
Master Computer Science

CLSEAVE: A Method for Cross-Lingual
Transfer Learning in Visual Entailment

Name: Ziyi Xu
Student ID: s3649024
Date: 22/07/2024

Specialisation: Data Science: Computer Science

1st supervisor: Gijs Wijnholds
2nd supervisor: Tessa Verhoef

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands



Abstract

Visual Entailment is a fine-grained image-text multimodal task determining whether a

text hypothesis entails an image premise. This task requires sophisticated integration

of computer vision and natural language processing techniques. Contrastive learning

pre-trainings have demonstrated significant success in VE, leveraging vast datasets and

advanced architectures to achieve high accuracy. However, these models are primarily

English-centric, highlighting a gap in cross-lingual applications due to the lack of

multilingual datasets and benchmarks.

To address this, we propose the Cross-Lingual Sentence Embedding Alignment on

Visual Entailment (CLSEAVE) pipeline 1. This pipeline fine-tunes the CLIP model

for VE, aligning sentence embeddings between English and translated text to create

a multilingual VE model. Our experiments include languages with varying linguistic

distances from English, such as German, Dutch, Japanese, Korean, and Chinese. Re-

sults indicate that CLSEAVE e↵ectively transfers VE capabilities across languages,

with performance influenced by linguistic distance and translation quality. This re-

search advances the application of VE to a broader linguistic context, emphasizing the

potential of CLSEAVE in bridging language gaps in vision-language tasks.

1
Our code is available in Github repository.

i

https://github.com/flying-tangerine/CLSEAVE
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Chapter 1

Introduction

1.1 Motivation

Visual Entailment (VE) is a novel vision-language multimodal task aimed at determin-

ing whether a text hypothesis entails an image premise in the premise and hypothesis

pair (Pimage, Htext), classifying their relationship into three categories: entailment,

neutral, and contradiction [Xie et al., 2019]. Entailment indicates that Pimage pro-

vides su�cient evidence to infer that Htext is true; contradiction means Htext and

Pimage conflict; neutral applies when there is insu�cient evidence to make a judg-

ment. VE is derived from Textual Entailment, also called Natural Language Inference

(NLI), and requires models not only to extract features from images and text but also

to integrate these two types of information for inference. The foundation for this task

lies in the advances in computer vision and Natural Language Processing (NLP), where

computer vision enables machines to understand images, and NLP allows machines to

comprehend text. Many similar machine-learning methods have been e↵ective in both

fields. VE, a multimodal problem, extends NLI to image language inference, thus rais-

ing the requirements for models and pushing the boundaries of vision-language tasks,

especially in the image-text domain.

To address VE, it’s promising to get a well-performing pre-trained vision-language

model and fine-tune it for the specific task. Vision-language contrastive learning is an

e↵ective pre-training objective that unifies vision and language into a shared latent

space to generate universal vision-language representations [Chen et al., 2022]. CLIP

[Radford et al., 2021] is a state-of-the-art contrastive learning pre-training model that

bridges the gap between computer vision and NLP. Although it was designed for image
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1.1. Motivation

classification without predefined labels, its training on a massive dataset of image-text

pairs with vast computational resources has given it a strong zero-shot capability

across various vision tasks, for example, in Visual Question Answering [Shen et al.,

2021] and Automatic Image Captioning [Mokady and Hertz, 2021]. Currently, the

best-performing model for the VE task is OFA [Wang et al., 2022], achieving a 91.2%

accuracy on the SNLI-VE test set, and prompt tuning [Yang et al., 2022b] based on

OFA also surpasses 90% accuracy. These models use an encoder-decoder structure, in-

tegrating image and text inputs into a Transformer-based architecture and featuring a

large number of parameters. For instance, the OFAlarge model, which holds the high-

est accuracy, contains 930M parameters. While these models demonstrate excellent

performance, they require significant computational resources for transfer learning.

Additionally, their structure, which processes images and text together, facilitates in-

formation extraction from both types of representations within the model. Among

the high-performing encoder-decoder models, CoCa [Yu et al., 2022] combines con-

trastive loss and captioning loss, making it highly e↵ective. Considering these factors,

we decided to attempt using CLIP directly for fine-tuning the VE task. To the best of

our knowledge, such research has not been conducted before. The closest approach is

using CLIP as a visual encoder in combination with vision-language pre-training for

the VE task as in [Shen et al., 2021].

Currently, most research on multimodal vision and language modeling focuses on

English because the most widely used multimodal datasets only include English text,

and there also is a lack of multilingual evaluation benchmarks [Pfei↵er et al., 2022].

The lack of model development and application in many languages is a common trend

in artificial intelligence research, raising issues of fairness and inclusivity [Bender et al.,

2021]. Creating powerful models like CLIP, which is trained on 400M image-text

pairs from the web, in other languages is challenging. However, CLIP’s training on

large and noisy web data provides it with strong generalization capabilities, and its

shallow model structure, which connects visual and text encoders via a contrastive

loss, gives it good alignment ability [Song et al., 2022]. Inspired by [Carlsson et al.,

2022] and [Chen et al., 2023], we aimed to utilize neural machine translation to the

existing English text hypotheses to avoid data scarcity issues, and achieve VE in other

languages based on CLIP by cross-lingual transfer learning. Since VE’s objective is

to determine the relationship between premises and hypotheses, the AlignVE model

[Cao et al., 2022] uses an alignment-based classifier to handle image and text features

for solving VE. CLIP also adopts an alignment approach to process image and text

embeddings within the same space. Thus, we applied this multimodal approach to the
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Chapter 1. Introduction

multilingual problem by aligning multilingual features from di↵erent languages within

a semantic space and proposing a method called Cross-lingual Sentence Embedding

Alignment on Visual Entailment (CLSEAVE).

1.2 Linguistics Distance

For choosing languages for the new model, we considered their linguistic distances

from English. We used the lang2vec database, a version of the URIEL project, which

represents languages with vectors based on various linguistic distances, including six

distances of typological, phylogenetic, and geographic relationships [Littell et al., 2017].

Syntactic distance involves the grammatical structure and syntax rules of languages,

while featural distance quantifies language similarity by calculating the cosine simi-

larity of feature vectors; both distances significantly impact textual transfer learning.

Genetic distance is based on historical and genealogical relationships between lan-

guages and a↵ects textual transfer learning. Phonological distance reflects the syllable

structure, stress, and intonation of languages, phonetic inventory distance describes

the set of phonemes in languages, and geographic distance is the physical distance

between the regions where the languages are used. The latter three distances have lit-

tle impact on text-based cross-lingual visual entailment. Combining language family

and distance, we selected German and Dutch, both belonging to the West Germanic

languages like English, and Japanese, Korean, and Chinese, which are more distant

from English, to conduct the transfer learning experiments. The six types of linguistic

distances between these languages and English are shown in Table 1.1.

Table 1.1: The six linguistic distances between five selected languages and English.

Distance German Dutch Japanese Chinese Korean

Featural 0.4 0.5 0.6 0.6 0.5
Syntactic 0.42 0.49 0.57 0.57 0.62
Genetic 0.4286 0.6 1 1 1
Geographic 0.1 0 1 1 0.4
Phonological 0.3277 0.5687 0.5687 0.5687 0.4638
Inventory 0.4364 0.4861 0.5983 0.5983 0.4866

1.3 Research Questions

Our research questions can be summarized as:
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1.3. Research Questions

1. How can CLIP be applied to Visual Entailment to create a robust English VE

model?

2. How can we propose an e↵ective pipeline to transfer the predictive capabili-

ties of the English VE model to other languages? What are the performance

di↵erences between the token embedding alignment and sentence embedding

alignment methods in this context?

3. How e↵ectively is this pipeline transferring VE-solving capabilities from English

to other languages with varying linguistic distances?

4. What factors influence the predictive performances of the newly transferred mod-

els, and to what extent does linguistic distance from English impact their per-

formances?

In the following sections, we will answer the above questions step by step. Chapter 2

introduces the datasets we used, compares the pre-training models CLIP and mBERT,

and reviews cross-lingual visual entailment research. Chapter 3 details our methods,

describing how we built the CLIP fine-tuned Visual Entailment (CLIP-VE) model, the

CLTEAVE method we tried in the first place, and how the CLSEAVE method transfers

CLIP-VE to other languages. Chapter 4 documents our two types of experiments

and Chapter 5 discusses the di↵erences in experimental results. The final chapter

summarizes the study and suggests future research directions.

4



Chapter 2

Background

In this chapter, we explore the existing research in the field of cross-lingual visual

entailment. We begin by introducing the datasets developed specifically for Visual

Entailment (VE). Next, we examine two powerful pre-training models: CLIP, which

is a vision-language model, and mBERT, a textual model, noting their similarities

and di↵erences. We then review related studies on cross-lingual visual entailment,

elaborating on the concepts of transfer learning and cross-lingual transfer learning,

and discussing the application of cross-lingual transfer learning in the field of Natural

Language Processing (NLP). We also highlight the crucial role of embedding align-

ment. Finally, we describe the methods used in our Cross-lingual Sentence Token

Embedding Alignment on Visual Entailment (CLSEAVE) model and underscore the

improvements it has achieved.

2.1 Data

As mentioned in our research questions, the initial step is to develop an e↵ective En-

glish VE model. Here, we introduce the datasets required for training the model, which

are associated with the tasks that VE stems from. The precursor task to VE, namely

Natural Language Inference (NLI)—involves determining whether a hypothesis entails

a given textual premise—a commonly used dataset is the Stanford Natural Language

Inference Corpus (SNLI) [Bowman et al., 2015]. The premises in this dataset are de-

rived from the image captions of the Flickr30k corpus [Young et al., 2014]. Flickr30k

was created to study visual denotations and includes 31,783 images depicting everyday

activities, events, and scenes, along with five captions per image provided by annota-
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2.1. Data

tors, amounting to a total of 158,915 captions. These captions o↵er relatively literal

scene descriptions rather than abstract summaries or timestamps of the photographs.

It has become a standard benchmark for sentence-based image descriptions. The hy-

potheses in the SNLI dataset were written by human workers, who were asked to

provide hypotheses with entailment, neutral, and contradiction relationships for each

premise, resulting in 570,152 (Ptext, Htext) pairs. To further validate the dataset, 10%

of the data was presented to four additional annotators, creating five labels for each

pair. The gold label was determined by a majority vote among these five judgments,

requiring at least three identical labels. If the agreement cannot be reached, the sen-

tence relationship is indicated with a ‘�’ hyphen symbol, which accounts for about 2%

of the cases. The structure of SNLI leads to the SNLI-VE dataset [Xie et al., 2019] for

VE tasks, which replaced the text premises in the SNLI dataset with corresponding

images in Flickr30k to the captions. This allows the formation of a large number of

(Pimage, Htext) pairs for training and makes it the most commonly used dataset for

VE tasks. The data distributions of SNLI and SNLI-VE are shown in Figure 2.1 and

Table 2.1. The distribution of the development and test sets is very similar in both

datasets, so only the test set is shown here.

Figure 2.1: The number of entailment, neutral, and contradiction relations in the SNLI and

SNLI-VE train and test sets. The SNLI train set has about 183,000 pairs in each category,

while the SNLI-VE has 176,000; the SNLI test set and dev set have about 3,300 pairs in each

category, while the SNLI-VE has 6,000.

It can be observed that the total number of entries in SNLI-VE is smaller than in

SNLI because SNLI-VE omits data that did not reach agreement and thus lacks a gold

label. Additionally, it excludes the 4k sentence pairs obtained from the Visual Genome
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Chapter 2. Background

Table 2.1: The number of image premise and text hypothesis pairs contained in each set

of the SNLI and SNLI-VE datasets.

Dataset SNLI SNLI-VE

Trian set 550,152 529,527
Dev set 10,000 17,858
Test set 10,000 17,901
Total 570,152 565,286

corpus [Krishna et al., 2016], which was still under construction at that time, in the

SNLI training set. The SNLI-VE dataset redistributes its sets based on image premises

to ensure that the development and test sets each contains 1,000 image premises and

that each split set has an equal distribution of the three labels. The SNLI-VE dataset

is used for fine-tuning CLIP on the VE task and validating the performance of the

fine-tuned model.

2.2 Basic models

2.2.1 CLIP

CLIP, short for Contrastive Language-Image Pre-training [Radford et al., 2021], is

an e�cient model for addressing image-text matching problems. It uses natural lan-

guage supervision to learn image representations, allowing it to avoid the need for

high-quality manually labeled datasets, which are often limited in size. For exam-

ple, commonly used datasets like MS-COCO [Lin et al., 2014], and Visual Genome

[Krishna et al., 2016] contain around 100k images, and YFCC100M [Thomee et al.,

2016]’s valid ones, and ImageNet [Deng et al., 2009] have about 15M. In contrast, CLIP

was trained on a self-constructed WebImageText dataset containing 400M image-text

pairs from the internet. Unlike unsupervised or self-supervised learning, CLIP not

only learns image representations but also links them with language. The structure

of CLIP, illustrated in Figure 2.2, is highly modular, consisting of separate image and

text encoders connected only through a loss function. In contrastive learning, a batch

of N image-text pairs was fed to the image and text encoders separately. CLIP was

trained to predict which of the N ⇥ N possible pairings actually occurred. Only the

diagonal pairs represented true matches in this N⇥N matrix. Therefore, the encoders

were trained to maximize the cosine similarity of image and text embeddings in the

multimodal embedding space for the diagonal pairs (Ii, Ti) while minimizing those for
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2.2. Basic models

the N2�N o↵-diagonal pairs (Ii, Tj,i 6=j). In this way, the model learns which images

and texts are related and which are irrelevant, thereby improving the discriminative

ability [Le-Khac et al., 2020].

Figure 2.2: The architecture of CLIP [Radford et al., 2021]. The image and text encoder

generates I and T vectors, which represent the embeddings of the image and text batch. And

they form a matrix by dot product, where Ii · Ti represents product of the matched image

and text pairs in blue. Those unmatched o↵-diagonal elements are in grey.

CLIP’s image encoder can be either a ResNet [He et al., 2015] or a Vision Trans-

former (ViT) [Dosovitskiy et al., 2020]. In this study, we chose the openai/clip-vit-

base-patch16 model, with a base-sized ViT with 16⇥ 16 patches, for all used CLIP

models. We chose this model because, with a similar number of parameters, the CLIP

model with a ViT image encoder performs better than the one with a ResNet image

encoder. In the ViT series, the B/16 variant, which has 149 million parameters, pro-

vides greater data processing capabilities compared to the B/32 model, which has 86

million parameters. Moreover, it does not require as much computational resources as

the L/14 model, which has 428 million parameters. It balances the trade-o↵s between

performance and computational requirements. The CLIP text encoder is a Trans-

former [Vaswani et al., 2017] with GPT-2 architectural modifications [Radford et al.,

2019], using a transformer encoder architecture. It is structured with 12 identical

layers, each integrating an 8-head self-attention mechanism and a position-wise fully

connected feed-forward network, yielding an output of 512 dimensions. The text input
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Chapter 2. Background

to the CLIP text encoder starts with an [SOS] token and ends with an [EOS] token.

The output of the topmost transformer layer represents the embeddings for each token,

with the [EOS] token’s embedding serving as the feature representation of the text

sequence. This embedding is then linearly projected into the image-text multimodal

embedding space, becoming the sentence embedding. Since both the CLIP image and

text encoders are transformer-based, we refer to them as image and text models in the

following sections to avoid confusion with the encoder module in transformers.

2.2.2 mBERT

mBERT, which stands for Multilingual Bidirectional Encoder Representations from

Transformers [Devlin et al., 2019], has strong language understanding capabilities and

can be used for various downstream NLP tasks, including NLI. Its structure is the

same as BERT, which is a bidirectional transformer [Vaswani et al., 2017], often re-

ferred to as a ‘transformer encoder’. It has 12 identical layers, each with a 12-head

self-attention mechanism and a position-wise fully connected feed-forward network.

The self-attention mechanism allows each position in the encoder to attend to all

positions in the previous encoder layer, and its multi-head architecture captures long-

range dependencies in text and allows for parallel processing. Residual connections

link layers, and allow the model to selectively pass through or bypass information

from the previous layer, facilitating more e�cient information flow across layers. For

smooth computation in residual connections, the embedding layer output dimension

and hidden size are both 768. During pre-training, it utilized the entire Wikipedia

dump for 104 languages, covering languages with the most expansive range of data,

and applied under-sampling and over-sampling techniques to balance high-resource

and low-resource languages. The input begins with an [CLS] token, with [SEP] token

to separate di↵erent tokenized sequences and to end. Additionally, it conducted two

unsupervised tasks: Masked Language Modeling (MLM) and Next Sentence Predic-

tion (NSP). MLM requires the model to predict masked tokens based on their last

hidden state, learning deeper token representations. NSP asks the model to determine

if two text sequences are adjacent, helping the model understand sentence relation-

ships. Specifically, we chose the google-bert/bert-base-multilingual-cased for

this study due to its multilingual pre-trained support in German, Dutch, Japanese,

Korean, and Chinese, and addresses normalization issues in languages with non-Latin

alphabets.
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2.2. Basic models

2.2.3 Comparison

The CLIP model includes independent image and text models, making it easy to ex-

tract the text model for cross-lingual visual entailment. The CLIP text model and

mBERT are both based on a bidirectional transformer, featuring two main compo-

nents: the embeddings and the encoder. The CLIP text model’s input comprises only

the sum of token embeddings and position embeddings, without segment embeddings.

Its training logic is that when people read a word and see its corresponding image,

such as ‘dog’ and a picture of a dog, they should evoke the same concept. In the

model, this is reflected in a shared embedding space where images and text describing

the same object have high similarity. This principle can be applied not just to multi-

modal tasks but also to multilingual ones. The CLIP text model’s pre-training focuses

on understanding di↵erent representations without considering sentence relationships,

hence it lacks segment embeddings to mark di↵erent token types. The encoders of

both the CLIP text model and mBERT consist of 12 layers, and the structure of each

layer is shown in Figure 2.3.

Figure 2.3: The structure of each layer of the CLIP text model encoder and mBERT

encoder, and each encoder consists of two main parts: an attention mechanism and a feed-

forward network. They have similar self-attention, containing Query, Key, Value and Output

projections, and the same feed-forward networks with two linear functions and a GELU

activation function.

Both models incorporate two blocks centering self-attention mechanism and feed-

forward network but di↵er in connection methods. Their self-attention mechanisms

build along the same logic, and feed-forward networks are exactly the same. In the
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Chapter 2. Background

CLIP encoder layer, the process begins with normalization, then moves to the central

block, and finally adds the initial state together. In mBERT, the process starts with

the central block, goes through a dropout layer with the probability of 0.1, and then

performs addition and normalization.

2.3 Cross-lingual Visual Entailment

Transfer learning involves extending a model thoroughly trained on a rich dataset for

a specific task, and applying it to other tasks to enhance the model’s generalization

capabilities [Ruder et al., 2019]. Cross-lingual transfer learning is the process of adapt-

ing a model to a new language by leveraging data and tasks from a source language

[Alyafeai et al., 2020]. This technique can address the lack of labeled training data

for low-resource languages, thereby improving the model’s ability to handle these lan-

guages and conserving computational resources. The NLP field predominantly focuses

on English processing and understanding, however, enabling well-performing models

to adapt to other languages can help mitigate the English-centric bias.

In NLP, cross-lingual transfer learning is widely applied. For instance, [Wang et al.,

2023] attempted to use large language models for zero-shot cross-lingual summariza-

tion without fine-tuning specific language pairs. Similarly, [Abdalla and Hirst, 2017]

proposed using a single linear transformation with word pairs to capture sentiment

relationships between languages, facilitating cross-lingual sentiment analysis without

precise translations. The XLDA [Singh et al., 2019] method, which replaces parts of

the input text with its translations, was introduced to enhance model performance in

cross-lingual NLI and question answering. Beyond textual information, cross-lingual

transfer learning is also applied in visual-language understanding. This field is rela-

tively new, and the limited availability of datasets has constrained research, leading

most studies to focus on areas like image and video captioning and visual question an-

swering. In cross-lingual visual grounding, [Dong et al., 2021] created a French dataset

to transfer knowledge from a trained English model to a French model, achieving sim-

ilar accuracy to the original model.

Embedding Alignment is a key method for cross-lingual transfer learning. By

representing words or sentences from di↵erent languages in a shared semantic space,

cross-lingual embeddings facilitate the transfer and sharing of knowledge and informa-

tion across languages. For instance, ‘dog’ in English and ‘hond’ in Dutch are mapped

to similar vectors in the semantic space. This cross-lingual transfer learning approach

can be seen as optimizing similar objectives. Research indicates that model di↵erences
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2.3. Cross-lingual Visual Entailment

in this field mainly come from the various types of embedding alignment methods

used, while the choice of architecture, hyperparameters, fine-tuning, and additional

techniques only produce fine-grained di↵erences [Ruder et al., 2017]. Depending on

data types, there are three embedding alignment tasks: word alignment, sentence

alignment, and document alignment. Word alignment, often built with dictionaries

to create parallel word corpora, is the most commonly used method. The other two

methods typically require machine translation to construct parallel corpora.

In the VE field, there is limited research due to dataset constraints. In our study,

we used machine translation to generate parallel corpora, which helped alleviate this

problem. For cross-lingual transfer learning in VE tasks, the focus is on transferring

the text hypothesis, and we aimed to select the most appropriate alignment method.

The CLiCoTEA [Karoui et al., 2023] uses contextualized token alignment, extract-

ing token embeddings of the source and target languages from fine-tuned ALBEF

[Li et al., 2021] and mBERT, respectively, for teacher-student learning. Although it

achieves good results in evaluation, it employs original and transferred models with

consistent structures and covers a limited kind of language from IGLUE [Bugliarello

et al., 2022]. The token alignment can be seen as a more granular method than word

alignment. Our CLSEAVE method, on the other hand, uses the CLIP-VE model and

pre-trained mBERT to extract sentence embeddings for cross-lingual visual entailment.

We extracted the final hidden state projection from the special end token of a tok-

enized sequence, instead of token-level information. CLSEAVE successfully transfers

knowledge between two structurally di↵erent models and extends cross-lingual results

to languages that are less commonly used as benchmarks. We also analyzed the impact

of linguistic distance and machine translation on cross-lingual visual entailment.
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Chapter 3

Methodology

Our objective is to transfer the knowledge from the CLIP model, particularly its

ability to handle Visual Entailment (VE) tasks, from English to other languages.

By aligning the embeddings of the CLIP text model with those of textual models for

di↵erent languages, we can achieve this goal, thereby saving pre-training resources and

time. Additionally, we aim to investigate the impact of linguistics distance on transfer

learning e↵ectiveness. To transfer CLIP’s comprehensive abilities in image and text

from English to other languages, we initially planned to first transfer the pre-trained

model and then fine-tune it on the VE task. However, we changed our approach due

to the large size of the pre-trained model and the substantial computational resources

required by multilingual-CLIP [Carlsson et al., 2022]. Instead, we fine-tuned the CLIP

model on the VE task (CLIP-VE) and then transferred the resulting CLIP-VE model

across languages.

Focusing on the semantic content of the text, we tried to extract semantically

equivalent word pairs from sentences in di↵erent languages, and then aligned the to-

ken embedding of these word pairs between CLIP-VE text model and mBERT. This

method is described as Method One: CLTEAVE in Section 3.2, but it performed

poorly in tests. The results made us revisit and compare the two textual process-

ing models. Based on the analysis, we extracted sentence embedding for alignment

training. This approach yielded predictions that were comparable to or slightly better

than the original model’s performance. We document it in Section 3.3 Method Two:

CLSEAVE.

13
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3.1 Preprocessing & Benchmark Model

3.1.1 Data Preprocessing

We need VE datasets for transfer learning to the selected five languages. Currently,

there are no human-generated multilingual training sets for VE or even for NLI tasks.

XNLI [Conneau et al., 2018], which is a Cross-Lingual Natural Language Inference

Evaluation Set, has released a machine-translated training set. However, it only in-

cludes (Ptext, Htext, label) without image ID information, making it unsuitable for

matching Ptext’s images and generating the VE dataset directly. XNLI is a crowd-

sourced collection of 5,000 test pairs and 2,500 dev pairs for the MultiNLI corpus

[Williams et al., 2018], extended to 15 languages by translators. Among the five lan-

guages we focus on, only German and Chinese are covered by XNLI’s fifteen languages.

Another cross-lingual evaluation, the IGLUE benchmark [Bugliarello et al., 2022], in-

cludes a VE validation set but only covers Arabic, Spanish, French, and Russian.

Therefore, we translated the textual hypotheses from the SNLI-VE train, develop,

and test sets into German, Dutch, Japanese, Korean, and Chinese using Google Neu-

ral Machine Translate [Wu et al., 2016]. This resulted in new VE datasets in five

languages for transfer learning and validation to the final performances.

3.1.2 CLIP fine-tuning on Visual Entailment task

CLIP [Radford et al., 2021] is a powerful model that, through extensive training on

pairs of images and texts, not only can predict the most relevant text for a given image

but also possesses a significant capability in understanding both images and texts.

Since CLIP focuses on the similarity between a list of images and a list of texts, it

identifies the best-matching image-text pair from an image-text matrix. This structure

does not directly apply to the VE problem, which is a three-class classification task.

Therefore, we augmented CLIP with a three-layer MLP, resulting in the CLIP-VE

model. The training structure of CLIP-VE, as shown in Figure 3.1, consists of two

parts, encoding and matching. This model trained in English text premises and served

as a cross-lingual transfer learning baseline.

In the encoding stage, we used the CLIP image and text models to obtain em-

beddings for the hypothesis and premise, respectively. The image model preprocesses

images by resizing them to 224 pixels using interpolation and converting them to the

RGB color format. The text model, on the other hand, can handle a maximum length

of 77 tokens. Thus, there is no restriction on the input image, and the text model’s
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Figure 3.1: The CLIP-VE model architecture. The encoding part generates hypothesis and

premise representations, while the matching part combines them as the input to a three-layer

MLP, which has 128, 128, and 3 neurons in each layer respectively.

length capacity is su�cient for regular needs. The premises in the SNLI-VE dataset

that we used from Section 2.1 all have lengths shorter than 77 tokens.

After obtaining the image and text features, to ensure a one-to-one correspondence

between images and texts, and to move beyond the original matrix-based pairwise

comparison approach, we drew inspiration from [Mou et al., 2015] and [Liu et al.,

2016]. We employed the concatenation of the two representations, along with their

element-wise di↵erence and product, as the input to a three-layer fully connected

multilayer perceptron. This approach helped to aggregate information and extract

relationships between the premise and hypothesis. Since the output of two encoders

is 512-dimensional, we can easily perform element-wise operations. The probability of

the relationship r 2 {entailment, netural, contradiction} is computed by the following

equations:

P (r|hhyp, hpre) = Wa+ b (3.1)

a = MLP(f) (3.2)

f =
⇥
hhyp, hpre, |hhyp � hpre|, hhyp � hpre

⇤
(3.3)

hhyp and hpre are the hypothesis and premise embedding vectors, respectively. And

f is the input combination to the three-layer MLP. For other component settings,

we referred to [Choi et al., 2017], applying ReLU non-linear activation to the first
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two layers of perceptrons, and adding batch normalization and dropout layers both

before and after them. Since PyTorch [Paszke et al., 2019] cross entropy loss function

internally applies softmax and negative log-likelihood loss, it expects unnormalized

logits but not the possibilities. So we passed the raw output of the third layer together

with the gold label directly to compute the cross entropy loss.

During fine-tuning, we froze the image model while updating the text model and

MLP. This approach balances adaptability with computational e�ciency and allows

the model to gain a deeper understanding of the text, making it suitable for our cross-

lingual transfer learning goal. Our final CLIP-VE baseline model achieved a test loss

of 0.6550 and test accuracy of 73.17%. The changes in loss and accuracy during the

training and validation process are illustrated in the following Figure 3.2. We set early

stopping for the training, halting when the latest validation loss was higher than the

previous epoch’s result. Although the validation accuracy slightly increased when the

validation loss first decreased, our large training dataset makes it easy to overfit if

training continues, which would degrade the model’s performance. With this setting,

our model trained for six epochs. For additional details on other hyperparameters,

please refer to Table A.1.

Figure 3.2: The train and validation performances of CLIP-VE. It shows the loss on the

left vertical axis, and accuracy on the right vertical axis during six epochs with early stopping.

The blue line is training loss, the green stands for validation loss, the red is training accuracy,

and the yellow is for validation accuracy. The final training loss is 0.5511, validation loss is

0.6630, training accuracy is 77.92%, and validation accuracy is 72.89%.
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3.2 Method One: CLTEAVE

CLTEAVE stands for Cross-lingual Token Embedding Alignment on Visual Entail-

ment, which consists of three steps, with its architecture illustrated in Figure 3.3.

First, we fine-tuned the CLIP model on the Visual Entailment task to obtain the

CLIP-VE model as shown in Section 3.1.2. Next, we trained a multilingual autoen-

coder capable of converting hidden state dimensions using sentences and word pairs

from five languages. Finally, we utilized token embeddings from synonymous word

pairs to train the mBERT and the autoencoder. These were combined with the CLIP

image model and MLP to complete the cross-lingual transfer of the CLIP-VE model.

Figure 3.3: The CLTEAVE uses cross-lingual token embedding alignment to update the

mBERT and the AutoEncoder together, and then combine it with the original CLIP image

model and MLP to process other languages. The mBERT model with a pooling layer can

extract CLS embedding, but this sentence-level information was not used in training. Instead,

token-level information was used to update the new text model in blue.

3.2.1 Cross Lingual Token Embedding Alignment

Cross-Lingual Token Embedding Alignment involves two main steps: first, obtaining

word alignment pairs between source and target sentences, and second, training the

new model with the extracting token embeddings from these pairs.

Word Alignment

To extract token embeddings, it is essential to identify which words in two seman-

tically equivalent sentences correspond to each other. For this purpose, we used the

awesome-align tool [Dou and Neubig, 2021] to get word pairs. This model is designed
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to extract word alignments from BERT-based models, enabling e↵ective word align-

ment across di↵erent languages by leveraging BERT’s powerful contextual embeddings

and achieving robust performance in zero-shot settings.

The specific steps involved tokenizing the premise sentences using the model’s

tokenizer to obtain token IDs and a mapping between subwords and their original

words. Next, the token IDs of the source and translated (target) sentences were input

into the model. The similarity between these tokens was then evaluated using the dot

product of their hidden states. This process resulted in a probability matrix indicating

the similarity between each source subword and each target subword. From this, we

selected the most similar subwords from both languages to determine subword pairs,

which were then mapped back to their original words. The output was in a set of

aligned word pairs, each represented as a tuple of source and target word indices.

Token Embedding

Using the five-lingual SNLI datasets generated in Section 3.1.1 and their word align-

ment pairs with the English SNLI datasets, we aligned the contextualized token em-

beddings between the CLIP-VE text model and mBERT. These token embeddings

came from the last hidden state of BERT and BERT-based models, encapsulating the

final feature information and providing strong text comprehension capability, usually

considered as token embeddings.

The token embedding alignment was our initial approach. We came up with this

idea because recent research (CCLM) demonstrated that multilingual and multimodal

pretraining essentially align two di↵erent views of the same object into a common

semantic space [Zeng et al., 2023]. Therefore, for our purpose, aligning synonymous

token embeddings can achieve cross-lingual visual entailment. As shown in Figure

3.6, we used the mBERT with a pooling layer, in the middle of the image, as the

text processor in this method. We extracted token embeddings from the processor

encoder’s last hidden state, which is the output of the first step in the figure. To

maintain consistency between CLIP-VE and mBERT models, we did not alter the 12

hidden layers in both models. To address the mBERT output dimension that does not

match that of CLIP, we added a multilingual autoencoder after mBERT’s last hidden

state, which will be detailed in Section 3.2.2.

In the preprocessing stage, to obtain the encoder’s outputs and extract the relevant

token embeddings for training specific language BERT models, we adapted the token

alignment dataset and model from the CLiCoTEA pipeline [Karoui et al., 2023] to bet-

ter suit our needs. We used three inputs: source language sentences, target language
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sentences, and word pairs. First, we tokenized the source and target sentences sepa-

rately using the CLIP and mBERT tokenizers to get token IDs and attention masks.

Then, we converted word pairs into token pairs by aligning the first occurrence token

in the sentences, ensuring accurate mapping. We also built unique token indexes for

each batch to track the token positions in sentences, helping to maintain the correct

alignment between source and target tokens throughout training. The yellow triangle

in Figure 3.4 depicts these processes.

Figure 3.4: The architecture for the cross-lingual token embedding alignment and Mul-

tilingual Autoencoder. The yellow rectangular box is the data loading and preprocessing of

the former, and the blue shadow shows the latter.

During the training phase, the source language token IDs and attention masks were

fed into the fine-tuned CLIP-VE text model, while the target language equivalents were

provided to the mBERT model. Aligned token embeddings were extracted from the

last hidden states of both models using token indexes from the preprocessing step. We

froze the CLIP text model, and utilized the MSE loss between the token embeddings of

both models to update mBERT and the multilingual autoencoder. To streamline our

training process, we used PyTorch-Ignite [Fomin et al., 2020], a high-level library that

simplifies and enhances training workflows in PyTorch. Ignite’s handlers automatically

saved the two most e�cient models, while the Engine and Events classes allowed us

to define training loops and attach custom behaviors like logging and learning rate

adjustments. Additionally, the ProgressBar helped us track training progress visually,

and integration with Weights & Biases [Biewald, 2020] enabled seamless logging and
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visualization of training metrics. This approach reduced boilerplate code and improved

the e�ciency and maintainability of our training process.

3.2.2 Multilingual Autoencoder

The final and simplest module we built in CLTEAVE was the multilingual autoencoder.

This unsupervised model encoded 768-dimensional input into 512 dimensions and then

decoded it back to the original size. We needed this because the token embeddings of

the CLIP-VE text model were 512 dimensions, while those of mBERT were 768. Using

the encoder from the multilingual autoencoder, we converted mBERT’s last hidden

states to 512 dimensions, matching the size of CLIP-VE’s hidden states.

The architecture of the multilingual autoencoder was straightforward. Its encoder

and decoder each consisted of a symmetrical single-layer perceptron. This perceptron

included only a linear layer and a ReLU activation function. We chose a linear layer

instead of a convolutional one or other methods because the target dimensionality was

greater than half of the input dimension and much smaller than it. Thus, padding

and pooling were not suitable for dimensionality reduction in this context.

The autoencoder dataset was built based on the token embedding dataset in the

last subsection. We still needed to input source sentences, target sentences, and word

pairs to generate input IDs and attention masks for the target language, and token

pairs. In addition to the original token embedding dataset, we loaded the pre-trained

mBERT model to process the target language information and get the last hidden

state. This data preprocessing step is depicted by the blue shadow in Figure 3.4.

In the cross-lingual transfer learning setup, the autoencoder acted as a data pre-

processor, taking the 768-dimensional last hidden states as input and output its 512-

dimensional projection. Its specific place in the method is framed by dotted lines in

Figure 3.4. We input combined corpora from five languages to our autoencoder, allow-

ing it to handle multiple languages simultaneously. And we used the Mean Squared

Error (MSE) between its input and output to update. The training loss of this mul-

tilingual autoencoder was 0.1529.

3.3 Method Two: CLSEAVE

CLSEAVE, short for Cross-lingual Sentence Embedding Alignment on Visual Entail-

ment, has two steps, and the architecture of this method is illustrated in Figure 3.5.

First, we employed the fine-tuned CLIP-VE model, as detailed in Section 3.1.2. Then,
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following the structure of the CLIP text model, we constructed a student model that

used mBERT to extract text information and trained with cross-lingual sentence em-

bedding alignment. Finally, replacing the original text model with this new student

model enabled it to process premises in other languages.

Figure 3.5: The CLSEAVE uses cross-lingual sentence embedding alignment to train the

student model to process other languages, then combine it with the original CLIP image

model and MLP. The student model in purple consists of the mBERT model, a SEP sentence

embedding extraction, and a linear projection.

3.3.1 Cross Lingual Sentence Embedding Alignment

Upon obtaining the CLIP-VE model in Section 3.1.2, we selected the mBERT model

for cross-lingual visual entailment, aiming to extend the task-solving capabilities of

the CLIP-VE model to other languages. We chose mBERT because the CLIP text

model is BERT-based, so they share similar characteristics. Moreover, mBERT is

proficient in understanding multiple languages. After the embeddings and encoder

modules, both models generate a last hidden state, which provides a comprehensive

depiction of the input text and contains contextualized representations for each token

that can serve as token embeddings. They also include sentence-level information: in

mBERT, the [CLS] token embedding in the last hidden state summarizes the entire

input sentence, making it commonly used for classification tasks. In CLIP, the [EOS]

token embedding in the last hidden state is extracted, allowing the model to process

and consider all preceding tokens.

Our experiments showed that the student model, constructed by following the CLIP

processing steps on mBERT, achieved the best performance. Specifically, we used the
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mBERT [SEP] token’s last hidden state projection as the sentence embeddings and

aligned it with the projection from the CLIP [EOS] token’s last hidden state for

transfer learning. In our model, there was only one sentence in input, so the only

[SEP] token in mBERT acts as a special terminal token. This also partially explains

the ine↵ectiveness of the [CLS] embedding, since the classic usage of [CLS] is like in

NLI tasks, BERT connects two sentences using [SEP] token and uses [CLS] token’s

final hidden state for classification. VE task attempts to infer the relationship between

(Pimage, Htext), so there is only one sentence of text input. Our model implies aligning

the terminal token embeddings, which contain comprehensive sentence information,

can e↵ectively facilitate cross-lingual visual entailment.

Figure 3.6: Comparison of the architecture between the CLIP text model, mBERT with

a pooling layer, and our assembled student model.

The structure of the student model is shown in Figure 3.6. We used BERT as the

text processor but did not use its pooling layer and activation. Instead, we followed the

CLIP text model’s procedures to obtain pooled output and text embeddings. The spe-

cific steps are: first, we added layer normalization to the last hidden state of mBERT

and then extracted the [SEP] embedding instead of the [CLS] embedding. A crucial

step here involved reducing the dimensionality of the mBERT outputs, which are 768

dimensions, to match the 512-dimensional projection in CLIP. This was achieved by

applying a linear layer for dimension reduction, instead of configuring a linear layer of

the same dimension as both the original CLIP and mBERT models and then adding

an autoencoder as done in the CLTEAVE method. Thus, we obtained the sentence

embedding.
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We paired sentences from the translated dataset in Section 3.1.1 with synonymous

sentences from the original SNLI-VE dataset in Section 2.1 as input and froze the

CLIP-VE text model. The entire student model was updated using the MSE loss

between the sentence embeddings from the CLIP text model and the student model.

After obtaining the text processing model for other languages, replacing the English

CLIP-VE text model with it achieved favorable VE test performances, which will be

further elaborated in Section 4 Experiments.
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Experiments & Results

4.1 Sentence Embedding vs. Token Embedding

Our CLSEAVE method extracts sentence embedding from English sentences and their

parallel corpora, transferring the CLIP text model’s understanding of English to other

languages. This constructs a new student model that utilizes mBERT as the text

processor and projects the last hidden state of the sequence’s final token into an em-

bedding space. We then combine it with the CLIP image model and MLP classification

to achieve cross-lingual visual entailment. In this experiment, we replaced the text

processor in CLIP-VE with the mBERT trained with the CLTEAVE method described

in Section 3.2. The module combined the token embedding alignment-trained mBERT

with the CLIP-VE text model’s layer normalization and linear projection. Then, we

compared its performance with the model trained by CLSEAVE.

Since BERT’s output is 768 dimensions and CLIP’s is 512, we padded the 512-

dimensional weights and bias parameters to 768 dimensions. We also attempted to use

the decoder part of the Autoencoder from Section 3.2.2 for dimensional transformation.

We conducted this experiment in German, and the results show that using both

dimensional conversion methods, the test prediction accuracy for the combined module

is 33.32%. Given that VE has three classification categories, this result is the same as

a random baseline. The results obtained using this approach were identical to those

achieved by directly using the CLTEAVE method, which involves the combination of

mBERT and an autoencoder. Since this method did not lead to any improvement,

we decided not to pursue further experiments with it and instead continue with the

CLSEAVE method. The results for the CLSEAVE approach are presented in the next
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section.

4.2 CLSEAVE to Five Languages

In this experiment, we input the SNLI-VE and SNLI-VEother language datasets and

used the CLSEAVE pipeline to perform transfer learning on CLIP-VE and create

CLIP-VEother language models. We selected five languages for this purpose: Dutch

and German, which are linguistically close to English, and Japanese, Korean, and

Chinese, which are more distant.

(a) (b)

(c) (d)

Figure 4.1: Figure (a) shows the changes in the learning rate to the German model, Figure

(b) shows the average training MSE to five language models, Figure (c) and (d) show the

validation MSE and MAE during nine epochs.

We conducted parameter experiments for epochs, batch size, learning rate and
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scheduler, gradient accumulation, and gradient clipping. We chose the optimal pa-

rameters for all subsequent experiments, which set epochs=22 with early stops at

9 epochs, batch size=128, learning rate=1 ⇥ 10�4, a linear scheduler with warmup,

and without gradient accumulation or gradient clipping. The experimental results are

shown in the above figure. For ease of comparison, the learning rate changes in all

five language experiments were consistent. CLIP-VEGerman is used as an example

here. We performed logarithmic scaling on the y-axis of the average training loss and

ignored outliers in the chart scaling for clarity. At the end of the training, the training

loss for each language was between 0.013 and 0.014. Due to the logarithmization, the

minimum y-axis value is greater than 0, and the long tail of the curve extends below

the y-axis. We also applied log scaling to the y-axis for validation MSE and MAE

to better display relative relationships between language models. The MSE for each

language model was between 7.6 and 8.3, and the MAE was between 46 and 48, with

the alignment training target being MSE.

Table 4.1: Test loss and test accuracy for original English CLIP and the five language

transfer models

Language Test loss Test accuracy

English 0.6550 73.17%
German 0.6761 73.19%
Dutch 0.6853 71.35%
Japan 0.7149 70.82%
Chinese 0.7161 69.94%
Korean 0.7391 68.75%

As shown in Figure 4.1, the final transfer learning results on the validation set

for each language model are quite similar, from best to worst are Dutch, German,

Japanese, Chinese, and Korean. CLIP-VEDutch had an MSE of 7.619 after 9 epochs,

while CLIP-VEKorean had 8.335. The training MSE of each model was around 0.014,

but the validation set was around 8, showing a significant di↵erence. We also observed

that when the validation MSE decreased during training, the test accuracy did not

necessarily increase, indicating that the data is very complicated, and the transferred

model is prone to overfitting on certain portions of the corpus. According to Table 4.1,

the test set performance ranking is German, Dutch, Japanese, Chinese, and Korean.

Unlike the validation set results, CLIP-VEGerman became the best-performing model,

with accuracy slightly exceeding that of the English source model, while CLIP-VEDutch

dropped from first to second.
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Discussion

This chapter will discuss the experimental results and answer research questions indi-

vidually.

For question 1, we combined the representations obtained from the CLIP image and

text models element-wise and fed them into a three-layer classification MLP, creating

the CLIP-VE model. The specific model structure is detailed in Section 3.1.2. The

CLIP-VE model achieved a test accuracy of 73.17%, surpassing the EVE-Image model

(71.56%) [Xie et al., 2019] and the AlignAE model (72.45%) [Cao et al., 2022] designed

specially for the VE task.

For question 2, we constructed a student model by combining the extracted termi-

nal token’s hidden state method and the linear projection from the CLIP text model

with mBERT, using CLSEAVE to train the CLIP-VEother language models. The spe-

cific steps of the CLSEAVE pipeline are outlined in Section 3.3. From Experiment 1,

it is evident that the CLTEAVE method cannot transfer the predictive capabilities of

the CLIP-VE model. The test accuracy of the CLTEAVE transferred German model

is 33.32%, while that for CLIP-VE is 73.17%, for CLIP-VEGerman model trained by

CLSEAVE is 73.19%, and the average performance of CLIP-VEother language mod-

els is 70.81%. Despite using the parameters of the source model, aligning the token

embeddings from the final layer outputs of the CLIP text model and mBERT did

not provide su�cient information for transfer learning. This indicates that token em-

bedding alignment is unsuitable for cross-lingual visual entailment with CLIP, and

sentence embeddings are ideal for this task.

For question 3, according to the results in Figure 4.1, the German and Dutch

models perform better than the Japanese, Chinese, and Korean models. The CLIP-
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VEGerman even slightly surpasses the CLIP-VE model, achieving a test accuracy of

73.17%, and the CLIP-VEDutch’s accuracy is only 1.82% lower than the source model.

Languages that are less closely related to English and have greater linguistic distances

show poorer performance after transfer. The CLIP-VEJanpanese and CLIP-VEChinese

models both have accuracies around 70%. The CLIP-VEKorean model performs the

worst in our experiments, with a test accuracy of 68.75%.

For question 4, each language’s cross-lingual visual entailment learning e↵ectiveness

is influenced by the performance of the CLIP-VE model, hyperparameter settings,

neural machine translation, and linguistic distance. Since we used the same CLIP-VE

source model and hyperparameters in the experiments, the di↵erences in results are

primarily due to machine translation quality and linguistic distance from English. As

the training and evaluation datasets were machine-translated, and no suitable Visual-

Language datasets are available, we cannot rule out the impact of machine translation

quality on the performance of CLIP-VEother languages models.

The quality of machine translation is a↵ected by the richness of bilingual corpora.

The five languages we selected are all considered high-resource languages. Among

them, German, Japanese, and Chinese are classified in the most resource-rich cate-

gory, 5, according to the number of language resources by [Joshi et al., 2020]. These

languages have a dominant online presence and receive massive industrial and govern-

mental investments in developing resources and technologies, making them rich-source

languages. Dutch and Korean are classified in the fourth category; they have abundant

linguistic resources, but comparatively limited labeled data. Among the 2485 classified

languages, only seven are in the most resource-rich, 5 category, while 18 belong to the

very resource-rich, 4 category.

As shown in Table 1.1, in terms of linguistic distance, German and Dutch are the

first and second most similar languages to English, aligning with our experimental

results. Japanese and Chinese have the same featural, syntactic, and genetic distances

from English in the URIEL dataset [Littell et al., 2017]. The cross-lingual transfer

learning results for these two languages are also very similar, with Japanese perform-

ing slightly better than Chinese, ranking third and fourth respectively. Korean, in

comparison to Japanese and Chinese, is syntactically more distant from English but

is closer in featural distance. The combined impact of linguistic distance and machine

translation quality shows that Korean has the poorest cross-lingual visual entailment

results among the five languages. This might be because large-scale machine transla-

tion parallel databases for Korean and English are still under development, whereas

databases for Chinese [Tian et al., 2014] and Japanese [Morishita et al., 2022] have
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already been publicly released.

Overall, our transfer experiments achieved good accuracy results, with di↵erences

within 5% of the source model. As the selected languages are high-resource, the model

performance di↵erences are mainly influenced by linguistic distance.
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Conclusion

6.1 Summary

This thesis proposes the Cross-Lingual Sentence Embedding Alignment on Visual

Entailment (CLSEAVE) pipeline, o↵ering an e�cient cross-lingual transfer learning

framework. To utilize this framework with CLIP, we first equipped it for VE tasks by

adding a classification MLP after its separate image and text models and fine-tuning it

into the CLIP-VE model. We aligned the sentence embeddings extracted from parallel

corpora by the CLIP text model and the student model, enabling the student model,

centered on mBERT for text processing, to gain equivalent processing capabilities and

thus achieve cross-lingual transfer learning. In this process, we consider the hidden

state of the final token in the tokenized sequence as a comprehensive feature of the

sequence and project it to be the sentence embedding. Apart from CLSEAVE, we also

explored CLTEAVE, which uses the last hidden state as token embeddings for transfer

learning.

Since there is currently no available multilingual textual training set or multilin-

gual vision-language test set, we constructed SNLI-VE datasets in German, Dutch,

Japanese, Korean, and Chinese using neural machine translation for our experiments.

The results demonstrate that CLSEAVE can transfer the CLIP-VE model to other

languages with similar zero-shot performance, and the model’s performance in di↵er-

ent languages is mainly influenced by linguistic distance from the source language and

also by the quality of the machine translation.

Due to the lack of multimodal multilingual datasets, research on cross-lingual visual

entailment is limited, and languages are restricted to those in existing benchmark test
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sets. Our experiments show that CLSEAVE can achieve results comparable to the

source model on machine-translated datasets. We included German and Dutch, which

belong to the same West Germanic language group as English, as well as Japanese,

Korean, and Chinese, which have a greater linguistic distance from English. This not

only broadens the scope of target languages for cross-lingual visual entailment but

also indirectly indicates that CLSEAVE can adapt to various languages. CLSEAVE

does not rely on identical model structures; we used it to transfer VE capabilities from

CLIP to mBERT, which has a di↵erent structure. Additionally, it only takes two and

a half hours to complete a training on a single GPU, saving a significant amount of

time compared to training a pre-trained model for a new language.

6.2 Future Work

We initially planned to apply CLSEAVE for cross-comparison, transferring not only

from English CLIP-VE to German, Dutch, Japanese, and Korean, as shown in this

thesis, but also from a fine-tuned Chinese-CLIP [Yang et al., 2022a] to these four

languages. This would allow us to compare the e↵ects of transferring from English

and Chinese source models to languages that are either closer to or farther from

their respective linguistic distances. However, due to limited time, we could not train

the new fine-tuned Chinese-CLIP model or perform the transfer training for each

language. Nevertheless, we completed preliminary scripts for training the Chinese-

CLIP-VE model, which can serve as a foundation for future work.

Furthermore, the training and evaluation in this thesis were conducted on trans-

lated datasets. Using a test set translated or corrected by a human translator could

allow us to compare machine translation evaluation with more accurate evaluation,

providing insights into the impact of machine translation on the model. This would

help determine whether better human-generated or translated training sets can im-

prove the model. We can also use image generation techniques to supplement textual

datasets into visual-textual datasets. Additionally, we hope to apply CLSEAVE to

low-resource languages and other Vision-Language Pre-training models, which would

both validate the method’s practicality and help optimize it.
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Table A.1: The hyperparameters used for models in the thesis.

Model CLIP-VE CLSEAVE AutoEncoder

Learning rate 1⇥ 10�6 4⇥ 10�5 1⇥ 10�5

weight decay 0 0 1⇥ 10�6

Batch 64 128 256
Epoch 6 9 20
Loss function CrossEntropy MSE MSE
Optimizer Adam AdamW Adam

Table A.2: The MSE changes during nine training epochs in five language-transferred

models.

Epochs 1 2 3 4 5 6 7 8 9

Dutch 17.72 12.58 10.32 9.29 8.70 8.34 8.04 7.81 7.62
German 17.70 12.73 10.50 9.52 8.94 8.59 8.29 8.06 7.91
Janpanese 17.50 12.56 10.60 9.56 9.02 8.64 8.38 8.18 8.04
Chinese 17.20 12.45 10.50 9.60 9.06 8.76 8.48 8.34 8.18
Korean 18.28 13.31 10.90 9.89 9.37 8.96 8.71 8.47 8.33

Table A.3: The MAE changes during nine training epochs in five language-transferred

models.

Epochs 1 2 3 4 5 6 7 8 9

Dutch 73.53 60.99 54.71 51.60 49.71 48.49 47.49 46.68 46.03
German 73.41 61.47 55.32 52.33 50.45 49.30 48.30 47.49 46.90
Janpanese 72.93 60.84 55.28 52.23 50.44 49.23 48.37 47.64 47.05
Chinese 72.34 60.72 55.22 52.48 50.74 49.71 48.77 48.17 47.60
Korean 74.50 62.60 56.06 53.04 51.46 50.05 49.26 48.42 47.91
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