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Abstract

Autonomous navigation within the maritime industry to improve safety and op-
erational e�ciency is an active and important area of research. In recent years,
advanced methods leveraging reinforcement learning have started to find their
way into the field of motion planning for autonomous surface vessels. We have
experimented with combining deep reinforcement learning (DRL) and optimal
control solvers like the model predictive controller (MPC) to create a local plan-
ner for an autonomous surface vessel. Additionally, we experimented with a DRL
direct control approach and compared these two methods to an existing method
that combines a classical graph-based search algorithm with an MPC. We found
that the combination of DRL and MPC performed significantly better than the
direct control approach and we showed similar path-planning capabilities to the
classical graph-based search method. The experiments show promising results
for obstacle avoidance in our simulated environment using our proposed method.
This work provides a starting point for further development of a combined DRL
and MPC-based local planner where future research can improve on theoreti-
cal safety guarantees and the ability to interact with other agents in a dynamic
environment.
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1 Introduction

In the maritime sector, navigation can be a challenging task. Sailing a ship re-
quires a balance between maneuvering e�ciently yet safely, where factors like the
trip duration, fuel consumption, and collision avoidance can contradict each other.
Solving this problem generally requires the expertise of highly skilled skippers. De-
spite good education and training, human skippers sometimes still struggle with
complex situations or bad environmental conditions which could lead to incidents
with significant consequences (EMSA, 2023). For these reasons, research towards
assistive technology for skippers is a long-existing field that aims to improve the
safety and e�ciency of maritime surface vessels (Calvert, 1960).

These support systems traditionally aid the skipper with one or more sub-tasks
that can be categorized by a set of high-level tasks referred to as Guidance
Navigation and Control (GNC) (Vagale et al., 2021). These tasks describe the
complete process of controlling any vehicle or system that acts in an uncontrolled
environment. An example of a GNC definition for maritime vessels is illustrated
in Figure 1.

Figure 1: Guidance Navigation and Control architecture as proposed by Vagale et al.
(2021). The architecture provides sub-tasks for each main task within the GNC model.

The Navigation tasks are responsible for determining the state of the environment
including the vessel itself. The Guidance tasks relate to the planning of a safe and

feasible route. Finally, the control tasks ensure that this route is executed. This example
should be considered a general architecture, where the categorization of each sub-task can

deviate per implementation.

As technology progressed, maritime support systems became more advanced, pro-
viding advanced information like collision-free trajectories (Lazarowska, 2016).
Such developments have also found their way into research towards fully au-
tonomous vessels (DNV GL, 2014), where the system should be able to perform
all GNC tasks without human intervention.
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This work will focus on one of the GNC sub-tasks and is performed in collab-
oration with Roboat. Roboat is a company based in Amsterdam that develops
an autonomy system that can be applied to any vessel as either a retrofit or a
fully integrated part of the vessel. We will specifically look into the local planning
applied to Roboat’s autonomy solution.

We see an opportunity to apply reinforcement learning as part of the local planning
mechanism for an autonomous vessel. This can be implemented in the current
GNC structure, using reinforcement learning to learn a sub-goal recommendation
policy for the currently implemented MPC controller, or by learning a policy
combining planning and control as an end-to-end system. Therefore the main
problem we will discuss is: “What reinforcement learning algorithm works best
for the autonomous navigation of a ferry in the city of Amsterdam”. This will be
addressed with the following research questions:

RQ1: How to model the problem in the MDP: end-to-end or separating
planning and control?

RQ2: Which of the following methods is best suited for local planning based
on an occupancy map: a DRL-based local planner or a graph-based
local planner?

To answer these research questions, we will first implement the end-to-end method
and the sub-goal recommendation approach and compare them experimentally to
each other. Secondly, we will compare our proposed method to Roboat’s current
implementation.

The following section will discuss the background information related to Roboat’s
current implementation and references to related work on local path planning.
Section 3 will cover the modeling and implementation of our contribution, in-
cluding the MDP modeling and model architectures. Section 4 will describe the
experimental setup used to evaluate the research questions. The results of these
experiments are discussed in Section 5. Finally, we will review the results, con-
clude this work, and provide suggestions for future research in Sections 6 and
7.
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2 Related Work

2.1 Roboat

This work is done in collaboration with Roboat. Roboat is a company based
in Amsterdam developing navigation assistance and autonomy solutions for the
maritime industry. The company is a spin-o↵ of a research project conducted
by Wang et al. (2020) together with the Massachusetts Institute of Technol-
ogy (MIT ), and the Amsterdam Institute for Advanced Metropolitan Solutions
(AMS). Roboat’s goal is to create a modular system that can be commissioned
on any in-land vessel to provide various levels of autonomous capabilities.

For this project, we will limit this scope by only considering Roboat’s current
development vessels as illustrated in Figure 2. Lucy and Tony both have the
same method of propulsion which will be further discussed in Section 2.1.1. Due
to the identical method of propulsion, the methods that we will propose in Section
3, can be applied to both vessels.

(a) Lucy (b) Tony

Figure 2: Roboat’s test vessels. a) An image of Lucy which is a small 6-person
water-taxi designed for research and demonstration purposes. b) A render of Tony, a

larger ferry designed with a maximum capacity of 35 people for supervised autonomous
operation on the Seine in Paris.

Roboat’s autonomy system currently resembles a GNC process similar to the ar-
chitecture illustrated in Figure 1. This starts with the navigation module, which
is responsible for determining the current state of the vessel and the environ-
ment. Both vessels are therefore equipped with two sensor modules. Each sensor
module contains multiple cameras, a Lidar, GPS, and an Internal Measurement
Unit (IMU). The Navigation module uses these sensors to create an occupancy
grid (Thrun et al., 2005) and an accurate measurement of the vessel’s position,
heading, and velocities. To enhance the occupancy grid, a YOLO-based instance
segmentation model (Bolya et al., 2019) filters out any misclassified obstacles
on the grid. The resulting grid is smoothed with a Gaussian kernel to reduce
the impact of the sensor noise. This last stage provides the final image with a
probabilistic characteristic indicating the probability of obstacles at each location
on the map.
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The guidance process uses this information to generate safe and e�cient trajecto-
ries to the target location. This process is executed in two stages. First, a global
planner applies the probabilistic roadmap (PRM) algorithm (Kavraki et al., 1996)
to a static map of the area. This generates a set of waypoints from which one is
selected as the current target destination. For the second stage, the local planner
generates a safe trajectory by applying A* on the occupancy grid, starting from
the vessel’s current position towards the target destination.

Finally, the controller converts this trajectory to a set of actuator control in-
puts. This final stage is implemented as a Non-linear Model Predictive Controller
(NMPC) (Houska et al., 2011). The controller leverages a model of the vessel
dynamics to optimize a series of control inputs, minimizing the expected devi-
ation between the provided trajectory and the predicted trajectory that results
from these control inputs.

As mentioned in Section 1, with this work we will focus specifically on the local
planner and the interface between the local planner and the controller. For this
purpose, we will assume that the navigation module will provide us with accurate
occupancy maps and the current location, heading, and velocities of the vessel.

2.1.1 Vessel Dynamics

As discussed in the previous section, both of Roboat’s development vessels use
the same propulsion method. This propulsion method consists of 4 propellor-
based actuators referred to as thrusters. The thrusters can generate a thrust i.e.
a force, in a forward or backward direction relative to their orientation which is
set up in an H-configuration as illustrated in Figure 3. This configuration is over-
actuated meaning that even without one of the thrusters, the vessel is capable
of omnidirectional movement, i.e., moving in any direction.

Figure 3: Schematic view of Roboats propulsion method. The four actuators labeled:
Stern, Bow, Port, and Star, are placed in an H-configuration. The distance between the

actuators is indicated by a and b. The arrow indicates the direction in which the
actuators can provide a force.

This H-configuration is also used in one of the original Roboat papers (Wang et al.,
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2020), which provides a set of di↵erential equations describing the dynamics of
such a vessel. We slightly modify the definition of the dynamics model from this
paper to match the more recent implementation resulting in Equation 1.

ẋ = T(x)v (1a)

v̇ = M�1(Bu)�M�1D(v)v (1b)

u̇ = [ustern, ubow, ustar, uport]
T (1c)

where x = [x, y, ✓]T represents the position and heading of the vessel relative to
the world reference frame, v = [ẋ, ẏ,!]T represents the velocities in the vessels
reference frame. The transformation matrix T (x) translates the state vector x to
the vessel’s reference frame. u represents the control vector where each element
u represents the change in thrust applied by each thruster.

The remaining matrices, M 2 R3⇥3, B 2 R4⇥3, and D 2 R3⇥3 represent the
mass and inertia matrix, control matrix, and drag matrix respectively. These
matrices define the vessel’s characteristics and are di↵erent for Tony and Lucy.

2.2 Local Planning

Graph-based planning

As mentioned in Section 2.1, both the global and local planners of Roboat’s
current system are based on graph-based search algorithms. Within the maritime
sector, graph-based planners are primarily used for global planning applications,
however, there are also numerous studies applying them to local planning tasks
(Ülkü Öztürk et al., 2022).

The main challenge of using graph-based methods for local planning tasks comes
when dynamic obstacles and environmental e↵ects on the vessel must be con-
sidered. Various studies have therefore resulted in variations on the well-known
A* algorithm, considering multiple trajectories based on the probability of the
e↵ects of certain actions (Svec et al., 2011), or restricting the search space so
that solutions can be found in real-time allowing to consider dynamic obstacles
as static (Singh et al., 2018).

Directional methods

Another category of methods often used in robotics and the maritime industry are
directional methods. These methods have in common that they suggest changes
in heading and/or velocities relative to the agent’s current position. The two
methods most often used in the Maritime industry according to Ülkü Öztürk
et al. (2022) are Velocity Obstacles (VO) and Artificial Potential fields (APF).

The VO algorithm (Fiorini and Shiller, 1998) provides a geometric solution for
determining when two objects will collide based on their relative velocities, and
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what correction maneuvers are possible to avoid a collision. This method requires
that the current location and velocities of the obstacles are known. This will
generally not pose a problem for static obstacles since the relative velocities can
be deduced from the OS’s current velocity. However, for dynamic obstacles, this
requires either multiple observations of the same object over time or, additional
information from sources like the Automated Identification System (AIS) or an
equivalent system.

APFs (Khatib, 1986) are often used due to their simplicity and high computational
e�ciency. The method computes a ‘reaction force‘ based on a set of attractive
and repelling forces artificially generated by the target and obstacles respectively.
By modeling the equations that determine the strengths of these forces specific
behavior can be determined.

Both APF and VO methods are active topics of research where recent works
have proposed methods that take the naval collision regulations (COLREGS)
into account (Kufoalor et al., 2018), (Lyu and Yin, 2019).

Optimisation based methods

The final category of methods formulates the local planning tasks as an optimiza-
tion problem. Within this category, there is a wide range of di↵erent proposed
algorithms like Ant Colony Optimisation (ACO) (Lyridis, 2021), Particle Swarm
Optimisation (PSO) (Kang et al., 2018), and other methods related to Genetic
Algorithms (GA). The NMPC discussed earlier, can also be categorized as an
optimisation-based method.

Roboat’s current implementation of the NMPC mainly functions as a controller for
generating the actuator inputs that respect the limits of the thrusters. However,
similar hard- and soft constraints can be applied to spatial regions within the
input space (Hagen et al., 2018). This method would provide guarantees of
collision-free trajectories while respecting the vessel dynamics. The drawbacks
of this method are the complexity of formulating the spatial constraints and the
computational cost related to the prediction horizon. Larger prediction horizons
increase the computational costs, yet generally result in higher quality of the
predicted actions.

2.3 Reinforcement Learning

Reinforcement Learning (RL) is a branch of machine learning where an agent
learns to make optimal decisions by interacting with an environment. This can
be done by formulating a problem as a Markov Decision Process (MDP) (Sutton
and Barto, 2018). Figure 4 illustrates the MDP. Given a state st the agent takes
an action at, which influences the environment. The environment will provide the
system’s next state st+1, including feedback on the performed action as a reward

10



rt+1. This framework allows an agent to learn sequential decision processes by
trial and error directly from observations from the environment.

Figure 4: The agent-environment interaction as described by Sutton and Barto (2018).

With the rise of neural networks, the field of Deep Reinforcement Learning (DRL)
emerged. Combining neural networks as function approximations with RL allows
learning high-dimensional action and state spaces (Tesauro, 1994). With ad-
vances in network architectures like Convolutional Neural Networks (CNN), it
became possible to learn policies directly from sensor inputs to control inputs for
the system (Mnih et al., 2013). Learning policies that directly map sensor data
to control inputs are often referred to as end-to-end methods.

End-to-end

End-to-end DRL has been applied to various control problems over the last few
years. Hwangbo et al. (2017) and Song et al. (2023) demonstrate the ability to
control quadcopters based on their internal state. While OpenAI et al. (2019)
provides an example of how visual input is converted into motor controls for a
robotic hand.

Within the maritime sector Waltz and Okhrin (2023) recently, used an end-to-end
approach to learn rudder control policies that adhere to the Collision Regulations
(COLREG) for maritime surface vessels.

End-to-end approaches are interesting since they are relatively simple to imple-
ment, and can model complex dynamics and learn to account for external dis-
turbances directly from the data. Therefore eliminating the need to engineer
accurate analytical models.

DRL + MPC

While end-to-end approaches have demonstrated the ability to learn complex
control policies, these methods are often quite sample-ine�cient and lack certain
analytical guarantees (Lin et al., 2021). Recent works have therefore started
investigating ways to combine DRL and MPC.

Zhang et al. (2016) leverages an MPC during the training phase to learn a ro-
bust policy based on expert knowledge and prevent catastrophic failures during
training. After training, the MPC is not used anymore and therefore none of the
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benefits remain. Romero et al. (2024) solves this by incorporating the MPC as
part of the agent’s actor policy, providing a way to dynamically set the control
parameters for the MPC.

The aforementioned methods primarily aim to leverage the model-based charac-
teristics of the MPC to enhance the quality of the DRL policy predictions by
preventing the need to learn an already-known dynamics model from scratch.
However, these methods do not yet leverage the capability of an MPC to guar-
antee collision-free trajectories. Therefore Brito et al. (2021) suggests a method
where the DRL agent recommends a sub-goal to an MPC. The MPC can include
additional constraints to prevent the generation of control signals that lead to
unsafe trajectories.

Based on the context provided by Roboat and the literature we discussed, we
will experiment with the application of DRL in the context of a local planner.
Specifically, we will implement an end-to-end method and a combination of DRL
and MPC using the sub-goal recommendation strategy. In the next chapter, we
will describe the setup for both of our methods.
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3 Method

As discussed in Sections 1 and 2, we consider our agent to be controlling a
maritime surface vessel within a 2D environment W ⇢ R, where both static and
dynamic obstaclesOobst = O

stat
obst[O

dyn
obst can be present at any location. The vessel

that the agent controls will be referred to as the own ship (OS). Vessels controlled
by other agents are referred to as target ships (TS) and are part of the dynamic
obstacles Odyn

obst. Quays, buoys, and docks are examples of static obstacles Ostat
obst.

The location of the OS at time step t is defined by pt = [xt, yt, ✓t, ẋt, ẏt,!t]T ,
where xt, yt represent the x and y locations, ✓ the heading, and ẋt, ẏt,!t the rate
of change over each time step i.e. velocities of the earlier mentioned variables. A
vector such as pt that defines these six parameters will be called a pose.

The agent’s main task is to navigate the OS from its current pose pt to a target
pose dt provided by the global planner, without intersecting with any of the
observed obstacles Oobst. This can be modeled as an MDP as illustrated in
Figure 5. The rest of this section will discuss the MDP modeling in more detail,
starting with the representation of the observations, actions, and definitions of
the reward and transition functions, followed by the agent’s policy architecture,
and training procedures.

Figure 5: Conceptual view of the agent’s observations and actions. The agent navigates
the OS towards the target location dt. The destination dt, received from the global

planner is represented in the world frame. This is converted to a goal gt relative to the
OS current pose pt. The agent also observes Ot which is an ego-centric occupancy grid
including both static and dynamic obstacles. The agent provides actions at that can
either be directly applied to the environment or processed by an optimization-based

controller to a control input ut as will be discussed in Section 3.1.2

13



3.1 MDP Modeling

The environment’s state consists of pt, dt, and Oobst. In this section’s introduc-
tion, these elements were defined in the global coordinate frame to allow us to
interact with the global planner. However, solving the local planning task greatly
benefits from re-defining these elements relative to the agents’ reference frame.

3.1.1 Observation

As illustrated in Figure 5, we first define the goal pose gt = pt � dt as the
di↵erence between the current and target pose. Secondly, we convert pt to a
relative variant p0

t by simply setting the x and y components to zero. Finally,
Oobst will be presented to the agent as an ego-centric probabilistic occupancy
grid Ot (Thrun et al., 2005). This grid is a local representation of W where the
value on each grid cell represents the probability of an obstacle at that coordinate.
The occupancy grid is centered at the origin of the OS and oriented so that the
x-,y-axis aligns with that of p0

t.

Within the simulator, we obtain the probabilistic occupancy grid by rendering a
2D array where a value of 0 or 1 indicates the presence of an obstacle in a given
location. We apply a Gaussian blur to create a smooth transition between the
obstacles and free space, simulating a probability gradient near obstacles.

When we combine these components, the resulting state that the agent observes
at each time step st is represented as:

st = [p0
t,gt,Ot] (2)

The translation of reference frames solves several challenges. Eliminating the
relation to the world coordinates ensures that each observation is an indepen-
dent and uncorrelated sample of the environment. This prevents the agent from
memorizing specific features within the training environments which improves
generalizability to previously unseen environments. Furthermore, the relation be-
tween states and actions will be simplified due to the alignment of the occupancy
grid and the observed poses, where each grid cell correlates with a x, y value in
both the p0

t and gt.
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3.1.2 Actions and Transition Functions

We will be comparing two di↵erent methods of controlling the vessel. In both
cases, the vessel’s transition function can be defined as:

pt+1 = f(pt,ut) (3)

Where f(pt,ut) represents the vessel dynamic as discussed in Section 2, and ut

is defined as:
ut = [ustern, ubow, ustar, uport] (4)

For the end-to-end control method this results in the following definition for the
action: at = ut, where the action at directly feeds into the vessel dynamics
simulator.

The other approach uses the MPC to generate the thruster control inputs. In
Section 2.1 we discussed that the MPC requires a reference trajectory over which
the control inputs can be optimized. Predicting the entire reference trajectory
would make the action space of the agent unnecessarily large. Instead, we only
predict the final pose, referred to as the sub-goal. The remaining trajectory is
then interpolated between the agent’s current pose and the sub-goal pose as
illustrated in Figure 6a. The details of the interpolation method used can be
found in Appendix A.

We will define the recommended sub-goal relative to the agent resulting in the
following definition of the agent’s action:

at = [rt+n,�✓t+n], (5)

where �✓ represents a change in the angle of the vessel and r is the distance
at which the next sub-goal should be placed. t + n indicates that the sub-goal
represents the desired position at a fixed n steps into the future. Both r and �✓
are bounded, resulting in a cone-shaped area in front of the vessel as illustrated
in Figure 6b. This limits the action space and therefore reduces the complexity
of the problem.

The recommended sub-goal results in the reference trajectory which is provided
to the MPC that returns a set of control inputs U . When applied, these control
inputs result in the trajectory illustrated as the purple trace in Figure 6a. This
brings us to the definition of the control inputs while using the MPC:

ut = U0, (6)

where the first element of U is used as the control input for the vessel dynamics
simulator.
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(a) Interpolation of the reference

trajectory based on a sub-goal

(b) Bounded area for the sub-goal

recommendation

Figure 6: Sub-goal recommendation area and reference trajectory generation. (a) We
see the agent indicated by the blue circle, the yellow circle is the recommended sub-goal.
The orange trace of arrows is the interpolated reference trajectory. The purple trace of
arrows is the predicted trajectory according to the MPC. (b) We see the area in which
the agent can recommend a sub-goal. �✓ indicates the change in angle relative to the

vessel’s center. r indicates the distance between the vessels current position and the new
sub-goal recommendation.

3.1.3 Reward

The main objective of the local planner is to guide the OS to the target provided
by the global planner. Defining both pt and dt as poses allows us to measure the
distance between these two poses. Therefore, minimizing the distance between
pt and dt should maximize the reward. Additionally, due to the ego-centric
nature of the observations, we can give the agent additional feedback based on
whether the agent is moving closer, or further away from the target. Equation
7a therefore defines rstep as the progress towards the target by subtracting the
Euclidian distances between pt and pt+1 and dt.

To incentivize the agent to take the shortest route possible we deduce the distance
traveled between the two states as defined in Equation 7b. Lastly, we penalize
the agent for coming into close proximity to an obstacle. This is measured by the
probability of an obstacle at the agent’s location based on the occupancy map.

rstep = kpt � dtk2 � kpt+1 � dtk2 (7a)

rdist = kpt � pt+1k2 (7b)

robs = Pobs(pt+1) (7c)

r(st, at) = rdelta � ↵rdist � �robs (7d)
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The complete reward function as defined by Equation 7d adds two additional
parameters (↵ and �) to scale the relative importance of each component. Figure
7 illustrates the field generated by this reward function.

Figure 7: The field produced by the reward function based on the agent’s current pose
and the goal pose. For this illustration, ↵ = 0.3 and � = 10 were used. We see the

contour lines at an interval of 10. The contour lines are elliptically shaped due to ↵ > 0.
A second 0-contour line can be observed between the agent and the obstacle due to � > 0.

3.2 Model Architecture

The policy network architecture as illustrated in Figure 8 uses a CNN to extract
the features from the occupancy map. The CNN architecture is derived from the
NatureCNN architecture as formulated by Mnih et al. (2015). The final layer of
this CNN is a fully connected layer that provides the feature embedding. This
embedding is concatenated with the pose information of the OS pt and the target
pose gt. The resulting vector is passed through a 2-layered MLP with 265 Neurons
each. Finally, the architecture splits into an actor head responsible for defining
the mean and standard deviations of the actions, and a critic representing the
value of a specific state.
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Figure 8: The policy network architecture. A CNN encoder followed by a fully
connected layer with a ReLu activation processes the most recent occupancy map Ot.

The resulting embedding is concatenated with gt and pt and passed through a
two-layered MLP before splitting in the actor and critic heads.

4 Experimental Setup

This section presents the experimental setup for comparing the di↵erent control
methods and the performance of the models against Roboats’ current imple-
mentation. We will discuss the di↵erent environments, as well as the training
parameters.

4.1 Training Environments

We have constructed two environments to evaluate if our method can perform
the local planning task. The first environment will contain no obstacles and will
be used to evaluate the di↵erences in learning a direct control policy i.e. end-to-
end policy, and a sub-goal recommendation policy. The second environment will
contain various pseudo-random obstacles for the agents to avoid.

Figures 9a and 9b represent the empty environment and the environment contain-
ing the obstacles respectively. Both environments represent the agent as a blue
circle, a small line indicates the current heading of the agent. The goal and sub-
goal are illustrated with similar red and yellow icons, including a line to indicate
the desired heading. The red square around the agent in Figure 9b represents the
area of the environment that is converted to the occupancy map. An example of
the occupancy map is illustrated in Figure 9c. Obstacles are indicated as white
surfaces. A collision is registered when the center of the agent intersects with one
of these surfaces. Finally, the trail of green arrows following the agent illustrates
the trajectory traversed by the agent.
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(a) Empty Environment (b) Static Environment (c) Observation

Figure 9: Variations illustrations of the training environment (a) An empty environment
(b) Several pseudo-random white surfaces indicate obstacles (c) A rendering of the

obstacle map.

4.2 Baselines and Evaluation Metrics

Separate agents will be trained to evaluate both the direct-control policy and the
sub-goal recommendation policy as discussed in Section 3. Since the MPC can
generate control inputs it is not strictly necessary for the agent to learn the vessel
dynamics when using the MPC controller. Therefore, we will train two agents
using the sub-goal recommendation policy. One version will be trained including
the simulation of the vessel dynamics. While the other will transition directly to
the location of the predicted sub-goal.

Both a quantitative and qualitative comparison between the agents will be con-
ducted. The quantitative evaluation will compare the learning curves for the
reward and success rates of the di↵erent agents. The qualitative study will in-
vestigate the abilities of the sub-goal recommendation policy trained without the
vessel dynamics by reviewing the traversed trajectories of the agent.

The latter study will also include a comparison to Roboat’s current implementa-
tion. This will be done using an environment based on Roboat’s real-world test
area as illustrated in Figure 10.
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(a) Simulated Environment (b) Satelite Reference

Figure 10: Environment based on Roboat’s Real-World test area.

4.3 Training Procedure

We train our agents using Soft Actor-Critic (Haarnoja et al., 2018), as imple-
mented by the Stable Baselines 3 framework (Ra�n et al., 2021). The agent’s
pose is randomly initialized at the start of each episode in one of Section’s 4.1
environments.

All agents are trained for Ntrain = 1 ⇤ 106 time steps. An episode length of
nepisode = 500 is used for agents trained with the dynamics simulation enabled.
The agent trained without the vessel dynamics is trained with nepisode = 100.

We use a form of curriculum learning (Bengio et al., 2009) to increase the com-
plexity during training by gradually increasing the maximum distance rmax sepa-
rating the initial position of the agent, and the generated target pose. rmax will
increase according to the following schedule:

rmax =

8
>><

>>:

rinit if t < Nstart

rinit + (rfinal � rinit)
⇣

t�Nstart
Nend�Nstart

⌘0.5

if Nstart  t  Nend

rfinal if t > Nend

(8)

Here rinit and rfinal are the initial and final values for rmax. For the time t between
Nstart � 0 and Nend  Ntrain the function smoothly transitions from rinit to

rfinal. The
⇣

t�Nstart
Nend�Nstart

⌘0.5

term scales this transition with a square root, therefore

relatively more timesteps are spent on larger values for rmax. This compensates for
the exponential increase in initial conditions as the maximum distance increases.

The agents trained to compare di↵erent methods will all use a static rmax = 10.
Agents used for the qualitative studies will be trained with a curriculum schedule
allowing for larger separations between the initial pose and the target destination.
Table 1 describes the parameters used for this schedule and Appendix B discusses
the e↵ects of using this curriculum schedule.
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The remaining parameters we need to define are:

• The size of the observed area as discussed in Section 4.1 is set to 75 meters
in width and height.

• The maximum radius r and change in angle �✓ that forms the coned shape
area as described in Figure 6b are set to r 2 [0, 10] and �✓ 2 [�⇡

4
, ⇡
4
]

respectively.

Finally, unless stated otherwise, we will use the dynamics model for Lucy in all
experiments.

Parameter Value Unit

Nstart 300 ⇤ 103

Nend 800 ⇤ 103

rinit 10 meters (m)
rfinal 50 meters (m)

Table 1: Curriculum schedule parameters

For the simulation of the vessel dynamics and solving the non-linear optimization
control problem i.e. the NMPC solver, we use the Acados-simulator and -solver
(Verschueren et al., 2021). To run the experiments we used either a laptop with
an Intel i7-13700H, a Nvidia RTX4060 with 8GB of VRAM and 32GB of RAM,
or part of the Snellius cluster containing an Intel Xeon Platinum 8360Y, a Nvidia
A100 with 40GB of VRAM and requested 32GB of RAM.
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5 Results

In this section, we will discuss the experimental results. For each environment, we
will first discuss the quantitative results comparing the learning curves for each
agent’s reward and success rates. Each experiment is run 3 times, the resulting
curves are averaged, and the standard deviation is displayed along with this aver-
age in each graph. Secondly, we will discuss qualitative results by presenting the
trajectories as performed by the agents.

5.1 Empty Environment

As discussed in Section 4, we will first train our agents in an empty environment.
To evaluate each method’s performance on the basic navigational task.

Learning Curves

Figure 11 shows the learning curves for the rewards of the three agents trained
in the empty environment. The sub-goal recommendation policy trained without
a dynamics model represented by the blue curve quickly learns the task. This is
expected since the agent’s actions are always consistent with the transition to the
next state.

Figure 11: Average return during training in an empty environment. The blue, orange,
and green lines show the learning curves of agents without vessel dynamics,

direct-controlled, and MPC-controlled vessels respectively. On the x-axis, we see the
number of training steps. The y-axis represents the average return using a window of 100

episodes. Each curve is averaged over 3 runs where the shaded area represents the
standard deviation.

The other two agents perform notably worse. Learning the sub-goal recommen-
dation policy along with the vessel dynamics proves to be more challenging than
when not considering the dynamics. This is also expected for a similar reason as
before. In this scenario, the e↵ect of each sub-goal recommendation depends on
all prior actions, while each action only has a small direct e↵ect on the agent’s
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more complex state. Similarly, the direct control approach su↵ers even more from
this since the action space is much larger, and the agent is required to learn the
dynamics discussed in Section 2.1.

The learning curves of the dynamics-enabled sub-goal recommendation policy
show some interesting behavior. Initially, it performs worse than any other policy,
after which it quickly jumps up to a new plateau and slowly starts improving
again. When we compare this reward curve to the success rate as illustrated in
Figure 12. We notice that the jump to this intermediate plateau aligns with the
start of the increase in success rate.

Figure 12: Average success rates during training in an empty environment. The blue,
orange, and green lines show the learning curves of agents trained without vessel

dynamics, direct-controlled, and MPC-controlled vessels respectively. On the x-axis, we
see the number of training steps. The y-axis represents the percentage of rollouts in

which the agent reached the target, i.e. the success rate, determined using a window of
100 episodes. Each curve is averaged over 3 runs where the shaded area represents the

standard deviation.

Agent Performance

In Section 4.2 we discussed that the sub-goal recommendation method would not
strictly require training with the vessel dynamics enabled. Instead, the learned
policy of this agent should be able to navigate the vessel, regardless of the spe-
cific vessel characteristics. Figure 13 illustrates this by comparing the agent’s
trajectory while directly transitioning between sub-goals in Figure 13a and the
trajectories performed by the same agent only now including the MPC and sim-
ulation of the vessel dynamics in Figures 13b and 13c. The latter two figures
represent the trajectories while simulating the dynamics of Lucy and Tony re-
spectively.

This demonstration confirms that the agent can navigate the vessel leveraging
the MPC’s dynamics model. Looking more closely at the results, we can see that
when Tony’s dynamics are used the agent first overshoots the target position,
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(a) Direct transition between

sub-goals

(b) Simulation of Lucy’s vessel

dynamics

(c) Simulation of Tony’s vessel

dynamics

Figure 13: A comparison of trajectories generated by the same agent trained without
vessel dynamics.

forcing it to make a small additional curve to get back to the goal pose. The
agent predicts a sub-goal assuming that it can reach this position. However, since
the agent is not trained to take the current velocity and the inertia of the vessel
into account, it cannot compensate for the additional e↵ort required to make
a course correction. We can also see that this e↵ect is more pronounced with
Tony’s dynamics than with Lucy’s, which can be explained by the size di↵erence
between Lucy and Tony as shown in Figure 2.

5.2 Static Environment

The second environment includes obstacles for the agent to avoid. Within this
environment, the agent is required to learn what features are important from the
occupancy map to prevent a collision.

Learning Curves

Figure 14 illustrates the average reward per rollout during training for all three
agents. Similar to the previous results both the direct control method and sub-
goal recommendation with vessel dynamics do not perform well within this en-
vironment. This can be expected since the task has become harder with the
additional obstacles. This increase in task complexity is also reflected in the
learning curve of the remaining agent where the increase in reward is less steep
than in the previous experiment. Predictably, the only method able to reliably
reach the target positions is the agent trained without the dynamics enabled.
This is illustrated by the success rate curves in Figure 15.
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Figure 14: Average return during training in an environment with obstacles. The blue,
orange, and green lines show the learning curves of agents trained without vessel

dynamics, direct-controlled, and MPC-controlled vessels respectively. On the x-axis, we
see the number of training steps. The y-axis represents the average return using a
window of 100 episodes. Each curve is averaged over 3 runs where the shaded area

represents the standard deviation.

Figure 15: Average success rate during training in an environment with obstacles. The
blue, orange, and green lines show the learning curves of agents trained, without vessel
dynamics, direct-controlled, and MPC-controlled vessels respectively. On the x-axis, we
see the number of training steps. The y-axis represents the percentage of rollouts in

which the agent reached the target, i.e. the success rate, determined using a window of
100 episodes. Each curve is averaged over 3 runs where the shaded area represents the

standard deviation.
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Agent Performance

Figure 16 demonstrates the ability of the sub-goal recommendation method to
guide the vessel through the environment while avoiding obstacles. Similar to the
example of the empty environment, the figures display an agent trained without
the vessel dynamics.

(a) Direct transitions between

sub-goals

(b) Successful trajectory with

vessel dynamics

(c) Failed trajectory with

vessel dynamics

Figure 16: A comparison of trajectories generated by an agent trained without vessel
dynamics in an environment with obstacles.

In Figures 16a and 16b the agent is initialized in the same pose, with the same
target pose. The only di↵erence between the two examples is the simulation of
the vessel dynamics. We can see that the agent uses a di↵erent route due to
the changed transitions between the states, yet can still navigate towards the
target pose. It even prevents a collision with the obstacle on the bottom center.
However, Figure 16c shows that this method does not provide a guaranteed
collision-free trajectory. In this case, the agent found itself in a position where
nearly the entire action space would result in a sub-goal that intersects with the
obstacle. Along with some residual motion from the previous states, this resulted
in a collision.
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5.3 Roboat Environment

The final experiment will compare the current A* implementation to the proposed
DRL method. For this experiment, we used an agent trained without the vessel
dynamics and in the environment with static obstacles discussed in Sections 4.1
and 5.2. Figure 17 illustrates the results of this comparison. The red waypoints
create a parkour that forces the agent to avoid obstacles between waypoints 2 and
3, and waypoints 4 and 5. In blue we see the trajectory as a result of Roboat’s
current A* + MPC implementation. We compare this trajectory to the DRL +
MPC method represented by the green and orange traces.

Figure 17: A comparison between the proposed DRL method and the current A*
implementation. In red we see the waypoints that substitute the global planner inputs.
The blue trace is the resulting trajectory using the current A* implementation. The

orange and green traces illustrate the performance of the DRL method. The green trace
is created by reinitializing the agent upon reaching a waypoint to reset all the velocities.

The orange trace demonstrates the trajectory without re-initialization.

We can see that the DRL+MPC method can traverse the parkour without col-
liding with any of the obstacles present in the environment. This demonstrates
that our agent has the ability to generalize to previously unseen environments.
For the initial experiment, we let the agent execute the entire parkour without
resetting the vessel’s state once a waypoint had been reached. This continous
run is illustrated by the orange trace.

Since the agent was trained without the vessel dynamics, it does not consider the
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current velocity and inertia of the vessel. The e↵ects of this can be best observed
from the trace between waypoints 1 and 2 where the vessel has an initial speed
and heading resulting from traveling between waypoints 0 and 1. The resulting
trace makes a large arch where the minimum turn radius is produced by the shape
of the action space and the generation of the reference trajectory for the MPC
as discussed in Section 3.1.2.

Since the A* method briefly holds its position to reorient itself on each waypoint,
a better comparison with the DRL method can be made if we do something
similar. Therefore, we ran a second experiment where we reinitialized the vessel
state each time a waypoint was reached. This resulted in the green trajectory in
Figure 17. We can see that the resulting curves in sections between waypoints
0, 1, and 2 are the most similar to the baseline. The sector from waypoint 2
to 3 starts with a very similar path, however, as the vessel picks up speed the
trajectories start deviating and the same overshooting behavior as discussed in
Section 5.1 can be observed near the end.
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6 Discussion

We found that a DRL agent trained to recommend sub-goals might be a viable
strategy for local planning based on occupancy maps. However, this approach
su↵ers from some limitations. First, When we train the agent without the dy-
namics model, it is implied that the vessel can move in a straight line to the new
sub-goal. Therefore the agent will learn to predict sub-goal recommendations
that will avoid collisions assuming a straight trajectory. However, the MPC opti-
mizes a set of control inputs that minimizes the deviation between a reference,
and a feasible trajectory while subjected to a set of constraints applied to the dy-
namics model. This can lead to quite significant deviations between the reference
and predicted trajectory. Therefore this method cannot guarantee collision-free
trajectories.

It might be possible to reduce the probability of the MPC generating an unsafe
trajectory, by training the agent along with the predictions of the MPC. Therefore
the agent can take additional information like the velocities into account. We
observed that this task is much more challenging and might require significantly
more training steps or an alternative training strategy. Even in this scenario, since
the MPC is responsible for computing the thruster control inputs, as long as no
additional constraints are applied while solving the optimal control problem there
will always be a possibility of generating an unsafe trajectory.

Secondly, by limiting the area in which a sub-goal can be predicted we also
limit the number of options the agent has to navigate the vessel. In this cone-
shaped configuration of the action space, we do not use the full omnidirectional
capabilities of the vessel. As a result, a minimal turn radii emerges and the agent
cannot travel backwards. Redefining the action space by predicting a relative x,y,
and heading coordinates for the sub-goal could provide more flexibility but will
introduce more complexity.

Besides these limitations, we should also note that the minimal turn radii and
the overall behavior of the agent during deployment with the MPC enabled are
largely determined by the method used for generating the reference trajectory. For
example, smaller turn radii or faster acceleration are possible by using di↵erent
interpolation strategies. Training the agent without enabling the MPC therefore
allows you to influence the behavior characteristics of the vessel afterwards.
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7 Conclusion

Within this work, we discussed di↵erent strategies for using DRL for local planning
based on occupancy maps. We proposed a policy network architecture and trained
multiple agents to compare the di↵erent strategies to each other as well as to
Roboat’s current implementation.

To answer our first research question, how to model the problem in the MDP,
we compared an end-to-end control approach and a method learning sub-goal
recommendations for an MPC to separate the planning and control tasks. We
found that learning an end-to-end policy for direct control of the thrusters is not
feasible in the current setup. Therefore the alternative of learning to predict sub-
goals from which a reference trajectory is generated for an MPC proved better
suited for this task. We demonstrated that a model of the target vessel’s dynamics
is not strictly required to learn the sub-goal recommendation policy. Although the
learned policy can avoid obstacles, we observed that this does not yet guarantee
collision-free trajectories.

The second research question aimed to determine how a DRL method would
compare to the current A*-based implementation of the local planner. Consid-
ering the current implementations of both methods, we observed that the A*
planner can produce a more e�cient trajectory within the test area. Neverthe-
less, we demonstrated that the proposed DRL + MPC method can generalize to
previously unseen environments and was able to navigate the vessel.

Therefore we can conclude that the separation of planning and control is the better
reinforcement learning strategy for autonomous navigation of a ferry in the city of
Amsterdam. This yields a DRL algorithm that learns a sub-goal recommendation
policy which in combination with an MPC is able to navigate the target vessel.

To improve the performance of the DRL + MPC method, future work could
consider one or more of the following topics. A better training procedure that
considers the full vessel state including the velocities or the embedding of collision
avoidance constraints into the MPC to guarantee safe trajectories Additionally,
this method can be extended with a temporal memory structure like frame stack-
ing or an LSTM, allowing it to consider the movement of other agents in a
dynamic environment.
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A Reference Trajectory Interpolation

In this section, we will discuss the generation of the reference trajectory for the
MPC based on the provided sub-goal. Reference trajectory for the MPC consists
of a pose definition for every timestep within the prediction horizon. A pose is
defined as pt = {x, y, ✓, ẋ, ẏ,!} where x and y determine the location of pose p
on a grid, ✓ provides the angle and ẋ, ẏ, and ! the velocities of each component
at that time step t. The trajectories are always computed relative to the origin
where x, y, and ✓ are 0. The sub-goal st+n = {x, y, ✓} is therefore always
provided relative to this origin and considered the desired location at the end of
the prediction horizon n steps into the future.

Figure 18 provides an example for the generated trajectory for sub-goal st+n =
{5, 8,�⇡

2
} with n = 30.

Figure 18: The interpolated path from the origin to the provided sub-goal at x = 5,
y = 8 and ✓ = �

⇡
2 . Every arrow indicates the intermediate position and heading at an

interval of 100 milliseconds.
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This interpolated path is computed in several steps. First, the x- and y-positions
are interpolated with a Piecewise Cubic Hermite Interpolating Polynomial (Pchip-
Interpolator) with a duplicated point at the final time step as illustrated in Figure
19. The duplication of the final time step achieves a smooth transition with a
stronger acceleration at the beginning of the trajectory. The PchipInterpolator is
used over a Cubic Spline Interpolator to prevent overshooting or oscillations.

Figure 19: The distance traveled along the x- and y-axis over time.

Secondly, the angle is interpolated in a similar method also using the PchipInter-
polator as shown in Figure 20. Additionally, the sin and cosine of the heading
are computed and added to the reference trajectory. While solving the optimal
control problem, the MPC uses these values to address the modular nature of the
heading.

Figure 20: The heading ✓ over time, displayed along with the sin and cosin of the
heading.
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Finally, the velocities for each pose in the reference trajectory are to be deter-
mined. This is done by taking the derivatives of the x, y, and heading curves as
shown above. Since the ẋ and ẏ are defined relative to the current heading ✓,
the derivates are translated from to a relative coordinate frame, resulting in the
curves as displayed Figure 21.

Figure 21: The velocities in x, y and ✓ over time. In this graph, vx and vy are the
velocities relative to the current heading h at each timestep.
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B Curriculum Learning

We discussed the use of a curriculum learning method to train our agents when
a larger distance between the initial state and the target pose is required. This
section will evaluate the benefits of using such a curriculum schedule.

In the figures below we see the learning curves of 2 policies trained in the envi-
ronment with obstacles. One policy is trained using a static value of rmax = 50
which is the maximum value considered during our test. The other is trained
using the curriculum schedule as described in Section 4.3. Again for each curve,
the experiment was performed 3 times and the figures display the average and
standard deviations.

Looking at the average reward achieved during training in Figure 22. We see
little di↵erence in the average performance of each trained policy. We do observe
that the learning is a bit more stable for the policy trained with the curriculum
schedule as indicated by the smaller standard deviation.

Figure 22: Average return during training. The blue and orange lines represent the
policies trained with a curriculum schedule and a fixed value for rmax respectively. The
x-axis represents the number of training steps and the y-axis the average return using a

window of 100 episodes. Each curve is averaged over 3 runs where the shaded area
represents the standard deviation
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We see a larger di↵erence in performance when we visualize the average success
rate in Figure 23. Using the curriculum learning schedule, we see that the success
rate achieves its final performance much quicker than the policy trained with the
fixed value for rmax. Again, we also observe more stable training when using the
schedule.

Figure 23: Average success rate during training. The blue and orange lines represent
the policies trained with a curriculum schedule and a fixed value for rmax respectively.
The x-axis represents the number of training steps and the y-axis is the average success

rate using a window of 100 episodes. Each curve is averaged over 3 runs where the
shaded area represents the standard deviation

The final interesting metric in this scenario is the average episode length achieved
by the policy visualized in Figure 24. This indicates, how quickly an agent travels
from the initial pose to the target pose. A lower value, generally means that
the agent found a more e�cient route. Here we see that the policy trained with
the curriculum schedule on average always achieves a lower episode length. The
temporary increase in episode length around 350 ⇤ 103 steps aligns with the start
of the increase in rmax as discussed in Section 4.3.
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Figure 24: Average episode length during training. The blue and orange lines represent
the policies trained with a curriculum schedule and a fixed value for rmax respectively.
The x-axis represents the number of training steps and the y-axis is the average episode
length using a window of 100 episodes. Each curve is averaged over 3 runs where the

shaded area represents the standard deviation

From these results, we can conclude that the addition of the curriculum schedule
does not have a significant impact on the final performance of the learned policies.
However, in certain scenarios, it can aid in faster convergence and more stable
learning.
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