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Abstract

Prepositional phrases (PPs) play a crucial role in the knowledge extraction process
within methods for constructing knowledge bases. Despite this importance, prepositional
phrases remain a significant source of syntactic ambiguity, posing ongoing challenges
in the parsing process. While there has been considerable research in this area, existing
research has predominantly focused on prepositional phrases with limited analysis at the
sentence level. Additionally, investigations into this issue within the context of neural
networks are currently quite scarce. On the contrary, another form of structural ambi-
guity, the garden path effect, has attracted the attention of many scholars within the
context of neural language models, like RNNG and LSTMs trained on different corpora.

On the other hand, neural language models that induce constituency tree struc-
tures can effectively capture the hierarchical nature of human language. However, many
previous studies relied on supervised syntactic parsers, which require costly manual an-
notations, such as a BiLSTM-based supervised training model that reduces constituent
parsing to a sequence labeling task. Consequently, in recent years, research has placed
significant emphasis on studying grammar induction which is learning latent tree struc-
tures without the need for human-annotated data and has garnered widespread attention
from researchers. As fine-tuning pre-trained Transformers has achieved state-of-the-art
results on various NLP tasks, one notable approach involves integrating tree structures
into the Transformer, known as the Tree Transformer.

Our primary focus is on investigating the disambiguation capability of the unsuper-
vised Tree Transformer at the sentence level regarding prepositional phrase attachment,
comparing it with the parsing capabilities of the supervised BiLSTM. We observed that
the parsing ability of the Tree Transformer is not as robust as expected when compared
to the BiLSTM. Additionally, experimental results indicate that the Tree Transformer
tends to attach prepositional phrases to verbs, while for sentences containing “be” or
“have” verbs and their variants, the model is more inclined to select nouns for attach-
ment decisions, a phenomenon not observed in the BiLSTM. In addition to parsing
ability analysis, we also explored aspects similar to those of LSTMs and RNNG, for in-
stance, whether the Tree Transformer exhibits garden path effects and its sensitivity to
subtle lexical cues leading to syntactic state changes will be examined. It was found that
the magnitude of the garden path effect and sensitivity to lexical cues displayed by it
across multiple datasets are not as pronounced as those observed in large-scale LSTMs.
The sensitivity to the presence of an object is higher compared to verb transitivity and
verb form.
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1 Introduction

Natural Language Processing (NLP) is a crucial branch of computer science and artificial
intelligence aimed to enable computers to understand, interpret, generate and process human
language. NLP involves the learning, handling and analysis of textual data, allowing computers
to communicate with human language. However, due to the various types of ambiguity inherent
in natural language, NLP faces multiple difficulties and challenges. Ambiguity arises from the
polysemy, complexity and contextual variations in natural language, with syntactic ambiguity
being one of them. Specific form of syntactic ambiguity, where a prepositional phrase (PP)
can attach to different positions in a sentence, leading to multiple possible structures and
meanings. For instance, sentence “I saw the man with the telescope” can have different
meanings depending on whether “with the telescope” attaches to “the man” or “saw”, leading
to two different syntactic structures:

• I saw the man through the telescope.

• I saw the man who had a telescope.

Due to the widespread presence of prepositional phrase attachment ambiguity in natural lan-
guage, it has garnered significant attention from scholars. Among the works, structure-based
methods have been explored, such as the Right Association (Kimball, 1973) and Minimal
Attachment methods (Frazier, 1979), which despite their popularity due to simplicity, ex-
hibit notable shortcomings and perform suboptimally in practical applications. Additionally,
statistics-based methods have been employed. Hindle and Rooth (1993) introduced the first
corpus-based co-occurrence statistical method, known as “lexical association”. Then, Rat-
naparkhi et al. (1994) developed a maximum entropy model to calculate the probability of
attachment decisions. To address sparsity issues in these methods, Collins and Brooks (1995)
introduced a back-off model and WordNet (Fellbaum, 1998) classes have been applied by
researchers (Stetina and Nagao, 1997; Toutanova et al., 2004). Besides, there are rule-based
methods, including an approach proposed by Brill and Resnik (1994), which involves learning
a set of transformation rules from a corpus. However, the limitation of this method lies in the
specificity and lack of generality of these rules, making it cumbersome for practical applica-
tions and maintenance. Hence, it can be observed that the exploration of prepositional phrase
attachment ambiguity in neural language models is quite limited.

Another well-studied syntactic ambiguity is garden path effect (Bever, 1970) which means the
comprehender is guided toward a locally plausible but ultimately incorrect parse, much like
being led down a garden path only to discover errors along the way. It is a valuable area of
study in psycholinguistics because it provides insights into how humans process and under-
stand language. It helps researchers explore the complexities of sentence comprehension, the
role of syntax and grammar, as well as our brains adapt to unexpected linguistic structures.
Therefore, the garden path effect has been widely studied in the field of neural language mod-
els. Among them, Van Schijndel and Linzen (2018a,b) demonstrated the garden path effect in
LSTM models by simulating human reading times.

Surprisal, in the context of language and psycholinguistics, is a concept used to quantify the
unexpectedness or information content of a word or phrase within a sentence. It measures
the degree of surprise or uncertainty associated with encountering a specific linguistic element
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based on the context and prior linguistic information. In addition, surprisal is often used to
study how human process language and make predictions regarding forthcoming words in a
sentence. The surprisal theory (Hale, 2001; Levy, 2008) has demonstrated that the surprisal
derived from grammar-based language models can qualitatively explain specific cases of syntac-
tic ambiguity resolution difficulties. Subsequently, the surprisal introduced by broad-coverage
grammar-based language models has been shown to be correlated with reading time by Dem-
berg and Keller (2008). For neural language models, the surprisal in RNNs has been found to
be a powerful predictor of human reading times (Frank and Bod, 2011; Goodkind and Bicknell,
2018), and Van Schijndel and Linzen (2018a) demonstrated their ability to make reading time
predictions comparable to grammar-based language models. In addition to validating the sur-
prisal theory across different models, Futrell et al. (2019) tested multiple LSTMs and RNNG
to determine if they exhibit the garden path effect and observed their levels of surprisal in
disambiguating sentences.

As is widely known, human language exhibits rich hierarchical structures. Hence, models capa-
ble of automatically deriving tree structures from raw text can simulate this type of hierarchical
structure. However, most previous research incorporating such tree structures into neural net-
works has predominantly focused on supervised syntactic parsers, relying on annotated parsing
trees. For instance, Gómez-Rodŕıguez and Vilares (2018) proposed a BiLSTM-based model
treating constituent parsing as a sequence labeling task.

As a result, researchers have explored various techniques, hoping that models could learn
latent tree structures from unlabeled data without explicit syntactic annotations. This line
of exploration is known as grammar induction (Smith and Eisner, 2005), aiming to induce
tree structures without relying on extensive manually annotated training data. Among them,
Yogatama et al. (2016) depicted the problem as a reinforcement learning task. In addition,
there have been attempts based on recurrent neural networks, such as PRPN (Shen et al.,
2018a) and On-LSTM (Shen et al., 2018b). Works based on recursive neural networks, such as
URNNG (Kim et al., 2019b) and DIORA (Drozdov et al., 2019), also exist. Due to pre-trained
Transformers from large-scale raw text, obtaining high-quality language representations, and
achieving state-of-the-art results in various NLP tasks, Wang et al. (2019), inspired by Tree-
RNNs (Tai et al., 2015), proposed the Tree Transformer.

In our work, to gain a better understanding of the capabilities of the Tree Transformer, we
pose the following research questions:

• How well can the Tree Transformer model handle PP attachment ambiguity?

• How well can the Tree Transformer model predict garden path effects?

The results based on these research questions not only reveals the Tree Transformer’s profi-
ciency in parsing and language modeling tasks but also provides a deeper understanding of
its intrinsic mechanisms when handling complex grammar structures and ambiguity. These
aspects have also been previously unexplored. Our primary contributions are:

• We convert the PP attachment corpus into naturalistic sentences using BERT.
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• We train a Tree Transformer from scratch on the Penn Treebank, and evaluate it on our
novel data to quantify the Tree Transformer’s performance.

• We evaluate pre-trained BiLSTM on our novel data to quantify the model’s performance.

• We quantify the garden path effect size of Tree Transformer and its sensitivity to subtle
lexical cues, compared with the models in another work.

In section 2, we will delve into some prior research. For instance, studies on prepositional
phrase attachment will be systematically introduced, encompassing parsing accuracy. Concern-
ing grammar induction, the focus will be on research involving unsupervised neural language
models. Additionally, research related to the garden path effect and its quantification through
surprisal will be expounded in this section. The subsequent section 3 will elucidate the evalua-
tion metrics and the underlying principles of the models. The section 4 will detail the methods
employed in the experiments, including the datasets used, the unsupervised parsing algorithm
for Tree Transformer and the configurations of various experiments. All experimental results
will be consolidated in section 5. Finally, comprehensive discussion and conclusion of the entire
experiment will ensue in sections 6 and 7, respectively.
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2 Related Work

This section reviews some historical progress in prepositional phrase attachment ambiguity,
grammar induction and garden path effect.

2.1 Prepositional Phrase Attachment Ambiguity

Natural language processing (NLP) strives to create computer systems for the automatic pro-
cessing of human language. Unlike programming languages, natural language poses significant
challenges because of its ambiguity. One of the most common and widely studied forms of am-
biguity is structural ambiguity, also known as syntactic ambiguity, where a sequence of words
can be structured in multiple ways, leading to various interpretations. Prepositional phrase
(PP) attachment is a subproblem in natural language parsing and a typical type of structural
ambiguity. Choosing the correct attachment can significantly impact the semantic interpreta-
tion of a sentence. However, resolving PP attachment ambiguity is challenging because, from
a natural language grammar perspective, candidate attachment decisions often appear equally
reasonable. Determining the optimal attachment for a preposition often requires semantic in-
terpretation of the words within the sentence. There has been a substantial body of research
related to prepositional phrase attachment ambiguity.

• Structure-based Methods: these methods are heuristic strategies for resolving prepo-
sitional phrase (PP) attachment ambiguities, based on high-level observations of human
parsing preferences. Several studies have proposed structure-based suggestions for resolv-
ing ambiguity, and these strategies are appealing because of their simplicity, as they do
not require calculations about semantics or discourse. There are primarily two structural
methods, Right Association and Minimal Attachment methods. The Right Association
method proposed by Kimball (1973) suggests that a word tends to attach to the adjacent
word on their right side. The Minimal Attachment method introduced by Frazier (1979)
posits that words prefer to attach with as few additional syntactic nodes as possible
to existing non-terminal words. In essence, it aims to construct a syntax tree with the
fewest nodes. However, in the classic case of prepositional phrase attachment ambiguity,
as illustrated in an example like “I saw the man with the telescope”, when attaching
prepositional phrases in a verb + object context, these two principles yield opposite at-
tachment predictions. The Right Association method predicts attachment to the noun,
while the Minimal Attachment method predicts attachment to the verb. Besides, an-
other study of PP attachment involving written responses to samples from the “Wizard
of Oz” travel information has shown that both Right Association and Minimal Attach-
ment fail to account for over 55% of cases (Whittemore et al., 1990). Even, only 36%
of cases act according to strict Minimal Attachment method. Moreover, experiments
conducted by Taraban and McClelland (1988) also suggest that structural models do
not effectively predict human behavior in resolving ambiguities. As a result, although
these methods are straightforward, practical applications have revealed that they often
perform inadequately.

Ratnaparkhi et al. (1994) developed a statistical model to compute the probabilities of
attachment decisions. They employed a maximum entropy model that considers subsets
of the quadruples v, n1, p, n2 from Wall Street Journal, with each subtuple having
weights indicating their predictive strength for either noun or verb attachment. These
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weights were trained to maximize the likelihood of the training data. They conducted
experiments with word features and word class features, achieving attachment accuracy
of 81.6% (words and classes) and 77.7% (words only).

However, these methods faced the issue of sparsity, where data observed in the test set
might not have been included in the training data. To overcome this, Collins and Brooks
(1995) introduced a back-off model that achieved an accuracy of 84.5%. This model
used subsets of the quadruples and maintained frequency counts of single words, pairs
and triples. Another approach to mitigating sparsity involved using WordNet (Fellbaum,
1998) classes, substituting nouns with their corresponding WordNet classes, which re-
sulted in less sparse corpus statistics (Stetina and Nagao, 1997; Toutanova et al., 2004).
Additionally, clusters of similar nouns and verbs derived from the corpus were utilized
(Pantel and Lin, 2000).

• Rule-based Methods: Brill and Resnik (1994) proposed a method for learning a collec-
tion of transformation rules obtained from a corpus. They employed a greedy search to
learn a series of transformations that could minimize the error rate on the training data.
These transformations are rules that make attachment decisions based on up to three
elements of the (v, n1, p, n2) quadruples. Typical examples include rules like “Choose
noun attachment if P=of” or “Choose verb attachment if V=buy and P=for”. However,
these rules could be overly specific and lack generalizability, leading to low recall. To
address this issue, word-class information from WordNet was integrated into the model
by them, enabling transformations to consider both classes and words. For example, if
n2 belongs to a time semantic class, then verb attachment is selected. This approach
achieved 80.8% accuracy (only words) and 81.8% accuracy (words and semantic classes).

2.2 Garden Path Effect

The garden path effect is a phenomenon in psycholinguistics, a field that studies the cogni-
tive processes involved in language comprehension. It is another syntactic ambiguity, and also
refers to the temporary ambiguity (Frazier and Fodor, 1978) that can occur when a listener
or reader encounters a phrase or sentence that initially appears to be structured one way but
is later revealed to have a different grammatical structure or meaning. This leads to a mo-
mentary “detour” in understanding the sentence, similar to walking down a garden path and
then realizing you are on the wrong path (Bever, 1970). The garden path effect is caused
by the ambiguity in sentence structure and the human brain’s natural tendency to interpret
sentences based on the most common or expected grammatical patterns. When a sentence
deviates from these expectations, it can result in momentary confusion and readers tends to
slow down because of the high reading time at the disambiguation word. This effect has been
used to investigate which information determines people’s beliefs about potential parses in the
context of given local ambiguous contexts, such as whether factors like world knowledge play
a role (Ferreira and Clifton Jr, 1986; Trueswell et al., 1994). Furthermore, Van Schijndel and
Linzen (2018a,b) demonstrated the existence of garden path effects in LSTMs in the context
of simulating human reading times.

The surprisal hypothesis (Hale, 2001; Levy, 2008) provides a significant explanation for gar-
den path effects, proposing that these slowdowns are a result of the unpredictability of each
word appearing in a sentence. It suggests that readers maintain a probability representation
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of all possible parses of the input while incrementally processing the sentence. The processing
difficulty in garden path sentences is associated with the cost of updating this representa-
tion, which scales with the negative logarithm of the probability or surprisal of the newly
encountered content. The theory anticipates that the slowdown related to garden path sen-
tences can be fully explained by the surprisal variations between the disambiguating region
in ambiguous garden path sentences and the corresponding region in matching unambiguous
sentences. Hale (2001) has been demonstrated that surprisal derived from grammar-based lan-
guage models (LMs) which encode the syntax of the sentences explicitly, such as probabilistic
context-free grammar model, can qualitatively account for specific cases of syntactic disam-
biguation difficulty. Subsequently, Demberg and Keller (2008) proved that surprisal induced
by broad-coverage grammar-based LM is related to reading times.

Additionally, numerous studies have established connections between the performance of re-
current neural networks (RNNs) and aspects of human language processing (Elman, 1990;
MacDonald and Christiansen, 2002), as well as grammaticality judgments (Lau et al., 2017).
RNN LMs have also been shown to make sufficient syntactic predictions (Linzen et al., 2016;
Gulordava et al., 2018). Surprisal derived from RNNs has been found to be a robust predictor
of human reading times (Frank and Bod, 2011; Goodkind and Bicknell, 2018) and capable of
making reading time predictions comparable to grammar-based language models (Van Schi-
jndel and Linzen, 2018a). Although Van Schijndel and Linzen (2021) later assessed surprisal
related to garden path sentences using LSTM LMs trained on large natural language corpora
and found that the costs of word predictability derived from the language model significantly
underestimated the extent of human garden path effects. This suggests that predictability is
not the sole factor contributing to processing costs associated with garden path sentences.

In addition to validating the surprisal theory across different models, Futrell et al. (2019) tested
multiple LMs on two major local ambiguities causing garden path effects and posed two main
questions for each ambiguity. Firstly, does the network exhibit the fundamental garden path
effect, indicating it possesses a syntactic state representation that makes disambiguators sur-
prising? Secondly, is the network sensitive to subtle lexical cues indicating syntactic structure?
We will explore these similar problems on Tree Transformer.

2.3 Grammar Induction

Human language exhibits rich hierarchical structures. Parse trees with hierarchical structures
can effectively capture these human intuitions. However, annotating parse trees can be chal-
lenging and expensive, which has led to the reliance on supervised syntactic parsers in most
prior works. While supervised parsers can achieve high performance on well-constructed sen-
tences, only a limited number of languages have treebank data available for supervised training
parsers. Additionally, in some cases, syntax rules may be violated, such as in the case of tweets,
and over time, syntax rules of languages may evolve. These limitations restrict the general-
ization capabilities of supervised parsers, rendering them inadequate. Therefore, the task of
learning latent tree structures from raw text without manual annotation has become a signif-
icant concern in natural language processing, referred to as grammar induction (Smith and
Eisner, 2005), and has garnered more attention from researchers in recent years. Grammar
induction has a long and rich history in the field of NLP. However, early attempts at purely un-
supervised grammar induction were mostly discouraging. Clark (2001) and Klein and Manning
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(2002) emerged as some of the earliest successful statistical methods for grammar induction.
Notably, Klein and Manning (2002) introduced the constituent-context model (CCM), which
clearly models distituents and constituents, serving as the foundation for many subsequent
works.

Over the years, there has been significant interest in incorporating tree structures into neural
networks to induce tree structures for improved natural language sentence representations. One
such attempt was to formulate the problem as a reinforcement learning (RL) task (Yogatama
et al., 2016). In its setup, an unsupervised parser acts as an actor, with parsing operations
treated as its actions. The actor strives to maximize the total reward, which corresponds to
the performance on downstream tasks. Other works have primarily concentrated on generating
tree structures from recurrent neural networks and recursive neural networks. PRPN, short for
Parsing-Reading-Predict Network (Shen et al., 2018a), is a model that can simultaneously infer
syntactic structures from unannotated sentences and utilize the inferred structures to improve
language modeling. It consists of three components: a differentiable neural parsing network that
employs convolutional neural networks to compute syntactic distances, representing syntactic
relationships among all consecutive word pairs in a sentence; a reading network that leverages
these syntactic structures to engage in relevant memory; and a prediction network that uses
directly related memory to predict the next token. On-LSTM (Shen et al., 2018b) induces tree
structures by introducing ordered neurons into recurrent neural networks and adding inductive
biases. This allows hidden neurons to capture both short-term and long-term information using
the novel gating mechanism and activation function. Another work proposed by Kim et al.
(2019b) delved into the unsupervised learning of recurrent neural network grammars (RNNG),
also referred to as URNNG. RNNG, as proposed by Dyer et al. (2016), represents a novel
probabilistic model for sentence generation, explicitly capturing nested, hierarchical relation-
ships among phrases and words. Given the inherent complexity of directly marginalizing the
space of latent trees, URNNG utilized amortized variational inference between a tree structure
inference network and the RNNG decoder. This strategy encouraged the decoder to generate
rational tree structures. One work related to recursive neural network is deep inside-outside
recursive autoencoders (DIORA), proposed by Drozdov et al. (2019), aiming to predict each
word in the input sentence based on the remaining part of the sentence and employing inner-
outer dynamic programming to account for all potential binary trees within the sentence. The
algorithm ultimately extracts the highest-scoring parse. Additionally, there is the compound
PCFG proposed by Kim et al. (2019a). It first employs a probabilistic context-free grammar
(PCFG) to derive sentences from a corpus, and then maximizes the marginal likelihood of these
sentences to realize grammar induction. This allows for capturing dependencies over longer
ranges in tree-based generation processes.

Later, in an effort to make Transformer’s learned attention more interpretable and to en-
able hierarchical language understanding, Wang et al. (2019) integrated tree structures into
a bidirectional Transformer encoder, resulting in the Tree Transformer. The core idea is to
constrain words at each layer to attend only to other words within the same constituent. In
the previous work by Wu et al. (2018), the effectiveness of such constraints had already been
demonstrated. Unlike previous work that required supervised parsers, the tree structures are au-
tomatically derived by Tree Transformer from the original text using the proposed “Constituent
Attention” module. Additionally, inspired by Tree-RNNs (Tai et al., 2015) but not entirely the
same, while Tree-RNNs represent each phrase and sentence with its constituent sub-phrases,
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the Tree Transformer progressively combines several smaller constituents from lower layers
into larger ones as it moves to higher layers. We will explore the parsing capabilities of Tree
Transformer.
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3 Fundamentals

In this section, the evaluation metrics and models used in the experiments will be introduced
in detail, including many formulas.

3.1 Evaluation Metrics

Accuracy: accuracy is a straightforward and easy-to-understand metric of overall correctness
in a classification task. It calculates the proportion of correctly predicted instances out of the
total number of instances in the dataset. It is a good metric for balanced datasets where the
classes are roughly equally distributed. However, it can be misleading in imbalanced datasets.
In addition, one drawback of accuracy is that it does not take into account how close the
prediction is to the actual value if the prediction is wrong.

Accuracy =
Number of Correct Predictions

Total Number of Predictions
(1)

Precision: precision is a metric that measures how many of the predicted positive instances
were actually positive. It quantifies the model’s ability to make precise positive predictions
and is particularly relevant in situations where false positives should be minimized. Besides,
precision is valuable when addressing imbalanced datasets where one class considerably out-
numbers the other. In such cases, it provides insight into how well the model is performing on
the minority class, which is often of greater interest. Precision is calculated as:

Precision =
True Positives

True Positives + False Positives
(2)

Recall: recall, also referred to as True Positive Rate or Sensitivity, measures how many of the
actual positive instances were correctly predicted as positive. It is also useful for the imbalanced
datasets and ensures that the model does not miss important positive instances, even if they
are rare. Recall is calculated as:

Recall =
True Positives

True Positives + False Negatives
(3)

F1-Score: the F1 score is derived by taking the harmonic mean of precision and recall. It
strikes a balance between these two metrics, making it useful when both false positives and
false negatives need to be minimized, which is beneficial to the imbalanced datasets. F1-Score
is calculated as:

F1-Score =
2 × (Precision × Recall)

Precision + Recall
(4)
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Surprisal: according to the surprisal theory and existing researches, the garden path effects
in neural language models can be quantified by computing surprisal, which involves assigning
the negative log probabilities to each word in a sentence as:

surprisal(wi) = − log2 p(wi|w1...i−1)

where wi represents the current word or character, and the probability distribution over se-
quences of input is calculated by applying the softmax function to the output of the Tree
Transformer. The logarithm uses base 2, thus measuring surprisal in bits.

3.2 Tree Transformer

The Transformer architecture introduces self-attention mechanism and positional encoding to
address challenges in processing long sequences and has achieved significant success in NLP
as well as other domains. However, it is still difficult to interpret the information captured by
learned attention of pre-trained Transformer. Therefore, there is a prior work (Wang et al.,
2019) introduced Tree Transformer which allows the model to better learn human intuition
about hierarchical structures by incorporating tree structures into self-attention. Specifically,
an additional “Constituent Attention” module is inserted into the bidirectional Transformer
encoder, which adds a constraint “Constituent Prior” to the attention heads in order to guide
the attention heads to follow the tree structures and decide whether two words belong to the
same constituent.

Figure 1: (A) A 3-layer Tree Transformer, where constituents are induced from the input
sentence as blocks. Two adjacent constituents might be grouped into one in the subsequent
layer, leading to an increasing size of constituents one layer to another. Red arrows represent
self-attention between words. (B) Building blocks of Tree Transformer. (C) Constituent prior
C in the layer 1. (Wang et al., 2019)

Therefore, when given a sentence as input, Tree Transformer generates a tree structure. Figure
1(A) illustrates a 3-layer Tree Transformer. The building blocks of the Tree Transformer, as
shown in Figure 1(B), are similar to the ones used in the bidirectional Transformer encoder,
with the addition of the proposed constituent attention module. The blocks in Figure 1(A) are
induced constituents from the input sentence. The red arrows represent self-attention. Words
belonging to different constituents are restricted from attending to each other, denoted by
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the red crosses. At layer 0, some adjacent words are combined into constituents; for example,
given the sentence “The cute dog is wagging its tail”, Tree Transformer automatically deduces
that “cute” and “dog” are in one constituent, and “it” and “tail” are in another constitute.
Two adjacent constituents may be merged together in the next layer, resulting in a gradual
increase in constituent size from one layer to another. Finally, at the highest layer (layer 2), all
words merge into a single constituent. Consequently, a parse tree with hierarchical structure
is formed. Since all words belong to the same constituent at this layer, attention heads can
attend to any other word freely. In the last layer, the behavior of Tree Transformer is similar
to a typical Transformer encoder. Figure 1(C) represents the Constituent prior C for the layer
1, and the intensity of color indicates the attention magnitude between words.

Next, let’s delve into the Constituent Attention module and its integration with the self-
attention mechanism of the original Transformer.

3.2.1 Constituent Prior

Figure 2: The Transformer uses two attention mechanisms: (left) Scaled Dot-Product Attention
and (right) Multi-Head Attention. (Vaswani et al., 2017)

The Transformer uses a scaled dot-product attention in each layer. As shown in the Figure 2
(left), the first step is to calculate the dot product of query matrix Q and key matrix K. Both
matrices are composed of vectors with dimensions dk. This is because, in practice, computing
the attention function for an entire set of queries simultaneously is more efficient. In order to
do so, these queries are packed into a matrix Q. Similarly, matrices K and V can be obtained.
In addition, due to the mismatch in matrix size, what is actually calculated is the dot product
of matrix Q and transposed matrix K. The second step is to scale the matrix obtained after
the dot product. It can prevent the vanishing gradient problem faced later in softmax. To scale
it, the scaling factor of 1/

√
dk is applied. Finally, passing the processed matrix to the softmax

function gives us the weights of the values. This is the so-called attention probability matrix,
denoted as E, with dimensions N ×N , where N corresponds to the number of words in the
input sentence. Ei,j is the probability that the word at position i attends the word at position
j. The equation is as follows:
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E = softmax(
QKT

√
dk

) (5)

However, for E in the Tree Transformer, it not only depends on the matrices Q and K, but
also on the additional Constituent Prior C mentioned. Similar to E, Constituent Prior C is
also a N×N matrix. The difference is that the C is symmetric and Ci,j has the same value as
Cj,i, where Ci,j represents the probability that word wi and word wj are members of a common
constituent. In order to force attention within the constituents and prevent each position from
attending to positions in other constituents, Tree Transformer restricts the attention probability
matrix E according to Constituent Prior C, as shown below:

E = C ⊙ softmax(
QKT

√
dk

) (6)

where ⊙ is element-wise multiplication. When the value of Ci,j is small, it indicates that po-
sitions i and j are likely to belong to different constituents, where the attention weight Ei,j

will be smaller. On the contrary, when Ci,j has a larger value, then positions i and j have a
high likelihood of being part of the same constituent, in which the attention weight Ei,j will
be larger.

As shown in Figure 2 (right), since Transformer employs multi-head attention with h different
heads, which allows the attention mechanism to be run h times in parallel. Queries and keys
are linearly projected into dk dimension h times by using different learned linear projections.
Thus, h different query matrices Q and key matrices K are obtained at each layer. In a given
layer, all attention heads in multi-head attention commonly use the same C, but each layer
possesses its individual Component Prior C which is distinct and not shared across layers.
Then, the ultimate output of the multi-head attention module with dimension dmodel = h×dk
can be obtained by concatenating the outputs of all attention heads.

3.2.2 Constituent Attention Module

How does the Constituent Attention module generate Constituent Prior C? As mentioned
before, the Constituent Attention module can automatically convert the raw text into a tree
that captures the syntactic relationship between words by continuously merging different con-
stituents from low layers to high layers. Then the generation of Constituent Prior C is actually
to estimate the breakpoints between constituents, or calculate the probability that two adja-
cent words belong to the same constituent. Therefore, the Constituent Attention module owns
a sequence a = {a1, ..., ai, ..., aN} in each layer, where ai is the probability of the word wi

and its neighbor word wi+1 located in the same constituent. Smaller values of ai mean that
there is a lower probability that wi and wi+1 exist in the same constituent, that is, there is
a breakpoint between them. With the sequence a, Constituent Prior C can be obtained. The
probability Ci,j that word wi and word wj belong to the same constituent is calculated by the
multiplication of all ai≤k<j between these two words, as follows:

Ci,j =

j−1∏
k=i

ak (7)

Since if one of ai≤k<j between two words wi and word wj is smaller, the value of Ci,j ob-
tained after multiplying all of a will also become smaller. Therefore, choosing multiplication
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over summation makes the probability gap larger, resulting in a more pronounced component
distribution. Then, in practice, multiplication may lead to a probability vanishing problem due
to the existence of probability 0. To avoid this, applying log-sum on the basis of multiplication
can effectively achieve:

Ci,j = e
∑j−1

k=i log(ak) (8)

As a result, the process of deriving Constituent Prior C from sequence a becomes clear. Regard-
ing the acquisition of sequence a, it is imperative to introduce the following two mechanisms:
Neighboring Attention and Hierarchical Constraint.

• Neighboring Attention:

In line with its name, Neighboring Attention involves computing attention between adja-
cent words. Similar to equation (5), it utilizes scaled dot-product attention to calculate
the score si,i+1 which indicates wi links to wi+1. However, the difference lies in the fact
that the query and key vectors in this context are computed by the same network archi-
tecture but with distinct sets of network parameters. Additionally, the dimensionality of
both vectors is dmodel rather than dk. The specific calculation of si,i+1 is as follows:

si,i+1 =
qi · ki+1

d
(9)

where qi represents the link query vector of wi, and ki+1 represents the link key vector
of wi+1. Their dot product qi · ki+1 signifies the likelihood that wi and wi+1 share as
part of the same constituent. Here, the scaling factor d is set to be dmodel

2
.

Figure 3: Neighboring Attention: the probabilities of the word only linking to its left and right
neighboring words.(Wang et al., 2019)

However, in the absence of other restrictions, the model tends to link all words together
and allocate all words to a single constituent. In other words, if both si,i+1 and si,i−1 have
large values, the attention heads are free to link to any position without the constraint
of constituent prior, similar to the original Transformer model. Therefore, in comparison
to scores s between neighboring words, transforming these scores into a probability
distribution where one receives high probabilities (indicating strong attention) while
another receives lower probabilities (indicating weak attention or no attention at all) is
an effective sparsity constraint to make the attention mechanism more interpretable. As
shown in the Figure 3, each word in the raw text is constrained to link only to its right
neighbor and left neighbor. For instance, the scores of wi linking to wi+1 and to wi−1

are normalized to obtain the probabilities of the word wi attending to its left and right
neighboring words, pi,i+1 and pi,i−1, respectively. Here, the softmax function is applied
to the two attention links of wi to enforce the attention to be sparse:
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pi,i+1, pi,i−1 = softmax(si,i+1, si,i−1) (10)

where pi,i+1+pi,i−1 = 1. Since pi,i+1 and pi,i−1 may have different values, averaging the
probabilities of the two attention links results in âi, which means that adjacent words are
linked only when the two words mutually attend to each other. The calculation process
is illustrated as follows:

âi =
√

pi,i+1 × pi+1,i (11)

which will be used in the next part to generate ai and further obtain the sequence a.

• Hierarchical Constraint:

If Neighboring Attention was described as a horizontal constraint on word-to-word
links within a layer, then Hierarchical Constraint can be seen as a vertical constraint
between layers. This is because, to obtain the tree structure of the raw text, it is es-
sential to ensure that the words which are merged into the same constituent at lower
layers continue to belong to the same constituent at higher layers. To implement this, a
constraint is imposed on the link probability a for each word at each layer. Specifically,
it is required that alk (the link probability for a word at index k in layer l) should always
be greater than al−1

k (the link probability for the same word in the previous layer, l− 1).
As a result, the link probability alk is computed as follows:

alk = al−1
k + (1− al−1

k )âlk (12)

where âlk is derived from Neighboring Attention. This constraint ensures that as the
model moves up through layers, it respects the hierarchical structure of constituents that
were established in the lower layers. It maintains consistency in how words are grouped
into constituents, helping the model capture hierarchical dependencies and structures
within the input data.

Finally, at layer l, the link probabilities al are used to compute the constituent represen-
tation C l using equation (8). Initially, at the lowest layer, different words are treated as
distinct constituents, and the link probabilities a−1

k are initialized to zero.

3.3 Constituent Parsing with the Sequence Labeling Model BiL-
STM

Constituent parsing plays a pivotal role in the field of NLP. It is a syntactic analysis technique
that focuses on understanding the tree structure of sentences, including phrases and their
relationships. Through constituent parsing, we gain a deeper insight into the grammatical
components of a sentence, such as noun phrases, verb phrases, and their hierarchical organi-
zation.

Different from Tree Transformer, Gómez-Rodŕıguez and Vilares (2018) proposed a supervised
learning method to transform constituent parsing into a sequence labeling task. It can be
divided into three parts: encoding, prediction and decoding.
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3.3.1 Encoding

The encoding function linearizes a tree into a sequence of labels equal to the sentence length
subtracted by one. For each input word wt, it generates a label encoding the quantity of
ancestors shared by the words wt and wt+1, as well as the non-terminal symbol at the lowest
common ancestor. This encoding function has been proven to be injective for every tree that
does not contain unary branches. Specifically, injectivity here means that each unique sequence
of labels should have a unique corresponding tree, and two different sequences of labels should
not map to the same tree. Moreover, after applying collapsing techniques, this method is made
extensible to parse unary chains. The encoding function involved and the collapsing technique
adopted in this experiment will be detailed below.

• Encoding function:

In the following, bold font is used to represent vectors and matrices (e.g. x). The input
sequence of words is initially defined as w = [w1, w2, ..., w|w|], where wi ∈ V . T|w|
represents the set of constituent trees with |w| leaf nodes and no unary branches. The
constituent parsing problem is then assumed to involve mapping each sentence w to a
tree in T|w|. In other words, the correct parsing is assumed to have no unary branches.
This mapping can be achieved through the encoding function Φ|w| : T|w| → L|w|−1. By
defining a set of labels L, each tree in Tw is encoded into a unique label sequence in
L|w|−1.

Using wi to represent the word at position i in the sentence, where 1 ≤ i ≤ |w| − 1,
its label is set to a 2-tuple li = (ni, ci), where ni is an integer encoding the number of
common ancestors between wi and wi+1, ci is the non-terminal symbol at the lowest
common ancestor. As illustrated in Figure 4, the number of common ancestors can be
encoded using both the absolute scale and the relative scale. Absolute scale encoding
is relatively straightforward, where ni is identical to the number of common ancestors
between wi and wi+1. On the other hand, relative scale encoding involves representing
ni as the difference in the number of ancestors relative to what is encoded in ni−1. The
latter significantly reduces the size of the label set. Therefore, in the experiment, relative
scale encoding will be adopted.

Figure 4: An example of a constituent tree linearized using absolute (up) and relative (down)
scales.
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It is important to note that this encoding method does not necessarily linearize the
tree into a binary tree. Additionally, empirical observations suggest that certain tokens,
typically connected directly to the root node (e.g., the final punctuation in the Figure
4), make it challenging for the model to learn effectively. To address these situations
successfully in practice, a simplified labeling scheme is applied. When a node is directly
connected to the root of the tree, the node is assigned a special label (ROOT, ci).

• Collapsing technique:

Due to the practical limitation that the encoding function cannot handle unary branches,
an extension is required. As illustrated in the Figure 5, the encoding function Φ|w| cannot
directly assign non-terminal symbols to unary branches because there are no word pairs
(wi, wi+1) sharing common ancestors. These unary branches can be categorized into
two types: intermediate unary chains, representing unary chains that eventually become
non-terminal symbols (e.g., X → Y in Figure 5), and leaf unary chains that name chains
generating POS tags (e.g., Z → T5).

Figure 5: An example of a tree that cannot be directly linearized by the encoding function
Φ|w|. wi and Ti represent a word and its POS tag, respectively. Dashed lines indicate branches
that, when decoded after directly applying Φ|w|, result in incorrect decoding. The non-terminal
symbol for the second ancestor of w2(X) cannot be decoded because there is no word pair
with X as their lowest common ancestor. A similar situation can be observed at the nearest
ancestor for w5(Z).

Intermediate unary chains are collapsed into a chained single symbol, but they can be
encoded using Φ|w| like any other non-terminal symbols. However, leaf unary chains
are collapsed together with POS tags, and they cannot rely on Φ|w| for encoding and
decoding because the encoding function assumes a fixed sequence of leaf nodes and does
not explicitly encode them. To address this issue, the encoding function can be extended
to transform the label li into a triple (ni, ci, ui), where ui encodes the collapsed label
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of the leaf unary chain for wi (if any), or is none otherwise. This extended encoding
function is referred to as Φ′

|w|.

3.3.2 Prediction

The simplification of the constituent parsing problem into a sequence labeling task aims to
predict the function F|w|,θ : V

|w| → L|w|−1, where θ represents the parameters to be learned.
This function generates output labels for each token in the input sequence. State-of-the-art
neural models for sequence labeling, such as bidirectional long short-term memory networks
(Bi-LSTM), have found widespread applications. Figure 6 shows the network architecture we
used.

Figure 6: Architecture of bidirectional long short-term memory network.

Defining LSTM(x) as a long short-term memory network for processing a sequence x =
[x1,x2, ...,x|x|], the encoding of its i-th element, BiLSTM(x, i), is defined as:

BiLSTM(x, i) = hi = hl
i ◦ hr

i = LSTMl(x[1:i]) ◦ LSTMr(x[|x|:i])

In the case of multiple layers of BiLSTM, the output of BiLSTMm serves as input fed into
BiLSTMm+1. The output label for each wi is ultimately predicted as softmax(W · hi + b),
where W and b are weights and biases.

When processing a sentence [w1, w2, ..., w|w|], the model takes as input a sequence of embed-
dings [w1,w2, ...,w|w|]. Each wi is formulated as wi ◦ pi ◦ chi, where wi and pi represent
the word and Part-of-Speech (POS) tag embeddings, and chi is a word embedding derived
from the initial character embedding layer which relies on a BiLSTM as well.

3.3.3 Decoding

To parse a sentence, F|w|,θ ◦ Φ−1
|w| decodes the obtained label sequence into a constituent

tree. However, due to the non-surjective nature of the encoding function, in other words, the
encoding function does not cover the entire range of possible output labels, not every sequence
of |w| − 1 label pairs in the form (ni, ci) has a corresponding tree in T|w|. Specifically, there
are two cases where label sequences do not formally represent a tree. Therefore, Φ−1

|w| is not a
complete decoding function, and additional handling is required for the following situations:

20



• Sequences with conflicting non-terminals: For branches greater than two, a non-
terminal can be the lowest common ancestor of multiple consecutive word pairs. For
example, in the tree in Figure 4, “the” and “red,” as well as “red” and “toy,” share the
same NP node as the lowest common ancestor, corresponding to the label sequence
c4 = NP, c5 = NP . However, if this sequence is adopted and the setting is changed to
c5 = V P , the label sequence cannot strictly correspond to any tree encoding. This is
because two elements referencing the same node represent different non-terminal labels,
creating a contradiction. Therefore, during the decoding process, when there are multiple
conflicting non-terminals at a given position in the label sequence in the tree, Φ−1

|w| is
calculated simply using the first such non-terminal, ignoring the rest.

• Sequences generating unary structures: some sequences of values ni do not corre-
spond to a tree in T|w|, because the only tree structures that satisfy these values include
unary branches, leading to an unspecified non-terminal for each. This is also illustrated
in the sequence labels (1, S), (3, Y ), (1, S), (1, S) mentioned in Figure 4. This sequence,
when decoded, cannot correspond to the original tree structure. Therefore, similar to the
collapse of unary chains, any generated unary nodes are considered invalid and removed.
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4 Methods

In this section, firstly, an introduction to all the datasets used in the experiments will be
provided. Following that, the algorithm employed by the Tree Transformer to convert input
sentences into parse trees will be presented. Finally, the entire experimental setup will be
elaborated in great detail.

4.1 Data

The entire experiment utilized five datasets. The Penn Treebank was used to train and test
models. The Prepositional phrase attachment corpus was employed to generate sentences with
prepositional phrase attachment ambiguity and further used to analyze the models’ ability to
attachment disambiguation. Finally, concerning the investigation of the models’ capability to
eliminate garden path effect, we took these experiments from three datasets, which are the
Futrell et al. (2019) ones: Main-verb/Reduced-relative, NP/Z (Overt Object) and NP/Z (Verb
Transitivity).

4.1.1 Penn Treebank

The Penn Treebank (PTB) (Marcus et al., 1993) was created to facilitate research in natural
language parsing and syntax analysis. It contains a large corpus of English text, primarily from
the Wall Street Journal (WSJ), which has been parsed and annotated according to a specific
syntactic tree structure. It is widely used to train and evaluate syntactic parsers and other NLP
models. In the syntactic trees of the Penn Treebank, each word is assigned a POS tag, and
the trees capture hierarchical relationships between words, such as noun phrases, verb phrases
and clauses.

To be consistent with other studies, the official splits of PTB are used in the experiments:
sections 2 to 21 for training (WSJ-train) and 23 for testing (WSJ-test). WSJ-train consists of
39832 sentences, while WSJ-test comprises 2416 sentences, as shown in Table 1.

Dataset section Number
WSJ-train 2-21 39832
WSJ-test 23 2416

Table 1: The official splits of Penn Treebank.

4.1.2 Prepositional Phrase Attachment Corpus

The prepositional phrase attachment corpus (Ratnaparkhi et al., 1994) extracted from WSJ
treebank refers to a dataset used in NLP and computational linguistics for studying prepo-
sitional phrase attachment ambiguity. PP attachment ambiguity arises when a prepositional
phrase can be attached to different parts of a sentence, leading to different interpretations.
In this corpus, examples are annotated to indicate the attachment of prepositional phrases.
It includes examples, {v, n1, p, n2} quadruples, where a prepositional phrase(p, n2) can be
attached to a noun n1 or verb v, resulting in different syntactic structures and meanings. In
addition, an attachment label l is included, indicating the actual attachment of this preposi-
tional phrase. Therefore, the format of the data is {v, n1, p, n2, l} and the example is shown
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Category Word
Verb v provide
Noun n1 services
Preposition p for
Noun n2 customers
Label l V

Table 2: An original example from the prepositional phrase attachment corpus Ratnaparkhi
et al. (1994).

Category Word
Subject n0 they
Verb v provide
Modifier m1 various
Noun n1 services
Preposition p for
Modifier m2 their
Noun n2 customers
Label l V

Table 3: An example of a converted sentence, preserving the prepositional phrase attachment
ambiguity.

in the Table 2.

In the experiments, to distinguish it from the WSJ-train, we used prepositional phrases ex-
tracted from the WSJ-test. That is to say, 3097 samples of the prepositional phrase attach-
ment corpus were used to generate sentences which were obtained for subsequent analysis of
sentence-level prepositional phrase attachment ambiguity.

4.1.3 Generating Prepositional Phrase Attachment Sentences

With the prepositional phrase attachment corpus, the quadruples are expanded to 7-tuples
{n0, v,m1, n1, p,m2, n2} to form a complete sentence. Meanwhile, the original attachment la-
bels remain unchanged. This is done by introducing the pre-trained model “bert-base-uncased”
(Devlin et al., 2018a) and directly using this model to perform masked language modeling with
the pipeline. Prior to this, data cleaning is necessary. Gerunds or present participle, past par-
ticiples, and the verbs like “be” that do not conform to the required forms are filtered out.
Symbols and numbers that fail to meet the requirements are removed. Subsequently, the pro-
cess of generating the sentence begins.

The first step is to mask the subject position like “[MASK] v n1 p n2”, and take the personal
pronoun with the highest score as the subject n0. The following step is to mask the modifier
of noun n1 like “n0 v [MASK] n1 p n2”, and the noun, adjective, determiner and possessive
pronoun with the highest score can be used as m1. Then, the modifier of the second noun m2
can be obtained in the same way. The NLTK POS tagger is used to identify words here. As
the result, we got 1424 sentences with the format of {n0, v,m1, n1, p,m2, n2, l}. An example
of these sentences is shown in Table 3.
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4.1.4 Garden Path Effect Datasets

To explore the impact of Tree Transformer on garden path effect, two different data from
Futrell et al. (2019), Main-verb/Reduced-relative and NP/Z Ambiguity data sets, will be used
in the experiment.

• Main-verb/Reduced-relative Ambiguity:

First, the experiment will investigate the garden path effect caused by Main Verb/Reduced
Relative (MV/RR) ambiguities. In the dataset, there are 28 examples and each of them
has 4 sentences. The first verb of the sentences is ambiguous. It can be considered both
as the main verb of the sentence and as a word introducing a reduced relative clause.
The term “reduced relative clause” refers to a relative clause that lacks an explicit com-
plementizer and starts with a past participle verb. This ambiguity can persist for an
extensive stretch of the following context until the disambiguator appears.

(1) a. The women brought the sandwich from the kitchen fell in the dining room

b. The women given the sandwich from the kitchen fell in the dining room

c. The women who was brought the sandwich from the kitchen fell in the
dining room

d. The women who was given the sandwich from the kitchen fell in the dining
room

In sentence 1a, the verb “brought” is initially analyzed as part of the main verb phrase,
but upon the appearance of the disambiguator “fell”, readers realize that “fell” is the
actual main verb and the verb “brought” had to be reanalyzed as part of a relative clause.
Consequently, in such cases, due to strong prior context bias towards interpreting the
verb as the main verb, human comprehension is severely disrupted, making the syntactic
interpretation more challenging. This is akin to what is observed in the famous sentence
“the horse raced past the barn fell”, resulting in a high garden path effect.

In contrast, the garden path effect theoretically should be reduced or eliminated in
sentences like 1b. The verb “given”, as the head word of the relative clause, is a past
participle form different from the simple past tense verb. Compared to “gave”, “given” is
more explicit, indicating that it should not be the main verb of the sentence. Therefore,
the possibility of misinterpreting the verb as a main verb is lower or excluded before the
appearance of the disambiguator “fell”. If a language model is sensitive to morphological
cues in syntactic structure, it should exhibit a reduced garden path effect or even no
garden path effect under such explicit conditions.

Furthermore, the garden path effect should be eliminated in sentences 1c, where the
presence of the words “who was” makes it clear to the reader that the verb “brought”
is part of the relative clause and not the main verb of the sentence. Therefore, we can
quantify the garden path effect size by model and verb-form ambiguity by calculating the
mean surprisal at the disambiguators for sentences 1a minus sentences 1c and sentences
1b minus sentences 1d.

• NP/Z Ambiguity:

This is another highly classical syntactic garden path effect configuration consisting of
24 NP/Z examples and each of them has 4 sentences. In the datasets, noun phrases
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exhibit local syntactic ambiguity, because they can act as either the direct object of
the main verb in the subordinate clause or as the subject of the main clause. The
ambiguity persists until the true subject of the main clause emerges, at which point
the ambiguity is resolved and the noun phrase is reinterpreted as the latter. This is
referred to as “NP/Z” because the verb of the subordinate clause can take either an NP
object or Z(ero), indicating a null object. There are two datasets related to this kind of
ambiguity, one is to use overt objects to disambiguate, the other is to use intransitive
verbs to disambiguate. Additionally, using a comma to mark the end of a clause makes
the sentence easier at the disambiguator. Similar to MV/RR, the quantification of the
garden path effect size by model and presence of object/embedded verb transitivity can
be obtained by calculating the mean surprisal difference at the disambiguators between
sentences a and sentences c or between sentences b and sentences d.

– Overt Object: As shown in sentence 2a, prior to encountering “burst”, “shot”
is naturally interpreted as a transitive verb with “the woman” as its direct object.
However, upon the appearance of “burst”, readers realize that “shot” should be
considered as an intransitive verb with “the woman” as the subject of the main
clause. In sentence 2b, introducing the explicit object “the gun” to the transi-
tive verb effectively reduces or eliminates the ambiguity before the disambiguator
appears.

(2) a. As the gangster shot the woman burst into hysterics

b. As the gangster shot his gun the woman burst into hysterics

c. As the gangster shot, the woman burst into hysterics

d. As the gangster shot his gun, the woman burst into hysterics

– Verb Transitivity: As shown in sentence 3b, unlike the transitive verb that intro-
duces the object “his gun”, it replaces the transitive verb “shot” with the intransi-
tive verb “laughed”. Then this verb cannot accept an object in English, so readers
should not be misled into believing that “the women” is its object. In theory, re-
placing transitive verbs with intransitive verbs can reduce the garden path effect.
However, this lexical information about syntactic structure is so subtle that it is
not known whether human are as sensitive to it as theory.

(3) a. As the gangster shot the woman burst into hysterics

b. As the gangster laughed the woman burst into hysterics

c. As the gangster shot, the woman burst into hysterics

d. As the gangster laughed, the woman burst into hysterics

4.2 Unsupervised Parsing from Tree Transformer

For each sentence in our experiments, we use the Tree Transformer model to extract parse
trees. After training the model, the neighbor link probability a is obtained. A small value of a
suggests that it could be the point where two constituents are separated. The idea is to use a
top-down greedy parsing algorithm (Shen et al., 2018a) which is a parsing strategy that starts
from a high-level view of sentence structure, makes locally optimal decisions at each step,
and recursively dissects the sentence into two constituents based on the minimum a values,
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forming a parse tree. Top-down greedy parsing performs parsing of sentences without the need
for explicit supervision or labeled data. The a values are used as clues to identify potential
boundaries between constituents during parsing.

However, the model has multiple layers, and each layer has its set of al. As mentioned in
section 3.2, a values capture hierarchical information as they move from one layer to another,
and using all of them can provide a more comprehensive view of the sentence’s structure since
a values strictly increase from layer to layer. Therefore, instead of picking a values from a
single layer for parsing, a values from all layers of the model are used. Algorithm 1 (Wang
et al., 2019) outlines how the hierarchical information from a is used for unsupervised parsing.
when looking at the values of a in the top layers of the model, these values are very close to 1
indicate that there is a strong likelihood or probability that neighboring words in the sentence
are linked or belong to the same constituent. In other words, the top layers tend to group
words together rather than identifying breakpoints between constituents.

Algorithm 1 Unsupervised Parsing from Tree Transformer with Multiple Layers
1: a← link probabilities
2: m← minimum layer id ▷ Discard the a from layers below the minimum layer
3: threshold← 0.8 ▷ Breakpoint threshold
4: procedure Build Tree(l, s, e) ▷ l: layer index, s: start index, e: end index
5: if e− s < 2 then ▷ The constituent is unable to be split
6: return (s, e)
7: end if
8: span← als≤i<e

9: b← argmin(span) ▷ Obtain the breakpoint
10: last← max(l − 1,m) ▷ Obtain the index of the last layer
11: if alb > threshold then
12: if l = m then
13: return (s, e)
14: end if
15: return BuildTree(last, s, e)
16: end if
17: tree1← BuildTree(last, s, b)
18: tree2← BuildTree(last, b+ 1, e)
19: return(tree1, tree2) ▷ Return trees
20: end procedure

The unsupervised parsing for Tree Transformer starts parsing from the top layer of the model
and progressively moves down through the layers. The process continues until it reaches a
designated bottom layer m. The choice of m is an adjustable parameter, typically set to
2 or 3. Layers below m are excluded because they tend to provide less useful information
for parsing, which has been observed in previous researches (Liu et al., 2019; Shen et al.,
2018b). To determine valid breakpoints for parsing, a threshold value is set. If a minimum a
value falls below this threshold, it is considered a valid breakpoint, suggesting the separation
of constituents. Wang et al. (2019) found that the model’s performance is not significantly
affected by the specific threshold value chosen, 0.8 is considered low enough to be a valid
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breakpoint.

4.3 Experimental set-up

4.3.1 Tree Transformer Model

In order to get the Tree Transformer for subsequent performance analysis, the architecture,
training and testing process will be elaborated upon below. Except for differences in the pro-
cessing of the training set, we follow the work of Wang et al. (2019) for other settings.

• Architecture:

In the experiments conducted, the Tree Transformer is constructed based on a bidi-
rectional Transformer encoder. The implementation of the Tree Transformer encoder is
identical to that of the original Transformer encoder. For all experiments, the number
of self-attention heads, denoted as h, is set to 8. The hidden size dmodel of Transformer
and Constituent Attention are both set to 512, with a feed-forward size of 2048. The
dropout rate is set at 0.1.

Additionally, it is worth noting that prior research has indicated that increasing the
number of layers can lead to improved performance, as it empowers the Tree Transformer
to represent more complex tree hierarchies. However, Wang et al. (2019) found that
performance ceases to improve when the depth exceeds 10. Therefore, the number of
layers is fixed at 10 for all experiments.

• Training Process:

The Tree Transformer model undergoes unsupervised training using BERT Masked LM
(Devlin et al., 2018b), and employs the WordPiece tokenizer from BERT, as proposed by
Wu et al. (2016), to tokenize words resulting in a vocabulary of 13375 tokens. However,
instead of using the original WSJ-train to train the model, we first simplify the sentences
in WSJ-train into sentences composed of words with certain POS tags:

[‘CC’, ‘CD’, ‘DT’, ‘EX’, ‘FW’, ‘IN’, ‘JJ’, ‘JJR’, ‘JJS’, ‘LS’, ‘MD’, ‘NN’, ‘NNS’, ‘NNP’,
‘NNPS’, ‘PDT’, ‘POS’, ‘PRP’, ‘PRP$’, ‘RB’, ‘RBR’, ‘RBS’, ‘RP’, ‘SYM’, ‘TO’, ‘UH’,
‘VB’, ‘VBD’, ‘VBG’, ‘VBN’, ‘VBP’, ‘VBZ’, ‘WDT’, ‘WP’, ‘WP$’, ‘WRB’, ‘,’].

Also, if the word is a number, then it will replace it with a capital “N”. Then, in the
simplified sentences, after each word is tokenized by the tokenizer, only the first token is
retained. Based on this preprocessed WSJ-train, we use mini-batch training of size 64,
with a total of 60000 batches. 60 dimensions are used to represent word embeddings and
each word is represented by a vector of 13375 components as the same as the vocabulary
size.

In addition, it is well-documented that optimal results are achieved with the Adam
optimizer with a learning rate of 0.0001, β1 = 0.9 and β2 = 0.98. Therefore, during the
training process, parameters are configured accordingly.

• Testing Process:

Following the evaluation setting established in prior research, the performance of the Tree
Transformer in unsupervised constituency parsing is assessed by calculating F1 scores
on the WSJ-test, which is processed in the same way as WSJ-train. The annotated
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trees in the Penn Treebank are also preprocessed in the same way, only the parts with
specific POS tags are retained. Precisely, for each sentence, Tree Transformer generates
a parse tree using the previously mentioned unsupervised parsing approach. Meanwhile,
the corresponding processed annotated parse tree is considered as the ground-truth tree.
In order to facilitate assessment, we convert both trees into span representations. For
the example 3, its corresponding parse tree and span representation are illustrated in
Figure 7.

Figure 7: A constituency parse tree with its span representations.

Initially, start from the root node of the tree and traverse each node in the parse tree
using depth-first traversal. Then, for each phrase structure, record its starting and ending
positions. This can be achieved by maintaining a pointer or index during the traversal
process. The starting position is the position of the leftmost child node of the phrase
structure, while the ending position is the position of the rightmost child node. Next, for
each tagged phrase structure, generate a corresponding span. We use bracket notation
to represent it as “(start, end)”. For example, the corresponding span for “NP: various
services” is (3, 4). Finally, if the parse tree has subtrees, repeating the above steps for
each subtree can transform the entire parse tree recursively into spans. Additionally,
since parse trees corresponding to pp attachment sentences always include the span (0,
8), we do not consider it when calculating the F1 score. In other words, for the example
sentence, the final span representation is (0, 7), (1, 7), (1, 4), (2, 4), (4, 7), (5, 7).

The F1 score is then computed based on the spans of these generated and ground-
truth trees. Averaging the F1 scores of all sentences obtains the final F1 score. This
evaluation process seeks to measure the proximity of the Tree Transformer’s parsing to
the ground-truth parsing provided in the Penn Treebank.

Furthermore, as the lower layers of the Transformer do not provide informative represen-
tations, utilizing syntactic structures from these lower layers would lead to a deterioration
in parsing quality. Conversely, when the a value for the top few layers approaches 1, most
of the syntactic information becomes lost. Consequently, excessively large values of m in
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parsing algorithm would also negatively impact performance. Hence, based on findings
from existing research, it has been determined that setting the designated bottom layer
m to 3 yields the optimal performance.

4.3.2 BiLSTM Model

In order to study the performance gap between Tree Transformer and supervised parser. We

use the pre-trained BiLSTM model, i.e. BILSTMΦ
′

m=2,e,ch, from Gómez-Rodŕıguez and Vilares
(2018) to make additional comparison. Likewise, its architecture, training procedure from prior
work and testing procedure applied by us will be introduced.

• Architecture:

We use a pre-trained BiLSTM model, which utilizes NCRFpp, a sequence labeling frame-
work grounded on bidirectional short-term memory networks (Yang and Zhang, 2018).
The number of layers m is configured to 2. The dropout rate is set to 0.5. Both the
left-to-right and right-to-left LSTMs independently generate hidden vectors of size 400.

• Training Process:

The model is trained over the original WSJ-train for 100 epochs using mini-batches
of size 8. Word, POS tag and character embeddings are represented in dimensions of
100, 30 and 20, respectively. Word embeddings are adapted from pre-trained GloVe
embeddings (Pennington et al., 2014). Character embeddings are additionally processed
through a BiLSTM, with the output hidden layer of the character embedding layer set
to 50.

Furthermore, the optimizer employed is SGD, with an initial learning rate of 0.2, mo-
mentum set at 0.9, and linear decay set at 0.05.

• Testing Process:

For comparison with Tree Transformer, the preprocessed WSJ-test is used in the test
process. The predicted sequence labels will be decoded into a parse tree, which will
then be converted into span representation. And the calculation way of F1 score remains
consistent.

4.3.3 Parsing PP Attachment

• Ground-truth Parse Trees: according to the attachment being noun or verb, the cor-
responding binary ground-truth parse trees are obtained. Figure 8(a) shows the prepo-
sitional phrase attached to the noun, whereas Figure 8(b) presents the prepositional
phrase attached to the verb. However, for BiLSTM, the generated parsing tree is not
necessarily a binary tree, thus allowing for the possibility of ternary ground-truth parsing
trees which are shown in Figure 8(c) and 8(d) indicating prepositional phrase attachment
decision are noun or verb, respectively.

• Parsing Structure Analysis: since the data used in the experiment are whole sentences
rather than quadruples, the complexity of the parse tree increases. Therefore, it is nec-
essary to conduct in-depth exploration of various situations of parse trees. In addition
to counting the proportions of various parsing, the tree structures that can judge the
attachment besides the ground-truth parse trees will also be explored.
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(a) Noun Attachment (binary) (b) Verb Attachment (binary)

(c) Noun Attachment (ternary) (d) Verb Attachment (ternary)

Figure 8: Two binary ground-truth parse trees where the prepositional phrase attaches to the
noun (a) or to the verb (b), and two ternary ground-truth parse trees where the prepositional
phrase attaches to the noun (c) or to the verb (d).

• Accuracy: Tree Transformer and pre-trained BiLSTM models are used to parse the
processed PP attachment sentences and obtain the corresponding parse trees. Together
with the ground-truth parse trees, the parsing accuracy of both models are calculated.

• Assessment of Parsing Results: in order to explore the factors that affect Tree Trans-
former’s attachment decision of prepositional phrases, an in-depth observation was made
on verbs and prepositions compared with the BiLSTM.

4.3.4 Measuring Garden Path Effects

Similar to the previous work by Futrell et al. (2019), we investigate the behavior of the Tree
Transformer and to what extent it reflects incremental representations of syntactic states. For
each garden path effect dataset, we compute the magnitude of its garden path effect. As
mentioned earlier, this can be quantified by subtracting either sentences c from sentences a
or sentences d from sentences b in terms of average surprisal at the disambiguators. Both
differences were calculated and on datasets MV/RR as well as NP/Z (verb transitivity) they
are compared with the garden path effects of LSTMs and RNNG in the study by Futrell et al.
(2019).
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To achieve this, we took the words before the disambiguator, along with the masked dis-
ambiguator, as input. In the case of the Tree Transformer, in addition to its self-attention
output, we can also obtain a vector at the position of the disambiguator. By applying softmax
to this vector, the probabilities of different words in the vocabulary at the masked position
became known. Finding the corresponding probability of the disambiguating word allowed us
to calculate the surprisal.
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5 Results

In this section, all results of the experiments are presented and explained, including the test
outcomes of the Tree Transformer and pre-trained BiLSTM. Additionally, their abilities in
handling sentence-level prepositional phrase attachment ambiguity will be discussed, as well
as the performance of the Tree Transformer in the context of garden path effects.

5.1 Performance on Test data

After we trained the Tree Transformer on the preprocessed WSJ-train, the F1 score calculated
on the preprocessed WSJ-test is 49.7 as shown in the Table 4. As for the pre-trained BiLSTM,
on the same test set, its F1 score is 75.8, which is higher than that of Tree Transformer.
However, for the pretrained BiLSTM model, the F1 score deviates from the score reported by
Gómez-Rodŕıguez and Vilares (2018) (90.6). This is due to few factors: first, they calculate the
F1 score directly from the predicted labels, rather than the reconstructed span representation.
Second, they use the micro- instead of macro-average F1 score. Third, the preprocessing of
the data is different.

Model F1-score

Tree Transformer, L=10 49.7
BiLSTM 75.8

Table 4: The F1 scores of Tree Transformer with 10 layers and pre-trained BiLSTM tested on
WSJ-test.

5.2 Parsing Analysis on PP Attachment Sentences

5.2.1 Analysis on Parsing Structure

The parsing of a 7-tuple is more difficult than that of a quadruple, because the parse tree
of a 7-tuple has more possibilities. Therefore, when analyzing the parsing capabilities of the
model, it is necessary to consider the problem of parsing structure errors. We conduct separate
analyses of the parsing results for the Tree Transformer and BiLSTM. While theoretically, the
diversity of parsing results should be lower than the former as it generates only binary trees,
the reality proves otherwise.

Parsing Structure Number Proportion

wrong parsing because of sentences 3 0.21%
prepositional phrases not found 278 19.52%
subjects not found 3 0.21%
n1 not in verb phrase 20 1.40%
fail to fully break down 14 0.98%
totally correct parsing 1120 78.65%

Table 5: Different parsing structures with their proportions of data for Tree Transformer

In terms of Tree Transformer, as shown in the Table 5, parsing errors resulting from sentence
errors themselves amount to 3, which accounts for only 0.21% of the total. Parsing issues
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stemming from the model can manifest in various ways. One is structural errors and the other
is the incomplete breakdown. The former consists of three kinds of structural errors. In 278
instances, parsing errors occur due to the failure to correctly group the prepositional phrase as
a constituent, making up 19.52% of the total. Similarly, the model fails to correctly identify the
subject of the sentence, such as merging the subject and the verb into the same constituent
in some cases. This kind of error occurs in 3 instances, accounting for 0.21% of the total.
Furthermore, there are 20 cases (1.40%) in which the noun n1 is not included as part of the
verb phrase during parsing. It is worth noting that a sentence may exhibit multiple structural
errors.

Regarding parsing results that are not fully broken down, there are four scenarios with a total
of 14 examples (0.98%), as illustrated in the Figure 9. 13 cases of them are from Figures
9(a) and 9(b) depicting prepositional phrases that are not fully decomposed but still allow the
attachment of the prepositional phrase to be determined. Figure 9(a) represents prepositional
phrase attachment to the noun, while Figure 9(b) shows prepositional phrase attachment to
the verb. Figures 9(c) and 9(d) represent cases where the verb phrase fails to fully break down,
making it impossible to determine the attachment of the prepositional phrase. The remaining
1120 examples are structurally correct and completely parsed, constituting 78.65% of the total.

Hence, from the parsing results, it can be concluded that, in addition to the two ground-truth
parse trees provided earlier, both Figures 9(a) and 9(b) can serve as true parse trees for the
model to determine prepositional phrase attachment. Consequently, when calculating accuracy
in subsequent experiments, all these four parse trees will all be taken into account for models.
For BiLSTM, there are fewer structural errors in the parsing results, especially errors caused
by the inability to find pp account for only 2 instances in total, significantly lower than Tree
Transformer. Among the partially decomposed parsing trees, two types are observed, both
involving cases where prepositional phrases are not fully broken down. Figure 10(a) illustrates
a tree structure where the attachment is confidently determined to be a verb but remains
partially decomposed. And Figure 10(b) depicts a tree structure where the attachment is
confidently determined to be a noun, yet the decomposition remains incomplete. Both of
these two tree structures do not affect the model’s attachment decisions. Therefore, they are
considered as the ground-truth trees for BiLSTM.

5.2.2 Assessment of Parsing Results

The Tree Transformer model achieved a parsing accuracy of 47.2% for sentences with prepo-
sitional phrase attachments. In comparison, the pre-trained BiLSTM model showed a much
better performance with an accuracy of 79.4%, as presented in Table 6. This can be attributed
to its supervised learning approach, where the high cost of training leads to substantial returns.

Model Accuracy

Tree Transformer 47.2%
BiLSTM 79.4%

Table 6: Accuracy on pp attachment sentences for Tree Transformer and BiLSTM models.

Then, when deeply exploring the attachment decision tendency of Tree Transformer, the fol-
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(a) (b)

(c) (d)

Figure 9: The parse trees failing to fully break down by Tree Transformer.

(a) (b)

Figure 10: The parse trees failing to fully break down by BiLSTM.

lowing results were obtained. As shown in Table 7, while the number of prepositions attached
to nouns (868) is higher than that attached to verbs (556) in the data, the Tree Transformer
tends to attach pp to verbs (656) rather than nouns (477). Its ability to determine the at-
tachment of pp to nouns is particularly weak, and there is a significant gap compared to the
actual attachments. Additionally, the number of attachments where the attachment decision
is neither a noun nor a verb is not negligible, contributing significantly to the low accuracy.
This also indicates that the Tree Transformer is not highly sensitive to the attachment of
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prepositional phrases.

Predicted V Predicted N Neither Sum

Label V 299 104 153 556
Label N 357 373 138 868
Sum 656 477 291 1424

Table 7: The summary of attachment decision results on pp attachment sentences for Tree
Transformer in the form of a confusion matrix.

However, while BiLSTM also tends to attach pp to verbs, this tendency is much less pronounced
compared to the Tree Transformer. As shown in Table 8, the number of instances where
BiLSTM attaches pp to verbs is 613, which is higher than the actual attachment count of
556 in the dataset. Conversely, BiLSTM attaches pp to nouns 798 times, which is lower than
the actual attachment count of 868. Furthermore, the parsing results from BiLSTM provide
a clearer reflection of the attachment situations for pp. The number of attachments that are
neither nouns nor verbs is only 13, significantly lower than 291 that the Tree Transformer
possesses.

Predicted V Predicted N Neither Sum

Label V 442 110 4 556
Label N 171 688 9 868
Sum 613 798 13 1424

Table 8: The summary of attachment decision results on pp attachment sentences for BiLSTM.

To investigate this imbalance in attachment decisions, we conducted an analysis of the parsing
results combined with the distribution of verbs and prepositions in the sentences. This analysis
aims to explore whether this imbalance is associated with specific verbs or prepositions.

Figure 11 illustrates the distribution of attachment decisions based on prepositions in both
the data and the models. More specifically, Figure 11(a) shows the proportions of noun and
verb attachments for top 20 frequent prepositions in data, among them, the proportion of the
prepositions “of”, “about”, “between” and “than” attached to nouns is obviously higher than
that of verbs. Especially the preposition “of”, almost all. Other prepositions appear with a high
proportion of verb attachment to varying degrees. Figure 11(b) presents the proportions of
noun and verb attachments, as well as neither of them for the top 20 frequent verbs predicted
by Tree Transformer. It can be clearly seen from the figure that Tree Transformer shows a
proportion trend that is roughly consistent with the data, but the overall proportion shifts to-
wards verb attachment. Only the preposition “than” is left, the proportion of noun attachment
reaches 50%. As for the preposition “over”, prepositional phrases almost never attach to nouns.

As for Figure 11(c), it shows that the parsing results of BiLSTM are closer to the distribution
of the original dataset in terms of different prepositions. However, for certain prepositions,
the distribution trend becomes more polarized. For phrases containing the prepositions “of”,
“for”, “about”, “between” and “than”, BiLSTM is more likely than the dataset to classify
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them as attached to a noun. On the other hand, for other phrases, BiLSTM always has a
stronger tendency of verb attachment than the data set. Especially phrases with “during” and
“through”, BiLSTM almost consistently attaches them to verbs. Therefore, BiLSTM exhibits
a more pronounced attachment tendency difference in the prepositional dimension compared
to Tree Transformer.

In addition, Figure 12 shows, for sentences containing different verbs, the proportion of prepo-
sitions attached to nouns and verbs in the data or the models. In detail, Figure 12(a) presents
the proportions of noun and verb attachments for the top 20 frequent verbs in data. As can be
seen from the figure, the proportion of prepositions attached to nouns is generally higher than
to the forms of the verb “be” itself. In sentences containing other verbs, preposition attach-
ments are evenly distributed. Figure 12(b) is the proportions of noun and verb attachments
as well as neither of them for top 20 frequent verbs predicted by Tree Transformer. It can be
found that the results are very different compared to that in the data. For sentences where the
verbs are the “be” or “have” and their variations, Tree Transformer tends to attach PPs to the
noun. For other notional verbs, however, Tree Transformer tends to attach the PPs to the verb.

This trend is less pronounced for BiLSTM. As shown in Figure 12(c), although sentences con-
taining verbs like “be” or “have” and their variations tend to attach PP to nouns, many other
verbs such as “provide” and “get” show a similar tendency but differ from the distribution in
the data.

Therefore, in addition to calculating evaluation matrices for the whole data regarding predic-
tions of verb or noun, the data of be/have verbs with their variations, and notional verbs are
also aggregated to calculate their corresponding evaluation matrices. The results are given in
Figure 13. To be more specific, it can be seen from Figure 13(a) that for the attachment
prediction result of noun, Tree Transformer’s parsing ability for sentences containing be/have
series verbs is higher than the overall level, especially the recall. And its parsing ability for sen-
tences containing notional verbs is slightly lower than the average level. On the contrary, for
the prediction result as verb, Tree Transformer’s performance on sentences containing be/have
series verbs is much lower than the overall level, while its performance on sentences containing
notional verbs is slightly above average. Therefore, Tree Transformer not only tends to attach
PP with be/have verbs to nouns but also exhibits higher parsing ability.

Regarding BiLSTM, as shown in Figure 13(b), when predicted as nouns, the model’s parsing
performance on pp containing be/have is only slightly higher than the overall level. However,
when predicted as verbs, it is significantly lower than the general level.

5.3 Parsing Analysis on the Garden Path Effect

In this part, we will combine Figure 14 and 15 to give a comparative analysis of the perfor-
mance of each model in the garden path effect.

Figure 14(a) depicts the magnitude of the garden path effect generated by Tree Transformer
and verb form ambiguity. Figure 15(a) illustrates the garden path effect size by four models
and verb form ambiguity directly taken from Futrell et al. (2019). Upon comparison, it is evi-
dent that Tree Transformer, like the other models, exhibits a fundamental garden path effect.
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(a) Data

(b) Tree Transformer

(c) BiLSTM

Figure 11: The proportions of noun attachment, verb attachments or neither/incorrect for the
20 most frequent prepositions in our dataset (a), by Tree Transformer (b) and BiLSTM (c),
ordered by overall frequency.
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(a) Data

(b) Tree Transformer

(c) BiLSTM

Figure 12: The proportions of noun attachment, verb attachments or neither/incorrect for the
20 most frequent verbs in our dataset (a), by Tree Transformer (b) and BiLSTM (c), ordered
by overall frequency.
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(a) Tree Transformer

(b) BiLSTM

Figure 13: Evaluation metrics (precision, recall and F1 score) for different types of verbs when
attachment decision is noun (N) or verb (V).

The garden path effect in Tree Transformer is similar to that of TinyLSTM, but considerably
smaller than in the other models.

Additionally, if the model uses the morphological form of the verb as a cue for syntactic struc-
ture, instances where the verb has not changed to a passive participle form should exhibit a
stronger garden path effect compared to situations where the change has already occurred.
This is evident in the figures, where the red bars are higher than the green ones. Tree Trans-
former, along with two large LSTMs and RNNG, displays this pattern. Despite demonstrating
crucial human-like garden path effect disambiguation due to the verb form ambiguity, it is
noteworthy that significant garden path effect still persist in these models, even when the verb
form is unambiguous like passive-participial verb. Regarding TinyLSTM, it does not exhibit
sensitivity to ambiguous verb forms and reduced relative clauses.
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(a) MV/RR (b) NP/Z(verb transitivity) (c) NP/Z(overt object)

Figure 14: Average garden path effect size by Tree Transformer and disambiguation lexical
clues on (a) MV/RR dataset; (b) NP/Z (verb transitivity) dataset; (c) NP/Z (overt object)
dataset. Error bars depict 95% confidence intervals computed based on the standard error of
the surprisals after subtracting out the mean surprisal (Masson and Loftus, 2003).

(a) MV/RR (b) NP/Z(verb transitivity)

Figure 15: Figures are the original ones taken from the paper of Futrell et al. (2019). Average
garden path effect by 4 models and disambiguation lexical clues on (a) MV/RR dataset; (b)
NP/Z (verb transitivity) dataset.

Figures 14(b) and 15(b) respectively illustrate the garden path effect sizes generated by Tree
Transformer and four other models along with those of verb transitivity. Similarly, we observe
the presence of the garden path effect in all models. Although smaller in Tree Transformer,
even markedly smaller than in the two large LSTMs, it is higher than in TinyLSTM. As for the
sensitivity, only the large LSTMs seem to be sensitive to the transitivity of embedded verbs,
showing smaller garden path effects for intransitive verbs. Tree Transformer demonstrates sen-
sitivity just below them, but noticeably higher than RNNG and TinyLSTM.

Figure 14(c) shows the garden path effect sizes generated by Tree Transformer and presence of
an object. In comparison with Figure 14(b), it can be observed that Tree Transformer is much
more sensitive to the presence or absence of an object than lexical cues such as verb transitivity.
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6 Discussion

Tree Transformer, as an unsupervised parser, has been confirmed to be effective in deriving
tree structures from raw text that capture human intuitions. The inherent ambiguity in hu-
man natural language is a persistent challenge that language models have been striving to
overcome. Therefore, to further explore the performance of this low-cost unsupervised parser
on syntactic ambiguities, our work primarily investigate two main questions: How well does
Tree Transformer handle PP attachment ambiguities? What is its ability to predict the garden
path effects? Around these questions, we obtained the following respective answers and made
additional contributions.

Our exploration of Tree Transformer in prepositional phrase ambiguity is on the sentence level,
which distinguishes it from other works. To achieve this, we use BERT to generate natural
sentences from the prepositional phrase attachment corpus, making this research endeavor
possible, which is also a significant contribution from our work. In addition, we trained the
Tree Transformer from scratch and conducted tests on it with our novel data, comparing it
with a pre-trained BiLSTM. Then, new findings have emerged. The results indicate that it is
not a robust model for handling PP attachment ambiguity. Compared with supervised learning
BiLSTM, there is a significant accuracy gap on pp attachment sentences, largely attributed
to the inability to recognize prepositional phrases, making it challenging to determine attach-
ment decisions. Our analysis of structural errors in Tree Transformer revealed that for 19.52%
of the sentences, it failed to identify prepositional phrases. This aligns with the finding from
Wang et al. (2019), where Tree Transformer’s recall for PPs on WSJ dataset was 52.3%. In
contrast, BiLSTM benefits from supervised training with POS tags. For such simple 7-tuple
sentences, it can more effectively detect prepositional phrases, leading to a reduction in errors.
In addition, Tree Transformer generally tends to attach decisions to verbs, but for sentences
with be/have verbs and their variants, Tree Transformer lean towards attaching to nouns and
a higher prediction performance.

In exploring Tree Transformer’s performance in the garden path effect caused by MV/RR and
NP/Z ambiguities, we found that Tree Transformer exhibits the garden path effect similar
to those of two large LSTMs, RNNG and TinyLSTM. This effect is modulated by different
lexical cues such as verb form, verb transitivity and the presence of an object. However, Tree
Transformer is not as strong as two large LSTMs in fully capturing the effect of incremental
state and the potential subtle lexical cues that cause the state to change. This aligns with pre-
vious conclusions from Futrell et al. (2019) that utilizing fine-grained lexical cues for syntactic
structure representation requires large data. Specifically, Tree Transformer’s sensitivity falls be-
tween the two large LSTMs and TinyLSTM. Compared to RNNG, Tree Transformer has lower
sensitivity to verb form but higher sensitivity to verb transitivity. Additionally, in eliminating
the garden path effect caused by NP/Z ambiguity, Tree Transformer performs better when
an overt object is added compared to changing the verb to intransitive. However, it is worth
noting that the current datasets for the garden path effect are relatively small, comprising only
around 30 examples of each. This introduces the possibility of errors when comparing models
with the same training set size.
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7 Conclusion

Due to the low cost of unsupervised parsers, their research is crucial. One such parser is the
Tree Transformer. Our study reveals that the Tree Transformer performs poorly in disam-
biguating PP attachments at the sentence level, far less effective than BiLSTM, primarily
due to its weak ability to identify prepositional phrases. Furthermore, the Tree Transformer
demonstrates garden path effects across multiple datasets and exhibits varying sensitivity to
different subtle lexical cues.

However, there is still room for improvement, and many related aspects warrant further in-
vestigation. For example, enriching the diversity and quantity of pp attachment sentences
can enhance the accuracy of results. Improving Tree Transformer’s ability to correctly identify
prepositional phrase structures is essential for increased accuracy. Additionally, training Tree
Transformer on larger datasets could be attempted to explore differences in performance of
garden path effect compared to large LSTMs. Furthermore, we observed that Tree Transformer
demonstrates stronger sensitivity to subtle lexical cues compared to TinyLSTM trained with
the same training set. In the future, further comparisons could be conducted on larger and
more diverse datasets to provide a more robust evaluation.
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