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Abstract

Hitori is a single-player puzzle, where the goal is to eliminate all duplicates on a
given line, i.e., horizontally or vertically, for an m × n grid filled with characters.
Doing so, one must preserve connectivity between those cells that have not been
eliminated, and neighboring cells cannot be eliminated. In this thesis, we will provide
a difficulty measure for Hitori and consider the generation and solving of the puzzle.
Introducing rules based on a single line, multiple lines, connectivity and probing,
these puzzles have been classified accordingly. Besides this rule-based classification,
a satisfiability-based classification will be considered as well. Based on the principle
of Bell numbers and pruning, Hitori will be generated. An analysis of some board
characteristics will be provided as well.
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1 Introduction

Hitori, which can literally be translated to “alone”, is a Japanese logic puzzle invented by
Nikoli [10]. Originally, Hitori considered a sequence of numbers placed in an n× n grid.
The goal of the puzzle is to get a grid that contains no duplicate numbers in every row
and column by eliminating some of the given numbers. Even though the original Hitori
solely consists of a sequence of numbers, a set of characters, symbols, or a combination
of the two can be used as well. When solving a Hitori, we can use a circle to indicate
that a cell should be left as is, and is thus left white. If we want to eliminate a cell, we
will cross out the cell by making it black. There are three rules to take into account:

1. No duplicate characters may occur in a row or column.

2. Black cells cannot be adjacent to one another.

3. All white cells must be connected via their direct, i.e., horizontal and vertical, neigh-
bors. This excludes the diagonal neighbors of a cell.

Figure 1 shows a Hitori puzzle, an intermediate step, and the final solution. If a character
occurs only once in its corresponding row and column, there is no need to cross out this
cell. Therefore, we will mark the cell as white. Checking this for all cells in Figure 1a,
we will get the board shown in Figure 1b. To get to a solution, we will reason about
the remaining cells, which we will call grey cells. These grey cells are yet unknown. The
last column contains three cells with ‘1’. If we cross out the middle ‘1’, then we make
all neighboring cells white. The top and bottom cells containing ‘1’ would then be white.
However, no duplicates were allowed, meaning that crossing out the middle ‘1’ cannot
occur. So, the middle ‘1’ must be white, and since duplicates are not allowed, the top and
bottom ‘1’ should both be black. Now, the neighbors of black cells can be made white.
Next, consider the top left cells ‘4 − 3 − 4’. At least one of the cells containing ‘4’ has
to be crossed out, as we cannot have duplicates. It does not matter whether we cross
out the first or second ‘4’, or even both. In all cases, the cell contain ‘3’ will always be a
neighbor of at least one black cell, making this cell white. By repeating these steps and
the provided rules, we can obtain the solution, see Figure 1c.
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(a) A Hitori puzzle.
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(b) An intermediate step.
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(c) The solution.

Figure 1: A 5× 5 Hitori, an intermediate step and the solution.
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The focus of this research lies on generating and solving Hitori puzzles, as well as deter-
mining a difficulty measure for Hitori puzzles. Therefore, we will consider the research
questions:

- “How can we generate and solve Hitori puzzles in reasonable time?”

- “How can we determine the difficulty of a Hitori puzzle?”

To generate all Hitori of a given size, we will consider an extension of Bell numbers [4]
to capture all semantically different puzzles. The unique solvable Hitori will have differ-
ent layouts in terms of black and white cells that adhere the connectivity and no black
neighbor rules of the board. Considering the different layouts, the number of black cells on
for a valid m×n Hitori thus varies, for which an upper and lower bound will be provided.

The difficulty measure for the Hitori puzzle will be based on the different techniques
used to solve such a puzzle. The complexity of these techniques determines the way the
puzzles are categorized.

In this thesis, we will go over the essentials of the Hitori puzzle, for which we will
consider relevant related work in Section 2. Section 3 introduces the definitions, charac-
teristics and rules of Hitori. The rule set can then be used to solve Hitori puzzles.
Classifying uniquely solvable Hitori will be discussed in Section 5. Besides the rule set
classification, the principle of satisfiability will be explored as well, which is considered in
Section 6. Section 7 considers ways to generate Hitori, which combined with the data
described in Section 4, are used in performed experiments in Section 8. Finally, Section 9
will discuss future work and provide a conclusion.

This research is part of a master thesis for the Computer Science study program at the
Leiden Institute of Advanced Computer Science (LIACS), supervised by Walter Kosters
and Hendrik Jan Hoogeboom.
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2 Related Work

Different from the very popular Sudoku, which has been extensively researched, not much
research has been done on Hitori. While these Japanese puzzles are very similar, Hi-
tori takes connectivity into account as well, which makes the puzzle and its research
more complex. In Enhancing GNNs: An Exploration of Iterative Solving and Augmenta-
tion Techniques, Chapter 9, Solving Hitori Puzzles [16], the author used the Menneske
dataset, provided by Vegard Hanssen [2], to test and train a convolutional neural network
(CNN) and graph neural network (GNN). The author used the same difficulty distribu-
tions as provided in the Menneske dataset. However, only the difficulties easy, medium
and hard were used to train and test the two networks. While the GNNs performed quite
well on a cell level, they were not able to solve the majority of puzzles. The performance
of the CNN is only measured on a cell level, which showed improvement of the perfor-
mance. However, when solving Hitori, puzzle level performance is essential to measure
the overall solving performance. This makes it hard to conclude on how well the CNN
actually performs. The main pitfalls were ambiguous solutions and the complexity of the
difficulty levels.

Van de Knijff [17] considered Satisfiability Modulo Theories (SMTs) for, among others, the
Hitori puzzle. In Solving and generating puzzles with a connectivity constraint, an SMT
syntax is given. With this syntax, they were able to get a solution which describes which
cells should be black and white. However, with no dataset or experiments mentioned, it
is hard to obtain the performance of the SMT. After concluding that randomly generat-
ing a grid of numbers almost never led to a solvable Hitori, it was left for future research.

In Card-Based ZKP for Connectivity: Applications to Nurikabe, Hitori, and Heyawake
by Robert et al. [11], the authors have used Zero-Knowledge Proofs (ZKPs) for several
Nikoli puzzles, including Hitori. They have provided a generic approach, which they use
to set up the ZKP protocol for Hitori puzzles. During the verification phase of the pro-
tocol, it is checked that each row and column contains only unique cells. Another check
is done to verify that the black cells are separated from each other. Completeness and
soundness were also considered.

Suzuki et al. [14] considered the so-called Hitori number in their paper Hitori Number,
which is the minimum number of different integers used for a uniquely solvable n-Hitori,
which consists of an n×n grid. The minimum is taken over all the instances of n-Hitori.
The authors have provided an upper and lower bound for the Hitori number. Besides look-
ing at the upper and lower bound of the minimum number of different integers, they have
also looked at the upper and lower bound of the largest number of consecutive integers.

In Games, Puzzles & Computation, Hearn and Demaine have proven NP-completeness
for Hitori by constructing a planar constraint graph consisting of so-called ANDs and
ORs gadgets [3]. Finding a legal configuration of the planar graph results in a solvable
Hitori, and vice versa, finding a solution to a Hitori means there exists a legal planar
graph.

Similar to Hitori, Heyawake is a grid-based puzzle, where the goal is to properly fill
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the grid with black and white cells according to a set of rules. A Heyawake starts with
several rooms of varying sizes, where, if present, a number in the room indicates the num-
ber of black cells. For the by Nikoli invented puzzle, the black cells may not be adjacent
to one another, the white cells must form a connected path, and an orthogonal line of
white cells may not cover more than two rooms. For n × n sized Heyawake puzzles, the
maximum number of black cells is known as Heyawake numbers (see sequence A239231
of the OEIS [5]).
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3 Solving

Hitori consists of an m× n grid with a set N of possible characters. Here N is a finite
set, usually a subset of the natural numbers. Initially, the grid will solely be filled with
these |N | possible characters. One can select a cell, making the cell white, or deselect,
making the cell black. The goal of the puzzle is to obtain a grid that satisfies the following
rules:

1. No duplicate characters may occur in a row or column.

2. Black cells cannot be adjacent to one another.

3. All white cells must be connected via their direct, i.e., horizontal and vertical, neigh-
bors. This excludes the diagonals of a cell.

One can solve a Hitori by using these three principles. However, solving more complex
Hitori will be easier when considering a set of rules. In this section, we will consider
different techniques to solve a Hitori puzzle, introducing those as rules. These techniques
are divided into five categories; trivial, simple, connectivity, advanced and probing. These
rules will be used to ultimately determine the difficulty of a Hitori.

3.1 Rules

There are many techniques that can be used to solve a Hitori. Depending on size and
complexity, some rules might be more effective than others in terms of solving. Hitori
that solely use the fact that the white cells must be unique in their row and column and
form a connect path as well as no black cells are neighboring are considered to be trivial.
Rules that solely consider one row or column fall into the simple category. Rules that con-
sider multiple rows and do not rely on connectivity are considered to be advanced. Since
all cells need to be connected, we can use this characteristic to gain knowledge about
whether cells should be crossed out or left as is. The category connectivity will consider
all rules that use this principle. When these principles do not provide new information, we
can move to the last category, which is probing. We can try to make a cell black or white
and see what happens to the board. This, however, is the most time-consuming technique.

Trivial

UC (“Unique Cell”) All cells that are unique in their row and column need to be white.
Unique cells already fulfil the rule of no duplicates in their corresponding row or
column, so there is no need to cross them out. An example is shown in Figure 2.
This rule also applies when, after crossing a cell out, another cell becomes unique
in its row and column.
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Figure 2: All values that are unique in both their row and column should be white, denoted
by a circle.

NoB (“Neighbors of Black cells”) Direct, i.e., horizontal and vertical, neighbors of a black
cell should always be white.
Since black cells cannot be adjacent, the horizontal and vertical neighbors of a black
cell must be white. The diagonal neighbors are excluded. No matter the content of
the cells, this always holds. Figure 3 shows the direct neighbors of a black cell that
are white, denoted by a circle.

Figure 3: Horizontal and vertical neighbors of a black cell are always white, denoted by a
circle.

Simple

DoW (“Duplicates of White”) When a cell is marked white, all duplicates in the corre-
sponding row and column must be black.
By marking a cell white, their content should be the only occurrence in the cor-
responding row and column. Hence, other cells with the same content should be
made black. Figure 4 shows an example of a partially solved Hitori, where DoW
is applicable. The first row already has a 2 that is white, as one may apply Sim-U3
(which will be discussed later). Thus, the remaining 2s in the corresponding row
should be black.
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Figure 4: A partially solved Hitori, where the remaining 2s in the first row will be black.
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Sim-M3 (“Simple sequence of Multiple characters of length 3”) If consecutive cells of
type aba occur in a row or column, where a, b ∈ N and a ̸= b, then b should be
white.
Suppose the middle cell is black, both neighboring as will then be white, which
cannot be the case. When aba occurs in a row or column, at least one a needs to
be black. Regardless of which a will be made black, b will always be white, as this
cell will neighbor a black cell in both cases. An example of this rule can be seen
in Figure 5. Note that this rule applies to the whole board, not just the borders or
corners.

...

2

3

2

· · ·

Figure 5: Regardless of the position of the aba sequence in the Hitori, b will always be
white. Here, a = 2 and b = 3.

Sim-U3 (“Simple sequence of Uniform characters of length 3”) If three adjacent cells all
contain a, i.e., aaa occurs on a row or column, where a ∈ N , then the middle a
should be white, while the outer as should be black.
Since no duplicates may occur on a line, having an occurrence of aaa means that at
least two as need to be crossed out. Black cells may not be neighbors. Therefore, the
only viable solution is making the outer as black and the middle a white. Figure 6
shows an example when to use this rule. Again, this rule applies to the whole board,
not just the borders or corners.

...

4

4

4

· · ·

...

4

4

4

· · ·

Figure 6: Consider a = 4. Regardless of the position of the aaa sequence in the Hitori,
the middle a will always be white.

Sim-U* (“Simple sequence of Uniform characters separated by some (*) cells”) If cells
of type aa . . . a or a . . . aa occur on a line, i.e., row or column, then the singleton a
should be black.
The content of the cells that are between a and aa is not relevant, as long as the
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directly neighboring cells of a and aa do not consider a fourth a. The occurrence of a
and aa should be separated by at least one b. A row or column containing aa . . . a or
a . . . aa should have two as that will be crossed out. Suppose the singleton a becomes
white, then the adjacent as both should become black. However, this violates the
rules of Hitori, as no black cells should be adjacent. Therefore, the singleton a
needs to be black. Regardless of the position of the occurring sequence, this rule
will always hold. An example of the occurrence of Sim-U* is shown in Figure 7,
where the first cell of the bottom row can be made black. Because of NoB, we will
know that the second cell of this row should be white.
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Figure 7: Consider the bottom row with a = 3. Regardless of the position of the a . . . aa
sequence in the Hitori, the singleton a will always be white.

Sim-M4 (“Simple sequence of Multiple characters of length 4”) If consecutive cells of
type abab, where a, b ∈ N and a ̸= b, occur in a row or column, then the outer a
and b should be black.
Making the inner a or b black, would lead to either two as or two bs to be white,
which cannot occur. Regardless of other cells containing a and b in corresponding
rows and columns, this rule will hold. Figure 8 shows an example of such a case.
Note that when a = b, there is no solution to the line, and thus the Hitori is
unsolvable.
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Figure 8: Regardless of the position of the abab sequence in the Hitori, the outer a and
b will always be white. Here, a = 4 and b = 3.

Sim-M* (“Simple sequence of Multiple characters separated by some (*) cells”) If a
sequence of cells occurs as abba . . . a/b on a line, where a, b ∈ N and a ̸= b, then the
singleton a or b should be black.
Suppose the singleton a becomes white. Then the other as should be black, meaning
that the enclosed bs are both white. This violates the no duplicate rule of Hitori,
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and thus the singleton a should be white. Figure 9 shows a Hitori where all unique
cells have been made white. The red marked cells show an occurrence of abba . . . a,
where a = 1 and b = 2.
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Figure 9: A partially solved Hitori, with an occurrence of Sim-M*. The singleton a will
always be black. Here, a = 1 and b = 2.

Advanced

DP (“Double Pair”) Suppose we have a pair a–b for which in their corresponding row
or column there is another occurrence of a and b, but diagonally. Then the other
diagonal of this second occurrence should be white.
The pair a–b both have a duplicate. For each duplicate, one must become black.
However, both of the pair cannot be black as they are adjacent. Then at least one
of their duplicates must become black. If the duplicate of a becomes black, then the
neighbors a become white, which includes the other diagonal of the duplicates. If
the duplicate of b becomes black, then the neighbors b become white, which includes
the other diagonal of the duplicates as well. So for both options, the other diagonal
of the duplicates will always be white. For DP to occur, one needs to have at least
two rows and three columns, or vice versa. When a = b, the outcome is not effected.
Consider Figure 10, where a pair 1–2 occurs in the first row. In their corresponding
columns, they have a duplicate, which are diagonal to one another. Only one of the
pair at the top can be black. Then one of the duplicates needs to be black as well.
In that case, its neighbors will be white. This leads to the result shown in Figure 10.

1 2

...
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1
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1 2

...
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1

2

Figure 10: A double pair setup.
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SbP (“Single between Pairs”) If there are two pairs of a–b and another occurrence of a
or b within that corresponding row or column, then that cell should be black.
If there are two occurrences of the pair a–b, then one of the as and one of the bs
must be made black. Making one black causes its neighbor to be white, meaning
that if we make a of a pair black, then b must be white. Since b has become white,
the other occurrence of b must be black, making the a next to it white. If there is
any other a or b in the corresponding row or column, it must be black, since we
already have a white cell with this content. Similar to DP, one needs at least two
rows and three columns for SbP to occur, and a = b may occur as well. In Figure 11,
a singleton 1 occurs between two pairs of 1–2. For both of these pairs, only one can
be made black, meaning that if we make one of the 2s black, the other one will be
white. The 1 next to the blacked out 2 will be white, making the remaining 1s black.
Thus, the singleton 1 will always be black.

1 2

...
...

1

...
...

1 2

1 2

...
...

1

...
...

1 2

Figure 11: A singleton occurrence between two pairs should be black.

Connectivity

NCO (“No Cut-Off”) All white cells should be connected, and thus form a connected
graph. Therefore, black cells should never cause a connected subgraph.
Diagonally connecting the black cells should not form any enclosed shape, such as
those seen in Figure 12. A cut-off occurs when some white cells are enclosed by the
black cells, and thus causes the white cells to no longer form a connected path. No
such form should be created when including the borders as well. In all cases, cut-off
may occur.

...

...

· · · · · · · · ·

...

...

Figure 12: Three occurrences where a cut-off occurs.
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NCO-B (“No Cut-Off at the Border”) Suppose two black cells are at the border
and separated by one white border cell, then the remaining neighbor of the
white cell should be white as well.
The white cell is surrounded by a border and two black cells. If the remaining
neighbor becomes black as well, the white cell will be enclosed and is no longer
connected to the other white cells of the board. This violates the connectivity
rule of Hitori, meaning that the remaining neighbor of the white cell must be
white. Figure 13 shows two instances for which a triangle occurs when crossing
out the marked cell. Therefore, the red marked cell should always be white.

...

...

· · ·

· · · · · ·

...

Figure 13: Two different occurrences where no cut-off should occur. The marked cell must
be white.

NCO-C (“No Cut-Off in the Corner”) If one of the neighbors of the 2 × 2 corner
cell is black, then the other neighbor should be white.
Due to connectivity, the corner cell can only have one black neighbor. To access
the white corner cell, the other neighboring cell must be white, as can be seen
in Figure 14.
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· · ·
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· · ·

· · ·

Figure 14: The cell containing 2 should be white, otherwise a cut-off occurs.

CP (“Corner Pairs”) If two pairs occur at the 2× 2 corner, then the corner cell should be
black, as well as its diagonal.
Two pairs in a corner may occur horizontally or vertically oriented. Regardless of the
orientation of the pairs, the corner cell will always be black, as well as its diagonally
adjacent cell. The other two cells will be white. Suppose the corner cell was made
white, then the adjacent cells would be black, cutting off the corner cell. The white
cells would then no longer be connected, violating the connectivity rule of Hitori.
An example of two pairs at a corner is shown in Figure 15. This rule will also apply
if the content of the two pairs are the same.
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Figure 15: Two pairs occurring at the corner always leads to the corner cell and its
diagonally cell to be black. The remaining two cells will be white.

DoT (“Diagonal of a Triple”) Suppose we have a 2 × 2 corner for which a corner cell
and its neighbors contain the character same a or the neighbors and diagonal of the
corner cell all contain a. Then either the corner cell or its diagonal becomes black,
respectively. The remaining cell contains a character b, where b may be identical to
a.
Consider a corner cell and its neighbors to have the same content. Then, if the corner
cell would be made white, the neighbors should both become black as they all have
the same content. With this, the corner cell is no longer connected to the other
white cells on the board. This cannot occur, and thus the corner cell should always
be black. A 2 × 2 corner for which the diagonal and the neighbors of the corner
cell are the same, will result in the diagonal of the corner cell to be black. Making
the diagonal white, would make the neighboring cell black. The corner cell is then
no longer connected to the other white cells on the board. So, in both cases, the
diagonal of the differing cell should always be black. Figure 16 shows two examples
of how such a corner case would be solved.

1

1

1

2

...
...

· · ·

· · ·

1

1

1

2

...
...

· · ·

· · ·

2

1

1

1

...
...

· · ·

· · ·

2

1

1

1

...
...

· · ·

· · ·

Figure 16: Two situations where we can make a cell with two neighbors with the same
contents black and the neighboring cells white.

This is not guaranteed to work for other orientations. However, we can guarantee
that if we have a 2×2 corner where the corner cell, its diagonal and one neighbor all
have the same content, the remaining cell should always be white. If the remaining
cell is black, its neighbors should be white. Then the last cell of the triple will be
black. This will enclose the corner cell and thus cannot occur. While we can have
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different possible ways to fill the triple, the remaining cell should always be white.
Figure 17 provides an example of the different ways to fill the triple, while the
remaining cell will be white in both cases.
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Figure 17: An other oriented triple where we can make the cell containing b white.

BoP (“Border of Pairs”) There are multiple pairs at the border. For each of the pairs,
one must be made black. The other cell of the pair will then be white. The same
holds for the other pairs. To ensure that all white cells remain connected, the cells
that enclose the pairs must be white.
When starting with the pair at the border, one of the cells must be black, as there
cannot be any duplicates in a row or column. Moving on to the adjacent pair, it
is already determined which cell will be black and which one will be white. The
black cell of a border pair causes the adjacent cells to be white. The remaining cell
will then be black. This continues until all pair has been filled in. There will be a
checkered pattern for these two rows or columns, which means that the white cells,
except for the last pair, will be surrounded by either three black neighbors or a
border and two black neighbors. Their remaining neighbor should thus be white, in
order to preserve connectivity. Figure 18 shows a Hitori where multiple adjacent
pairs occur at the border. There are two possible ways to solve the pairs, depending
on the remainder of the board. For both, the cells surrounding the pairs are always
white. When starting at the border, for each pair, except the last one, there will be
three black neighbors surrounding the white cells. This leads to the outer cells to
be white. Generally, if we have n adjacent pairs, then 2 · (n− 1) surrounding cells,
starting at the border and going down, will be white.
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Figure 18: No matter the number of adjacent pairs, the cells that enclose the pairs and
are parallel to the border, will be white.

BoP-D (“Border of Double Pairs”) Suppose there are any two adjacent pairs oc-
curring at the border. The two border cells that enclose the pairs should be
white.
Figure 19 shows two pairs at the border. It does not matter if the left or right
cell of a pair becomes black. Both cause the enclosing border cells to be white.
Note that it does not matter whether the two pairs are horizontally oriented,
as show in Figure 19, or vertically.
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Figure 19: A double pair setup at the border. One pair consisting of 2s and one of 5s.

BoP-T (“Border of Triple Pairs”) If three pairs at the border occur, the four cells
that enclose the pairs should be white.
Similar to BoP-D, the enclosing cells of a triple pair occurrence at the border
will always be white, see Figure 20. An addition to that are the enclosing cells
of the second pair. Note that orientation matters here, the pairs should be
aligned parallel to the border.
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Figure 20: A triple pair setup at the border.

EP (“Enclosing Pair”) Suppose that we have a corner cell, a border cell with one black
neighbor or a cell that has two black neighbors. There are two other neighbors, one
that is part of a pair. The remaining neighbor will be white.
The cell is enclosed on two sides by either two borders, by one border and a black
cell or by two black cells. So either the cell that is part of the pair or the other cell
has to be white, to ensure that all white cells remain connected.

EP-B (“Enclosing Pair at the Border”) A cell is surrounded by a pair, black cells
and some border. Since the cell itself is a neighbor of some black cell, it will be
white. The remaining neighbor of this cell will always be white.
Figure 21 shows a red marked cell surrounded by a pair, black cell and border.
Suppose the left 1 becomes black, then the right 1 will be white. Now, three
of the neighbors of the red marked cell are black, meaning that the remaining
neighbor has to be white. If the right 1 becomes black, then the left 1 is white,
as well as the remaining neighbor of the red marked cell. In both cases, the
remaining neighbor of the red marked cell, will be white.
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1 1 1 1

Figure 21: A pair, black cell and a border enclose the red marked cell. The remaining
neighbor of this cell should always be white.

EP-M (“Enclosing Pair in the Middle”) Suppose a cell is surrounded by a pair and
black cells. The one remaining neighbor will always be white.
An occurrence of a cell surrounded by such a combination is shown in Figure 22.
Note that orientation does not matter for this rule.

11 11

Figure 22: A pair and black cells enclose the red marked cell. The remaining neighbor of
this cell should always be white.

Probing
When the rules cannot be applied, one can use the method of probing to try and solve
a Hitori. The described rules each have a specified gain, whereas probing does not
guarantee any progress. To determine if any conclusion can be drawn from using the
method of probing, one must reuse the introduced rules to determine whether the probe
leads to progress.

Prob (“Probing”) An unknown cell can be probed, where the cell may be black or white.
First, color the cell black and see whether this results in a contradiction (BP). If a
contradiction occurs, one knows with certainty that the cell must be white. Second,
color the original cell white and see whether this results in a contradiction (WP).
A contradiction caused by a white probe indicates that the probed cell must be
black. However, if both a white and black probe cause a contradiction, the Hitori
is unsolvable. Combined, BP and WP will be one probe (Prob). An example of when
to apply a probe is shown in Figure 23. None of the rules can be applied. However,
after performing a black and white probe, we can continue solving the Hitori. A
white probe causes the ‘1’ in the blue marked area to be disconnected from the
other white cells, which violates the rules of Hitori. Therefore, the red marked cell
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should be black. Performing a black probe for the red marked cell leads to a fully
solved board.
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Figure 23: Probing, as no other techniques can be applied at this stage. We try the
red marked cell, and color the ‘4’ black and white. Coloring this cell white leads to
a contradiction, meaning that the cell should be black. This example is automatically
solved by probing once.

Table 1 provides an overview of the categorisation of the rule set, including the method
of probing.

Category Rules
Trivial UC, NoB
Simple DoW, Sim-U3, Sim-M3, Sim-M4, Sim-U*, Sim-M*
Advanced DP, SbP
Connectivity NCO, CP, DoT, BoP, EP
Probing Prob

Table 1: An overview of the rule set.
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4 Menneske dataset

As mentioned in Section 2, Hanssen [2] has provided the Menneske dataset. While di-
rectly translated to “man”, the Menneske dataset solely considers puzzles, numbers and
sequences. This includes numerous Hitori of varying sizes, for which a comprehensive
overview will be provided in this section.

The Menneske dataset [2] consists of 376, 211 Hitori of different sizes. Table 2 shows
the distribution over the different sizes. The majority of the puzzles are smaller-sized, and
generally easier to solve.

Puzzle size Number of puzzles
5× 5 31, 610
6× 6 29, 902
8× 8 35, 972
9× 9 241, 948
12× 12 31, 131
15× 15 3, 807
17× 17 1, 836
20× 20 5

376, 211

Table 2: The size distribution of the Menneske dataset [2].

The complexity of a Hitori potentially correlates with the number of duplicated that
need to be eliminated. For the Menneske dataset, the maximum number of black cells
of the different sizes is as shown in Table 3. As one might observe, this varies around
one-third of the total number of cells for a given puzzle size.

Maximum number Percentage
Puzzle size black cells black cells

5× 5 9 36.00%
6× 6 12 33.33%
8× 8 21 32.81%
9× 9 27 33.33%
12× 12 46 31.94%
15× 15 71 31.56%
17× 17 90 31.56%
20× 20 121 30.25%

Table 3: The maximum number of black cells according to the Menneske dataset [2].

Hanssen has classified numerous Hitori into the categories; Super Easy, Pretty Easy,
Easy, Medium, Hard, Very Hard, Super Hard and Impossible [2]. However, no explana-
tion on how these classes were determined has been provided. Hanssen introduced 22
rules [2], which are all used across different categories, and thus provide no clear distinc-
tion regarding classifying Hitori. Table 4 shows the weighted average of the number of
methods used for each given category and size. Based on the weighted average of the
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number of different methods used to solve a Hitori, there appears to be some correlation
between the number of different methods and the class it belongs to, see Table 4. Lower
classified categories have a lower average of the number of used methods to solve a puzzle.
However, this cannot be guaranteed due to the small number of puzzles occurring in the
very hard, super hard and impossible categories as well as the small number of puzzles of
12× 12 and larger.

Difficulty 5× 5 6× 6 8× 8 9× 9 12× 12 15× 15 17× 17 20× 20 Average
Super easy 5.253 5.747 6.380 6.606 6.847 6.870 6.934 7.000 6.430
Pretty easy 6.299 6.708 7.179 7.352 7.445 7.414 7.445 8.000 7.201
Easy 7.023 7.321 7.665 7.733 7.644 7.416 7.367 0 7.667
Medium 7.435 8.200 9.000 9.002 8.959 8.552 8.565 0 8.774
Hard 7.708 8.498 9.501 9.641 9.398 9.400 11.000 0 8.821
Very Hard 7.769 8.745 10.083 10.230 11.615 0 11.000 0 10.1549
Super Hard 0 0 10.033 9.891 10.814 11.429 12.000 0 9.945
Impossible 0 0 0 0 0 8.030 0 0 8.030
Average 6.019 6.573 7.1347 7.260 7.221 7.203 7.189 7.4

Table 4: The average of the number of different methods used by Hanssen for each difficulty
and size of the Menneske dataset.
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5 Classification of Hitori

The complexity of Hitori greatly varies. Some puzzles might only require basic logic,
while others need more complex techniques to make any progress during solving. In this
section, we will discuss the difficulty measure based on the provided rule set, and another
based on satisfiability. The difficulty measure combines the applied techniques and the
frequency of usage. The frequency will only consider the techniques of the highest so-far
used class. When entering a higher class, the techniques of the lower classes become “free”.

5.1 Rule set classification

Classifying Hitori will be done based on the complexity of solving. For this, consider
categories based on the rules described in Section 3 and a numeric measure for the needed
steps of the provided class rules.

Trivial rules are considered to be “free”, as these are fundamental when solving a Hi-
tori correctly. Considering a completely unsolved Hitori, one can only apply UC, as
there are no black cells for which neighbors can be made white, making it impossible to
use NoB. These rules will always be checked after applying other categorized rules. To
determine whether an m×n Hitori is solvable by solely using trivial rules, all cells need
to be checked. This requires comparing cells on their respective row and column, which
can be done in 2m + 2n steps when keeping track of unique and duplicate values. For
n× n Hitori, this class contains all Latin squares of that given size. A Hitori solvable
by solely using trivial rules has a difficulty classified as class A. Since we know the number
of evaluations needed to determine whether the puzzle is completely solvable using trivial
rules beforehand, there is no need to keep track of any number of steps. This class will
therefore only consist of an A.

When a Hitori cannot be solved with solely using trivial rules, we introduce the usage
of Simple rules and DoW, and move to a higher difficulty class B. Simple rules only con-
sider one row or column, and can be applied simultaneously to multiple rows or columns.
Therefore, we introduce a horizontal H-sweep and vertical V-sweep, where the simple
rules are applied on either all rows or columns, respectively. These rules are independent
of the solving stage, as they deal with the contents of cells rather than connectivity or
the already existing occurrence of black and white cells. This difficulty class includes the
usage of DoW. Combined with NoB, these rules ensure that the basics of Hitori, i.e.,
black cells cannot be adjacent to one another and no duplicate values may occur in a row
or column, are met. When making a cell black using NoB, only the direct neighbors of
a cell need to be checked. The rule DoW can be applied in the same sweep-like manner
as for the simple rules, and is thus included in this class. When a Hitori can be solved
solely using techniques of class B, or lower, the number of sweeps is taken into account as
well. Depending on whether the solving process starts with a H- or V -sweep, the number
of sweeps may vary by 1. To provide a consistent classification, a Hitori will first be
solved starting with a H-sweep, followed by solving starting with a V -sweep. The number
of sweeps needed to solve a Hitori is then averaged. As a consequence, we can end up
with .5 values.
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While simple rules may consider a single row or column to make some progress, the
advanced rules need to check both rows and columns in order to make progress. Two ad-
jacent lines, i.e., rows or columns, and their orthogonal lines are considered. Just like the
simple rules, these rules are not dependent on the solving stage and can thus be “sweeped”.
When a Hitori can be solved using advanced rules, it falls in difficulty class C.

The rule BoP considers multiple pairs adjacent to a border. The rule, based on con-
nectivity, will provide some gain about cells that enclose those pairs. We consider at least
four adjacent lines, and there are at least two adjacent value-pairs. The number of value-
pairs is variable, and thus the gain is variable as well. Since BoP solely considers rows and
columns and is solving-phase-independent, it will be categorized as a class D rule. This
class considers solving-phase-independent rules for which at least four lines are needed to
obtain the pattern used in BoP.

Hitori that can be solved using classes A,B,C and D are mostly independent of the
solving phase, with the exception of using NoB and DoW. However, a Hitori needs to
maintain a contiguous area consisting of all white cells. Hitori for which connectivity
rules are needed to completely solve the puzzle, will be of a higher class, i.e., class E or
F . The connectivity rules are distinguished by their complexity. Connectivity rules that
are independent of the solving phase will be classified as class E rules. Both CP and DoT
are independent, and can be checked in constant time, as only the 2× 2 corners need to
be considered. Instead of using a number of sweeps for this class, consider the number of
cells solved when applying these rules to all corners. In all cases, a total of 16 cells needs
to be evaluated, for m× n boards with m > 2 and n > 2.

To obtain any progress in solving a puzzle, the connectivity rules NCO and EP can
only be applied if there exists at least one cell that is black. Different from the previous
classes, class F is fully solving phase dependent. These rules can be applied at the corner,
border and the remainder of the board. Since it is phase dependent, sweeps may not be a
proper measure. Considering NCO, making a cell black may lead to the cut-off of a half
grid. These connectivity based rules could consider the sum of potentially cut-off white
cells as a proper measure, as this provides some information on how much one needs to
take connectivity into account when solving the puzzle.

When these approaches are not able to solve a Hitori puzzle, consider the last class
G, which is based on probing. We will try an unknown cell and see how the remaining
board is handled. Probing a black cell, BP, will provide more knowledge about its direct
neighbors. When performing a black probe, one needs to check that no white cells are
enclosed by black cells and possibly borders. If such an enclosure occurs, there is no need
to continue solving this board. It is certain that the probed cell should be white. If no
enclosure problems arise, we can still check if this black probe leads to an incorrect board.
If the board is incorrect, we will know for certain that the probed cell should be white.
When the board is partially solved, we cannot be certain that this cell should be black
or white. When performing a black probe on a cell of a Hitori leads to a contradiction,
one knows that the probed cell must be white, and vice versa. A white probe, WP, will
provide knowledge about duplicates of the probed cell. If present, these will be black.
Similar to the black probe, if a white probe leads to an incorrect board or a connected
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subgraph, the cell should be black. When performing a probe, one can iteratively probe
other cells until a fully determined board or a contradiction is found. This depth-first
search approach considers probing all other white cells. The number is determined by
probing every cell and then considering the highest class methods that are used after that
to solve the Hitori. Considering the weighted average of the highest classes for each
probe then determines the step size.

Table 5 provides an overview of how the rules and methods are divided over the diffi-
culty classes. The determination of the step size differs for each class. Classes D,E and F
consider solving phase-independent rules, while class G considers solving methods rather
than rules.

Difficulty Steps Methods
A (trivial) - Trivial
B (pretty easy) Average of H - and V -sweeps Simple
C (easy) Average of H - and V -sweeps Advanced
D (medium) Number of solved corner cells CP, DoT
E (pretty hard) Average of H - and V -sweeps BoP
F (hard) Sum of potentially cut-off white cells NCO, EP
G (super hard) Average of highest class of solving each probe Prob

Table 5: A classification of the difficulty based on different methods.

A Hitori may have multiple viable solutions, as long as the original rules of the puzzle
are not violated. Consider Figure 1c, where making the ‘4’ in the top row black leads to
a valid solution as well. A minimal solution is one that satisfies the original rules of the
puzzle while using the fewest possible number of black cells. When classifying Hitori
puzzles as described in the previous section, the number of steps is essential to determine
the classification of a Hitori. By minimizing the number of black cells, the classification
is minimal, as no additional steps need to be taken. This allows a consistent way to
categorize Hitori.

5.2 Expanding the rule set

Compared to the Simple rules mentioned in Section 3.1, a SAT-based classification might
capture more complex patterns earlier on. However, one might expand the rule set to
emulate a similar classification.

Consider a line of a Hitori, i.e., a row or a column, which may be partially solved,
or not. Much like the conditions of the single line used in Section 6.1, elements that have
already been determined, i.e., made black or white, will not be considered. Uniquely occur-
ring elements will be, again, temporarily selected as one cannot guarantee its uniqueness
in the orthogonal line. Assuming the line does not contain any unique elements, every
value occurs at least twice. Duplicates may occur adjacent or separated. In a way, these
duplicates form “blocks” of yet to be determined elements.

To maximally solve a given line, a set of rules can be applied, as seen in Section 3.1.
This set considers several instances of sequences:
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• bac . . . bc, including sequences that contain a mirrored cab or cb.

• aa . . . a, including the sequence aaa.

• aba, which is included in sequences such as abab.

• ab . . . ab . . . a, including sequences that contain ba or b. This includes abba . . . a as
well.

These patterns cover at most three distinct values; a, b and c. However, cases starting
with abc . . . potentially followed by def . . . may not be covered by these rules. Selected,
i.e., white, cells are denoted by a dot under the symbol, and unselected, i.e., black, cells
by a line under the symbol. If no guarantee can be provided on the value of an element,
it will not have any sign, i.e., z, where z represents the value of the element.

Consider a sequence A = a1a2 . . . an−1an with different elements. Then A′ represents
any permutation of A and can be denoted as A′ = a′1a

′
2 . . . a

′
n−1a

′
n. A sequence A =

a1a2 . . . am−1am which we can reorder in a way that the elements on even positions re-
main on even positions and the odd on odd positions, is denoted as A∗ = a∗1a

∗
2 . . . a

∗
m−1b

∗
m.

Similarly to A∗, a sequence A = a1a2 . . . ap−1ap, where we can reorder A in a way that the
elements on even positions are now on odd positions and elements on odd positions are
on even positions, is denoted as A∼ = a∼1 a

∼
2 . . . a∼p−1a

∼
p . Note that if A is of odd length,

A∼ cannot occur, as we cannot place all elements that were originally on even position
on all odd positions and vice versa. However, A∗ can occur, as the number of elements on
odd positions equals the number of odd positions, and the number of elements on even
positions equals the number of even positions, which is not the case when A∼ occurs.

5.2.1 Instances of A, A∗ and A∼

When a line cannot be solved using the rules shown in Section 3.1, one may consider
blocks of duplicates. Suppose a line contains a permutation A′ of another subsequence
A. If an element in A is white, its counterpart in A′ must be black. If present, adjacent
elements of this given counterpart in A′ must then be white. In turn, those equal in A
will be black. One may fully determine A and A′, once a single element is determined.

Lemma 5.1. Sequences A and A∗ together have the same number of black and white
elements.

Proof. A and A∗ contain the same n elements, resulting in 2n elements in total. For each
value-pair, at least one of the elements needs to be black, as duplicates cannot occur.
Consider the n elements of A, with each a duplicate in A∗, we know that, in total, at least
n elements must be black.

A sequence of adjacent elements of length n can alternate between black and white,
i.e., ZWZW. . . or WZWZ. . . . For an even n, this results in at most n/2 black cells, as two
black cells may not be adjacent. If all duplicates in A and A∗ need to be covered, there
need to be at least n black elements, and we can cover at most n/2 black cells in both A
and A∗. Therefore, there must be exactly n/2 black elements in A as well as in A∗. The
remaining n/2 elements for both A and A∗ are white, meaning that A and A∗ combined
have the same number of black and white elements.
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Alternating elements for an odd n results in at most ⌈n/2⌉ black cells. Making ⌈n/2⌉
elements black in one of the sequences, results in making ⌈n/2⌉ elements white in the
other sequence. This sequence can then have at most ⌊n/2⌋ black cells. If one of the se-
quences covers at most ⌈n/2⌉ and the other at most ⌊n/2⌋ black cells, and there are at
least n duplicated elements that need to be black, then A and A∗ jointly have exactly
n black elements. Since the remainder of elements cannot be black, they must be white,
meaning that A and A∗ jointly have exactly n white elements as well. Therefore, A and
A∗ together have the same number of black and white elements.

Lemma 5.2. Sequences A and A∼ together have the same number of black and white
elements.

Proof. Similar to A and A∗, A and A∼ have the same alternation between even and odd
elements. This allows that both A and A∼ can have an alternating pattern of ZWZW. . .
or WZWZ. . . , where no neighboring black elements occur. The remainder of the proof is
identical to Lemma 5.1.

5.2.2 Enclosing and alternating permutations

Knowing that a sequence A and A∗, as well as A and A∼, have the same number of black
and white elements, one may obtain a partial or full solution solely based on the pattern
of black and white, rather than the actual content of the sequences. However, there exist
permutations A′ of A, for which one could obtain a partial or full solution as well. We
will consider the following patterns:

ABB′A∗ Consider the sequence s = ABB′A∗, where the sequences A and B do not con-
tain any duplicates, i.e., consisting of different elements, and B does not contain
any element of A. When ABB′A∗ occurs, the sequence A must be of even length, B
can be of even or odd length, and |AB| ≥ 3. The sequence A may not be empty, but
B can be, which means that AA∗ is accepted as well. The second occurrence of B
can be fully reordered, and is thus denoted as B′. The second occurrence of A may
be reordered as well. However, A can only be reordered in a way that the elements
on even positions remain on even positions and elements on odd positions on odd
positions, and is denoted as A∗ = a∗1a

∗
2 . . . a

∗
n−1a

∗
n. The sequence ABB′A∗ includes

ABB−1A as well, where B−1 denotes the inverse of B.

If ABB′A∗ occurs, the elements of A and A∗ enclosing BB′ will be white. Mak-
ing the enclosing element of A or A∗ black, would immediately determine the cells
of the neighboring B, as the cell of B neighboring the instance of A will be white.
In turn, this determines the cells of the other instance of B, as the last cell of the
first instance will be black, and thus the adjacent cell of the second instance will be
white. The other end of the second instance will then be a black cell, neighboring a
cell of either A or A∗. Since there is an enclosing element of A or A∗ that is black,
the other instance of A must have an enclosing element that is black as well, due to
the ordering of A and A∗. However, based on the instances of B, if the first instance
of B starts with a white cell, then the second instance ends with a black cell. We
can make their duplicates black. Repeating this, will eventually result in a pattern
of a1 ·

a2a3 ·
a4 . . . a|A|−1 ·

a|A| for the first sequence A. For the second sequence A, the
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selection of white and black will of course be inverted, i.e.,
·
a1a2 ·

a3a4 . . . ·
a|A|−1a|A|.

Ultimately, both A and A∗ are fully determined.
As an example, suppose we have the sequence abccab, see Figure 24. Then using
A = ab and B = c, this would result in a

·
bcc

·
ab.

Splitting the sequence. The sequence ABB′A∗ may be non-adjacent. If |B| is
odd, then the sequence s = ABB′A∗ can be separated as A . . . BB′A∗, ABB′ . . . A∗

or AB . . . B′A∗, with the exception of sequences where BB∗ occurs. If BB∗ occurs,
one can alternate the entire BB∗, starting with either black or white. Since there are
two alternations possible for BB∗, there is no guarantee for the cells of an adjacent
A. When |B| is even, s can be separated if BB∼ does not occur. The sequence BB∼

will fully alternate, starting with either black or white, and will not enforce any cell
of A, which causes no guaranteed determination of given cells. If both A and B are
of even length and occur as AB . . . B∗A∗ or AB . . . B∼A∼, there will be at least two
manners in which these sequences may alternate. For sequences where these As and
Bs occur separated, there is thus no deductible gain. When |A| is even and ABB′A∗,
the B-enclosing elements will be white. Ultimately, this results in fully determining
A and A∗. For odd |A| and even |B|, where the given line contains AB . . . B∗A∗, will
have one possible way to fill B and B∗. One of the sequences A and A∗ contains the
maximum number of black cells, meaning this A will begin and end with a black
cell. Since B and B∗ are enclosed by the As, and their patterns are mirrored to one
another, the A-neighboring cells of B and B∗ must be white. Similarly, if A and B
are of even length, an occurrence of AB . . . B∗A∼, has white A-neighboring cells for
both B and B∗.

Example. Suppose there is a line for which the sequences A = abcd , B = efghi ,
B′ = (B∗ =) ehgfi , and A∗ = cdab occur as an instance of AB . . . B∗A∗. The se-
quence is separated by “. . .”, which represents several irrelevant, potentially already
solved, cells. Either B or B∗ contains the maximum number of black cells, and thus
start and ends with black cells. If the B-neighboring cell of A is black, the adjacent
B will not be maximally filled with black cells, implying that B∗ must be maximally
filled. However, A∗ will mirror the B-neighboring cell of A, as an element on an even
position, as white. Sequence A will then have a pattern in which the elements on
odd positions are white, and A∗ will have white elements on the even positions. This
results in black B-neighboring cells for A and A∗, meaning that none of the Bs may
contain the maximum number of black cells. Therefore, the B-neighboring element
of A must be white. This implies its counterpart in A∗ must be black, and existing
neighbors must be white. Repeating this ultimately results in a solved A and A∗:
a

·
bc

·
defghi . . . ehgfi

·
cd

·
ab, and it is thus a partially solved sequence.
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baccba

A B

baedcedcba

A B

dcbaeedcba

A B

baedcffedcba

A B

dcbaefggfedcba

A B

badcefggfedcba

A B

Figure 24: Lines solvable using the pattern ABB′A∗.

ABA′B′ Consider the sequence s = ABA′B′. Again, the sequence A does not contain
any duplicates. The sequence B does not contain any duplicates as well, and has
no elements that belong to A. When a line has an A and B of even length, and the
second instances of these sequences occur as A∼ and B∼, there will be two solutions
and s is thus excluded. Suppose a line containing sequences A and B, where |AB| is
odd, i.e., |A| is even and |B| is odd or vice versa, and the second occurrences of these
A and B occur as A∗ and B∗, there will be two solutions and s is thus excluded. If
a sequence s has A and B of odd length, all orders are permitted. Table 8 provides
an overview of which orders are permitted for all possible even-odd combinations
of sequences A and B. Due to the different order restrictions, we denote sequences
that do not violate the restrictions as s = ABA′B′. Depending on the parity of A
and B, A or B, and its counterpart, may be determined. For odd |A| and |B|, the
pattern ABA∗ causes this B to be minimal, and thus determines both Bs. Similarly,
the pattern BA∗B∗ causes the A to be minimal, and thus determines both As.
Considering an even |A| and |B|, the gain of these patterns is vice versa, as the As
enclosing B for ABA∗ must both enclose B with a white element. For BA∗B∗, the
A-neighboring elements of the Bs must be white, which allows determining both
A and A∗. If |AB| is odd, an instance of A and A∼ enclosing B, or vice versa,
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determines the cells of the enclosed sequence, B and A respectfully.

Figure 25 shows several examples of sequences where ABA′B′ occurs. Consider the
line abcdecbaed , where A = abc and B = de. The sequence abcdecbaed occurs as
ABA′B′, where A and B have been reordered for their second occurrence.

Splitting the sequence. When s = ABA′B′ occurs non-adjacent on a given line,
A or B may still be determined. Again, based on the parity of A and B, there are
some exceptions regarding whether a sequence s can be non-adjacent. The sequence
ABA∗B∗ cannot be separated as AB . . . A∗B∗ for both and even |A| and |B| as well
as an odd |A| and |B|. Any other partition is allowed when considering A and B
to both be of even length. If both are of even length, partitions ABA∼ . . . B∗ and
A . . . BA∗B∼ are not allowed as well. When |A| is even and |B| is odd, A . . . BA∼B∗

is not allowed. Likewise, if |A| is odd and |B| is even, ABA∗ . . . B∼ is not allowed.
One might note the following about the non-adjacent sequence ABA′B′:

• If an odd sequence B is enclosed by a sequence A and A∗ (ABA∗), then we will
know something about the enclosed B. This works for an enclosed sequence A
as well.

• If a sequence B is enclosed by an even sequence A and A∗ (ABA∗), then we will
know something about the enclosing sequence A. This works for an enclosed
sequence B as well.

• If ABA′B′ is evenly partitioned, where either A or B is of even length, and A∼

or B∼ occurs, then we will know something about A if A∼ occurs, or B if B∼.

• If |B| is even, then the second occurrence of B starts with a white cell. If |B|
is odd, then the second occurrence of B starts with a black cell. If we know
something about |A|, then the first sequence A will start with a black cell.

Example. Consider a line containing a sequence abcde . . . fghiabcdeghif with A =
abcde and B = fghi , and thus a non-adjacent instance of ABA′B′. More specifically,
the sequence can be written as A . . . BA∗B∼. Since |A| is odd, either A or A∗ will be
maximally filled with black cells. Suppose A∗ contains the maximum of black cells,
meaning it starts and ends with a black element neighboring the two Bs. These Bs
are equally positioned, meaning that they will mirror each other’s patterns, which
cannot occur when the A-neighboring elements of the B become white due to the
black elements of A∗. Therefore, these B-neighboring cells of the As must be white.
This results in the partially solved line a

·
bc

·
de . . . fghi

·
ab

·
cd

·
eghif .
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dcbadcba

A B

cdeabedcba

A B

deabcedcba

A B

defabcfedcba

A B

befadcfedcba

A B A B

Figure 25: Lines solvable using the rule of alternating permutations.

Tables 6, 7, 8 and 9 show the properties of both patterns. Note that for both patterns,
|AB| ≥ 3 and B ≥ 0. If only A occurs, the minimal length of |A| ≥ 2. Reordering is
allowed for the sequences of both patterns, as long as the patterns shown in Tables 6, 7,
8 and 9 are adhered. For an ABB∼A∗, the sequence instance of A will always be A∗. For
non-adjacent instances of the pattern, there is one exception, as AB . . . B∗A∼ is allowed
for even |A| and |B|.

|A| |B| Acceptable orders
Even Even All
Even Odd All
Odd Even All but ABB∼A∗

Odd Odd All but ABB∗A∗

Table 6: Overview of the acceptable occurrences of ABB′A∗.

|A| |B| Acceptable partitions
Even Even All but AB . . . B∗A∗, AB . . . B∼A∼, ABB∼ . . . A∗, A . . . BB∼A∗

Even Odd All but AB . . . B∗A∗, ABB∗ . . . A∗, A . . . BB∗A∗

Odd Even All but AB . . . B∼A∗, ABB∼ . . . A∗, A . . . BB∼A∗

Odd Odd All but AB . . . B∗A∗, ABB∗ . . . A∗, A . . . BB∗A∗

Table 7: Overview of the acceptable partitions of ABB′A∗.
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|A| |B| Acceptable orders
Even Even All but ABA∼B∼ (, including ABA−1B−1)
Even Odd All but ABA∗B∗

Odd Even All but ABA∗B∗

Odd Odd All (, thus ABA′B′)

Table 8: Overview of the restrictions of ABA′B′.

|A| |B| Acceptable partitions
Even Even All but AB . . . A∗B∗, ABA∼ . . . B∗, A . . . BA∗B∼

Even Odd All but A . . . BA∼B∗,
Odd Even All but ABA∗ . . . B∼,
Odd Odd All but AB . . . A∗B∗

Table 9: Overview of the acceptable partitions of ABA′B′.

In some cases, a sequence s = ABA′B′ or s = ABB′A∗ can be separated even further.
Consider a sequence abcdefghcbad . . . fghe as an instance of ABA′B′ for which A = abcd ,
B = efgh. One may partition this even further by abcdefghcbad . . . fg . . . he, where B′ is
partitioned as well. Similar to abcdefghcbad . . . fghe, one is still able to fully determine
A and A∗ for abcdefghcbad . . . fg . . . he. However, partitioning such sequences depends on
the content of the elements, which causes the patterns ABA′B′ or ABB′A∗ to not cover
every possible partition of an adhering sequence.

While these patterns apply to numerous permutations, to guarantee that such patterns
may only be applied to solvable sequences, we consider the following enclosing permuta-
tions and alternating permutations. Sequences containing ABB′A∗, are considered to be
enclosing permutations, as the sets of A enclose those of B. Consider a sequence contain-
ing two occurrences of both A and B. If either A or B is of odd length, then for sequences
that contain AB . . . B∗A∗, B and B∗ are fully determinable. The A-neighboring cells of
the two Bs will be white, which determines the remainder of the two Bs immediately
as well. If |A| is even, and sequences A and A∗ enclose either B and B∗ or B∼, then
the B-neighboring cell of the two As are determined to be white, which determines the
remainder of the As as well. Lastly, if A and A∼ enclose B and B∗ of even length, then
one can completely determine B, where the A-neighboring cells are both white. Again,
this fully determines the remainder of B.

Sequences that contain ABA′B′ are alternating between an instance of a sequence A,
B and their permutations, hence, alternating permutations. Again, for even |A|, an in-
stance of AA∗ will lead to determining the sequence as their two neighboring will both be
made white. When A and A∗, where |A| is even, enclose an even length instance of B, the
B-neighboring cells of the two instances of A may be either both black or white. If both
are black, then the sequence will not have a solution, as B will either begin or end with
a black cell, which will violate the no-neighboring black cells property of Hitori. So, the
B-neighboring cells of the two As must be white. Note that when B and B∗, with even
|B|, enclose an instance of A, either A∗ or A∼, this principle will hold as well, resulting
in determining the elements of B. When both A and B are of odd length, the instances
of ABA∗ and BA∗B∗ work as well. However, for instances of ABA∗, one can determine
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B, as it must start and end with a white cell. Having an instance of AB . . . A∗B∼, when
|B| is even, determines the elements of both As, where the B-neighboring cells of both
As becomes white. Similarly, if AB . . . A∼B∗, when |A| is even, then the A-neighboring
cells of both Bs becomes white. Once, these cells are known, the remainder is determined
as well. Suppose either A or B is of even length, and the other of odd length. If the even
length instances enclose the odd length instance, then the elements of the odd length are
determined, i.e. B is determined for ABA∼ for |A| even and |B| odd. Table 10 provides
an overview of acceptable partitions and orders of the enclosing and alternating per-
mutations. For more (partially) solvable sequences adhering the enclosing or alternating
permutations, see Table 11.

Enclosing Alternating
(ABBA based) (ABAB based)

Even |A| AA∗ AA∗

Even |B| ABB∗A∗ ABA∗

ABB∼A∗ BA∗B∗

AB . . . B∗A∼ BA∼B∗

AB . . . B∼A∗ AB . . . A∗B∼

AB . . . A∼B∗

Even |A| AA∗ AA∗

Odd |B| ABB∗A∗ ABA∼

AB . . . B∗A∗ AB . . . A∼B∗

Odd |A| AB . . . B∗A∗ BA∗B∼

Even |B| AB . . . A∗B∼

Odd |A| − ABA∗

Odd |B| BA∗B∗

Table 10: Instances of the rules enclosing and alternating permutations.

The rules enclosing permutations and alternating permutations may be added to the rule-
based classification, as these rules solely consider a single line. This allows earlier detection
of more complex patterns.
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Length Sequence
6 a b○ c c a○ b

8 a b○ c d○ a○ b c○ d

10 a b○ c○ d e○ b a○ e d○ c

10 a b○ c d○ e c○ b a○ e○ d

10 a b○ c d e c d e a○ b

10 a b○ c d○ e e a○ b c○ d

12 a b○ c d○ e○ f c○ d a○ b f○ e

12 a b○ c d○ e f○ c○ d a○ f e○ b

12 a b○ c d○ e f○ c○ d e○ b a○ f

12 a b○ c○ d e○ f c○ d e○ f a○ b

12 a b○ c○ d e○ f f○ b a○ e d○ c

12 a b○ c d○ e f○ f c○ b a○ e○ d

12 a b○ c d e f f c d e a○ b

Table 11: Sequences that can only be solved using enclosing and alternating permutations.

5.2.3 Proof

To guarantee that one may always determine some elements of a Hitori line that contains
enclosing or alternating permutations, consider Theorem 5.3.

Theorem 5.3. If a sequence contains adjacent enclosing or alternating permutations,
there will always be some gain.

Proof. Suppose we have the following line, where we can apply ABB′A∗:

a1a2 . . . an−1anb1b2 . . . bm−1bmb
′
1b
′
2 . . . b

′
m−1b

′
ma
∗
1a
∗
2 . . . a

∗
n−1a

∗
n

The rule of enclosing permutations indicates that the cells of A that enclose BB′ should
always be white. Because the sequence A is of even length n, the sequence A will have
n
2

black cells. For the even sequence, the pattern will either start with a black cell and
end with a white cell, or vice versa. If one cell of the sequence A is known, the whole
pattern is set immediately. Now, suppose an in the left A is black. Then, we know that
for the left A, all even positions, and thus all elements on even positions, are black. For
the right A, elements on the even positions will then all be white, causing the elements
on odd positions to be black. The cell a∗1 of the second A is thus black, enclosing BB′ by
two black cells. Consider b1 of the left sequence B to be x, and b′m of the right sequence
to be y. The cells x and y must be white, as their neighbors of A and A∗ are black. Two
situations may occur:

• The cells x and y have the same value; x = y. Both cells are white, but, according
to the rules of Hitori, only one of each value may be selected. Thus, we have a
contradiction.

• The cells x and y have the differing values; x ̸= y. We consider BB′. The sequence
BB′ consists of pairs of the same values, meaning that at least one of each value-pair
should be black. In total, at least half of the cells of BB′ will be black. However,
x and y are white. Regardless of whether B is even or odd, BB′ will be even, and
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thus m cells of BB′ will be black. Since both x and y are white, and BB′ is even,
we will need to place m black cells into 2m− 2 remaining cells of BB′. This means
that there will be black cells adjacent, which contradicts the rules of Hitori, where
black cells may not be adjacent. Therefore, we have a contradiction.

a∗na∗n−1. . .a∗2a∗1y· · ·xanan−1. . .a2a1

A B B′ A∗

Therefore, if we have a line where we can apply ABB′A∗, we can say with certainty that
the cells of A and A∗ that enclose BB′ should always be white.

Proof. Suppose we have a line for which we can apply ABA′B′. Both A and B can be
even or odd. If we can apply ABA′B′, then the a1 of the first A = a1, . . . an is always
black and there exists at least one pair of two adjacent white cells.

If the sequence A is of even length n and occurs twice in a given line in any order,
then for each A, n

2
cells should be black. To fill each A with n

2
black cells and that no

black cells are adjacent, we know that there are only two ways to fill an even sequence:

· · · · · ·

This means that if one cell of A is determined, then all of A are determined. Note that,
due to possible ordering, we cannot determine the pattern of the second occurrence A′

solely based on the black-white pattern of the first occurring A.

If we have an odd sequence A that occurs twice on a given line in any given order, then
one of the occurring sequences A will have ⌊n

2
⌋ black cells and the other will have ⌈n

2
⌉

black cells. The sequence containing ⌈n
2
⌉ black cells will be considered to be the maximally

filled sequence, and can only be filled in one way:

· · ·

The minimally filled sequence will have two adjacent white cells.

Now consider the different combinations for A and B.

(1) A and B are both even. Suppose a1 of the first occurrence A = a1 . . . an is white. If
a1 is white, then A1 is completely determined, and will end with black. Since B1 is
neighboring A1, the first cell of B1 will then be white. B is even as well, so if the
first cell of B1 is white, the rest of B1 will be set as well. The last cell of B1 will
then be black. A1 and B1 are now completely determined, and since the last cell of
B1 is black, A2 will start with white and end with black. Then B2 will start with
white and end with black as well. This results in:
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· · ·· · ·· · ·· · ·

A B A′ B′

There is no room for two white neighbors to occur while filling half of the number
of cells for each sequence.
So, for A is even, and B is even, a1 of A1 has to be black.

(2) A is even, B is odd. Again, suppose the first cell of A1 is white. Then the last cell of
A1 will be black, causing the first of B1 to be white. Since B is odd, and B1 starts
with white, B1 cannot cover ⌈m

2
⌉ black cells. Thus, B2 has to cover ⌈m

2
⌉ black cells.

The progress on the line so far:

· · ·· · ·· · ·· · ·

A B A′ B′

Since B2 is maximally filled, the last cell of A2 will be white. A is even, so A2 is
completely determined now. The first cell of A2 is black, and thus the last cell of
B1 is white. Now B1 starts and ends with a white cell. This results in the following
line:

· · ·· · ·· · ·· · ·

A B A′ B′

In order to fill B1 with ⌊m
2
⌋ black cells, B1 cannot have two white neighbors. There-

fore, if A is even and B is odd, the first cell of A1 has to be black.

(3) A is odd, B is even. Considering the reasoning used for (2), the first cell of A1 has
to be black, if A is odd and B is even.

(4) A and B are both odd. The maximally filled sequence of A and B cannot be adjacent.
So AmaxBABmax is the only configurable line. The first cell of A1 has to be black,
otherwise it cannot be the maximally filled sequence. Since A1 ends with a black
cell, the first of B1 will be white. The last cell of A2 will be white as well, as B2 will
start with a black cell. We will have the following line:

· · ·· · ·· · ·· · ·

A B A′ B′

So a1 of the first A is black.

Now, zoom into B1A2. We know that the outer cells are white. For B1, we still need
to place ⌊m

2
⌋ black cells. To do so, we will need 2⌊m

2
⌋ cells. The first cell is already

determined, we can then add 2⌊m
2
⌋ cells starting from the second cell. The remainder

of B1 is even, meaning that we can fill the remainder of B1 as either a h○ a h○ . . .
or h○ a h○ a . . .. The same applies to A2. We can make the following combinations,
which all contain two white neighbors:
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· · ·· · ·

set set

B A

· · ·· · ·

set set

B′ A′

· · ·· · ·

set set

B′ A′

So, for A and B are odd, we see that every possible combination contains an occur-
rence of two white neighbors.

The same reasoning regarding two white neighbors works when considering two even se-
quences A and B. Since an even sequence cannot have all elements, that were on even
positions, on odd positions, as this would violate the restrictions of ABA′B′, we know
that the pattern of ABA′B′ cannot fully consist of a h○ a h○ . . .. Therefore, there needs
to be at least one occurrence of two white neighbors.

For A is even and B is odd, and A is odd and B is even, When having a combination of
an even and odd length sequence, there is one sequence of odd length that is maximally
filled with black cells, and thus has a first and last cell that are black. The adjacent cell
of the adjacent even length sequence, will then be white. As mentioned earlier, if one cell
of an even sequence is determined, the whole sequence is completely determined. The one
end of the even length sequence is white, therefore the other end should be black. Now,
considering the adjacent odd length sequence, the adjacent cell should be white. The re-
mainder of this sequence is now even, and we can apply the same approach as described
for two odd sequences.

So, every valid solution of ABA′B′ starts with a black cell and has at least one occurrence
of two adjacent white cells.

5.2.4 Finding enclosing and alternating permutations

For the smallest Hitori, m,n ≤ 5, there is no need to check for the occurrence of ABA′B′

and ABB′A∗, as these only occur for |AB| ≥ 3. To find a permutation p in a sequence
of length ℓ, one can simply use a brute force approach with time complexity O(|p| · ℓ).
However, scaling in quadratic time becomes troublesome for larger m and n. Instead of
using a brute force approach, one can use a suffix tree to find larger occurrences of ABA′B′

and ABB′A∗. A line of the Hitori can be converted into a suffix tree, where the tree
considers all possible suffixes of the line. Compressing the suffix tree results in a compact
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suffix tree, which saves space. If a leaf is reached when traversing through the suffix tree
to find an instance of the permutation p, an occurrence of p is found. The time complexity
of the construction of a suffix tree is O(ℓ). Combined with checking whether the pattern is
present in the sequence, the time complexity will be O(ℓ+ |p|). Using a suffix tree makes
searching for a pattern more efficient. Checking all lines for m,n ≥ 10 becomes rather
exhaustive when using a brute force approach, making it more beneficial to use a suffix
tree.

5.3 Permutations

Lines that adhere to the pattern ABA′B′ or ABB′A∗ essentially consist of two parts that
are permutations of one another. These two parts, a sequence and its permutation, can be
adjacent or non-adjacent. Depending on the permutation A′ of A, the number of solutions
will vary between none and more than two. Generally, when a line contains A and A′, the
line has

• 0 solutions; if every possible solution is contradicting.

• a partial solution; if there is at least one contradicting solution.

• 1 solution; all, except one, possible solutions lead to a contradiction.

• 2 solutions; only alternating solutions are permitted.

• 2+ solutions; if there are exactly two contradicting solutions.

Now, consider a line that contains A and A′. Table 12 provides an overview of the number
of sequences for different lengths |A| that are not adjacent to A′, and the number of
solutions that have either 0, partial, 1, 2 or more than 2 solutions. For an adjacent A and
A′, see Table 13.

|A| 0 partial 1 2 2+ Total
2 0 0 0 2 0 2! = 2
3 0 4 0 2 0 3! = 6
4 2 4 10 6 2 4! = 24
5 32 44 32 12 0 120
6 298 62 288 58 14 720
7 3,000 696 1,200 144 0 5,040
8 28,518 1,192 9,458 998 154 40,320
9 295,920 16,560 47,520 2,880 0 362,880
10 3,174,938 31,274 393,788 26,202 2,598 3,628,800
11 36,945,216 570,816 2,314,368 86,400 0 39,916,800
12 455,869,606 1,122,820 20,972,374 972,262 64,538 479,001,600

Table 12: The type and number of solutions for |A| ≤ 12 where A and A′ are not adjacent.
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|A| 0 partial 1 2 2+ Total
2 0 0 1 1 0 2
3 1 1 2 2 0 6
4 9 1 10 4 0 24
5 66 6 36 12 0 120
6 512 8 164 36 0 720
7 4,088 56 752 144 0 5,040
8 35,800 88 3,856 576 0 40,320
9 337,800 840 21,360 2,880 0 362,880
10 3,486,240 1,440 126,720 14,400 0 3,628,800
11 38,985,840 19,440 825,120 86,400 0 39,916,800
12 472,815,504 34,704 5,632,992 518,400 0 479,001,600

Table 13: The type and number of solutions for |A| ≤ 12 where A and A′ are adjacent.

When determining the number of sequences that have exactly two solutions, we must
observe the possible solution layouts. For a sequence A of length |A|, there are |A|−2

2

possible solution layouts that have two adjacent white elements. The total number of
solution layouts is |A|−2

2
+ 2, as there are exactly two solution layouts that are fully

alternating between black and white. For non-adjacent sequences A and A′ of even length,
there are exactly

2 ·
((

|A|
2

)
!

)2

sequences that have an alternating sequence, meaning that these sequences have at least
two solutions. Alternating black and white for an odd |A|, directly determines the layout
of an occurring A once another occurrence of A has been set. It does not matter whether
A and A′ are adjacent or not. Therefore, the number of sequences for an odd |A| that
have at least two solutions is determined by(⌊

|A|
2

⌋)
! ·
(⌈

|A|
2

⌉)
!

Consider an even |A| where sequences A = a1 . . . an and A′ = a′1 . . . a
′
n are adjacent.

For sequences that consider an adjacent A and A′, and have exactly two solutions, the
sequence A′ needs to alternate between black and white elements. Since A ends with an,
a′1 has to represent an odd indexed element of A. Once a′1 is determined, the remainder
of A′ is determined as well. So, regardless of whether |A| is even or odd, if A and A′ are
adjacent, the number of sequences with exactly two solutions are(⌊

|A|
2

⌋)
! ·
(⌈

|A|
2

⌉)
!

Number of sequences with exactly two solutions. Considering sequences that have exactly
two solutions, the alternating sequences need to be preserved and any other sequence
needs to be contradicted. To create a contradiction, consider the white cells of a solution
layout. An even sequence has exactly |A|

2
white cells, resulting in

( |A|
2
2

)
pairs that cause a

contradiction for a given solution layout. Since there are |A|−2
2

possible solution layouts

with each
( |A|

2
2

)
pairs that cause a contradiction, there are |A|−2

2
·
( |A|

2
2

)
possible pairs to

evaluate. However, many of these pair consider elements that are both on an even or odd
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position in the first A sequence, resulting in a second sequence that cannot alternate if
that pair is included. Removing such pairs provides the total number of pairs that do not
violate the alternating property as

Tn =
1

6

|A|
2

·
(
|A|
2

+ 1

)
·
(
|A|
2

+ 2

)
where Tn is equivalent to the Tetrahedral numbers [6]. These pairs are represented by
1
2
|A|−2

2
( |A|−2

2
+ 1) unique pairs, which are equivalent to the Triangular numbers [7]. Con-

sidering |A| ≥ 4, where A is of even length, there needs to be at least a pair containing
a2 present in the sequence for it to be able to contradict all possible solution layouts that
contain white neighbors. There are |A|

2
− 1 pairs that contain a2 and contradict a possible

solution layout. There will be |A|
2
− 2 different pairs that contain a4, |A|2 − 3 different pairs

that contain a6, which will be repeated until there is only one distinct pair for an element.
Depending on how much solution layouts the pair containing a2 covers, there are a num-
ber of additional pairs needed to cover the remaining layouts. Determining the number
of sets that cover all solution layouts that contain white neighbors is an instance of the
set coverage problem, and is therefore NP-complete. The number of minimal set covers,
that contradict all solutions where two white elements are adjacent, can be determined
by using

a(n) = 3a(n− 1)− a(n− 2)

where n ≥ 2 and a(0) = a(1) = 1. Another way to determine the number of minimal
sets covers is by summing the minimal set covers of length ℓ can be found by using
T (n, ℓ) =

(
n+ℓ
2ℓ

)
(A085478);

n∑
ℓ=0

(
n+ ℓ

2ℓ

)
where n = |A|−2

2
. Once the number of minimal set covers is determined, one can use the

inclusion-exclusion principle [12] to determine the cardinality of the minimal set covers as∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ =
n∑

k=1

(−1)k+1

( ∑
1≤i1<···<ik≤n

|Ai1 ∩ · · · ∩ Aik |

)

Doing so, results in the number of sequences of length |A| that have exactly two solutions.
This determines the number of sequences with more than two solutions as well.

Example. For |A| = 8, with A = abcdefgh, there are five possible solutions. For each
solution, there are six pairs that cause a contradiction;

(1) ZWZWZWWZ with bd , bf , bh, df , dh, fh

(2) WZWZWZWZ with ac, ae, ag , ce, cg , eg

(3) ZWWZWZWZ with bc, be, bg , ce, cg , eg

(4) ZWZWWZWZ with bd , be, bg , de, dg , eg

(5) ZWZWZWWZ with bd , bf , bg , df , dg , fg
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To find the number of sequences that have exactly two solutions, pairs that consist
of two elements on even positions in A, i.e., a2, a4, . . . , an−2, an, or odd positions, i.e.,
a1, a3, . . . , an−3, an−1, can be removed as these violate the alternating solutions. Consider
solution layouts (3), (4) and (5) for which the same positioned pairs are removed;

(3) ZWWZWZWZ with bc, be, bg

(4) ZWZWWZWZ with be, bg , de, dg

(5) ZWZWZWWZ with bg , dg , fg

Figure 26 shows how these pairs contradict different solution layouts.

S3
bc

S4
de

S5
fg

U

bg

be

dg

Figure 26: A visualization of how the contradicting pairs capture different solution layouts,
where Sn, with n = 3, 4, 5 denotes the solution layout.

There are 5 minimal set covers that violate layouts (3), (4) and (5); {bg}, {be, dg}, {be, fg},
{bc, dg}, {be, de, fg}. Now, for each set cover, determine the number of sequences.

1. {bg}; The pair bg may occur mirrored as gb. There are 2·
(⌈
|A|
2

⌉
− 1
)
!
(⌊
|A|
2

⌋
− 1
)
! =

72 possible combinations where bg or gb occurs. The sequence has to be alternating,
which limits the number of positions on which bg or gb can occur to seven positions.
In total, there are 504 alternating sequences where bg or gb occurs.

2. {be, dg}; Placing the non-overlapping elements results in
(⌈
|A|
2

⌉
− 2
)
!
(⌊
|A|
2

⌋
− 2
)
! =

4 possible ways to place the remaining elements. Again, be and dg can be mirrored.
However, to preserve the alternation between even and odd elements, placing the
first element of a pair on an odd or even position is considered separately. There
are four positions to place the first pair, which leaves three positions for the second
pair, when the first pair starts on an odd position. If the first pair starts on an even
position, there are three positions where the first pair can occur. This leaves two
positions for the second pair. There are 2 ·(4 ·3+3 ·2) ·4 = 144 alternating sequences
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where be and dg or eb and gd occur. Taking alternation into account, the number
of ways to position be and gd or eb and dg is limited to twelve. Thus, there are
2 · (2 · 2 · 3) · 4 = 96 sequences where be and gd or eb and dg occur. Considering all
positions, there are 240 sequences where be and gd , or mirrored, occur.

3. {be, fg}; There are 240 alternating sequences where {be, fg}, or mirrored, occur.

4. {bc, dg}; There are 240 alternating sequences where {bc, dg}, or mirrored, occur.

5. {bc, de, fg}; After placing bc, de and fg , the remaining two elements have one possible
position. Again, the sequences can be mirrored. Starting at an odd position, there
are four ways to place the first pair, three ways to place the second pair and two
ways to place the third pair. Starting on an even position in the sequence results in
three ways to place the first pair, two for the second pair and one for the third pair.
This results in 1 · 2 · (4 · 3 · 2 + 3 · 2 · 1) = 60 alternating sequences where bc, de, fg ,
or mirrored, occur. Considering {bc, de, gf}, {bc, ed , fg} and {bc, de, gf }, there are
ten possible positions for each of these covers, which can be mirrored as well. This
results in 3 · 10 · 2 = 60 alternating sequences that contain {bc, de, gf }, {bc, ed , fg}
or {bc, de, gf }. In total, there are 120 alternating sequences where bc, de, fg or any
mirroring occurs.

To find the number of sequences of the union of these covers, the inclusion-exclusion
principle must be used. As there exist five minimal set covers, the principle provides
|{bg} ∪ {be, dg} ∪ {be, fg} ∪ {bc, dg} ∪ {be, de, fg}|, which results in 1344 − 390 +
50−6+0 = 998 sequences for |A| = 8 with exactly two solutions. There are 2·(8

2
)!2−998 =

154 sequences with more than two solutions.

Theorem 5.4. If A and A′ are adjacent, there will always be at most 2 possible solutions.

Proof. Suppose the sequence A = a1a2 . . . an and A′ = a′1a
′
2 . . . a

′
n are adjacent, where

|AA′| = 2n. Consider an and a′1, as they are adjacent. Deselecting both elements may
not occur, as no black elements may be neighbors. Either an, a′1 or both are selected, i.e.
made white.

|A| is even. When both an and a′1 are white, the remaining elements are determined as
well, as half of the elements of A must be black, see Lemma 5.1. If an becomes black, the el-
ements an−1 a′1 will be white. The remainder of A and A′, i.e. the sequences a1 . . . an−1 and
a′2 . . . a

′
n, become of odd length. To eliminate all duplicates, either a1 . . . an−1 or a′2 . . . a

′
n

has to contain ⌊m
2
⌋+ 1 black elements, i.e. the maximum number of black elements. The

maximum number of black elements may only occur in an alternating manner, starting
and ending with a black element. Since an−1 has become white, the sequence a1 . . . an−1
cannot contain the maximum. Therefore, a′2 . . . a′n will have ⌊m

2
⌋+ 1 black elements, and

immediately determines a1 . . . an−1 as well. Making an black results in a fully determined
solution. Respectively, making a′1 becomes black, will lead to a fully determined solution
as well. Note, that it is possible that it is possible for a sequence to have exactly two
possible solutions.

|A| is odd. See Theorem 5.5.

Theorem 5.5. If |A| is odd, regardless of A and A′ being separate or adjacent, there will
be at most 2 solutions.
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Proof. Suppose the sequence A = a1a2 . . . an and A′ = a′1a
′
2 . . . a

′
n occur on a given line,

where they can be adjacent or separated.

Either A or A′ contains the maximum number of black elements. As the maximum num-
ber of black elements may only occur in an alternating manner, starting and ending with
a black element, the corresponding sequence will be fully determined. The remaining se-
quence will then mirror the elements in the already determined sequence. Suppose that
both a black an and a black a′1 lead to a valid sequence, then the sequence has exactly
two solutions. When either a black an or a′1 leads to a valid sequence, there will be at
least some part of the solution that is known. If none of these lead to a valid sequence,
there will be zero solutions. Thus, regardless of A and |A′| being separate or adjacent,
there will be at most 2 solutions when |A| is odd.

Number of sequences with zero solutions. Similar to the approach of determining the
number of sequences that have exactly two solutions, consider all possible solution layouts.
Here, the alternating solutions are included as well, meaning that there are |A|−2

2
+ 2

solutions to consider. As the two fully alternating solution layouts have no overlapping
elements, there needs to be at least one covering pair for each alternating sequence to
ensure that no solution is possible. Therefore, there needs to be an adjacent pair of even
elements, and an adjacent pair of odd elements. If another pair is needed to cover all
solutions, then such a pair will consist of an even and odd element. For each solution,
there are

( |A|
2
2

)
pairs that cause a contradiction. This results in a total of

(
|A|−2

2
+ 2
) ( |A|

2
2

)
possibly overlapping pairs that cause some contradiction. To provide an upper bound on
the number of pair combinations that cause zero solutions, we may consider every pair
combination that covers the two fully alternating solutions, meaning one needs to evaluate( |A|

2
2

)
·
( |A|

2
2

)
pair combinations. After evaluating the two fully alternating solutions, one

needs to consider the solutions that contain two adjacent squares. As described previously,
those are equivalent to the Tetrahedral numbers. Since the number of minimal set covers
of the solutions containing two adjacent white cells, the number of minimal set covers
needed to obtain zero solutions has an upper bound of

( |A|
2

2

)2

·

|A|−2
2∑

ℓ=0

( |A|−2
2

+ ℓ

2ℓ

)
The set of sequences that have zero solutions where A and A′ are not adjacent, are a
proper subset of the those where A and A′ are adjacent. The remainder of the sequences
with zero solutions are those that cause a contradiction because an and a′1 are adjacent.

Theorem 5.6. If a line containing a sequence A has an instance A′ with adjacent pairs
{a′2, a′3}, {a′4, a′5}, . . . , {a′n−2, a′n−1} and ∃x, y : {a′x, a′x+1} ∧ {a′y, a′y+1}, where x and x + 1
are elements on even positions and y and y + 1 are elements on odd positions, then the
line has zero solutions.

Proof. Suppose there is a sequence of length |A|. There are |A|−2
2

+ 2 possible solution
layouts.
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A′1 A′2 A′3 A′4 A′5 A′6 · · · A′n−5A
′
n−4A

′
n−3A

′
n−2A

′
n−1A

′
n

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Figure 27: All solution layout for a sequence A′, where |A′| is even.

All solution layouts, except the first and the latter, have an adjacent white pair, see
Figure 27. So, for each of these solution layouts, take the adjacent white pair. If done for
all, |A|−2

2
solution layouts are contradicted. The remaining two solution layouts are fully

alternating. To contradict those, a pair of elements on even positions needs to be adjacent,
as well as a pair of elements on odd positions. All solution layouts are contradicted, and
thus sequences that have pairs {a′2, a′3}, {a′4, a′5}, . . . , {a′n−2, a′n−1}, one pair consisting of
elements on even positions and one pair consisting of elements on odd positions have zero
solutions.

Theorem 5.7. Suppose a line contains a sequence A and A′. Any line that has zero
solutions needs at least one adjacent pair in A′ of two elements on even positions of A,
and at least one adjacent pair in A′ of two elements that are on odd positions of A.

Proof. Consider Figure 27 once more. One pair can at most cover
⌈
1
2
( |A|−2

2
+ 2)

⌉
different

solution layouts. The layouts all consist of alternating black and white, even those that
have two adjacent white elements. Consider starting the alternation with black. The first
layout fully alternates when starting on the left, the last layout fully alternates when start-
ing on the right. The remaining layout start alternating from both left and right, and will
meet at one point in the sequence. For the first layout, n elements are left-alternating, leav-
ing zero right-alternating elements. The second layout has n− 2 left-alternating elements
and two right-alternating elements. This continues until all elements are right-alternating.
The pair {a′2, a′4} then is able to cover layouts that have at least four left-alternating el-
ements, which are

⌈
1
2
( |A|−2

2
+ 2)

⌉
different layouts. Similarly, the pair {a′n−3, a′n−1} covers

layouts that have at least 4 right-alternating elements, which are
⌈
1
2
( |A|−2

2
+ 2)

⌉
different

layouts. Since A′ is of even length, there is exactly one layout that the same number of
left- and right-alternating elements.

The adjacent pairs {a′2, a′4} and {a′n−3, a′n−1} each cover
⌈
1
2
( |A|−2

2
+ 2)

⌉
different solution

layouts. When A′ contains both pairs, all possible layouts are contradicted, meaning that
one pair of elements on odd positions and one pair of elements on even positions are able
to cover all possible layouts.
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6 Satisfiability

While using a set of rules is quite straightforward, using the principle of satisfiability
might allow for capturing more complex patterns earlier on in the solving process. In
this section, a 2-satisfiability (2-SAT) approach will be introduced for solving lines of
a Hitori. To capture the connectivity of the puzzle in terms of satisfiability, a distance
matrix will be introduced. This matrix can then be combined with the approach described
in Section 6.1, expressed in 3-SAT, to solve a Hitori.

6.1 2-SAT

Solving a single line, i.e., a row or column, of a Hitori is based on the constraints that
no duplicates may occur, and no black cells may be adjacent. Assume that a line may
be partially solved, meaning that some cells are already set to black or white. Uniquely
occurring cells on a given line are temporarily selected, i.e. made white, albeit we do
not know whether they are indeed fully unique in their corresponding orthogonal line. If
such a cell is unique on the given line, but was not already selected, then there are other
elements in its orthogonal line that prevent selection. One cannot determine whether
this cell should be selected or not by solving the considered line, meaning that there is
no use to include this cell when trying to find progress on the line. To ensure this cell
does not affect the determination of the other cells, one can temporarily select the cell.
Since every uniquely occurring cell is already determined, only cells that occur at least
twice are considered. These cells may be separated by sequences of already solved cells,
creating disjoint sequences of unsolved cells, which can be referred to as “blocks”. For
each unsolved cell, we introduce a Boolean variable, where true represents the selection
of the corresponding cell. These variables need to obey the rules of Hitori, meaning the
following can be said about the Boolean variables of the unsolved cells:

• Consider neighboring cells x and y. If x is selected, y can be selected as well. However,
both cannot be black, or deselected. So, their Boolean values must satisfy ¬x → y,
or x ∨ y.

• A solved line may not contain any duplicates. If a cell x and y contain the same
value a, both cannot be selected simultaneously. The corresponding Boolean values
must satisfy x → ¬y ∧ y → ¬x, or ¬x ∨ ¬y.

These rules, captured in Conjunctive Normal Form (CNF), can express an entire line in
Boolean variables. However, there is no guarantee that a line will be fully solved. Based
on the distribution of the blocks, a line might be partially solvable, at best, or completely
unsolvable. While the latter results in an unsatisfiable Hitori, partial progress may lead
to a fully solved line later on.

While satisfiability problems are NP-complete, solving such lines can be described us-
ing 2-SAT, and can thus be solved in linear time. Consider a variable x and its negation
¬x. If both x and ¬x are unsatisfiable, the line has no solution. Using the negations of
variables as literals, we can create an implication graph. Considering the strongly con-
nected components (SCCs) of the implication graph, we can then check if a variable x and
its negation ¬x are part of the same SCC. If so, we can reach x from ¬x and vice versa.
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Selecting x or ¬x will then always lead to a contradiction, which causes the entire Hitori
to be unsatisfiable. To find the SCCs, we can use the linear time algorithm by Aspvall,
Plass and Tarjan [1], or Kosaraju’s algorithm [13]. When all x and ¬x are evaluated and
determined not to be in the same SCC, one needs to check whether selecting a variable
y leads to ¬y or vice versa, but not both. If y leads to ¬y, and thus a contradiction, the
literal ¬y needs to be selected. For ¬y leading to y, the literal y needs to be selected.
Checking this for all variables, leads to a selection of literals. Overlapping all possible
outcomes shows which variables will always be selected or unselected.

6.1.1 Example

Consider the partially solved line shown in Figure 28 (top). Those numbers that are not
solved occur more than once. We consider the Boolean variables x0, . . . , x7, corresponding
with these cells. Since neighboring cells cannot both be deselected, we get the following
formula in conjunctive normal form (CNF):

(x0 ∨ x1) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x5 ∨ x6) ∧ (x6 ∨ x7)

Based on the Boolean expression for two cells that have the same value, we get the
following CNF formula for the given line:

(¬x0 ∨ ¬x2) ∧ (¬x1 ∨ ¬x3) ∧ (¬x4 ∨ ¬x7) ∧ (¬x5 ∨ ¬x6)

The graph in Figure 28 (middle) provides an implication graph of the used clauses. Black
arrows indicate clauses that are based on neighboring cells, blue arrows indicate clauses
that are based on those that have matching values. Keep in mind that deselecting a
cell does not always lead to selecting a duplicate of this cell, as there might be another
occurrence of this cell later on in the line.

X34432121

x7x6x5x4x3x2x1x0

¬x0

x0

¬x1

x1

¬x2

x2

¬x3

x3

¬x4

x4

¬x5

x5

¬x6

x6

¬x7

x7

X34432121

x7x6x5x4x3x2x1x0

Figure 28: An example line, its implication graph and solution.

The line shown in Figure 28 (top) has several SCCs: {x0, x3,¬x1,¬x2}, {¬x5, x6}, {¬x6, x5},
{¬x7}, {¬x0}, {x2}, {x4}, {¬x3}, {x1}, {¬x4}, {x7}. Checking whether the line yields
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unsolvable, one can see that none of the SCCs contain a variable and its negation. The
line is thus considered to be solvable. Following the implication graph shown in Figure 28
(middle), selecting x0 will lead to a contradiction. Starting with x0, we can reach ¬x2.
From here, we can reach x1 and x3, where the latter leads to ¬x1. The variable ¬x1 is thus
reachable from x1, which causes a contradiction. Therefore, we know that we cannot use
x0. Now, starting with ¬x0, we can reach x1, ¬x3, x4, x2, ¬x7, x6 and ¬x5, which results
in a valid solution for the considered line. Selecting x0 will lead to a contradiction, and
selecting ¬x0 will give a solution, meaning that we must use ¬x0 to have a valid solution.
For each variable and its negation, we can check whether they lead to a contradiction.
Doing so will give a fully solved line, as shown in Figure 28 (bottom).

6.2 Capturing Connectivity

As stated by Tran [16], capturing the connectivity of Hitori is hard. In Section 6.1, the
rules of having no duplicate white cells and no neighboring black cells were expressed using
2-CNF. One may simultaneously apply these clauses to all rows and columns. However,
these clauses do not capture the connectivity of Hitori. To capture the connectivity, we
introduce a distance matrix, also expressed in CNF.

Suppose we have a distance matrix d of size ℓ× kmax, where ℓ = m× n and kmax denotes
the maximum number of steps in a given path from the so-called ground cell. The Boolean
variable di,k is true when cell i is at distance k from the ground cell in the given path.
The ground cell will have a distance zero, and thus di,0 will be true. For every other white
cell i, where 1 ≤ i ≤ ℓ, di,0 will be false and there must exist a neighboring cell that is
one step closer to the ground cell on the given path:

di,k → (di↑,k−1 ∨ di↓,k−1 ∨ di→,k−1 ∨ di←,k−1)

where {i↑, i↓, i←, i→} denote the indices of the top, bottom, left and right neighbor, respec-
tively. For the m× n Hitori, if such neighbors exist, these neighbors can be determined
as:

• Top neighbor, where ∀i ≥ n+ 1 : i− n

• Bottom neighbor, where ∀i+ n ≤ m · n : i+ n

• Left neighbor, where ∀(i mod n ̸= 1) : i− 1

• Right neighbor, where ∀(i mod n ̸= n) : i+ 1

Note that the upper bound of kmax is the maximum number of white cells, and thus m×n.
Therefore, the distance matrix will be at most a grid of size ℓ × ℓ. The lower bound of
kmax is the total number of cells minus the maximum number of black cells, as will be
described in Section 7.3.

The connectivity constraint applicable in Hitori, is present in other types of puzzles
as well, such as Heyawake and Nurikabe. For grid-based puzzles, one can express the puz-
zle as a graph, where one can express connectivity. Similar to Theorem 1 introduced by
van der Knijff [17] on connectivity of a graph, one may define the following Theorem.
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Theorem 6.1. A graph G(V,E) is connected if and only if there exists a mapping f : V → N
such that

1. there is a unique vertex g ∈ V with f(g) = 0

2. for all i ∈ V − {g}, there exists j ∈ V such that (i, j) ∈ E and f(j) + 1 = f(i).

To capture the connectivity of an m × n Hitori, one may consider using Theorem 6.1
along with the collections B of black cells and W of white cells. This can be used to
construct a CNF formula containing the following:

• There is exactly one unique white cell that is the ground cell, meaning that

∃i ∈ W : di,0 ∧
∧

1≤i,j≤ℓ

(¬di,0 ∨ ¬dj,0)

• For every other white cell in the set W , di,k must have a neighbor for which the
distance is one less than the provided k, and thus

∀i ∈ W : di,k → (di↑,k−1 ∨ di↓,k−1 ∨ di→,k−1 ∨ di←,k−1)

This can be rewritten in CNF as

∀i ∈ W : ¬di,k ∨ di↑,k−1 ∨ di↓,k−1 ∨ di→,k−1 ∨ di←,k−1

• All black cells in set B are not reachable and thus have “no” distance to the ground
cell: ¬xi → ¬di,k. In CNF, this is written as

∀i ∈ B,∀k : xi ∨ ¬di,k

Combining these with the CNF formula described in Section 6.1 will allow one to capture
the connectivity of a Hitori.

6.2.1 Example

To check whether one can make progress on a partially solved Hitori, we consider the
following approach. Figure 29 provides a partially solved Hitori, which until this point
may have been solved solely using the 2-SAT approach described in Section 6.1. For each
cell, the top-right positioned number provides the index of the corresponding Boolean
variable.
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Figure 29: A partially solved Hitori.
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As only two cells are undetermined, there are only four possible configurations. However,
{x5, x6} and {¬x5,¬x6} both violate clauses discussed in Section 6.1, where two cells with
the same value are selected and two adjacent black cells occur, respectively. This leaves
two possible configurations {x5,¬x6} and {¬x5, x6}.

First, consider {¬x5, x6}. Considering that there must exist exactly one ground cell, one
will get the clauses

(d2,0 ∨ dd,0 ∨ d4,0 ∨ d6,0 ∨ d8,0 ∨ d9,0) ∧
(¬d2,0 ∨ ¬d3,0) ∧ (¬d2,0 ∨ d4,0) ∧ . . . ∧ (¬d2,0 ∨ d9,0) ∧ (¬d3,0 ∨ d4,0) ∧ . . . ∧ (¬d8,0 ∨ d9,0)

Black cells x1, x5 and x7 cannot reach the ground cell, so

(x1 ∨ ¬d1,0) ∧ (x1 ∨ ¬d1,1) ∧ . . . ∧ (x1 ∨ ¬d1,6) ∧

(x5 ∨ ¬d5,0) ∧ (x5 ∨ ¬d5,1) ∧ . . . ∧ (x5 ∨ ¬d5,6) ∧
(x7 ∨ ¬d7,0) ∧ (x7 ∨ ¬d7,1) ∧ . . . ∧ (x7 ∨ ¬d7,6)

For a valid configuration of d, where for all white cells, with the exception of the ground
cell, it must hold that

∀i, k ≥ 1 : ¬di,k ∨ (di↑,k−1 ∨ di↓,k−1 ∨ di→,k−1 ∨ di←,k−1) (1)

Consider the white cell x4. If x4 is not the ground cell, then d4,k must have a neighbor with
a distance k − 1 from the ground cell. However, x4 has no white neighbors, so Clause 1
cannot be satisfied. Now suppose x4 is the ground cell, then every other cell must have a
neighbor with the value k − 1. However, this cannot occur as there is no way to fill the
grid with values for k such that every cell has a neighbor with the value k− 1. Thus, if x4

is the ground cell, one cannot satisfy Clause 1. So regardless of whether x4 is the ground
cell or not, the configuration {¬x5, x6} is not satisfiable.

Figure 30 shows configurations of d, where each cell i contains the value k for which
di,k is true. The two figures show paths where x4 is not connected to the other white cells,
as it is isolated by its neighbors and a border. Figure 30a shows a path where x2, and thus
not x4, is the ground cell. Regardless of the value of k for which the Boolean d4,k is true,
it will not have a neighbor where k − 1 occurs. If x4 is the ground cell, see Figure 30b,
then there will always be another white cell that has no neighboring cell with a k that is
exactly one smaller. For Figure 30b, x2 with d2,1 has no neighbor with an occurrence of
k − 1.
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(a) There is no path between the ground
cell x2 and x4.

0

1

5

2

3

4

1 2 3

4 5 6

7 8 9

(b) There is no path between the ground
cell x4 and the other white cells.

Figure 30: Paths based on distance matrix d for {¬x5, x6} where the white cell x4 is
considered as the ground cell and not as ground cell. Both are unsatisfiable.
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Now, consider {x5,¬x6}. Figure 31 shows two possible paths derived from a configuration
of the distance matrix d. If x4 is considered to be the ground cell, a possible configuration
for d could be created in such a way that satisfies the described formula, see Figure 31b.
Figure 31a shows a satisfiable configuration where x4 is not the ground cell. The two
configurations in Figure 31 show paths where several cells have an identical distance
towards the ground cell, and are considered to be branches. Branching such a path keeps
the path connected and is dependent on which cell is chosen as ground cell. A branched
path still satisfies the constraints and thus may occur. Since there exists a satisfiable
configuration for d and all xi, where i ∈ {W ,B}, the partially solved Hitori is thus
satisfiable, where one has found {x5,¬x6}. Of course, one only needs a single satisfiable
configuration of d to show that the Hitori is satisfiable.
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(a) The ground cell x2 is connected to all
other white cells.
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(b) The ground cell x4 is connected to all
other white cells.

Figure 31: Several paths based on distance matrix d for {x5,¬x6} are satisfiable, regardless
of which cell is considered to be the ground cell. The path may consist of branches which
have the same step distance from the ground cell.

6.3 MiniSAT

Sörensson and Eén have created an open-sourced SAT solver, named MiniSAT [9], which
can be integrated with other frameworks [15]. The SAT solver can easily be optimized us-
ing the several parameters accompanying the solver. For the 2-SAT approach, MiniSAT
is used for solving lines to obtain either an unsolvable, partially solvable or fully solvable
line. After that, one must check whether the uniquely occurring cells were indeed unique
when incorporating the (partial) solution into the grid of the puzzle. One can do so, by
checking the orthogonal line of the uniquely marked cells.

While MiniSAT has been used for the 2-SAT based solver, combining it with the ap-
proach of capturing connectivity would solve a Hitori more efficiently as it only needs a
CNF formula to fully solve the puzzle, rather than additional checks.
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7 Generation

Unlike generating Sudoku, which are essentially Latin squares, generating Hitori has
some additional difficulties due to the connectivity constraint of the puzzle. A Hitori
may have several duplicates on a given line, as long as the solution will ultimately have at
most one unshaded, i.e., white, occurrence of such a character. As repetition of characters
is allowed, and not every character has to appear on each line, the number of possible
Hitori increases exponentially. When duplicates occur, one needs to shade, i.e., make
black, cells in order to get a proper solution. There exist Hitori for which no cells will
be made black, i.e., boards representing Latin squares where all cells are unique in both
their row and column. Therefore, one can say that the lower bound of the number of black
cells b(m,n) on an m × n Hitori is 0. In this section, we will go into an upper bound
of b(m,n), as well as how this contributes to the complexity of Hitori. First, we will
consider generating uniquely solvable Hitori.

7.1 Generating Hitori

To generate all possible Hitori of a given size, we could exhaustively run all board
combinations of a given set of characters. However, doing so is computationally hard.
For example, a 4 × 4 board with the character set N = {1, 2, 3, 4}, would result in
416 = 4, 294, 967, 296 different board combinations. Most of these boards will not be
solvable due to connectivity issues, e.g., a board solely consisting of 1s. Computing all
boards exhaustively becomes rather tedious, as the number of possible boards grows ex-
ponentially. In this section, we will explore ways to reduce the number of potential Hitori.

Suzuki et al. [14] introduced the Hitori number h(n) as the minimum number of characters
used on an n× n board. The provided lower bound is

h(n) ≥
⌈
2n− 1

3

⌉
For n = 4, the minimal number of characters for a uniquely solvable Hitori equals 3,
meaning that boards consisting of one or two characters should not be considered when
searching for uniquely solvable Hitori. There exist 4 sequences that solely consist of one
character. Consider n = 4 for 4× 4 Hitori, then there are 216 sequences that consist of
2 characters where we have

(
3
2

)
= 6 possible ways to select those 2 characters. In total,

4 + 216 · 6 = 393, 220 sequences can be eliminated prematurely. For 5 × 5, h(n) = 3,
resulting in 5 + 225 · 10 = 335, 544, 325 not uniquely solvable Hitori. However, pruning
these boards does not significantly impact the number of potential Hitori.

A solvable Hitori should not have any duplicates in any given row or column, which
is similar to the idea of a Latin square. Formally, a Latin square of size n× n is a square
where all n characters occur exactly once in each row and column. Replacing black squares
of a solved Hitori with other elements of the character set can lead to a Latin square.
While numerous solutions of Hitori can be reduced to a Latin square of that size, this
does not cover all possible Hitori. Figure 1 shows an example of a solvable Hitori for
which the solution is not reducible to a Latin square. Using Latin squares will therefore
not cover all possible Hitori.
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Instead of generating all possibilities exhaustively, it might be more beneficial to con-
sider the equivalence classes of Hitori, as these cover all possible Hitori. Only one of
each equivalent class needs to be generated and solved in order to determine whether all
puzzles in that equivalence class are solvable. Bell numbers provide the number of possi-
ble partitions of a given set of length n. To obtain the Bell sequences, consider that each
element of a sequence is at most one larger than the until then found maximum. Suppose
we have a set {1, 2, 3}, with a sequence length n = 3. Then the following sequences will
cover all possible partitions: (1 1 1), (1 1 2), (1 2 1), (1 2 2), (1 2 3). We can create similar
sequences by substituting elements. These 5 sequences represent 5 equivalence classes that
cover all 33 = 27 different sequences. The principle of the Bell sequences can be used to
generate all possible Hitori forms. For a 3 × 3 Hitori, the sequences will be of length
32 = 9. The sequences 1 1 1 1 1 1 1 1 2 and 1 1 1 1 1 1 1 1 3 represent similar puzzles, and
fall into the same equivalence class. If we can solve 1 1 1 1 1 1 1 1 2, then 1 1 1 1 1 1 1 1 3
can be solved as well, making it unnecessary to generate both. Therefore, only one of each
equivalence class is generated and then solved.

Bell numbers work for sequences of length |N | over a set of N elements. The princi-
ple of Bell numbers, however, works more generally. Stirling numbers of the second kind
provide the number of possibilities for a sequence of length ℓ for a set of |N | elements,
where ℓ ≤ |N |. For n × n Hitori boards, we have a sequence of length ℓ = n2 that will
use n elements, meaning that ℓ > n. Stirling numbers of the second kind will be 0 in
that case. Generally, the number of possible sequences of length ℓ with a set of c = |N |
elements can be obtained by using the following formula [8]:

a(c, ℓ) =
cℓ

c!
+

c−2∑
k=1

kℓ

k!

c−k∑
j=2

(−1)j

j!

For m × n Hitori boards, we have a sequence of length ℓ = m · n. These extended Bell
numbers grow very rapidly. However, it will outweigh exhaustively computing all possible
sequences for an m× n Hitori:

a(c, ℓ) =
cℓ

c!
+

c−2∑
k=1

kℓ

k!

c−k∑
j=2

(−1)j

j!
< cmn

Table 14 shows the difference between exhaustively generating m× n Hitori and using
a(c, ℓ). Note that the set size of N for a(c, ℓ) is equivalent to m. Increasing the size,
increases the difference between all possible boards and a(c, ℓ). For 3 × 3, a(c, ℓ) only
considers 16.7% of all possible boards, which reduces to 0.14% for 6 × 6 boards. While
a(c, ℓ) only considers a slight percentage of the total number of possible sequences, the
number of sequences remains prominent.
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Board size Exhaustive a(c, ℓ)
3× 3 39 = 19, 683 3, 281
4× 4 416 ≈ 4.295 · 109 178, 973, 355

(≈ 1.79 · 108)
4× 5 420 ≈ 1.100 · 1012 45, 813, 246, 635

(≈ 4.58 · 1010)
5× 4 520 ≈ 9.537 · 1013 795, 019, 337, 135

(≈ 7.95 · 1011)
5× 5 525 ≈ 2.98 · 1017 2, 483, 597, 478, 617, 802

(≈ 2.48 · 1015)
5× 6 530 ≈ 9.31 · 1020 7, 761, 038, 612, 902, 285, 822

(≈ 7.76 · 1018)
6× 6 636 ≈ 1.031 · 1028 14, 325, 688, 388, 877, 185, 110, 915, 943

(≈ 1.43 · 1025)

Table 14: The number of puzzles for different board sizes.

7.2 Pruning unsolvable Hitori

There are several single-line subsequences that are guaranteed to result in an unsolvable
Hitori. Based on the rule Sim-U3, see Section 3.1, a Hitori containing an occurrence of
1 1 1 1 on a line is unsolvable. Other single-line subsequences that cause an unsolvable
Hitori are {2 1 1 1 2}, {2 1 2 1 2}, {1 2 1 2 2}, {1 2 2 1 1}, {1 1 1 2 2 2}, {1 2 3 2 3 1}.
Figure 32 shows general sequences, where a, b, c, d ∈ N , that have no valid solution and
are thus cause unsolvable Hitori. These sequences are based on the rules in Section 3.1
as well. Note that a, b, c and d may be identical.

a a a a

b a a a b

b a b a b

a b a b b

a a b a a

a a a b b b

a b a a b b

a b c b c a

a a b c a a

b a b c a a

a b a
...

c b c

a a c a

b b d b

a

a

b a b

b

a · · · a a

b

a a a

b b b

a b a b

c d c d

a

a a a

a

b a b b

a

a

a a a

b b

a b a b

c d c c

a a c a

b b b

a c a c

b b b

Figure 32: Patterns that cause unsolvable Hitori; a, b, c, d ∈ N .
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When generating all m × n Hitori, one can eliminate potential Hitori that have any
occurrence of these so-called unsolvable subsequences. Considering the sequences of a(c, ℓ),
one can reduce the number of potential Hitori. Table 15 shows how the number of
potential Hitori left to evaluate after pruning compared to an unpruned a(c, ℓ). The
patterns used to prune are those shown in Figure 32. Note that this includes rotation and
mirroring of the patterns.

|N | m× n Pruned a(c, ℓ) a(c, ℓ) %
3 3× 2 112 122 91.8
3 3× 3 2,776 3,281 84.6
3 3× 4 40,007 88,574 45.2
3 3× 5 588,810 2,391,485 24.6
3 3× 6 9,043,984 64,570,082 14.0
3 3× 7 111,076,162 1,743,392,201 6.4
3 3× 8 2,114,822,448 47,071,589,414 4.5
4 4× 2 2,512 2,795 89.9
4 4× 3 489,697 700,075 70.0
4 4× 4 85,097,188 178,973,355 47.6
4 4× 5 12,645,780,645 45,813,246,635 27.6
4 4× 6 1,924,883,302,791 11,728,128,223,915 16.4
5 5× 2 73,463 86,472 85.0
5 5× 3 173,959,355 255,514,355 68.1
5 5× 4 385,036,717,713 795,019,337,135 48.4

Table 15: Pruning sequences that contain unsolvable patterns reduces the number of
potential Hitori.

Of course, other patterns may occur as well. One can include a border or corner to enclose
some cells. Consider a 2× 2 corner where each cell contains the same character. If any of
the directly neighboring cells of this 2× 2 corner, i.e., horizontal and vertical neighboring
cells, contains the same character, there is no solution and thus not a uniquely solvable
Hitori. Of course, these corner and border cases will not capture as many sequences as
the patterns shown in Figure 32.

The remaining sequences can be evaluated to determine whether they are uniquely solv-
able Hitori. While these patterns do not eliminate all unsolvable sequences, the number
of to be evaluated sequences reduces drastically when increasing the size of the board.

7.3 Finding the maximum number of black cells

While wanting to keep the number of black cells minimal, the upper bound on the number
of black cells b(m,n) provides us with some knowledge on the complexity of a Hitori.
Considering an m× n grid, the aim is to find the maximum number of black cells so that
the original rules of Hitori are not violated.

Figure 33 provides an example of a 6 × 4 board that has a maximum number of black
cells. By shifting the bottom row by 1, we can create another board that has a maximum
number of black cells while not violating the original rules of Hitori.
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Figure 33: A 6× 4 Hitori board with a maximum number of black cells.

One can see a pattern in constructing boards with a maximum number of black cells for
n = 8, see Figure 34. The first three rows are constructed in such a manner that the left
and right enclosed patterns are reachable. The pattern shown in red considers three rows,
where the first and third row have n

2
− 1 black cells, and the second has 2 black cells.

4

5

8

11

13

16

19

21

24

27

29

32

35

37

40

Figure 34: For m ≥ 6, n = 8, this structure gives the maximum number of black cells.
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Consider an m×n board, for which cells alternate between black and white. This chess-like
board solely considers the constraint of no neighboring black cells, where the maximum
number of black cells equals

⌈
1
2
mn
⌉
. Once the connectivity constraint is included, the

maximum number of black cells decreases. Table 16 shows the found maximum of black
cells for an m × n board, with m,n ∈ {2, 3, . . . , 13, 14}. The maxima were found using
an exhaustive approach. For m or n divisible by 3, the number of black cells b(m,n) will
be exactly 1

3
mn. For other m and n, the number of black cells might deviate by one. A

Hitori of size 7×7 will have a maximum of 17 black cells, while 1
3
·7 ·7 = 161

3
. A line, i.e.,

row or column, of length 7 contains at most 4 black cells. In such cases, rounding up will
provide the found maximum. Otherwise, one may round to the nearest integer, denoted
as [x] for the value x. Generally, for m × n Hitori, where m ≥ n ≥ 6, the number of
black cells can be determined by the following formula:

b(m,n) =

{[
1
3
mn
]
, ifn is even⌈

1
3
mn
⌉
, otherwise

Since every black cell must have two white neighbors on a given line, horizontally or ver-
tically, one can repeat such a pattern at least per three lines. The upper bound for the
maximum number of black cells b(m,n) for an m×n Hitori is given by b(m,n) ≤ 1

3
mn+1.

One might observe that the found maximum for the square boards represent the Heyawake
numbers for n× n boards [5]. As mentioned in Section 2, the Heyawake puzzle considers
black and white cells, for which black cells may not be neighbors and white cells must be
connected. Note that b(m,n) can be applied to m× n sized Heyawake as well.

m · n
2 3 4 5 6 7 8 9 10 11 12 13 14

2 1
3 2 4
4 2 4 5
5 3 6 7 9
6 3 6 8 10 12
7 4 8 9 12 14 17
8 4 8 10 14 16 19 21
9 5 10 12 15 18 21 24 27
10 5 10 13 17 20 24 27 30 33
11 6 12 14 19 22 26 29 33 37 41
12 6 12 15 20 24 28 32 36 40 44 48
13 7 14 17 22 26 31 35 39 43 48 52 57
14 7 14 18 23 28 33 37 42 47 52 56 61 65

Table 16: Maximum number of black cells for m× n Hitori.

7.3.1 White squares

A solvable m × n Hitori needs to have a connected area of white cells, which makes
determining the maximum number of black cells NP-complete. Since solving a Hitori
is NP-complete, finding the maximum numbers of black cells is also NP-complete, as it
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inherits the properties of the puzzle. When exhaustively computing the maximum number
of black cells, one can ignore any partial board solution that will not surpass the so-far
found maximum. This reduces the number of possible board solutions in search for the
maximum number of black cells. Boards that will not surpass the so-far found maximum
include those with an equivalent number of black cells, meaning that there is no need
to compute these boards. An example of such equivalent boards are those containing a
2 × 2 white square. When a board contains a 2 × 2 white square, one may always move
an adjacent black cell into the 2× 2 white square. This makes it useless to compute such
boards when trying to obtain the maximum number of black cells, as they will not surpass
the so-far found maximum.

Suppose we have a solution containing a 2 × 2 white square. We assume that this so-
lution board satisfies that no black neighbors occur, as well as maintaining a continuous
path consisting of all white cells. If a 2×2 white square occurs, we can always move an or-
thogonally or diagonally adjacent black cell into this square as long as it is not maximally
enclosed by black cells. Such a white square is maximally enclosed if it is surrounded by
six black cells, see Figure 35. Figure 35 shows that there exist a solution for which we
cannot swap any adjacent black cell with a cell of the white square, as this would either
lead to two adjacent black cells or a disconnected white area.

Figure 35: A maximally enclosed 2× 2 square occurs on a Hitori solution board.

Instead of maximally enclosing the 2× 2 white square, consider a solution that contains
b(m,n)− 1 black cells. This gives us two possible structures, see Figure 36.

Figure 36: Segments of Hitori solution boards where a 2× 2 square occurs.
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Consider a graph G = (V,E) that represents the solution, where V consists of all white
cells and E are undirected edges between direct, i.e., horizontally and vertically adjacent
cells, neighbors. The boards shown in Figure 36 can then be constructed as a graph, see
Figure 37. When a 2 × 2 white square occurs, it is possible to replace one of the cells in
this given 2 × 2 white square by a black cell. Doing so, will remove the corresponding
edges. However, there are some restrictions of when to swap those cells.

(1) If a white cell has two black neighbors, it is not possible to swap the given white cell
with any black cells, as this violates that no black cell may have a black neighbor.

(2) If a white cell has three adjacent diagonals that are black, it is not possible to swap
the given white cell with any black cells, as this potentially cuts off some white cells.

. .

. .

..

.

. .

. .

.

.

Figure 37: Patterns in the graphs of segments of Hitori.

When a single 2 × 2 white square is not maximally enclosed, we will have at least two
overlapping 2 × 2 white squares. Surrounding the white squares with black cells, we can
minimize the number of ways to access the white square. When the 2 × 2 white squares
overlap with 2 cells, the maximum is 7 orthogonally or diagonally adjacent black squares.
For 2×2 white squares overlap with 1 cell, there are 8 surrounding black squares at most.

For the pattern shown on the left in Figure 37, we can ensure that a diagonally adja-
cent black cell can always be swapped with the center white cell. This cell has four white
neighbors, meaning that restriction (2) cannot occur. Since the bottom left cell is white,
we also ensure that (1) cannot occur. Therefore, we can always swap a diagonally adjacent
black cell with the center white cell.

For the pattern shown on the right, we can ensure that for the center cells (1) can-
not occur, as the center cells have two diagonally adjacent white cells. Since both center
cells have at most two diagonally adjacent black cells, as two diagonally adjacent cells are
already set white, (2) cannot occur as well. Therefore, we can always swap an adjacent
black cell with the center white cell. So, even if these situations are fully enclosed by black
cells, we can always move a black cell into a 2× 2 white square.

Therefore, if a found solution contains a 2×2 white square that is not maximally enclosed
by black cells, we can always move an adjacent black cell into the white square. If there
exists a solution with a white square that is surrounded by the maximum number of black
cells, there is no need to compute boards for which we can move an adjacent black cell
into the white square. Those instances can be pruned.
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8 Experiments

In order to determine the number of Hitori that are uniquely solvable for a given size,
we will consider the two solvers introduced in Sections 5.1 and 6.1. First, the performance
of the solvers is measured against the Menneske dataset [2]. The Hitori in the dataset
are assumed to be uniquely solvable. The classification for the dataset as well as for a
given size will focus on the class rather than the needed steps.

8.1 Classifying Menneske

Considering the Menneske dataset, both the rule set and SAT solver are able to solve the
dataset completely, with the exception of three Hitori present in the dataset that are not
uniquely solvable. Both solvers are able to solve the part of the puzzles that are uniquely
solvable. Of the 376, 211 puzzles present in the dataset, both solvers are able to solve
376, 208. The three not uniquely solvable Hitori can be found in Figures 38, 39 and 40.
Here, the puzzles have been solved until the point no definitive progress can be made, the
remaining cells are thus grey. The 8 × 8 Hitori shown in Figure 38 has three possible
solutions. The 4s and 6s are dependent on one another and act as a switching component,
resulting in two ways to solve the 4s and 6s. The 1s do not influence the connectivity of
the puzzle and making either one of the two black may result in a possible solution. The
Hitori shown in Figure 39 has three solutions. If the top 3 is white, the remaining 3 in
the same column becomes black, and due to connectivity the last remaining 3 must be
white as well. If the leftmost 3 becomes white, the remaining 3 in the same row must be
black, the top 3 can then become either black or white. As the probing rules are based on
contradictions, and no such contradiction occurs, all three solutions are considered viable.
The last unsolved puzzle has four different solutions. When the top left 1 is black, the
adjacent 1 becomes white. This, in turn, makes the bottom 1 black, and sets the two 2s
as well. When the top left 1 is white and the adjacent 1 thus black, the bottom 1 may be
black or white. If made black, the two 2s are determined as well. If made white, both 2s
may be made white.
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Figure 38: An 8× 8 Hitori from the Menneske data set (22066).
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Figure 39: An 9× 9 Hitori from the Menneske data set (36545).
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Figure 40: An 9× 9 Hitori from the Menneske data set (169599).

Tables 17 and 18 show the classification of the Menneske dataset using both the rule-based
and SAT-based solvers. The 2-SAT approach, which focuses on individual lines, similar to
the rules in category B of the rule-based approach. When classifying Hitori one can treat
them both as category B. The dataset does not contain any Latin squares, resulting in 0
puzzles classified as a category A puzzle. Overall, the solvers perform quite similarly. They
are able to solve the same number of puzzles. However, there are some slight differences
in classification. When using SAT, one might obtain a cell’s color, i.e., black, white or
grey, earlier on in the solving process. The rule-based solver will capture these in a later
solving stage. Note that the rules of enclosing and alternating permutations will not help
to capture these differences as |AB| ≥ 3. Section 5.3 revealed no obvious patterns that
could lead to a (partial) solution of a given line and showed that the number of sequences
with such a solution grows almost exponentially. This makes it hard to create a rule set
that is able to fully enclose the difference between the two solvers.
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Category 5× 5 6× 6 8× 8 9× 9 12× 12 15× 15 17× 17 20× 20
A 0 0 0 0 0 0 0 0 0
B 10,375 8,477 8,091 50,423 3,419 148 46 0 80,979
C 384 374 244 840 22 0 0 0 1,864
D 3,530 1,841 856 3,902 145 4 1 0 10,279
E 187 120 41 200 6 0 0 0 554
F 16,736 18,629 26,281 184,385 27,412 3,568 1,785 5 278,801
G 398 461 458 2,196 127 87 4 0 3,731

31,610 29,902 35,971 241,946 31,131 3,807 1,836 5 376,208

Table 17: The classification of the Menneske dataset using the rule-based solver.

Category 5× 5 6× 6 8× 8 9× 9 12× 12 15× 15 17× 17 20× 20
A 0 0 0 0 0 0 0 0 0
B 10,437 8,563 8,210 50,814 3,425 148 46 0 81,643
C 335 304 140 484 19 0 0 0 1,282
D 3,519 1,831 849 3,891 145 4 1 0 10,240
E 187 120 41 200 6 0 0 0 554
F 16,734 18,623 26,290 184,474 27,417 3,630 1,785 5 278,958
G 398 461 441 2,083 119 25 4 0 3,531

31,610 29,902 35,971 241,946 31,131 3,807 1,836 5 376,208

Table 18: The classification of the Menneske dataset using the SAT-based solver.

8.2 Classifying Hitori

After generating and pruning the a(c, ℓ) sequences for 3 × 3, 4 × 4, one can apply the
two solvers to obtain the uniquely solvable Hitori. Considering the classification made
in Section 5, one can classify these Hitori as seen in Table 19.

For 3 × 3 Hitori, two are classified as trivial. As mentioned in Section 5.1, those clas-
sified as trivial will only convey Latin squares. There are, in total, twelve 3 × 3 Latin
squares. However, since a(c, ℓ) only considers sequences that start with a 1, eight of the
Latin squares can be ignored. Of the four Latin squares that start with a 1, two sequences
are isomorphic towards the remaining two, meaning that only two sequences should be
classified as trivial. Another observation that can be made regarding 3 × 3, is that none
of the puzzles are classified as difficulty C or E. Class C consists of the rules DP and
SbP. For SbP an instance of 1 1 1 can occur. However, this is already captured by using a
lower-class rule; Sim-U3. The rule DP makes two cells white. Recall Figure 18, where an
instance of 1 3 1 captures one of the white cells using the Simple rule; Sim-M3. Due to
connectivity, the 2 that is part of the switching component must be white. The remaining
2 will then be black, making the adjacent 1 white. The remaining 1 will then be black,
making the second to be made white cell actually white. The rule of class E considers at
least 4 different lines, which cannot occur on 3× 3.

For 3 × 3, 4 × 4 and 4 × 3, the majority of the puzzles lie within the Hard category,
which considers the connectivity rules. One of the difficulties faced by Tran [16] was that
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of connectivity on a puzzle-level. The connectivity rules capture the majority of the Hi-
tori, which implies one needs an approach to capture the connectivity of the puzzle.
Other classes that have a significant number of Hitori are class B and D. While one
might expect simple Hitori to easily be solved by using simple rules, those solved by
class D are those that use simply considering corner cases are quite significant. Of the
pruned sequences, there is only a minor part that is in fact uniquely solvable. Of the
equivalent classes, only 12.3% of the 3×3 Hitori are solvable, and only 1.6% of the 4×4
Hitori. For the 4× 3 Hitori, where a set of four elements is used, a total of 8.4% of the
equivalent classes is uniquely solvable.

Difficulty 3× 3 (3) 4× 4 (4) 4× 3 (4)
A (trivial) 2 24 24
B (super easy) 92 637, 927 13, 989
C (pretty easy) 0 22, 222 236
D (easy) 88 550, 272 10, 970
E (medium) 0 63, 383 1, 024
F (hard) 179 1, 456, 155 29, 988
G (very hard) 43 114, 148 2, 711
Solvable 404 2, 844, 131 58, 942
Total 3, 281 178, 973, 355 700, 075

Table 19: The classification of all equivalent classes of m× n Hitori for both rule-based
and SAT-based solver.

For 5× 3 Hitori, where one may consider a set of five elements, there is a difference in
performance for both solvers, see Table 20. Although there are no significant differences,
the SAT-based solver is able to classify more puzzles earlier on in the classification process.
Both solvers consider 5.4% of the equivalent classes to be solvable. Consider the equivalent
classes of 3×5 Hitori, where the set of characters consists of four elements. Again, there
is a slight difference in classification, although there is no significant difference. Both
solvers yield only 1.3% of the equivalent classes are uniquely solvable.

Rules SAT Rules SAT
Difficulty 5× 3 (5) 5× 3 (5) 3× 5 (4) 3× 5 (4)
A (trivial) 552 552 0 0
B (super easy) 2, 885, 157 2, 893, 161 114, 985 115, 213
C (pretty easy) 91, 034 88, 808 4, 098 4, 006
D (easy) 1, 612, 287 1, 605, 431 63, 105 62, 873
E (medium) 83, 721 83, 395 4, 037 4, 038
F (hard) 8, 271, 443 8, 278, 295 361, 484 361, 502
G (very hard) 954, 665 949, 217 48, 642 48, 719
Solvable 13, 898, 859 13, 898, 859 596, 351 596, 351
Total 255, 514, 355 255, 514, 355 44, 747, 435 44, 747, 435

Table 20: The classification of all equivalent classes of m × n Hitori for the rule-based
and SAT-based solver.
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9 Conclusion and Future Research

The Japanese puzzle Hitori is a one-player game that considers an m × n grid with a
set of N characters. One can shade and unshade cells, i.e., make cells black and white,
respectively. The goal is to eliminate all duplicate characters by making them black in
such a way that no black cells are horizontally or vertically adjacent and all white cells
remain reachable from every other white cell.

Solving Hitori can be done by using a set of rules. Rules based on the basics of the
puzzle are considered trivial. Single-line rules are part of the simple rules, while those
that consider multiple lines are part of the advanced rules. Rules based on the connectiv-
ity of the puzzle fall under the connectivity rules. When a Hitori cannot fully be solved
using rules from these categories, one can use probing to try and solve the puzzle entirely.

The two solvers, one fully rule-based and one 2-SAT-based, showed slight differences
in classifying the Menneske dataset, but classified the generated Hitori of size 3 × 3,
4× 4 and 4× 3 identically. Other-sized boards, such as 5× 3 with a set of five characters,
were classified similarly. One can use pruning to eliminate unsolvable equivalent classes of
Hitori prematurely. The numerous solvable Hitori have a varying number of black cells,
for which we have seen an upper and lower bound. Different from the 2-SAT-based solver,
using a distance matrix as described in Section 6.2 allows capturing the connectivity of
the puzzle using CNF.

For future research, the provided rule-based solver showcases a gap in performance com-
pared to the SAT-based solver. In an effort to close this gap, we considered the rules
enclosing permutations and alternating permutations. One can examine whether using a
suffix tree for these rules improves the rule-based solver on larger sized boards. Consid-
ering single lines of a Hitori containing a sequence A and a permutation A′, an effort
was made to derive the number of permutations that yield a specific number of solutions.
While some observations were made about the number and type of permutations with
a given number of solutions, no efficient manner of calculating the number of solutions
could be provided. Further research could explore a more efficient approach. As the SAT-
based solver considered satisfiability on individual lines of Hitori, one could explore a
SAT-based approach that captures all lines and the connectivity constraint of a Hitori.
The provided approach may be examined in an effort to explore its performance. To re-
duce the selection of potential Hitori, one could prune even more patterns. Additionally,
different-shaped and other-sized boards could be evaluated and solved as well.
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