
Master Computer Science

R2N-Tab: a hybrid model for binary tabular data

Name: Michael van der Zwart
Student ID: 2299925

Date: 16-01-2024

Specialisation: Artificial Intelligence

Daily supervisor: Qi Huang
1st supervisor: Matthijs van Leeuwen
2nd supervisor: Niki van Stein

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Abstract

In this thesis project, we propose an extension to DR-Net, which is an approach for learning
rule sets from neural networks applicable to binary classification tasks. We reuse its two-layer
architecture but apply a deep learning layer for feature selection in front of it. The layer learns
to label features that do not affect the predictive performance of the classifier with a negative
weight, whereafter they are deactivated and not considered in the rule set. DR-Net provides
better accuracy-simplicity trade-offs compared to state-of-the-art rule learners. However, a
large number of epochs is required to obtain small rule sets. In this thesis project, we show
that our method R2N-Tab, which combines DR-Net and the feature selection layer, constructs
sparser rule sets with fewer epochs than the original DR-Net. Still, the constructed rule sets
are accurate and have comparable predictive performance. We also compare our method to
well-known feature selection and rule learning approaches. Overall, we show that our method
finds a better fit for the combination of predictive performance and model complexity on large
datasets.

Contents

1 Introduction 1
1.1 Research question . 2
1.2 Overview . 3

2 Related work 4
2.1 Rule learning . 4

2.1.1 Rule lists . 4
2.1.2 Rule sets . 5

2.2 Feature set reduction . 5
2.2.1 Feature selection . 6
2.2.2 Dimensionality reduction . 6
2.2.3 CancelOut Layer . 7

3 Background 8
3.1 Deep Neural Networks (DNNs) . 8

3.1.1 Formal definition . 9
3.1.2 Learning strategy . 9

3.2 Learning rules from data . 9
3.2.1 Illustrating the rule learning process 10

3.3 DR-Net . 11
3.3.1 Data preprocessing . 11
3.3.2 Rules Layer . 12
3.3.3 OR Layer . 13
3.3.4 Regularization . 14
3.3.5 Extracting rules from DR-Net . 15

4 Our proposed method: R2N-Tab 17
4.1 CancelOut Layer . 18
4.2 Decision Rules Network . 20
4.3 Regularization . 20
4.4 Optimization strategy . 21

5 Experiments and results 23
5.1 Comparison with Decision Rules Network . 25

5.1.1 Experimental setup . 25
5.1.2 Results and analysis . 25

5.2 Comparison with feature selection algorithms 29
5.2.1 Experimental setup . 29

5.2.2 Results and analysis . 30
5.3 Comparison with rule learning algorithms . 32

5.3.1 Experimental setup . 32
5.3.2 Results and analysis . 33

6 Conclusion 36
6.1 Summary . 36
6.2 Future work . 37

7 Appendix A 38
7.1 Experiment 1 . 38
7.2 Experiment 2 . 38
7.3 Experiment 3 . 39

Chapter 1

Introduction

Deep learning is a promising subfield of machine learning that has been applied to various do-
mains for solving complex problems [28]. With its ability to automatically learn representations
of data, this technique has shown breakthrough performance in, e.g., natural language pro-
cessing (NLP) [22], computer vision [31], health care [29] and autonomous driving [13]. Deep
learning proves effective when dealing with large datasets, allowing to learn complex patterns
that are impossible for humans to discover. As a result, deep learning has the potential to
transform many aspects of modern life and drive major advances in, e.g., science, medicine,
and technology. These are just a few examples of the many fields in which deep learning has
been successfully applied, and is still making rapid progress.

However, where the application of deep learning in various fields has been very promising, it
is lagging performance in the domain of tabular data, as raised by Grinsztajn, Oyallon, and
Varoquaux [14]. In the paper a benchmark for tabular data is presented, evaluating different
deep learning approaches. Their research focuses on why tree-based models still outperform
deep learning models in the domain of tabular data. One interesting observation they present
is the appearance of a multitude of uninformative features within tabular datasets. In one
experiment, uninformative features were removed from the data, and different models were
evaluated, which tended to reduce the performance gap between tree-based models and deep
learning models. Thus, deep learning models are less robust to uninformative features than
tree-based models, which harms their performance. As a result, feature selection is required to
remove irrelevant features. Interesting use cases of tabular datasets include sports statistics,
financial data, or patient records. As the data grows proportionally to the number of features,
the data is likely to contain more uninformative features. This affects the predictive perfor-
mance of deep learning models, which impedes the application of artificial neural networks in
those fields.

Another limitation of deep learning models is that they are mostly hard to interpret, which
is known as the black-box problem [35]. This complicates the application of deep learning
in more serious domains, where decisions impact patient health or other important concerns,
and output generated by deep learning models that can not be interpreted by humans would
be useless. Qiao et al. proposed a method called DR-Net (Decision Rules Network) where
rules can be derived from a neural network architecture, describing the decisions it makes to
increase interpretability [24]. DR-Net consists of neurons that map to logical IF-THEN rules,
which describe how the model formulates its output.

1

In this work, we propose an extension to DR-Net. As described above, [14] mentions the
problem of deep learning struggling to achieve breakthrough results in the domain of tabular
data. In our work, one challenge is addressed in particular: the problem of deep learning models
not being robust to uninformative features. Over the past years, feature selection methods have
shown promising results [18]. In DR-Net, some feature masking is used, training mask variables
that remove features from rule clauses. This should result in a minimal performance decrease,
depending on a trade-off between model performance and rule set sparsity controlled by a λ
constraint. However, a large number of epochs is required to achieve a sparse rule set with good
predictive performance. The masking strategy from DR-Net is explained in detail in Chapter
3. This work contributes by adding a feature extraction component to DR-Net, which is fully
focused on identifying uninformative features and removing them from the rule set. Note that
since we make an addition to DR-Net, the structure of this network itself remains unchanged.
The cancel layer that we add in front should result in more sparsity in the rule set, while the
predictive performance is minimally harmed. Informative features that are not canceled out by
our feature extraction component are considered to contribute to the predictive performance
of the model. However, this does not necessarily mean that these features need to be present in
all rules. This is why the masking strategy from DR-Net is still useful to achieve more sparsity.

1.1 Research question

Following the challenges presented earlier, we can summarize our research into one main
research question. The deep learning layer should indicate uninformative features earlier, con-
tributing to DR-Net by achieving more sparsity with less budget. Besides, we want to obtain a
rule set with good predictive performance. This can be formulated in the following question:

How can we learn a deep learning model for rule learning that best fits a trade-
off between predictive performance and model complexity with as few epochs as
possible?

We extend DR-Net by adding a deep learning layer in front, such that the feature set is
diluted to retain only the relevant features, that contribute to the predictive performance of
the model. The formulated research question includes figuring out how we indicate irrelevant
features on the fly, and how we remove them from the rule set. The second part of the
research question includes the fact that we want to achieve a model that is a good classifier
and has decent predictive performance compared to other feature selection and rule learning
approaches. Besides, we want to build an interpretable classifier, describing its output with
rules. As sparser rule sets are easier to interpret, we have to deal with a trade-off, maximizing
the predictive performance of the model while reducing the model complexity. This research
question summarizes our main goal in this thesis project, improving on DR-Net and performing
similarly compared to other related approaches introduced later on. In Chapter 4, our model
is introduced, which should provide a solution to the described challenges.

2

1.2 Overview

The structure of this thesis project is as follows: in Chapter 2, some interesting related works
are introduced regarding rule learning and feature selection, which can be useful for us to
later compare our method against; in Chapter 3, detailed background information of concepts
used in the thesis is provided; in Chapter 4, our method R2N-Tab is proposed and in-depth
descriptions of its architecture are given; consequently, in Chapter 5 our method is compared
against the other related methods, and reproducible experiments and results are discussed;
finally, Chapter 6 concludes the thesis project and provides ideas about possible future work.

3

Chapter 2

Related work

In this chapter, we provide an overview of the related research area. We discuss several ap-
proaches to rule learning and feature selection that are interesting to compare our model
against and highlight our contribution.

2.1 Rule learning

2.1.1 Rule lists

Rule lists consist of a series of IF-THEN-ELSE statements and they have been fundamental in
interpretable classification tasks for decades. Some of the best-known classic rule learning algo-
rithms include CART [5], ordered-CN2 [8], RIPPER [9] and C4.5 [25]. RIPPER (Repeated In-
cremental Pruning to Produce Error Reduction) constructs rules using a separate-and-conquer
strategy, creating a rule that covers a subset of examples and then removing those from the
training set. It employs a combination of heuristic pruning and error reduction techniques to
generate a compact set of rules. Where RIPPER starts with a single rule that includes all
instances, CN2 begins with an empty rule and incrementally adds conditions based on infor-
mation gain. CART (Classification And Regression Trees) and C4.5 are both decision tree
algorithms, allowing for the derivation of a rule list afterward based on the splits at each node.
They differ in their splitting criteria: CART uses Gini impurity, while C4.5 uses information
gain. All these classic rule learning algorithms lack a global optimization criterion and provide
non-probabilistic rule lists.

More recent work includes methods that offer probabilistic rules, such as CLASSY [23] and
Scalable Bayesian Rule Lists (SBRL) [33]. Classy is a greedy algorithm based on the minimum
description length (MDL) principle, designed to find small and probabilistic rule lists that
outperform state-of-the-art classifiers in terms of predictive performance and interpretability,
including SBRL. SBRL utilizes Bayesian techniques and probabilistic reasoning to create rule
lists that not only describe predictions but also express the associated uncertainty. As CLASSY
and SBRL both utilize models based on Bayesian statistics, we exclusively incorporate the su-
perior CLASSY into our experiments. It is worth noting that the aforementioned methods are
all designed for multiclass classification, while R2N-Tab is a binary classifier. Although R2N-
Tab can be extended to handle multiclass classification, our primary focus in this research is
binary classification.

4

2.1.2 Rule sets

While rule lists have been commonly used, some research papers argue that they are difficult to
interpret due to imposed orders among the rules they provide. The activation of a specific rule
requires the understanding of all preceding rules. In rule sets, one chain of rules is constructed,
separated by logical OR operations. Several rule learning methods construct rule sets instead
of rule lists to increase interpretability. Binary methods that learn rules for a single class label
include Column Generation (CG) [10] and Bayesian Rule Sets (BRS) [32]. Other methods learn
a set of rules for each class against all other classes, including non-probabilistic separate-and-
conquer methods unordered-CN2 [7] and FURIA [15]. As a result, these methods are capable
of performing multiclass classification, albeit indirectly. Unordered-CN2 is an extension of the
original CN2 algorithm, which shows how unordered rules as well as ordered rules can be gener-
ated. FURIA is a rule-based classifier that learns fuzzy rules instead of conventional rules such
that decision boundaries can be modeled in a more flexible way. As a result, FURIA can not
provide a single rule to describe a decision, which complicates direct comparison to our method.

For directly learning rules for multiclass targets, only two methods existed until not long ago,
including Interpretable Decision Sets (IDS) [16] and Diverse Rule Sets (DRS) [36]. To address
conflicts arising from overlaps of rules, IDS prioritizes the rule with the highest F1-score, while
DRS opts for the most accurate rule. DRS shows some advantages over IDS, including supe-
rior performance. However, both are non-probabilistic, and neither truly unordered. Recently, a
method for constructing probabilistic truly unordered rule sets was proposed named TURS [34].
TURS shows that it can find better accuracy-simplicity trade-offs across datasets compared
to CN2, DRS, and BRS. As a result, the binary rule set method CG and multiclass approach
TURS are most relevant for comparison in our experimental section. Just like the aforemen-
tioned approaches, DR-Net [24] also constructs rule sets. As we keep the original structure of
DR-Net in our approach R2N-Tab, we construct rule sets as well. This complicates the direct
comparison of our method to rule learners constructing rule lists, as they can not be trivially
translated to rule sets. However, we still report the results for the reference.

2.2 Feature set reduction

An important aspect of machine learning is selecting a subset of relevant features from the
original feature set by removing irrelevant features. Feature selection is used for several reasons,
including better model performance and increased model interpretability. In our context of
supervised learning, several techniques of feature selection are applicable. As we contribute
with a layer specifically for feature selection, it is interesting to compare our method with
well-known feature selection algorithms. Closely related to feature selection is dimensionality
reduction. Where in feature selection a subset of relevant features is selected while maintaining
the original feature space, dimensionality reduction transforms the feature space into a lower-
dimensional space based on selected relevant features. Both are discussed in this section.

5

2.2.1 Feature selection

For feature selection, a survey aimed at reviewing the state-of-the-art techniques is presented
by Miao et al. [6]. Feature selection can be divided into three categories of methods, namely
filter methods, wrapper methods, and embedded methods. Filter methods are used as a pre-
processing step and are only used for selecting relevant features, without incorporating a
machine learning model. Wrapper methods select relevant features by evaluating a specific
machine learning algorithm. Different combinations of features are used for training to empir-
ically compare results. More interesting for our approach are embedded methods, which are
closely related to our method R2N-Tab. In these kinds of models, feature selection is applied
during the model training phase, which is generally used to reduce overfitting.

For the task of classification, a couple of embedded methods for feature selection exist.
One type of embedded method is tree-based models, including best-known techniques gra-
dient boosting [11] and random forest [20]. These models assign importance scores to features
based on how much they contribute to the model performance. Features with higher scores are
considered more relevant and are selected for use in the final model. Another relevant model
is the Support Vector Machine (SVM), which can be used to select features using a linear
kernel [21]. SVM applies weight values to features based on their contribution to drawing the
decision boundary, where higher values mean a larger impact on the classification performance.
Gradient boosting and SVM provide relevant features with a positive weight, and irrelevant
features with a negative weight. Thus, we can obtain feature relevances by comparing them
with a threshold of zero. However, random forest only provides positive weight values to fea-
tures. A threshold on feature importance has to be provided by the user. In our experimental
section, we can still use random forest by selecting the k features with the highest assigned
weight values, using different values for k.

2.2.2 Dimensionality reduction

Closely related to feature selection, is dimensionality reduction. Relevant features are selected
and the dimensionality of datasets is reduced by removing all irrelevant features, which de-
creases the complexity of machine learning models using the data. Whereas R2N-Tab applies
feature selection without dimensionality reduction, these techniques are still relevant to com-
pare against as they also reduce the feature set. The domain of dimensionality reduction can
be roughly classified into two types of methods.
Linear methods. One of the best-known dimensionality reduction techniques for linear data
is Principal Component Analysis (PCA) [1]. PCA is aimed at finding the minimum subset
of features while maximizing variance in the data. However, PCA is an unsupervised method,
making its projection unrelated to class labels. Another method is Linear Discriminant Analysis
(LDA) [30], which is focused on finding the smallest subset of features that best separates the
classes in the data. As a result, LDA is a supervised method, making it more effective than
PCA for classification tasks.
Non-linear methods. For dealing with complex, non-linear datasets, several dimensionality
reduction techniques exist. These methods include Multidimensional Scaling (MDS) and Iso-
metric mapping (Isomap), which can better deal with complex patterns in high-dimensional
data than linear methods. However, these methods are mainly focused on reducing the feature
set, and not classification tasks.

6

2.2.3 CancelOut Layer

An approach very related to our approach was proposed by Borisov et al. [4]. They designed a
deep learning layer for feature selection, that learns to assign weights to features that indicate
their relevance. Features that are considered uninformative are ‘canceled out‘ with a negative
weight, whereas more relevant features are represented with a positive weight. We use a similar
layer inspired by Borisov et al. in our approach, however with some adaptions. We want to find
a relevant set of features on the fly, and filter them from the rule sets that are constructed.
As we develop a hybrid approach that combines this feature selection layer with the Decision
Rules Network, we need additional functionality to correctly handle the inputs and outputs
of the feature selection layer. Features that are labeled with a negative weight by the feature
selection layer should be filtered, such that they can not reach the Decision Rules Network. A
detailed description of our implementation of the CancelOut Layer is provided in Chapter 4.

7

Chapter 3

Background

In this chapter, we provide information on concepts used in this thesis. Deep Neural Networks
and the process of learning rules from data are explained in detail and examples of usage are
provided. Besides, the architecture of Decision Rules Network (DR-Net) that we provide an
extension to is explained, including descriptions of the data that is used and the training of
the network.

3.1 Deep Neural Networks (DNNs)

A concrete type of machine learning model is Deep Neural Networks [17], DNNs, which are a
class of artificial neural networks. DNNs are networks of multiple layers consisting of multiple
nodes, inspired by the biological neural networks existing in the human brain. DNNs can learn
complex relationships between input features and a prediction target, which makes them good
classifiers. In Figure 1, a simple example is shown.

input layer

hidden layer 1 hidden layer 2

output layer

Figure 1: An example of a DNN with one input layer, two hidden layers, and one output
layer. Training examples are fed into the input layer, and propagated through the hidden
layers with matrix multiplication to finally come across an output in the output layer.

8

3.1.1 Formal definition

The connections between different layers are represented with numerical values indicating the
strength of the connection, which are called the weights of the network. At the start, weights
are initialized following a specific procedure which can be, e.g., randomly. Inputs of the network
can be also numerical, but in our context they are binary, corresponding with active or inactive
features. The output of the network is formulated by propagating the inputs through the
network, performed by matrix multiplication with the weights in each layer. Consider inputs
x ∈ {0, 1} and weights w ∈ R, then the output of a specific neuron y of the neural network
is formulated by summing the product of all incoming inputs with the corresponding weights,
shown in Equation 1.

y =
N∑
i=1

xiwi (1)

In the process of learning rules from a neural network, each neuron represents an association
of a feature or an association of one rule. The output of each neuron indicates a positive or
negative association. In our context of binary classification, the output of the neural network
is formulated by the output of the last neuron.

3.1.2 Learning strategy

During the training phase of the network, the desired weight values are learned to minimize
a certain loss function. The loss is computed by comparing the predicted target values of the
network to the actual target values and applying a defined function to it. At the end of each
iteration of the algorithm, the computed loss is backpropagated through the network, layer by
layer. Backpropagation starts at the output node, and in each layer, the partial derivatives are
computed w.r.t. the weights in the layer. These partial derivatives indicate how much the loss
will change by adapting each weight with a small amount. Once backpropagation has been
done, the partial derivatives are used to update the weights with gradient descent. How fast
weights are updating depends on the learning rate which is a user-specified parameter. In our
approach, DNNs are useful for the task of classification. In the rule learning model, we propose
an extension to use neural networks with a specific structure, which we explain in section 3.3.

3.2 Learning rules from data

Although machine learning algorithms have a large impact on life nowadays [27], they often
suffer from the black-box problem, as described earlier. This complicates the understanding of
the output they provide. In order to tackle this problem, and make machine learning algorithms
explainable such that their decisions can be easily interpreted by humans, explainable AI (XAI)
has made its entrance. Recently, a paper by Sahakyan et al. was proposed [26], summarizing
XAI approaches in the domain of tabular data, which is also our main focus. Concretely, XAI
should increase trust in machine learning models, to make them applicable in a larger range of
fields. In the context of making machine learning models interpretable, XAI connects closely to
the field of rule learning [12]. Rule learning is an XAI approach with the purpose of developing
rules that describe the data and the output that is generated based on these rules. The learned
rules provide an abstract representation of the data, increasing interpretability.

9

3.2.1 Illustrating the rule learning process

An example of a tabular dataset is shown in Table 1. A classifier can be trained on it to predict
whether a customer is satisfied or not with the purchase that was made, based on some features
including information about the customer and the purchase. The classifier should have good
predictive performance, and besides, be explainable such that its decisions can be interpreted
by humans.

CustomerID Age Gender Category Price Target
1 45 Male Electronics 395 Satisfied
2 51 Female Fashion 140 Unsatisfied
3 28 Male Electronics 280 Satisfied
4 39 Female Beauty 50 Satisfied
5 70 Male Garden 120 Unsatisfied
.

Table 1: A sample dataset of customers making purchases. On the dataset, a classifier can
be trained to predict whether the customer is satisfied or unsatisfied with the purchase
that was made.

Rule learning algorithms can be applied to the dataset to learn patterns, and provide an
abstract representation of the dataset. Predictions are now descriptive and can be understood
by human beings. An example of a rule set is shown in Table 2.

Rule clause output
1 IF {price < 100}
2 OR {category ̸= fashion}
3 OR {gender = male}

THEN predict target = satisfied

Table 2: An example of a rule set for the dataset shown in Table 1. The rule learner
provides a descriptive explanation of the dataset. If the price is below 100, or the category
is not fashion, or the gender is male, then the machine learning model predicts that the
customer was satisfied with the purchase. Otherwise, the model predicts that the customer
was unsatisfied with the purchase. As the decisions of the machine learning model are
defined by these rules, the model is explainable and its output can be interpreted by
humans.

In Table 2 an example of a rule set is shown, which is specific to our approach. Rule learners
constructing rule lists would construct multiple rules, separated by IF-ELSE statements. In the
rule sets that we construct we have a disjunction of different rules, which does not implicate
orders among rules and is thus better interpretable. Note that we provided an example of
learning rules from data. The recently proposed DR-Net [24] that we build upon learns rules
by training a neural network in a specific way. Afterward, rules can be derived from the network,
which we discuss in detail in the next section.

10

3.3 DR-Net

Sections 3.1 and 3.2 include two concrete machine learning approaches, respectively DNNs and
rule learning. The paper proposing DR-Net [24] actually brings them together in one network,
learning rules from neural nets. DR-Net is an interpretable machine learning model for binary
tabular data, and it has a specific two-layer neural network structure. After training, rule sets
can be derived from the network that explain its decisions. With the approach, an interpretable
DNN is constructed, allowing for its application in a broader range of fields. DR-Net exists
of the Rules Layer followed by the OR Layer, and finally one output neuron. In Figure 2 an
example of a trained DR-Net is shown, to predict whether the price of a car is below a certain
threshold or not. Features of the data are consequently fed into the model and propagated
through the network by matrix multiplication. In this section, we explain the structure of the
network in detail.

Rules
Layer

OR
Layer

Output

NOT mileage > 50K
AND age < 5

mileage > 50K

IF
mileage > 50K

THEN
price < 30K

[mileage > 50K]

[age < 5]

Figure 2: DR-Net [24]: a simple example of a trained model on a dataset with two features
mileage and age to predict the price of a car. Solid lines represent positive associations
of features, whereas crossed-out lines represent negative associations of features. Dashed
lines in the Rules Layer correspond with filtered features from rules, whereas dashed lines
in the OR layer correspond with filtered rules from the rule set.

3.3.1 Data preprocessing

The main goal of DR-Net is to train a classifier in the form of a Boolean logic function
in disjunctive normal form (DNF), which exists of ORs and ANDs. Consequently, DR-Net
consists of a Rules Layer containing neurons that perform a logical AND operation, and an
OR Layer that has only one output neuron to produce the disjunction of the logical rules.
To ensure that the logical AND operations are performed correctly in the Rules Layer, input
features are expected to be binarized. To achieve this, a data preprocessing procedure has
to be applied before feeding inputs into the model, as datasets often include numerical and
categorical features that are non-binary. A sample dataset is shown in Table 3.
Before being fed to the Rules Layer of DR-Net, this dataset needs to be preprocessed to
obtain binarized features. For numerical features, quantile discretization is used to obtain a set
of thresholds for each feature. The original feature values are encoded in binary features by
comparing them with the thresholds. The feature is encoded as 1 if the original feature value
is less than the threshold, and encoded as 0 if not. Categorical variables are encoded to vectors

11

Age Gender Height
45 Male 76in
51 Female 79in
28 Male 72in
39 Female 73in
70 Male 72in
.

Table 3: Data before preprocessing. This sample dataset includes numerical and categor-
ical features, that require preprocessing to make them applicable in our model.

of binary values. For example, consider an instance [car: BMW, mileage: 20K]. The categorical
feature car can contain, e.g., categories BMW, Audi, Mercedes. Besides, for the numerical
feature mileage, e.g., thresholds 10K, 20K, 30K can be obtained by quantile discretization.
The instance [car: BMW, mileage: 20K] with categorical feature car and numerical feature
mileage is encoded following the described procedure as [BMW, Audi, Mercedes, mileage <
10K, mileage < 20K, mileage < 30K], which results in a binary input vector [1, 0, 0, 0, 0,
1]. Afterward, the data is in the expected binarized format and can be fed to the Rules Layer
where a proper logical AND operation can be performed.
The dataset from Table 3 can be preprocessed as described in the example, which results in
the dataset shown in Table 4.

Age<30 Age<40 Age<50 Gender Height<75 Height<76 Height<77
0 0 1 0 0 0 1
0 0 0 1 0 0 0
1 1 1 0 1 1 1
0 1 1 1 1 1 1
0 0 0 0 1 1 1
. .

Table 4: Data after preprocessing. For numerical features, original values are discretized by
comparing them to different thresholds that they satisfy or not. For categorical variables,
a new feature for each category is added to the dataset, ones indicating this example
belongs to this category, and zeroes indicating it does not. Note that since we have only
two attributes for the ”gender” feature, only one feature with zeros and ones is needed
here.

3.3.2 Rules Layer

Neurons in the Rules Layer are responsible for constructing a set of positive and negative
associations of input features. The connections between input features and neurons in the
Rules Layer determine how the feature is encoded in the corresponding rule. Positive weights
(the solid lines in the Rules Layer in Figure 2) encode positive associations of a feature,
whereas negative weights (the crossed-out lines in the Rules Layer in Figure 2) encode negative
associations of a feature. The forward function of the Rules Layer is defined by Equation 2,
which performs the dot product of weights and inputs and adds a dynamic bias based on the

12

weights of the neuron. The forward function ensures that an output of 1 can only be achieved
if features with a positive weight obtain an input of 1, and features with a negative weight
obtain an input of 0. Otherwise, the neuron is not activated and the corresponding rule will be
filtered out in the OR Layer. Features with zero weight will not have any effect on the output
(the dashed lines in the Rules Layer in Figure 2).

y =
D∑
i=0

wixi −
∑
wi>0

wi + 1. (2)

In the equation, xi represents an input feature with x ∈ {0, 1}D for D binarized features,
whereas wi represents the weight value of the connection between the input feature and the
neuron. As the output of the Rules Layer needs to be binary to simulate the logical AND
operation, an activation function is applied afterward:

f(x) =

{
1, if x = 1

0, otherwise
(3)

Equation 3 ensures that a neuron is only turned on when the output of Equation 2 equals 1. As
a discrete activation function is applied after the Rules Layer that is not naturally differentiable,
we need a way for gradients to still be correctly backpropagated through the network to learn
the weights and minimize a loss function. For this, a straight-through estimator is used with
the gradient clipping technique, as discussed by Bengio et al. [3]. The OR Layer receives inputs
x ∈ {0, 1}, which can not be properly derived as they are discrete. Thus, a default backward
function is needed for adapting gradients, defined as:

gŷi =

0, if yi < 0

or yi > 1 δL
δyi

< 0

gyi , otherwise

(4)

allowing gradients to still be properly ”flowing” through the network. In the equation δL
δyi

represents the gradients of the loss function that needs to be minimized. Together, both
conditions yi < 0 and yi > 1 δL

δyi
< 0 result in the performance of DR-Net to be empirically

improved.

3.3.3 OR Layer

The OR Layer receives the activated values from neurons in the Rules Layer, which can be 1
or 0. To simulate the disjunction of the logical rules learned in the Rules Layer, the OR Layer
contains one output neuron that can be activated or not, which determines the prediction of
the network. First, an activation function is applied to the weights of the OR layer:

ŵi =

{
0, if wi ≤ 0

1, otherwise
(5)

This equation ensures that neurons from the Rules Layer that have a corresponding weight in
the OR Layer equal to or below zero are filtered from the rule set.

13

Consequently, the output of the OR Layer is constructed as:

y =
D∑
i=1

ŵixi − ϵ. (6)

With ϵ a small value such that the OR operation is 0 by default, but turned on when at least
one input xi equals 1. In the implementation of DR-Net, ϵ = 0.5 is used.

3.3.4 Regularization

To update the weights of the network, a loss function is designed that includes a trade-off
between model performance and rule set sparsity. For model performance, Binary Cross Entropy
Loss is used (BCELoss). Let ŷ define a batch of predicted values by the model, and y define
a batch of actual target values, then BCELoss is defined as

BCELoss(ŷ, y) = mean(L) = mean({l1, . . . , lN}) (7)

with ln defined as

ln = −wn[yn · log(ŷn) + (1− yn) · log(1− ŷn)] (8)

which stimulates the model towards correctly classifying more training examples. The other
part of the loss function focuses on sparsity in the rule set. A positive weight in the Rules
Layer encodes a positive association of an input feature, whereas a negative weight encodes a
negated association of an input feature. Moreover, a zero weight ensures that an input feature
is filtered out of the rule formulated by a specific neuron in the Rules Layer. As a weight of
exactly zero is hard to achieve in a neural network, mask variables zi ∈ {0, 1} are trained
to disable certain weights resulting in the exclusion of the corresponding feature. As a result,
weights are replaced by its product with the mask variables:

wi = wi · zi (9)

which disables the weight if zi = 0. This results in more sparsity as the feature is not present
in the rule anymore. Otherwise, the original weight remains and the feature influences the
outcome of the model. The mask variables are trained with gradient descent. Thus, it is clear
that we want a rule set as sparse as possible to make it more interpretable, and besides the
ability to make good predictions on new data. As a result, in learning the model a trade-off has
to be made between classification performance and sparsity. For this, a sparsity term is added
to the loss function, besides only the BCELoss from Equation 7. The complete loss function
can be formulated as

L = LBCE + λLR (10)

where LR is the loss corresponding with the sparsity of the rule set achieved with the mask
variables. LR is defined as the number of conditions unmasked in the rule set, normalized
by the total number of conditions at the start. The strength of the mask variables enforcing
sparsity is controlled by a λ constant, which allows for a trade-off between model performance
and sparsity in the rule set.

14

The weights of the Rules Layer and the OR Layer are updated in an alternating manner,
depending on a user-specified parameter, say i. Training starts with updating weights in the
Rules Layer, which ensures that each neuron in the Rules Layer representing a decision rule will
get sparser by filtering out features with the mask variables. At this stadium, weights in the OR
Layer are fixed and we obtain the maximum number of rules. After i iterations, the OR Layer
starts updating and the weights in the Rules Layer are temporarily fixed. Thus, repeatedly
features are filtered out from neurons in the Rules Layer, whereafter neurons representing the
rules are activated or not in the OR Layer. In our experiments, i is fixed to 500, as this was
the best value as found in [24]. Equation 10 shows the general loss function optimized during
the training phase. However, regarding the different λ values depending on what phase we are
in, the concrete loss function is separated into two parts:

L1 = LBCE + λ1LR

L2 = LBCE + λ2LR

(11)

λ1 defines the coefficient used during the optimization of the Rules Layer, whereas λ2 defines
the coefficient used during the optimization of the OR Layer. The trade-off between model
complexity and its predictive performance can be regulated by adapting those coefficients. In
our experiments, we copy the fixed values of the coefficients from the original rule network, as
we do not make adaptions here. Consequently, λ1 is fixed to 1−2, whereas λ2 is fixed to 1−5.

3.3.5 Extracting rules from DR-Net

After the training process, we want to translate DR-Net into rules for the interpretability of the
decision-making. The rule set is represented by the active neurons in the OR Layer, which can
be recognized by a positive weight value. For all the active neurons that represent the rules,
the corresponding weight values in the Rules Layer determine which features are present in
these neurons and how they are associated (positive or negative). The method for constructing
the rule set is described in Algorithm 1. For each non-filtered neuron in the OR Layer, the
corresponding weights in the Rules Layer are traversed. For weights below zero, a negative
feature association is added to the newly constructed rule, whereas for weights above zero, a
positive feature association is added to the newly constructed rule. Neurons with a zero weight
are ignored. As an argument to the translate function, the headers are provided corresponding
with the names of the features.

15

Algorithm 1 Translate DR-Net into rules

1: procedure GetRules(Headers)
2: RuleSet ← [] ▷ Initialize empty rule set
3: Indices ← OR Layer ̸= 0 ▷ Get active neurons
4: for Index ∈ Indices do ▷ Traverse active neurons in OR Layer
5: Rule ← [], Weights ← Rules Layer[Index]
6: for Weight ∈ Weights, Header ∈ Headers do ▷ Traverse all features
7: if Weight < 0 then ▷ Negative association
8: Rule.extend(’NOT’ + Header)
9: else if Weight > 0 then ▷ Positive association
10: Rule.extend(Header) ▷ Add feature to rule
11: end if
12: end for
13: RuleSet.extend(Rule) ▷ Add rule to rule set
14: end for
15: return RuleSet
16: end procedure

16

Chapter 4

Our proposed method: R2N-Tab

This chapter contains a detailed description of our new proposed method R2N-Tab, Rules
from Neural Nets for Tabular datasets. An example of a trained model is provided in Figure 3.
Note that the two-layer architecture from DR-Net is expanded to a three-layer architecture
that includes a layer explicitly for feature selection upfront.

CancelOut
Layer Rules Layer

OR Layer

age ≤ 30

country = Greece

sex = female

age ≤ 30 AND
NOT sex = female

Output

IF
age ≤ 30

OR
age ≤ 30 AND NOT sex = female

THEN
monthly income > 3K

[age ≤ 30]

[height ≤ 76in]

[country = Greece]

[sex = female]

Figure 3: R2N-Tab: an example model. The solid lines represent positive weight, whereas
the crossed-out lines represent negative weight. The dotted lines represent zero weight. In
the beginning, we have a maximum of four rules with each four features. In the CancelOut
Layer, the feature ”height” is considered uninformative and has a negative weight, which
results in the feature being filtered out of the rule set. The corresponding neuron in the
Rules Layer is deactivated (cross). The Rules Layer and the OR Layer add more sparsity
by masking weights. Together this results in a rule set of two rules and a total of three
features, provided in the box below the network.

17

With our method R2N-Tab we propose an extension to the existing two-layer neural network
architecture DR-Net. We stick to the domain of binary classification with tabular binarized
datasets. The main goal is still to train a classifier in the form of a Boolean logic function in
disjunctive normal form (consisting of ANDs and ORs) which serves as a rule set. However,
we want to obtain a sparser rule set with fewer iterations of the algorithm, but with good
predictive performance. For the development of our model R2N-Tab, we reuse the two-layer
neural network architecture from DR-Net, but we add a layer for feature selection up front
called the CancelOut Layer. The feature selection layer has a neuron for each feature in the
dataset, which should decide whether the feature is informative or not. Each neuron in the
CancelOut Layer has only one connection to the corresponding neuron in the Rules Layer,
which belongs to the same feature in the dataset (as can be observed from Figure 3). For
the design of the feature selection layer, we were inspired by the CancelOut Layer from [4].
While the idea of both layers is similar, our CancelOut Layer is constructed differently, as we
want to apply feature selection on the fly. In this chapter, we explain the architecture of our
method R2N-Tab in detail.

4.1 CancelOut Layer

The CancelOut Layer takes features xi as input with xi ∈ {0, 1}D for D binarized features.
The number of neurons in the CancelOut Layer is equal to the number of features in the
dataset, and each neuron has one connection to the corresponding neuron in the Rules Layer,
which indicates the importance of the feature. Features that are considered informative are
represented with a positive weight, while less informative features obtain a negative weight. As a
result, features with a negative weight should be filtered out in the Decision Rules Network that
comes after the CancelOut Layer, as they do not contribute to better predictive performance of
the model. Consequently, the CancelOut Layer is responsible for filtering out as many features
as possible, as the goal of the layer is to obtain a sparser rule set. However, features should
not be filtered out at the cost of predictive performance. To ensure that features with negative
weight are filtered out in the Decision Rule Network, a ReLU activation function is applied to
inputs of the CancelOut Layer based on the weights as shown in Equation 12.

CancelOut(X) = X⊙ ReLU(W) (12)

where X represents the input features ∈ {0, 1}D and W the weight vector, where ⊙ means
element-wise multiplication of the input features with their corresponding weight. The ReLU
activation function is applied to the weights of the CancelOut Layer, and it ensures that neg-
ative weights are set to zero before multiplication with the inputs.

E.g., weight vector W =

w
x
y
z

 activates as ReLU(W) = ReLU (

w
x
y
z

) = (

ReLU(w)
ReLU(x)
ReLU(y)
ReLU(z)

).

18

Note that the ReLU function activates inputs as in Equation 13.

ReLU(X) = Max(0,X) (13)

Thus, the ReLU activation function ensures that weights greater than zero will remain their
original values, while weights below zero are zeroed out.

Note that the CancelOut Layer developed in our model differs from the CancelOut Layer
from [4], as we use ReLU activation in the forward function instead of sigmoid. In our ap-
proach, ReLU is more useful as it zeroes out negative inputs which is required to filter features
with negative weight in the Decision Rules Network. After the CancelOut Layer, an activation
function is applied to obtain binarized feature values ∈ {0, 1}, as shown in Equation 14.

f(x) =

{
1, if x > 0

0, otherwise
(14)

As a result, neurons in the CancelOut Layer that have zero weight will input a value of zero
to the Rules Layer of the Decision Rules Network for the feature they represent. Due to
Equation 2, inputs to the Rules Layer that have a value of zero do not influence the output
of the model. Thus, features can be involved in the Decision Rule Network iff their original
values as inputted to the CancelOut Layer are equal to one, and besides they are not filtered
by the CancelOut Layer. Otherwise, the features can not affect the output of the model, either
because their original feature value was zero, or they are filtered by the CancelOut Layer.
As we use a discrete activation function that is not naturally differentiable, a variant of the
straight-through estimator from Equation 4 is used for correctly backpropagating gradients,
as shown in Equation 15

gŷi =

{
0, if yi ≤ 0

gyi , otherwise
(15)

Note that the straight-through estimator from Equation 15 is slightly different than the
straight-through estimator from Equation 4. We removed the condition yi > 1 δL

δyi
< 0 and

changed yi < 0 to yi ≤ 0, as this resulted in better model performance.

In theory, the CancelOut Layer is active from the start. However, we want to prevent the
feature selection layer from canceling features too early in the training process. As the pre-
dictive performance is still weak, canceling more features can not result in large performance
drops yet. To establish this, the weights in the CancelOut Layer are initialized at 4. This
number is also used in [4]. This is a small positive number such that features are biased to
be informative from the start, but can be still canceled after some epochs with a negative
weight. With this initialization of the weights, the model has some time to update its weights
to achieve better predictive performance without the concern of filtering possibly informative
features. We also choose a uniform initialization of the weights by providing them with the
same initial weight value, not to bias some features to be informative or not informative.

19

4.2 Decision Rules Network

In this thesis project, we extend DR-Net [24] with a feature selection layer in front of it. For
DR-Net, we keep its original two-layer architecture. DR-Net trains mask variables to filter
features from rules in the Rules Layer and filter rules in the OR Layer. The CancelOut Layer
contributes by directly labeling uninformative features with a negative weight, and filtering
them before rule sets are constructed in the next layers. In DR-Net, the Rules Layer directly
receives the binarized inputs from the dataset. However, in our approach, the inputs are
first passed through the CancelOut Layer, which works as a filter mechanism. The layer only
allows features contributing to a better predictive performance of the model to pass through.
The filtered input vector is inputted to the Decision Rules Network, where the interpretable
rule sets are constructed. In the Decision Rules Network, we have to choose values for the
hyperparameters controlling the learning process in the Rules Layer and in the OR Layer. For
this, we use the best results as found in DR-Net [24], as we stick to the original structure.
This means that the λ coefficient for optimization of the Rules layer is set to 0.01, and the
λ coefficient for optimization of the OR Layer is set to 0.00001. Besides, the learning rate
of weights in the Decision Rules Network is set to 0.01. The number of neurons in the OR
Layer corresponding with the maximum number of rules is also a hyperparameter, but this
depends on the dataset that is used. We vary this hyperparameter in the experiment chapter
to empirically obtain the best results.

4.3 Regularization

As we provide an extension to DR-Net by adding a layer for feature selection in front, we
partly reuse the loss function that is used in this model, as shown in Equation 10. However,
we add one constraint controlling the weights in the CancelOut Layer. We refer to the loss of
the CancelOut Layer with LC, which is defined in Equation 16.

LC =
1

N
·

N∑
i=0

ReLU(Wi) (16)

The penalty of the CancelOut Layer is constructed by summing all ReLU-activated weights
for all neurons in the layer, normalized by the total number of neurons, which is equal to the
number of features. In the defined loss function for the CancelOut Layer, filtered features get
a zero penalty, while the penalty for unfiltered features is equal to their non-zero weights. The
loss function penalizes the weights in the CancelOut Layer in a way to filter more features,
as this would result in a lower loss because of their zero penalties. However, achieving more
sparsity in the rule set by filtering features is not the only concern of the method, as it is still
required to obtain a rule set that has good predictive performance. As a result, the global
optimization criterion of the model is formulated as follows:

L1 = LBCE + λ1LR + λ3LC

L2 = LBCE + λ2LR + λ3LC

(17)

Note that this is similar to the loss function used in DR-Net, as defined in Equation 11.
However, the additional regularization term is included controlling the weights in the CancelOut
Layer, defined in Equation 16.

20

4.4 Optimization strategy

For the optimization of our model, we use a similar approach as in the Decision Rules Network,
where the weights in the Rules Layer and the OR Layer are optimized in an alternating manner.
The phase starts at zero, which means that we optimize the parameters in the Rules Layer.
After a specified number of epochs, the phase changes to one, which means that we optimize
the parameters in the OR Layer. This alternating process is continued until the algorithm
terminates.

For the CancelOut Layer, we develop a dynamic strategy to measure the desired number
of iterations that are required for optimizing its parameters. We develop a mechanism that
keeps track of the AUC values as measured on the training set in each of the i iterations of the
training process. After each ith iteration, the average AUC of the past i iterations is evaluated
to see how it has changed compared to before. In case the average AUC has decreased, and
the CancelOut Layer has canceled more features in these i iterations, we can say that the
optimization of its parameters had an undesired effect. In this case, we revert the optimization
changes that were applied in the past i iterations w.r.t. the parameters in the CancelOut layer.
Further optimization of its parameters is halted from now on. In case the CancelOut Layer has
still potential, and the average AUC in the last i iterations has not decreased, another tracking
phase of i is performed. An example of the dynamic mechanism to measure the CancelOut
Layer potential on the fly is shown in Figure 4.

0 100 200 300 400 500 600

Epoch

0.3

0.4

0.5

0.6

0.7

0.8

Tr
ai

n
ac

cu
ra

cy

Measuring CancelOut Layer potential on the fly on the house dataset

R2N-Tab
Measure point

Figure 4: An example of how the CancelOut Layer potential is measured on the fly using
the house dataset. In each ith epoch (i=50), the predictive performance of the model is
measured. After 400 epochs, a decrease in predictive performance is measured, and the
CancelOut Layer is fixed for the remaining number of epochs.

In our experiments, we fix i to 50 epochs, which is a small number of epochs allowing for the
best determination of the desired number of iterations of the CancelOut Layer. Besides, 50
epochs are sufficient to obtain a substantial number of AUC measures.

21

Measuring the desired number of iterations of the CancelOut Layer has the advantage of spar-
ing out a hyperparameter that defines the number of optimizations of the parameters. Besides,
we can cancel a maximum number of features while maintaining good predictive performance.

In Figure 5 an overview of a complete training phase of 2000 epochs is shown. Training
starts with phase zero which results in optimization of the parameters in the Rules Layer.
Every 500 epochs the phase changes, which results in the optimization of the Rules Layer and
the OR Layer in an alternating manner. The CancelOut Layer is optimizing its parameters
from the start. After a dynamically determined number of epochs (400 in this example), the
CancelOut Layer will be fixed as the best fit between predictive performance and sparsity has
been found.

Rules Layer

CancelOut
Layer

OR Layer Rules Layer OR Layer

P
=

0

P
=

1

P
=

0

P
=

1

2000
epochs

Figure 5: Global diagram of our model running 2000 epochs, where phase (P ∈ {0, 1})
changes every 500 epochs. The CancelOut Layer is only updating its parameters for 400
epochs, as this resulted in the best sparsity and predictive performance. After the 400
epochs, the CancelOut Layer is fixed.

22

Chapter 5

Experiments and results

In this chapter, our implementation 1 of DR-Net together with the CancelOut Layer is evalu-
ated. We use 8 varied datasets (shown in Table 5), that were selected to be diverse in number
of features, instances, and features types. The datasets are ordered by descending number of
features after preprocessing (D2).

dataset D1 D2 |instances| class imbalance features type

heloc 23 154 10459 0.52 numerical

house 16 132 22784 0.70 numerical

adult 14 128 32561 0.76 categorical and numerical

magic 10 90 19020 0.65 categorical and numerical

diabetes 9 67 768 0.65 numerical

chess 36 38 3195 0.52 categorical

banknote 4 36 1371 0.56 numerical

tictactoe 9 27 957 0.65 categorical

Table 5: Properties of the datasets used in our experiments: D denoting the dimensional-
ity of the datasets, with D1 the number of features in the dataset before preprocessing has
been applied, and D2 the number of features in the dataset after preprocessing; |Instances|
denotes the number of examples that are available in each dataset; class imbalances de-
notes the fraction of instances belonging to the majority class; features type denotes
whether the dataset includes categorical or numerical features or both. The provided se-
lection includes datasets of different sizes in the number of features and instances, and
besides different types of features, resulting in the best evaluation of our model.

1Implementation available on https://github.com/mrvanderzwart/R2N-Tab

23

https://github.com/mrvanderzwart/R2N-Tab

The first four datasets are also used for the evaluation of DR-Net in [24]. The first two datasets
are recent (2021), FICO HELOC (heloc), and a dataset on home price prediction (house). The
adult and the magic datasets are from the UCI Machine Learning Repository [19]: Adult census
(adult) and MAGIC gamma telescope, which is the magic dataset. For thorough evaluation,
we add four more datasets which are UCI benchmark datasets, also used in [34]. All selected
datasets are commonly used in classification papers. All datasets have a binary target variable
that can be predicted with binary classification.

As datasets grow in features, they are likely to contain more irrelevant features, that do not
contribute to better predictive performance of deep learning models. Table 5 includes datasets
that differ in dimensionality and the number of instances. For evaluation, we compare our
model based on predictive performance, rule set complexity, and runtime. From Table 5 can
be observed that some datasets suffer from class imbalance. Thus, to measure the predictive
performance we report the ROC-AUC scores, as this metric is less sensitive in dealing with
imbalanced datasets compared to, e.g., accuracy scores. The rule set complexity is expressed
in the number of rules in the rule set, and besides the total number of conditions in the rule
set obtained by summing all conditions in all rules. In the experiments, plots are used for the
visualization of the results, and abstract overviews are provided in the form of tables. For a
significant evaluation, all results are averaged using 5 times repeated 5-fold cross-validation.
Each section has a setup part, where the corresponding experiment is described. Besides, we
provide a results and analysis part where the outcomes of the experiments are presented and
interpreted. For the exact hyperparameter sets used during the experiments, we refer to Chap-
ter 7 (Appendix A). For performing our experiments, we made use of the Distributed Ascii
Supercomputer 5 (DAS5) [2]. We used the LU cluster, which is available for students at Leiden
University on request. It consists of 24 nodes of 2.4 GHz CPUs and 64GB of RAM, which is
ideal for running our experiments in parallel.

24

5.1 Comparison with Decision Rules Network

In this experiment, we compare our new proposed method R2N-Tab to the original Decision
Rules Network, DR-Net. With our new approach, we want to develop a method that can
construct small rule sets with a small number of epochs. Besides, the rule set should have
good predictive performance in terms of AUC scores.

5.1.1 Experimental setup

A hyperparameter R2N-Tab has in addition to DR-Net, is the λ3 coefficient defining the
trade-off between model performance and sparsity in the CancelOut Layer. In this experiment,
we compare DR-Net to R2N-Tab, varying the λ3 coefficient. For this experiment, we used
λ3=1e-2, λ3=1e-4 and λ3=1e-6. These values are a good range for the λ3 coefficient, as
higher values resulted in aggressively removing features at the cost of predictive performance,
whereas decreasing the λ3 coefficient further than 1e-6 had no effect. For DR-Net, a large
number of epochs is required to obtain a sparse rule set. As we want to develop a method
that obtains sparser rule sets with fewer epochs, and besides comparable accuracy values, we
run both models using a small number of 1000 epochs. In combination with the phase change
of 500, 1000 epochs is enough to perform one full Rules Layer optimization phase and one
full OR Layer optimization phase. Thus, 1000 is a small number of epochs but sufficient for
one Rules Layer optimization phase and one OR Layer optimization phase. To explicitly show
the relation between the predictive performance of both models and the model complexity, we
use scatter plots. For the predictive performance of both methods, we measure the final AUC
values after the training phase, which is performed on the test set. For the model complexity,
we take the total number of features in the rule set as derived from the networks after the
1000 epochs.

5.1.2 Results and analysis

In Figure 8, scatter plots are shown for three datasets visualizing the relation between predictive
performance and model complexity for R2N-Tab (blue dots) against DR-Net (red dots). For
both methods, 5 dots are shown representing each fold of our 5 times repeated 5-fold cross-
validation experiment. Besides, the means of both methods are shown with a cross. The model
complexity in terms of the total number of conditions in the rule set is shown on the x-axis,
whereas the predictive performance in terms of AUC score is shown on the y-axis. A global
observation that can be noticed is that the blue dots representing R2N-Tab are mostly located
on the left side of the x-axis, while the red dots representing DR-Net are mostly located on the
right side. This is a promising observation to make, as this corresponds with R2N-Tab overall
constructing a sparser rule set compared to DR-Net. Across datasets, different values for the
λ coefficient result in different model complexities and AUC scores. In particular the heloc
and adult seem to benefit from a large λ coefficient for better model complexity. However, we
also have to take into consideration the predictive performance of both methods, shown on
the y-axis. Overall, DR-Net has slightly better AUC scores compared to R2N-Tab. However,
differences are very small and dependent on the λ coefficient values. On all datasets, we have
to deal with a clear trade-off between predictive performance and model complexity. Overall,
this experiment proves that our method can construct sparser rule sets compared to DR-Net
for a small number of epochs, while the rule sets have comparable predictive performance.

25

600 625 650 675 700 725 750 775 800

model complexity

0.62

0.64

0.66

0.68

0.70

0.72

0.74

A
U

C

DR-Net
R2N-Tab 3=1e-2
Mean

λ3 =1e-2

600 625 650 675 700 725 750 775 800

model complexity

0.62

0.64

0.66

0.68

0.70

0.72

0.74

A
U

C

DR-Net
R2N-Tab 3=1e-4
Mean

λ3 =1e-4

600 625 650 675 700 725 750 775 800

model complexity

0.62

0.64

0.66

0.68

0.70

0.72

0.74

A
U

C

DR-Net
R2N-Tab 3=1e-6
Mean

λ3 =1e-6

(a) heloc dataset

100 150 200 250 300 350

model complexity

0.70

0.72

0.74

0.76

0.78

0.80

0.82

A
U

C

DR-Net
R2N-Tab 3=1e-2
Mean

λ3 =1e-2

100 150 200 250 300 350

model complexity

0.70

0.72

0.74

0.76

0.78

0.80

0.82

A
U

C

DR-Net
R2N-Tab 3=1e-4
Mean

λ3 =1e-4

100 150 200 250 300 350

model complexity

0.70

0.72

0.74

0.76

0.78

0.80

0.82

A
U

C

DR-Net
R2N-Tab 3=1e-6
Mean

λ3 =1e-6

(b) adult dataset

60 80 100 120 140 160 180 200 220

model complexity

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

A
U

C

DR-Net
R2N-Tab 3=1e-2
Mean

λ3 =1e-2

60 80 100 120 140 160 180 200 220

model complexity

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

A
U

C

DR-Net
R2N-Tab 3=1e-4
Mean

λ3 =1e-4

60 80 100 120 140 160 180 200 220

model complexity

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

A
U

C

DR-Net
R2N-Tab 3=1e-6
Mean

λ3 =1e-6

(c) chess dataset

Table 8: Scatter plots explicitly showing model complexity in terms of conditions in the
rule sets compared to the predictive performance in terms of AUC scores. For clarity
reasons, we visualized 3 out of 8 datasets. For our method R2N-Tab, we varied the λ
coefficient defining the trade-off between canceling features and predictive performance.
Overall, R2N-Tab constructs sparser rule lists than DR-Net, but maintains comparable
AUC values.

26

A
U
C

|R
U
L
E
S
|

|C
O
N
D
IT

IO
N
S
|

d
a
t
a
se

t
D
R
-N

e
t

R
2
N
-T

a
b
λ
=
1
e
-2

R
2
N
-T

a
b
λ
=
1
e
-4

R
2
N
-T

a
b
λ
=
1
e
-6

D
R
-N

e
t

R
2
N
-T

a
b
λ
=
1
e
-2

R
2
N
-T

a
b
λ
=
1
e
-4

R
2
N
-T

a
b
λ
=
1
e
-6

D
R
-N

e
t

R
2
N
-T

a
b
λ
=
1
e
-2

R
2
N
-T

a
b
λ
=
1
e
-4

R
2
N
-T

a
b
λ
=
1
e
-6

h
e
l
o
c

0
.7
1

0
.7
1

0
.7
1

0
.7
1

36
3
3

34
36

73
6

6
6
0

69
3

70
8

h
o
u
se

0
.8
3

0.
81

0.
82

0.
82

36
2
5

26
27

42
8

2
4
4

24
5

26
0

a
d
u
lt

0
.7
9

0
.7
9

0
.7
9

0
.7
9

18
11

1
0

1
0

29
4

1
1
1

16
8

17
4

m
a
g
ic

0
.8
5

0.
84

0.
84

0.
84

34
2
9

31
31

36
2

2
5
6

31
5

30
4

d
ia
b
e
t
e
s

0
.7
3

0
.7
3

0
.7
3

0
.7
3

36
37

37
3
5

54
5

5
3
0

55
2

53
9

c
h
e
ss

0.
93

0.
88

0
.9
5

0
.9
5

40
2
5

30
30

19
5

9
2

13
5

13
8

b
a
n
k
n
o
t
e

0
.9
9

0
.9
9

0
.9
9

0
.9
9

4
3

4
3

4
3

4
3

43
3

4
3
1

43
9

43
7

t
ic
t
a
c
t
o
e

0
.8
5

0.
84

0.
82

0.
84

44
44

4
1

43
24
5

23
8

2
2
1

22
9

T
ab

le
9:

A
U
C

sc
or
es

an
d
m
o
d
el

co
m
p
le
x
it
y
va
lu
es

of
R
2N

-T
ab

an
d
D
R
-N

et
ob

ta
in
ed

in
th
is
ex
p
er
im

en
t,
v
is
u
al
iz
ed

b
y
th
e
sc
at
te
r
p
lo
ts

in
F
ig
u
re

8.
A
cr
os
s
d
at
as
et
s,
th
e
b
es
t
sc
or
es

p
er

co
lu
m
n
ar
e
sh
ow

n
in

b
ol
d
.
A

cl
os
er

lo
ok

at
th
e
A
U
C

va
lu
es

re
ve
al
s
th
at

R
2N

-T
ab

p
er
fo
rm

s
eq
u
al
ly

w
el
l
on

al
l
d
at
as
et
s.
B
es
id
es
,
R
2N

-T
ab

h
as

b
et
te
r
m
o
d
el
co
m
p
le
x
it
y
in

te
rm

s
of

th
e
n
u
m
b
er

of
ru
le
s
an

d
co
n
d
it
io
n
s
in

th
e
ru
le
se
ts

fo
r
al
l
λ
co
effi

ci
en
ts
.

27

In Table 9, the results as found in this experiment for all datasets are shown. As can be
observed, R2N-Tab constructs rule sets consisting of fewer rules and fewer conditions, which
together contribute to better model complexity. For the remainder of our experiments, we
need fixed values for the λ3 coefficient that best design the trade-off between interpretability
and predictive performance. We select the best values for λ3 coefficients based on the training
phase, choosing the one that results in the Pareto optimal solution. The results are shown in
Table 10.

dataset λ3

heloc 1e-2
house 1e-4
adult 1e-2
magic 1e-2

diabetes 1e-2
chess 1e-4

banknote 1e-2
tictactoe 1e-6

Table 10: λ3 coefficients per dataset that result in the Pareto optimal solution, measured
on training data.

These values for the λ3 coefficient result in the Pareto optimal solution, which is the best
trade-off between predictive performance and model complexity. To conclude the comparison
of R2N-Tab with DR-Net, we report the running times in Figure 7. As can be observed, R2N-
Tab has a slightly larger running time per fold than DR-Net due to the additional feature
selection layer. However, DR-Net takes more time to construct rule sets that are as sparse as
the rule sets constructed by our method R2N-Tab.

heloc house adult magic diabetes chess backnote tictactoe

50

100

150

200

250

ru
nt

im
e

(s
)

runtimes (s) of R2N-Tab and DR-Net across datasets

DR-Net
R2N-Tab

Figure 7: Running times per fold in seconds per dataset, comparing DR-Net (red triangles)
to R2N-Tab (blue squares). Due to the deep learning layer in front for feature selection
that R2N-Tab has in addition to DR-Net, our method has a slightly larger running time.
However, R2N-Tab constructs sparser rule sets compared to DR-Net with comparable
predictive performance.

28

5.2 Comparison with feature selection algorithms

As we propose a model that performs feature selection, comparing our model to other feature
selection methods is interesting. For comparison, we use the following methods: 1) Gradient
Boosting (GB), the three-based feature selector; 2) Linear Discriminant Analysis (LDA), the
dimensionality reduction technique; 3) Support Vector Machine (SVM), the linear classifier;
and 4) Random Forest (RF), the multitude of decision trees. All are methods that apply feature
selection and can be used for classification tasks at the same time. However, our method has
the benefit of constructing rule sets, that provide interpretability in the decision-making. In
this experiment, we compare the predictive performance of all methods, in combination with
the reduction of the feature set.

5.2.1 Experimental setup

In essence, our method R2N-Tab works just like the other mentioned feature selection meth-
ods. We run the algorithms, and feature importance scores are applied to all features. In most
cases, a positive score indicates that the feature is considered relevant, whereas a negative
score means that the feature is considered irrelevant. However, this is not the case in random
forest, which only provides a ranking among features. To obtain a set of relevant features, we
select the top k percent based on the feature importance scores, using k = 25%, k = 50%,
and k = 75%.

In this experiment, we measure the sparsity in the feature sets obtained by the different
feature selection algorithms. Let xi be the feature importance score of a feature x in a feature
set {x0, ..., xN}, then we first apply Equation 18.

fi =

{
1, if xi < 0

0, otherwise
(18)

fi will be 1 if the feature importance score xi is below zero, which indicates that the feature
is considered uninformative. Otherwise, fi will be 0. Next, to obtain the reduction score for
the corresponding feature selection algorithm, we sum all fi values and normalize them by the
total number of features, shown in Equation 19.

reduction =

∑
N
i fi
N

(19)

A reduction score of x means that the feature set is reduced by x%. Finally, we measure
the predictive performance by applying a random forest classifier, using only the features that
obtained a positive feature importance score. To obtain the feature importance scores of the
feature selection algorithms, we can simply run the algorithms and extract the scores. Note
that this is the procedure for all feature selection methods except random forest. For our
method R2N-Tab, we run the algorithm until the CancelOut Layer is fixed. Afterward, we can
derive the feature importance scores by using its learned parameters.

29

5.2.2 Results and analysis

Table 11 shows the results of our feature selection experiment. For all feature selection meth-
ods, the table reports the reduction score which indicates the percentage of features removed
from the feature sets. Besides, the AUC scores are reported, obtained by applying a random
forest classifier, using only the features in the reduced feature sets.

auc reduction

dataset r2n-tab gb lda svm rf∗ 0.25 rf∗ 0.50 rf∗ 0.75 r2n-tab gb lda svm rf∗ 0.25 rf∗ 0.50 rf∗ 0.75

heloc 0.71 0.72 0.72 0.72 0.72 0.72 0.69 0.41 0.16 0.53 0.51 0.25 0.50 0.75

house 0.83 0.87 0.82 0.82 0.87 0.86 0.83 0.33 0.19 0.53 0.52 0.25 0.50 0.75

adult 0.78 0.79 0.77 0.74 0.76 0.76 0.75 0.76 0.28 0.66 0.52 0.25 0.50 0.75

magic 0.84 0.87 0.71 0.73 0.86 0.84 0.84 0.70 0.09 0.64 0.63 0.25 0.50 0.75

diabetes 0.76 0.67 0.69 0.69 0.70 0.67 0.67 0.18 0.0 0.52 0.54 0.25 0.50 0.75

chess 0.94 0.99 0.75 0.76 0.98 0.98 0.98 0.54 0.12 0.55 0.55 0.25 0.50 0.75

banknote 0.99 1.00 0.99 0.99 1.00 0.97 0.93 0.43 0.03 0.14 0.22 0.25 0.50 0.75

tictactoe 0.97 0.97 0.80 0.82 0.99 0.91 0.77 0.23 0.19 0.56 0.48 0.25 0.50 0.75

Table 11: AUC and reduction scores for different feature selection methods across datasets.
Gradient boosting obtains high AUC scores, but applies little reduction to the feature
sets. LDA and SVM obtain high reduction scores, however, they are very behind gradient
boosting concerning AUC scores on most datasets. Overall, our method R2N-Tab finds
the Pareto optimal solution, maximizing the predictive performance while minimizing the
feature set. We achieve similar AUC scores compared to gradient boosting but with good
reduction scores.

Interpreting the results, we observe a couple of things. Overall, R2N-Tab and LDA obtain
the best reduction scores, whereas gradient boosting is more careful in reducing the feature
sets. Including the corresponding AUC scores, we observe that gradient boosting excels across
all datasets. Thus, gradient boosting is a feature selection algorithm focusing on maintaining
predictive performance, not filtering too many features at the cost of AUC values. LDA and
SVM are more aggressive feature selection algorithms, resulting in them being outperformed
by gradient boosting when it comes to predictive performance using AUC values. Including our
method in the evaluation, we observe that we obtain similar AUC values compared to gradient
boosting across datasets. However, our feature selection layer CancelOut can decrease the
feature sets by large margins, even outperforming aggressive feature selection algorithms LDA
and SVM across some datasets. All in all, we developed a method that has a feature selection
layer that minimizes a feature set in a way to only maintain features contributing to the
predictive performance of the method. Compared to the other feature selection algorithms,
R2N-Tab provides the best fit between predictive performance and model complexity.

30

In Figure 8, the running times per fold in seconds for the different feature selection methods
are shown across datasets. All feature selection algorithms we compare our method R2N-Tab
against have shallow running times. Our proposed method needs about one to two orders of
magnitudes longer to converge. However, R2N-Tab performs feature selection on the fly, and
rule lists are constructed at the same time. Besides, the method is finding its parameters to
reach optimal predictive performance. For the other feature selection methods, features have
to be selected beforehand. Afterward, the reduced feature sets can be used for a classification
task. Our method combines reducing the feature set by the CancelOut Layer with constructing
rule lists and classification, which results in longer running times.

heloc house adult magic diabetes chess backnote tictactoe

10 1

100

101

102

ru
nt

im
e

(s
)

runtimes (s) of feature selection algorithms across datasets

R2N-Tab
Random Forest
Gradient Boosting
LDA
SVM

Figure 8: Running times per fold in seconds per dataset, comparing different feature selec-
tion algorithms. Our method R2N-Tab takes about one to two orders of magnitudes longer
for execution compared to the other feature selection algorithms but provides additional
functionality: constructing rule sets that provide interpretability in the decision-making
process.

31

5.3 Comparison with rule learning algorithms

In this thesis project, we develop an interpretable method for classification. In the domain
of interpretable machine learning, several approaches exist that develop rules explaining the
decision of a model, as discussed in Section 2.1. In this section, we compare the predictive
performance of our model against the mentioned rule learners. Besides, the interpretability in
terms of model complexity is discussed.

5.3.1 Experimental setup

In defining the sparsest rule lists with the best predictive performance among datasets, both
metrics are strongly correlated. A filtered rule list mostly comes with some decrease in predictive
AUC values. To design the trade-off between both metrics, threshold values are built into the
rule learners. CART, C4.5, and Classy include a maximum depth constraint, specifying that
rule lists are only constructed up to a provided point. Lower values will result in sparser rule lists
but with possibly lower predictive performance compared to higher constraint values. RIPPER
includes a threshold value defining the maximum number of total conditions in the constructed
rule list, which we also built into our method R2N-Tab. Varying the threshold value, we can
design the trade-off for all the rule learners. In Figure 9, an example of the process on the
adult (left) and house (right) datasets is shown.

0 25 50 75 100 125 150 175 200
model complexity

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

A
U

C

R2N-Tab
RIPPER
CART
C4.5
Classy

0 50 100 150 200 250 300 350
model complexity

0.72

0.74

0.76

0.78

0.80

0.82

0.84

A
U

C

R2N-Tab
RIPPER
CART
C4.5
Classy

Figure 9: The predictive performance (AUC) and model complexity trade-off for different
rule learners. On the left, the adult dataset is shown, whereas on the right, the house
dataset is shown. The trade-off values are obtained by varying the maximum depth con-
straint among the methods.

For all rule learners, a sparser rule list is combined with decreased AUC values. For the exper-
iment, we have to choose from the Pareto front. The best case scenario is a maximum AUC
score of 1.0, combined with a minimum rule set complexity of 1 condition, which is known as
the utopian point. For selecting the optimal value from the Pareto front, we take the point that
has the shortest distance to the utopian point, which maximizes the predictive performance
while minimizing the model complexity.

32

5.3.2 Results and analysis

In Table 12, the Pareto optimal solutions for all discussed rule learning methods are shown.
A first look at the results reveals that TURS outperforms all rule learning methods in the
predictive performance of the constructed rule sets, expressed in AUC scores. However, TURS
constructs very dense rule sets, consisting of a lot of rules and conditions. Especially on the
large datasets heloc, house, adult, and magic, rule sets explode in size. As a result, these rule
sets are hard to interpret. Apart from our model, we include the Column Generation (CG)
model, which also constructs rule sets. In terms of model complexity, CG constructs rule sets
consisting of substantially fewer rules and conditions compared to TURS. However, AUC scores
are quite low. Still, CG provides better solutions on the Pareto front, maximizing both ob-
jectives. Considering the classic rule learning algorithms that construct rule lists, similar AUC
values are obtained compared to CG and our method. However, the rule lists contain a substan-
tial number of rules and conditions. Further decreasing the model complexity results in a huge
drop in AUC scores, as can be observed from Figure 9. This also holds for the CLASSY method.

Interpreting the Pareto optimal results of our method R2N-Tab, we observe that we can con-
struct very sparse, yet accurate rule sets for the large datasets heloc, house, adult, and magic.
For these datasets, the model complexities are comparable with the CG algorithm, whereas
the trade-off between rule set complexity and predictive performance is superior to the other
rule learning algorithms. However, R2N-Tab struggles to find a good fit between predictive
performance and rule set complexity on the smaller datasets. In the smaller datasets, we are
limited to a small number of examples. Our method benefits from large datasets, that provide
lots of training examples, required for deep learning to work well.

In Table 10, the execution times per fold in seconds are shown for all rule learners across
datasets. On the larger datasets, TURS has a tremendous execution time, which is 2 to 3
orders of magnitude longer than most other rule learners. On the other hand, decision tree
methods CART and C4.5 both have a very small execution time across datasets. On the larger
datasets, all remaining rule learners perform similarly in execution times. However, our method
R2N-Tab takes longer on the smaller datasets, as it struggles to find a good fit between pre-
dictive performance and model complexity due to the limited number of examples available in
these datasets.

33

A
U
C

|ru
le
s|

|c
on

d
it
io
n
s|

d
at
as
et

R
2
N
-T

a
b

R
IP

P
E
R

C
A
R
T

C
4
.5

C
l
a
ss
y

T
U
R
S

C
G

R
2
N
-T

a
b

R
IP

P
E
R

C
A
R
T

C
4
.5

C
l
a
ss
y

T
U
R
S

C
G

R
2
N
-T

a
b

R
IP

P
E
R

C
A
R
T

C
4
.5

C
l
a
ss
y

T
U
R
S

C
G

h
e
l
o
c

0.
69

0.
71

0.
71

0.
71

0.
70

0
.7
3

0.
69

1
2

4
4

10
75

1
4

7
6

6
10

64
6

3

h
o
u
se

0.
82

0.
80

0.
83

0.
81

0.
81

0
.9
1

0.
80

5
40

32
32

35
20
9

2
19

27
1

62
62

70
16
48

5

a
d
u
lt

0.
78

0.
78

0.
78

0.
78

0.
75

0
.8
9

0.
77

3
24

35
34

52
10
2

2
18

16
4

62
62

19
6

77
8

6

m
a
g
ic

0.
82

0.
85

0.
83

0.
83

0.
81

0
.8
9

0.
84

7
14

32
32

53
16
3

5
37

75
62

62
10
4

12
22

1
3

d
ia
b
e
t
e
s

0.
74

0.
74

0.
73

0.
72

0.
67

0
.7
6

0.
72

18
4

8
8

4
10

7
79

13
14

14
6

55
25

c
h
e
ss

0.
94

0.
99

0.
98

0.
99

0.
96

1
.0
0

0.
93

7
10

28
23

10
36

3
15

42
54

44
36

27
8

9

b
a
n
k
n
o
t
e

0.
96

0.
99

0.
99

0.
99

0.
98

1
.0
0

0.
98

29
8

27
23

4
11

4
71

21
52

44
12

37
8

t
ic
t
a
c
t
o
e

0.
97

1
.0
0

0.
92

0.
92

0.
94

0.
72

0.
95

33
9

49
57

10
73

8
11
7

2
8

97
11
2

2
8

39
9

29

T
ab

le
12
:
A
U
C

sc
or
es

an
d
ru
le

se
t
co
m
p
le
x
it
ie
s
ex
p
re
ss
ed

in
th
e
to
ta
l
n
u
m
b
er

of
ru
le
s
an

d
co
n
d
it
io
n
s,
fo
r
d
iff
er
en
t
ru
le

le
ar
n
in
g
m
et
h
o
d
s

ac
ro
ss

d
at
as
et
s.

T
U
R
S
ex
ce
ls
on

m
os
t
d
at
as
et
s
in

th
e
ob

ta
in
ed

A
U
C

sc
or
es
.
H
ow

ev
er
,
it
co
n
st
ru
ct
s
ru
le

se
ts

co
n
ta
in
in
g
lo
ts

of
ru
le
s
an

d
co
n
d
it
io
n
s,

w
h
ic
h
m
ak
es

it
h
ar
d
to

in
te
rp
re
t.

In
co
n
tr
as
t,

C
G

ca
n
co
n
st
ru
ct

ve
ry

sp
ar
se

ru
le

se
ts

th
at

ar
e
st
il
l
ac
cu
ra
te
,
ou

tp
er
fo
rm

in
g

th
e
cl
as
si
c
ru
le

le
ar
n
in
g
m
et
h
o
d
s
an

d
C
L
A
S
S
Y
.
O
u
r
m
et
h
o
d
R
2N

-T
ab

ob
ta
in
s
go

o
d
re
su
lt
s
on

th
e
la
rg
er

d
at
as
et
s
h
el
o
c,

h
ou

se
,
ad

u
lt
an

d
m
ag
ic
,
co
n
st
ru
ct
in
g
sp
ar
se

ru
le

se
ts

th
at

h
av
e
st
il
l
ac
cu
ra
te

cl
as
si
fi
ca
ti
on

p
er
fo
rm

an
ce
.
O
n
th
e
sm

al
le
r
d
at
as
et
s,
ou

r
m
et
h
o
d
st
ru
gg
le
s
to

fi
n
d
th
e
b
es
t
tr
ad

e-
off

b
et
w
ee
n
p
re
d
ic
ti
ve

p
er
fo
rm

an
ce

an
d
ru
le

se
t
co
m
p
le
x
it
y,

d
u
e
to

th
e
li
m
it
ed

n
u
m
b
er

of
ex
am

p
le
s.

34

heloc house adult magic diabetes chess backnote tictactoe
10 2

10 1

100

101

102

103

104

105

106

ru
nt

im
e

(s
)

runtimes (s) of feature selection algorithms across datasets

R2N-Tab
RIPPER
CART
C4.5
CLASSY
TURS
CG

Figure 10: Running times per fold in seconds per dataset, comparing different rule learning
algorithms. R2N-Tab takes longer on the smaller datasets to construct rule sets compared
to the other rule learners. On the bigger datasets, R2N-Tab takes a comparable execution
time compared to the other rule learners.

35

Chapter 6

Conclusion

6.1 Summary

In this thesis project, we proposed an extension to DR-Net, an existing approach where a two-
layer neural network architecture can be mapped to a set of rules. We reused the two-layer
architecture and added a deep learning layer for feature selection in front. The layer indicates
features that do not affect the predictive performance of the classifier by labeling them with a
negative weight, which results in the features being ”canceled out” such that they are not in-
cluded in the rule sets. The main objective of the thesis project was to learn a model that best
fits a trade-off between predictive performance and model complexity, with as few epochs as
possible. We developed a three-layer neural network architecture consisting of the CancelOut
Layer explicitly for feature selection, and DR-Net afterward for constructing rule sets. We build
a global optimization heuristic (17) that can find the Pareto optimal solution, maximizing the
predictive performance while minimizing the model complexity. We built an experiment (5.1)
comparing the original DR-Net to our new proposed method R2N-Tab. We empirically showed
that the additional layer explicitly for feature selection resulted in reduced model complexity,
while the predictive performance was harmed minimally.

To evaluate our feature selection layer, we compared our method R2N-Tab to well-known
embedded feature selection approaches, that can be used for feature set reduction and clas-
sification at the same time. We developed an experiment (5.2) comparing the feature set
reduction scores with the obtained classification performance. Compared to, e.g., Gradient
Boosting, R2N-Tab further reduces the model complexity, while maintaining good predictive
performance. Overall, we showed that feature selection layer finds the best fit between remov-
ing features and maintaining predictive performance on most datasets, removing only irrelevant
features.

To position our method R2N-Tab as a rule learner, we compared it to related approaches
in this domain in the final experiment (5.3). We showed that our method outperforms most
rule learning approaches on the large datasets heloc, house, adult, and magic. We obtained
similar results compared to the Column Generation method, which finds, just like our method,
very sparse rule sets with still good predictive performance. On the smaller datasets, we ob-
served that our method struggled to find a good fit between predictive performance and model
complexity. We argued that this is due to the limited number of examples, complicating training
a robust deep learning model.

36

6.2 Future work

As the original two-layer neural network architecture focuses on binary classification, our re-
search was also limited to this domain. Consequently, in future work, the extension to multiclass
classification could be made, allowing for a broader use of our proposed method. This could be
established by creating output nodes for each class in the corresponding dataset and applying
a softmax function afterward, that outputs the predicted class. Due to time resources, we kept
the original two-layer architecture.

As can be observed from the experiment performed in 5.3, our method struggles to find
the best fit between predictive performance and model complexity on smaller datasets, that
have a limited number of examples. For improving the performance of our deep learning model
on smaller datasets as future work, several techniques could be used. For example, one of
these techniques includes data augmentation, which generates new data based on the existing
data. As a result, datasets increase in the number of examples, which could be beneficial for
the performance of our method.

37

Chapter 7

Appendix A

In this chapter, an overview of configurations used in all experiments is provided for repro-
ducibility. For the optimization of neural net weights the Adam optimizer was used. For com-
puting the loss, the BCELoss was used. All results were averaged over 5 runs. In Table 12,
the configurations for hyper parameteres that were constant in all experiments are shown. The
batch sizes used for each dataset are also constant in all experiments. For the larger datasets,
heloc, house, adult, and magic, we use a batch size of 400. For the smaller datasets, diabetes,
chess, banknote, and tictactoe, we use a batch size of 40.

hyper parameter configuration description

out features 1 number of output nodes
device ’cpu’ hardware utilization
lr 1e-2 DR-Net learning rate

lr cancel 5e-3 CancelOut learning rate
and lam 1e-2 Rules Layer sparsity strength
or lam 1e-5 OR Layer sparsity strength

num alter 500 alternating Rules Layer/OR Layer

Figure 11: Global configurations used in all experiments.

7.1 Experiment 1

In the first experiment, we compared R2N-Tab to the original method DR-Net. We started
with num rules set to 50, and used λ3 = 1e-2, λ3 = 1e-4, and λ3 = 1e-6. For the remaining
hyper parameters, we used the configurations as described in Table 12.

7.2 Experiment 2

In the second experiment, we compared R2N-Tab to different embedded feature selection
methods. For SVM, we used a linear kernel, which allows us to perform a classification task.
For the other feature selection methods, we used their default parameters. For our method
R2N-Tab, we used 1000 epochs on most datasets. The chess dataset however required 6000
epochs. For the λ3 coefficients, we used the best values per dataset as found in experiment 1.

38

7.3 Experiment 3

In the final experiment, we design the Pareto front for the different rule learning approaches.
A couple of rule learners include a max depth constraint, that corresponds with the model
complexity. We used the configurations as shown in Table 12.

rule learner depth

RIPPER [50, 75, 100, 200, 300]
CART [2, 3, 5, 7, 8]
C4.5 [2, 3, 5, 7, 8]

CLASSY [1, 2, 5, 7, 9]

Figure 12: Global configurations used in all experiments.

For the TURS and CG approaches, no max depth constraint is included. For our method R2N-
Tab, it depends on the dataset that is used. The configurations we used for our method are
shown in Table 13.

dataset configuration

heloc [10, 25, 40, 55, 70]
house [20, 35, 50, 65, 80]
adult [25, 40, 55, 70, 95]
magic [60, 75, 90, 105, 120]

diabetes [110, 120, 140, 160, 180]
chess [120, 130, 140, 160, 180]

banknote [110, 120, 140, 160, 180]
tictactoe [110, 120, 140, 160, 180]

Figure 13: Global configurations used in all experiments.

39

Bibliography

[1] H. Abdi and L. J. Williams. Principal component analysis. WIREs Computational Statis-
tics 2, pages 433–459, 2010.

[2] H. Bal, D. Epema, C. de Laat, R. van Nieuwpoort, J. Romein, F. Seinstra, C. Snoek,
and H. Wijshoff. A medium-scale distributed system for computer science research:
Infrastructure for the long term. Computer 49, pages 54–63, 2016.

[3] Y. Bengio, N. Léonard, and A. Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation abs/1308.3432. CoRR, 2013.

[4] V. Borisov, J. Haug, and G. Kasneci. Cancelout: A layer for feature selection in deep
neural networks. In Artificial Neural Networks and Machine Learning 11728, pages 72–
83. ICANN, 2019.

[5] L. Breiman, J. H. Freidman, R. A. Olshen, and C. J. Stone. Cart: Classification and
regression trees. CRC press, 1984.

[6] G. Chandrashekar and F. Sahin. A survey on feature selection methods. Computers and
Electrical Engineering 40, pages 16–28, 2014.

[7] P. Clark and R. Boswell. Rule induction with CN2: some recent improvements. InMachine
Learning 482, pages 151–163. Springer, 1991.

[8] P. Clark and T. Niblett. The CN2 induction algorithm. Machine Learning 3, pages
261–283, 1989.

[9] W. W. Cohen. Fast effective rule induction. In Machine Learning Proceedings, pages
115–123. Elsevier, 1995.

[10] S. Dash, O. Günlük, and W. Wei. Boolean decision rules via column generation. In
NeurIPS 31, pages 4660–4670, 2018.

[11] J. Friedman. Greedy function approximation: A gradient boosting machine. The Annals
of Statistics 29, pages 1189–1232, 2001.

[12] J. Fürnkranz and T. Kliegr. A brief overview of rule learning. In Rule Technologies:
Foundations, Tools, and Applications 9202, pages 54–69. Springer, 2015.

[13] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu. A survey of deep learning
techniques for autonomous driving. Journal of Field Robotics 37, pages 362–386, 2020.

[14] L. Grinsztajn, E. Oyallon, and G. Varoquaux. Why do tree-based models still outperform
deep learning on typical tabular data? In NeurIPS, 2022.

[15] J. Hühn and E. Hüllermeier. FURIA: an algorithm for unordered fuzzy rule induction.
Data Mining and Knowledge Discovery 19, pages 293–319, 2009.

[16] H. Lakkaraju, S. Bach, and J. Leskovec. Interpretable decision sets: A joint framework
for description and prediction. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 1675–1684. ACM, 2016.

[17] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature 521, pages 436–44, 2015.

[18] J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang, and H. Liu. Feature
selection: A data perspective. ACM Computing Surveys 50, pages 94:1–94:45, 2018.

[19] D. Newman, S. Hettich, C. Blake, and C. Merz. UCI repository of machine learning
databases. http://www.ics.uci.edu/~mlearn/MLRepository.html, 1998.

[20] C. Nguyen, Y. Wang, and H. Nguyen. Random forest classifier combined with feature
selection for breast cancer diagnosis and prognostic. Journal of Biomedical Science and
Engineering 6, pages 551–560, 2013.

[21] M. Nguyen and F. de la Torre. Optimal feature selection for support vector machines.
Pattern Recognition 43, pages 584–591, 2010.

[22] D. W. Otter, J. R. Medina, and J. K. Kalita. A survey of the usages of deep learning
for natural language processing. IEEE Transactions on Neural Networks and Learning
Systems 32, pages 604–624, 2021.

[23] H. M. Proença and M. van Leeuwen. Interpretable multiclass classification by MDL-based
rule lists. Information Sciences 512, pages 1372–1393, 2020.

[24] L. Qiao, W. Wang, and B. Lin. Learning accurate and interpretable decision rule sets
from neural networks. In Thirty-Fifth AAAI Conference on Artificial Intelligence, pages
4303–4311. AAAI Press, 2021.

[25] J. Quinlan. C4.5: programs for machine learning. Elsevier, 2014.

[26] M. Sahakyan, Z. Aung, and T. Rahwan. Explainable artificial intelligence for tabular data:
A survey. IEEE Access, 9:135392–135422, 2021.

[27] I. Sarker. Machine learning: Algorithms, real-world applications and research directions.
SN Computer Science 2, page 160, 2021.

[28] P. Shinde and S. Shah. A review of machine learning and deep learning applications.
In 2018 Fourth International Conference on Computing Communication Control and Au-
tomation (ICCUBEA), pages 1–6, 2018.

[29] H. X. Tan, C. H. D. Teo, P. S. Ang, W. P. C. Loke, M. Y. Tham, S. H. Tan, B. L. S.
Soh, P. Q. B. Foo, Z. J. Ling, W. L. J. Yip, Y. Tang, J. Yang, K. H. A. Tung, and S. R.
Dorajoo. Combining machine learning with a rule-based algorithm to detect and identify
related entities of documented adverse drug reactions on hospital discharge summaries.
Drug Safety 45, pages 853–862, 2022.

http://www.ics.uci.edu/~mlearn/MLRepository.html

[30] A. Tharwat, T. Gaber, A. Ibrahim, and A. Hassanien. Linear discriminant analysis: A
detailed tutorial. AI Communications 30, pages 169–190, 2017.

[31] A. Voulodimos, N. Doulamis, A. D. Doulamis, and E. Protopapadakis. Deep learning
for computer vision: A brief review. Computational Intelligence and Neuroscience 2018,
pages 7068349:1–7068349:13, 2018.

[32] T. Wang, C. Rudin, F. Doshi-Velez, Y. Liu, E. Klampfl, and P. MacNeille. A bayesian
framework for learning rule sets for interpretable classification. Journal of Machine Learn-
ing Research 18, pages 70:1–70:37, 2017.

[33] H. Yang, C. Rudin, and I. Margo. Scalable bayesian rule lists. In Proceedings of the 34th
International Conference on Machine Learning (ICML) 70, pages 3921–3930. PMLR,
2017.

[34] L. Yang and M. van Leeuwen. Truly unordered probabilistic rule sets for multi-class
classification. In Machine Learning and Knowledge Discovery in Databases, pages 87–
103. Springer Nature Switzerland, 2023.

[35] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning
requires rethinking generalization. In 5th International Conference on Learning Represen-
tations (ICLR). OpenReview.net, 2017.

[36] G. Zhang and A. Gionis. Diverse rule sets. In KDD ’20: The 26th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 1532–1541. ACM, 2020.

	Introduction
	Research question
	Overview

	Related work
	Rule learning
	Rule lists
	Rule sets

	Feature set reduction
	Feature selection
	Dimensionality reduction
	CancelOut Layer

	Background
	Deep Neural Networks (DNNs)
	Formal definition
	Learning strategy

	Learning rules from data
	Illustrating the rule learning process

	DR-Net
	Data preprocessing
	Rules Layer
	OR Layer
	Regularization
	Extracting rules from DR-Net

	Our proposed method: R2N-Tab
	CancelOut Layer
	Decision Rules Network
	Regularization
	Optimization strategy

	Experiments and results
	Comparison with Decision Rules Network
	Experimental setup
	Results and analysis

	Comparison with feature selection algorithms
	Experimental setup
	Results and analysis

	Comparison with rule learning algorithms
	Experimental setup
	Results and analysis

	Conclusion
	Summary
	Future work

	Appendix A
	Experiment 1
	Experiment 2
	Experiment 3

