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Abstract

Social networks often contain sensitive information that needs to be protected
against disclosure risks. Evaluating and preserving the anonymity of nodes in a
network has become one of the top interests in network science. While previous
studies focused mainly on preserving anonymity in static networks, there is a
growing need to address such problems in temporal networks, in which the nodes
and edges evolve over time. In this thesis, we first investigate the measurement
of anonymity in temporal networks and the relationship between anonymity and
network properties in a temporal context. Second, we propose a greedy pertur-
bation algorithm that deletes edges that have the highest impact on the overall
anonymity over time. Experiments using a node anonymity measure based on
the number of nodes and edges in a node’s ego network are performed. Results
show how in real-world temporal social networks there is a high correlation be-
tween anonymity and the density of the network over time. Moreover, we find
that nodes with higher centrality values are more likely to be less anonymous
in temporal networks. Finally, we demonstrate to what extent the perturbation
experiments are able to increase anonymity over time. The proposed approach
can be applied to monitor and enhance overall node anonymity with the aim to
better protect sensitive data about individuals in temporal social networks.
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Chapter 1

Introduction

The rapid development and application of Web 2.0 technologies make it possible
for people to connect with each other and contribute user-generated content
through social platforms such as Twitter, Facebook and Instagram [25]. The
number of users on Facebook has almost reached three billion and is continuously
growing. The people and their social connections invisibly form networks, a type
of data with nodes representing entities and edges representing connections. The
connections between different nodes compose structural properties and patterns
over the entire networks [38].

Real-world complex networks have shown that they are evolving and growing
over time [24]. Nodes and edges emerging and disappearing constantly. Some
networks record the temporal changes over time, such as person-to-person com-
munication [10, 28, 26], disease spreading [17, 37], etc. By analyzing these tem-
poral networks, we can find how different parts of the network connect with each
other at different points in time. A common analysis approach of temporal net-
works is to integrate nodes and edges into a sequence of static observations [28].

Real networks often contain sensitive data such as personal information or
economic transactions. Such data faces the threat of being breached or leaked.
With the possession of certain individuals in the networks, a network attacker
(adversary) can re-identify an entity and its connections. Therefore, keeping the
nodes anonymous in the network is imperative for social network publishing and
analysis. Temporal networks pose additional challenges as with the connections
changing over time, nodes can become less or more anonymous at different points
in time. Therefore, it is important to find a way to evaluate the anonymity of
nodes in order to deploy anonymization techniques. Researchers have proposed
different methods such as k-anonymity[33], l-diversity[42] over the years. These
methods often utilize the local structure of the nodes and compare the similarity
with other nodes in the network in order to assess how anonymous the nodes
are in the network.

The naive method of anonymization, simply deleting the node labels, is inad-
equate for networks, because the network structure still contains vast amounts of
information. Over the years, researchers have proposed different anonymization

4



methods on networks. Node aggregation [2] aggregates nodes to supernodes,
and node clustering [41] clusters the nodes into different groups. Network mod-
ification methods are often implemented to modify the network so that the
anonymity of the nodes increases while keeping the overall network properties.
However, most of the anonymity studies are conducted on static networks and
have not yet proved their effectiveness on temporal networks.

In this thesis, we focus on measuring and improving anonymity in temporal
networks using the local structural information of nodes. Specifically, based on
snapshots of the temporal network, We measure the node anonymity using the
nodes’ ego networks at different points in time and identify the non-anonymous
nodes. Based on this, we conduct experiments between network anonymity and
network properties. Additionally, we anonymize the temporal network using a
perturbation technique based on the proposed node anonymity.

The main research question of the thesis is: How does node anonymity evolve
in temporal networks?

To answer this question we look into the following sub-questions:

1. How should anonymity in a temporal network be measured?

2. How does anonymity change through time in temporal networks?

3. How does anonymity relate to the network properties and centrality in
temporal networks?

4. How can we perturb the network over time to make it more anonymous?

This work is structured as follows: Relevant works on network anonymity
measurements and anonymization are summarized in Chapter 2. In Chapter 3,
we give important definitions, and the problem of anonymizing temporal net-
works is formalized. Chapter 4 gives the details of the approaches including
the measurement of anonymity in temporal networks, global network properties
and perturbation techniques. The used temporal network datasets are intro-
duced in Section 5. In Chapter 6, we demonstrate experimental results to show
how anonymity evolves over time, and how anonymity relates to network prop-
erties and node centrality. We also discuss the effectiveness of anonymization
algorithms. Chapter 7 gives the conclusion of the research and possible future
work.
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Chapter 2

Related Work

Network anonymity and anonymization have become important research focuses
in network analysis in recent years, especially with the growth of social networks.
In this section, we first summarize how different anonymity measurements have
been proposed to evaluate the anonymity of the network, including k-anonymity
and its variants. Afterward, we will give a brief summary of node-based and
edge-based anonymization techniques.

2.1 Anonymity Measures

Related work about one of the most commonly used anonymity measures, k-
anonymity and its variants are introduced in 2.1.1, and measurements using
other methods are summarized in 2.1.2.

2.1.1 k-Anonymity and its variants

The methods of k-anonymity [33] and its variants [9, 16] focus on the neigh-
borhood structure of the node from direct neighborhood to larger peripheral
structures. In networks, k-anonymity evaluates the overall anonymity with the
size of the equivalent class. The key idea behind it is to partition nodes with
identical neighborhood structures in the network into the same equivalence class.
When each node in the network has at least k − 1 other nodes in its equivalent
class, the network is k-anonymous.

Depending on the selection of graph structure to be evaluated, different vari-
ants of k-anonymity are proposed and applied. The anonymity based on nodes’
ego networks [31] uses the node’s direct neighborhood as the structural knowl-
edge. The work by de Jong et al. [9] proposed d-k-anonymity that expands the
structural knowledge of a node up to its distance d. Mohapatra et al. [27] firstly
defined k-degree anonymity using minimal frequency (k) of all unique degrees
to generate k-anonymous degree sequences. Then the authors combined it with
closeness centrality to determine the k-anonymity of the graph by finding nodes

6



with the same degree as the k-anonymous nodes in the one-step neighborhood
distance.

2.1.2 Other Anonymity Measures

Centrality measures can also serve as an index for the importance of the nodes in
the network and the priority of anonymization. For example, in a large network,
the degree distribution tends to follow a power law distribution [4]. As a result,
there are fewer nodes with high degrees and more nodes with few edges (lower
degrees). Degree centrality can be viewed as an empirical index for anonymity
as the nodes with high degrees tend to be more unique in the network and thus
more vulnerable to attacks. Xiao and Tao [39] proposed a so-called personalized
anonymity, different from k-anonymity techniques as a general method for the
entire network, the personalized anonymity allows each node to define its own
importance and need for anonymization. This is built on the generalization
scheme in which the probability of each node being re-identified is calculated.
The main drawback of k-anonymity is its lack of diversity in data attributes
which can be vulnerable to certain adversary attacks. To address the problem,
Machanavajjhala et al. [23] proposed l-diversity for representing the l values of
sensitive attributes of the data such as edge labels and edge weights. On top of
it, Li et al. [22] build the equivalent classes with t-closeness by comparing the
distance between the attribute distribution over the entire data and sensitive
attributes.

To sum up, node anonymity is usually measured by exploiting the nodes’
local structural information, with the combination of network properties such as
centrality measures. The anonymity of each node is thus evaluated to determine
if it is similar to other nodes in the network.

2.2 Network Anonymization

There are generally three categories of network anonymization methods[1]: The
first aims to modify the network’s nodes or edges so that the network reaches
k-anonymity. The second method uses probabilistic models to randomize the
edges. The third method uses network generalization. We focus on the first
category in this work. In the network, both the nodes and edges are possible to
be identified by the adversary, with entity disclosure attack and link disclosure
attack [3], respectively. Based on this, various anonymization countermeasures
have been proposed to modify the network to reach k-anonymity.

The clustering-based methods cluster similar nodes or edges into different
groups which form super-nodes and super-edges. The individual nodes or edges
can become anonymous [43]. The application of k-anonymity in clustering meth-
ods ensures that in each cluster, there are k records. Byun et al.[5] proposed a
k-member clustering algorithm which minimizes the intra-cluster distance while
keeping at least k nodes in each cluster to reach k-anonymity. The method
helps reduce information loss during anonymization. Campan and Truta [6]
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proposed a greedy anonymization method in which they uniformly partition the
nodes and generalize the edges at the same time to ensure there are at least k
elements in each cluster. The structural information loss during clustering is
measured by the proximity of nodes’ neighborhoods.

On the other hand, modifications of networks including addition and deletion
of nodes and edges also show their strength in anonymizing a network. Chester
et al.[7] partition the degree sequences into subsequences with k elements and
add dummy nodes to pair with the non-anonymous nodes to reach k-anonymity.
Kiabod et al. [19] proposed a method which classifies each node as positive or
negative based on whether the node’s degree is increased or decreased after
anonymization. The edge deletion algorithm is applied to reduce the degree of
negative nodes.

Wang et al. [36] first proposed the Class Safety Condition (CSC) to partition
nodes with similar attributes into different classes. Then, CSC is modified for
the temporal network so that the nodes in the same class are added at the same
timestamp. Using the time-series-based CSC, dummy nodes are added to the
classes to enhance privacy.

Anonymizing temporal networks has not yet been widely researched because
of the complexity of temporal dynamics in the networks. Time series analysis
and network sequences at certain timestamps are often used for the problem.
In this thesis, we choose the second method and build temporal networks over
time using a sequence of networks.

8



Chapter 3

Preliminaries

In this chapter, we give formal definitions of concepts that are important through-
out the research including network and temporal network.

3.1 Network

A network is defined as a graph G = (V,E), in which V is the node set and E
contains the edges that link the nodes in the network. {u, v}, (u, v ∈ V ) is an
undirected edge between node u and v. We use |V | to denote the number of
nodes in G and |E| to denote the number of edges.

The local structure of a node in a network is defined as the neighborhood of
the node. We define the neighbors of node v as the set of nodes directly linked
with v. N(v) = {u ∈ V : {u, v} ∈ E}. The degree of node v is deg(v) = |N(v)|.
The ego network of node v, denoted as Go

v in this research, is defined as a
sub-graph of G: Go

v = (V o
v , E

o
v), where the node set is node v and its direct

neighbors: V o
v = N(v)∪{v}, and the edge set contains the edges between these

nodes. Figure 3.1 shows the ego network of node u. It consists of the node u,
the nodes directly connect with u, and the edges between them.

3.2 Temporal Network

Static networks remain the same regardless of time. However, there are also
temporal networks that change through time. In a temporal network denoted
as G, each edge contains an additional timestamp element t. For example,
edge ({u, v}, t) means the edge between node u and v appears at timestamp t.
Different studies have given different formal definitions of temporal networks,
especially on the aspect of time [11, 15, 30]. In this work, we use the concept
of snapshot to define the temporal network. Let T = {t0, t1, ..., tT } represent a
series of discrete time domains. A temporal network consists of several snapshots
G = {Gt0 , Gt1 , ..., GtT }. Each snapshot Gti = (Vti , Eti) contains the node set
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Figure 3.1: Example of an ego network in a network, node u, its direct neigh-
bors (green nodes), and all the edges among these nodes together form the ego
network of u.

Vi, the edge set Ei at timestamp ti, namely:

Vti = {v ∈ V : ∃({u, v}, t) ∈ E, t ≤ ti}

Eti = {({u, v}, t) ∈ E : t ≤ ti}

This means that all edges with timestamps no later than a designated times-
tamp ti are stored in the snapshot. Therefore, a temporal network can be viewed
as a set of static networks as it stores the static network at certain timestamps.
One assumption made for all the temporal networks studied in the thesis is that
there are no nodes and edges disappearing through time; we only consider the
networks with a growing number of nodes and edges.
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Chapter 4

Methodology

In this chapter, we explain the approach used for measuring temporal network
properties and for measuring anonymity in the temporal network. Section 4.1
introduces the anonymity measurement we use for the thesis. Based on it, in Sec-
tion 4.2 we show and how it is calculated in the temporal networks. In Section
4.3, we explain the important network properties and centrality measurements
in the temporal networks. Section 4.4 introduces the random perturbation algo-
rithm and the uniqueness-based perturbation algorithm, which aim to increase
the overall anonymity of temporal networks.

4.1 Anonymity Measurement

We assume a scenario in which the adversary knows that a certain individual
exists in an anonymized network and the number of connections this individ-
ual has. The adversary aims to identify the individual in the network. The
connections are represented as the degree of the target node in the network.

In order to achieve this, the adversary needs to utilize the local structural
information of the nodes to classify nodes with a similar structure leading to
the method of k-anonymity. A k-anonymized network ensures that each node is
similar to at least k − 1 other nodes. For example, when k = 4, each node has
at least three other nodes in the network that have the same local structure. If
the adversary aims to identify an individual, they would find at least four nodes
as the possible candidates of the target individual. Each node therefore has a
possibility equal to or less than 1/k of being identified. Therefore, a network
reaching higher k-anonymity tends to be safer and more anonymous.

Often, nodes with the unique structure in the network are more vulnerable
to be identified, because there are no other nodes in the network similar to
them. Therefore, in this work, we focus on the scenario of k = 2 so that each
node that has at least one other similar node will be considered anonymous. We
use the measure of (n,m)-anonymity, a variant of k-anonymity to measure the
anonymity of each node in the network. We will refer to it as anonymity in the
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rest of the thesis.
As defined in the previous chapter, the ego network of a target node u

consists of the target node, its direct neighbors and the edges between them.
As Figure 4.1 shows, we use n and m to represent the number of nodes and
edges of the ego network. The combination of (n,m) is defined as the ego state
of the target node u.

Definition 4.1.1 (Ego State). Given a network G = (V,E) and a node u ∈ V ,
the ego state of u is defined as:

s(u) = (n,m) = (|V o
u |, |Eo

u|)
.

Figure 4.1: Examples of ego state of three ego networks

The state of a node can be used to measure the uniqueness of the node’s
neighborhood structure. We give the definition of (n,m) equivalent nodes as
follows:

Definition 4.1.2 ((n,m)-equivalence). Node u and v are (n,m) equivalent if
s(u) = s(v).

The nodes with the same ego state reside in the same equivalent class. The
anonymity is determined based on the size of the equivalent class.

Definition 4.1.3 ((n,m)-uniqueness). A node u is (n,m) unique when the size
of its equivalence class is 1, i.e., ∀v ∈ V − {u}, s(u) ̸= s(v).

For simplicity, we refer to (n,m)-uniqueness and (n,m)-equivalence as sim-
ply uniqueness and equivalence in the rest of the thesis. A unique state in the
network means a unique local structure of a node. A node with a unique state
can be re-identified by the adversary. On the other hand, if two or more nodes
share the same state, the adversary cannot de-anonymize the nodes solely based
on the information of ego network structure, the nodes are therefore anony-
mous. For example, node u and v in Figure 4.1 have the same 1-neighborhood
structure, therefore they cannot be uniquely identified under limited adversary
knowledge.
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4.2 Measuring Anonymity in Temporal Networks

Using the defined anonymity measurement and snapshots defined in Chapter
3, we can now measure anonymity in temporal networks. The algorithm for
measuring the anonymity of a temporal network is shown in Algorithm 1. The
algorithm works as follows: With the timestamps given in the input network, we
separate the temporal network G to several snapshots G = {Gt0 , Gt1 , ..., GtT }.
For each snapshot, we calculate the ego state of each node u in the node set of
the snapshot (Line 5). Afterward, for each node u in the snapshot, the frequency
of ego state freq(s(u)) is calculated over the entire snapshot and stored as how
many nodes in the current snapshot share the same state as node u, i.e., the size
of the equivalence class the node is in (Line 10). The same process is carried
out for all the snapshots and the overall anonymity is updated accordingly.

Algorithm 1 Anonymity for Temporal Networks

Input: Temporal Network G, timestamps set T
Output: Anonymity A

1: A = {} // Anonymity of the temporal network

2: for t = t0, t1, ..., tT do
3: St = {} // Ego state of current snapshot

4: for u ∈ Vt do
5: St[u] = (|V o

u |, |Eo
u|) // Ego state of node u

6: end for
7: At = {} // Anonymity of snapshot

8: for u in St do
9: At[u] = freq(St[u]) // Calculate frequency of s(u)

10: end for
11: A[t] = At

12: end for
13: return A

The algorithm outputs the anonymity of the temporal network which records
the anonymity of every node in each snapshot. For each snapshot, we can
calculate the uniqueness percentage by:

U(Gt) =
|{v ∈ Vt : freq(s(v)) = 1}|

|V |

The percentage of unique nodes is crucial for understanding how anonymous
the snapshot is. The higher the value of U(Gt) is, the more unique nodes the
snapshot has, and the less anonymous it is. By measuring U(Gt) for different
snapshots of a temporal network, we can observe the change in uniqueness of
the temporal network over time.
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4.3 Network Properties

The main difference between temporal networks and static ones is that temporal
networks encode temporal changes in the network over time. Such changes
represent how networks evolve. In order to understand the network anonymity
dynamics, we will explain some important network properties.

4.3.1 Global Network Properties

Global network properties help explain the network structure from a macro
perspective and demonstrate how the network is constructed. The density of
the network demonstrates how densely nodes are connected with each other.
Given an undirected network G = (V,E), the density is denoted as:

density(G) =
2 · |E|

|V | · |V − 1|

In temporal networks, the analysis of density can be done per snapshot
or as the average value over a certain period of time. A growing network is
usually denser in the beginning as fewer nodes are joining and edges forming
among these nodes, which indicates a more interconnected and cohesive network
structure. In later phases, especially for large networks, as more and more nodes
join the network, the possible number of edges that can exist in the network
grows quadratically, whereas actual edges do not. The density will start to
fluctuate or drop, making the network sparse.

Density depicts how dense or sparse the network is. To evaluate the con-
nections between two nodes that are not directly connected, we use distance.
The distance of node u and v, dist(u, v) is the shortest path from node u to
v. For example, if {u,w}, {w, v} ∈ E, {u, v} ̸∈ E, dist{u, v} = 2. In temporal
networks, the average distance lG shows how far two nodes are away from each
other on average.

lG =
1

|V | · |V − 1|
∑
u̸=v

dist(u, v)

In temporal networks with a growing number of edges, the distance between
two existing nodes will decrease over time as new paths are constantly forming.
However, because of the addition of new nodes in the network, the average
distance of the temporal network may grow.

The clustering coefficient of a node v is defined as:

CC(v) =
2 · |{{u,w} ∈ E : {u, v}, {u,w}, {w, v} ∈ E}|

deg(v) · (deg(v)− 1)

The average clustering coefficient (ACC) of the network is:

ACC(G) =
1

|V |
∑
v∈V

CC(v)
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ACC explains how many common neighbors nodes share. A higher ACC means
the nodes form many triangles with other nodes. The forming of triangles in
temporal networks affects the structure of the nodes’ ego networks and therefore
changes the uniqueness of nodes over time.

4.3.2 Betweenness Centrality

Centrality measurements evaluate the importance of each node in the network.
For example, degree centrality ranks the nodes by their degree, while closeness
centrality evaluates how close a node is to all the other nodes. In this work, we
focus on betweenness centrality. Betweenness centrality assesses nodes based on
how often they form the shortest paths between other nodes in the network.

Betweenness centrality is defined as [12]:

CB(v) =
∑

u̸=v ̸=w∈V

σuw(v)

σuw

Here, σuw denotes the number of shortest paths from node u to w, σuw(v)
denotes the number of shortest paths from node u to w which pass node v.

An extended definition of betweenness centrality in temporal networks uses
temporal paths which represent how the connection between two nodes changes
over certain time intervals [34]. Different temporal shortest paths algorithms
have been proposed [14, 20, 29] but they expand the types of paths to incor-
porate. Therefore, since we use snapshots to represent temporal networks, we
still apply the definition of betweenness centrality in static networks as given to
each snapshot.

4.4 Perturbation-based Anonymization

The unique local structures of the nodes in the network make them unique and
possible to be identified by an adversary. In order to protect the unique nodes,
perturbation strategies may use edge addition and deletion around certain nodes
so that they can have the same local structure as other nodes in the network. In
this section, we introduce random deletion first and propose a uniqueness-based
deletion algorithm on temporal networks.

4.4.1 Random Deletion

The idea of random deletion is to randomly remove a certain number of edges
in the network. In temporal networks, we choose to delete the newly added
edges between two snapshots. This ensures we take the temporal aspects into
consideration because the structure of the previous snapshot is preserved.

The algorithm of random deletion is shown in Algorithm 2. The algorithm
requires a preset deletion percentage p, this represents the possibility of an edge
being deleted. For each snapshot, we compare it with the previous one to get the
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set of new edges new edges (Line 3). Afterwards, each new edge has a possibility
of p to be deleted from new edges (Line 5). Finally, the processed new edges
is added to the previous snapshot to form the current perturbed snapshot, and
the previous snapshot is updated accordingly (Line 7) until all snapshots are
perturbed. The algorithm outputs the perturbed temporal network.

Algorithm 2 Random Deletion on Temporal Networks

Input: Temporal Network G, timestamps set T , deletion percentage p

1: new edges = {}
2: for t = t1, ..., tT do
3: new edges = Et − Et−1 // New edges in current snapshot

4: for edge in new edges do
5: Remove edge with probability p
6: end for
7: Et = Et−1 ∪ new edges // Update edge set

8: end for
9: return G′ // Perturbed temporal network

4.4.2 Uniqueness-based Deletion

Random deletion helps reshape the network structure and thus influences the
network properties and uniqueness. The drawback of random deletion is that
the edges deleted cannot be guaranteed to be the ones that directly connect with
the unique nodes. Since the goal of perturbation is to decrease the percentage of
unique nodes in the network, edges that connect with the unique nodes should
have priority for deletion.

Based on this idea, we propose a perturbation algorithm based on the node
uniqueness introduced in Chapter 4.1. We refer to the edges connected with at
least one unique node as unique edge. This method ensures that for the current
snapshot, the unique edges are deleted first. An example of the method is given
in Fig 4.2. In the figure, all the unique nodes are colored green and the edges
linked with them are shown in red (unique edges). In the previous snapshot,
node 1 is unique with the state of (5,5). For the current snapshot, nodes 10,
11 and 12 are added to the network, which makes node 3 unique. The current
network has 2 unique nodes and 7 unique edges.

With a preset deletion percentage p, for each snapshot, there are a certain
number of edges to be deleted. For example, a 15% deletion percentage in
the current snapshot means there are 2 edges to be deleted. With the pro-
posed method, the unique edges are always randomly selected and deleted first.
Therefore, in the perturbed snapshot, edges (1,5) and (3,11) are deleted. Both
nodes 1 and 3 are not unique nodes anymore. For larger networks, if the unique
edges in the current snapshot are less than the number of edges to be deleted,
the unique edges are first deleted, followed by random deletion in the new edges.

16



Figure 4.2: Example of uniqueness-based deletion, the green nodes represent
(n,m) unique nodes, the red edges are the unique edges that connect with at
least one unique node. In the perturbed snapshot, the edges between node 3
and 11, 1 and 5 are deleted, making nodes 1 and 3 anonymous.

Algorithm 3 details the uniqueness-based deletion. First, edge uniq is cre-
ated to store the unique edges in the snapshot (Line 2). Before the actual
deletion, the anonymity algorithm (Algorithm 1) is conducted on the current
snapshot Gt so that we obtain the anonymity At, which contains the size of the
equivalent class, i.e., the frequency of the ego state for each node.

Afterward, the nodes with the size of 1 of the equivalent class are selected
as unique nodes (Line 6). Each edge in the snapshot is then examined if it is
connected with at least one unique node, we treat it as a unique edge and store
it in edge uniq (Line 7). With the preset deletion percentage p, the number of
edges to be deleted is calculated per snapshot (Line 10). The unique edges are
first deleted, followed by randomly deleting new edges until we delete enough
edges (Line 16). Finally, the snapshot after deletion is stored as the new snap-
shot (Line 19). After all snapshots are perturbed, the algorithm outputs the
perturbed temporal network.
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Algorithm 3 Uniqueness-based Deletion on Temporal Networks

Input: Temporal network G, timestamps set T , deletion percentage p

1: new edges = {}
2: edge uniq = {} //Unique edge set

3: for t = t1, ..., tT do
4: At = anonymity(G, {t}) //Snapshot anonymity (Algorithm 1)

5: for ({u, v}, t) in Et do
6: if At[u] = 1 or At[v] = 1 then //Check if the node is unique

7: edge uniq = edge uniq ∪ {({u, v}, t)} //Store unique edges

8: end if
9: end for

10: new edge = Et − Et−1

11: del = p ∗ |Et| //Number of edges to delete

12: for n = del, del − 1, ..., 1 do
13: if edge uniq ̸= ∅ then //Delete unique edges first

14: Randomly delete one edge from edge uniq and Et−1

15: else //Delete new edges then

16: Randomly delete one edge from new edge
17: end if
18: end for
19: Et = Et−1 ∪ new edges // Update snapshot edge set

20: end for
21: return G′ // Perturbed temporal network
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Chapter 5

Data

In this chapter, we introduce the real-world temporal network datasets used for
the thesis and explain how the snapshots are created.

5.1 Datasets

In this section, the datasets used are introduced. The criteria for selecting the
data for this research is that the network represents real-world social connections
over time. In this thesis, all networks are processed and viewed as undirected,
unweighted networks.

• Contacts Hypertext [18] This dataset represents face-to-face contacts
during the ACM Hypertext Conference in 2009. In total, there were 113
contacts and 2,498 unique connections within the network over a time
period of three days.

• Reality Mining [32] Reality Mining is a dataset which records the call
relationships among a group of people from MIT. The time period of the
data collected is over 9 months with 6,809 nodes and 9,484 edges.

• Sp Infectious [18] As an art exhibition contact network in Ireland, Sp
infectious captures 10,972 users in total who visited the exhibition during
the same time period of three days in 2009. The number of connections is
52,761.

• Mooc Action [21] Mooc Action contains course interactions of users at
a MOOC platform. The nodes have two groups representing the users and
MOOC courses. Every edge represents that a certain user takes a certain
course on the platform. This bipartite network consists of 7,047 nodes and
178,406 edges in total.

• Internet AS [40] Created in 2004, Internet AS integrates Internet topol-
ogy at the Autonomous System level. Edges represent an existing connec-

19



tion at the corresponding timestamp. There are 34,761 nodes and 114,496
edges.

• Facebook Wall [35] This dataset records the Facebook friendship rela-
tions and wall post interactions during a two-year time period from 2009.
The network has 45,813 users, and 264,004 edges representing that a user
posts a message on another user’s Facebook Wall.

• Slashdot [13] This is a network representing Slashdot user replies over
different threads. Each edge represents a reply from the source user to the
target user. The network has 51,083 nodes and 130,370 edges.

Table 5.1 shows the size of the network at 20%, 50%, 80% and 100% of the
total timestamps. It can be seen from the table that, except for the smaller
network (Contacts Hypertext), all the other networks grow steadily with time,
both in the number of nodes and the edges. The evolving patterns of temporal
network sizes are important for the property and anonymity experiments in the
following chapter.

Table 5.1: Network size at different points of time

Dataset
Timestamp of total time

20% 50% 80% 100%

Contacts Hypertext
|V | 82 104 111 113
|E| 499 1,249 1,998 2,498

Reality Mining
|V | 1,421 3,382 5,400 6,809
|E| 1,896 4,742 7,587 9,484

Sp Infectious
|V | 2,265 5,366 9,208 10,972
|E| 10,552 26,380 42,208 52,761

Mooc Action
|V | 3,745 5,875 6,675 7,047
|E| 35,681 89,203 142,724 178,406

Internet AS
|V | 12,182 19,174 28,295 34,761
|E| 22,899 57,248 91,596 114,496

Facebook Wall
|V | 15,490 23,902 35,003 45,813
|E| 52,800 132,002 211,203 264,004

Internet AS
|V | 12,182 19,174 28,295 34,761
|E| 22,899 57,248 91,596 114,496

Slashdot
|V | 10,908 21,631 36,433 51,083
|E| 26,074 65,185 104,296 130,370

5.2 Snapshot Creation

The way this work analyzes the temporal network is by creating a series of
snapshots, i.e., we capture a static network at a certain timestamp, the snap-
shot network contains all the nodes and edges that appeared before this times-
tamp. By selecting a series of timestamps, we create a series of snapshots of the

20



temporal network. In this work, the first snapshot is created at the 5% of total
timestamp, and the step size of the timestamp is 2% of the total timestamps.
Therefore, each network is separated into 48 snapshots.

Figure 5.1 shows the number of nodes and edges grows over time. Based on
how we build the snapshot, the same number of edges are added to the network
for each new snapshot. Therefore, we can see a linear growth in the number
of edges. As for nodes, most networks also witness a growth. Nodes in Mooc
Action and Contacts Hypertext datasets, on the other hand, are increasing faster
in the early snapshots, compared to later ones. This shows that networks have
different ways of growing: constantly expanding new entities/users or maturing
the user groups more densely by forming more edges within the groups.

Figure 5.1: Number of nodes and edges in the snapshots of each dataset over
time
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Chapter 6

Results

In this chapter, we demonstrate experimental results of anonymity and unique-
ness in temporal networks for answering the research questions proposed in
Chapter 1. In Section 6.1, we briefly introduce the experimental setup. Sec-
tion6.2 gives the results of how node anonymity changes over time to answer
research question 2. In Section 6.3, the uniqueness and network properties are
together analyzed, and node centrality is compared with anonymity in Section
6.4. Together they provide insights for research question 3. Moreover, to answer
research question 4, we provide the perturbation results with random deletion
and uniqueness-based deletion in Section 6.5.

6.1 Experimental Setup

Pre-processing is performed on each dataset due to different data formats. We
extract only the (source node ID, target node ID, timestamp) from the origi-
nal data. For duplicated edges, only the edge with the earliest timestamp is
preserved. Additionally, all networks are treated as undirected networks.

Since every network starts from an empty network, if the beginning phase of
the network is included, the fast growth of the network in the beginning is not
suitable for analyzing the overall change of the network, as there is often a sharp
change for every item. Therefore, in the following experiments, all the results
start from 5% of the total timestamp to 100%. With the step size of 2% of the
total timestamp, 48 snapshots are created for each network. All experiments
are performed on Intel Core i7 CPU 16GB RAM. All of the codes and results
can be accessed through the Github repository 1.

1https://github.com/JaviAnton/tempo-network-anonymity
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6.2 Network Uniqueness

First, the anonymity is computed for each snapshot of each network. In Figure
6.1, we show the number of unique nodes and the percentage of unique nodes
for each snapshot of the network.

Figure 6.1: Number of unique nodes and uniqueness percentage of each network
over time

For all the networks, the number of unique nodes keeps increasing. As for the
uniqueness percentage, the performance of each network varies. Overall there
are three different patterns. 1) The first pattern occurs in dataset Mooc Action,
Contact Hypertext and Internet AS. In these three networks, the uniqueness
percentage increases with the number of unique nodes. This indicates that the
new nodes and edges joining the network help form new unique nodes. 2) In
dataset Reality Mining, Sp Infectious and Slashdot, we witness a decrease in

23



the uniqueness percentage over time. This represents that the network becomes
more anonymous with the new connections forming. 3) In the Facebook Wall
dataset we can observe the uniqueness percentage reaches a plateau of 6.3%
around 30% of total timestamps, then it slightly drops to 4.5%. This may
indicate that the network gradually matures in the beginning and the nodes
joining in the late phase increase the network’s anonymity.

Additionally, by comparing the overall uniqueness of each network, we can
see that for large networks (Slashdot, FacebookWall), the uniqueness percentage
is lower than for small networks. This finding suggests that large networks are
more anonymous than small networks.

6.3 Uniqueness and Network Properties

To understand how temporal networks evolve through time, in this section we
focus on network properties of the temporal networks over time. Then, for each
snapshot of the network, the following properties are reported: average degree,
clustering coefficient, density and average distance.

Since the values of network properties vary in scale, we normalized the value
of each item to the range of 0 to 1. Figure 6.2 shows the normalized values of the
aforementioned properties with the uniqueness percentage of the snapshot over
time. Table 6.1 lists the uniqueness percentage and average degree, density and
average clustering coefficient at the timestamp of 20%, 50%, 80% and 100%.

From Figure 6.2 we can see that for all networks except for Internet AS,
the uniqueness percentage and the density follow similar patterns, as density
drops, the network becomes sparser and the uniqueness gradually drops, and
the network becomes more anonymous. This scenario applies to Reality Call,
Sp Infectious and Slahdot. When density increases in Contact Hypertext and
Mooc Action, the uniqueness also increases.

For all networks except for Sp Infectious, the uniqueness percentage and the
Average Clustering Coefficient plots per network are also similar. The reason
for the difference in Sp Infectious may be because the exhibition visits were
represented in the data, the triangle in the network means the three persons
were at the exhibition at the same time point. Therefore we witness the high
values at the beginning and the end. The other properties perform differently
with the uniqueness percentage per network.

In order to quantitatively evaluate the correlation between uniqueness per-
centage and other network properties, we choose Pearson correlation coefficient
and p-value [8] as they indicate the significance of linear association between
two sets of data, in our case, the set of uniqueness percentage per snapshot
and the set of network properties per snapshot. For the Pearson correlation
coefficient, the closer the value is to 1, the more positively correlated the two
variables are. For p-vale, when it is smaller than a significance level (p < 0.05),
the correlation can be considered statistically significant. Table 6.2 gives the
results of the networks.

From the table, we can observe that the Pearson correlation coefficients

24



Table 6.1: Network Properties and uniqueness percentage (%) at different times-
tamps

Dataset Properties
Timestamp

20% 50% 80% 100%

Contacts Hypertext

Unique % 71.605 91.346 96.396 94.690
Avg Degree 11.531 23.115 34.901 43.823
Avg Dist 2.016 1.874 1.729 1.659
Density 0.144 0.224 0.317 0.391
ACC 0.254 0.367 0.443 0.494

Reality Mining

Unique % 3.911 2.613 2.014 1.545
Avg Degree 2.652 2.815 2.810 2.781
Avg Dist 5.337 4.601 4.359 4.222
Density 1.959E-03 8.556E-04 5.290E-04 4.132E-04
ACC 4.983E-03 3.931E-03 2.963E-03 2.434E-03

Sp Infectious

Unique % 15.902 13.225 9.131 8.698
Avg Degree 9.487 9.922 9.191 9.624
Avg Dist 5.128 4.570 4.380 4.275
Density 4.492E-03 1.904E-03 1.014E-03 8.868E-04
ACC 0.367 0.427 0.451 0.436

Mooc Action

Unique % 1.199 11.113 27.270 33.092
Avg Degree 18.899 29.937 42.374 50.168
Avg Dist 2.005 2.003 2.001 2.000
Density 5.270E-03 5.127E-03 6.172E-03 7.126E-03
ACC 0.013 0.015 0.023 0.028

Internet AS

Unique % 1.427 4.114 4.517 4.883
Avg Degree 3.694 5.916 6.452 6.571
Avg Dist 3.044 3.194 3.504 3.752
Density 3.137E-04 3.121E-04 2.302E-04 1.905E-04
ACC 0.005 0.029 0.047 0.049

Facebook Wall

Unique % 5.068 6.257 5.530 4.392
Avg Degree 6.646 10.931 12.083 11.671
Avg Dist 5.112 4.962 5.257 5.564
Density 4.404E-04 4.618E-04 3.501E-04 4.404E-04
ACC 0.066 0.083 0.086 0.085

Slashdot

Unique % 3.187 2.946 2.190 1.837
Avg Degree 4.699 6.021 5.725 5.148
Avg Dist 4.103 4.279 4.453 4.532
Density 4.458E-08 2.838E-04 1.591E-04 1.027E-04
ACC 0.012 0.012 0.009 0.006

between uniqueness percentage and density and average clustering coefficient
for the networks are higher than the average degree and average distance. The
uniqueness percentage of Sp Infectious correlates more with the network density.
And that of Internet AS correlates more with the average clustering coefficient.
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Figure 6.2: Normalized value of uniqueness percentage(blue dotted line) with
normalized network properties (average degree, average clustering coefficient,
density and average distance)

For other networks density and average clustering coefficient both connect with
the uniqueness. Moreover, the results of p-values show that the correlation
between uniqueness and density is significant. Therefore we suggest that if the
temporal network becomes denser or has more triangles over time, more nodes
tend to become unique and the network tends to become less anonymous.
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Table 6.2: Pearson correlation coefficient between uniqueness percentage and
density, average degree, average distance and average clustering coefficient
(ACC)
Dataset Density Avg Degree Avg Dist ACC
Hypertext Pearson 0.7683 0.8445 -0.7564 0.8908

p-value 1.1586E-10 2.4331E-14 3.2523E-10 1.0183E-17
Reality Mining Pearson 0.9338 -0.8885 0.9073 0.6144

p-value 3.6126E-22 3.6162E-17 6.3835E-19 3.3907E-6
Sp Infectious Pearson 0.9057 -0.0627 0.9129 -0.6422

p-value 9.2077E-19 0.6720 1.6010E-19 8.6617E-7
Mooc Action Pearson 0.1404 0.9763 -0.8872 0.6277

p-value 0.3413 3.1520E-32 4.5947E-17 1.7914E-6
Internet AS Pearson -0.7912 0.9825 0.8291 0.9043

p-value 2.1879E-11 3.1661E-35 3.3824E-13 1.2657E-18
Facebook Wall Pearson 0.2949 0.5706 -0.8176 0.6624

p-value 0.0418 2.2958E-5 1.3296E-12 2.9199E-7
Slashdot Pearson 0.8468 -0.3640 -0.9657 0.7476

p-value 3.3725E-14 0.0110 1.4052E-28 1.0273E-9

6.4 Uniqueness and Betweenness centrality

In this section, we look into the question of how anonymity is related to node
centrality.

For each snapshot of the network, we calculate the betweenness centrality
for every node and rank them based on these centrality scores. Afterwards, with
the number of N nodes in the snapshots, we take the top 10%, 10%-20%, 40%
-50% and the last 10% of |V | nodes from the betweenness centrality ranking.
For each subset of nodes, we count how many of them are unique.

Figure 6.3 shows the number of unique nodes in the full snapshot and in each
betweenness centrality ranking subgroup. We can observe that the red line, i.e.,
the top 10% group of nodes, has more unique nodes than other subgroups. This
shows that the unique nodes are more likely to also be the nodes with higher
centrality values. Moreover, we can observe that for every network, the top 10%
and top 20% of the nodes contain most unique nodes in the network.

Additionally, we calculate the precision and recall of the unique nodes in
the top 10% and 20% of the centrality ranking nodes. The results are shown in
Table 6.3. For precision, all seven networks reach over 0.25 for the top 10% of
the centrality nodes. This means for nodes in the top 10% of centrality ranking,
at least 25% of them are unique.

As for the recall, i.e., how many unique nodes are indeed included, the top
10% of centrality nodes in Dataset Reality Mining, Internet AS, and Slashdot
contain over 85% of the unique nodes of the entire snapshot, on average. The
recall is close to 1 for the top 20% ranking. For other datasets, 37%, 68%
and 24% of the unique nodes are also the top 10% of the centrality nodes
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Figure 6.3: Number of unique nodes of full snapshot and different node sets
based on the betweenness centrality ranking (top 10%, top 10-20%, top 40-50%,
last 10 %) over time

for datasets Moon Action, Facebook Wall and Sp Infectious, respectively. An
exception is the Contact Hypertext dataset, the unique nodes are spread out in
the subgroups. Because it is relatively small and nearly all the nodes become
unique in the end. However, the top 10% or 20% of centrality ranking nodes
win over all the other sections for the proportion of unique nodes. These results
suggest that for most temporal networks, the nodes in the top 20% of the
betweenness centrality ranking contain most of the unique nodes. The higher
the centrality value of a node is, the more likely the node is unique, and the
more possible it can be re-identified by the adversary.
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Table 6.3: Average uniqueness percentage with average precision & recall for
top 10% and 20% of the nodes in the betweenness ranking

Dataset
Average Unique
Percentage (%)

Top 10%
Betweenness

Top 20%
Betweenness

Precision Recall Precision Recall
Contacts Hypertext 86.4053 0.9943 0.1145 0.9693 0.2281
Reality Mining 2.8627 0.2796 0.9775 0.1423 0.9923
Sp Infectious 12.8449 0.3014 0.2406 0.2550 0.4040
Mooc Action 15.4899 0.5131 0.3688 0.4650 0.6194
Internet AS 3.4852 0.2922 0.8648 0.1693 0.9775
Facebook Wall 5.5033 0.3678 0.6751 0.3005 0.7095
Slashdot 2.7087 0.2639 0.9754 0.1346 0.9936

6.5 Perturbation

In order to decrease the uniqueness of the temporal network datasets, we de-
ployed two perturbation methods: random deletion and uniqueness-based dele-
tion as discussed in Chapter 4.3. The deletion percentage p is set to 20%. Figure
6.4 shows the uniqueness percentage of the original network over time, the net-
work after random deletion and the network after uniqueness-based deletion. To
ensure randomness, all experiments are run three times and the average results
are recorded.

From the result, we can observe that for Mooc Actions and Sp Infectious
datasets, the uniqueness-based deletion performs better in decreasing the overall
uniqueness percentage than random deletion, especially in the later phases of the
network. Since the uniqueness percentage is relatively large compared with other
datasets, the edge set consists of more unique edges. Therefore, the improvement
is more visible. Contact Hypertext dataset is very small with 200 edges and a
very high uniqueness in the end. The deletion causes fluctuation in both the
random method and the uniqueness-based. Whereas for other datasets, because
of the low uniqueness percentages (around 5%) and large network sizes, the
uniqueness-based deletion does not substantially improve network anonymity.
This is because by deleting unique edges in the network, the ego state of the
unique nodes changes. However, in the meantime, the neighbor nodes’ states
also change. This could result in making the previous anonymous nodes unique.
Therefore we witness a change in anonymity but no significant increase.

Table 6.4 gives the average uniqueness percentage over the original network,
the network after random deletion and the network after uniqueness-based dele-
tion. The results show that uniqueness-based deletion can improve the average
uniqueness percentage of all networks, where effectiveness differs per network.
Random deletion fails to accomplish it.
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Figure 6.4: Uniqueness percentage (%) of original snapshot, snapshot after ran-
dom deletion and snapshot after uniqueness-based deletion over time

Table 6.4: Average uniqueness percentage (%) and standard deviation for
original network, network after 20% random deletion and network after 20%
uniqueness-based deletion

Original Random Deletion Uniqueness Deletion
Mean Std dev

Contacts Hypertext 86.405 86.693 86.077 15.790
Reality Mining 2.863 2.886 2.849 1.126
Sp Infectious 12.845 12.490 11.781 3.678
Mooc Action 15.490 15.723 10.626 7.836
Internet AS 3.487 3.492 3.339 1.543
Facebook Wall 5.503 5.496 5.482 1.733
Slashdot 2.709 2.695 2.679 0.365
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Chapter 7

Conclusion and Future
Work

7.1 Conclusion

In this thesis, we studied the measurement of temporal network anonymity using
a measure which utilizes the node’s ego network structure. We selected seven
real-world social temporal network datasets and created temporal networks by
means of snapshots in order to process and analyze anonymity over time. Ex-
periments show that the number of non-anonymous nodes grows over time in
each dataset. However, the networks vary in the overall uniqueness percentage,
depending on whether new edges form more unique nodes.

Moreover, we explored the connection of anonymity to network properties
and betweenness centrality. The experiments show that density positively cor-
relates with the uniqueness percentage of the network. The more sparse the
network is, the more anonymous the network tends to be. As for node central-
ity, the majority of nodes with higher betweenness centrality values (top 10%
and top 20%) are unique nodes, the proportion of unique nodes in the top-
ranked centrality nodes exceeds those with lower centrality values. Therefore,
central nodes are more likely to be non-anonymous in the networks.

Finally, we proposed a uniqueness-based deletion algorithm which aims to
target the edges connected directly with the unique nodes in the network in
the current snapshot of the temporal network. Experiments show that the
network after applying the proposed method of uniqueness-based deletion can
decrease the average uniqueness percentage compared to the original temporal
network and may perform better than random deletion. Although, additional
experiments are needed to determine the statistical significance of these results.

31



7.2 Future Work

There are still some aspects for improvement for this research. As for the
anonymity measurement, the scope of measuring anonymity can be extended to
a larger radius of the target node so that more structural information can be used
to evaluate anonymity. As for anonymization techniques, further improvements
can be made to the selection of target edges to be deleted while keeping the
anonymous nodes still safe. This can be approached by checking nearby nodes’
state change after deletion and making sure fewer or no new unique nodes
are created after deletion. Finding an optimized deletion percentage for each
network is also crucial for better balancing anonymization and data utility.
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