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Abstract

This study focuses on the critical role of compensation strategies in enhanc-

ing employee retention and satisfaction, providing essential insights for HR

professionals. Utilizing data from Randstad US, an HR services industry

leader, we explore the relationship between compensation and work du-

ration across various job categories through linear regression and advanced

tree-based models, including Random Forest, XGBoost, and LightGBM. Our

predictive analysis shows that compensation has a notable impact on work

duration, particularly in lower-level blue-collar jobs. These findings suggest

that structured compensation packages can effectively extend employment

tenure. Additionally, we have established a model comparison framework

that systematically develops advanced classifiers with optimal predictive

capabilities, demonstrating their superiority in capturing the complex inter-

actions between compensation factors and work duration. Furthermore, we

conducted group analysis to assess how predictive outcomes vary across

different workforce segments, such as job levels and geographical locations,

enhancing our understanding of the compensation-work duration relation-

ship in diverse settings. Future research will expand to more sectors and in-

corporate additional variables to further understand the dynamics of com-

pensation strategies.
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1. Introduction

Employee retention and satisfaction are pivotal factors for the success of an

organization [1], with compensation playing a crucial role in this context.

Consequently, understanding the dynamics of employee compensation and

its impact on work duration becomes a vital area of investigation[2].

Despite the extensive literature on compensation, the nuanced interaction

between compensation and its impact on the length of employment has not

been fully explored, particularly across various industries and job levels.

This project focuses on detecting the relationship between compensation

and work duration, utilizing data from Randstad US, an HR services indus-

try. Machine learning methods will be used to build assessment models and

derive feature importance to find correlations between quantifiable job fea-

tures.

There are two main research questions in this study:

RQ1: To what extent does compensation predict work duration?

RQ2: Does the predictability of compensation for work duration vary across

different levels within the labor market?

By addressing these questions, we hope to generate valuable insights that

can be utilized to improve compensation strategies, enhance employee re-

tention, and minimize labor costs.
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2. Problem Statement

The dynamics of employee compensation and its impact on work duration

are complex interplays of factors crucial to workforce management and or-

ganizational effectiveness[3]. While compensation is traditionally seen as

a primary motivator for employee tenure and productivity, the specifics

of this relationship need to be more quantified, particularly in the context

of varying job titles, levels, and industries. Understanding these specifics

is important not only for developing effective compensation strategies but

also for aligning these strategies with broader business purposes.

For example, in industries with high turnover rates, such as retail or hos-

pitality, a well-structured compensation package could be strategically de-

signed to enhance employee retention, thereby reducing recruitment and

training costs. Similarly, in high-demand tech industries, where competi-

tion for talent is fierce, compensation strategies that include performance

bonuses and equity packages could be crucial for attracting top-tier candi-

dates and fostering a culture of innovation and commitment [4].

Current literature provides disparate insights into this relationship but needs

a comprehensive analysis incorporating multifaceted employment charac-

teristics. Furthermore, the increasing variability in job functions and pay-

ment structures, especially with the rise of gig and remote work, calls for a

more nuanced understanding of how pay rates impact work duration.

This study addresses the gap by exploring the predictive power of com-

pensation on work duration across different job categories and levels, em-

ploying advanced statistical models capable of delineating both linear and

non-linear relationships. This study aims to answer two questions: firstly,

to determine the extent to which compensation predicts work duration, and
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Problem Statement

secondly, to identify whether this predictability varies across different lev-

els within the labor market.

By addressing these concerns, the research seeks to offer practical observa-

tions that can guide compensation strategies, improve employee retention,

and streamline labor expenses. The central inquiry guiding this investiga-

tion is: "To what degree and in what way does compensation impact the

length of employment across different career levels and industries?"
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3. Literature Review

The literature review section aims to comprehensively analyze existing re-

search and scholarly works concerning the relationship between compen-

sation and work duration in the context of recruitment. This section will

outline the current understanding and highlight areas that warrant further

investigation by examining the relevant studies, methodologies, and find-

ings.

Early studies in recruitment and talent acquisition relied on traditional sta-

tistical models. These models, such as linear regression and logistic regres-

sion, have provided valuable insights into the factors influencing the re-

cruitment process [5]. However, their limitations in handling complex and

nonlinear relationships have led researchers to explore the potential of ma-

chine learning algorithms [6].

Random Forests have gained popularity in recruitment research due to their

ability to handle non-linearity and interactions among variables. Studies

have been conducted by Frank and Moritz(2022)[7] have shown the effec-

tiveness of decision trees in predicting compensation based on relevant fac-

tors. The research leveraging Random Forest has delved into salary pre-

dictions across more than 300 professions, utilizing a dataset encompass-

ing over three million employees. This approach stands out for learning

distinct random-forest models for each profession, thereby accommodating

the specificities of each field. The findings from this study are meaning-

ful, demonstrating a mean absolute percentage error (MAPE) of 17.1% in

salary predictions, surpassing previous machine-learning benchmarks. A

vital attribute of this method is its capacity to manage categorical variables

effectively, reducing their cardinality, and its adeptness in outlier detection

and handling. By training separate models for each profession, the Random
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Literature Review

Forest approach accounts for the heterogeneity of the salary determinants,

leading to a nuanced and accurate predictive model. This methodology en-

hances the quality of salary predictions and provides insights into the fac-

tors most influential in determining compensation. This knowledge is valu-

able for organizational planning and employee retention strategies.

The related research by Rohit Punnoose(2016)[8] discusses the problem of

employee turnover in organizations and the use of machine learning algo-

rithms, specifically Extreme Gradient Boosting (XGBoost), to predict it. The

article compares the performance of XGBoost against six other supervised

classifiers on a dataset of 73,115 data points from a global retailer’s HRIS

database and finds that XGBoost outperforms the other classifiers in terms

of accuracy, runtime, and memory utilization.

According to the dataset we utilized, we found that Randstad’s employer

branding experts attract a lot of gig economy talent[9]. Temporary and part-

time positions often get filled relatively quickly; however, these roles also

tend to have shorter durations of employment, indicating a higher turnover

rate. The gig economy is an increasingly important concept that has far-

reaching implications for workers and employers in most sectors[10]. The

Bureau of Labor Statistics [11] notes that, while there is no single or offi-

cial definition of the gig economy, a ’gig’ generally refers to "a single project

or task for which a worker is hired, often through a digital marketplace,

to work on demand". Other definitions of the concept have emphasized

how "temporary, flexible jobs are commonplace" in the gig economy and

companies "tend to hire independent contractors and freelancers instead of

full-time employees".

In summary, early research work in related fields mainly used linear mod-

els; the subsequent use of machine learning models capable of recogniz-

ing more complex nonlinear patterns, such as random forests and gradient

boosted trees, which resulted in good performance, inspired the choice of

models in this research. However, previous research lacked a refined dis-
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cussion of the different levels of the labor market on the one hand and did

not take today’s gig economy into account on the other.

The dataset used in this paper is dominated by temporary jobs, which can

well study the relationship between salary and work duration in this new

gig economy, and at the same time, through the discussion of refinement at

different levels of the labor force, it can give more practically meaningful

findings and conclusions.
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4. Data collection and construction

In this chapter, we detail the process of data collection and preparation for

building models. We describe the data sources, the features extracted from

the raw data, and the preprocessing steps taken to clean and transform the

data. This groundwork is crucial to ensure the quality and relevance of the

dataset for subsequent machine learning modeling.

4.1 Data Source

This research used data from Randstad USA[12], a major workforce solu-

tions provider, through Google BigQuery [13], a fully managed data ware-

house for large-scale analytics. This dataset comprises an extensive collec-

tion of historical assignment data over the past years, encapsulating mil-

lions of rows and hundreds of columns. The data encompasses a wide range

of variables, including but not limited to pay rate, job title, job level, career

area, state, and work duration, as well as other assignment-specific infor-

mation. As a result of the dataset’s size and diversity of features, it serves as

a valuable resource for studying compensation across different dimensions

of the US labour market. See Appendix A.1 for specific fields in the raw

data.

4.2 Data Features

The historical data used to build the models contains the following features:

• Pay Rate: represents the amount of money a worker is paid per hour

• Job Title: represents the job title of the assignment

• Job Level: the experience level associated with the job, such as "Entry

Level."
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4.3 Data preprocessing

• Career Area: refers to a specific field or industry in which an indi-

vidual pursues their professional career, such as “Manufacturing and

Production.”

• State: represent the geographical information of the location where

the assignment takes place in the US

• Work Duration: represents the number of days into the assignment

• Business Unit: data is derived from multiple business sources such

as RPEUS, RNALP. Our data mostly comes from the RNALP business

unit. RNALP involves more blue-collar work, with relatively short

work durations, similar to temporary work. On the other hand, units

such as RTDUS, RPEUS, RPUUS, and RPOUS are focused on technical

white-collar work.

4.3 Data preprocessing

The process of preparing collected US pay rate data involves a series of steps

that transform raw data into a format that is easy to understand. This in-

volves cleaning, filtering, labeling, enriching the data, and conducting other

feature engineering steps to ensure the data’s quality meets the standards

required for model development. The data preprocessing includes these

steps:

• Filter assignments based on date

The model for US pay rates is constructed using datasets that include

the historical pay rates data from 2018-09 to 2023-09; therefore, data

older than five years are filtered out.

• Remove redundancy

As part of the dataset, the RNA_REPORT_DATE column provides

a detailed record of pay rate adjustments for each assignment. The

source database is updated weekly to reflect the employee’s settled

pay rate, resulting in numerous duplicate values for the same assign-

ment. RNA_REPORT_DATE represents the date on which each com-

pensation is inserted into the database. To remove redundancy, we
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Data collection and construction

only retain the initial and most recent pay rates for each assignment.

If the initial and final pay rates differ, indicating a compensation ad-

justment, the final pay rate is calculated as the average of these two

values.

• Filter assignments based on Burning Glass job title taxonomy score

In this phase, each assignment is aligned with a normalized job title

according to the Burning Glass taxonomy[14]and a matching confi-

dence score represents the accuracy of this alignment. The method

for normalizing job titles involves using tables stored in the BigQuery

database. Initially, job titles are standardized by converting them to

lowercase and removing spaces and special characters. The process

utilizes two main tables, one contains normalized job titles, and one

includes detailed job levels and scores. Using SQL queries, job titles

from assignments are matched to the normalized titles in the database,

ensuring consistency and accuracy. The score represents how accu-

rately the job assignment matches a specific job title within the tax-

onomy. The score ranges from 0 to 1, with higher scores indicating a

better match. Assignments with a confidence score below 0.75 are fil-

tered out and not included in the following steps, ensuring that only

those with a high degree of mapping certainty are considered.

• Filter pay rates based on minimum wage and maximum cutoff

Bill rates lower than $7.25 USD (US Federal minimum wage) or higher

than $350 USD are excluded from the next steps.

• Drop unnecessary columns

The model is trained using the following features: Pay Rate, Job Title,

Job level, Career Area, State, Work Duration, and Business Unit. The

remaining features are discarded.

• Split dataset into train and test sets

The raw dataset is shuffled and split into two subsets before building

a model: the training set and the test set. The training set, which con-

stitutes 80% of the initial dataset, is used for developing the model,

while the testing set accounts for the remaining 20% and is utilized for
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4.3 Data preprocessing

external evaluation.

• Data Transformations

To enhance model performance, we apply certain transformations to

the entire dataset. The initial step involves converting categorical fea-

tures to numeric values, enabling their inclusion in regression models.

This is achieved by transforming all non-numeric labels into numeri-

cal ones using the LabelEncoder class from sklearn[15].

Secondly, we standardize numeric features to ensure uniformity in

scale, a step critical for algorithms that perform better with scaled

data. It is important to note that this standardization primarily affects

the linear regression model. Tree-based models, such as Random For-

est and XGBoost, do not require standardized features because they

are insensitive to the scale of the data due to their splitting criteria. In

contrast, linear regression models are sensitive to feature scales, and

standardized data helps improve their performance and convergence.

This standardization, achieved through StandardScaler from sklearn,

normalizes the data to have a mean of 0 and a standard deviation of 1,

assuming the data follows a normal distribution.

With the data collection, feature extraction, and preprocessing steps com-

pleted, the dataset is now ready for machine learning modeling.
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5. Methods

In this chapter, we describe the various machine learning techniques se-

lected for predicting employee work duration.

We selected a linear regression model and three tree-based models, based

on our literature research, which highlights their effectiveness in handling

similar predictive tasks. We aim to provide a comprehensive approach by

including both linear and tree-based models, allowing us to capture a wide

range of data characteristics and improve prediction accuracy.

These models are well-suited for this task for several reasons. Linear re-

gression is chosen for its simplicity and interpretability, making it easy to

understand the relationship between the dependent and independent vari-

ables. Its straightforward nature allows us to quickly identify and quantify

the impact of different features on work duration.

On the other hand, tree-based models such as Random Forest, XGBoost,

and LightGBM are included due to their capability to handle complex and

non-linear relationships within the data. These tree-based models repre-

sent the main types of ensemble learning methods and are among the most

advanced techniques currently available. Random Forest is known for its

robustness and ability to reduce overfitting by averaging multiple decision

trees. XGBoost, or eXtreme Gradient Boosting, is highly efficient and effec-

tive, particularly due to its optimization techniques and ability to handle

large datasets. LightGBM, or Light Gradient Boosting Machine, enhances

speed and performance through its unique approach to tree-based learning,

making it suitable for high-dimensional data.

By leveraging these advanced methods, we can better capture the intricate
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5.1 Linear Regression

patterns and interactions within the dataset, leading to more accurate and

reliable predictions of employee work duration.

Next, the theoretical details of these methods are presented, including ma-

chine learning models, feature importance measures, and statistical testing

methods.

5.1 Linear Regression

Linear regression [16] is a foundational statistical technique used to predict

the value of a dependent variable based on the value of one or more in-

dependent variables. In the context of this study, linear regression is used

to model the dependence of WorkDuration (Y) on the explanatory variable

PayRate (X) along with other covariates.

The model is expressed by the following equation:

Yi = b0 + b1X1i + b2X2i + . . . + bnXni + ei

Where: Yi is the dependent variable representing the work duration of the

ith individual,

X1i, X2i, . . . , Xni are the independent variables for the ith individual,

b0 is the y-intercept,

b1, b2, . . . , bn are the coefficients for each independent variable,

ei is the error term for the ith individual.

The coefficient b j associated with each independent variable Xj indicates

the amount of change one can expect in WorkDuration given a one-unit

change in Xj, assuming that other variables are kept constant.

The significance of each b j is assessed by its p value, obtained from the
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t-test:

t =
b j

SE
�

b j
�

where SE
�

b j
�

denotes the standard error of the coefficient b j. A p-value

less than 0.05 typically indicates statistical significance.

The goodness of fit for the model is evaluated by the R2 statistic, which

is the proportion of variance in the dependent variable that is predictable

from the independent variables:

R2 = 1 � Â
�
Yi � Ŷi

�2

Â (Yi � Y)2

where Ŷi is the predicted value of WorkDuration and Ȳ is the mean value of

WorkDuration.

In our study, the linear regression model’s
�

R2� value suggests that addi-

tional variables and model complexity may be required to fully explain the

variance in work duration, prompting tree-based models for further analy-

sis.

5.2 Random Forest Regression

The Random Forest Regression algorithm [17] is an ensemble learning method

that operates by constructing a multitude of decision trees at training time

and outputting the mean prediction of the individual trees. This method

enhances predictive accuracy and controls over-fitting. The model’s feature

importance is assessed by the extent to which each feature decreases the im-

purity of the nodes, often measured by the reduction in variance.

The importance of a feature can be quantified as the sum over the number
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5.3 XGBoost Regression

of splits that include the feature, proportionally to the number of samples it

splits:

Importance (Xm) = Â
t2T

p(t) · Di (st, t)

where T is the set of trees, t indexes the trees, p(t) is the proportion of sam-

ples that reach node t, st is the splitting criterion at node t, and Di (st, t) is

the impurity decrease resulting from that split.

5.3 XGBoost Regression

XGBoost stands for eXtreme Gradient Boosting[18] and is a sophisticated

algorithm that solves regression and classification tasks using an advanced

version of Gradient Boosted Decision Trees. Fundamentally, XGBoost is an

ensemble approach that leverages the concept of gradient boosting by trans-

forming a group of basic models into a single, more robust model. The

essence of boosting involves building new models that address the short-

comings of previous ones, which results in incremental improvements.

Gradient boosting utilizes gradient descent to systematically reduce errors

between models in a sequential manner. This approach emphasizes min-

imizing the loss function, which is a user-customizable error metric, thus

enabling more precise control over the model’s optimization process.

XGBoost is an efficient and advanced implementation of the Gradient Boost-

ing Decision Tree framework, which stands out as one of the most favored

models in gradient boosting. Its good performance is attributed to several

innovative features:

• It utilizes a variety of optimization techniques in software and hard-

ware, achieving speeds up to ten times faster than a gradient boosting

machine;

• The algorithm’s scalability is heightened by its ability to construct
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trees in parallel;

• It opts for a depth-first approach to tree pruning, resulting in faster

convergence compared to breadth-first strategies;

• Improves model generalization by penalizing complex models with

L1 (LASSO) and L2 (Ridge) regularisation terms during training;

• It learns the tree branch directions for missing data during training to

handle missing data values more efficiently.

In the ensemble method used by XGBoost, it constructs a sequence of

K decision trees, denoted as ( fk). Each tree in the sequence is designed

to correct the errors made by the tree before it. The predictive model

is expressed as:

yi =
K

Â
k=1

fk (xi) , fk 2 F

where yi is the prediction for the i-th training sample, F is the space

of functions (trees), and K represents the number of trees. The training

objective combines a differentiable loss function l (yi, ŷi) and a regu-

larization term W ( fk) :

obj(q) =
n

Â
i=1

l (yi, ŷi) +
K

Â
k=1

W ( fk)

where W ( fk) penalizes the complexity, ensuring the simplicity of the

model.

5.4 LightGBM Regression

LightGBM (Light Gradient Boosting Machine )[19] is a gradient boosting

framework that uses tree-based learning algorithms and is designed for

speed and efficiency. It is particularly effective for large datasets and high-
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5.5 Likelihood Ratio Test

dimensional data. Similar to XGBoost, LightGBM computes feature impor-

tance by counting the number of times a feature is used in model construc-

tion. However, LightGBM improves upon the traditional methods by using

histogram-based algorithms, which bucket continuous feature values into

discrete bins to speed up the training process.

The feature importance metric for LightGBM can be formalized as follows:

Importance (Xm) =
J

Â
j=1

I
�

f j = Xm
�

where J is the number of splits across all trees in the model, f j denotes the

feature used for the j th split, and I is the indicator function.

5.5 Likelihood Ratio Test

The likelihood ratio test (LRT) [20] is a statistical procedure that tests the

goodness of fit between two competing statistical models based on the ratio

of their likelihood functions. Specifically, the LRT evaluates the null hy-

pothesis, H0, which posits that a simpler model provides an adequate fit to

the data, against an alternative hypothesis, H1, which suggests that a more

complex model is necessary. The test statistic is derived by calculating L,

the ratio of the maximum likelihood of the data under the null hypothesis

(L(q0)) to that under the alternative hypothesis (L(q1)), expressed as:

L =
L(q0)
L(q1)

Under the null hypothesis, and assuming regularity conditions, �2 log(L)

asymptotically follows a chi-squared distribution with degrees of freedom

equal to the difference in the number of parameters estimated by the two

models. This asymptotic property allows researchers to compute p-values
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and thus assess the statistical significance of the difference in fit between the

two models.

In this paper, the LRT was utilized to compare two models: one that in-

cluded the wage variable (PayRate) and one that did not. By comparing

these two models, we aim to determine whether including the wage vari-

able improves the model’s fit for job duration prediction.

5.6 Paired t-test

The paired t-test [21] is a statistical procedure used to determine whether

the mean differences between two sets of observations are statistically sig-

nificant. This test is applicable when the data points are paired, meaning

that each measurement in one group is uniquely linked to a specific mea-

surement in the other group. This is typically the case where we need to

compare two sets of related data to determine if there is a statistically sig-

nificant difference between them.

The test statistic for the paired t-test is calculated as follows:

t =
d

sd/
p

n

where d is the mean of the differences between paired observations, sd is the

standard deviation of these differences, and n is the number of pairs.

The null hypothesis H0, asserts that the mean difference is zero, while the

alternative hypothesis, H1, claims that the mean difference is not zero. Un-

der the assumption that the differences are normally distributed, the test

statistic follows a t-distribution with n � 1 degrees of freedom. This allows

for the calculation of a p-value to assess the significance of the observed dif-

ference.
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5.6 Paired t-test

Specifically, we use paired t-tests to compare the prediction results of dif-

ferent models (e.g., linear regression and tree-based models such as Ran-

dom Forest, XGBoost, LightGBM) with and without the inclusion of the

wage variable (PayRate). This comparison is mainly used to test whether

the change in model prediction performance is significant, i.e., whether the

inclusion of the wage variable improves the prediction of the model.
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6. Experimental design

The empirical investigation of our study is designed to systematically eval-

uate the predictive performance of various regression models and to un-

derstand the impact of PayRate on the duration of work assignments, as

explored through both linear and non-linear methodologies.

By modelling the relationship between PayRate and the duration of work

assignments through both linear and non-linear methodologies, we are able

to provide quantitative evidence for the relationship between PayRate and

the duration of work assignments, as well as explore whether there are dif-

ferences in this relationship across different labour market subgroups.

6.1 Evaluation Methods

The model evaluation is based on several statistical metrics. Mean Absolute

Error (MAE) measures the average magnitude of errors in a set of predic-

tions, without considering their direction. Mean Squared Error (MSE) is

similar but squares the differences before averaging to penalize larger er-

rors. Root Mean Squared Error (RMSE) takes the square root of MSE, thus

providing error metrics in the same unit as the original data. The Coefficient

of Determination, denoted as R2, quantifies the amount of variance in the

dependent variable that is predictable from the independent variables [22].

To compare the performance of models with and without PayRate, we ap-

ply the likelihood ratio test [23], which assesses whether the inclusion of

PayRate significantly improves the model fit. We also conducted a com-

parison of model performances across different business units to assess the

outcomes under various business unit conditions. Additionally, we employ

a paired t-test to statistically examine the difference in predictions from the
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6.2 Linear Regression Exploratory Analysis

two sets of models.

6.2 Linear Regression Exploratory Analysis

A linear regression model is initially applied to predict WorkDuration, uti-

lizing PayRate as an explanatory variable. The dataset is also grouped by

Business Unit and Job Level to explore differences between them. By exam-

ining the regression coefficients, we can assess the strength and nature of

the relationship between PayRate (X) and WorkDuration (Y).

6.3 Regression with Tree-based Models

Building upon the linear analysis, we employ tree-based models such as

Random Forest[24][25], XGBoost [26], and LightGBM [27]. These models ex-

cel at unraveling complex, non-linear relationships and interactions among

predictors. Assessing feature importance becomes a valuable tool for com-

prehending each feature’s contribution to work duration, allowing us to an-

alyze the significance of payload in determining work duration (where ’X’

represents all features and ’Y’ represents work duration).

The model development phase involves a series of critical steps: training

the model [28], tuning hyperparameters [29], and validating model perfor-

mance.

Training regression model

The training process for the different tree-based regression models is similar,

preparing the training data, using the squared loss function. Models learn

to minimize errors by recursively partitioning the feature space. Iterative

node splitting guides the creation of decision rules [30].
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Hyper-parameter tuning

Hyperparameter tuning [31] is a crucial aspect of model development, par-

ticularly to enhance model accuracy and predictive power. We employ the

‘GridSearchCV‘ method [32] from the ‘sklearn‘ library [33] to systematically

explore a range of hyperparameter combinations and identify the optimal

settings for each model, as it is the simplest in principle and implementa-

tion and the most comprehensive in candidate parameter coverage, suitable

for situations where the data volume and the set of candidate parameters

are not large. ‘GridSearchCV‘ conducts an exhaustive search over specified

parameter values for an estimator. The parameters of the estimator used

to apply these methods are optimized by cross-validated grid-search over a

parameter grid [34]. Appendix A.2 provides an overview of the hyperpa-

rameters explored for the three different models under investigation.

Model Performance Validation

Validation is conducted through external validation [35]. A dataset that has

not been previously exposed to the model is used to further validate the

model’s predictive capability after it is trained. This step is crucial for as-

sessing the model’s generalizability to new data. On this dataset, predic-

tions are evaluated, and the R2 value is calculated to compare model per-

formance. This comparison between internal and external validation met-

rics helps identify any overfitting or underfitting issues. Additionally, error

metrics such as the Root Mean Square Error (RMSE) and Mean Absolute Er-

ror (MAE) are calculated, providing a comprehensive view of the model’s

predictive accuracy [36].

If a model that relies on payrate as its main feature is able to successfully

predict work duration on unseen data, this means that the model is truly

discovering the patterns in it and how payrate affects, or even determines,

work duration.
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6.4 Model Comparison In Pairs

6.4 Model Comparison In Pairs

To quantify the impact of PayRate, we perform comparative regression anal-

yses using tree-based models in 6.3 both with and without this feature. By

excluding PayRate, we can observe any changes in predictive performance,

as indicated by our evaluation metrics (MAE, MSE, RMSE, R2 ). The LRT

[37] provides a statistical basis to assess whether PayRate’s inclusion en-

hances the model fit significantly. The paired t-test is applied to compare

the mean prediction errors of models with and without PayRate, thereby

offering a paired comparison of model performances [38].

To ensure the validity and repeatability of our findings, we replicate the

model comparison process ten times [39]. This replication aids in account-

ing for variability and enhances the statistical power of the tests. The results

from these repeated experiments will be aggregated to furnish a compre-

hensive understanding of PayRate’s significance.
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7. Exploratory Data Analysis

This chapter presents the results of the experiment based on linear regres-

sion analysis. We generated visualizations that show the relationship be-

tween pay rate and work duration.

7.1 Basic Visualization

Figure 7.1 visualizes the frequency distribution of PayRate and WorkDura-

tion.

It can be noticed that most of the samples have a pay rate concentrated

in the 10-20 range and work duration concentrated in less than 30 days,

which matches well with the source of our dataset: predominantly short-

term, blue-collar jobs.

7.2 Linear Regression Exploratory Analysis

7.2.1 OLS Regression Results

Figure 7.2 (a) depicts a regression plot that illustrates the relationship be-

tween PayRate and Work Duration, it suggests a positive correlation be-

tween PayRate and Work Duration.

Figure 7.2(b) displays the results of the Ordinary Least Squares (OLS) re-

gression analysis: The coefficient for PayRate (x1 ) is 0.2341. Since both

variables have been standardized, this means that for every standard devi-

ation in rease in PayRate, the WorkDuration increases by about 0.2341 stan-

dard deviations.

The t-value for the PayRate coefficient is 245.309, and its associated p-value

(P > |t|) is 0.000, which indicates that PayRate is a statistically significant

predictor of WorkDuration.
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7.2 Linear Regression Exploratory Analysis

(a) Distribution of PayRate

(b) Distribution of WorkDuration

Figure 7.1: Distribution of PayRate and WorkDuration
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Exploratory Data Analysis

The R squared value is 0.055, which means that PayRate explains about

5.5% of the variance in WorkDuration, suggesting that although there is a

relationship, many other factors not included in the model likely influence

WorkDuration.

(a) Regression Plot of Payrate VS Work
Duration

(b) OLS Regression Result

Figure 7.2: Comparative Analysis of Payrate and Work Duration with Ordi-
nary Least Squares Regression

We further analysis the correlation between PayRate and WorkDuration

across different Business Units and States. As depicted in Figure 7.3 and

Figure 7.4, we present a subset of these regression plots, selected to demon-

strate the variation in relationships across the categories. Due to the exten-

sive number of plots, only representative samples are displayed.

7.2.2 Regression Analysis Across Business Units

As we can see in Figure 7.3, the coefficient values (coef) exhibit noticeable

variation across different business units, ranging from 0.274322 (RPEUS) to

3.914674 (FRNUS). This indicates a significant variability in how PayRate

impacts WorkDuration across different business units. For instance, in FR-

NUS, each additional dollar in PayRate is associated with an increase in

WorkDuration by approximately (3.91). Conversely, in RPEUS, WorkDu-

ration increases by only approximately (0.27) for each additional dollar in

PayRate.

The
�

R2� values are generally low across all business units, underscoring

that PayRate explains a small portion of the variation in WorkDuration within
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7.2 Linear Regression Exploratory Analysis

(a) Regression plot by BusinessUnit

(b) Regression Analysis Coefficients and Statistics by Business Unit

Figure 7.3: Comparative Regression Analysis Across Business Units
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Exploratory Data Analysis

each business unit. The highest
�

R2� is observed in RLSUS (0.028583), yet

even this value is quite low. This implies that other factors, in addition to

PayRate, contribute to the variability in WorkDuration.

The p-values also exhibit variation across different business units. Certain

business units like RNALP display extremely low p-values, which means

that PayRate is a statistically significant predictor of WorkDuration for these

units. On the other hand, business units like RPEUS and RTDUS show high

p-values, suggesting that PayRate does not statistically significantly predict

WorkDuration in these contexts.

7.2.3 Regression Analysis Across States

According to Figure 7.4, the coefficients showcase substantial variation across

states, ranging from a high of 3.69 in WV to a low of (-2.14) in KY. This ex-

tensive range underscores the diverse impact of PayRate on WorkDuration

across different states. Most states exhibit a positive relationship, where a

higher PayRate correlates with increased WorkDuration, while a few like

KY indicate a negative correlation.

The
�

R2� values generally lean towards the lower end, demonstrating that

PayRate accounts for a minimal portion of the variability in WorkDuration

across most states.

The majority of the states present low p-values, highlighting the statistical

significance of PayRate in predicting WorkDuration in these states. How-

ever, states like HI, AK, MS, WY,and VT display higher p-values, suggest-

ing the absence of a statistically significant relationship between PayRate

and WorkDuration in these regions.
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7.2 Linear Regression Exploratory Analysis

(a) Regression plot by State, the unit of the x-axis is $, and the unit of the y-axis is
days
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(b) Regression Analysis Coefficients and Statistics by State

Figure 7.4: Comparative Regression Analysis Across States

In this chapter, we explored the relationship between pay rates and work

duration using linear regression analysis. We provided a series of visual-

izations to illustrate the distribution of pay rates and work durations, and

confirmed their positive correlation through Ordinary Least Squares (OLS)

regression analysis. The findings indicate that higher pay rates are associ-

ated with longer work durations, which is essential for understanding the

mechanisms of employee motivation. However, the explanatory power of

the model is limited, with an R-squared value of 0.055, indicating that there

are likely many other influencing factors not included in our model. More-

over, the regression analyses across different business units and states in

the United States further highlight the complexity and variability of how

pay impacts work duration, revealing differences across various levels of

the labor market. Overall, the analysis in this chapter, while revealing, is

not exhaustive. It not only sheds light on the relationship between pay and

work duration but also emphasizes the need for further multidimensional

and subgroup analyses to fully understand how compensation strategies

impact employee retention across different industries and regions.
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8. Machine Learning Prediction Models

This chapter begins with an ablation experiment: whether or not to include

payrate in the features is used as a control variable to construct two sets of

machine learning models, and then performance metrics and statistical tests

(likelihood ratio tests, paired t-tests) are used to compare the predictive re-

sults of the predictive models with and without the inclusion of payrate.

The machine learning methods used include linear regression, random for-

est, XGBoost, LightGBM.

Then, the importance of the features of the machine learning model is cal-

culated to view the important contribution of the payrate variable to the

duration of the prediction effort from another aspect.

Finally, to ensure that we have constructed the best prediction model and to

exhaustively compare the performance of different machine learning meth-

ods on this task, a hyperparametric search of the three tree-based prediction

models is performed to compare their prediction performance on the opti-

mal parameters.

8.1 Ablation experiment: PayRate

The models with PayRate as a feature show better performance in predict-

ing work duration compared to the models without PayRate. As can be

seen from the lower RMSE and MAE values, indicating more accurate pre-

dictions with fewer errors. The
�

R2� value, which explains the variance

in work duration by the model, is also slightly higher when PayRate is

included, suggesting that PayRate contributes to the model’s explanatory

power.

The results from the analysis using Random Forest, XGBoost, and Light-
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RMSE MAE R2 MSE

w/ PayRate 108.131313 66.857335 0.061810 11692.381055
w/o PayRate 109.853304 68.232725 0.031690 12067.748580

Table 8.1: Metrics for Linear Regression w/ and w/o PayRate

RMSE MAE R2 MSE

w/ PayRate 100.477855 60.379816 0.189919 10095.799263
w/o PayRate 104.733945 64.420022 0.119838 10969.199209

Table 8.2: Metrics for Random Forest w/ and w/o PayRate

RMSE MAE R2 MSE

w/ PayRate 102.503274 63.232141 0.156931 10506.921081
w/o PayRate 104.232874 64.424056 0.128239 10864.492048

Table 8.3: Metrics for XGBoost w/ and w/o PayRate

RMSE MAE R2 MSE

w/ PayRate 103.084581 63.909881 0.147341 10626.430895
w/o PayRate 104.710097 64.847587 0.120238 10964.204431

Table 8.4: Metrics for LightGBM w/ and w/o PayRate
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8.1 Ablation experiment: PayRate

GBM models indicate an association between compensation and work du-

ration. The P-values from the Likelihood Ratio Test and Paired t-test suggest

that compensation is a reliable predictor of work duration. In these tests,

the models’ good predictive capability can be seen by their extremely low

P-values.

Table 8.5: Statistical Test Results for Machine Learning Models

Model Likelihood Ratio Test P-value Paired t-test P-value

LightGBM 1.19 ⇥ 10�138 4.22 ⇥ 10�13

XGBoost 7.06 ⇥ 10�228 5.62 ⇥ 10�12

Random Forest 0.0 4.63 ⇥ 10�12

Linear Regression 7.98 ⇥ 10�183 7.45 ⇥ 10�15

In fact, the linear regression model is a very poor fit in terms of R2, which led

us to abandon its further analysis, because if the fit is poor, then the impor-

tance of the features calculated from it may not be meaningful. Since linear

regression has no hyperparameters to adjust, it was abandoned in the later

modeling analysis, and only the three tree-based models were subsequently

analyzed.
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8.2 Feature importance

The feature importance plots, as shown in Figure 8.1, confirm the relevance

of PayRate as it shows the highest importance score, followed by other fea-

tures. PayRate’s dominance underscores its value as a determinant of work

duration.

In addition to this, the ordering of important features is identical for all three

models, but Payrate is more important in Random Forest and its prediction

is the best. This leads one to speculate that Random Forest learned more

effective prediction patterns about Payrate.

8.3 Hyper-parameters Tune

In order to further explore the optimal prediction performance of the model,

the optimal parameters are found by cross-validation grid parameter search

for Random Forest, XGBoost and LightGBM [40].See Appendix A.2 for can-

didate parameters.

The optimal parameters are shown in Table 8.6.

Model Best Parameters

Random Forest max_depth=None,
max_samples=1.0,
min_samples_split=0.0001,
n_estimators=500

XGBoost learning_rate=0.3,
max_depth=None,
n_estimators=500,
subsample=1.0

LightGBM learning_rate=0.1,
n_estimators=500,
num_leaves=127,
subsample=0.6

Table 8.6: Best Hyperparameters for Tree-based Models

Through the previous work, the optimal hyperparameters of the three types
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8.3 Hyper-parameters Tune

(a) Random Forest

(b) XGBoost

(c) LightGBM

Figure 8.1: Feature Importance using recommended hyperparameters
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of models are obtained. Table 8.7 shows their performance on the test set.

Metric Random Forest XGBoost LightGBM

RMSE 99.092 100.096 99.959
MAE 60.553 61.551 61.458
R2 0.214 0.198 0.201
MSE 9819.261 10019.289 9991.901

Table 8.7: Performance Metrics for tree-based Models with the best hyperpa-
rameters

After tuning with hyperparameters, random forest, XGBoost, and Light-

GBM all achieved better performance.

We will find that XGBoost and LightGBM have a large performance im-

provement after hyperparameter tuning, which suggests that the perfor-

mance of these two models on the work duration prediction problem is

sensitive to the hyperparameters, whereas Random Forest is relatively in-

sensitive.

The feature importance of the model using the best hyperparameters of ran-

dom forest, XGBoost, and LightGBM is shown in Figure 8.2.

It is worth noting that LightGBM achieves better performance, only lag-

ging behind the Random Forest, but reduces its dependence on payrate (but

payrate is still the most important) which leads us to believe that it learns a

different prediction model than random forest.

However, random forest still achieves the best performance.
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8.3 Hyper-parameters Tune

(a) Random Forest

(b) XGBoost

(c) LightGBM

Figure 8.2: Feature Importance using best hyperparameters
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9. Group Analysis

In order to give more intuitive explanations about the prediction effect of the

pay-rate-based predictor we constructed, as well as an in-depth analysis of

the prediction error, the next step is to group the duration of work, the busi-

ness unit, the state, and the level of the job, and observe the performance of

the prediction error of the best model with optimal hyperparameters, Ran-

dom Forest, in the different groupings.

The results of the subgroup analyses help us to understand whether there

are differences in the relationship between the effect of compensation on

work duration in the different groupings.

9.1 Group by Work Duration

The AE (Absolute Error) percentage was categorized into three levels: "Low",

"Medium", and "High", where "Low" corresponds to AE percentage less

than 50%, "Medium" corresponds to AE percentage between 50% and 100%,

and "High" corresponds to AE percentage exceeding 100%. Then, the de-

pendent variable WorkDuration was divided into categories of one month,

one quarter, half a year, and one year, and the sample sizes under different

AE levels were counted.

After plotting the graph, it was observed that when WorkDuration was

within one month, there were a considerable number of samples catego-

rized under the "High" AE percentage level. This suggests that within a

short work duration, the samples are relatively difficult to capture patterns,

leading to larger prediction biases in the model, possibly influenced by var-

ious other factors. Conversely, for longer work durations, the model’s pre-

dictive performance is better, especially in the 30-120 day interval, where
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9.1 Group by Work Duration

the majority of AE percentages are categorized as "Low", and even in dura-

tions exceeding 120 days, there were hardly any occurrences of the "High"

AE level.

Figure 9.1: WorkDuration Categories by AE Category, the unit of the x-axis is
days.

The absolute value prediction error is actually not favourable for evaluating

the model as good or bad because of the large difference in the base value

of work duration. Again, with a 60-day forecast error, when the work du-

ration base is 100 days, this is a mediocre prediction, but if the base is 1000

days, this is an accurate prediction. Therefore, we constructed the "AE per-

centage", which also gives us another perspective on how good the model is.

In this section, we can see that if a job tends to be short-term, then its com-

pensation is a relatively weak predictor of work duration. It is very likely

that other more important factors determine the work duration of short-

term workers. It is also possible that, due to the nature of some jobs, their

work duration is necessarily short, independent of factors such as compen-

sation. It is difficult to explore this further due to the limited dimensions of

the data, but it is an interesting direction to consider!

In addition to this, the predictive effect of compensation on workduration is

very strong in medium-length jobs (30 days-240 days), and most of the AE

percentages of the predictive models we constructed fall in the Low interval.

And medium-length jobs make up the main part of all jobs. This suggests
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that our model largely accounts for the predictive role of compensation on

workduration.

Using the dependent variable as a basis for grouping may lead to some

confusion, but it provides a meaningful analytical perspective. Some jobs

inherently have long, medium, or short durations. If historically the aver-

age length of a particular job has been medium, then our prediction is more

likely to be accurate. Conversely, this analytical perspective suggests that if

our prediction system gives a medium-length prediction, the probability of

that prediction being accurate should also be relatively high.

9.2 Group by Business Unit

Similarly, categorizing the AE percentage into different levels and compar-

ing the prediction errors across different business units revealed that the

majority of the data was concentrated in RNALP, with small proportions in

RISUS, SPHUS, RTDUS, and RPUUS. Notably, the predictive model demon-

strated consistent performance across all business units, indicating uniform

effectiveness in predicting work durations irrespective of the specific busi-

ness unit.

Figure 9.2: BusinessUnit by AE Category

For each business unit, random forest regression was applied separately to

obtain these performance metrics, shown in Table 9.1. When considering
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9.3 Group by State

the R-squared values for the five business units with larger samples, RISUS

exhibited the highest R-squared value, indicating that within this business

unit, the salary level has the strongest explanatory power for work duration,

followed by RNALP, SPHUS and RPUUS are slightly inferior. It is worth

noting that the R-squared value for RTDUS is negative, suggesting that we

did not identify an effective predictive pattern. In this subgroup, the salary

level does not predict work duration effectively.

Business_Unit RMSE MAE R2 MSE

RISUS 91.978222 55.864465 0.191376 8459.993243
RNALP 91.878682 56.588544 0.174611 8441.69223
FRNUS 127.273024 71.27605 0.230096 16198.422641
PICUS 265.319192 169.628384 0.14638 70394.273626
RESUS 192.277865 118.943984 0.236865 36970.777379
SPHUS 82.756359 49.879276 0.123419 6848.614942
RPUUS 131.811724 88.059151 0.075421 17374.330575
RHCUS 114.67051 81.378924 0.133173 13149.325899
RTDUS 229.212219 158.986162 -0.132093 52538.241499
RLSUS 194.50751 144.916338 -0.004074 37833.171404
RPEUS 165.853914 120.094063 -0.093481 27507.520878
CLXUS 82.397578 70.597728 -0.045755 6789.360928
RPOUS 91.0 91.0 NaN 8281.0

Table 9.1: Metrics for Random Forest across different business units

9.3 Group by State

Comparing the prediction errors across different states revealed that the ma-

jority of data was distributed in CA, FL, GA, NC, TN and TX, with small

proportions in other states. The predictive model exhibited similar per-

formance across all states, with comparable proportions of samples cate-

gorized under different AE levels.

For each state, random forest regression was applied separately to obtain

these performance metrics, shown in Table 9.2. In the examination of R-

squared values where sample sizes are larger, West Virginia (WV) exhibits

the best explanatory power of salary levels on work duration, followed by
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Figure 9.3: State by AE Category

Pennsylvania (PA), Kentucky (KY), and Maryland (MD), which all demon-

strate good predictive capabilities. In the District of Columbia (DC), Col-

orado (CO), Kansas (KS), Virginia (VA), Connecticut (CT), and Louisiana

(LA), the R-squared values do not exceed 10%, indicating relatively average

explanatory power. Meanwhile, negative R-squared values are observed in

New Mexico (NM), South Dakota (SD), and Hawaii (HI), which suggests

that the forecasts are underperforming and that there are different patterns

of determining workduration in these states.

9.4 Group by Job level

Comparing the prediction errors across different job levels revealed that the

majority of the data was concentrated at level 1.0, entry level, with small

proportions in other levels. Notably, the predictive model demonstrated

similar performance across all job levels, with comparable proportions of

samples categorized under different AE levels.

For each job level, random forest regression was applied separately to ob-

tain these performance metrics, shown in Table 9.3. Upon analyzing the

R-squared values for different job levels, it is observed that the explanatory

power of salary on work duration shows a U-shape pattern. The highest

job level demonstrates the strongest explanatory capacity, followed by the
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9.4 Group by Job level

State_ RMSE MAE R2 MSE

IL 120.966316 69.516496 0.203405 14632.849635
DC 209.626991 123.747991 0.002744 43943.475414
GA 87.971382 54.940901 0.141381 7738.964081
NJ 136.237458 84.859485 0.151364 18560.644895
AL 103.7202 56.270235 0.22958 10757.879866
NY 146.027037 86.563162 0.18683 21323.895552
AZ 110.934124 72.552459 0.109292 12306.379858
CA 97.076693 59.19385 0.154655 9423.884227
PA 104.669527 61.711826 0.251125 10955.70985
MD 116.925239 68.275739 0.243953 13671.511575
FL 103.639702 61.167968 0.169265 10741.187876
MO 80.082241 47.491545 0.197968 6413.165248
MI 86.47188 54.230127 0.135886 7477.385973
KY 116.317414 64.114934 0.244092 13529.740696
IA 98.032688 58.339251 0.106457 9610.407912
TX 108.426021 65.903689 0.12626 11756.202133
SC 84.220973 52.827651 0.138309 7093.172325
MT 124.616616 75.525302 0.153826 15529.301087
MN 100.618441 59.506005 0.140436 10124.070613
WI 116.6678 70.249131 0.202653 13611.375501
CO 126.323711 71.828743 0.076017 15957.679981
TN 77.701495 49.407722 0.103938 6037.522268
KS 59.1346 41.858379 0.056473 3496.900941
MA 156.00195 93.791132 0.185728 24336.608476
VA 111.008304 65.131321 0.057624 12322.843494
NC 101.88314 59.643574 0.171983 10380.174182
WA 126.193763 73.396032 0.209759 15924.86592
CT 107.14838 67.198688 0.073174 11480.775407
OH 91.651189 53.62176 0.167672 8399.940414
DE 151.837093 105.336593 0.200473 23054.50267
OR 114.163148 77.612824 0.187938 13033.224263
NE 67.334631 41.860354 0.174465 4533.952503
NH 106.044413 68.094367 0.116453 11245.417571
RI 117.002003 76.274474 0.154469 13689.468648
OK 115.179026 59.063026 0.159371 13266.208107
MS 81.820397 57.761042 0.123843 6694.577325
IN 66.880407 43.742473 0.144776 4472.988903
ME 260.215895 164.750028 0.113743 67712.312005
AR 79.509005 48.815311 0.133747 6321.681804
NV 93.466162 55.498811 0.146293 8735.923356
LA 133.369945 67.922127 0.035616 17787.54228
UT 88.366233 54.310571 0.139449 7808.591222
NM 97.459537 65.350155 -0.035759 9498.361351
WY 229.079985 177.038739 0.200832 52477.639497
AK 134.306276 79.333179 0.48383 18038.175796
SD 118.31695 77.884317 -0.5476 13998.900737
WV 79.15729 46.755973 0.336528 6265.876609
HI 272.344402 228.414733 -0.888949 74171.473507
ID 101.874258 61.291571 0.031298 10378.364481
ND 90.333678 58.555322 0.11339 8160.173403
VT 129.413463 73.523255 0.16936 16747.844353
NaN 0.182 0.182 NaN 0.033124
PR 0.0 0.0 NaN 0.0

Table 9.2: Metrics for Random Forest across different states

Figure 9.4: JobLevel by AE Category

lowest job level which also exhibits substantial explanatory strength. How-

ever, when the job level is at a medium degree, specifically at level 4, the

explanatory power is the weakest.
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JobLevel RMSE MAE R2 MSE

3.0 118.517257 70.102751 0.143725 14046.340187
1.0 85.364512 53.490232 0.182607 7287.09996
2.0 132.159162 78.724433 0.148127 17466.043985
6.0 173.960789 106.839449 0.210661 30262.355995
4.0 179.619761 117.369511 0.022855 32263.258391
5.0 147.710397 87.658547 0.151527 21818.361334

Table 9.3: Metrics for Random Forest across different job levels

The group analysis of the payrate-based predictor provides insights into the

prediction performance and error across various dimensions, such as work

duration, business unit, state, and job level. Grouping by work duration re-

vealed that shorter work durations tend to have higher prediction errors, in-

dicating that compensation is a weaker predictor for these jobs, potentially

due to other influential factors. In contrast, medium-length jobs showed

stronger predictive performance, suggesting the model effectively captures

the compensation’s impact on work duration for these jobs. Grouping by

business unit highlighted consistent predictive performance across most

units, with the highest explanatory power observed in RISUS and RNALP

units. State-level analysis showed that while some states like West Vir-

ginia and Pennsylvania exhibited strong predictive capabilities, others had

weaker or even negative explanatory power, indicating varying effective-

ness of the model across different states. Lastly, grouping by job level demon-

strated a U-shaped pattern, where the highest and lowest job levels had

strong explanatory power, whereas medium job levels, particularly level 4,

showed weaker prediction accuracy. Overall, these subgroup analyses help

identify the conditions under which the payrate-based predictor performs

well and where it might need further refinement.
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10. Discussion

10.1 Quantification of the impact of compensation

on work duration

To what extent can compensation determine or predict work duration? This

directly addresses our first research question (RQ1: To what extent does

compensation predict work duration?). Until now, we have used a variety

of statistical tools to verify the notable impact of compensation on work du-

ration. The quantitative results provide strong evidence of its implications,

including:

• Initial explorations of linear regression: Our analysis began with lin-

ear regression, confirming a positive correlation from multiple per-

spectives, and highlighted that compensation impacts different job

categories variably.

• Feature importance of non-linear models: Construct different tree

models to discover more complex non-linear relationships and calcu-

late feature importance, demonstrating that pay rate is a pivotal fea-

ture in predicting work duration.

• Paired model test: Different tree models with and without the payrate

variable were constructed with maximum likelihood ratio tests and

paired t-tests, and the results showed that the model with the payrate

variable performed better, reinforcing the predictive importance of

compensation.

• Good predictive performance with payrate as the main feature: In

fact, except for records with work durations of less than one month,

the best Random Forest model relies on payrate as the main feature

and predicts most of the records well, falling in the "Low AE" range.
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In contrast, for work records less than one month old, which form the

main component of the dataset, the predictive models built have basic

predictive ability but are not as remarkable.

• Differences between gig work and traditional work: For work records

shorter than one month, the primary dataset component, the constructed

predictive models exhibit fundamental but unremarkable predictive

abilities. This underscores the need for developing innovative com-

pensation strategies within the gig economy. The dynamics between

payrate and employee retention periods may differ between gig jobs

and more traditional roles, presenting unique challenges for predic-

tion. This situation necessitates the collection of more relevant data

fields to identify and leverage predictive patterns more effectively.

10.2 Performance of predicted effects on different

groups

To what degree and in what way does compensation impact the length of

employment across different work duration, business units, states, and job

levels? This addresses our second research question (RQ2: Does the pre-

dictability of compensation for work duration vary across different levels

within the labor market?). By categorizing error percentages and observ-

ing the predictive outcomes in different groups along with the explanatory

power reflected by the R-squared values, the following findings were ob-

tained:

• Group by Work Duration: The predictive performance of our model

exhibits large differences across various work duration groupings. The

prediction model we constructed for medium-length work records per-

forms well when payrate is used for work duration, which is the main

part of all work. However, in short-term (less than 30 days) and long-

term (more than 240 days) work records, this predictive relationship

becomes much weaker, either due to other determinants or the inher-

ent characteristics of certain jobs. A more field-rich dataset would also
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be needed to investigate the rationale.

• Group by Business Units: The distribution of error levels across var-

ious business units is relatively similar, but some business units have

better predictive performance and some have very weak predictive re-

lationships. Salary within RISUS has the strongest explanatory power

for work duration, whereas in RTDUS, our model’s predictions are not

effective. Different business units correspond to different job charac-

teristics and hiring patterns, and further exploration of the reasons for

this can help promote better hiring strategies.

• Group by States: The distribution of error levels is relatively simi-

lar across different states. However, some states have better predic-

tive performance and some have very weak predictive relationships.

Salary has the strongest prediction power for work duration in West

Virginia (WV), Pennsylvania (PA), Kentucky (KY), and Maryland (MD),

also performing well. However, the prediction power is very poor in

the District of Columbia (DC), Louisiana (LA), and Idaho (ID). The

consistency of model performance across states with notable excep-

tions (e.g., West Virginia vs. the District of Columbia) suggests re-

gional economic conditions, labor laws, or labor market differences

among other states might influence the compensation-work duration

relationship.

• Group by Job Levels: The distribution of error levels is relatively sim-

ilar across different job levels. However, it is noteworthy that the pre-

diction power of salary on work duration exhibits a U-shaped pattern.

The R-squared values are higher at the highest and lowest job levels,

whereas at medium job levels, the R-squared values are very small, in-

dicating poor prediction power. This can guide us to develop different

compensation strategies for different job levels.
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11. Conclusion

This study explores the relationship between compensation and work dura-

tion across various job categories, particularly focusing on linear regression

and tree-based models for predictive analysis. It finds that, in most jobs,

compensation has a statistically positive effect on work duration. Higher

salaries are linked to longer employment periods, especially in lower-level,

blue-collar positions. The findings suggest that well-structured compensa-

tion packages can enhance employee retention and satisfaction.

This research offers useful insights for human resources professionals and

organizational leaders, emphasizing the importance of tailoring compensa-

tion strategies to not only attract talent but also to foster long-term employ-

ment relationships. In an era where talent retention is as crucial as talent ac-

quisition, such insights can be used to develop fair compensation packages

that are aligned with both organizational goals and employee expectations.

Although this study provides a basis for understanding compensation’s in-

fluence on work duration, it acknowledges certain limitations. Future stud-

ies should incorporate data from a wider range of sectors, including white-

collar and permanent positions, to enhance the generalizability of the find-

ings.

Moreover, the exploration of additional variables that may influence the re-

lationship between compensation and work duration, such as work-life bal-

ance, job satisfaction, and the role of benefits beyond base salary, is promis-

ing for future research. Integrating qualitative methods to complement the

quantitative analysis could also uncover deeper insights into the motiva-

tions behind employee tenure decisions.
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A. Appendix

A.1 Randstad USA dataset

This appendix details the dataset used in our study. The data was sourced

from Randstad USA, a prominent workforce solutions provider, and en-

compasses extensive historical assignment data. This dataset was accessed

through Google BigQuery and includes millions of entries spread across a

wide range of variables. These variables capture detailed information about

job assignments, including pay rates, job titles, job levels, geographic loca-

tions, industry sectors, and more. The purpose of this detailed schema is to

ensure clarity and provide a comprehensive understanding of the dataset

used, which is crucial for the analysis performed in the study.

Data Fields

• RNA_REPORT_DATE:

Description: The date and time when the data was entered into the

database.

Data Type: DateTime

Format: YYYY-MM-DD HH:MM:SS UTC

• BUSINESS_UNIT:

Description: The business unit responsible for the management and

operations of the assignment.

Data Type: String

• ASSIGNMENT_ID:

Description: A unique identifier for the specific job assignment.

Data Type: String
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• PayRate:

Description: The hourly wage rate for the assignment.

Data Type: Float

• JOB_TITLE:

Description: The official job title of the assignment.

Data Type: String

• CITY:

Description: The city where the job assignment is located.

Data Type: String

• STATE:

Description: The U.S. state where the job is located.

Data Type: String

• CUST_NAME:

Description: The name of the customer or company where the assign-

ment is located.

Data Type: String

• clean_job_title:

Description: A simplified or formatted version of the job title for an-

alytical consistency.

Data Type: String

• normalized_job_title:

Description: A standardized version of the job title used for catego-

rization.

Data Type: String

• score:

Description: A confidence score representing the accuracy of the job

title normalization.
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Data Type: Float

Range: 0 to 1

• job_level_us:

Description: Indicates the job level, related to experience and respon-

sibilities.

Data Type: Integer

Range: 1 (entry-level) to 6 (senior-level)

• careerarea_name_us:

Description: The career area or industry category of the job.

Data Type: String
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A.2 Hyperparameter Grid Search for Model Tun-

ing

This appendix provides an overview of the hyperparameters explored for

three different models: Random Forest Regressor, XGBoost Regressor, and

LightGBM Regressor. For each model, we employed GridSearchCV to iden-

tify the best combination of hyperparameters to minimize the mean squared

error.

RandomForestRegressor

The RandomForestRegressor model was tuned using the following hyper-

parameters:

• n_estimators: Number of trees in the forest.

– Values: [100, 200, 500]

• max_depth: Maximum depth of the tree.

– Values: [None, 10, 20, 30]

• min_samples_split: Minimum number of samples required to split

an internal node.

– Values: [0.001, 0.01, 0.05, 0.1]

• max_features: Number of features to consider when looking for the

best split.

– Values: [’sqrt’, ’log2’, 0.5]

• max_samples: Fraction of samples to be used for fitting each individual

base learner.

– Values: [0.6, 0.8, 1.0]

XGBoostRegressor

The XGBoostRegressor model was tuned using the following hyperparam-

eters:
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• n_estimators: Number of boosting rounds.

– Values: [100, 200, 500]

• max_depth: Maximum depth of a tree.

– Values: [None, 10, 20, 30]

• learning_rate: Step size shrinkage used to prevent overfitting.

– Values: [0.01, 0.05, 0.1]

• subsample: Subsample ratio of the training instance.

– Values: [0.5, 0.7, 1.0]

LGBMRegressor

The LGBMRegressor model was tuned using the following hyperparameters:

• n_estimators: Number of boosting rounds.

– Values: [100, 200, 500]

• num_leaves: Maximum tree leaves for base learners.

– Values: [31, 62, 127]

• learning_rate: Step size shrinkage used to prevent overfitting.

– Values: [0.01, 0.05, 0.1]

• subsample: Subsample ratio of the training instance.

– Values: [0.6, 0.8, 1.0]
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