graph network. This feature has been calculated on an undi-
rected interpretation of the graph networks, because taking into account the
directionality causes the graph to be disconnected. This shows that both di-
rected graph networks are weakly connected which means that all nodes in
the graph networks have an in- or out-degree of at least one. For the original
and restructured graph, the diameter remains the same. The average shortest
path length is very slightly lower for the restructured graph. Somewhat less
clustering appears in the restructured graph in comparison to the original.

4.1.3 Graph Network Visualization

The open-source and free graph network visualization platform Gephi [9] has
been used to explore the knowledge graphs visually and interactively. In order
to get some idea about the structure of large networks, the layout algorithm
Force Atlas 2 [36] has been run on both graph networks. Force Atlas 2 is a
continuous force-directed network spatialization algorithm that is developed
specifically for the application of the Gephi platform on scale-free networks
containing 10 to 10,000 nodes. The network moves towards a layout during
which nodes repulse each other and edges attract their nodes [36]. This layout
enables the visual interpretation of the structures of the networks. Indeed, the
visualization for the original graph (Fig. 4.4) shows a variety of clusters. A
lot of small clusters have formed containing mostly ortholog nodes (ORTH).
The disease nodes (DISO) can be found in a few very small clusters, but are
mostly present in the middle of the network. The majority of the variant nodes
(VARI) seems to be all connected to the same gene node and disease node.
We can hypothesize that these two nodes represent the initial seed nodes for
retrieving the data from Monarch Initiative explaining their high connectivity
to the other nodes.

For the restructured graph (Fig. 4.5), similar clusters can be found. The nodes
in the middle of the original graph belonging to the disease concept represent
the same nodes of the cluster in the middle of the restructured graph. The
phenotype instances have been considered to be part of the disease group in
the original knowledge graph. Thus, this makes sense, as this cluster contains
nodes that belong to the phenotype conceptual group. In a visual way, it
becomes clear that the majority of the original disease node group represents
phenotypes because nodes of the concept disease in the restructured graph
are not apparent in the network visualization. The nodes belonging to the
genotype conceptual group can be found in a cluster in the visualization of the
restructured network, while the nodes of the similar semantic group (GENO)
in the original graph are more dispersed. There is a prominent cluster con-
taining variant nodes which is also the case in the original knowledge graph
visualization. The most noticeable difference is the presence of the drug nodes
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in the outer area of the network layout. This has not happened during the for-
mation of the network layout of the original knowledge graph which indicates
some change in the structure of the graph. It can possibly be explained by
the addition of the gene products in the graph, causing this structural shift.
Lastly, the nodes that represent the seeds used for gathering the data from
Monarch Initiative stand out much less than has been seen in the original
graph network layout.
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(a) Metagraph of the original graph.

(b) Metagraph of the restructured graph.

Figure 4.1: Metagraphs of the original and the restructured graphs showing the existing
connections between concepts.
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(a) Degree distribution of the original knowledge
graph in logarithmic scale.

(b) Degree distribution of the restructured
knowledge graph in logarithmic scale.

Figure 4.2: Degree distributions of the original and restructured knowledge graph showing
the frequency of each degree in logarithmic scale.

(a) Degree distribution of original knowledge
graph fit onto the power law distribution P (x) ∝
x−α with α = 1.81.

(b) Degree distribution of restructured knowl-
edge graph fit onto the power law distribution
P (x) ∝ x−α with α = 1.69.

Figure 4.3: Degree distributions of the original and restructured knowledge graph fit onto a
power law distribution P (x) ∝ x−α. The parameter α is found using the functionalities of
the Python library powerlaw [7].
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Figure 4.4: Graph network visualization of the original knowledge graph. The nodes have
different colours based on their concept class indicated in the legend.
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Figure 4.5: Graph network visualization of the restructured knowledge graph. The nodes
have different colours based on their concept class indicated in the legend. There are no
correlations between the colours of this visualization and the visualization in Figure 4.4.

71



Chapter 4. Results 4.2. Graph Neural Network Models

4.2 Graph Neural Network Models

Although the same drug repurposing pipeline is used for both the original
and restructured knowledge graphs as input, hyperparameter optimization has
been applied for the GNN model that uses the restructured knowledge graph as
training data. For the original knowledge graph, the hyperparameter settings
are used that have been found in the XAI-DMD-DR project [57]. The resulting
optimal hyperparameter settings are shown in Table 4.6.

Process Hyperparameter Search Space
Optimal Value
for Dataset 1

Optimal Value
for Dataset 2

Number of walks 2, 4, 6 2 6
Walk length 3, 5, 7 7 7

Edge2Vec Embedding dimension 32, 64, 128 32 64
p 0.50, 0.75, 1.00 0.70 0.75
q 0.50, 0.75, 1.00 1 1
Epochs 5, 10 10 5
Hidden dimension 64, 128, 256 256 256
Output dimension 64, 128, 256 64 64
Layers 2, 4, 6 2 2

GNN Aggregation function mean, sum mean mean
Dropout 0.0, 0.1, 0.2 0.2 0.2
Learning rate 1e-4 - 1e-1 0.07000 0.01348
Epochs 100, 150, 200 150 100

Table 4.6: The values for each hyperparameter found after hyperparameter optimization
using RayTune [44]. The choices or range of each hyperparameter used during Random
Search are included as well. Dataset 1 represents the original knowledge graph as input and
dataset 2 the restructured knowledge graph as input of the GNN model.

To compare the performance, predictions and explanations resulting from the
drug repurposing pipeline using the different knowledge graphs as input, the
process is run independently ten times for each input dataset (Figure 4.6).
This method takes into account the randomness that is present in the pipeline
components such as in the node embedding algorithm and the graph neural
network model. By averaging over multiple runs, comparison between the
outcomes of the models trained on a different knowledge graph is facilitated,
thereby creating a more robust analysis.

4.2.1 Performance

The performance of the drug repurposing predictors are measured and com-
pared using different metrics looking at the training curve of the GNN model,
F1-scores and ROC curve. In order to show the effect of the edge2vec method
appliance prior to training the GNN model, additional drug repurposing pre-
dictor variations have been added to the performance comparison.
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Figure 4.6: A diagram showing the process of acquiring the results from the drug repurposing
pipeline performing multiple runs. The diagram boxes with the dashed lines show the
elements of the process that can be swapped out for another embedding method or input
dataset.

First, the performance scores are compared of the drug repurposing pipeline
using the original and restructured knowledge graph as input data. For the
second experiment, the pipeline has been modified by removing the edge2vec
method from the process. Instead of performing this step, random embeddings
are assigned to the nodes of the input graph. This option is also shown as
a possibility in the diagram of Figure 4.6. In combination with replacing
the edge2vec method with the random embedding generator, the restructured
knowledge graph is used as input of the predictor. Based on the outcomes of
the performance, the impact of adding an embedder method prior to training
the GNN model on its predictive performance can be determined. In the
last experiment, the default drug repurposing pipeline is kept. However, the
restructured knowledge graph is changed by removing all relation types of the
edges and replacing it by a single relation type. Now, the level of effect of
different edge types present in the knowledge graph using the proposed drug
repurposing pipeline can be identified.

Comparing Performance with Original and Restructured Knowledge
Graph as Input

In Figure 4.7, the training curves are shown for the GNN model trained on
the original (Fig. 4.7a) and on the restructured knowledge graph (Fig. 4.7b).
For both the model with the original and restructured knowledge graph as
input, the training process starts at an already remarkably high AUC-ROC
score for both the training and test set. The accuracy of the test set gradually
approaches the predictive performance on the training set. However, the im-
provement from the start to the end of the training process is minimal. Due
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to the small differences in AUC-ROC scores, close-ups are included for both
model variations looking at Figures 4.8a and 4.8b. For the GNN model trained
on the restructured graph, there is less improvement throughout the training
epochs. The average AUC-ROC and F1 scores after training of all ten runs
are compared between the two model variations in Figures 4.9 and 4.10.

(a) Training curve of the GNN model with the
original knowledge graph as input.

(b) Training curve of the GNN model with the
restructured knowledge graph as input.

Figure 4.7: Training curves of the GNN models with edge2vec node embedding using the
original and restructured knowledge graph as input. The performance throughout the epochs
is measured in AUC-ROC scores and cross-entropy loss for the train, validation and test set.
The average of the scores per epoch is represented by the solid lines and the deviation from
the average measurements is shown by the colored areas.

Random Node Embeddings

In Figure 4.11 the training curve is shown of the GNN model that uses a graph
with randomized node embeddings as input. In comparison to the performance
of the default drug repurposing pipelines regardless of which graph is used as
input, the predictions start off worse at the first epochs. The AUC-ROC
score on the training set improves. However, the predictive accuracy on both
validation and test sets decreases progressively throughout the training process
indicating overfitting.

Knowledge Graph with Single Relation Type

Surprisingly, the performance of the GNN model with as input a knowledge
graph containing just a single relation type for all edges is similar to that of
the models trained on the restructured knowledge graph. The training curve
of this drug repurposing predictor variation can be found in Figure 4.12. This
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(a) Close-up of training curve of the GNN model
with the original knowledge graph as input.

(b) Close-up of training curve of the GNN model
with the restructured knowledge graph as input.

Figure 4.8: Close-ups of the training curves of the GNN models with edge2vec node em-
bedding using the original and restructured knowledge graph as input. The performance
throughout the epochs is shown in AUC-ROC scores for the train, validation and test set.
The average of the scores taken from all ten runs per epoch is represented by the solid lines
and the deviation from the average measurements is shown by the colored areas.

could indicate that the variation in edge types in the graph does not play any
role in embedding the nodes.

4.2.2 Predictions

After training the models, the outcomes of the predictions are considered. For
yielding the predictions of the drug repurposing models, the probability scores
are calculated for the existence of the edge between nodes that represent drugs
and symptoms. As it is needed to predict new drug candidates for symptoms
that are related to DMD, a list of all drug and relevant symptoms found
in the knowledge graphs needs to be acquired. For both the original and
restructured knowledge graph, a total of 27 symptoms has been found that
are associated with the disease DMD. The symptoms with their identifiers are
shown Table 4.7. For the original knowledge graph, a total of 202 drugs are
present. The restructured graph contains 291 entities of the drug class.

For each symptom that is related to the disease DMD, the three drugs with
the highest probability of being a candidate for treating the symptom, have
been collected. Thus, for each run of a drug repurposing predictor a list is
created in which each relevant symptom is paired with three drug candidates.
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Figure 4.9: The average AUC-ROC score obtained by each model over ten runs. The
standard deviation is shown by the vertical line at the top of the bar. g1 e2v: The average
AUC-ROC score of the GNN model with edge2vec node embedding trained on the original
knowledge graph after 150 epochs. g2 e2v: The average AUC-ROC score of the GNN
model with edge2vec node embedding trained on the restructured knowledge graph after
100 epochs.

Comparing Predictions with Original and Restructured Knowledge
Graph as Input

Each drug repurposing model variation has been run ten times which means
there are ten lists of the top three drug candidates for each DMD-related
symptom. To show the collective agreement on the prediction of new drug
candidates, the drug-symptom pairs have been collected that are found in
the obtained lists from all runs. For the drug repurposing model trained on
the original knowledge graph, there are four common pairs (Table 4.8). The
model using the restructured knowledge graph as input data has an overlap of
six pairs considering all ten runs (Table 4.9).

The consistency of the prediction outcomes of the models needs to be verified
to determine the reliability of their drug repurposing predictions. In this way,
it can be found out whether the predictions are robust or simply random each
time the model is run. This is achieved by pairwise comparison of runs for each
model variation, determining the percentage of drug-symptom pairs that are
identical in both predicted pair lists. Thus, the lower this percentage, the less
overlap there is between the predictions of two runs indicating less consistent
outcomes from the model. The overlap between each run is visualized using a
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Figure 4.10: The average F1-score obtained by each model over ten runs. The standard
deviation is shown by the vertical line at the top of the bar. g1 e2v: The average F1-score
of the GNN model with edge2vec node embedding trained on the original knowledge graph
after 150 epochs. g2 e2v: The average F1-score of the GNN model with edge2vec node
embedding trained on the restructured knowledge graph after 100 epochs.

heatmap. The comparisons between the predictions of the runs of the model
trained on the original knowledge graph are shown in Figure 4.13. For the
restructured knowledge graph as input, the overlap percentages between all ten
runs are visualized in Figure 4.14. Looking at the calculated mean and median
values of the overlap of predicted drug-symptom pairs, the drug-repurposing
model outcomes are more consistent when using the restructured knowledge
graph as input.

The feasibility of a new drug candidate for treating a DMD-related symptom
could be assessed by conducting literature research, searching for relevant case
reports and collecting opinions from pharmaceutical and medical experts. To
answer the research question posed by this project, we focus on the explana-
tions in the context of explainability (discussed in Section 4.4). Therefore,
validation of the drug-symptom pairs has not been done as it was outside the
scope of the project.

Random Node Embeddings

The GNN model trained using input with randomly generated node embed-
dings performed poorly on the test set in contrast to the GNN models that
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Figure 4.11: Training curves of the GNN model with randomized node embeddings using
the restructured knowledge graph as input. The performance throughout the epochs is
measured in AUC-ROC scores and cross-entropy loss for the train, validation and test set.
The average of the scores per epoch is represented by the solid lines and the deviation from
the average measurements is shown by the colored areas.

implemented the edge2vec method. The inferior performance carries over to
the pairwise overlap of predicted drug-symptom pairs of all runs shown in
Figure 4.15.

4.3 Explanations

After training the drug repurposing predictors, the trained models can be
used as input of the GNNExplainer. For the GNNExplainer to generate ex-
planations, specific edges need to be given for which an explanation will be
calculated. As there are multiple runs for each model variation, the GNNEx-
plainer is applied to each of these trained model instances. Only the edges are
chosen as input of the GNNExplainer that are predicted by a defined number
of runs.

Initially, the GNNExplainer has been run on the edges that are predicted by
all ten runs for each drug repurposing model variation listed in Tables 4.8
and 4.9 for the original and restructured knowledge graph as input, respec-
tively. An insufficient number of explanations was generated in which a path
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Figure 4.12: Training curves of the GNN model with edge2vec node embedding using the
restructured knowledge graph in which all relation types are replaced by a single relation
type as input. The performance throughout the epochs is measured in AUC-ROC scores
and cross-entropy loss for the train, validation and test set. The average of the scores per
epoch is represented by the solid lines and the deviation from the average measurements is
shown by the colored areas.

exists between the drug candidate and the symptom it is predicted to treat.
Due to this issue, the number of edges as input for the GNNExplainer needed
to increase. This has been achieved by decreasing the threshold which means
that the edges have been considered that were predicted by at least six out
of the ten runs rather than all runs. This measure did not have to be taken
for generating the explanations from the model trained on the restructured
knowledge graph.

4.3.1 Generated from Original Knowledge Graph

A total of 10 explanations were generated from the predictor trained on the
original knowledge graph. The acquired subgraphs explain the following pre-
dicted edges:

� Neratinib treats delayed speech and language development (Figures D.6,
D.7, D.8, D.9 and D.10 in the Appendix)

� Neratinib treats global developmental delay (Figures D.1, D.2, D.3,
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Figure 4.13: Heatmap that shows pairwise overlap of predicted drug-symptom pairs of all
ten runs in percentages. The predictions are obtained by the drug repurposing model trained
on the original knowledge graph. The mean of the overlap ratio is 38.35 and median is 37.04.

Figure 4.14: Heatmap that shows pairwise overlap of predicted drug-symptom pairs of all
ten runs in percentages. The predictions are obtained by the drug repurposing model trained
on the restructured knowledge graph. The mean of the overlap ratio is 42.36 and median is
45.68.
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Figure 4.15: Heatmap that shows pairwise overlap of predicted drug-symptom pairs of
all ten runs in percentages. The predictions are obtained by the drug repurposing model
trained on the restructured knowledge graph with randomized node embeddings instead of
the embeddings generated from the edge2vec method. The mean of the overlap ratio is 3.68
and median is 3.7.

D.4 and D.5)

4.3.2 Generated from Restructured Knowledge Graph

A total of 17 explanations has been generated from the predictor trained on the
restructured knowledge graph. The acquired subgraphs explain the following
predicted edges:

� Levosimendan treats arrhythmia (Figures D.15, D.17, D.20, D.21,
D.22, D.23, D.24, D.25, D.26 and D.27 in the Appendix)

� Levosimendan treats cardiomyopathy (Figures D.11, D.12, D.13, D.14,
D.16, D.18 and D.19)

4.4 Comparing Explanations

The explanations from the different model variations are compared objectively
and subjectively. For the latter, the average number of node and edge types
in the explanation graphs is calculated. Also, the average number of triples
found in the explanations are reported. Lastly, the average shortest path
length between the drug candidate and the treated symptom is added to the
measured features of the explanations. The values are found in Table 4.10. The

81



Chapter 4. Results 4.4. Comparing Explanations

explanations generated from the model trained on the restructured knowledge
graph score higher for each of these features.

It has been observed that all explanations from the original knowledge graph
connect the concept drug to the rest of the subgraph with the relation targets.
Remarkably, the explanations from the restructured knowledge graphs connect
the concept gene with the other nodes exclusively via the relation is substance
that treats.

Looking at the explanations from both drug repurposing pipeline variations,
it stands out that the explanations show information paths that do not seem
to directly explain a potential link between a drug and symptom. This means
that there are nodes and edges that are not found in the path between the
node of the drug candidate and the node of the treated symptom. It can be
considered that these parts of the explanations do not explain to a human user
why a drug candidate could potentially treat a certain DMD-related symptom
and can thus be considered irrelevant for the explanation.

The comparison that will majorly address the research question is the objective
comparison that considers the explainability of the explanations. To perform
this comparison, experts have been asked to fill in a questionnaire in which the
explainability is rated using its aspects being clarity, parsimony, completeness
and soundness. In order to retrieve well-thought ratings, the experts who were
allowed to participate in the survey had background in research related to
DMD or drug repurposing. Four questionnaires have been distributed over 10
experts with an average of 13 years of experience in research on DMD or drug
repurposing. From the 10 experts, 8 researchers conduct research on the rare
disease DMD.

Each questionnaire shows a randomly chosen explanation from the set of gen-
erated explanations from one of the two drug repurposing model variations.
An overview of the questionnaires and their content is shown in Table 4.11.
To facilitate interpreting the graphs of explanations, a short description has
been added to describe the most relevant explaining paths in the graph. The
participants can also click on some concepts such as genes to be directed to
a page that provides information about the specific gene. The questionnaires
are created using Google Forms and can be reviewed in Appendix E.1. For
more detailed information regarding the responses, consult the tables included
in Appendix E.2.

The ratings given to explanations for each input knowledge graph variation
have been merged together in order to assess the differences in explainability
between the explanations from the drug repurposing pipeline using the original
input and the set of explanations from the model trained on the restructured
knowledge graph. The mean ratings given for each aspect of explainability are
given in Table 4.12.
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To verify a statistically significant difference between the ratings for each model
variation, the unpaired t-test has been applied which quantifies the significance
of the difference in the mean value of two independent groups by taking into
account the distribution of the ratings [65]. In this comparison, the null hy-
pothesis is that the ratings for an explainability aspect do not differ between
the sets of explanations that come from different drug repurposing models.
Ideally, this null hypothesis should be rejected in order to accept the alterna-
tive hypothesis that says that the two sets of explanations result in different
ratings for the explainability aspect. These hypotheses are considered for each
explainability aspect while calculating the P value. Specifically, the two-tailed
P value has been chosen to consider for determining the significant difference
for the mean rating of one set being larger or smaller than the other. The ac-
quired P values are shown in Table 4.12. Considering the most adopted cut-off
point of 0.05 where P < 0.05 concludes significant evidence against the null
hypothesis [14], the null hypothesis cannot be rejected for each of the explain-
ability aspects. This means that for each explainability aspect, we cannot say
that the mean rating for one set of explanations is significantly different from
the mean of the ratings for the other set.

Although the differences in the average ratings for each aspect of explainability
are not considered significant, we can cautiously conclude that the explana-
tions generated from the drug repurposing pipeline using the original knowl-
edge graph as input were rated higher on average for clarity, parsimony and
soundness.

Given the standard deviations of the ratings, there is an overall larger dis-
persion in given ratings for the explanations generated using the restructured
knowledge graph.

Participants were allowed to add comments to the explanation they had rated.
These comments can be found in Table E.2. To summarize, for both sets of
explanations, participants had difficulty interpreting the graph despite offering
a short description of the relevant explaining paths in the given explanation
and references to the information pages of the concepts present in the graph.
One participant commented that the accompanying description actually made
it more difficult to understand the given graph. Another participant mentioned
that they expected links between certain concepts that were not present in the
explanation. To be specific, the gene DMD was not linked to the disease
DMD. Another participant mentioned the lack of context of interactions as
it is important to know whether interactions lead to inhibition or activation.
They also missed information about a drug’s side effects, which might affect
the outcome of drug repurposing predictions.

For an explanation resulting from the drug repurposing pipeline using the
original knowledge graph as input, one participant commented on the labels
used to categorize the concepts. They suggested using terms that are more
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commonly understood, as the term ‘DISO’, for example, has an unclear and
ambiguous meaning.
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Table 4.7: The list of 27 symptoms found in the original and restructured knowledge graph
that are associated with the disease DMD.

Symptom ID Symptom

HP:0011675 Arrhythmia
HP:0002515 Waddling gait
HP:0003236 Elevated serum creatine kinase
HP:0002093 Respiratory insufficiency
HP:0003707 Calf muscle pseudohypertrophy
HP:0003701 Proximal muscle weakness
HP:0003202 Skeletal muscle atrophy
HP:0003560 Muscular dystrophy
HP:0003391 Gowers sign
HP:0001635 Congestive heart failure
HP:0001328 Specific learning disability
HP:0003323 Progressive muscle weakness
HP:0001371 Flexion contracture
HP:0002650 Scoliosis
HP:0003115 Abnormal EKG
HP:0001263 Global developmental delay
HP:0008981 Calf muscle hypertrophy
HP:0001638 Cardiomyopathy
HP:0003307 Hyperlordosis
HP:0000750 Delayed speech and language development
HP:0001265 Hyporeflexia
HP:0001644 Dilated cardiomyopathy
HP:0001270 Motor delay
HP:0001290 Generalized hypotonia
HP:0100543 Cognitive impairment
HP:0002791 Hypoventilation

Table 4.8: The drug-symptom pairs of which the edge has been predicted with a top three
probability scoring for all ten runs of the GNN model trained on the original knowledge
graph.

Drug Symptom ID Symptom

levosimendan HP:0011675 Arrhythmia
aprindine HP:0003115 Abnormal EKG
aprindine HP:0001635 Congestive heart failure
entrectinib HP:0002650 Scoliosis
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Table 4.9: The drug-symptom pairs of which the edge has been predicted with a top three
probability scoring for all ten runs of the GNN model trained on the restructured knowledge
graph.

Drug Symptom ID Symptom

levosimendan HP:0001644 Dilated cardiomyopathy
levosimendan HP:0001638 Cardiomyopathy
azathioprine HP:0001290 Generalized hypotonia
levosimendan HP:0003115 Abnormal EKG
levosimendan HP:0003236 Elevated serum creatine kinase
levosimendan HP:0011675 Arrhythmia

Table 4.10: Features calculated for the explanations generated from the model trained on
the original and the restructured knowledge graph. These features give an idea about the
conceptual enrichment of the explanations as well as the shortest information path length
between the drug candidate and treated symptom node.

Average number
of node types
in explanations

Average number
of edge types
in explanations

Average number
of triples
in explanations

Average shortest path
length between drug
candidate and treated
symptom

Original Knowledge Graph 3.0 4.5 5.0 2.6
Restructured Knowledge Graph 4.6 5.5 8.0 3.3

Table 4.11: An overview of the explanations selected to be shown in each questionnaire.

Questionnaire
Input Knowledge Graph

of Trained Model
Added Explanation

Explains
Reference

to Explanation
#1 Original neratinib treats delayed speech and language development Figure D.9
#2 Original neratinib treats global developmental delay Figure D.3
#4 Restructured levosimendan treats arrhythmia Figure D.25
#5 Restructured levosimendan treats cardiomyopathy Figure D.14
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Table 4.12: The mean values of the ratings given to both sets of explanations and the
standard deviation (SD). The first set of explanations generated from the drug repurposing
model trained on the original knowledge graph. The second set contains the explanations
generated from the predictor trained on the restructured knowledge graph. All ratings for
each set of explanations are averaged over 5 responses. Also, an unpaired t test has been
performed of which the two-tailed P values are shown.

Explainability
Interpretability Fidelity
Clarity Parsimony Completeness Soundness

I believe that the
explanation is
unambiguous
regarding the use
of concepts and
relations.

I believe that the
explanation is
presented in a
way that is
not too complex.

I believe that the
explanation
provides sufficient
information
to explain a new
drug candidate.

I believe that the
information paths
shown in the
explanation are
useful for finding
potential drug
candidates.

Mean SD Mean SD Mean SD Mean SD
Explanations using
Original
Knowledge Graph

2.80 1.10 3.40 1.82 2.60 0.55 3.80 0.45

Explanations using
Restructured
Knowledge
Graph

2.40 1.14 2.60 1.34 2.80 1.10 2.80 1.64

Two-tailed P Value 0.5871 0.4511 0.7245 0.2256
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Chapter 5

Discussion and Conclusion

5.1 Discussion

Changes were made to the method of gathering the information from the
Monarch Initiative data platform for building the restructured knowledge graph.
These changes could not be avoided as the information fetcher from the XAI-
DMD-DR project omits too many classes into which the acquired biologi-
cal entities are categorized making it impossible to restructure the knowledge
graph to the extent of what we envisioned from the conceptual modelling
approach. Ideally, the knowledge graph variations are built using the same
fetching method to ensure that both knowledge graphs contain the exact same
edges and nodes fetched from Monarch Initiative which has not been the case
during this project. The results may also be influenced by the fact that the in-
formation for the original and restructured knowledge graphs was not collected
on the same day. There is a risk that the Monarch Initiative data platform has
undergone updates between the two dates on which the original and restruc-
tured knowledge graphs have been created leading to a difference in acquired
nodes and edges. This could have been avoided by being more aware about
this risk and fetching the information for both knowledge graphs as quickly as
possible in succession.

When training the GNN model with both the original and the restructured
knowledge graph as input, the predictions already have a surprisingly high
accuracy in the first epochs. To assess whether this high initial performance is
caused by the node embedding step prior to training the model, an experiment
has been done during which the node embeddings from the edge2vec methods
have been replaced by randomly generated node embeddings. The training
curve on this variation of the GNN model shows a very different progression
as the accuracy starts lower (Fig. 4.11). This might indicate that the node
embedding process prior to training the GNN model has a positive effect on
the training as it provides a good starting point for the node feature values.

88



Chapter 5. Discussion and Conclusion 5.1. Discussion

The robustness of the GNN model trained using the randomly generated node
embeddings as initial input is much lower compared to the consistency of the
predictions found during independent runs of training the other GNN model
variations. This is another indication that the node embedding step plays a
crucial role when it comes to performance and consistency of the GNN model.

Since the preceding node embedding step implementing edge2vec seems to
have a positive impact on the performance of the drug repurposing pipeline,
the application of the edge2vec method has been investigated in more detail.
This is done by finding out whether the GNN model has less use of the gen-
erated node embeddings as input when removing the edge heterogeneity of
the knowledge graph. Interestingly, the GNN model performs equally well
(Fig. 4.12) compared to the accuracy observed during the training process of
the model using the restructured knowledge graph (Fig. 4.7b). The edge2vec
method is known for its ability to capture the heterogeneity of edges in a given
knowledge graph into the generated node embeddings. It could be said that
a change would be noticed in performance of the GNN model when the node
embedding includes or excludes any information about the heterogeneity of
the input knowledge graph. However, this difference in performance has not
been observed and thus, might indicate that the edge2vec method does not
fully utilize the conceptual structure of a given knowledge graph.

We observed that the GNN model shows less improvement in accuracy during
training on the restructured knowledge graph than on the original knowledge
graph (Fig. 4.8). This might indicate that the node embeddings carry less
useful information from the restructured knowledge graph compared to the
node features generated from the original input, resulting in the GNN to learn
less effectively. This is a plausible reason as the edge2vec method has already
been suspected to not fully utilize the presence of the different relations in the
restructured knowledge graph. Another reason would be that increasing the
learning rate might help with improving the increase in accuracy improvement
as a lower learning rate can cause a slower convergence. During this project we
did perform hyperparameter tuning on the drug repurposing pipeline. How-
ever, it is never guaranteed that this Random Search method will find the most
optimal settings as its results are probabilistic.

While the average ratings on the explainability aspects were on the lower side
for the explanations from the restructured knowledge graph, other evidence
has been found that shows a positive effect of having conceptually restruc-
tured the knowledge graph. We found that the restructured knowledge graph
as input of the drug repurposing predictor leads to more consistent predictions
over multiple independent runs. This improvement might be considered as a
promising finding and a reason to investigate further on the effect of different
conceptual structures of the input data on the predictions of a GNN. However,
it could also be a side effect of a less welcoming reason. For example, a possible
cause of this increased consistency would be that an additional node has been
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added between a drug that targets a certain gene being a node that represents
an instance of the concept gene product. Currently, the knowledge graph does
not include information about gene products interacting with other products.
The inclusion of the gene products as concepts in the knowledge graph thus re-
sults in increasing the information distance while not adding more information
in the form of additional connections to other data instances. This increase
in information distance may have caused the GNN model to ignore possible
drug-symptom pairs that would otherwise have been predicted. This illustrates
very well the importance and difficulty of finding the right balance between
adding concepts to improve adherence to domain knowledge and removing
some concepts to hold onto the scope that is actually needed to reach the task
objective, which is one of the ideas this project is trying to convey. The fact
that such an error was found in the restructured conceptual model, despite
having gone through the design approach, may indicate the need for a more
careful implementation of this approach, or the need to improve these design
steps to enforce this idea of balance between adherence to domain knowledge
and necessary scope even more.

To return to the mentioned information distance that might have increased for
some connections between concepts after restructuring the knowledge graph, it
can be argued that this might also affect the outcome of explanation generation
by the GNNExplainer. Placing the concept gene product between drug and
gene concepts appears to have decreased the importance of these drug targeting
relationships considered by the GNNExplainer as they are not observed in any
of the explanations generated from the restructured knowledge graph. This
decrease in importance for the drug repurposing link predictions has led to the
exclusive appearance of the relation is substance that treats in the explanations
generated from the restructured knowledge graph while these edges have not
been observed in the set of explanations on the original input. This edge type
connects a drug with a phenotype. The presence of this relation might explain
the increase in average shortest path length between the drug candidate and
the treated symptom since the concept phenotype is added to the explaining
path followed by gene-gene interactions. For the explanations from the original
knowledge graph, the explanation path transitions from a drug targeting a
gene directly towards the gene-gene interactions. This conceptual alteration in
the explaining paths requires further investigation to determine whether they
provide relevant and useful information to justify the increased complexity.

Based on the analysis of the features of the original and restructured knowledge
graphs, the changes in the conceptual structure of the graph caused a decrease
in number of relations, a drastic reduction in triples and an increase in total of
concepts. Despite these changes, the resulting explanations on the restructured
knowledge graph show more conceptual enrichment in each aspect being the
average number of node- and edge types found in the explanations as well
as the average number of triples. This indicates that restructuring of the
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input knowledge graph results in an overall higher conceptual enrichment of
the explanations. As has been mentioned before with the addition of the
concepts gene product and phenotype, restructuring the model has led to a
more fine-grained conceptual structure. This may have caused the users to
have perceived the explanations to be more difficult given the lower average
ratings on the explainability aspects. Based on the comments given by the
participants of the survey, the lack of background working with graphs and
the attached description not exactly matching these graphs had a negative
impact on understanding the explanations impeding them to assess on the
actual content and conceptual structure of the explanation.

Regarding the fine-grained conceptual structure added to the explanations
generated from the restructured knowledge graph, it could be suggested that
this had some positive effect on the explainability of the explanation. This is
based on the comment of one participant who had difficulty in interpreting the
meaning of a concept in the explanation on the original knowledge graph. To
be specific, the participant felt that the concept DISO was ambiguous. In the
restructured knowledge graph and thus also in the explanations on this input,
the ambiguous concept has been split into the concepts disease and phenotype
which might have solved this observed issue.

During this project, we encountered some limitations of the GNNExplainer
as this explanation generation method does not yield a consistent number of
explanations per independent run since the algorithm solves an optimization
problem in a probabilistic manner as discussed in Section 3.3.6. Ideally, we
compare explanations from both knowledge graphs explaining the same drug-
symptom pairs. However, the GNNExplainer did not yield subgraphs that
explain the same pairs from both input variations. This rules out the possibility
to conduct more extensive comparisons that would offer stronger evidence for
variations in conceptual enrichment and information paths between the two
sets of explanations.

Lastly, the time constraint of this project together with the specific require-
ments for participating in the survey resulted in a lower number of participants
than desired. A greater number of respondents could have led to a different
conclusion as it may have resulted in significant differences in the received
average ratings.

5.2 Future Work

Although an insignificant difference has been found between the explainabil-
ity of the XAI pipeline using the original and restructured knowledge graph,
we can still discuss whether it would be interesting to invest future research
projects on the topic of improved conceptual modelling and XAI.

The created conceptual modelling methods did prove to help verify that the
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knowledge graph built from various data sources still complies to the relevant
domain knowledge and whether the included concepts and relations are use-
ful for reaching the objective of the task. It has been found that expressing
conceptual models using a foundational ontology in combination with goal
modelling helped communicate the meanings of concepts and relations to ex-
perts improving their ability to help validate the designed model. This is why
it would be interesting to develop further on finding a way to create conceptual
models in a consistent way that helps reach consensus among a group of ex-
perts about the represented domain knowledge while also focusing on aligning
the concepts and relations such that the model can actually help achieving the
objective in its application.

The difficulty of interpreting the explanations generated from the XAI drug
repurposing pipeline is shown to be prevalent among the participants of our
survey which highlights the fact that explainability in AI is a very complex
matter and requires more extensive research and development. However, it is
not only about improving the generation of the explanation, but it is equally
important to think about how these explanations are represented to the users
whose backgrounds often do not align to the developers of these systems. This
makes explanations in the form of subgraphs of the input knowledge graph
already obsolete when it comes to making it understandable for the decision
makers who might consult a XAI system. This means that it needs to be inves-
tigated how these explanations can be conveyed in a more user-centric manner
such that the representation is compatible and adaptable to the knowledge
of the users. For future work, it might be interesting to accompany the de-
veloped conceptual modelling approach with a system that enables a more
dynamic way of representing explanations allowing the user to choose what
information needs to be added and how the representation is formatted such
that the user is supported in the understanding of the explanations making
use of their own background.

A less drastic step towards a new research project would be to look into other
node embedding methods that complement the restructured conceptual struc-
ture of the model by replacing the edge2vec method with methods such as
metapath2vec [17]. Instead of constructing the neighbourhoods of nodes with
random walks constrained by edge types, the metapath2vec model utilizes
metapath1-based random walks such that the representation learning algo-
rithm yields embeddings retaining the heterogeneity in the node types as well
as the edge types.

1Metapaths capture the patterns of relations between entities as they are ordered se-
quences of node- and edge types that are allowed and expected to appear in the knowledge
graph.
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5.3 Conclusion

This project has developed a hybrid approach for designing a conceptual model
that takes into account the accuracy of representing the relevant domain and
the scope required to achieve the objective of the task. This conceptual mod-
elling process has been implemented to restructure the knowledge graph that
serves as input of a pipeline that obtains drug candidates for DMD-related
symptoms developed in the previous XAI-DMD-DR project [57]. The most
important aspect of this design process is the use of a foundational ontology
that helps express the conceptual model in a clear and precise way. To assess
whether the explainability of the generated explanations has improved as a
result of our added conceptual modelling approach, we developed a method to
measure the explainability in the form of a questionnaire filled in by experts
in the drug repurposing and DMD research field. We quantified explainability
by asking participants of the survey to rate the more concrete and already es-
tablished [49] aspects that together cover the term explainability being clarity,
parsimony, completeness and soundness.

No significant differences in explainability were found between the explana-
tions generated using the original knowledge graph and the explanations from
the restructured knowledge graph. The project started with the research ques-
tion whether the use of foundational ontologies improves the explainability of
XAI algorithms. Based on the acquired results, no significant evidence has
been found that shows there was an improvement in the explainability of the
XAI drug repurposing algorithm applied on the rare disease DMD using our
developed conceptual model design approach.
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Appendix A

Models in OntoUML

The higher-quality versions of the OntoUML schemas in Figures A.1, A.2
and A.3 can be accessed at https://github.com/rosazwart/XAIFO-The

sisProject/tree/main/images.
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Appendix B

Overview Encountered
Relations from OBO Relations
Ontology and GENO Ontology

Table B.1: This table contains the relations present in the data instances and other relevant
relations with their identifiers and definitions. The relations and their annotations have
been found in the OBO Relations Ontology [52] or the GENO ontology [12]. The relations
originate from the OBO Relations Ontology when the identifier starts with “RO”. Rela-
tions come from the GENO ontology that have the prefix “GENO” in their identifiers. All
definitions are taken directly from the ontologies.

Relation Identifier Definition
has affected feature GENO:0000418 A relation that holds be-

tween an instance of a ge-
netic variation and a ge-
nomic feature (typically a
gene class) that is affected
in its sequence or expres-
sion.

Continued on next page
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Table B.1 – continued from previous page
Relation Identifier Definition

is allele of GENO:0000408 A relation linking an in-
stance of a variable fea-
ture (aka an allele) to a ge-
nomic location/locus it oc-
cupies. This is typically
a gene locus, but a fea-
ture may be an allele of
other types of named loci
such as QTLs, or alleles of
some unnamed locus of ar-
bitrary size.

is expression variant of GENO:0000443 A relation between an
expression-variant gene (ie
integrated transgenes or
knockdown reagent tar-
geted genes), and the class
of gene it represents.

targets gene GENO:0000414 A relation between a gene
targeting reagent (e.g. a
morpholino or RNAi) and
the class of gene it targets.

in orthology relationship
with

RO:HOM0000017 Historical homology that
involves genes that di-
verged after a speciation
event.

in 1 to 1 orthology rela-
tionship with

RO:HOM0000020 Orthology that involves
two genes that did not
experience any duplication
after the speciation event
that created them.

contributes to condition RO:0003304 A relationship between an
entity (e.g. a genotype,
genetic variation, chemi-
cal, or environmental ex-
posure) and a condition
(a phenotype or disease),
where the entity has some
contributing role that in-
fluences the condition.

Continued on next page
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Table B.1 – continued from previous page
Relation Identifier Definition

causes condition RO:0003303 A relationship between an
entity (e.g. a genotype,
genetic variation, chemi-
cal, or environmental ex-
posure) and a condition
(a phenotype or disease),
where the entity has some
causal role for the condi-
tion.

is causal germline muta-
tion partially giving rise to

RO:0004016 Relates a gene to condi-
tion, such that a mutation
in this gene partially con-
tributes to the presenta-
tion of this condition.

is causal germline muta-
tion in

RO:0004013 Relates a gene to condi-
tion, such that a mutation
in this gene is sufficient to
produce the condition and
that can be passed on to
offspring.

pathogenic for condition GENO:0000840 -
likely pathogenic for condi-
tion

GENO:0000841 -

is marker for RO:0002607 c is marker for d iff the
presence or occurrence of
d is correlated with the
presence of occurrence of c,
and the observation of c is
used to infer the presence
or occurrence of d. Note
that this does not imply
that c and d are in a direct
causal relationship, as it
may be the case that there
is a third entity e that
stands in a direct causal
relationship with c and d.

involved in RO:0002331 c involved in p if and only
if c enables some process
p’, and p’ is part of p

Continued on next page
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Table B.1 – continued from previous page
Relation Identifier Definition

enables RO:0002327 c enables p iff c is capable
of p and c acts to execute
p.

is part of BFO:0000050 A core relation that holds
between a part and its
whole.

contributes to RO:0002326 -
has phenotype RO:0002200 A relationship that holds

between a biological entity
and a phenotype. Here
a phenotype is construed
broadly as any kind of
quality of an organism
part, a collection of these
qualities, or a change in
quality or qualities (e.g.
abnormally increased tem-
perature). The subject of
this relationship can be an
organism (where the or-
ganism has the phenotype,
i.e. the qualities inhere in
parts of this organism), a
genomic entity such as a
gene or genotype (if mod-
ifications of the gene or
the genotype causes the
phenotype), or a condition
such as a disease (such
that if the condition in-
heres in an organism, then
the organism has the phe-
notype).
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Dataset Features

subject relation object
ORTH None ORTH
GENO None ORTH
GENO None GENE
DRUG None DISO
DISO None GENO
GENE causes condition DISO
GENE colocalizes with GENE
ORTH colocalizes with ORTH
GENE contributes to DISO
GENO contributes to condition GENO
GENO contributes to condition DISO
GENE contributes to condition GENO
ORTH contributes to condition DISO
GENE contributes to condition DISO
ORTH enables PHYS
GENO enables PHYS
GENE enables PHYS
ORTH expressed in ANAT
GENE expressed in ANAT
GENO has affected feature ORTH
VARI has affected feature GENE
ORTH has affected feature ORTH
GENO has affected feature GENE
GENO has genotype ORTH
GENO has genotype GENO
GENO has genotype DISO
GENO has phenotype DISO
ORTH has phenotype DISO
ORTH has phenotype GENO
DISO has phenotype DISO
GENE has phenotype DISO
GENO has role in modeling DISO
ORTH has role in modeling DISO
GENO in 1 to 1 orthology relationship with ORTH
ORTH in 1 to 1 orthology relationship with GENO

102



Appendix C. Dataset Features

subject relation object
GENE in 1 to 1 orthology relationship with GENE
GENE in 1 to 1 orthology relationship with GENO
ORTH in 1 to 1 orthology relationship with GENE
GENO in 1 to 1 orthology relationship with GENE
GENE in 1 to 1 orthology relationship with ORTH
ORTH in 1 to 1 orthology relationship with ORTH
ORTH in orthology relationship with ORTH
ORTH in orthology relationship with GENO
GENO in orthology relationship with GENE
GENE in orthology relationship with ORTH
GENO in orthology relationship with ORTH
GENE in orthology relationship with GENE
GENE in orthology relationship with GENO
ORTH in orthology relationship with GENE
GENE interacts with ORTH
ORTH interacts with GENE
ORTH interacts with ORTH
GENE interacts with GENE
ORTH involved in PHYS
DISO involved in PHYS
GENO involved in PHYS
GENE involved in PHYS
DISO is allele of GENE
ORTH is allele of ORTH
GENE is causal germline mutation in DISO
GENE is causal germline mutation partially giving rise to DISO
GENE is marker for DISO
ORTH is part of PHYS
GENE is part of PHYS
GENO is part of PHYS
DRUG is substance that treats DISO
VARI likely pathogenic for condition DISO
GENE pathogenic for condition DISO
VARI pathogenic for condition DISO
PHYS source GENE
DRUG targets ORTH
DRUG targets GENE

Table C.1: All triples found in the original dataset acquired by using the data fetch scripts
from [57]. The table shows the subject, object and relation of each existing triplet. These
are also all the triples, totalling 72, found in the original knowledge graph.

subject relation object
gene causes condition disease
gene colocalizes with gene
variant contributes to condition phenotype
gene contributes to condition phenotype
gene contributes to condition disease
variant contributes to condition disease
model enables molecular function
gene enables molecular function
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subject relation object
gene expressed in anatomical entity
variant has affected feature gene
model has genotype genotype
model has genotype variant
model has phenotype phenotype
genotype has phenotype phenotype
disease has phenotype phenotype
variant has phenotype phenotype
gene has phenotype phenotype
variant has phenotype disease
genotype has phenotype disease
variant has role in modeling disease
model has role in modeling disease
genotype has role in modeling disease
gene has role in modeling disease
gene in 1 to 1 orthology relationship with model
gene in 1 to 1 orthology relationship with gene
model in 1 to 1 orthology relationship with gene
gene in orthology relationship with gene
gene interacts with model
gene interacts with gene
model interacts with gene
gene involved in pathway
disease involved in biological process
gene involved in biological process
disease involved in pathway
variant is allele of gene
gene is causal germline mutation in disease
gene is causal germline mutation partially giving rise to disease
gene is part of cellular component
model is part of cellular component
gene product is product of gene
drug is substance that treats phenotype
variant likely pathogenic for condition disease
model nan gene
genotype nan gene
chemical nan disease
variant nan genotype
variant nan model
variant pathogenic for condition disease
drug targets gene product

Table C.2: All triples found in the dataset acquired from the newly built fetcher, showing
the subject, object and relation of each existing triplet. More details about the relations
can be found in Table B.1.

subject relation object
disease associated with phenotype phenotype
genotype causes condition disease
biological artifact causes condition phenotype
gene causes condition phenotype
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subject relation object
variant causes condition phenotype
genotype causes condition phenotype
gene causes condition disease
variant causes condition disease
gene colocalizes with gene
variant contributes to condition disease
gene contributes to condition disease
variant contributes to condition phenotype
gene contributes to condition phenotype
gene enables molecular function
genotype expresses gene gene
biological artifact expresses gene gene
gene found in taxon
variant has affected feature gene
biological artifact has genotype variant
biological artifact has genotype genotype
variant has role in modeling disease
gene has role in modeling disease
genotype has role in modeling disease
biological artifact has role in modeling disease
gene in orthology relationship with gene
gene interacts with gene
disease involved in biological process
gene involved in biological process
variant is allele of gene
biological artifact is of taxon
gene is part of cellular component
gene product is product of gene
drug is substance that treats disease
drug is substance that treats phenotype
variant is variant in genotype
variant likely causes condition disease
drug targets gene product

Table C.3: All 37 triples found in the restructured knowledge graph.
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Explanations

D.1 Using Original Knowledge Graph

Figure D.1: Generated explanation given the model trained on the original knowledge graph.
The subgraph of the input knowledge graph shows the explanation that neratinib is a possible
drug candidate for treating global developmental delay.
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Figure D.2: Generated explanation given the model trained on the original knowledge graph.
The subgraph of the input knowledge graph shows the explanation that neratinib is a possible
drug candidate for treating global developmental delay.
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Figure D.3: Generated explanation given the model trained on the original knowledge graph.
The subgraph of the input knowledge graph shows the explanation that neratinib is a pos-
sible drug candidate for treating global developmental delay. This explanation is added to
Questionnaire 2 (see questionnaires in Appendix E.1).
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Figure D.4: Generated explanation given the model trained on the original knowledge graph.
The subgraph of the input knowledge graph shows the explanation that neratinib is a possible
drug candidate for treating global developmental delay.
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Figure D.5: Generated explanation given the model trained on the original knowledge graph.
The subgraph of the input knowledge graph shows the explanation that neratinib is a possible
drug candidate for treating global developmental delay.

Figure D.6: Generated explanation given the model trained on the original knowledge graph.
The subgraph of the input knowledge graph shows the explanation that neratinib is a possible
drug candidate for treating delayed speech and language development.
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Figure D.7: Generated explanation given the model trained on the original knowledge graph.
The subgraph of the input knowledge graph shows the explanation that neratinib is a possible
drug candidate for treating delayed speech and language development.

Figure D.8: Generated explanation given the model trained on the original knowledge graph.
The subgraph of the input knowledge graph shows the explanation that neratinib is a possible
drug candidate for treating delayed speech and language development.

111



Appendix D. Explanations D.1. Original Knowledge Graph

Figure D.9: Generated explanation given the model trained on the original knowledge graph.
The subgraph of the input knowledge graph shows the explanation that neratinib is a possible
drug candidate for treating delayed speech and language development. This explanation is
added to Questionnaire 1 (see questionnaires in Appendix E.1).

Figure D.10: Generated explanation given the model trained on the original knowledge
graph. The subgraph of the input knowledge graph shows the explanation that neratinib is
a possible drug candidate for treating delayed speech and language development.
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D.2 Using Restructured Knowledge Graph

Figure D.11: Generated explanation given the model trained on the restructured knowledge
graph. The subgraph of the input knowledge graph shows the explanation that levosimendan
is a possible drug candidate for treating cardiomyopathy.
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Figure D.12: Generated explanation given the model trained on the restructured knowledge
graph. The subgraph of the input knowledge graph shows the explanation that levosimendan
is a possible drug candidate for treating cardiomyopathy.
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Figure D.13: Generated explanation given the model trained on the restructured knowledge
graph. The subgraph of the input knowledge graph shows the explanation that levosimendan
is a possible drug candidate for treating cardiomyopathy.
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Figure D.14: Generated explanation given the model trained on the restructured knowledge
graph. The subgraph of the input knowledge graph shows the explanation that levosimendan
is a possible drug candidate for treating cardiomyopathy. This explanation is added to
Questionnaire 5 (see questionnaires in Appendix E.1).
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Figure D.15: Generated explanation given the model trained on the restructured knowledge
graph. The subgraph of the input knowledge graph shows the explanation that levosimendan
is a possible drug candidate for treating arrhythmia.
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Figure D.16: Generated explanation given the model trained on the restructured knowledge
graph. The subgraph of the input knowledge graph shows the explanation that levosimendan
is a possible drug candidate for treating cardiomyopathy.

118



Appendix D. Explanations D.2. Restructured Knowledge Graph

Figure D.17: Generated explanation given the model trained on the restructured knowledge
graph. The subgraph of the input knowledge graph shows the explanation that levosimendan
is a possible drug candidate for treating arrhythmia.
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Figure D.18: Generated explanation given the model trained on the restructured knowledge
graph. The subgraph of the input knowledge graph shows the explanation that levosimendan
is a possible drug candidate for treating cardiomyopathy.
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Figure D.19: Generated explanation given the model trained on the restructured knowledge
graph. The subgraph of the input knowledge graph shows the explanation that levosimendan
is a possible drug candidate for treating cardiomyopathy.
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Figure D.20: Generated explanation given the model trained on the restructured knowledge
graph. The subgraph of the input knowledge graph shows the explanation that levosimendan
is a possible drug candidate for treating arrhythmia.
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Figure D.21: Generated explanation given the model trained on the restructured knowledge
graph. The subgraph of the input knowledge graph shows the explanation that levosimendan
is a possible drug candidate for treating arrhythmia.
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Figure D.22: Generated explanation given the model trained on the restructured knowledge
graph. The subgraph of the input knowledge graph shows the explanation that levosimendan
is a possible drug candidate for treating arrhythmia.
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Figure D.23: Generated explanation given the model trained on the restructured knowledge
graph. The subgraph of the input knowledge graph shows the explanation that levosimendan
is a possible drug candidate for treating arrhythmia.
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Figure D.24: Generated explanation given the model trained on the restructured knowledge
graph. The subgraph of the input knowledge graph shows the explanation that levosimendan
is a possible drug candidate for treating arrhythmia.
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Figure D.25: Generated explanation given the model trained on the restructured knowledge
graph. The subgraph of the input knowledge graph shows the explanation that levosimen-
dan is a possible drug candidate for treating arrhythmia. This explanation is added to
Questionnaire 4 (see questionnaires in Appendix E.1).
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Figure D.26: Generated explanation given the model trained on the restructured knowledge
graph. The subgraph of the input knowledge graph shows the explanation that levosimendan
is a possible drug candidate for treating arrhythmia.
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Figure D.27: Generated explanation given the model trained on the restructured knowledge
graph. The subgraph of the input knowledge graph shows the explanation that levosimendan
is a possible drug candidate for treating arrhythmia.
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Questionnaires

E.1 Google Forms
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E.2 Responses

Table E.1: All responses for each rating question about the aspects of the explainability of
the explanation per questionnaire.

Model Input Questionnaire

How many
years of
experience
do you have
in the field
of drug
repurposing
and/or rare
diseases
research?

Do you
conduct
research
on the rare
disease
Duchenne
muscular
dystrophy?

(Clarity) I
believe that
the explanation
is unambiguous
regarding the
use of concepts
and
relations.

(Parsimony)
I believe that
the explanation
is presented
in a way
that is not too
complex.

(Completeness)
I believe that the
explanation
provides
sufficient
information
to explain a new
drug candidate.

(Soundness)
I believe that
the information
paths shown in
the explanation
are useful
for finding
potential drug
candidates.

Original
Knowledge
Graph

#1
Figure D.9

19 Yes 4 4 2 4
25 Yes 2 2 3 3

#2
Figure D.3

23 Yes 2 1 2 4
3 Yes 2 5 3 4
2 Yes 4 5 3 4

Restructured
Knowledge
Graph

#4
Figure D.25

3 No 3 4 3 5
0.5 Yes 2 2 3 4
9 Yes 2 4 3 2

#5
Figure D.14

10 No 1 1 1 1
0.5 Yes 4 2 4 2
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Table E.2: Additional comments given by the respondents about the shown explanation for
each questionnaire.

Model Input Questionnaire Do you have any specific comments about this explanation?

Original
Knowledge
Graph

#1
Figure D.9

The drug targets pak1, however the context in which the interaction of
pak1 and binders related to the phenotype is not specified. Does
this happen in cell types and brain areas related to language? pak1
has functions in different cell types. I am no pak1 expert, but a quick google
search shows that pak1 mutations have also been linked to speech delay and
intellectual disability, which are relevant for DMD. I also miss the way
the drug targets pak1. Will it inhibit or stimulate the target? DMD is a pediatric
disease; has the drug been used/tested and deemed safe in pediatric populations?
The drug also gives muscle spasms, which do not seem a workable side
effect to have in children where the primary pathology is in muscle tissue.

#2
Figure D.3

Sorry but the text is too complex with many gene names and interactions and
then the figure is not very clear either because there seems to be extra information
in there that is not in the text? It was difficult to match the graph with the text.
To understand the figure it is not needed to understand the blue ’DISO’ dot in the
legend, but it did trigger me to think ”Hmm what does that mean, why is it
labeled? Do I need to understand”? Maybe if it is not relevant information
leave it out. Or if it is relevant information label it with a term that is more
generally understood.

Restructured
Knowledge
Graph

#4
Figure D.25

I don’t have any experience with these kind of graphs so I’m not sure whether
it’s because of my lack of knowledge that I find the graph a bit unclear
Some genes are in there multiple times (e.g. MYH6, but also murine Myh6?).
Also some arrows seem to be flipped around (a disease causing a gene).
DMD and Duchenne muscular dystrophy are not linked, which is odd.

#5
Figure D.14

I did not at all understand what you are trying to say and explain. I tried to
read it multiple times but the way the information and data is presented is
absolutely not clear.
I’m not sure if it’s my lack of knowledge or whether the graph was just not
so clear to interpret. Besides that, the texts (especially the red ones) were not
readable well

152



Bibliography

[1] Deepsnap 0.2.0 documentation. https://snap.stanford.edu/deepsn

ap/.

[2] National center for biotechnology information (ncbi). [Cited 2023 Nov 22]
https://www.ncbi.nlm.nih.gov/.

[3] Pytorch 1.11.0 documentation. https://pytorch.org/docs/1.11/.

[4] Pytorch 1.11.0 documentation on BCEWithLogitsLoss. https://pytorc
h.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html.

[5] xxAI - Beyond Explainable AI: International Workshop, Held in Con-
junction with ICML 2020, July 18, 2020, Vienna, Austria, Revised and
Extended Papers. Springer International Publishing, 2022.

[6] HLEG AI. High-level expert group on artificial intelligence, 2019.

[7] Jeff Alstott, Ed Bullmore, and Dietmar Plenz. powerlaw: A python pack-
age for analysis of heavy-tailed distributions. PLoS ONE, 9(1):e85777,
jan 2014.

[8] David Alvarez-Melis and Tommi S. Jaakkola. Towards robust inter-
pretability with self-explaining neural networks. CoRR, abs/1806.07538,
2018.

[9] Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. Gephi: An
open source software for exploring and manipulating networks, 2009.
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