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Abstract

Managing power consumption is crucial in the design of electronic devices. Power
consumption analysis plays a significant role in optimizing performance, ensuring sys-
tem reliability, and addressing security vulnerabilities. As integrated circuit designs
continue to advance, early design stage power analysis and optimization have become
essential for the development of agile and flexible very large-scale integrated circuit
(VLSI). However, the existing early-power estimation approaches often face a trade-off
between accuracy and efficiency.

We present a power model to estimate the power consumption of VLSI circuits at
the RTL design stage. We employ a one-dimensional Convolutional Neural Networks
(CNN) model for cycle-by-cycle power estimation and evaluate its performance on
a lightweight cryptographic Xoodyak circuit. The power model is trained using a
subset of the testbenches, capturing the relationships between RTL switching activity
and corresponding gate-level power consumption. The model achieves a prediction
accuracy exceeding 90% in 46.67% of the 106 different test cases, with an minimal
NRMSE of 5.68%. Our approach is particularly well suited for application scenarios
where power consumption needs to be estimated very fast under various workloads in
the same design.
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Chapter 1

Introduction

With the ever-increasing demand for high-performance and portable computing de-

vices, power consumption has become a critical concern and a constraint factor in very

large-scale integrated (VLSI) circuit design. For example, the peak power determines

the thermal and electrical limits of a circuit design, which directly affects the perfor-

mance, area, and cost of a computing system. Exceeding these constraints can lead to

issues like overheating, efficiency reduction, or even system failures [1]. Additionally,

although shrinking feature sizes present opportunities for increased complexity of in-

tegrated circuit (IC) designs, power consumption can significantly impact the ability

to integrate more transistors on the chip as well as limit the feasible packaging and

performance of VLSI circuits [2].

To better manage and optimize power consumption, early design stage power anal-

ysis has become an essential step in the modern IC design cycle. Accurate and efficient

power estimation is required to meet the power specification requirements while miti-

gating risks and ensuring overall system performance. Gaining early insight into power

consumption improves the flexibility and agility of the VLSI circuit development pro-

cess, as potential power-related issues can be identified and optimized in a timely

manner, thereby avoiding the costly redesign process.

Different approaches are employed to estimate power consumption at varying ab-

straction levels during the VLSI circuit design flow, as explained in Section 2.1. The

design hierarchy, spanning from high-level specifications to low-level mask data, is

visualized using the Y-Chart [3], as shown in Figure 1.1. It outlines the design refine-

ment levels along three axes: functional, structural, and geometrical. The abstraction

levels are well defined in [4], representing the design stages within the structural axis.
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1.0.

Figure 1.1: Tripartite Design Level Representations [3]

The lower abstraction level refers to the two bottom levels: gate level and transistor

level. The conventional gate-level power estimation is supported by several commer-

cial power solution tools, where gate-level simulation results and synthesized netlists

are fed into these tools for power calculations [5]. The results obtained at the gate

level or transistor level are typically more accurate due to the availability of detailed

implementation technology information at these lower abstraction levels. However,

gate-level simulation is known to be slow, typically processing only 10-1000 cycles per

second [6]. Thus, it will hinder design efficiency and make them impractical for dy-

namic power optimization in large and complex circuit designs. Alternatively, some

approaches use Register Transfer Level (RTL) simulation results and gate-level netlists,

but cycle-based power consumption analysis using commercial power solution tools is

still a computationally demanding and time-consuming task [7, 8].

At higher levels of abstraction in VLSI circuit design, namely architecture, algo-

rithm, and system levels [9], power consumption estimation approaches can be broadly

classified into two categories: analytical-based [10, 11] and regression-based methods

[12, 13, 14, 15, 16]. However, these methods are less accurate because they lack low-

level circuit details above the gate level. Moreover, these methods might be struggling
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Chapter 1. Introduction

to capture or model the nonlinear relationships in the complex circuit systems [17].

The current power consumption estimation approaches face the trade-off prob-

lem between accuracy and efficiency. Given the dilemma between accurate but time-

consuming gate-level simulations, and faster but less accurate analytical/regression-

based methods at higher abstraction levels, a noteworthy research question arises:

How can we find the optimal ‘sweet spot’ for power consumption estima-

tion by achieving a balance between estimation speed and high accuracy?

In this thesis, we present a machine learning (ML) based power consumption model

for power estimation of VLSI circuits at RTL design stage. Our goal is to leverage ad-

vanced ML techniques to efficiently estimate power consumption at a high abstraction

level while retaining gate-level details of the VLSI circuits. To ensure cycle-accurate

power consumption analysis, we used gate-level netlists and RTL switching activities

as input for time-based power calculations to generate datasets. By capturing and

learning the relationships between circuit switching activity and corresponding power

consumption, the power estimation model can accurately infer the power consumption

for any other input to the circuit.

Our modeling framework is particularly suitable for application scenarios where

power consumption needs to be quickly estimated under different workloads on the

same circuit design. Only RTL simulation is required as input of the trained model

to provide accurate power consumption estimation, making it an efficient tool for

assessing power consumption in VLSI circuits with various workload scenarios. The

major contributions of this work are summarized as follows:

• Our approach provides an efficient power consumption estimation methodology

by combining the advantages of the high-level abstraction of VLSI circuits with

more detailed gate-level information. The framework enables power consumption

analysis using switching activity information at the RTL level, making it a useful

tool for early-stage power consumption estimation in the VLSI circuits design

process. The power consumption model accelerates power estimation, which

can be applied to estimate the power consumption for various user-specified

workloads efficiently.

• We provide a cycle-by-cycle power consumption estimation model. The proposed

cycle-accurate methodology facilitates detecting time intervals characterized by

high or abnormal power consumption within the circuit. It enables designers to

understand the power behavior of a circuit at the cycle level, which helps with

power optimization and performance analysis.
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• We explore the use of one-dimensional Convolutional Neural Networks (1D-

CNN) model for time-based power consumption estimation. We evaluate the

model on a lightweight cryptographic circuit (LWC) calledXoodyak, and demon-

strate the capabilities of the proposed framework. For cycle-by-cycle power esti-

mation with 106 different test cases for the Xoodyak circuit, 46.67% of the test

cases show a model prediction accuracy exceeding 90%. The model achieves a

minimal Normalized Root Mean Square Error (NRMSE) 5.1 of 5.68%.

The thesis is structured as follows: Chapter 2 and Chapter 3 introduce the back-

ground of this thesis and the related works. Chapter 4 presents the proposed method-

ology for power consumption estimation. Chapter 5 provides the experiments and

results. We answer the research question and discuss the limitations of our approach

as well as avenues for future work in Chapter 6. Chapter 7 gives an overall conclusion.

4



Chapter 2

Background

This chapter is intended to provide the background and prerequisite knowledge re-

quired to understand this thesis. We first introduce the design flow of the Application

Specific Integration Circuits (ASIC), then emphasize the importance of early-stage

power analysis in the circuit design process. Then we explain the sources of power

consumption in the circuits. Subsequently, the top-level architecture of the Xoodyak

circuit is presented, for which early power consumption estimation is carried out in our

work. Finally, we briefly describe the 1D-CNN used for power consumption modeling

in this thesis.

2.1 ASIC Design Flow

The process of designing an ASIC entails a series of steps. Each step is described in

detail below. In order to achieve a successful ASIC design, designers need to explore the

design space to determine optimal design parameters during the design flow, including

performance, area, cost, and power consumption as well as ensure adherence to strict

time-to-market constraints.

1) Design entry & Functional Simulation: RTL description is used for functional

simulation to confirm the functional correctness of the circuit on the design entry

level. It is expressed in hardware description languages such as Verilog and VHDL.

2) Logic Synthesis: The circuit netlist is generated using RTL and logic synthesis

tools. The netlist is a description of the circuit in terms of library gates and their

connections.
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3) Physical Design: The gate-level netlist is further refined and transformed into a

physical layout that takes into account the actual geometric placement and routing

of components on the silicon chip. This phase includes floor planning, placement,

and routing to ensure that the physical design meets performance, power, and area

constraints.

4) Postlayout Simulation & Signoff check: This involves running simulations on the

fully laid-out design to ensure its functionality matches the intended design speci-

fications. After simulations, signoff checks such as Layout Versus Schematic (LVS)

or Design Rule Checks (DRC) are performed to ensure the design adheres to man-

ufacturing and design rules.

5) Fabrication & Packaging & Testing: Once the design has passed all simulations and

verification steps, it’s ready for fabrication. The designed ASIC is manufactured

onto a silicon wafer through processes like lithography, etching, and doping. The

resulting chips are then cut from the wafer, assembled into packages for protection

and connectivity, and subjected to various tests to validate their functionality and

performance.

The importance of performing early power analysis during the ASIC design flow

lies in its ability to prevent costly redesign efforts. When power-related issues surface

later in the design process during physical design or post-layout simulation, or even

fabrication and testing, resolving these problems becomes increasingly difficult, expen-

sive, and time-consuming [18]. To avoid such setbacks, it becomes crucial to estimate

power consumption early in the logical synthesis phase. In addition, designers can

make informed design decisions and timely adjustments to optimize power issues at a

higher abstraction level, and explore the design space with more flexibility [11].

2.2 Power Consumption in the VLSI circuits

Power consumption in CMOS circuits arises from three main sources: 1) static leakage

power, 2) short-circuit power, and 3) switching power. The leakage and short-circuit

currents in CMOS circuits can be minimized by using appropriate device and circuit

design techniques.

Switching power is the most significant contributor to the overall power consump-

tion. It is the power dissipated when charging and discharging the capacitive load

during state transitions [1], such as Vhigh → Vlow (logic 1 → logic 0) or Vlow → Vhigh
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(logic 0 → logic 1). The load includes the capacitance of the gate/cell input and the

net capacitance of external downstream gates/cells. The average switching power is

given by:

Pswitching =
1

2
· α · CL · V 2

dd · fclk (2.1)

where α is the switching activity factor, which is the average fraction of circuit nodes

that change state per clock cycle. Vdd is the supply voltage, fclk is the clock frequency,

and CL is the effective capacitance, representing the total capacitive load that is being

charged and discharged during each state transition.

Therefore, when modeling the power consumption of CMOS circuits, the main

focus is on the relationship between dynamic switching power consumption and state

transitions, which are the key factors contributing to power consumption.

2.3 Lightweight Cryptographic Circuit

In this section, we first present the LWC hardware architecture designed of Xoodyak

by [19] for the purpose of comparing cryptographic circuits submitted to the NIST

LWC competition. We omit details on Xoodyak design, as they are not important

to understand the work in this thesis, Xoodyak itself is implemented within the

CryptoCore block, shown in Figure 2.1 [20].

The LWC core includes four essential units: PreProcessor, CryptoCore, Header

FIFO, and PostProcessor. The interface of this LWC architecture consists of two

input data buses, Public Data Inputs (PDI) and Secret Data Inputs (SDI), and an

output data bus, Data Output (DO). PDI are inputs that are publicly accessible and

typically include data such as the associated data and public message number. These

inputs are provided to the PreProcessor units for further processing. PDI is divided

into segments. Each segment begins with a segment header that describes its type

and length. This approach ensures consistent communication between the sender and

the LWC core, allowing for flexibility in managing different types of input data and

ensuring that the LWC core correctly processes the provided data segments. SDI

contains sensitive information that needs to be protected, such as the encryption or

decryption key. DO is the output data bus through which the LWC core sends the

processed data back to the calling entity. The processed data can include plaintext,

ciphertext, and authentication tags.
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2.4. One-Dimensional Convolutional Neural Networks

Figure 2.1: The interface and Top-level block diagram of the LWC architecture [19]

2.4 One-Dimensional Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are widely used for processing two-dimensional

data, particularly in image-related tasks. The typical architecture of a CNN comprises

an input layer, one or more hidden layers, and an output layer, where the hidden lay-

ers commonly include convolutional, pooling, and fully connected layers [21, 22]. The

CNNs can also be defined as 1D-CNN to handle Time-Series data. The key difference

is the dimensionality of the input data and how the kernel slides across the data [23].

In the case of 1D-CNN applied to time-series data, the convolutional layers slide a

kernel (also called a filter) along the time axis of the sequence. This operation allows

the network to detect and capture local patterns, trends, or relationships that occur

in the data over short periods of time.

Figure 2.2 shows the 1D-CNN structure, where the input layer takes time-series

data as the input. The convolutional layers are composed of multiple kernels, where

each convolution layer consists of several convolution kernels of the same size, per-

forming convolution operations to generate the corresponding 1D feature maps. The

following pooling layer will perform the average pooling [24] or max pooling [25] op-

eration and then send the output to the fully connected layer for final predictions

[26].

Assume that given a 1 ∗ 6 input vector (x1, x2, ..., x6) and the kernel size is 3,

which means that the convolution window has a width of 3. During the convolution
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Chapter 2. Background

Figure 2.2: The structure of 1D-CNN from [27]

process, the values in the input vector are multiplied by the weights in the kernel

window (w1, w2, w3). These products are then summed up to generate the value for

the corresponding feature map. In this case, when applying a 1 ∗ 3 kernel on a 1 ∗ 6

input vector, the resulting feature vector (y1, y2, y3, y4) will have a size of 1∗4. Take y2

as an example, it is obtained by: y2 = (w1∗x2+w2∗x3+w3∗x4). The output from the

convolution layer becomes the input for the subsequent layer, allowing the network to

progress and extract high-level features as the data flows through the network. After

the convolution operation, the typical activation functions such as sigmoid [28], tanh

[29], and ReLU [30], will be applied to introduce nonlinearities to the CNNs. The

formula for a 1D convolution layer l can be demonstrated by Equation 2.2 [22]:

xj
l = f





M∑

j=1

xi
l−1

⊛ kij
l + bj

l



 (2.2)

where k is the number of convolution kernels, j denotes the kernel sizes, and M

represents the channel number of input. Kernel bias is b, f is the activation function

and (⊛) is the convolution operator.

Pooling layers are commonly used after the convolutional layers to down-sample

the feature maps and reduce the number of parameters while maintaining the major
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2.4. One-Dimensional Convolutional Neural Networks

features. The downsampling helps reduce the complexity and computation load in the

subsequent layers [27]. The fully connected layers, also known as dense layers, take all

neurons in the feature map output from the previous layer [31, 32]. For a prediction

task, the learned features are flattened into a single long vector and passed through

fully connected layers before reaching the output layer for final predictions.
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Chapter 3

Related Work

Extensive research work has been conducted in the field of power consumption esti-

mation. In this Chapter, we give a brief description of the existing approaches, as well

as their limitations. Then we briefly compare the existing approaches with our work

and explain the benefits of our work.

3.1 Analytical-based Method

The analytical-based works typically use mathematical models or equations [9, 33] to

estimate the power dissipation of the circuits based on the physical capacitance and

fundamental electrical principles. The work proposed by Liu and Svensson [34] formu-

lated the average power consumption of each design entity by multiplying the number

of gate equivalents with the power consumed by each gate. Some other works [35, 36]

related the power consumption of a functional block to the amount of computational

effort it performs. The study by [37] introduced a power estimation technique based

on the complexity of a Boolean network representation of the design, which exploits

the observation that power consumption is proportional to the product of physical

capacitance and activity.

Analytical-based methods have the advantage of providing fast predictions with

very little input information. Such methods were primarily utilized in the early stages

of the development of power estimation techniques. However, as designs become more

complex, the limited accuracy of analytical models becomes more apparent, making

them less suitable for highly complex VLSI circuits. In addition, analytical models

typically assume ideal conditions and dependencies to formulate power consumption,
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3.2. Regression-based Method

which may not hold true in complex circuits.

In our work, we provide a power model by capturing and learning the relationship

between power consumption and switching activities, i.e., the factors that dominantly

affect power consumption. Comparatively, our proposed approach is more applicable

to today’s complex VLSI circuits.

3.2 Regression-based Method

Numerous earlier works have primarily focused on the regression-based approach.

Many studies constructed predictive models using linear regression techniques and

applied them to various domains. The model abstraction approach proposed by J.

Yang et al. [16] abstracted the relationship between the register toggling profile and

power waveform, and enables real-time power estimation by measuring the toggling

profile at the register level. The study by D.Kim et al. [38] presented a regression-

based signal model and employed the cluster method to pinpoint the primary power

dissipation signals. The paper [39] described a general method for developing and op-

timizing RTL power models using linear regression techniques. According to the study

by J.Anderson and F.Najm [40], a regression-based prediction model was built in field-

programmable gate array (FPGA) designs for the purpose of early-power estimation

and power-aware synthesis and layout. Another research [41] worked on deploying

a set of acceleration techniques based on regression models to enhance the efficiency

specification of RTL power estimation tools.

The regression-based techniques at the architectural level have also been the sub-

ject of several studies. For example, J. Anderson et al. [40] proposed a methodology

for predicting processor power at the pipeline or instruction level, focusing on simu-

lation implementation, sampling, and fitting generalized regression equations. Several

works on the architecture level typically use microprocessor performance counters to

construct the power model [13, 15].

According to the research by A.K.A.Kumar et al. [42], such simple linear regres-

sion techniques at the architectural level suffer from the problem of not capturing

relationships well. In general, the current regression-based methods mainly rely on

simplistic linear models, which might fall short of capturing intricate dependencies

between inputs and power consumption. Consequently, such methods may lead to

inaccurate estimates under varying conditions, especially when dealing with nonlinear

relationships within complex systems.

In contrast, our ML-based power consumption model excels in capturing both
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linear and nonlinear relationships. It could lead to more optimal estimation accuracy

because it accounts for complex dependencies that the conventional linear regression

methods struggle to capture.

3.3 Advanced ML-based Method

Advanced ML approaches have been explored for power consumption estimation in

recent years. Dhotre et al. [7] introduced a methodology for predicting test power,

utilizing various supervised learning algorithms. These algorithms, including Linear

Least-Square (LLS), K-Nearest Neighbors (KNN), and MultiLayer Perceptron (MLP),

were compared within the scope of this study.

The work proposed by Zhou et al. [17] introduced the PRIMAL framework which

constructs a CNN model through 2D image encoding techniques. However, while

achieving relatively high prediction accuracy, this method suffered from reduced ef-

ficiency and required a substantial amount of training samples, consequently leading

to extended training times. Another work by Zhang et al. [43] presented a Graph

Neural Network(GNN) model GRANNITE, which was trained using gate-level netlists

and corresponding switching rates. One advantage of this model is its adaptability to

new circuit designs without the need for retraining. However, it was primarily limited

to predicting average power consumption.

In our work, we present a 1D-CNN power consumption model that supports time-

based power consumption estimation. This model is accurate down to the cycle level.

In contrast to average power consumption estimation methods, our proposed model

empowers designers to explore the dynamic changes in power consumption over time.

Overall, our approach utilizes advanced ML techniques to ensure accurate and cycle-

by-cycle power consumption estimation within a reasonable training time.
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Chapter 4

Methodology

This chapter presents our methodology to estimate circuit power consumption based

on the RTL circuit switching activity. The proposed framework provides an overview of

the entire workflow, generally including three phases: RTL circuit switching activity

analysis and power consumption analysis, modeling/training phase, and prediction

phase. The details of each phase will be discussed in the following sections.

4.1 Framework

The workflow begins with time-based switching activity and power consumption analy-

sis, as shown in Figure 4.2. Our time-based approach involves a cycle-by-cycle analysis

of the circuit switching activity and power consumption, which facilitates building a

cycle-accurate power consumption estimation model.

As we introduced in Section 2.2, the RTL circuit’s state transitions serve as the

input feature, representing the primary contributors to the total power consumption.

We used the RTL circuit switching activity matrix to represent the state transitions

of a circuit. Figure 4.1(a) gives a simple circuit example to explain how the state

transitions of a circuit are related to the switching activity matrix. The circuit is

a 3-bit asynchronous binary counter using positive edge triggered JK flip flop. The

timing diagram in Figure 4.1(b) shows the transitions of the signals on every positive

edge of the clock.
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(a) (b)

Figure 4.1: A three-bit asynchronous binary counter circuit with the timing diagram

Clock Cycle Q0 Q1 Q2


































1 1 0 0

2 1 1 0

3 1 0 0

4 1 1 1

5 1 0 0

6 1 1 0

7 1 0 0

8 1 1 1

(4.1)

According to the timing diagram, logic state transitions are identified, and switch-

ing activities are counted for each signal during each clock cycle. Equation 4.1 shows

the resulting switching activity matrix, where the columns correspond to signals (Q0,

Q1, Q2), and the rows correspond to each clock cycle.

In the first stage of the proposed framework, the time-based Stimulus Database

(SDB) is derived through RTL simulations. It is the dump of signal activity data

from the simulation of the RTL design, representing the circuit’s transition states and

serving as a key ingredient for power analysis. The synthesis database contains gate-

level netlists after logic synthesis in the VLSI design flow, as described in Section 2.1.

Afterward, the SDB and synthesis database are fed into the power analysis tool to

generate the Power Database (PDB). The power profile stored in the PDB records the

power consumed by the switching activity for each clock cycle.

The SDB is dumped to a switching activity matrix X, elaborated in Section 4.2.1,

while the power consumption profile is represented as a power consumption vector P,

15



4.2. Dataset Generation (Phase 1)

as explained in Section 4.2.2.

The second modeling/training phase takesX as the input dataset and P as the out-

put dataset to train a convolutional neural network model. The model is able to learn

and abstract the relationship between switching activity and corresponding power

consumption. Finally, the trained power model is evaluated using testing datasets or

applied to a new target input dataset for prediction.

Figure 4.2: Power consumption modeling and estimation workflow

4.2 Dataset Generation (Phase 1)

We split the testbenches used to design the circuit into two categories for generating

training and testing datasets, respectively. The switching activity analysis and power

analysis are performed in time-based mode, i.e., obtain the toggles and power con-

sumption for each clock cycle. The results of the switching activity analysis will be

processed as the input dataset, and power analysis results will be processed as the

corresponding output dataset.

4.2.1 Switching Activity Analysis and Reporting

The circuit simulations are performed with Xcelium [44], a simulation tool in the

Cadence suite. The SDB is generated after the simulation of each testbench on the
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RTL design. The stimulus comes in various formats that represent switching activity,

which quantifies the transitions in the states of registers and Input/Output signals

over a certain duration within a circuit.

In this work, two kinds of formats are generated for different intentions, using

the dumptcf and dumpvcd command in Xcelium. The Value Change Dump (VCD)

captures the change of signal values over time, which can be read in the time-based

mode for power analysis. The Toggle Count Format (TCF) represents the average

switching activity over a certain duration.

In this section, we first discuss the TCF format, which is used to generate the input

dataset. To analyze switching behavior on a per-cycle basis, the simulation time is

segmented into frames, with each frame corresponding to one clock cycle. The toggle

count within each frame is captured and recorded, which indicates how often the pin

or net switches between the High Voltage Level (Vhigh) and Low Voltage Level (Vlow

) states.

Therefore, the SDB for each simulation stores multiple TCF files, representing the

switching activity for each clock cycle. Then we parsed the TCF file and converted it

into a matrix using the Panda [45] library in Python. The rows of the matrix represent

each consecutive clock cycle, while each column represents a specific signal inside the

circuit.

4.2.2 Power Analysis and Reporting

The power analysis is implemented in the Cadence Power Solution tool Joules [46],

which is integrated with Genus [47], a logic synthesis tool in Cadence. We will discuss

the workflow step by step.

1. Read RTL Design: The process begins by reading the RTL design, libraries,

and other technical files for elaboration.

2. Read Stimilus Database: The stimulus file will then be read into Joules.

Since we aim to compute the power consumption mainly caused by the switching

activity for each cycle, the stimulus containing the switching activity information

should be read in time-based mode. The TCF database can not be read in this

mode because it only records average activity statistics. Moreover, although the

simulation has been segmented to multiple stimuli to represent the switching

activity for each clock cycle, as we discussed previously in Section 4.2.1, the

Joules integrated with Genus does not support the feature to read multiple

stimuli yet.
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4.2. Dataset Generation (Phase 1)

Therefore, the VCD database is read into Joules and the stimulus information

is saved as frames in Joules SDB. Frames equal to one clock cycle that are

extracted from the VCD stimulus.

3. Synthesis: Joules offers the command power map in this step to perform syn-

thesis and create a fully functional prototype netlist for power analysis. The

prototype netlist database is saved for use in the next power analysis step.

4. Annotation: For accurate power analysis, the rtlstim2gate feature in Joules

is used to map RTL stimulus on gate-level netlist with high annotation.

5. Power analysis & Report: After reading the netlist DB and the Joules SDB

into Joules, power consumption is computed in the time-based mode and re-

ported by frame.

Consequently, the cycle-accurate power profile over the simulation time can be

represented as a vector, where each element represents the power consumption value

per clock cycle.

4.2.3 Summary

In summary, the generated dataset comprises pairs of switching activity matrix X and

power consumption vector P for each simulation on a certain testbench, as shown in

Equation 4.2. To be specific, the dataset includes the following components:

• A time series switching activity matrix X

Each row corresponds to one clock cycle, representing a specific time interval.

Within each clock cycle, the toggle count numbers for each signal are stored.

xij represents the toggle counts for signal j during cycle i. The number of rows

in the matrix depends on the total number of clock cycles, while the number of

columns depends on the total number of selected signals. The matrix will be

used as an input dataset for training the model.

• A time series power consumption vector P

Each row represents one clock cycle. The vector stores power consumption values

within each time interval. The number of rows in the vector depends on the total

number of clock cycles for the specific testbench. The output dataset serves as

the target output for the prediction of the model.
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X

→
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...

pm

︸ ︷︷ ︸

P

(4.2)

4.3 Power Modeling with 1D-CNN (Phase 2 & 3)

Given the obtained time-series datasets X and P, explained in Section 4.2.3, we pro-

pose using 1D-CNN for power modeling. The implementation of the 1D-CNN model

was carried out in Python, utilizing the Keras API [48] and scikit-learn [49] for data

processing. The aforementioned datasets were split into training datasets (80%) and

testing datasets (20%).

In order to maintain the time sequential information in the input dataset and out-

put dataset, the datasets were chunked into a three-dimensional array with dimensions

(chunks, frames, features). Each chunk contains a sequence of consecutive clock cy-

cles, which represents the switching activity and power consumption for all signals

during a specific time window. The ‘chunks’ is the number of chunks into which the

input and output datasets are divided. The ‘frames’ means the length of the sequence,

i.e., the number of consecutive clock cycles that make up each chunk in the datasets.

For the input activity dataset, the number of features corresponds to the number of

signals. The output power dataset consists of only one feature per frame, representing

the power consumption value for that specific time interval.

Figure 4.3 illustrates the chunking process with a simple example. Given an input

dataset of size (104×28) and a corresponding output dataset of size (104×1). Assuming

a chunk size of 10, the total number of chunks becomes 103. As a result, the input

dataset is partitioned into chunks, giving the chunked input dataset a shape of (103 ×

10 × 28). The chunked output dataset is in the shape of (103 × 10 × 1). The model

learns to map each chunk of the input dataset to the corresponding chunk of the output

dataset by analyzing the patterns and correlations within each chunk.

To ensure comparable features for model training and evaluation, it is necessary

to process and transform the dataset into a normalized range before passing it into

the model. We used the MinMaxScaler from the sklearn library [49] to rescale the
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Figure 4.3: A simple example of chunked dataset structure. Each chunked matrixChunk i

corresponds to a subset of the dataset.

values of the dataset to a specified range between 0 and 1 as shown in Equation 4.3.

The normalization process plays a crucial role in improving the model’s convergence

efficiency during the training phase. Additionally, it preserves the relative relationships

between data points and maintains the patterns present in the original distribution.

xscaled =
xi − xmin

xmax − xmin

(4.3)

where xscaled represents the scaled value of the input data xi. xmax represents the

maximum value of the dataset. xmin represents the minimum value of the dataset.

The overall structure of the 1D-CNN follows the architecture described in Chapter

2.4, where the input flows through the convolutional layers, pooling layers, flattened

layers, and fully connected layers. We used KerasTuner [50] to fine-tune the 1D-

CNN model. The fine-tuned hyper-parameters include the number of convolutional

filters, the number of convolutional layers and dense layers, the units per layer, and

the learning rate.
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The adoption of a kernel size of 3 in this thesis was carefully deliberated based

on a balance between capturing local patterns and minimizing computational com-

plexity. ‘ReLU’ activation function is used for each convolutional and dense layer to

introduce non-linearity to the network, enabling the complex relationships between

the input data and the learned features can be modeled. We have explored different

configurations on the hyper-parameters, varying the number of convolutional layers

and dense layers from 2 to 5. To downsample the spatial dimensions of feature maps,

each convolutional layer is followed by a 1D max pooling layer with a pooling size of

2 and stride size of 1. Additionally, we tuned the number of units for each dense layer

and the number of filters for each Conv1D layer, setting the search range between 4

and 256 with a step of 4. The learning rate was fine-tuned using three possible values:

1e-2, 1e-3, and 1e-4.

The model is compiled with the Adam optimization algorithm [51] to minimize the

loss function root mean squared error (RMSE) shown in Equation 4.4, which measures

the difference between the predicted power values using the model, and the reference

power values in the output dataset P.

RMSE =

√
√
√
√ 1

N

N∑

i=1

(pi − p̂i)2 (4.4)

where N is the number of data points, pi is the reference power value at clock cycle i,

p̂i is the predicted power value at cycle i.

The hyperparameter tuning process was conducted using the RandomSearch al-

gorithm, which executed 50 trials to search for the optimal configuration. Each trial

consisted of 20 epochs of training and utilized a batch size of 32, ensuring a balanced

trade-off between computational efficiency and model optimization.
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Experimental Results

In this chapter, we present the experiments and results during the evaluation of our

proposed methodology. The experimental setup used a simple digital circuit design to

initially build and configure our framework, i.e., the dataset generation, dataset pro-

cessing, and 1D-CNN hyperparameter configurations. To further validate our overall

methodology, we proceeded by employing our framework on a complex and realistic

cryptographic circuit, thereby examining its effectiveness in real practical application

scenarios.

5.1 Metric

The NRMSE has been used as the evaluation metric in the experiments. NRMSE

provides a normalized measure of the model’s power consumption prediction error,

ensuring that the evaluation metric is independent of the scale of the data. The

predictive capability of the developed power consumption model has been evaluated by

quantifying the difference between predicted and reference power values using Equation

5.1.

NRMSE =
1

∆p
×

√
√
√
√

1

N

n∑

i=1

(pi − p̂i)2 × 100% (5.1)

where N represents the number of clock cycles, i is the index for each cycle. pi

represents the reference power value at cycle i, p̂i represents the predicted power

value at cycle i. ∆p represents the difference of the reference power vector p, i.e.

(pmax − pmin). Equation 5.1 calculates the square root of the average of the squared
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differences between the predicted p̂i and reference power values pi, and then normalizes

it by the range of the reference power values (∆p).

5.2 Experimental Setup

The Serial Peripheral Interface slave-to-memory master circuit [52] has been chosen in

the experimental setup phase, which is commonly utilized for inter-chip communication

in various electronic systems. This circuit includes a total of 28 signals, comprising

both input/output ports and internal signals in this simple case. The signals are

designed to have a bit-width of 4. It serves as a simple case for the initial configuration

and evaluation of our proposed framework. The simulation time of this circuit is 107

nanoseconds (ns) with a clock period of 10 ns, thereby leading to a total of 106 clock

cycles.

5.2.1 Datasets Generation

The process of generating the input dataset for our model begins with dividing the

simulation time into multiple frames, and the frame length is aligned with the clock

period, as we aim to obtain the circuit switching activity cycle-by-cycle. Therefore, in

this example, the simulation time is divided into 106 frames, each spanning a duration

of 10 ns. The switching activity results are represented by multiple TCF files after

simulation.

Consequently, each generated TCF records the switching activity for one clock cycle.

Combining all the TCF files, we obtained a switching activity matrix of dimensions

(106 × 28), where each row represents one frame, and the columns correspond to the

28 signals.

After generating the VCD database, the power consumption vector P in the output

dataset has been derived as described in Section 4.2.2. The power computation analysis

has been performed in time-based mode, which means the power consumption values

were calculated for each clock cycle. As a result, the power consumption vector has a

size of (106 × 1), capturing the power consumption value consumed by the switching

activity for each frame (clock cycle) during the simulation.

5.2.2 Power Modeling

As discussed in Section 4.3, after obtaining the input and output datasets, it is essen-

tial to divide the datasets into optimally sized chunks. If the chunk size is too small,
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the time-series dataset could become fragmented. In this case, the model might strug-

gle to capture the sequential trends in switching activity and corresponding power

consumption over several consecutive cycles. As a result, the model’s capability to

learn from the tiny chunks is limited. On the other hand, if the chunk size is too

large, there might be an insufficient amount of training data available for the model.

We examined the impact of different chunk sizes on the model performance and gen-

eral capability for handling data. We finally decided to partition the input dataset

and output dataset into 106 chunks in this example, while each chunk consists of 100

frames (consecutive clock cycles). For the input dataset, the reshaped switching ac-

tivity matrix size is (106 × 100× 28). The size of the reshaped output power vector is

(106 × 100× 1).

In this example, the trained 1D-CNN model consists of 3 convolutional layers with

varying numbers of filters: 132, 120, and 152, followed by max-pooling layers. It also

includes 2 dense layers with units 156 and 236, contributing to pattern recognition.

The final dense layer has 100 units to match the output size of each chunk. The model

employs a learning rate of 0.001 for optimization.

5.2.3 Evaluation & Results Analysis

The trained model has been used to predict the power consumption using the switching

activity matrix from the testing dataset. The predicted power consumption, obtained

by the model, and the reference power consumption from the testing dataset were

compared using the NRMSE in Equation 5.1, which achieved approximately 14% error

in this experiment. Figure 5.1 plots the predicted power consumption profile (orange

curve) and reference power consumption profile (blue curve) over 200 cycles. The x-

axis of the plot corresponds to the number of cycles, while the y-axis represents the

power consumption in microwatts. It can be seen that the model can achieve high

accuracy in predicting lower power values but struggles in estimating higher power

values.

Since the dataset is severely unbalanced, with the majority of data falling within the

0-15 mW range of power consumption values, the model’s training process was biased

towards learning patterns within this dominant range. The tendency of prediction

results is consistent with the observations: the values predicted by the model are

distributed between 0 and 15mW . The model may not have effectively captured the

patterns and characteristics associated with power values between 30-35 mW .

Additionally, the limited variation in the reference power profile has a negative
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Figure 5.1: Comparison of reference power and predicted power consumption over 200
cycles
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impact on the generalization ability of the model. Although the datasets include a

sufficient number of samples, the lack of diverse power consumption patterns within

the reference data might have hindered the model’s capability to learn and generalize

to different scenarios.

It is worth noting that the datasets are randomly split into training and testing

datasets, which means that 80% of the chunks in the original datasets are randomly

selected to form the training dataset, while the remaining 20% of chunks form the

testing dataset. Due to the random selection of chunks, the testing dataset is made

up of discontinuous chunks, making it not very relevant to make strong conclusions

about the power consumption of the original SPI circuit.

As a result, the randomly formed switching activity matrix used for testing does

not maintain the time dependencies present in the original input dataset. Thus, the

power estimation based on this matrix merely mirrors the learning capacity of the

model, lacking any connection to the cycle-by-cycle power consumption of the SPI

circuit. In practice, it is more relevant to estimate power consumption or evaluate

power models based on different circuit workloads as determined by a user-specified

test bench. Therefore, we decided to use the Xoodyak LWC core with over 500

different workloads (testbenches) for our second experiment.

5.3 Xoodyak LWC Core

For further evaluation of our methodology and framework, we have chosen theXoodyak

LWC core described in Section 2.3 as a representative realistic circuit. Based on the

hardware architecture of the LWC core described in Section 2.3, the widths of the data

buses for the three interface data ports (PDI,SDI,DO) were set to 32-bit in this exper-

iment. The total number of monitored signals was reduced to 208 crucial signals to

perform switching activity analysis and power consumption analysis more efficiently.

The key signals include the input signals within the PDI and SDI interface ports and

the internal signals between each block shown in Figure 2.1.

Therefore, the performance of the framework is evaluated on a more complex circuit

design. The complexity of this circuit allows us to capture the switching activity and

the corresponding power consumption patterns with more variations. By utilizing this

LWC core for further evaluation, we aim to assess the effectiveness and scalability of

our proposed framework in handling real-world circuit scenarios.
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5.3.1 Dataset Generation

We used the KAT test data from [19], comprising 535 test data vectors with different

AD, Plaintext, Ciphertext, and Hash Message lengths. The hardware circuit testbench

(LWC TB) was configured with these different test data vectors as input, which therefore

have varying simulation times. To generate the training dataset, 80% (429) of the test

data vectors were randomly selected, while the remaining 20% (106) were used for

the testing dataset. For each testbench, the switching activity analysis and power

consumption analysis were conducted following the workflow described in Section 4.1.

The training and testing datasets were chunked as explained in Section 4.3. Given

that each testbench has a duration of clock cycles varying from 58 to 150, we chose a

chunk size of 10 clock cycles. In cases where the dataset size is not evenly divisible by

the chosen chunk size of 10, zero padding was applied to accommodate the remaining

data points.

5.3.2 Power Modeling

The training datasets consisting of 429 pairs of switching activity matrices (input

datasets) and power consumption vectors (output datasets), were used to train the

model. The fine-tuned training on the 1D-CNN model followed the process in Section

4.3, which intends to search for the optimal hyperparameters that would minimize the

loss function (RMSE) in Equation 4.4 of the model on the training dataset.

By considering the components including data splitting, optimizer selection, ac-

tivation function choice, loss function definition, evaluation metric specification, and

hyperparameter tuning, the 1D-CNN model was fine-tuned to achieve optimal per-

formance on the given dataset. A learning rate of 0.001 is found to be optimal for

the Adam optimization algorithms. Other selected hyperparameters for the 1D-CNN

model include a configuration of four layers, with the first layer consisting of 64 filters.

The subsequent layers comprise 140, 156, and 116 filters, respectively, contributing to

feature extraction from the input data. To capture complex patterns and relationships

within the data, the model incorporates two dense layers, with the first dense layer

containing 244 neurons. The last dense layer has 10 neurons to match the desired

output size of each chunk.

5.3.3 Evaluation & Results Analysis

In this experiment, we have a total of 106 testing datasets, each consisting of a switch-

ing activity matrix and a reference power vector obtained by Cadence simulation and
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power analysis tools according to Section 4.2. The trained model utilized the switching

activity matrix as input to predict power consumption. Subsequently, for each test

case, the predicted and reference power consumption were compared by calculating

the NRMSE in Equation 5.1. Furthermore, we performed a cycle-by-cycle comparison

and analysis of the predicted power profile and the reference power profile.

The evaluation revealed an average NRMSE of 11.61% over all 106 test cases. To

further analyze the results, we examined the NRMSE of different test cases: The

NRMSE results were found to vary in the range from a minimum of 5.68% error to a

maximum of 21.49% error. Figure 5.2 illustrates the distribution of NRMSE values.

The horizontal axis shows the range of errors measured in percentage, while the vertical

axis indicates the count of occurrences for each corresponding error interval.

Figure 5.2: The Distribution of NRMSE Results

The results in Figure 5.2 are categorized into three groups based on the NRMSE

values, indicating different levels of prediction error (accuracy). The Best category

indicates a prediction accuracy of 90% and above, i.e., NRMSE ≤ 10%, which accounts

for 46.67% of the total test cases. The Average category comprises NRMSE values

between 10% and 15%, which makes up 37.14% of the test cases. The category labeled

as Base includes NRMSE values between 15% and 25%, accounting for 16.19% of the

test cases.
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Table 5.1 presents the most representative test cases from the three categories

as shown in the ‘Category’ column: the top three accurate predictions, the three

predictions that are close to the median, and the three predictions that rank at the

bottom of the accuracy range. The ‘Test Case’ column gives the identification numbers

of the most representative cases in each of the three categories. The third and final

columns give the corresponding clock cycles and NRMSE results for each selected test

case.

Table 5.1: The NRMSE Results for Three Categories

Category Test Case Cycles NRMSE(%)

Best (≤ 10%)

40 60 5.68

89 98 5.78

75 60 5.99

Average
(10%-15%)

44 85 10.81

33 60 10.93

51 59 11.26

Base (≥ 15%)

13 59 19.84

57 60 20.07

16 60 21.49

To facilitate a comprehensive analysis, the predicted and reference power profiles

for these representative test cases in Table 5.1 are compared cycle by cycle, as shown

in Figure 5.3, 5.4, 5.5. For each subfigure, the vertical axis represents the power con-

sumption measured in microwatts, and the horizontal axis corresponds to the number

of clock cycles for the simulation of each test bench. The cycle-by-cycle predicted

power consumption is depicted by the orange curve, whereas the reference power con-

sumption profile is illustrated by the blue curve.

Figure 5.3 illustrates the top 3 test cases, demonstrating that the model successfully

learns and predicts the variations in power consumption patterns. This observation

suggests a high prediction accuracy of approximately 95%. The model effectively learns

the underlying patterns and features that contribute to changes in power consumption

based on the input-switching activity. This positive outcome indicates that the model

performs well in capturing the overall trends and variations in power consumption.

Figure 5.4 shows the three test cases categorized as average. Cycle 24 stands

out as an outlier in Figure 5.4(b), meaning that it significantly deviates from the
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(a) Test Case 40, NRMSE:5.68%.

(b) Test Case 89, NRMSE:5.78%.

(c) Test Case 75, NRMSE:5.99%.

Figure 5.3: Reference power vs. Predicted power for the top 3 cases categorized as Best
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typical distribution in the reference power datasets. Since the model might not have

encountered similar patterns during training, it struggles to generalize to accurately

estimate the power of that cycle. The poor ability to predict power consumption

accurately for cycles with outliers points out the limitation of the model in handling

unforeseen and atypical scenarios.

Figure 5.5 showcases the three base cases. The predicted power profile generally

aligns with the reference power profile, except for a few cycles. It is noted that the pre-

dicted power profile exhibits glitches in cycles where the reference power profile shows

no or small variations. This is probably due to the problem of potential overfitting.

Overfitting occurs when the model becomes too closely attuned to the training data,

hindering the performance of unseen data. As a consequence, the model may introduce

inaccuracies when predicting power consumption in cycles without variations.
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(a) Test Case 44, NRMSE:10.81%.

(b) Test Case 33, NRMSE:10.93%.

(c) Test Case 51, NRMSE:11.26%.

Figure 5.4: Reference power vs. Predicted power for the three cases categorized as Aver-

age
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(a) Test Case 13, NRMSE:19.84%.

(b) Test Case 57, NRMSE:20.07%.

(c) Test Case 16 , NRMSE:21.49%.

Figure 5.5: Reference power vs. Predicted power for the top3 cases categorized as Base.
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Discussion

In this chapter, we start with the research question posed at the beginning in Chapter

1 and discuss how the proposed method addresses this question. The experimental

results are interpreted and analyzed in more depth. Future research directions are

proposed based on the limitations of the current work.

Let us recall the research question raised in Chapter 1: How can we find the op-

timal ‘sweet spot’ for power consumption estimation by achieving a balance

between estimation speed and high accuracy?

It is commonly known that conventional gate-level simulations and power analysis

tend to be time-consuming, while high abstraction level power estimation often lacks

accuracy. Therefore, to strike a balance between estimation speed and accuracy, our

proposed power estimation methodology utilizes the power consumption analysis flow

that combines the accuracy nature at low abstraction levels with the efficiency nature

at high abstraction levels and introduces ML techniques to it for further acceleration.

We aim to train a ML model capable of learning the relationship between switching

activity and power consumption, and then apply the power model to estimate power

consumption for various workloads within the same circuit design.

To obtain the training dataset, we followed the power analysis flow with RTL

stimulus described in Section 4.2.2. The RTL switching activity on the synthesized

gate-level netlist is used to perform cycle-by-cycle power calculations. This workflow

reduces the time compared to conventional gate-level simulation and power consump-

tion analysis as we introduced in Chapter 1, while still capturing important low-level

circuit details, resulting in reasonably accurate power analysis results.

When estimating the power consumption for different workloads, only the switch-
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ing activity information from the RTL simulation is required as the input of the trained

model in our methodology. This speeds up the power consumption analysis flow com-

pared to commercial power analysis tools, as it eliminates the need for logic synthesis

and time-consuming power computation in Joules.

In our experiments, we applied our power estimation framework to the LWC core

using a total of 535 testbenches. Of these, 426 testbenches were selected for training

the model, which is referred to as training testbenches (Ttb). The remaining 106

testbenches were set aside for testing and prediction, and are known as prediction

testbenches (Ptb).

Table 6.1 shows the runtime of the power analysis flow using only commercial tools

in Section 4.2.2 and the same flow using our proposed power modeling approach as an

extension.

The ‘Dataset Generation’ column provides the runtime for power consumption

analysis on Ttb. The runtime is the same for both methods because in our proposed

power modeling flow, the generation of the training dataset follows the Joules power

analysis flow as shown in Phase 1 in Figure 4.2.

The third column shows the training timing of our proposed power modeling flow,

which takes 2.5 hours. In the ‘Power Estimation’ column, we present the runtime for

power consumption analysis on Ptb using the Joules power analysis flow, alongside

the runtime for power consumption prediction using the trained 1D-CNN model.

The last column indicates the total runtime for Ptb. For the Joules workflow,

power consumption estimation only involves Phase 1 in Figure 4.2, which utilizes

the testing testbenches as input. Our proposed power modeling flow necessitates

progressing through all phases as shown in Figure 4.2 to perform power consumption

estimation for Ptb, which includes the generation time of the training dataset, model

training time, and prediction time for Ptb.

Dataset
Collection

(Ttb)

Model
Training

Power
Estimation

(Ptb)

Total
Runtime on

Ptb

Joules Power
Analysis Flow with

RTL Stimulus
1 hour - 10 mins 10 mins

Proposed Power
Analysis flow with
1D-CNN Model

1 hour 2.5 hours 2 mins 212 mins

Table 6.1: Comparison of the runtime of the Power Analysis Flow using Joules and Our
Proposed Power Analysis flow with 1D-CNN Model
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It is noted that the total runtime on Ptb in Table 6.1 can not reveal the efficiency

of our current model. This is attributed to the limited count of 106 testbenches used

for testing purposes and the relatively short simulation periods for each testbench.

Consequently, it did not take too much time for power consumption analysis using

Joules. However, the measure of efficiency will become evident when performing

power consumption estimation for a large number of input workloads under the same

design.

For instance, in the context of power-based side-channel attacks, it could involve

thousands or even millions of different testbenches, each simulating a potential attack

scenario. Considering a scenario with 104 testbenches, the power estimation duration

using Joules is expected to extend to approximately 103 minutes in this case. In

contrast, our proposed power modeling flow exclusively necessitates prediction and

omits time-consuming Phase 1 and Phase 2. Therefore the runtime is notably more

efficient, estimated to be around 300-400 minutes. This comparison illustrates the

efficiency of our approach in streamlining the power consumption estimation process

for large workloads.

The experimental results in Chapter 5 show that the power estimation accuracy

varies across test cases, with most cases exhibiting relatively low estimation errors (5-

10%), while a few cases exhibit some deviations from the reference power consumption

values (20% error).

To enhance the proposed methodology and improve the performance of the power

estimation model, we propose some potential research directions for future work:

• Handling Outliers:

The results in Section 5.3.3 show that it can be challenging to predict the cycles

with outliers in the dataset. Therefore, to improve the accuracy of power con-

sumption predictions for those cycles with outliers, it is essential to refine the

training dataset. Careful curation of the dataset should adequately represent a

diverse range of power consumption patterns, including rare or unusual cases.

This will enable the model to learn and generalize better, even for instances that

deviate significantly from the typical pattern.

• Handling Steady States:

The results also point out the problems for those steady-state cycles, where we

refer to some cycles in the reference power profiles with little or no variation. We

consider introducing regularization techniques during model training to prevent

overfitting and thus improve the ability of the model to handle cycles with small
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power variations.

• Capturing RTL Activity and Power more Accurately:

In our current methodology, the monitored signals of the circuit are manually

selected for switching activity analysis and power consumption analysis. The

model is subsequently trained based on the relationship between the captured

activity and power consumption. However, it is possible that we may overlook

certain signals that have a significant influence on power consumption. This

limitation can potentially lead to less accurate power estimation results using the

current model. An interesting area for future research is to explore how to select

the most representative signals for switching activity and power consumption

analysis. By capturing the RTL switching activity and power consumption more

accurately through optimized signal analysis and selection approaches, we can

enhance the power estimation model and ensure that it accounts for all relevant

and critical signals contributing to the power consumption.

• Enlarging the Dataset:

The current experiment generated relatively small training and testing datasets.

Increasing the size and diversity of the dataset may provide more representative

samples and improve the learning ability of the model. In addition, including

more testbenches for testing would provide a broader range of scenarios to assess

the performance of the model and enhance its robustness.

• Complex Circuit Designs:

Currently, our power estimation model is applied to relatively small realistic

circuits. We consider applying the model to more complex circuits in future

works. The effectiveness and scalability of the model can be further evaluated

with larger and more complex circuit designs, as they tend to have more signals,

longer runtime for simulation and power analysis, and more intricate power

consumption patterns.

• More Efficient Training for Different Designs:

Another noticeable limitation is that the model needs to be retrained for every

new circuit design. While the common application scenario is inferring power

consumption under different testing workloads on the same circuit design, when

it comes to the scenarios that require different designs, the retraining process for

each new circuit design can be time-consuming, particularly for larger and more

complex circuit designs.
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Chapter 7

Conclusions

In this work, we have introduced a power modeling approach that accelerates cycle-

accurate power estimation during the RTL design phase.

Our methodology was applied to a lightweight cryptographic core, and the results

demonstrated its effectiveness in predicting the power consumption of most test cases.

The 1D-CNN model achieved an optimal NRMSE of 5.68% for cycle-by-cycle power

estimation.

The developed model can be generalized to different workloads under the same

circuit design and greatly release the computational burden of post-synthesis power

computation in the Cadence Power Solution tool.

In conclusion, our work provides an agile, flexible design flow that enables efficient

and accurate cycle-accurate power estimation in the early stages of hardware design.

Moving forward, the framework empowers designers to make informed decisions and

timely adjustments on power consumption, which can be generalized to various power-

related domains, such as identifying vulnerabilities in power consumption that could

be exploited by power analysis side-channel attacks.
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