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Abstract

This thesis explores a reinforcement learning (RL) environment inspired by the game Hill Climb
Racing (HCR), incorporating diverse observation spaces, action spaces, and reward functions.
While no research currently exists on RL algorithms applied to HCR, similar studies have
been conducted on the Mountain Car environment. The aim is to develop an RL agent that
maximises its score, measured by the distance travelled, in an HCR-like environment. Moreover,
the thesis evaluates multiple action spaces, including a discrete action space with three actions
and a continuous action space, alongside various reward functions such as distance-based and
wheel speed-based rewards. The Proximal Policy Optimization (PPO) algorithm was utilised
to train the most promising agents. Results of the evaluation experiments demonstrate that
an agent utilising an aggressive wheel speed-based reward function within a continuous action
space performed best, achieving a mean score of 773 in the standard environment. This agent
further excelled in environments with increasing difficulty, consistently reaching the maximum
score of 1000 after 200,000 training timesteps.
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1 Introduction

1.1 Motivation

Reinforcement learning (RL) is a category of modern and state-of-the-art machine learning algo-
rithms and is one of the most active research topics in the artificial intelligence field, especially in
the last three decades [1]. When a reinforcement learning agent is in an environment, it can only
observe a certain quantity of observations. However, our human brains are capable of processing
multiple sources of information and integrating them into a coherent representation of the world [2],
and it is able to determine the correct actions based on the observations. For example, a human
driving a car who traverses through a road intersection is capable of observing the red, green, or
orange traffic lights and a variety of vehicles and pedestrians. The human crosses the road and
chooses the right time to brake or accelerate by utilising all those aforementioned observations.
Nevertheless, choosing the correct actions to cross the road is challenging for a computer, such as a
reinforcement learning agent, especially in environments with continuous action and observation
spaces. The curse of dimensionality explains the difficulty these reinforcement learning algorithms
often have. When the number of observations and actions (state-action pairs) in an environment
rises, it becomes increasingly more convoluted for the agent to form an optimal policy because this
state-action pair growth is exponential [3].

Additionally, one of reinforcement learning’s core strengths is its ability to learn from its interaction
with the environment. It learns optimal policies through interaction with the environment rather
than from a fixed dataset. For example, learning from interactions helps discover the optimal path
to achieve high scores in games. Moreover, RL is capable of balancing exploration (by trying new
actions) and exploitation (using known actions to maximise rewards). Exploration and exploitation
are beneficial because many games have a wide array of potential actions, and diverse actions are
optimal in distinct circumstances.

Furthermore, games can be simulated repeatedly, allowing RL algorithms to train extensively, and
simulations can be scaled up to run many parallel instances, accelerating the learning process.
Also, there are many examples of games where RL has been applied and has achieved or even
surpassed human-level performance, demonstrating its powerful learning capabilities. For instance,
DeepMind’s AlphaZero achieved superhuman performance in chess [4], and RL agents have mastered
a wide array of Atari games. More is explored in Section 2 regarding these examples.

Hence, this thesis will explore a reinforcement learning environment similar to the popular game Hill
Climb Racing (HCR). In this environment, numerous diverse potential observations, action spaces
and reward functions influence the agent’s learning in the environment. This environment can be
used as a benchmark for reinforcement learning algorithms, yet this is not the primary objective
of the thesis. Currently, there is no research on reinforcement learning algorithms applied to the
game HCR. However, similar research has been done on a comparable game called Mountain Car, a
standard classic control environment in the Gymnasium library [5]. Moreover, the environment will
not be identical to the original HCR game but has core similarities; this will be explicated further
in Section 3. Therefore, this thesis will examine the process of creating a reinforcement learning
agent that tries to maximise the highest attainable score in our version of the HCR environment.
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1.2 Research questions

As mentioned in the last section, the main research goal is to create a reinforcement learning agent
that attempts to maximise the highest attainable score in the HCR environment. Multiple research
questions will help us to achieve this goal. The main research question guiding this thesis is the
following:

What algorithmic approach that is experimented with achieves the best-performing RL agent in the
Hill Climb Racing environment?

A fair amount of research is needed to answer this question, and for this reason, many experiments
are conducted within the environment. These experiments are supported by two secondary research
questions that help us answer the main research question. The first secondary research question is
formulated as described below.

What is the optimal reward design for an agent in the Hill Climb Racing environment?

The reward design is a key variable in the environment, as the reward design dictates how much
the reward will be per step in the environment. The reward function heavily influences the agent’s
decision and performance [6]. Hence, experimentation is necessary to find an optimal reward
function. Lastly, the additional secondary research question is as stated below.

How do different action spaces affect the agent’s performance in the Hill Climb Racing
environment?

The actions used by the agent in the environment should be defined and researched. To achieve our
main research goal, different action spaces, such as discrete and continuous input, are experimented
with to discover the best-performing agent.

1.3 Thesis overview

This section will provide an overview of the thesis. The current section, Section 1, contains the
introduction of the thesis. Section 2 explores already established research literature related to
our thesis. Furthermore, a background overview, which discusses the game HCR and the similar
Gymnasium environment of Mountain Car, can be found in Section 3. Moreover, Section 4 explicates
how the environment is built up and what algorithms are used in the experiments. The experiments
can be found in Section 5, which also includes the results. Eventually, the thesis ends with the
conclusion and further research in Section 6.

2



2 Related Work

Firstly, Q-learning is a reinforcement learning technique based on a state-action table with a Q-value,
whereas DQN uses neural networks with ER to calculate the Q-value for an action. In 2020, Vu et
al. applied Q-learning and SARSA with a ϵ-greedy policy and a CNN for observations to the game
Flappy Bird [7]. SARSA is similar to Q-learning but uses on-policy learning, whereas Q-learning is
off-policy. As Q-learning encounters the curse of dimensionality in a continuous observation space
such as the game Flappy Bird, the researchers realised that discretisation (reducing the number of
states to explore) of the environment was necessary. Without the discretisation, Q-learning could not
achieve a mean score of 1 since there are 288 x 512 x 16 states to explore. In contrast, by discretising
the number of states to 10 x 10 x 16, the researchers achieved a mean score of 209 using Q-learning
and backward Q-value updates. In 2013, Mnih et al. [8] applied deep Q-learning with experience
replay combined with a convolutional neural network for observations on seven different Atari games;
the algorithm the researchers utilised is known as Deep Q-Networks (DQN). They outperformed six
out of the seven games compared to previous methods, and in three games, the DQN outperformed
human experts. Of the seven games, Enduro is the most similar to HCR. This is a racing game where
players must pass different cars on their racing path while continuously racing as fast as possible. En-
duro was one of the games in which the performance was better than that of an expert human player.

In 2017, a study was done by Google DeepMind on chess, shogi and Go, where David et al. created
the AlphaZero algorithm [4]. The AlphaZero algorithm had no access to any domain knowledge
except the game’s rules. It implemented RL at such a level that it achieved superhuman performance
in these games. AlphaZero uses a Monte-Carlo tree search (MCTS) to simulate games with a
deep neural network as its evaluation function. At the end of each simulated game, a self-play RL
algorithm updates the parameters of the deep neural network evaluation function. It was able to
outperform any state-of-the-art chess engine at the time. However, it is clear that chess, Go, and
shogi are games with a discrete environment, meaning a finite number of actions can be performed
within the game. HCR is a game with a continuous observation space (observation space with
floating point(s)) and, in our environment, also a potential continuous action space. Thus, additional
research on games with continuous observation spaces or continuous action spaces should be explored.

In 2019, OpenAI [9] published an article regarding the utilisation of a deep reinforcement learning
AI system to compete in Dota 2. Dota 2 is a popular multiplayer online battle arena (MOBA)
esports game with a continuous environment, specifically, a high-dimensional action space and
observation space. OpenAI Five defeated the world champion team of the game and was the
first AI system to do so in an esports game like Dota 2. The AI system has demonstrated this
accomplishment by using self-play reinforcement learning and showed how AI systems can perform
at superhuman levels under challenging tasks. The policy used in the AI system was trained using
PPO, similar to the study conducted by Holubar et al. [10] and our own agent. This was combined
with a long short-term memory recurrent neural network (LSTM) that outputs a value function.
The policy is trained using collected self-play experience, similar to how AlphaZero uses self-play
to train. Moreover, a study by Holubar et al. explored a novel racing environment with continuous
action and state spaces [10]. Agents in this racing environment were required to control the steering
and acceleration of a car while driving on a randomly generated race track. Analogous to the HCR
agent in our experiments, the agent uses the proximal policy optimisation (PPO) algorithm to train
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its policy. The researchers also used the sampled policy gradient (SPG) algorithm and compared the
agents’ performance with SPG to PPO. The researchers also studied the effects of experience replay
(ER) in both algorithms. PPO showed proficiency in capturing new information in continuous
action spaces. Nevertheless, they discovered that ER is not as beneficial for PPOs in continuous
action spaces as it is for SPG. All versions of SPG outperformed PPO when ER was used, showing
that SPG can be favourable for continuous-action reinforcement learning. Lastly, in 2023, the thesis
of Lex Janssens used PPO on a self-made version of the game Crossy Road [11]. The action space
in his environment is discrete and has many observing states similar to HCR. The thesis concluded
that the size of state representation is essential for a given environment. Agents in the game with a
small state representation did not perform as well as agents with a larger state representation. The
researcher also discovered that heuristic rewards for actions increased the agent’s performance.

In conclusion, RL algorithms experimented on games, such as HCR, are not an unexplored domain.
The research shows that PPO is the best-performing algorithm in continuous action spaces and
continuous observation spaces. Thus, PPO is applied to the HCR environment in our experiments
because HCR’s observation space is continuous, and the action space is both discrete and contin-
uous. Furthermore, research also showed a discrete action space with grid discretization for the
observations shows promising results, yet, this will not be applied in our experiments.

3 Background

3.1 Mountain Car problem

A classic control problem that has existed in reinforcement learning for a protracted time is the
mountain car problem. The problem environment consisted of a car and a mountain and was first
mentioned in Andrew Moore’s PHD thesis in 1990 [12]. Later on, Sutton mentioned this control
problem in his paper about generalisations in reinforcement learning. In this paper, he demonstrates
how the learning curve converges using the SARSA algorithm and sparse-coarse-coded function
approximators for the mountain car problem and other classic control problems [13]. However, the
mountain car problem became more popular after Sutton and Barto added it to the well-known
Reinforcement Learning: An Introduction book in 1998 [14].

In the problem environment, the car is placed stochastically at the bottom of the mountain valley
and surrounded by steep hills on the front and back, see Figure 1. Its goal is to drive up to the
top of the hill and reach the goal state, which can only be accomplished by using gravity and
the surrounding steep hills. The Gymnasium library contains two recreated environments of the
mountain car problem. One with a continuous action space representing an array ranging from -1
to 1 containing a float32 number that represents the force applied to the car. Furthermore, the
second environment has a discrete action space containing three discrete deterministic actions.
These three actions are acceleration to the left, not accelerating at all, and acceleration to the right.
Two observation variables define the observation space in this environment: the car’s position along
the x-axis, which ranges from -1.2 to 0.6, and the car’s velocity, which ranges between -0.07 and
0.07 [5].
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Over the years, many different algorithms have been applied to solve mountain car problems. One
of these is Q-learning. In 2022, researchers modelled the mountain car problem and solved it using
Q-learning and SARSA with state discretization [15]. The position and velocity observations are dis-
cretized such that there is a finite amount (ranging from 10 to 40 in this paper) of the aforementioned
variables, making the size of the Q table smaller and thus making it easier and faster for the learning
curve to converge as the total number of states to explore is less. Note that the action space in this
research was discrete. SARSA and Q-learning solved the problem fully (meaning 100% accuracy in
test runs) depending on the amount of discretization. Similar results have been achieved by another
study that also showed how tabular Q-learning with discretization was faster to train compared to
SARSA and deep Q-learning [16]. Another intriguing RL method is to use human feedback to
create the agent’s behaviour. In 2011, Knox et al. demonstrated a paper that applied RL to the
mountain car problem with the TAMER framework [17]. This framework incorporates human feedback
to shape the agents’ behaviour; the human feedback signals can be approval or disapproval, which
a human teacher gives. The researchers combined the TAMER framework with SARSA to integrate
human reinforcement signals and Markov decision process rewards in one fully integrated sys-
tem and found it significantly improved the performance compared to the methods used individually.

Moreover, researchers in 2022 created an enhanced version of PPO. They introduced policy feedback
(PPO-PF) [18]. This novel version of PPO has the Critic network estimate the value function and
is used directly to perform a policy update. In contrast, the policy from the actor-network conducts
the value function update, resulting in a collaborative update of both value and policy functions.
PPO-PF was also applied to the mountain car from OpenAI Gym. They found that PPO-PF had
a faster convergence speed, a more minor variance of rewards, and higher average rewards than the
original version of PPO. The mountain car experiment showed an 18% improvement in the average
rewards. However, the benchmarks on some Atari games demonstrate a decreased performance,
such as on breakout with a -54.60% decrease in score compared to the original PPO and thus, the
original PPO algorithm is still utilised in the experiments.

Figure 1: The Mountain Car Gymnasium environment [5].
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3.2 Hill Climb Racing

Hill Climb Racing (HCR) is a popular 2D racing game developed by Fingersoft, first released in
2012 on IOS and Android and later in 2013 also on Microsoft Windows [19]. It won Finnish app
of the year in 2014 and is currently the number 12 ranking racing game in the Dutch Apple App
Store [20]. The game’s goal is to drive a car as far as possible in a randomly generated world that
contains hills that vary in height (the terrain). Similar to the mountain car problem, the car locates
itself in a valley between hills. However, in HCR, the terrain is endless, and the height of the hills
varies when driving further. The game’s death condition is when either the player inside the car
touches the car with their head or when the car runs out of fuel. Fuel is spawned throughout the
level systematically. Coins and diamonds are likewise spawned through the level and can be used
to upgrade the car. The player has access to the following two actions: the first action is increasing
the gas to drive the car forward; during this action, the car rotates counterclockwise. The second
action is reverse driving the car, which brakes the car in a forward motion. During a reverse drive,
the car rotates clockwise.

As mentioned before, our environment version of HCR differs from the original HCR. The environ-
ment version uses Python, Box2D, Pygame and the Gymnasium API library. The game environment
is based on a JavaScript version made earlier by a YouTuber named CodeBullet (also known as Evan
G), which he published on GitHub [21]. In a video, he showcases an AI playing HCR. To explicate,
he demonstrates how the NeuroEvolution of Augmenting Topologies (NEAT) algorithm can be
used to play HCR. NEAT is an evolutionary algorithm that generates and evolves neural networks.
It starts with simple networks and incrementally grows them into more complex structures. NEAT
treats nodes inside the neural networks as genes and mutates them using crossover based on their
performance in each new population’s generation. CodeBullet’s NEAT agent reached the end of
his generated terrain at generation three using seven different observations that output to either
gas or breaking [22]. Our custom HCR environment does not contain any fuel parameters and
focuses more on the control problem of driving the car through rough terrain. Furthermore, the
HCR environment uses a distinguishable terrain generation algorithm that is more rough compared
to the original game. More about the ground generation is explored in 4.3. Additionally, the terrain
does end at a certain distance in the experiments, unlike the endless levels in the original game.
Coins and diamonds spawns are excluded, and the car has access to full power. Moreover, our
environment includes different types of action spaces: discrete and continuous; more about the
environment will be illustrated in Section 4.2. The HCR environment is published on GitHub and
includes a human-playable mode.
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Figure 2: The HCR Pygame environment on the left and the original HCR game on the right [20].

4 Methods

4.1 Reinforcement learning

Reinforcement learning attempts to shape an agent’s behaviour such that it is able to maximise
cumulative rewards in its environment. Each observation combination can be seen as a state, and
each state-action combination forms the state-action space. By observing the environment, the
agent takes an action that positions the agent in a unique state where it receives a reward. The
agent’s behaviour or strategy is the decision process of taking an action based on the observations
and rewards. In RL, the decision-making framework is called the policy, which tries to maximise an
agent’s total reward in the environment. Diverse policy learning methods exist to steer the agent in
the right direction. In an on-policy method, the agent uses its target policy to perform actions in
the environment and tries to improve its target policy based on the rewards and observations of
those actions made by the target policy; an example of such an algorithm is SARSA. However, an
off-policy method improves its target policy by using a different behaviour policy or another data
source than its target policy, such as Q-learning [23]. Furthermore, one can classify RL algorithms
into two different categories: model-based and model-free. Model-based RL relies on a model from
the environment and uses this model to predict the outcomes of its actions as it can think in
advance. Alternatively, model-free RL does not rely on a model but uses trial and error based
on their experience [24]. Our reinforcement learning experiments will primarily use the Proximal
Policy Optimization (PPO) algorithm, which is an on-policy and model-free reinforcement learning
algorithm. More regarding PPO is explicated in Section 4.6.2.

4.2 Environment overview

As indicated previously, the environment is developed in Python and uses multiple libraries to assist.
Box2D is utilised as the physics engine inside the environment, and Pygame renders the graphics.
Furthermore, the environment operates the Gymnasium library for reinforcement learning functions
such as resetting the environment, action, and observation spaces. More about the environment
will be explored in the subsequent sections.

In the HCR environment, the agent embodies a person bound to a car. The game concludes
with the character’s contact with the ground while inside the car. This vehicle is provided with
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dual motorised wheels (front and back) capable of operating in reverse or forward modes. The
manipulation of motor speed can be executed through discrete actions, such as forward or gas
commands, or through continuous actions, allowing the agent to set the motor speed according to
its own policy.

Additionally, when the car is driven forward, it rotates counterclockwise, whereas in reverse, it
rotates clockwise. This mechanic allows the agent to stabilise the car while airborne and navigating
the terrain; however, the same mechanic likewise allows for mistakes that will conclude the game.
The car, person, and wheels classes are all defined by Box2D shapes and rendered using Pygame. The
complete code of these classes and the environment can be found on GitHub [25]. The environment
resets itself every timestep when a death condition is reached and respawns the agent to its starting
position, meaning a new episode starts. The starting position is a constant and hence does not
change. However, the terrain generation is randomised in each new episode (with the same difficulty
parameter). Lastly, when the agent is stuck (not travelling more than 20 metres) for more than
1200 timesteps (or frames), the episode will be truncated.

4.3 Terrain generation

The ground generation algorithm within the Ground class is implemented in the randomize ground

function. This function creates a procedurally generated terrain using Perlin noise, ensuring vari-
ability and a dynamic difficulty level as the player progresses. This section will explain how the
core components generate the terrain, though it will not encapsulate every aspect. The complete
code for the terrain generation algorithm can be found in appendix A.

The terrain incorporates coordinates (x, y) where x is the position along the x-axis and y is the
position along the y-axis. These points are connected as they make up the vertices of a polygon; in
our generation algorithm, they make up each section of the terrain. Each x-value is chosen using a
smoothness factor that structurally spaces out the x-value until the maximum distance max dist
of the level is reached. For each x-value, an y-value is generated based on the steepness level S; the
steepness level function uses linear interpolation and maps the x values to a range between the
lower limit l and the upper limit u. In our environment, l = 130 and u = 250 are chosen to balance
the difficulty by limiting the height extremes of the terrain. The steepness level function S(x) is
denoted by the following formula:

S(x) = l +

(
u− l

max distance

)
· x

Where max distance is the maximum distance of the level, max distance is calculated by:

max distance = MAX_SCORE+ X_SPAWNING

Where MAX_SCORE is the maximum score achievable in the level, and X_SPAWNING is the spawning
location of the agent. Consider how S increases as the x-value increases, indicating a steepness
increase in the terrain when the agent or player traverses through the terrain into the positive side
of the x-axis.
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The terrain is generated using Perlin noise [26] to ensure a degree of variability and dynamicity in
the terrain. A Perlin noise function P (z) from the Python noise library [27] is used to output N ,
which is the noise variable that will be utilised to choose a y-value for each x-value. For each S, the
noise function N(S) denoted by the following formula:

N(S) =

∣∣∣∣P (
ground seed+

x− flat length

scale− S

)∣∣∣∣
Where ground seed is a seed randomly chosen using a uniform distribution between 0 and 100000
and flat length is the initial flat part of the terrain where the agent or player spawns. scale is
a constant scaling factor that helps modulate the impact of S on the Perlin noise calculation,
adjusting the frequency and, thus, the resulting pattern of the terrain. In essence, a higher scaling
factor produces smoother noise with fewer abrupt changes, while a lower scaling factor produces
noisier output, resulting in rougher terrain. For the scaling factor, scale = 700 was chosen as this
results in a relatively balanced terrain.

Note how N(S) calculates the absolute value from P (z). The Perlin noise function in the Python
library outputs numbers from [−1, 1]; when taking the absolute value from P (z), it results in a
terrain with a more irregular dynamic than the original game’s terrain. However, the original Perlin
noise function outputs values that range from [0, 1]. Figure 3 shows the difference between the two
Perlin noise values.

Thereafter, S is used to calculate the maximum height parameter Hmax, which defines the maximum
height y can obtain. Comparable to the S(x) function, a value is mapped using simple linear
interpolation. The Hmax(S) function is defined as follows:

Hmax(S) = DIFFICULTY+

(
b

a

)
· S

Where DIFFICULTY is a predefined parameter at initialisation that modifies the terrain’s difficulty
at the method’s initialisation. Furthermore, a and b are the range limit parameters for interpo-
lation that are used to map values from a to b. The chosen parameters for our environment are
DIFFICULTY=-150, a = 200 and b = 320. Note that the difficulty only increases until the steepness
level reaches a = 200, while the upper steepness level limit is u = 250. This means after 80% of the
terrain is traversed, the difficulty will not increase anymore as the maximum range limit of a = 200
is reached. However, in Section 5.5, an experiment is conducted with a = u, thus increasing the
difficulty until the end of the terrain.

Finally, with the aforementioned variables x, N and Hmax, it is achievable to calculate a ground
vector G that contains the tuple coordinates (x, y). The function G(x) assigns a height value y to
all chosen x until the max distance is reached to obtain the tuple (x, y). This function is defined
as stated below:

G(x) = (x, SCREEN_HEIGHT− (Hmax −Hmin) ·N)

Where Hmin is a constant that guarantees a minimum ground height, and SCREEN_HEIGHT is a
constant that represents the height of the screen. Note that G(x) calculates the coordinate (x, y),
where every coordinate calculated is added to an array that eventually represents the ground. The
chosen values for these parameters are min height = 30 and the constant SCREEN_HEIGHT=720.
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Figure 3: The left image illustrates 2D Perlin noise values ranging from [0, 1], and the right image
depicts 2D Perlin noise taking absolute values ranging from [−1, 1] [28].

4.4 Environment design

The following section will explicate the different spaces in the Gymnasium environment, such as
the action and observation spaces. Furthermore, it will explain important functions, such as score
and transition. Numerous types of action spaces have been utilised in the experiments and will be
described in this section.

4.4.1 Score function

The distance travelled by the agent determines the score in HCR; the same applies to the HCR
environment. The score is calculated based on the following function:

score(xmax) = max (0, ⌊xmax − X_SPAWNING⌋)

Where xmax is the maximum distance on the x-axis reached by the agent in a timestep of an episode
and X_SPAWNING the x-axis spawning location of the agent. The function calculates the difference
between xmax and X_SPAWNING rounded down to the nearest integer. The score can never be lower
than 0 because of the max(0,·) function; it prevents negative scores that could occur if the agent
moves backwards from its spawning location. When an agent reaches the maximum score (1000 or
300 in our experiments), the game (or episode) ends as it is completed.

4.4.2 Observation space

Initially, multiple distinct observation spaces were experimented with. The experiments revealed
that the more observations, the better the agent performed, especially with algorithms such as
PPO. Therefore, it was decided not to include those experiments in the thesis and to include all
relevant parameters in the observation space in every experiment. A graph showing the learning
curve of different observation space types can still be found in Appendix B.1. The observation
space remains constant throughout all experiments.

The observation space in the environment is a composite space defined as a dictionary containing
distinguishable fundamental spaces. HCR’s observation space (see Appendix B.2 for code) contains
four of these fundamental spaces, these are defined mathematically as described below:
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1. Car chassis position

p = X × Y, where X ∈ [0, 1000], Y ∈ [0, 700] and X, Y ∈ R

This observation indicates the car’s position (p) based on the chassis and is defined as a
Cartesian product where X is the x-coordinate and Y the y-coordinate of the car. Corre-
spondingly, this fundamental space is defined as a 2-dimensional box space with a range limit
from [0, 1000] for the set X and [0, 700] for set Y .

2. Car chassis angle
a = θ, where 0 ≤ θ ≤ 360 and θ ∈ R

The car’s angle a is defined as the variable θ in a one-dimensional fundamental box space
ranging from 0 to 360. The car’s angle is likewise measured relative to its chassis. When the
car completes a full rotation, the angle resets to 0 degrees.

3. Wheels speed

v = Vback × Vfront, where Vback, Vfront ∈ [−13π − 0.1, 13π + 0.1] and Vback, Vfront ∈ R

Moreover, the wheel speed v is observed, which is the Cartesian product of the car’s front
(Vfront) and back (Vback) wheels. The fundamental space for the wheel speed is similar to that
of the car’s position, though the range differs notably as it ranges from [−13π− 0.1, 13π+0.1]
for both back and front wheel speeds. The motor speed determines the range, which is set to
13 · π. For mathematical compatibility purposes, 0.1 is subtracted and added as a margin of
error.

4. Wheels on the ground

c = Cback × Cfront, where Cback, Cfront ∈ {0, 1}

Lastly, the observation of whether the front or back wheel contacts the ground is denoted by
c. A multi-binary space is utilised to observe both the front (Cfront) and back (Cback) wheels,
where 0 signifies not contacting the ground, and 1 means the wheel has contact with the
ground.

These four different observations combined make the environment highly sophisticated, and thus,
the curse of dimensionality will become evident when exploring it. The full observation space set O
is defined as follows using the aforementioned definitions and variables.

O = (X × Y )× θ × (Vback × Vfront)× (Cback × Cfront)

Or the simplified version:
O = p× a× v × c
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4.4.3 Action space

As mentioned before, multiple action spaces were utilised in the experiments. Three action spaces
are defined: discrete with three actions and continuous. Originally, a discrete action space with two
actions was added. However, this action space was constantly outperformed by the discrete action
space with three actions and hence was removed.

1. Discrete action space with three actions

Discrete(a) =


Idle, if a = 0

Gas, if a = 1

Reverse, if a = 2

The first action space is a discrete action space with three actions. Consider a an action.
Then these actions are idle when a = 0, gas when a = 1, and reverse when a = 2. This action
space is the same one humans have when playing the game; in that case, idling would not be
doing any action.

2. Continuous action space

Continuous(v) = v, where − 13 ≤ v ≤ 13

The continuous action space acquires a motor speed variable v. Afterwards, both front and
back wheel speeds are adjusted to v · π. The maximum motor speed is set to 13 in the
environment, thus v ranges from -13 to 13. The code for these action spaces can be found in
Appendix B.3.

4.5 Reward functions

The subsequent section will explicate how distinct reward functions are built up. The experiments
will also utilise all of the following reward functions. Before explaining each reward function, one
must understand the different predefined parameters used in these reward functions. The reward
type parameters soft and aggressive define the significance of punishing specific actions such
as idling or reversing. Consider that the reward type is a parameter and does not fully define a
reward function.

The soft function soft(c) with c as status is defined as follows:

soft(c) =

{
−0.1, if c = idle

−0.2, if c = reverse

And aggressive(c) with c as status is defined as:

aggressive(c) =

{
−0.5, if c = idle

−1, if c = reverse
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With soft(c) and aggressive(c) it is possible to define the reward type function k(f, c), where f is
the chosen reward type function:

k(f, c) =

{
soft(c), if f = soft

aggressive(c), if f = aggressive

Furthermore, each reward function is defined as R(s, a, s′, f, c), representing the reward obtained
by applying action a in the current state s, leading to a transition to state s′, the resulting state.
The reward type is defined by f , and c represents the agent’s status. Therefore, the reward r
is discovered by calculating r = R(s, a, s′, f, c). However, a is not always included in the reward
function calculation as this depends on the reward function.

4.5.1 Distance

The distance reward function utilises the agent’s position observation on the x-axis in the current
state and examines the maximum distance an agent has achieved prior (in the previous state). The
function uses these observations to calculate the delta between these positions and utilises these
differences to calculate the concluding rewards. This distance reward function Rd(s, a, s

′, f, c) is
defined in the following manner:

Rd(s, a, s
′, f, c) =



−100, if s′ is truncated

−100, if s′ is terminated

0, if s′ is terminated by game completion

k(f, reverse) + px(s
′)− pxmax(s), if px(s

′) < pxmax(s)

k(f, idle), if
(
px(s

′)− pxmax(s)
)
< 0.001

1 + px(s
′)− pxmax(s) if px(s

′) > pxmax(s)

Where px(s
′) is the (current) x-coordinate position of the agent in state s′ and pxmax(s) the (previous)

maximum x-coordinate position in state s. And k(f, c) the aforementioned reward type function
where c = idle or c = reverse. It’s worth noting that the failure of the agent to advance from its
previous state results in a negative reward. Similarly, moving forward but covering a distance of
less than 0.001 also leads to a negative reward. A positive reward of is awarded only when the
agent successfully moves forward from its previous state.

4.5.2 Action

The action-based reward function utilises the agent’s action to compute a reward. Depending on
the action, the agent receives a reward bound to this action. The reward function Ra(s, a, s

′, f, c) is
stated as below:

Ra(s, a, s
′, f, c) =



−100, if s′ is truncated

−100, if s′ is terminated

0, if s′ is terminated by game completion

k(f, idle), if a = 0 (idle)

1, if a = 1 (gas)

k(f, reverse), if a = 2 (reverse)

13



Where a is the chosen action in state s and k(f, c) is the reward type function. A reward of 1
is given when the agent decides to choose the gas action. Meanwhile, a negative reward is given
when the agent is idling: -0.5 when f = aggressive and -0.1 when f = soft. Likewise, when the
chosen action is reverse, a harsher negative reward is given: -1 when f = aggressive and -0.2 when
f = soft.

4.5.3 Wheel speed

Comparable to the previous reward functions, an observation is made to see whether the agent is
moving forward, moving in reverse, or idling. However, the wheel speed reward function relies on
the wheel speed rather than the actions or distance observations. The wheel speed reward function
Rw(s, a, s

′, f, c) is defined as described below:

Rw(s, a, s
′, f, c) =



−100, if s′ is truncated

−100, if s′ is terminated

0, if s′ is terminated by game completion

k(f, idle), if − 1 ≤ vback(s
′) ≤ 1 and − 1 ≤ vfront(s

′) ≤ 1

1, if vback(s
′) < 0 and vfront(s

′) < 0

k(f, reverse), if vback(s
′) > 0 and vfront(s

′) > 0

Where vback(s
′) is the speed of the back wheel and vfront(s

′) is the speed of the front wheel. Again
the function k(f, c) is utilised as defined before. Note that c = idle when the wheel speed is close
to 0, specifically in the range [−1, 1]. Additionally, note that the wheel speed is negative when the
agent moves forward. Accordingly, a reward of 1 is assigned when the wheel speed is below 0 and a
negative reward when the wheel speed is above 0.

4.5.4 Airtime

The airtime reward is an additional reward function that extends the distance and wheel speed
functions. It attempts to increase the agent’s airtime by positively rewarding multiple consecutive
timesteps in the air. Meanwhile, the reward functions of the distance and the wheel speed are
unchanged. For every 30 consecutive frames in the air, a reward of 1 is allocated until the agent
contacts the ground again; this airtime function is defined as A(s) = stair/30, which entails the
airtime counter in state s and where stair is the number of timesteps spent in the air consecutively in
s. For each timestep in which the agent contacts the ground, the agent is punished with a negative
reward of −0.5. The airtime reward function is defined as follows:

Rairi = Ri(s, a, s
′, f, c) +Rair(s, a, s

′)

Where Ri(s, a, s
′, f, c) is one of the aforementioned reward functions (wheel speed or distance) and

Rair(s, a, s
′) is defined as:

Rair(s, a, s
′) =

{
A(s′), if A(s′) > 0

−0.5, otherwise

Where A(s′) is the airtime number at state s′. For example, when the agent has spent 60 consecutive
frames (tair = 60) in the air, the agent receives an airtime reward of Rair(s, a, s

′) = A(s′) = 60/30 =
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2. This airtime reward Rair is then added to the reward of the other reward function Ri, which can
represent the wheel speed or distance reward function. Thus the definitive formula concludes to:
Rairi = Ri(s, a, s

′, f, c) +Rair(s, a, s
′).

4.6 Algorithms

This section will explore the algorithms used in the experiments. Specifically, the focus is on
proximal policy optimisation (PPO). However, the random agent algorithm is used as a control
benchmark for the experiments.

4.6.1 Random agent

The random agent is a policy that chooses the action uniformly at random. It utilises the action-
based reward function and the discrete action space with three actions (idle, gas and reverse). For
a random agent with a discrete action space of size |A| = 3, the policy is:

π(a | s) = 1

|A|
=

1

3
∀a ∈ A, s ∈ S

Where π(a | s) is the probability of taking action a ∈ A given state s in state space S. The full
algorithm can be found in Algorithm 1.

Algorithm 1 Random Agent

1: Initialisation: current timestep: t = 0, maximum number of timesteps: T
2: Run Episodes:
3: for each episode i do
4: Reset environment to get initial state s0.
5: while termination condition (terminated or truncated) is not met and t < T do
6: Select action at according to policy π(at | st): at ← Uniform(A)
7: Execute action at in the environment.
8: Observe next state st+1, reward rt, and termination signal.
9: Update current timestep: t← t+ 1
10: end while
11: end for

4.6.2 Proximal Policy Optimisation (PPO)

PPO is a policy gradient algorithm that utilises a combination of trust region methods (originally
TRPO), actor-critic methods, policy gradient methods and a clipped surrogate objective function
to solve reinforcement learning problems. It is seen as a state-of-the-art reinforcement learning
algorithm on continuous control tasks because it is data efficient, scalable to large models, performs
relatively better compared to other algorithms and is robust as it is successfully applied to nu-
merous problems without extensive hyperparameter optimisation [29]. Moreover, PPO utilises an
actor-critic network where the actor (policy network) controls how the agent behaves by outputting
a probability distribution over actions given a state st at timestep t, while the critic (value network)
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evaluates a state st and outputs the expected cumulative reward for st under the current policy.
The critic and policy networks are implemented as feed-forward neural networks.

Before explicating PPO further, it is essential to know why PPO originated. Firstly, policy gradient
methods such as REINFORCE [30] are often too aggressive with the modifications in the policy
updates. More minor and conservative policy updates increase the chance of converging to an
optimal solution instead of having extensive policy updates that result in bad policies. PPO
successfully attempts to improve upon these gradient policy methods by introducing a clipped
surrogate objective function. This function constrains policy updates between the new and old
policy to lie within a specified range. This clipping mechanism helps to stabilise training and
improve the reliability of policy updates as they stay closer to the old policy.

LCLIP(θ) = Êt

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
Where θ defines the parameters of the policy network, the ratio reward function rt(θ) calculates
the probability ratio between the current policy and the old policy, rt(θ) is defined as stated below:

rt(θ) =
πθ(at | st)
πθold(at | st)

πθ(at | st) defines the probability of taking an action at in state st and πθold(at | st) does the same

for the previous (old) policy. Ât is the advantage estimator, which measures the relative quality
of a specific action compared to the average action in a given state st. Specifically, the General
Advantage Estimator (GAE) is utilised, which combines the ideas of temporal difference learning
and Monte Carlo estimation to compute the advantage [31]. ϵ a hyperparameter that defines the
clip range, ϵ = 0.2 is used in the experiments (as is originally in the paper). Hence, the policy
update will always be in the scope of the clipping range, which is [1− ϵ, 1 + ϵ].

Moreover, a value loss function is defined using the Mean Squared Error (MSE) between the
predicted estimated cumulative rewards in a state st and the observed cumulative rewards at t.
The value loss function LVF(ϕ) utilised in PPO is stated below:

LVF(ϕ) = (Vϕ(st)− V targ
t )2

Where V targ
t is the observed cumulative reward, Vϕ(st) is the value predicted by the value (critic)

network for state st, and ϕ are the parameters of the value network. MSE is a function that
calculates the mean-squared error. Lastly, there is an entropy bonus function S[πθ](st) that is added
to the objective function to regulate exploration; it calculates the entropy of policy [πθ] in-state st.
Using all the aforementioned defined functions, the full objective function for PPO is defined as
follows:

LCLIP+V F+S(θ) = Êt

[
LCLIP
t (θ)− c1L

V F
t (θ) + c2S[πθ](st)

]
Where c1 and c2 are coefficients that scale the significance of the value function loss and entropy
bonus relative to the clipped surrogate objective. The pseudocode can be found in Algorithm 2.
The PPO algorithm utilised in the experiments all originate from the Stable-Baselines3 library [32].

16



Algorithm 2 PPO from Stable-Baselines3 [32]

1: Initialisation: policy parameters: θ, value function parameters: ϕ
2: for iteration = 1, 2, . . . do
3: for actor = 1, 2, . . . do
4: Run policy πθold in the environment for t timesteps to collect a set of trajectories .

5: Compute advantage estimates Ât using GAE
6: end for
7: Update the policy by maximizing the PPO objective function LCLIP+V F+S(θ)
8: Update the value network parameters ϕ and minimise the value loss function LVF(ϕ)
9: θold ← θ
10: end for

5 Experiment design & results

The following experiments are conducted to construct an agent capable of completing the HCR
environment with the most promising potential performance. This section explores the reward
design, determining what reward functions can help the agent perform the best. We also analyse
the performance of agents utilising the discrete and continuous action space. Moreover, the best-
performing agents are evaluated and observed in an environment with a distinguishable difficulty
mechanic (algorithm) for terrain generation. Further, an experiment is conducted to test if a specific
reward function can incentivise the agent to achieve more airtime.

5.1 Random agent

An experiment was executed with a random agent in a discrete action space with three actions
(idle, gas, and reverse) using both the soft and aggressive action-based reward functions, as shown
in Figure 4. The chosen maximum score in this experiment is 1000. The experiment advances this
random agent through 1 million timesteps in the HCR environment, and the action is selected
randomly using the uniform distribution. This experiment was run five times, and the results were
averaged. The motivation for this experiment is to examine whether other experiments perform
better than a random agent that does not learn.

These graphs clearly show that the random agent’s performance is low across all metrics, as the
learning curve, score, and episode length curve are all flat. The score is, on average, 15, and the
average rewards do not reach higher levels than 100. This is expected behaviour for a random
agent, as it does not learn or adapt its strategy based on the environment or past experiences. The
average reward curve distinctly shows the difference between the reward type (soft and aggressive)
functions, where the punishment is more harsh using the aggressive reward function, as the reward
curve seems to stay around -200. In contrast, the soft reward curve stays above 0. These results
can be utilised as a baseline comparison for upcoming experiments to determine if the agent learns
and improves its performance. The episode length and score do not differ extensively, as the reward
type curves are roughly the same.
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Figure 4: Graphs illustrating the performance of the random agent experiment during the training
phase: the rewards learning curve (left), episode length (middle), and episode score (right) over 1
million timesteps. Results are averaged over 5 runs, with the shaded area indicating the variability
across these runs.

5.2 Discrete action space

Numerous experiments employing different reward functions have been performed using the PPO
algorithm in a discrete action space. The experiment involves training an agent using different
reward functions: action-based, distance-based, and wheel speed-based. Each experiment was
executed five times, with the results curve averaged, and the variability over all five runs is shaded
in the graphs. Each experiment ran for 1 million timesteps. The maximum achievable scores were
set to 300 and 1000 in separate experiments, and these results were compared.

5.2.1 Action-based

The action-based reward functions experiment demonstrates weak results, as shown in Figure 5. In
particular, the aggressive reward function does learn and performs worse than the random agent on
average. However, the soft reward function does display some learning in the first 100,000 timesteps,
where it outperforms the random agent with average rewards above 100 and average scores of
almost 50. Nevertheless, there is some performance degradation after timestep 100,000, probably
due to overfitting on the beginning difficulty of the level. Because the terrain always starts relatively
flat, it might be difficult for the agent to learn the dynamicity of the environment as the terrain
accumulates height. Interestingly, there are many episodes where the agent finishes the complete
environment by reaching a score of 300, though it performs poorly on average.

In the same experiment, but with a higher maximum score of 1000 in the environment, the soft
action-based reward function performed significantly better. The agent achieves average rewards
of around 1200 and average scores above 400, as seen in Figure 6. One possible explanation for
this performance increase is that the environment with a maximum score of 1000 starts with
relatively flatter terrain for a longer duration. In contrast, the terrain in the 300 maximum score
environment becomes significantly steeper more quickly. This is due to linear interpolation in terrain
generation and the identical peak difficulty in both environments. Additionally, the agent only
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Figure 5: Graphs illustrating the performance of the discrete action-based reward function experiment
in an environment with a maximum achievable score of 300 during the training phase.

seems to complete the entire environment four times by reaching a score of 1000, while the same
agent completes the environment more frequently in the 300 environment. However, the aggressive
reward function still performs poorly, likely caused by the harsh negative rewards when the agent
is idling or moving backwards, which results in an inadequate policy.

Figure 6: Graphs illustrating the performance of the discrete action-based reward function experiment
in an environment with a maximum achievable score of 1000 during the training phase.

5.2.2 Distance-based

Figure 7 shows the distance-based reward function experiment graph. The distance-based reward
function in the 300 environment performs better than the action-based reward function. Both reward
type functions perform similarly and achieve scores of around 200, and both achieve completing the
environment multiple times. The severe negative rewards in the aggressive reward function seem
to impact the agent less compared to the action-based environment. Although there are extreme
negative reward spikes in the learning curve. These are induced when the agent is stuck on the
terrain, indicating it no longer traverses the terrain; the negative idle rewards stack up to 1200

19



timesteps, and then the environment calls for truncation.

Figure 7: Graphs illustrating the performance of the discrete distance-based reward function
experiment in an environment with a maximum achievable score of 300 during the training phase.

The 1000 environment in Figure 8 demonstrates the aggressive reward function to be slightly worse
than the soft reward function regarding episode score. Again, extreme negative reward spikes can be
found in the learning curve. Both environments are able to complete the environment several times.
The training reward curve converges in both environments, at 1500 for the 300 environment and
around 2000 for the other environment. The 300 environment appears to perform better because
it traverses further in the environment when looking at the average percentage of level traversed.
Also, the 300 maximum score environment completed the environment way more often than the
1000 environment.

Figure 8: Graphs illustrating the performance of the discrete distance-based reward function
experiment in an environment with a maximum achievable score of 300 during the training phase.
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5.2.3 Wheel speed-based

Moreover, we utilised a wheel speed-based reward function and PPO to train an agent. This
experiment with a maximum score of 300 displayed interesting results in Figure 9; both reward type
agents seem to learn and perform better than the random agent, though the performance is inferior
to the previous distance-based reward function experiment. The aggressive reward function here
clearly outperforms the soft reward function. The reason for this inadequate performance could be
that the agent drives deliberately slowly (just slow enough to prevent truncation) to maximise the
wheel speed rewards until the episode ends. Slow driving would also negatively interfere with the
learning policy in PPO as the policy observes positive rewards and thus promotes slow driving.
Looking at the score, the agent performs worse after peaking at around score 200, which is around
390.000 timesteps. The slow driving becomes even more apparent when comparing the episode
time of this agent to the distance-based reward function agent. The distance-based agent seems to
complete a score of 200 at around 1000 timesteps, while the wheel-speed-based agent needs more
than 2000 timesteps for the same score.

Figure 9: Graphs illustrating the performance of the wheel speed-based reward function in a discrete
action space experiment with a maximum achievable score of 300 during the training phase.

The agent’s performance in the 1000 maximum score environment, as depicted in Figure 10, is
notably poor. This graph vividly illustrates the agent’s slow driving behaviour. In episodes where
the agent reaches the 1000 maximum score, the episode length extends to nearly 14,000 timesteps,
twice as long as the distance-based reward function agent. Both reward type functions perform
poorly and do not seem to improve the policy to perform better in the environment at all. Only in
the first 100,000 timesteps does the agent seem to learn in such a way that results in a policy with
better game scores. Afterwards, it might increase the reward’s learning curve, but the game score
does not improve significantly.

5.2.4 Score comparison

Figure 11 demonstrates box plots with the episode scores of each aforementioned reward function
experiment while training across all runs of 1 million timesteps. In the 300 score environment, Figure
11a clearly shows that the distance reward function has performed the best, with average scores
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Figure 10: Graphs illustrating the performance of the discrete action space and wheel speed-based
speed reward function experiment in an environment with a maximum achievable score of 1000
during the training phase.

above 175 for both soft and aggressive reward functions. The soft wheel speed and action-based
reward functions have a low median score of under 25. Nonetheless, one can observe episodes where
the agent completed the environment multiple times from the outliers, except for the agents in
the aggressive action-based reward experiment. The 1000 score environment shows similar results
(see Figure 11b), yet the aggressive wheel speed reward function performs poorly, with a median
score below 10. Additionally, the soft action-based reward agent performs reasonably, almost
identically to the distance-based reward agents. In the discrete action space environment, it seems
that the distance-based reward agents perform the best, followed by the action-based agents and,
consequently, the wheel-speed agents.

(a) Maximum score of 300 (b) Maximum score of 1000

Figure 11: Box plots illustrating the episode scores of different reward functions across all training
runs in the HCR environment in two different maximum score experiments. Speed represents the
wheel speed reward function, and the orange line in the bar represents the median.
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5.3 Continuous action space

Analogous to the previous experiments in a discrete environment, we conducted a series of experi-
ments in a continuous action space utilising the PPO algorithm. These experiments again involved
training an agent with various reward functions, specifically wheel speed-based and distance-based.
Each training session was repeated five times to ensure the reliability of our results. The resulting
curves were then averaged, with shaded areas representing the variability across all five runs. The
duration of each experiment is 1 million timesteps. Again, the experiments have been conducted
for a maximum score of 300 and 1000. Regardless, only in the score comparison (Section 5.3.3)
do we show the results of the 300 score environment because the training curves were virtually
identical between the 1000 and 300 environments. The results of the 300 score environment can
still be found in Appendix C.1.

5.3.1 Distance-based

The distance-based reward function with the continuous The distance-based reward function with
the continuous action space experiment demonstrates promising results (see Figure 12, as the average
score reached almost 700 after 200,000 timesteps. However, after the 200,000th timestep, the policy
deteriorates in both the rewards learning curve and the episode score until around the 400,000th
timestep; after that, it seems to converge to 3000 rewards. It appears PPO overfits the policy when
the agent reaches more elevated terrain. The overfitting causes the agent to fail to drive to the
episode’s earlier stages, resulting in lower rewards and episode scores. Additionally, the continuous
action space utilises an extensive range of numbers, increasing the problem’s dimensionality.
Furthermore, the episode lengths seem rather lengthy compared to other experiments. The two
reward type functions do not differ much; the soft reward function seems to achieve higher scores
and overall higher rewards.

Figure 12: Graphs illustrating the performance of the distance-based reward function and continuous
action space experiment in an environment with a maximum achievable score of 1000 during the
training phase.
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5.3.2 Wheel speed-based

Whereas the distance-based reward function has difficulty converging, the wheel speed-based reward
function has no trouble accomplishing this in the continuous action space experiment. In Figure 13
one can observe the reward learning curve to converge after the 400,000th timestep to approximately
13,000 in rewards. The score learning curve converges at around 800, making this specific reward
function and action space combination the best-performing one yet. The reasoning for PPO not
achieving the 1000 score might be that the terrain only increases its difficulty until 80% (meaning
800 scores) is reached. Afterwards, the terrain height difficulty stays the same, and this could
initiate a difficulty for PPO as a significant adjustment in the policy is needed. This hypothesis
will be tested in Section 5.5. Nevertheless, the episode lengths are again lengthy for the wheel
speed-based reward function; the agent’s speed is further investigated in Section 5.4.2. Consider
again that the continuous action space utilises the wheel speed as an action to traverse the HCR
environment. The wheels-speed-based function performs superiorly for this specific action space
as presumably both the reward function and action space utilise the same variable, leading to
faster convergence and proper learning and increasing the episode score. Moreover, there seems to
be no significant difference between the soft and aggressive reward functions, and these perform
comparably to each other.

Figure 13: Graphs illustrating the performance of the wheel speed-based reward function and
continuous action space experiment in an environment with a maximum achievable score of 1000
during the training phase.

5.3.3 Score comparison

As seen in the aforementioned sections, the wheel speed-based reward function performs the best,
with little distinction between reward type functions; aggressive might barely outperform soft.
It achieves a median score of around 700 in the training phase, while the distance-based reward
function only achieves a score of around 190. Here, the soft distance-based reward function achieves
higher scores than the aggressive distance-based reward function, although only faintly. Furthermore,
the episode score range of the continuous action space experiments seems similar, as the whiskers
and boxes are around the same size and length. The distance-based reward function performed
better during training when utilising the discrete action space, as it had a median score of almost
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400 compared to only 190 in the continuous action space. On the other hand, the wheel-speed-based
reward function performed much better in the continuous action space; the agent could not even
reach a median of 100 in the discrete action space. There appears to be a relation between specific
reward functions and action spaces.

Figure 14: Box plot illustrating the episode scores of a PPO agent in the training phase utilising
the distance and wheel speed reward functions in the HCR environment. The experiment utilises
the continuous action space and a 1000 maximum score. Speed represents the wheel speed reward
function, and the orange line in the bar represents the median.

5.4 Evaluation of best models

5.4.1 Score

The subsequent experiment evaluated the best models from the previous experiments. Each
evaluation examines 1000 episodes, and PPO is again utilised. We will evaluate the distance-based
and action-based soft reward functions in the discrete action space selecting actions stochastically
as this performed better. Moreover, both reward type wheel speed-based reward functions and the
soft distance-based reward function models in the continuous action space were evaluated using
deterministic action selection. These specific combinations of a reward function and action space
were chosen as they performed the best in the prior experiments. Multiple models for each reward
function were present in the five experiment runs. Hence, we cherry-picked the best models and
evaluated them. Figure 15 reveals that the wheel speed-based reward function in the continuous
action space performs the best, with a median score of around 750. Moreover, there is barely any
difference between the soft and aggressive reward functions, with aggressive portraying slightly
higher scores. The distance-based reward function in the discrete action space follows with a median
score of almost 600, and lastly, the action-based reward function with a median score of 400.
Moreover, Table 1 displays the mean score of the different evaluated reward functions with similar
results to the median values in the box plot.
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Experiment name Score Length (timesteps) Speed (score/timestep)
Distance discrete soft 574 2299 0.250
Distance continuous soft 528 4833 0.109
Wheel speed continuous aggressive 773 13185 0.059
Wheel speed continuous soft 765 13316 0.057
Action discrete soft 396 1349 0.294

Table 1: Table displaying the mean episode score, mean episode length and the speed of different
agents after 1000 episodes evaluation in the HCR environment.

Figure 15: This box plot represents the episode scores of different models after evaluation of 1000
episodes. The orange line represents the median, and ’cont’ denotes the agent’s action space to be
continuous.

5.4.2 Agent’s speed

As noticed in the previous experiments, the wheel speed-based agents were examined to be relatively
slow. This slow driving is confirmed by the average speed variable in Table 1, which is calculated by
dividing the mean score by the mean length of an episode. The action-based agent in the discrete
action space environment is almost five times faster than the wheel speed-based agents. Likewise,
Figure 16 reveals the average agent’s position (y-axis) in the HCR environment during an episode
with timesteps on the x-axis. The same graph demonstrates agents utilising the discrete action
space are the fastest, with nearly straight linear lines running up. Only 5100 timesteps are needed
to complete the environment for the distance-based discrete action space agent, while the wheel
speed-based agents need 17500 timesteps. The distance-based agent in continuous action space
finishes second in terms of speed, as it requires around 9000 timesteps on average to complete the
entire level.

26



Figure 16: Line graph representing the agent’s position in an episode after evaluation of 1000
episodes. The x-axis represents the duration of an episode in timesteps

5.5 Difficulty increase

Section 5.3.2 discusses the potential flaw of the agent not completing the environment, which
is the difficulty not increasing until the end of the terrain. Instead, the difficulty only increases
until 80% of the terrain with no modifications after 80%. This could be the explanation for the
agent not converging to a maximum score of 1000. Hence, an experiment is conducted where the
terrain difficulty increases until the end of the level. The experiment was conducted with all reward
functions and action space combinations. However, only the best reward type was experimented
with as those are primarily relevant. Specifically, action-based soft in a discrete environment,
distance-based soft in continuous and discrete environments, and wheel speed-based aggressive in
a continuous action space environment. Figure 17 illustrates these reward functions in the new
environment in the training phase. The identical reward functions graph for the original difficulty
(implying the terrain difficulty increases until 80% of the level) environment can be encountered
in Appendix C.2 for comparison. Results show that all reward functions perform better than the
original regarding episode scores except for the action-based reward function. The wheel speed-based
reward function in continuous action space achieves a score of 1000 consistently after 200,000
timesteps. It is the best-performing agent yet, the original difficulty increase mechanic seems to be a
problem for PPO to learn the optimal policy. In spite of that, the reward curve appears to decrease
in average rewards after 200,000 timesteps because of likely overfitting. Similarly, distance-based
reward functions achieved higher scores than originally, but the reward curves did not seem optimal.
Both learning curves display a significant decrease in rewards and inconsistent scores. The same
outcomes are found in Figure 18, which shows an episode score box plot of the same experiment
compared to the original. Additionally, the action-based reward function in the new experiment
performs inadequately and is not comparable to the original; it seems this particular agent has
trouble learning consistently because it has many episodes where it completes the environment but
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an inferior median score.

Figure 17: Graph representing the reward learning curve, episode length and score of different
agents being trained in an environment where the terrain difficulty increases until the end.

Figure 18: This box plot portrays the episode scores during the training of different agents in an
environment where the terrain difficulty increases until the end compared to the original difficulty.
The orange line represents the median, and ’cont’ denotes the agent’s action space to be continuous.

5.6 Airtime

Different airtime reward functions are defined to analyse whether increasing the agent’s airtime is
achievable and perhaps the airtime incentive raises the episode score. The experiment was executed
with the distance-based and wheel speed-based reward functions in the continuous action space.
Additionally, the distance-based reward function in the discrete action space is utilised. Similar to
the previous experiments, the agent is trained in the HCR environment with one million timesteps
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across five distinct runs. An agent’s total airtime A(s) (defined in Section 4.5.4) is observed,
including the episode score, length and reward curves, which are uncovered in Figure 19. The same
experiment has been executed utilising the original reward functions, including the airtime counter,
which can be found in Appendix C.3.

Figure 19: Graph representing the reward learning curve, episode length, score and total airtime of
different agents being trained in the environment utilising the airtime reward functions.

As seen in the reward curve, the airtime function allocates less reward because of the -0.5 penalty
in reward when the agent contacts the ground. This penalty also negatively influences the episode
score, resulting in lower scores. The boxplots in Figure 20 reveal the episode score and total airtime
from the original and airtime experiments. The score box plot likewise indicates lower median
scores, except for the distance-based reward function in the continuous environment, which does
show score improvement. There seems to be no significant increase in airtime, yet the airtime does
increase with higher scores as the agent has more frames to perform airtime. The length/airtime
(timesteps needed for one airtime count) observation in table 2 illustrates that more timesteps are
required to achieve one airtime count for all airtime reward functions compared to their original.
The airtime reward function does not promote airtime at all.
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Experiment name Score Length Airtime Length/airtime
Airtime distance discrete 330 1318 16.6 79
Original distance discrete 341 1398 18.7 75
Airtime distance continuous 291 4047 5.5 730
Original distance continuous 127 1865 2.7 688
Airtime wheel speed continuous 620 10528 6.8 1548
Original wheel speed continuous 627 10583 8.5 1248

Table 2: Table displaying the mean episode score, mean episode length (in timesteps), mean airtime
count and the required timesteps for one airtime count of different agents during training.

Figure 20: Box plot illustrating the episode scores and total airtime during the training of different
agents utilising the airtime reward function compared to the original reward function. The orange
line represents the median, and ’cont’ denotes the agent’s action space to be continuous

6 Conclusions and Further Research

Our primary research question for this thesis was to discover an RL agent that maximises the score
as high as attainable in an HCR environment by designing an optimal reward function and finding
the optimal action space. From our experiments, the wheel speed-based reward function agent
within a continuous action space environment performed the best in the standard environment
with a mean score of 773 (see Table 1). However, the same agent achieved an even higher score in
an environment where the difficulty increases until the end. The agent consistently reached the
1000 maximum score after only 200,000 training timesteps, as seen in Figure 18. In conclusion, the
continuous action space, in combination with the wheel speed-based reward functions, performed
the best by far and outperformed any other combination. Although this agent is the slowest
driving agent, it is five times slower than the action-based soft agent in the discrete action space
environment. Further research is required to improve reward functions, or environmental variables,
such as stricter time limits, could be changed to boost the agent’s speed.
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Moreover, the airtime reward functions did not increase the airtime of the agent at all. Instead, the
airtime count was lower; additional research on the airtime reward functions is required to improve
the airtime of the agent. The discrete action space could likewise be improved by researching novel
distinct reward functions, as our best-performing reward function in the discrete action space only
achieved a mean score of 574. Furthermore, another possibility is to research the same environment
with the identical terrain generation algorithm HCR utilises to see whether our current Perlin
noise terrain generation performs worse or better. Lastly, another algorithm could be utilised than
PPO, such as Q-learning with grid discretization of the observation space for the discrete action
space agent. Also, our experiments did not optimise PPO hyperparameters, requiring additional
research to achieve better performance. Additionally, an experiment with human benchmarks on
the HCR environment is possible. The environment contains a human-playable version, which could
be utilised in a human benchmark experiment where the scores of humans are observed; this human
benchmark can then be used for comparison against the RL agents. Lastly, experiments with a
higher maximum score could be conducted. However, this would cost additional computing power
for the terrain generation as most experiments already took a long time.
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Appendices

A Terrain generation code

1 class Ground:

2 def __init__(self , world: b2World = None):

3 self.ground_vectors = []

4 self.distance = hill_racing.GROUND_DISTANCE # Max distance of the

world in pixels

5 self.smoothness = 15

6 self.grass_thickness = 5

7 self.steepness_Level = 0

8

9 def randomize_ground(self , seed: Optional[int] = None):

10 if seed is not None:

11 random.seed(seed)

12 ground_seed = random.uniform(0, 100000) # Generates a random seed that

will define the terrain

13 # Minimum height of ground

14 min_height = 30

15 # Initialize a variable to store the additional height for flat ground

16 flat_length = 500

17 # Initialize a variable to store the additional height

18 height_addition = 0

19

20 # Iterate over a range from 0 to self.distance with a step size of self.

smoothness

21 for i in range(0, self.distance , self.smoothness):

22 # Calculate the steepness level by remapping the current distance to a

height

23 self.steepness_Level = np.interp(i, [0, self.distance], [130, 250])

24 # Calculate the noised_y value using Perlin noise with the starting

point and adjusted i value

25 noised_y = abs(

26 noise.pnoise1(ground_seed + (i - flat_length) / (700 - self.

steepness_Level), octaves =4))
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27 # Determine the maximum and minimum heights for the ground vector based

on the steepness level.

28 max_height = hill_racing.DIFFICULTY + np.interp(self.steepness_Level ,

[0, 200], [0, 320])

29 # If value is less than the flat section length , recalculate noised_y

and height_addition

30 if i < flat_length:

31 noised_y = abs(noise.pnoise1(ground_seed , octaves =4))

32 height_addition = (flat_length - i) / 25

33 # Create the ground vector with x-value i and adjusted y-value based on

noised_y

34 self.ground_vectors.append(

35 b2Vec2(i, hill_racing.SCREEN_HEIGHT -

36 np.interp(noised_y , [0, 1], [min_height , max_height ]) +

height_addition))

Listing 1: Relevant code that generates the ground in the HCR environment

B Environment spaces

B.1 Observation spaces learning curve

Figure 21: A graph showing the learning curve of different types of observation spaces using PPO.
The baseline is defined as all observations (position, angle, ground and speed).
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B.2 Observation spaces code

1 self.observation_space = spaces.Dict(

2 {

3 # x coordinate from 0 to 1000 and y from 0 to 700.

4 "chassis_position": spaces.Box(low=np.array ([0, 0]), high=np.array

([1000 , 700]), shape =(2,),

5 dtype=np.float32),

6 # Angle in degrees , can be -36000 to 36000.

7 "chassis_angle": spaces.Box(low=0, high =360, shape =(1,), dtype=np.

float32),

8 # Wheels speed , back and front wheel have same speed limits , add 0.1 to

avoid precision errors

9 "wheels_speed": spaces.Box(low=-13 * math.pi + 0.1, high =13 * math.pi +

0.1, shape =(2,),

10 dtype=np.float32),

11 # When one of the wheels is makes contact with the ground , 0 means no

contact and 1 means contact

12 "on_ground": spaces.MultiBinary(n=2)

13 }

14 )

Listing 2: Code which shows the observation space’s definition in Python

B.3 Action space code

1 # Define action spaces

2 match self.action_space_type: # For experiments

3 case "discrete_3":

4 self.action_space = spaces.Discrete(n=3,

5 start =0) # 3 do -able actions: gas ,

reverse , 3rd action is idling

6 case "continuous": # Continuous motor wheel speeds

7 self.action_space = gym.spaces.Box(low=-13, high=13, shape =(1,), dtype=

np.float32)

8

9 # Execute the action

10 def _execute_action(self , action):

11 match self.action_space_type: # Check which action space type we have

12 case "discrete_3":

13 match action:

14 case 0: # Idle

15 self.agent.car.motor_off ()

16 case 1: # Gas

17 self.agent.car.motor_on(forward=True)

18 case 2: # Reverse

19 self.agent.car.motor_on(forward=False)

20 case "continuous": # Continuous motor wheel speeds

21 self.agent.car.set_motor_wheel_speed(action [0])

Listing 3: Code which shows the action space’s definition and execution function in Python
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C Additional results

C.1 Continuous action space

Figure 22: Graphs illustrating the performance of the continuous distance-based reward function
experiment in an environment with a maximum achievable score of 300 during the training phase.

Figure 23: Graphs illustrating the performance of the continuous wheel speed-based reward function
experiment in an environment with a maximum achievable score of 300 during the training phase.
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Figure 24: Box plot illustrating the episode scores of a PPO agent in the training phase utilising
the distance and wheel speed reward functions in the HCR environment. The experiment utilises
the continuous action space and a 300 maximum score. Speed represents the wheel speed reward
function, and the orange line in the bar represents the median.
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C.2 Difficulty increase versus original training graph

Figure 25: Graph representing the reward learning curve, episode length and score of different
agents being trained in the original environment.

Figure 26: Graph representing the reward learning curve, episode length and score of different
agents being trained in an environment where the terrain difficulty increases until the end.
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C.3 Airtime versus original training graph

Figure 27: Graph representing the reward learning curve, episode length, score and total airtime of
different agents being trained in the original environment.

Figure 28: Graph representing the reward learning curve, episode length, score and total airtime of
different agents being trained in the environment utilising the airtime reward functions.
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