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Chapter 1 Abstract

A new model called BLIP-2 has emerged in the multimodal field. This image-to-language
model is designed for visual question answering, image captioning, and image-text retrieval.
In this thesis, we explore an innovative approach to using the BLIP-2 model for video
captioning tasks on the SoccerNet dataset. Several strategies are employed to adapt video
data for use with an image-language model. Specifically, this experiment uses average
pooling to fuse video features over time before integrating them into the BLIP-2 model.
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Chapter 2 Introduction

As the development and commercialization of sports become increasingly successful, more
and more people are enjoying the excitement that sports bring. Football, the world’s most
popular sport, is loved by people all over the globe. Meanwhile, the development of the
gaming industry has given rise to many sports video games, such as basketball, FIFA for
soccer, ML category for baseball, and many more.

There are numerous benefits to incorporating captions into sports broadcasts. For
instance, captions enhance accessibility for diverse audiences: automated captions ensure
that those who are deaf or hard of hearing can follow the game in real time. Addition-
ally, captions can be automatically translated, allowing viewers from different linguistic
backgrounds to enjoy the content.

Furthermore, captions enhance viewer engagement. Automated captions of live
commentary can highlight key moments, helping viewers engage more deeply with the
game and assist with video retrieval. Finally, in games like FIFA and NBA 2K, real-time
captions of commentary enhance the realism of the experience, making gameplay more
immersive.

To address this issue, we will employ video captioning technology. Video captioning
refers to the automatic generation of descriptive text that aligns with the content of a
video, typically in real time. This process involves creating sentences or captions that
describe what is happening in the video, such as actions, events, or conversations. Video
captioning for sports commentary uses advanced multimodal models to analyze both visual
and textual elements of sports videos, generating descriptive captions in real time. By
processing video feeds and leveraging natural language processing (NLP), the system can
produce captions that explain vital events—such as goals, fouls, or player actions—as they
happen. Pre-trained on large soccer video datasets, these models recognize patterns and
sport-specific terminology, ensuring accurate and contextually relevant captions. Whether
for soccer, basketball, or other sports, video captioning ensures that fast-paced sports
content is accessible and understandable to a broad audience.

Although many existing video captioning models are pretty effective, no specific
model is tailored to soccer video data. Ultimately, I chose to use BLIP-2 for two main
reasons. First, traditional video captioning models typically require a video encoder
to extract video features. Extracting features from soccer videos, usually 90 minutes
long, demands significant computational resources beyond my capacity. BLIP-2, on the
other hand, is an image captioning model. An image encoder requires significantly fewer
computational resources than a video encoder, and a video can essentially be viewed as an
ordered sequence of images. The second reason is that teams using BLIP (the predecessor
of BLIP-2) on similar datasets have achieved excellent results, which led me to select
BLIP-2 for this video captioning task.

Therefore, in this paper, I raise several key questions:

1. Can an image-to-caption model like BLIP-2 handle video captioning tasks?

2. How significant is the difference between video input (multiple frames with temporal
information) and image input (a single frame)?
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3. What are the most critical factors influencing the results?

The structure of this paper is as follows: I first introduce related work relevant to
this task. Then, in the preliminary section, I explain the technical aspects of the various
modules used in the model. Next, I describe the details of the model, followed by an
introduction to the dataset and the metrics used to evaluate the experimental results. From
an implementation perspective, I also outline the workflow of this experiment and its
innovative points. The experiment process and results are detailed in the experiments
section. Finally, I discuss the findings, propose future directions for research, and conclude
the thesis.
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Chapter 3 Related Work

3.1 Video Captioning

Image and video captioning is the task of generating textual descriptions of visual con-
tent. Early video captioning schemes employed template-based approaches, extracting
semantic concepts like subject, object, and verb using visual classifiers and generating
captions through a language model applied to predefined sentence templates. Rohrbach
et al.Rohrbach et al. (2013) introduced a Conditional Random Field (CRF) to learn rela-
tionships between different video components, generating rich semantic representations.
However, template-based methods are inflexible, struggle with large vocabularies, and
do not generalize well to unseen dataKhurana and Deshpande (2021). Additionally, they
cannot learn concepts end-to-end from low-level image features.

Deep learning-based VC often uses encoder-decoder frameworks Gao et al. (2020).
In these models, the encoder extracts visual features via methods such as 2D-CNNs
Venugopalan et al. (2014), which can be further processed using techniques like Mean
Pooling (MP), Temporal Encoding (TE), or Semantic Attribute Learning (SEM) Aafaq et al.
(2021). Typically, CNNs are used in encoders for video, while RNNs handle language
generation in the decoding phase Olivastri et al. (2019). Modern methods often train
encoder and decoder parts separately, improving performance.

Using Three Dimensional Convolutional Neural Networks (3D-CNN) in encoder-
decoder frameworks captures spatio-temporal information more effectively than applying
2D-CNNs to individual frames. Recurrent Neural Networks (RNN) or Dual-Stream
RNNs (DS-RNN) can be used in encoding. Language decoders utilize pre-trained word
embeddings like Word2Vec, GloVe, and fastText to represent semantically similar words
with similar vectors, and RNNs generate the output sequence due to the sequential nature
of languageGoyal et al. (2018).

After the widespread application of Transformer, more new models have emerged.
CLIP4CaptionTang et al. (2021) adopt a Transformer structured decoder network to
effectively learn the long-range visual and language dependency, unlike models using
LSTM or GRU as the sentence decoder.

Hierarchical Representation Network with Auxiliary Tasks (HRNAT)Gao et al. (2022)
leverages hierarchical video representations and auxiliary tasks to improve performance
in video captioning and question answering. The hierarchical representation of videos is
guided by the three-level representation of languages and auxiliary tasks to generate syntax
consistent with the ground-truth description.

The work addresses the limitations of large-scale video-text datasets by leveraging
advancements in image captioning to pre-train video models without parallel video-text
data. Using an OPT language model and a TimeSformer visual backbone, several video
captioning models are pre-trained and fine-tuned on video captioning datasets. This
approach Lialin et al. (2023) overcomes issues with existing mining techniques, such as
low-quality captions and data scarcity, showing improved performance in video captioning.

To reduce the semantic gap between vision and language, Shi et al. (2023) proposes
a video-text alignment module with a retrieval unit and an alignment unit for video
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captioning. The retrieval unit retrieves sentences as semantic anchors between visual
scenes and language descriptions. In contrast, the alignment unit aligns the video with the
retrieved sentences to learn video-text-aligned representations.

3.2 End-to-end Vision-Language Pre-training

Vision-language pre-training (VLP) is an area of research focused on developing models
that can understand and generate visual and textual information. These models are pre-
trained on large datasets containing both images and text, such as image-caption pairs,
to learn joint representations of visual and linguistic data. Vision-language pre-training
(VLP) research has experienced rapid advancements in recent years.

CLIPRadford et al. (2021) is dual-encoder architecture because it uses two separate
encoders—one for images and one for text—to generate embeddings in a shared repre-
sentation space. LXMERTTan and Bansal (2019) and ALBEFLi et al. (2021) employ a
multi-stage process to fuse visual and textual information at the same time effectively.
VL-T5Cho et al. (2021), PaLIChen et al. (2022) and SimVLMWang et al. (2021c) are
called encoder-decoder architecture, which consists of two distinct components: an en-
coder and a decoder. The encoder processes the input data and converts it into a latent
representation, while the decoder takes this latent representation and generates the output.
While BLIPLi et al. (2022) and BeiTWang et al. (2022) as unified transformer architecture
integrate vision and language processing within a single transformer framework, treating
both modalities in a unified manner.

3.3 Modular Vision-Language Pre-training

Modular Vision-Language Pre-training represents a flexible, efficient, and powerful ap-
proach to building vision-language models. Composing the task into specialized modules
and leveraging pre-trained components addresses the complexities of multimodal learning
while optimizing computational resources and improving performance across various tasks.
Some models like UNITERChen et al. (2019), OscarLi et al. (2020) and VinVLZhang
et al. (2021) freeze the image encoder. Some methods freeze the language model to use the
knowledge from LLMs for vision-to-language generation tasks, like MAPLMañas et al.
(2023) and Img2LLMGuo et al. (2022).
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Chapter 4 Preliminaries

4.1 Overview

In this thesis, the primary model I am using is BLIP-2. However, briefly introducing all the
techniques and models is necessary in a multimodal architecture. This helps us understand
the development of the groundbreaking Transformer family and the alignment of different
modalities.

From the figure 4.1, I start from attention because attention is the primary and
crucial mechanism in the Transformer. Transformer has revolutionized the NLP field by
ingeniously applying non-sequential models to handle sequence data. It achieves parallel
sequential data processing through self-attention mechanisms, significantly enhancing
computational efficiency and performance.

Based on Transformer, two LLM models have experienced rapid development. Pre-
training of Deep Bidirectional Transformers(BERT) is utilized for pretraining deep
bidirectional representations, while Open Pre-trained Transformer(OPT) models are
used to generate text. Query-Transformer(Q-Former) is initialized with the pre-trained
weights of BERT to accelerate the training of downstream tasks and improve performance.

Vision Transformer(ViT) has successfully transferred the Transformer from the NLP
field to the CV field, significantly influencing the workflow of computer vision tasks.

Align before Fuse(ALBEF) is a multimodal that integrates vision and language
models by self-supervised and contrastive learning. And Bootstrapping Language-Image
Pre-training(BLIP) was proposed to solve the problem that the model cannot handle
the generation and retrieval tasks simultaneously by introducing a multimodal mixture
of encoder and decoder. Due to the end-to-end training of large-scale models, the cost
of training becomes prohibitive. Bootstrapping Language-Image Pre-training with
Frozen Image Encoders and Large Language Models(BLIP-2) is improved from BLIP
by freezing the training-costly ViT and LLM model and introducing the Q-Former.

4.2 Attention

In deep learning, RNN (Recurrent Neural Network) first handles sequential data. Unlike
traditional isolated feedforward neural networks, it keeps a memory of previous input. This

Figure 4.1 From attention to BLIP-2
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mechanism allows RNNs to capture correlation and dependencies in the sequential data,
making them well-suited for several tasks.

However, LSTM (Long Short-Term Memory) is proposed due to the limitation of
capturing long-term patterns. It introduced the gate mechanisms, which include the input
modulation gate, input gate, forget gate, and output gate. This enables LSTM to remember
or forget the information by controlling the status of the gate. Therefore, LSTM performs
better on tasks involving long sequences than RNN does.

Attention Vaswani et al. (2017) is invented to focus on the specific part of the sequence
rather than the entire sequence, which improves the efficiency by dynamic selecting.
Besides, attention enables models to process the input in parallel, while the parallel
computation capability limits LSTM because its output highly depends on the input.
From the perspective of interpretability, the attention mechanism outperforms LSTM
significantly.

Attention is used to inform the model which specific part should be focused on, and it
is a crucial concept of Transformer. Three trainable vectors will be introduced here; they
query Query matrix(WQ), Key matrix(WK), and Value matrix(W V ).

From the word perspective, there will be:

• the word itself n1

• the embedding x1 (obtained by tokenization)

• the query q1 (obtained by multiplying x1 by the WQ )

• the key k1 (obtained by multiplying x1 by the WK )

• the value v1 (obtained by multiplying x1 by the W V )

Similarly, the other words in the sentence have their own x, q, k, and v.
Introducing so many vectors here aims to calculate the scores of different inputs and

find the semantic correlation among the sentences.

• the attention score α1,n is calculated firstly by the dot product of the current q1 and
kn

• the score will be passed to a softmax layer to get the attention score

• multiply each value by the attention score and sum up to obtain the output of the
self-attention layer of the position

From the matrix perspective, we can compute the attention function on a set of
queries simultaneously. Attention could be calculated by obtaining Q,K, and V .

Q = XWQ (4.1)

K = XWK (4.2)

V = XWV (4.3)

where X is the input matrix.
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Figure 4.2 (Left)Scaled Dot-Product Attention(Right)Multi-Head Attention Vaswani et al.
(2017)

And then, Attention A can be obtained by

A = softmax(QK⊤) (4.4)

A scaling operation is added by adding the division of
√
dk to ensure numerical

stability and uniformity in attention computations.

A = softmax
(
QK⊤
√
dk

)
(4.5)

Finally, we have to multiply A with V to get the output O

O = Attention(Q,K, V ) = softmax
(
QK⊤
√
dk

)
V (4.6)

This is how self-attention works, as shown in figure 4.2 left, considering the impor-
tance or relevance of the input to the context and returning an output of the same size as
the input, which could be passed to the next layer.

However, in the paper, multi-head attention is applied, as shown in 4.2 right. With
it, there is one Q/K/V matrix and multiple sets. They aim to attend to information from
different representation subspaces at other positions.

4.3 Transformer

The Transformer model was introduced by Vaswani in 2017Vaswani et al. (2017), char-
acterized by its parallelization capabilities, encoder-decoder architecture, and variants of
attention mechanisms, making it not only highly versatile for natural language processing
tasks but also can be effectively adapted and transferred to other modalities.

The Transformer model consists of the encoding and decoding components and their
connection.

The encoding component is composed of a stack of encoders; each encoder could
be broken down into a self-attention layer and a feed-forward layer(an add&norm layer
followed by them). The decoding component has a similar structure, except the decoder
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Figure 4.3 The Transformer - model architectureVaswani et al. (2017)

needs a bridge to pass the information to the encoder.
The Transformer groundbreaking architecture tackles NLP tasks by introducing self-

attention mechanisms. This idea has been validated and proven effective in other modalities
as well.

4.4 Bidirectional Encoder Representations Transformer(BERT)

BERT (Bidirectional Encoder Representations from Transformers) considers context from
both directions, which makes it fundamentally different from traditional unidirectional
language models. It is based on the Transformer architecture, explicitly utilizing the
encoder part, which employs self-attention mechanisms to capture relationships between
all words in a sentence, regardless of distance. This bidirectional nature allows BERT to
generate deep, context-aware representations of words, significantly enhancing its ability
to understand and process natural language.

BERT has gained significant popularity in pre-training for natural language processing.
By pre-training on large corpora like Wikipedia and BookCorpus, BERT learns general
language representations that can be fine-tuned for various downstream tasks such as
question answering, sentiment analysis, and named entity recognition with minimal addi-
tional training. For instance, in the BLIP-2 model, the Q-Former component is initialized
from BERT, leveraging its robust pre-trained language representations to handle specific
tasks effectively. This approach exemplifies how BERT’s pre-trained models are a strong
foundation for specialized applications, demonstrating its versatility and impact in NLP.

4.5 Vision Transformer (ViT)

One of the most significant contributions of Transformers is their revolutionary impact on
the computer vision (CV) field, which has long been dominated by Convolutional Neural
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Figure 4.4 The ViT - model architectureDosovitskiy et al. (2020)

Networks (CNNs). Traditionally, CNNs were the go-to architecture for image-processing
tasks due to their ability to capture spatial hierarchies through convolutional layers. How-
ever, Transformers, initially designed for natural language processing, have also performed
remarkably in CV tasks. By leveraging self-attention mechanisms, Transformers can be
applied directly to images without needing CNNs.

Due to the sheer number of pixels involved, it’s impractical to use individual pixels as
the last unit to adapt an image for input into a Tran that will be produced for the model.
For instance, an RGB image of size 224x224 contains 50,176 pixels (224 * 224), not
accounting for the three color channels. This number far exceeds the typical hidden layer
size 768 in models like ViT-Base, making direct pixel input infeasible.

To address this, images are divided into smaller patches, and each patch is linearly
embedded to form a sequence suitable for the Transformer. For example, if the patch size
is 16x16, the image is divided into 196 patches (224 * 224 / 16 * 16). Each RGB patch of
size 16x16x3 is then flattened into a 768-dimensional vector (16 * 16 * 3), resulting in a
feature representation of the image as a sequence of 196 embeddings, each of size 768.

These patch embeddings are then fed into the Transformer model, preceded by a linear
projection layer. Additionally, position embeddings are added to these patch embeddings,
akin to the position embeddings used in natural language Transformers, to retain spatial
information. Positional information is crucial for images, just as text, to maintain the
relative positions of patches.

Similar to BERT, a learnable classification token [CLS] is introduced for classification
tasks. This [CLS] token is appended to the beginning of the patch sequence and learns
to aggregate information from all patches through attention mechanisms. The output
corresponding to the [CLS] token is then used for final classification, capturing the essential
information from the entire image.

4.6 Contrastive learning and CLIP

Contrastive learning is an unsupervised learning technique aimed at learning compelling
features from data without needing labeled datasets. The core idea is to pull similar
data points closer in the embedding space while pushing dissimilar ones apart. This is
achieved through a loss function that penalizes the model when similar items are far apart,
or dissimilar items are close together. Contrastive learning has proven useful in various
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fields, such as computer vision, natural language processing, and multimodal learning,
as it captures the underlying structure of the data for tasks like clustering, retrieval, and
classification.

A notable application of contrastive learning is the Contrastive Language-Image
Pre-training (CLIP)Radford et al. (2021) model developed by OpenAI. CLIP leverages
text and image data to learn a unified multimodal embedding space, effectively aligning
visual and textual information. OpenAI collected 400 million image-text pairs from the
internet to pre-train CLIP. The model uses a visual encoder to process images and a text
encoder to process text, transforming each input into embeddings in a shared multimodal
space. The training objective maximizes the similarity between matching image-text pairs
and minimizes it for non-matching pairs using a contrastive loss function.

4.7 Align Before Fuse (ALBEF)

ALBEF (Align Before Fuse) is the foundational version of BLIP-2, and understanding
its concepts is essential before delving into BLIP-2. In my learning field, the goal is
to align and jointly model visual features and word tokens. Before ALBEF, models
typically aligned visual and textual features only after fusion, which made it difficult for
the multimodal encoder to learn image-text interactions due to their initial misalignment
effectively. ALBEF addresses this issue by proposing an architecture that aligns features
before fusion, significantly improving the subsequent fusion process.

The ALBEF model comprises three encoders: a 12-layer ViT-Base image encoder, a
6-layer BERT-Base text encoder, and a 6-layer BERT-Base multimodal encoder. When
an image and text are input into their respective encoders, their embeddings are obtained.
The [CLS] tokens from both embeddings are extracted to calculate Image-Text Contrastive
(ITC) loss. The text embeddings are then fed into the multimodal encoder, fusing with the
image embeddings through cross-attention mechanisms at each layer of the multimodal
encoder. This setup allows for calculating Image-Text Matching (ITM) and Masked
Language Modeling (MLM) losses, further enhancing the model’s ability to learn from
multimodal data.

ALBEF’s innovative approach of aligning features before fusion enables more effec-
tive learning of image-text interactions, setting a solid foundation for subsequent models
like BLIP-2. By pre-aligning visual and textual features, ALBEF enhances the capability
of multimodal encoders to model and understand complex relationships between images
and text jointly.

4.8 Bootstrap Language-Image Pre-training(BLIP)

Based on ALBEF, a new model BLIPLi et al. (2022) is proposed. BLIP improves on
the concepts introduced by ALBEF (Align Before Fuse) by refining the alignment of
visual and textual features before fusing them, ensuring more coherent and contextually
relevant embeddings. Its scalable architecture and versatility make it suitable for various
applications, from image captioning to visual question answering.

Unlike ALBEF, BLIP uses a transformer encoder and a decoder, which is called a
multimodal mixture of encoder and decoder (MED). A MED can operate as an unimodal
encoder or an image-grounded text decoder. BLIP’s architecture includes more cross-
attention mechanisms and other improvements that enhance the alignment and fusion
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Figure 4.5 Illustration of ALBEFLi et al. (2021)

Figure 4.6 Illustration of BLIPLi et al. (2022)

process. The model is still trained with three objectives similar to ALBEF: image-text
contrastive, image-text match, and image-text conditioned language modeling.

4.9 Pretraining & finetuning

Pre-training serves as a foundational step, particularly in the field of natural language
processing (NLP). It involves training a model on a large scale of data, such as Wikipedia,
Instagram, and websites, to learn general language patterns and structures. This initial
phase allows the model to develop a rich and deep understanding of text features, semantic
relationships, and contextual representation in the data.

Once pre-training is complete, the model can be fine-tuned on specific downstream
tasks, such as text classification, named entity recognition, or machine translation. Fine-
tuning involves adjusting the model’s parameters and learning objectives to optimize
performance for the target task while retaining the knowledge acquired during pre-training.

Pre-training and fine-tuning extend the model’s availability by providing more possi-
bilities for transfer learning. Models like BERT (Bidirectional Encoder Representations
from Transformers) Devlin et al. (2019), Text-to-Text Transfer Transformer(T5) Raffel
et al. (2019) and GPT(Generative Pre-trained Transformer) Brown et al. (2020) have
demonstrated massive success across a wide range of NLP tasks. The effectiveness of
pre-training in capturing language representation and the flexibility of fine-tuning for
specific downstream tasks make them applicable to all kinds of multimodal tasks.
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Figure 4.7 Overview of BLIP-2’s frameworkLi et al. (2023)

4.10 Bootstrapping Language-Image Pre-training with Frozen Image
Encoders and Large Language Models(BLIP-2)

4.10.1 Overview

The model in this thesis is Bootstrapping Language-Image Pre-training with Frozen Image
Encoders and Large Language Models (BLIP-2)Li et al. (2023), which is improved from
ALBEF and BLIP.

BLIP-2 is a generic and efficient vision-language pre-training (VLP) strategy because
of the frozen image encoders and large language models. The pre-training is divided
into two stages. The first stage is Vision-and-language representation learning, by
introducing a Qurey Transformer(Q-former) as a bridge to align the image embeddings and
the corresponding text embeddings. A frozen image encoder obtains the image embeddings,
while the text transformer obtains the text embeddings. The queries interact with each other
through self-attention layers and interact with frozen image features through cross-attention
layers. The second stage is Vision-to-Language Generative Learning, which bootstraps
from frozen large language models.

As for the reasons for choosing this model, BLIP-2 achieves state-of-the-art per-
formance on various vision-language tasks despite having significantly fewer trainable
parameters than existing methods. Besides, the unimodal pre-trained models remain frozen
during the pre-training, which reduces computation costs significantly and meets my
hardware requirement.

4.10.2 Vision-Language Representation Learning

4.10.2.1 Image Encoder

The aim of an image encoder here is to get the visual embeddings of the input image.
The image encoder in the experiment is ViT-g/14 from EVA-CLIP. It is a variant of

the Vision Transformer (ViT) used in the EVA-CLIP (Efficient Vision-Alignment)Fang
et al. (2023) model, which is designed for visual representation learning. g represents
’giant,’ which implies the model size is larger than the standard models. 14 refers to the
patch size. CLIP is a model that learns to associate images and text by training on a large
dataset of image-text pairs through contrastive learning. EVA-CLIP aims to make this
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Figure 4.8 BLIP-2’s first-stage vision-language representation learning Li et al. (2023)

process more efficient and effective, leveraging the Vision Transformer architecture.
In the model, the last layer of the ViT is removed to get slightly better performance.

4.10.2.2 Q-Former

Q-Former is essentially a trainable module consisting of vectors. It bridges the gap between
the image encoder and the LLM. From figure 4.8, two sub-transformer blocks share the
same self-attention layers. The left is an image transformer consisting of self-attention,
cross-attention, and a feed-forward block, which interacts with the frozen image encoder.
The right one is the text transformer, which consists of a self-attention and a feed-forward
layer, which works as the text encoder and decoder.

We initialize learned queries as the input to the image transformer, and the queries
interact with each other through self-attention layers and with frozen image features
through cross-attention layers. At the same time, these queries could interact with the text
content via the self-attention layers.

From the implementation perspective, since the query and text share a self-attention
layer in the transformer, we first concatenate the query and text into a long sequence
[query, text] and input it into the self-attention layer. In this layer, we need to control the
interaction of attention based on different tasks, which I will detail below. After passing
through the self-attention layer, the query goes through a cross-attention layer that interacts
with the image embeddings. A feed-forward layer then processes the query. The text, on
the other hand, passes through its feed-forward layer. After one transformer layer, we still
obtain an updated [query, text], which can be fed into the next transformer block.

The Q-former is initialized with the pre-trained weights of BERTbase, one of the most
popular transformer applications, but with the cross-attention layers randomly initialized
because there are no precedents working on image embeddings and text together by BERT.

In the experiment, 32 queries with a dimension of 768 are used. The output size of
queries is (32 × 768) after the transformer blocks, which is significantly smaller than the
size of frozen image features (e.g. 257 × 1024 for ViT-L/14, 257 × 768 for ViT-g/14).
Therefore, this design helps the model extract the most relevant relation between the visual
information and the text content.
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Figure 4.9 Self-attention masking strategyLi et al. (2023)

4.10.2.3 Attention Masking Strategy

As we mentioned before, BLIP-2 is improved from BLIP. Inspired by BLIP, three pre-
training objectives are used to train the Q-Former for better representation. There are
three objectives: Image-Text Contrastive Learning (ITC), Image-grounded Text Generation
(ITG), and Image-Text Matching (ITM). Different objects must employ different attention
masking strategies to control the interaction between query and text in the self-attention
layer.

The final loss=loss_itc + loss_itm + loss_lm.

4.10.2.4 Image-Text Contrastive Learning (ITC)

ITCLi et al. (2022); Radford et al. (2021); Yao et al. (2021) learns to align the image and
text representations as much as possible by contrasting the image-text similarity of the
cheerful pair and negative pairs. We define the output query representation Z from the
image transformer, and t is the output embedding of [CLS] token of the text embeddings.
Since Q-Former is based on BERT, the [CLS] token represents the input text.

Unlike BLIP in BLIP, after the visual and text encoder, the ITC could be computed
by two [CLS] tokens. However, in BLIP-2, Z has 32 queries; we need to calculate the
pairwise similarity between each query and t and select the highest one as the image-text
similarity.

Since we are pursuing contrastive learning, we aim to prevent interactions between
images and text before computing the loss. Returning to the earlier issue, potential
information leakage can occur at the self-attention layer. Therefore, we need to modify the
self-attention mask. For instance, as shown in the 4.9 (Right), queries should only interact
with queries, and text should only interact with text. The interaction between query and
text is masked.

The ITC loss computes similarities between image and text features and calculates
a contrastive loss to train the multimodal model. It gathers features across GPUs using
concat_all_gather, computes image-to-text and text-to-image similarities via matrix
multiplication and aggregation with torch.max to obtain the highest similarity value for
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each pair and prepare target labels based on GPU rank and batch size. Finally, it calculates
the contrastive loss using cross-entropy for general training or a custom loss for COCO
retrieval fine-tuning, encouraging the model to align matching image-text pairs closely and
separate non-matching pairs.

4.10.2.5 Image-grounded Text Generation (ITG)

ITGLi et al. (2022); Wang et al. (2022); Yu et al. (2022) aims to train the Q-Former to
generate texts. The queries can attend to each other exclusively, while the text tokens can
attend to all questions and their preceding text tokens. From the 4.9 (Middle), we can see
the current text and query can’t interact with the future text, so there is no mask in queries.

The LM loss is calculated by first setting up the decoder input IDs and labels, with
padding tokens replaced by -100 to exclude them from the loss computation. It then
constructs the attention mask by combining query and text tokens’ attention masks. The
prepared inputs, including decoder_input_ids, the complete attention_mask, and labels,
are passed to the Qformer model to generate the output. Finally, the language modeling
loss is extracted from the model’s output. This process enables the model to generate text
and optimize based on the provided labels while integrating image features.

4.10.2.6 Image-Text Matching (ITM)

ITMLi et al. (2022); Wang et al. (2021b) is a binary classification task to predict whether
an image-text pair is positive (matched) or negative (unmatched). In BLIP, the ITM could
be computed by image [CLS] and text [encode] tokens. The 32 queries must go through a
projection layer and get logits. Logits are then used to calculate ITM by cross-entropy. In
this phase, the interaction between query and text is needed; we want the model to learn
how to classify. No masked part is visible from the 4.9 (Left).

Calculating ITM loss begins by gathering input IDs and attention masks for text
tokens and image embeddings across all GPUs. Then, it masks similarities for matching
pairs by setting their similarity scores to a meager value, ensuring that self-matching within
the same batch is avoided. Next, it computes weights for text-to-image and image-to-text
similarities using softmax. The code selects negative samples for each text and image
using weighted sampling, stacking them into tensors. It then constructs new input tensors,
combining positive and negative text and image embedding samples. Finally, it uses self.
Qformer.bert computes the output for image-text matching extra, ts the final hidden state,
passes it through itm_head to get matching scores, and calculates the ITM loss using
cross-entropy. This approach enhances the model’s ability to distinguish between matching
and non-matching image-text pairs.

4.10.3 Vision-Language Generative Learning

From figure 4.10, we can see the top figure and the bottom one have quite similar ar-
chitecture. The learned queries go through the Q-Former, and a fully connected layer is
used to get the projected queries. The only difference is that if we use a decoder-based
LLM, the projected queries are directly prepended to the LLM decoder. Otherwise, they
must first go through an LLM encoder if we use an encoder-decoder-based LLM. The
experiment only focuses on a decoder-based LLM named the OPT model. Open Pretrained
Transformers (OPT) is based on the powerful GPT-3 model but is designed to address the
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Figure 4.10 BLIP-2’s second-stage vision-to-language generative pre-training. Bootstrap-
ping a decoder-based LLM (e.g. OPT)(Top). Bootstrapping an encoder-decoder-based
LLM (e.g. FlanT5) (Bottom)

high computational cost associated with GPT-3.
In the second stage, the LLM is pertained by the language modeling loss, where it

needs to generate the caption based on the queries from the Q-Former. Details will be
discussed in the next chapter.
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Chapter 5 Implementation

5.1 Workflow

Since this experiment is based on the BLIP-2 model framework, an image-to-caption
framework, the model’s input should be an image. After being encoded by the visual
encoder, visual features are obtained. In the first stage, these visual features are aligned
with text features, and the unique queries in BLIP-2 learn how to align these two modalities.
Then, the learned queries serve as the input for the next stage. Passing through a Fully
Connected layer, these queries are transformed into inputs suitable for the LLM model,
which then generates the corresponding output.

However, BLIP-2 cannot perfectly adapt to video input for the video captioning task.
Therefore, I first preprocessed the video files. Simply put, I selected keyframes from the
video and averaged these keyframes to serve as the model’s input.

The second adjustment is that I did not use the visual encoder in real time during
the experiment due to limited computational resources. This means that in the experi-
ment, image-to-caption was not end-to-end. I pre-extracted the features of the keyframes.
Since the visual encoder is frozen, the features of each image are fixed. This approach
saves computational resources because extracting video features often consumes much
computational power. Additionally, it facilitates the average pooling operation.

Furthermore, LSTM was also attempted in subsequent experiments. LSTM replaced
the LLM model. Although LSTM has a more straightforward structure, it requires specific
design when integrating visual and text features. Specifically, LSTM excels at handling
sequential data, effectively capturing long-term and short-term dependencies. By predicting
the next token, LSTM can recursively generate coherent text. Specifically, the text input is
fed into the LSTM, while the visual features are input as parameters into the LSTM, where
these two representations are fused.

5.2 Data Preprocessing

First, I read the JSON file containing annotations that record the timestamp and the
corresponding caption. I set the timestep, fps, and interval of frame parameters and use
the methods of cv2.VideoCapture to get the corresponding timestamp point and the nearby
frames, which represent a segment of the video input. After that, I align each of these
frame inputs with the caption. And save all the pairs to the same JSON file. Then, I divided
them into training, validation, and test sets.

In the blip-2 model, the authors provide the interface for fine-tuning the coco dataset.
Here, I changed the dataset to the format that fits the model.

5.3 Dataset Building

When building the dataset, I made a few adjustments because of inconsistencies in the data.
First, the training and eval sets (including the test sets) are initialized with different classes
in the source code. For example, the image is read first for the training set, and the image
and the corresponding caption go through the visual and text processors, respectively. The
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Figure 5.1 (Left)The original data in JSON file. (Right)The data after preprocessing.

visual processor randomly crops the image and randomly flips the image horizontally. The
text processor is to add a prompt to the caption, such as a photo of. However, I am using a
series of images as input instead of a single image in my dataset. So, when I read, I must
process each image on the list. Again, the method should return a list rather than only an
image.

Another unique point is that the source code creates a ground truth file in this exper-
iment that generates the value set. Since coco is already precomputed in the dataset, it
is necessary to modify this for any custom dataset. The primary role of this section is to
generate a dataset suitable for evaluation. Here, it utilizes the ID of the image, pairs the ID
of the image with the caption, and uses the ID as a unique identifier to identify the image.
As for the original COCO dataset, in the JSON file, they include the attribute image_id, so
I need to add the image_id while creating the dataset manually.

In this step, there is a slight difference between the training set and the evaluation set
in that in the evaluation set, there is no need for the caption to be passed in.

Another modification I made is creating the value and test dataset ground truth files.
When initializing the classes for train and val/test, the training class will return the caption
to add the prompt, while the other class does not. Therefore, we need a function to create
the ground truth for the val and test dataset. It is achieved by loading the caption and
caption together and save as a JSON file.

5.4 Average Pooling

Since I will apply video to the BLIP-2 model, there is a problem with how to process the
video. I attempted to use multiple video frames to represent a single image. There are two
ideas for merging various frames into one frame. One is early fusion, which averages the
images at the pixel level. However, this approach can cause the image to lose its inherent
information and may even make it unrecognizable for ViT. Therefore, I adopted late fusion
inspired by the paperLei et al. (2022), where the operation involves merging the features
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Figure 5.2 The workflow of building dataset

Figure 5.3 (Top)The early fusion (Bottom)The late fusion

Figure 5.4 Four examples of early fusion
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Figure 5.5 (Left)The original forward (Right)The modified forward

Figure 5.6 the workflow the the OPT model

extracted by ViT from the images. The averaged features are then used as the interaction
object in BLIP-2’s Q-Former.

This presents a significant dimensional challenge. Typically, the data inputted into
the model is in the form of [B, C, H, W], where B denotes the batch size, C represents
channels, and H and W stand for height and width, respectively. However, the current
input shape is [B, L, C, H, W], where L signifies the number of video frames. Addressing
this issue involves a series of dimensional transformations.

Firstly, [B, L, C, H, W] needs to be reshaped into [B × L, C, H, W]. Following
this transformation, applying the visual encoder and layer normalization yields image
embeddings of size [B × L, 677, 1408]. Subsequently, these embeddings must be reshaped
back to [B, L, 677, 1408]. Finally, an average pooling operation along the L dimension
computes the mean across frames, resulting in a final shape of [B, 677, 1408].

5.5 OPT model

The OPT (Open Pre-trained Transformer) model is a large-scale language model designed
to perform various NLP tasks such as text generation, translation, summarization, and
question-answering.

The OPT model is based on the Transformer architecture, similar to GPT-3 and BERT
models. It consists of multiple layers of attention mechanisms and feedforward neural
networks. It is a decoder-only architecture, which predicts the next token in a sequence
based on the preceding tokens.

In the OPT model, the forward function has three inputs5.6: input embeddings,
attention mask, and labels. In the BLIP-2 model, these three inputs are each composed of
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two parts concatenated together. The first part comes from the first stage of BLIP-2, which
is the query second part from the OPT model.

Given that the OPT model is the key to our focus, understanding its inputs and
outputs is crucial as it provides foundational knowledge for subsequent analysis. The
OPT model loads a pre-trained OPT model, specifically OPTForCausalLM, for causal
language modeling. OPTForCausalLM is a class from the HuggingFace Transformers
library. OPT refers to a model developed by Meta, and OPTForCausalLM is designed
for causal language modeling with the OPT model. Causal language modeling means the
model generates each word based solely on the preceding words, not future words.

Inside the OPT model, the decoder produces outputs, including raw hidden states and
possibly other information like attention weights or past vital values. These raw outputs
from the decoder are then passed through the language modeling head to produce logits,
representing the model’s predictions for the next token. If labels are provided, the method
calculates the loss using cross-entropy loss computed between the shifted logits and the
shifted labels. Finally, the model returns a dictionary containing loss, logits, past_key_-
values, hidden_states, and attentions. As shown in the diagram, we need the loss from this
dictionary for model updates.

Next, we will closely examine the three critical inputs of the OPT model. They are
input_embedding, attention_mask, and label.

Figure 5.7 the shape of 3 inputs of the OPT model

5.5.1 input_embedding

Instead of passing input_ids, it is proper to pass an embedded representation directly. This
is useful if you want more control over converting input_ids indices into associated vectors
than the model’s internal embedding lookup matrix.

The first part is ‘inputs_op derived from the query output through a projection layer,
which transforms the query into a suitable input for the OPT model. The shape of it is [8,
32, 2560].

The second part is the input embedding. It comes from ‘opt_tokens, ‘which results
from tokenizing the text with the OPT tokenizer. The input embedding is obtained by
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embedding the ‘opt_tokens‘. Its shape is [8, 32, 2560].

5.5.2 attention_mask

A mask to avoid paying attention to padding token indices. Mask values are selected in [0,
1]: 1 for tokens that are not masked and 0 for tokens that are masked. An attention mask
helps models selectively attend to relevant parts of the input sequence by marking positions
to consider and positions to ignore. This is essential for handling padded sequences and
controlling attention in various tasks.

The first part is the attention to the OPT model. It is a tensor of ones with a shape
equal to all dimensions of ‘inputs_opt‘ except the last one. Its shape is [8, 32].

The second part is the attention mask from ‘opt_tokens‘. The output of a tokenizer
in the Hugging Face ‘transformers‘ library typically includes several key components,
depending on the options and the specific model/tokenizer being used. For example,
‘input_ids‘ and ‘attention_mask‘ are essential attributes. Therefore, the attention mask
from ‘opt_tokens‘ can be directly obtained from the tokenizer function. Its shape is [8, 32].

5.5.3 label

Labels for computing the masked language modeling loss. Indice should either be in ‘[0,
..., vocab_size]‘ or -100. Tokens with indices set to ‘-100‘ are ignored (masked), and the
loss is only computed for the tokens with labels in ‘[0, ..., vocab_size]‘.

The first part is ‘empty_targets‘. The pu pose of ‘empty_targets‘ creates a tensor of
the same shape as the OPT attention, where all elements are set to ‘-100‘. The shape of it
is [8, 32].

The second part is ‘targets.‘ ‘targets‘ is a new tensor where all padding token IDs in
‘opt_tokens.input_ids‘ are replaced with ‘-100‘. The shape of it is [8, 32].

Finally, input_embedding, attention_mask, and label all concatenate their two parts
on the first dimension. Therefore, their shape are [8, 64, 2560], [8, 64], and [8, 64]
respectively.

5.6 Potential Problems

The BLIP-2 is pre-trained as BLIP by 129M images, including COCOLin et al. (2014),
Visual GenomeKrishna et al. (2016), CC3MSharma et al. (2018), CC12MChangpinyo et al.
(2021), SBUOrdonez et al. (2011), and 115M images from the LAION400MSchuhmann
et al. (2021) dataset additionally.

The pre-training process is conducted in two stages: 250,000 steps in the first stage
and 80,000 in the second stage. Batch sizes are 2,320/1,680 for ViT-L/ViT-g in the first
stage and 1,920/1,520 for OPT/FlanT5 in the second stage. Utilizing frozen models, this
pre-training is more computationally efficient than existing large-scale VLP methods. For
example, using a single 16-A100 (40GB) machine, the largest model (ViT-g and FlanT5-
XXL) requires less than six days for the first stage and less than three days for the second
stage. Although this model is already much more resource-efficient than others, it is still
impossible for me to implement.

As mentioned before, one of the drawbacks of LLM on this task is that it is too
omnipotent, which can lead to a problem. Because this experiment focuses on generating
captions for football videos, the overpowered LLM model does not give a specific example.
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For example, when a screenshot of a football video is fed into the BLIP-2 with the OPT
model, the caption it generates is very general, such as a football match being played
without generating captions describing the details. If the frame is a passing motion, the
caption that BLIP-2 with the OPT model will generate will still be a football match, while
the frame label should describe whether it is a long pass, a short pass, a free kick, etc. This
is because even when a football match is being played, BLIP-2 with the OPT model can’t
generate a caption that describes the details of the game.

This is because even though fine-tuning is performed, there are only 20,000 entries in
the fine-tuned dataset, which cannot be compared to the pre-trained dataset. The difference
in scale makes it impossible to guarantee the effectiveness of fine-tuning. In other words,
even after fine-tuning, the caption produced by the model is still very general and can not
compared with the label caption.

5.7 LLM or LSTM?

Inspired by some models for video captioning tasksMkhallati et al. (2023)Wang et al.
(2021a), LSTM is a frequently used module for the captioning process. LSTM has many
advantages.

As a simple model, LSTM solves the problem of sequential data well through the
gate mechanism. This makes it suitable for sequential problems like text generation. They
perform well with smaller datasets and are less computationally intensive.

However, LSTMs are limited to understanding context over long distances in a
sequence compared to LLMs, so they may not be suitable for some overly complex tasks.

As for LLMs, which have recently become very popular, are highly versatile and can
be fine-tuned for a wide range of tasks such as translation, summarisation, and question-
answering. They are embedded in large models as a critical part of processing textual
content; for example, in the BLIP2 model, the OPT model is used for the default textual
part.

Training and deploying LLMs require significant computational resources, memory,
and storage for extensive data to train effectively, which can be a limited effort. Ef-
fectiveness can be minimal, which can be a limitation in data-scarce scenarios. LLMs’
architecture and training process are more complex and require much longer than LSTM.

Based on this specific task, LSTM is worth a try. The reason is that the dataset is not
large enough for training or fine-tuning. The second reason is that LLMs are too large
for this task. In the BLIP-2 paper, the authors show various capabilities, including visual
conversation, knowledge reasoning, commonsense reasoning, storytelling, personalized
image-to-text generation, etc. This specific task is to generate captions. Third, the default
opt model chosen is Facebook/opt-2.7b; 2.7 billion parameters are too big for this task.
Therefore, an LSTM was designed to generate captions.

5.8 Introduction to LSTM

Long Short-Term Memory (LSTM) is a recurrent neural network (RNN) architecture that
is well-suited for learning from data sequences. It is particularly effective at capturing
long-term dependencies in sequences, which traditional RNNs struggle with due to the
vanishing gradient problem. LSTMs are widely used in natural language processing,
speech recognition, and time series prediction applications.
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5.9 Tokenizer from Scratch

Creating a new language model is the most straightforward way to solve the problem. For
example, for a football video, we would prefer to see nouns and terms related to football,
such as offside, corner kick, free kick, etc., rather than general descriptions, such as player,
football, football pitch, etc. In this way, it is necessary to generate your tokenizer from
scratch.

Firstly, I collected all captions in the dataset, Loaded spaCy’s English tokenizer via
spaCy, and added special case rules for specific tokens like ‘[PLAYER],‘ ‘[COACH],‘
etc., ensuring these tokens are treated as ‘[PLAYER],‘ ‘[COACH],‘ etc., and ‘[COACH].‘
Next, we built vocabulary from the token counts, including only tokens that meet the
minimum frequency requirement and adding special tokens like ‘[PLAYER],‘ ‘[COACH],‘
etc., ensuring these tokens are treated as single units. requirement and adding special
tokens like ‘[PAD]‘, ‘[SOS]‘, ‘[EOS]‘, ‘[UNK]‘, ‘[MASK]‘, ‘[CLS]‘ and Set the default
index to the ‘[UNK]‘ token, which is returned for out-of-vocabulary tokens. Finally, we
also define the call Method to do the tokenization and the detokenize method to convert
indices back to their corresponding tokens.

The difference between this task and the traditional generative task of LSTM is that
the conventional LSTM only needs to go through the training and generate new content
based on the textual information. The experiments give excellent results. However, in
this experiment, the information from the visual part is equally important. Therefore, the
experiment’s focus is on how to combine visual information with textual information.

For the visual part, firstly, the features are dimensionally reduced by a convolutional
layer and a pooling layer. We aim to split the text part and splice it with the visual features,
aligning the visual and textual content by training the spliced multimodal features.

5.10 Caption Processing

The processing of text takes several steps. First, for a model like LSTM that considers
sequences, the inputs and outputs differ for each step. This figure shows how LSTM is
processed for text. The model should predict the following output for the input information.
For example, for the sentence ’Problems for [COACH] as [PLAYER] cannot play anymore.
His injury is too serious, and [PLAYER] ([TEAM]) replaces him.’ the best result is when
the input is ’ Problems for [COACH] as [PLAYER] is not able to play,’ the best result
is that when the input is ’[COACH] as [PLAYER] is not able to play,’ the next word is
predicted to be ’anymore’5.8. The cation must be made into its token ID in the vocabulary,
which is then embedded by an embedding network before the prediction.

However, in this step, due to the different lengths of each sentence, the inputs in each
batch are of various lengths. This will have a bad effect. So, I limit the max size of a
sentence to the most extended token, truncate the part that exceeds the max length, and
pad the part that is less than the max length, which ensures that the caption of each batch
can have the same size as the input5.9.

5.11 Alternative Design

The second method directly feeds visual features into the LSTM model. The text part is
first converted into tokens using the tokenizer, and unique tokens ‘[SOS]‘ and ‘[EOS]‘ are
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Figure 5.8 The first line is the caption, and the second line is the token ID corresponding
to each token. On the left side is the predictor, and from top to bottom are the inputs for
different time steps. The gr en part is the valid input part of the current time step. To ensure
the sequence’s length is certain, each sequence should be filled with padding. The blue
part of the figure represents it. These are called predictors and will be used to predict the
next token. It is represented in yellow in the figure. Immediately after that, the labels will
be processed using the one-hot matrix.

Figure 5.9 This is an example of padding. If the batch size is 4, we need to process four
captions, and the length of each caption is different; according to the 5.8, we can know
that different lengths of the sentence generated predictor are also different. The longer
the sentence, the longer the predictor will be. The length of each batch can’t be fixed, so
it can’t be fed into the network. Therefore, padding operation is essential to make the
predictor of sentences of different lengths consistent.
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Figure 5.10 Here are the details of the padding section. For example, the length of the first
caption is 8, and the length of the second caption is 4. If we set the max length to 6, the
first sentence needs to be truncated, and after truncating two lines, it will be 6. The second
sentence needs to be padded. This lowers different captions to have the same predictor
matrix shape.

Figure 5.11 After the operation of ref and ref, the predictor can be embedded into embed-
ding, and the one-hot label comes from ref1; at this time, embedding and one-hot label are
the same shape. Therefore, we can calculate the loss of both by cross-entropy.
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Figure 5.12 The workflow of the second design. (The data is fake and is used for demon-
stration purposes.)

added at the beginning and end of the captions. This approach represents the labels as a
one-dimensional vector rather than a two-dimensional matrix. The pack_padded_sequence
function is used here, which helps improve the model’s convergence to some extent.

In this method, captions are first converted into token IDs, and the length of each
caption in the batch is recorded. Next, addition is applied to make each caption sequence
the same size. For the targets, only the portion following the first column is selected. The
function reorders the sequences based on their lengths (most extended sequences first) and
removes the padding. It then packs these sequences into a packed sequence object, a more
compact representation for the RNN to process. pack_padded_sequence is designed to
process sequences of varying lengths more efficiently within RNNs by packing them into a
format that allows the RNN to skip computations on the padding tokens, which speeds up
training and reduces memory usage.

Figure 5.13 PackSequence data and the output of LSTM calculate the loss.

The output of the function is a packed sequence object. It can be used as input to
RNNs (such as LSTMs or GRUs), which can handle the packed data more efficiently. The
da in the pack sequence object calculates the loss with the model’s output.
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Chapter 6 Dataset and Metrics

6.1 Dataset

6.1.1 Overview

In this thesis, I use the dataset called SoccerNet-CaptionMkhallati et al. (2023). The
SoccerNet-Caption dataset is specifically designed for video captioning in soccer. It
includes 471 untrimmed broadcast soccer games from the top five European leagues (EPL,
La Liga, Ligue 1, Bundesliga, and Serie A) and the Champions League, spanning 2014 to
2017. In addition to the videos themselves, the dataset provides novel textual comments
embedded in time describing the game. The datasets scrape comments from the flashscore
website for 471 games.

This comprehensive dataset is divided into two primary components: the video section
and the caption section. It encompasses a staggering 715.9 hours of soccer broadcasts for
the video segment and boasts 36,894 text commentaries for the caption segment.

6.1.2 Data Anonymization

The dataset undergoes anonymization to mitigate bias, which involves replacing player,
team, referee, and coach names with generic tokens. For example, the original caption is:
textitMark Clattenburg blows the whistle, Javier Pastore (Paris SG) is penalized for a foul.
Barcelona are awarded a free kick from a dangerous position. But after the anonymization,
the caption could changed to be like this: [REFEREE] blows the whistle, [PLAYER]
([TEAM]) is penalized for a foul. [TEAM] are awarded a free kick from a dangerous
position.

6.1.3 Data format

The textual annotations are stored in JSON files and organized by individual games.
Each file comprises a dictionary containing all metadata related to the game and a list of
annotated comments. Each annotation is accompanied by a timestamp, three versions of
the comment (original description, identified, and anonymized), a boolean value indicating
whether the comment pertains to a critical moment in the game, and a contextual label, such
as corner, substitution, yellow card, whistle, soccer ball, time, injury, fun fact, attendance,
penalty, red card, own goal, or missed penalty. However, in this experiment, only comments
are needed.

6.1.4 Data statistics

The SoccerNet-Caption dataset features an average of 78.33 temporally localized comments
per game, totaling 36,894 captions across all matches. This averages to nearly one comment
recorded every minute throughout the dataset. As for the distribution of the comments,
most are scattered uniformly in the middle of the game, except there is always a peak at
the start, followed by fewer captions for 10 minutes.

Analyzing the distribution of word counts per comment plot reveals that captions
typically contain between 4 and 93 words. The distribution shows a pronounced long tail,
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Figure 6.1 Caption: Close! [PLAYER] ([TEAM]) stands over the resulting free kick from
around 27 meters out, and his shot goes just over the crossbar. The ball goes out of play,
and [TEAM] will have a goal kick.

Figure 6.2 Caption: [PLAYER] ([TEAM]) slaloms his way past challenges, but an
opposing player does well to get the ball away. The ball goes behind for a corner. [TEAM]
will have an opportunity to threaten the opposition’s goal.

averaging 21.38 words per comment. Aside from generic tokens, the most frequently used
words are verbs associated with soccer actions (such as "kick," "pass," "cross") and nouns
related to soccer (like "corner," "box," "goal").

6.1.5 Examples

From the 6.1, it can be seen that the athlete is boosting his run and getting ready to go
for this free kick. In the second picture, you can see that the ball is flying in the air at the
moment, while in the third picture, it is difficult to observe the ball’s position.

From the 6.2, in the first picture, you can see two players chasing the ball; in the
second, you can see that the blue player appears to be trying to get into the penalty area
only to be put down by an opposing player. In the third, you can see the blue team taking a
corner.

6.2 Evaluation Metrics

6.2.1 Overview

Some evaluation metrics are widely used in captioning, such as METEOR, BLEU, ROUGE-
L, CIDEr, and SPICE. A practical evaluation metric should yield satisfactory results even
when words are replaced with their synonyms, redundant words are added, the word order
is altered, or sentences are abbreviated without changing the meaning. This is the overview
of these metrics from figure 6.3.
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Figure 6.3 Overview of the metrics

6.2.2 BLEU

The Bilingual Evaluation Understudy (BLEU)Papineni et al. (2002) is designed for evalu-
ating machine translation at first. Still, it can assess other NLP tasks, such as captioning,
text summarization, and paraphrasing. It is easy and fast to calculate, although there are
some drawbacks. There is a very famous example:

reference: The cat is on the mat.,
And there are two human versions of English translations:
candidate1: The cat is on the carpet.
candidate2: There is a cat on the mat.
To express the quality of the candidate, the score is calculated by counting how many

words in the candidate translation are present in the reference translation and dividing the
result by the number of words in the candidate to get a percentage. For example, in this
case, BLEU(c1) = 5/6 =83.3%, BLEU(c2) = 5/7 =71.4%.

However, if there is a
candidate3:The the the the the the.
the BLEU(c3) would be 6/6 = 1, which does not make sense. We count the certain

word “the” only for the times it appears at most on each reference translation, which is 2
in this case. BLEU(c3) then becomes 2/6 = 33.3%.

If there is a
candidate4:Cat on is at the the.
according to the formula, BLEU(c4) = 6/6 =1, but it is wrong obviously. Instead of

considering only 1-grams, n-grams are introduced to address this problem. If we divide
the reference and candidate4 into 2-grams, we can get

The cat, cat is, is on, on the, the mat and
Cat on, on is, is mat, mat the, the the.
The BLEU(c4) becomes 0/5 = 0.
Finally, if
candidate5: The cat
No matter 1-grams or 2-grams, BLEU(c5) = 2/2 =1. Missing information helps

candidate 5 get a higher score. The Brevity Penalty (BP) is used to avoid this, penalizing
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some short sentences that lose much relevant information.

pn =

∑
C∈Candidates

∑
ngram∈C min(countclip(ngram), countref(ngram))∑

C∈Candidates

∑
ngram∈C countclip(ngram)

(6.1)

BP =

{
1 if c > r

e(1−
r
c
) if c ≤ r

(6.2)

BLEU = BP · exp

(
N∑

n=1

wn log pn

)
(6.3)

where BF is the Brevity Penalty factor, pn is the geometric mean of the modified n-gram
precision up to length N, and w n is the weight of n-gram precision, where the sum of w n
terms is equal to 1. Assume c is the length of the candidate sentence, and r is the reference
length.

The BLEU evaluation metric is precision-based and does not incorporate recall. It
treats synonymous words as distinct, penalizing even minor word-choice variations. This
limitation is mitigated by METEOR, which generally aligns more closely with human
judgments.

6.2.3 METEOR

The Metric for Evaluation of Translation with Explicit ORdering (METEOR)Banerjee
and Lavie (2005) is a metric designed to evaluate machine translation quality. It aims to
improve upon the shortcomings of BLEU by incorporating more nuanced approaches to
measuring translation quality, such as synonymy, stemming, and word order. The metric is
based on the harmonic mean of unigram precision and recall, with recall weighted higher
than precision, combines them into an F1 score, and adjusts for word order using a chunk
penalty. This approach makes METEOR more closely aligned with human judgment in
evaluating translation quality.

METEOR = Hm · (1− Penalty) (6.4)

P =
Number of matched words
Total words in candidate

(6.5)

R =
Number of matched words
Total words in reference

(6.6)

Hm =
10 · P ·R
R + 9P

(6.7)

Penalty = γ ·
(

chunk_count
matched_word_count

)β

(6.8)

Here is an example,
reference: The cat is on the mat.
candidate: On the mat is the cat.
All 1-gram elements match due to the candidate being the jumbled version of the

reference. So the precision is P=6/6=1 and R=6/6=1. We can match ’on the mat’ and ’the
cat’; there are two chunks.
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The Hm given by 6.7 is Hm = 10×1×1
1+9×1

= 1.
Normally, we set γ to 0.5, β to 3, the penalty in 6.8 is 0.5× (2

6
)3 = 0.000013.

The METEOR score in 6.4 is 1× (1− 0.000013) = 0.9997

6.2.4 ROUGE-L

Longest Common Subsequence (ROUGE-L)Lin (2004) is a sequence-based similarity
assessment method for evaluating the similarity between generated and reference sum-
maries. It calculates the similarity by comparing the longest common subsequence of two
sequences; the longer the subsequence length, the more similar the two sequences are.

ROUGE − L =

∑
s∈summary

∑
l∈reference LongestCommonSubsequence(s, l)∑

l∈reference length(l)
(6.9)

ROUGE-L comes from ROUGE-n, n means n-gram, and the scoring method is similar
to BLEU, which I will ignore here. But L means LCS(Longest Common Subsequence).
For example,

reference: Today is a good day!
candidate1: Today is a lovely day!
The common subsequence between reference and candidate1 is Today is a day,

although these words are not right next to each other. The advantage of LCS is that it does
not require the candidate to match strictly to the reference. Compared with ROUGE-n,
n-gram needs to be defined in advance, which makes it less flexible. In this way, ROUGE-L
can calculate the relationship between sentences.

Here is an example which explains the benefits of ROUGE-L:
reference: police killed the gunman
candidate1: police kill the gunman
candidate2: the gunman kill police
By ROUGE-2,
ROUGE-2(c1)=1/4=0.25 (the gunman)
ROUGE-2(c2)=1/4=0.25(the gunman)
The meanings of the two sentences are entirely different, but they score the same,

which is unreasonable.
By ROUGE-L,
ROUGE-L(c1)=3/4=0.75 (police the gunman)
ROUGE-L(c2)=2/4=0.5 (the gunman)
C1 has a higher score, which summarizes the reference better than c2 by calculating

the ROUGE-L.

6.2.5 CIDEr

Consensus-based Image Description Evaluation (CIDEr)Ghosal et al. (2021) is a metric to
evaluate the machine-generated captions developed based on BLEU. CIDEr aligns more
closely with how humans determine the similarity between two sentences. It employs TF-
IDF to assign varying weights to different n-grams. Intuitively, this means that commonly
occurring phrases are given lower weights, while rare phrases are considered more specific
and are assigned higher weights. This reflects the tendency to pay more attention to unique
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or distinctive words. For example, I will go to the bar tonight, the ’bar’ needs more
attention than ’go to.’

Term frequency-inverse document frequency(TF-IDF) counts the number of occur-
rences of each word in the document. While a simple method, there is a lot of weight
put on words that occur frequently that might not be significant and adequate for the
classification of a document. TF is the counts divided by the total words of a document;
this makes relative word frequencies more equal than all the documents as document size
is no longer considered. TF-IDF is the TF multiplied by the IDF, where IDF is defined as
the logarithm of the total documents divided by the document that contains the word of
interest to which a one is added. If the IDF value is high, this indicates that the word of
interest has significant value in document classification.

In CIDEr, TF-IDF is a statistical measure used to evaluate how relevant n-gram is to a
video in a collection of videos in the database.

CIDEr(ci, si) =
1

n

N∑
n=1

∑
g∈Gn

IDF(g) · countg(ci) · countg(si)
countg(ci) + countg(si)

(6.10)

where ci is the generated caption, si is the reference caption, n is the number of reference
captions, Gn is the set of all n-grams in the reference sentences, IDF(g) is the inverse
document frequency of the n-gram g, countg(ci) is the count of n-gram g in the generated
caption ci, countg(si) is the count of n-gram g in the generated caption si.

6.2.6 SPICE

Semantic Propositional Image Caption Evaluation (SPICE)Anderson et al. (2016) is a
metric designed to evaluate the quality of image captions generated by models. Unlike
traditional metrics that primarily focus on lexical similarities (n-gram), SPICE focuses on
the semantic content of captions.

Let us see some limitations of the n-gram,
A young girl standing on top of a tennis court. and
A giraffe standing on top of a green field.
These two sentences are similar because they both contain ’standing on top of if

we use 5-grams. However, these two sentences do not correlate with the semantic level.
However, if we see

A shiny metal pot filled with some diced veggies. and
The pan on the stove has chopped vegetables in it.
We could know they are highly correlated on a semantic level, but the n-gram score is

low.
Although n-gram is easy to use and calculate when sentences with similar meanings

contain different words, the performance of n-gram is poor; SPICE is designed to capture
higher semantic similarity by comparing the scene graph representations of both the
generated and reference captions. These scene graphs are structured representations that
encapsulate the objects, attributes, and relationships described in a caption.

We define C as the set of classes,R as the set of relation types,A as the set of attribute
types, and c as a caption. So, the sense graph of c is

G(c) = ⟨O(c), E(c), K(c)⟩ (6.11)
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Figure 6.4 The caption(top) and corresponding semantic scene graphs(right)

where O(c) ⊆ C is the set of object mentions in c, , E(c) ⊆ O(c)×R×O(c) represents
relations between objects, K(c) ⊆ O(c)×A is the set of attributes associated with objects.

Here is an example: the caption is
A young girl standing on top of a tennis court
girl and court are objects; young, standing, tennis are attributes, on top of is the

relation. Then we can get the set {(girl), (court), (girl, young), (girl, standing), (court,
tennis), (girl, on-top-of, court)}

Precision =
|Gc ∩Gr|

|Gc|
(6.12)

Recall =
|Gc ∩Gr|

|Gr|
(6.13)

F1 = 2 · Precision · Recall
Precision + Recall

(6.14)

where Gc represents the set of semantic units in the generated caption, including objects,
attributes, and relationships, Gr represents the set of semantic units in the reference caption,
|Gc ∩Gr| represents the size of the intersection of semantic units between Gc and Gr.

By 6.12, 6.13, 6.14, we could get the SPICE score of the generated caption.

6.3 Cross-entropy

Cross-entropyMao et al. (2023) loss is a commonly used loss function for classification
tasks in machine learning. It measures the performance of a classification model whose
output is a probability value between 0 and 1. Cross-entropy loss increases as the predicted
probability diverges from the actual label.

For multi-class classification, where the target label y is a one-hot encoded vector, the
cross-entropy loss is defined as:

L = − 1

N

N∑
i=1

C∑
c=1

yi,c log(pi,c)

Where:
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• N is the number of samples.

• C is the number of classes.

• yi,c is a binary indicator (0 or 1) if class label c is the correct classification for sample
i.

• pi,c is the predicted probability that sample i is of class c.

This loss function calculates the loss of multimodal features with labels after going
through LSTM and OPT models. For example, in LSTM, the output and target of LSTM
are 2D tensors of the same shape, and cross-entropy is used to calculate the loss of these
two tensors.
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Chapter 7 Experiments

7.1 Overview

First, the baseline model is the BLIP-2 with fine-tuning OPT model. In the baseline
model, late fusion visual features are extracted using average pooling, and the text
encoder utilizes BERT. I will attempt to use LSTM as another text generation model in
the experiment. Similarly, I will experiment with single-frame and random features for
visual features. The Soccernet Tokenizer, generated from this dataset, will be used for
the tokenizer. Finally, we will explore the impact of early fusion and inference without
fine-tuning the experimental results.

Table 7.1 The overview of all experiments.

Caption Model Visual Features Tokenizer Note
1 OPT Average Pooling BERT baseline
2 LSTM Average Pooling BERT model
3 OPT Average Pooling Soccernet tokenizer
4 OPT Single Feature BERT 10/20 frames
5 OPT Average Pooling BERT early fusion
6 OPT Random Feature BERT none
7 OPT Average Pooling BERT no FT
8 OPT Average Pooling BERT 1/3/5/10 epochs

7.2 Baseline Model

The model architecture is blip2_opt, the BLIP-2 model embedded with the OPT model.
The OPT model used is the 2.7b version. Regarding image preprocessing, we use images
of size 364×364, augmented with random resized cropping and horizontal flipping. The
pre-training hyper-parameters are as follows: we use the AdamW optimizer with β1 =
0.9, β2 = 0.98, and a weight decay 0.05. We use a cosine learning rate decay with a peak
learning rate of 1e-4 and a linear warmup of 2000 steps. The minimum learning rate in the
second stage is 5e-5. For the fine-tuning part, the initial learning rate is 1e-4 with a weight
decay 0.05. The batch size for training and evaluation is 8.

7.3 Fine-tuning

In this section, I attempted to use the BLIP-2 model for inference without fine-tuning
directly. Based on the original pre-training of BLIP-2, we fine-tuned the model using
SoccerNet data.

Table 7.2 The metrics of the fine-tuning and without it.

B_1 B_2 B_3 B_4 METEOR ROUGE_L CIDEr SPICE
FT 0.185 0.141 0.104 0.024 0.170 0.310 0.049 0.028
no FT 0.148 0.112 0.083 0.023 0.143 0.274 0.005 0.079
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Figure 7.1 The BLIP-2 model in paperLi et al. (2023).

Figure 7.2 The baseline BLIP-2 OPT model.

From the results shown in 7.2, it is clear that fine-tuning significantly improves most
of the evaluation metrics. Specifically, with fine-tuning (FT), there are higher scores in
BLEU, METEOR, ROUGE_L, and CIDEr compared to the model without fine-tuning
(no FT). For example, BLEU_1 increases from 0.148 to 0.185, and CIDEr improves from
0.005 to 0.049, indicating better alignment between the generated text and the reference.

However, it’s worth noting that the SPICE score is higher in the model without fine-
tuning, with a value of 0.079 compared to 0.028 with fine-tuning. This suggests that while
fine-tuning helps improve surface-level metrics focusing on word and phrase matching, it
might not capture the deeper semantic aspects as effectively as the non-fine-tuned model.

The improvements seen with fine-tuning likely occur because fine-tuning adjusts the
model to understand better and generate text that aligns with the specific tokens of the
fine-tuning training data. This process refines the model’s parameters, enhancing its ability
to generate more accurate and contextually soccer-related outputs. The decrease in SPICE
might be due to the model overfitting to the specific data during fine-tuning, focusing more
on word and phrase matching than maintaining semantic diversity. Therefore, fine-tuning
is necessary.

7.4 Qualitive Results

In this section, we will analyze the captions generated by the model. These results
were produced using the baseline model hyperparameters. The images shown represent a
sequential six-frame sample from a video clip. Figure 7.3 shows that the model successfully
predicted a free kick, even though the label caption provided a more comprehensive and
detailed description of the video clip. This outcome is reasonable since the action likely
extended beyond the range of the video clip I used, meaning the cross-pass action may
not have been captured within the selected frames. As a result, the generated caption only
captured the free kick.

In figures 7.4 and 7.5, we can observe that the generated captions and the label
captions convey essentially the same semantic information, despite some differences
in word order, particularly in figure 7.4. By examining the captions, we can see that
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actions such as "blow the whistle," "end the first half," and "takes a short corner kick"
are mentioned in both generate caption and label caption, although the verb forms differ.
These can be considered sound generation examples.

However, in figure 7.6, I present a case of significant failure where the model generates
completely incorrect captions. Nonetheless, this example still demonstrates that the model
has undergone pre-training. Even though the word "screen" was not present in the training
set, it appears in the generated text, indicating that this word was part of the pre-training
dataset. Moreover, the model also shows evidence of effective fine-tuning, as it can
accurately extract information from the input video. This is proven by generating captions
containing symbols like ’[’ and ’]’, which were not present in the pre-training dataset.
Therefore, the fine-tuning process is indeed effective.

These results indicate that our baseline model can generate accurate captions, but there
is still room for improvement, particularly in capturing temporal and complex contexts.

Figure 7.3 2015-12-12, Germany Bundesliga 2015-2016, Bayern Munich 2-0 Ingolstadt
Generated Caption: [player] [team] is taken by [referee] [official] and [team] is awarded a
free kick.
Label Caption: [PLAYER] ([TEAM]) takes the resultant free kick from the edge of the
box and tries to find one of his teammates with a cross.

Figure 7.4 2015-04-22, Europe UEFA Champions League 2014-2015, Real Madrid 1 - 0
Atl. Madrid
Generated Caption: [player] [team] [referee] [official] blows the whistle to end the first
half.
Label Caption: [REFEREE] has ended the first half by blowing the whistle.
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Figure 7.5 2017-04-15, Italy Serie A 2016-2017, Napoli 3 - 0 Udinese
Generated Caption: [player] today’s match [player] [team] takes a short corner kick.
Label Caption: [PLAYER] ([TEAM]) takes a short corner kick.

Figure 7.6 2015-12-28, England Premier League 2015-2016, Manchester United 0 - 0
Chelsea
Generated Caption: [player] [team] is shown on the big screen.
Label Caption: [PLAYER] ([TEAM]) collects a pass and finds himself in a good position
to strike from the edge of the box, but his attempt is blocked.

7.5 Epochs

Setting the number of epochs is crucial to training machine learning models. It requires
careful tuning to balance underfitting and overfitting, ensure model convergence, optimize
validation performance, manage computational costs, and consider the learning rate and
dataset characteristics. Properly configuring the number of epochs can lead to more
effective and efficient training processes, resulting in better-performing models. The
experiment was based on the baseline hyperparameter setting(except the epoch varies).

Table 7.3 1, 3, 5, and 10 epochs metrics.

B_1 B_2 B_3 B_4 METEOR ROUGE_L CIDEr SPICE
1 0.142 0.110 0.083 0.019 0.157 0.320 0.007 0.004
3 0.185 0.141 0.104 0.024 0.170 0.310 0.049 0.028
5 0.197 0.154 0.109 0.030 0.174 0.313 0.047 0.104
10 0.227 0.167 0.122 0.043 0.167 0.301 0.050 0.112

From the table7.3, we can see that the metrics generally improve as the number of
epochs in the experiment increases. The BLEU score clearly illustrates this trend. As the
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Figure 7.7 The LSTM replaces the OPT model.

number of epochs increases and the experimental results improve, the model learns and
better captures the underlying patterns in the data. However, considering the total training
time and the metrics, I ultimately set the number of epochs to 5.

7.6 Language Generative Model

Based on the previous analysis, I attempted two different types of LSTM models—the
difference lies in how each batch’s predictor and label are constructed. In the first method,
the visual and text embedding are concatenated to achieve alignment between the two
modalities. However, this method did not perform well, and the loss did not decrease.

In the second method, the visual embedding and text embedding are used as inputs
to the LSTM module. After training, this approach proved to be effective, and the model
showed convergence.

Table 7.4 The metrics of OPT and LSTM model.

B_1 B_2 B_3 B_4 METEOR ROUGE_L CIDEr SPICE
OPT 0.185 0.141 0.104 0.024 0.170 0.310 0.049 0.028
LSTM 0.114 0.004 0.000 0.000 0.095 0.206 0.001 0.009

From the table7.4, it is clear that OPT significantly outperforms LSTM. A possible
explanation for this difference lies in the alignment between the two modalities. While
LSTM has proven effective in other video captioning tasks, simply replacing the OPT
module with LSTM in the figure7.7 without additional adjustments may not be sufficient
to maintain performance.

7.7 Visual Features

7.7.1 Number of Frames

In the experiment, we use single-frame features, features from 10 frames, and features
from 20 frames with average pooling as inputs. The goal is to examine the effectiveness of
average pooling and determine whether performance improves with an increasing number
of frames7.8.

Based on the experimental table7.5, each of the three settings for the number of
frames has its advantages and disadvantages. For instance, the single frame setting scores
the highest on BLEU and METEOR, ten frames achieve the highest scores on ROUGE
and CIDEr, while 20 frames score the highest on SPICE.

This variation can be explained by the fact that different metrics emphasize different
aspects of the generated captions. BLEU and METEOR, which focus on n-gram overlap,
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Figure 7.8 The single frame replaces average pooling.

Table 7.5 The metrics of different numbers of frames.

B_1 B_2 B_3 B_4 METEOR ROUGE_L CIDEr SPICE
single frame 0.199 0.151 0.111 0.022 0.174 0.304 0.031 0.065
10 frames 0.185 0.141 0.104 0.024 0.170 0.310 0.049 0.028
20 frames 0.157 0.121 0.090 0.025 0.158 0.321 0.011 0.099

may benefit from the detailed information captured in a single frame. ROUGE and CIDEr,
which consider longer sequences and overall content, might gain from the context of ten
frames. SPICE, which evaluates the semantic content, may be more sensitive to the more
prosperous, diverse information available in 20 frames.

Finally, I used 10 frames in subsequent experiments because its metrics were more
balanced than a single frame and 20 frames. Additionally, since the video encoder requires
time and computational resources to extract features, using ten frames is more resource-
efficient than 20 frames while avoiding the randomness of single frames.

7.7.2 Early and Late Fusion

Because in the visual feature extraction part, we used ViT, which was pre-trained on regular
images. The early fusion images involve fusion at the image level, while the late fusion we
previously adopted was at the feature level. Therefore, ViT cannot theoretically recognize
the images resulting from early fusion5.4. As it shows, some soccer game elements could
be identified for some processed pictures. However, for others, they are just random noisy
patterns in the pictures. Hence, I want to try using these early fusion images as the model’s
input to evaluate the performance on image generation in the figure7.9.

Figure 7.9 The early fusion replaces late fusion.

Regarding BLEU scores in the table7.6, which measure n-gram overlap between
generated and reference captions, late fusion significantly outperforms early fusion at
every level. This suggests that late fusion generates captions by average features more
successfully. Similarly, the METEOR score, which accounts for synonymy and recall,
is much higher for early fusion, indicating it generates more linguistically diverse and
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Table 7.6 The metrics of early fusion and late fusion.

B_1 B_2 B_3 B_4 METEOR ROUGE_L CIDEr SPICE
late fusion 0.185 0.141 0.104 0.024 0.170 0.310 0.049 0.028
early fusion 0.190 0.080 0.049 0.010 0.113 0.219 0.003 0.003

accurate captions.
ROUGE_L, which focuses on the longest common subsequence between generated

and reference captions, and CIDEr, which measures consensus based on TF-IDF weighting,
show that late fusion produces captions that align more closely with reference captions.
The SPICE score, which evaluates semantic content, is also better for early fusion, although
both methods score relatively low on this metric.

Overall, these results suggest that late fusion is more effective than early fusion in
generating captions that are both syntactically and semantically aligned with reference
captions. Early fusion, on the other hand, seems to dilute important information by
merging visual and textual data too early, leading to poorer performance across all metrics,
particularly in content and semantic accuracy, as indicated by the CIDEr and SPICE scores.

7.7.3 Image Encoder and Noisy Input

Additionally, to verify the effectiveness of the visual encoder, I attempted to input random
noise features directly to check the generated captions as shown in figure 7.10. This can
help determine if the lack of diversity in caption generation is due to the visual encoder’s
outputs being too similar for different inputs, causing the model to have a significant bias.

The results7.7 show that the performance with random feature input is abysmal, as
all metrics are significantly lower than the baseline. This indicates that the visual encoder
extracts meaningful information, generating coherent text with pre-training. In contrast,
random feature input fails to achieve this, demonstrating the effectiveness and necessity of
the visual encoder.

Figure 7.10 The random input replaces the visual encoder output.

Table 7.7 The metrics of the image features and noisy feature input.

B_1 B_2 B_3 B_4 METEOR ROUGE_L CIDEr SPICE
image 0.185 0.141 0.104 0.024 0.170 0.310 0.049 0.028
random 0.013 0.002 0.001 0.000 0.017 0.065 0.002 0.002
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7.8 Tokenizer

The OPT model used the tokenizer from the BERT class, while I created a new Soccernet
tokenizer based on the tokens from the dataset. Both tokenizers use unique tokens such
as [SOS], [EOS], and [PAD]. However, the main difference lies in the vocabulary size.
The vocabulary size for BERT is typically around 30,000 tokens, whereas the Soccernet
vocabulary size is less than 3,000 tokens.

Therefore, I replaced the tokenizer in the OPT part of the BLIP-2 model with the
Soccernet tokenizer and conducted experiments in figure7.11.

Figure 7.11 The SoccerNet tokenizer replaces the original tokenizer.

Table 7.8 The metrics of BERT and SoccerNet tokenizer.

B_1 B_2 B_3 B_4 METEOR ROUGE_L CIDEr SPICE
BERT 0.185 0.141 0.104 0.024 0.170 0.310 0.049 0.028
SN 0.189 0.144 0.106 0.026 0.171 0.310 0.051 0.029

The two models ’ outcomes are very similar based on the experimental results7.8.
This indicates that merely changing the tokenizer does not have a significant impact. The
reason lies in the fact that when using BERT’s tokenizer, not only is the text of the label
captions tokenized with BERT’s tokenizer, but we also need to process information such
as the queries and attention masks from the Q-Former during the model’s forward pass5.7.
BERT generates these pieces of information. The tokenizer change ultimately only alters
the target that enters the OPT model. Therefore, the results of using the two tokenizers
will be similar from this perspective.

On the other hand, it is reasonable that the results using the Soccernet tokenizer
are slightly better than those using BERT. BERT’s tokenizer has a vocabulary size of
over 30,000, while Soccernet’s is only 2,759. During the generation phase, the generated
vocabulary is restricted to 2,759 words, meaning the vocabulary space is much smaller
than BERT’s. Consequently, the generated words are more likely to fit the distribution of
the dataset, resulting in better performance than BERT.
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Chapter 8 Discussion

8.1 Analysis

Based on the experimental results, we can see a significant difference between the results
of the OPT and LSTM models, with OPT outperforming the LSTM I created. The single-
frame approach ensures the accuracy of the generated text, while multi-frame approaches
better capture temporal information. Early and Late Fusion have a considerable impact
on the experimental results, with Early Fusion severely affecting the performance of the
visual encoder. In the experiments, increasing the number of epochs improved the results.
The impact of the tokenizer on the results was insignificant, as I did not remove all parts
of BERT from the model but only modified the text processing part, so the new tokenizer
did not lead to a significant improvement. Lastly, fine-tuning also had an effect, but a
limitation of this experiment is that the fine-tuning dataset was too small.

After concluding this experiment, future work has many directions to explore. Overall,
this thesis is based on the BLIP-2 model, using frames from specific moments in the video
as input to the model, which then generates corresponding captions.

Below, I analyze potential future work from the perspectives of the encoder, data, and
applications.

8.2 Future Work

First, the video encoder is the most promising way to explore. The reason for not using
a video encoder in this experiment is that it requires extensive computational resources,
which I could not access. Therefore, I used consecutive video frames to represent the
video input. For a dataset like soccer matches, the relationships between frames are crucial.
Thus, trying a video encoder is worthwhile.

Second, my method can be applied to other video datasets. As mentioned previously,
the information in soccer match videos heavily depends on the relationships between
frames, making video features indispensable. However, if the information gap between
frames is not significant for other types of videos, image frames might suffice to represent
a video segment. A video captioning model based on image frames might perform better.

Third, data cleaning of video frames is essential. Many factors could affect the results
of the method proposed in this paper. For instance, in the dataset’s videos, there are frames
of the match on the field and other shots like player close-ups, coach expressions, and
audience reactions. These features differ significantly from the match features needed for
caption generation. Through average pooling, valuable features might get diluted. Thus,
one possible approach is to filter the quality of video frames and exclude those unrelated
to soccer activities.

Fourth, the VIT model in BLIP-2 is another aspect worth enhancing and improving.
BLIP-2 can be divided into two stages: the first stage aligns text and image representations,
and the second stage generates text. The results were unsatisfactory during the second
stage, despite attempts to fine-tune large language models like OPT or designing my
language model from scratch. The possible reason might be issues occurring in the first
stage. Due to the videos’ low resolution and low fps, it is sometimes challenging for
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humans to discern the ball’s position. When extracting specific frames from the video, the
image quality is poor, and VIT might fail to recognize the scene or deeper information,
such as actions and the ball’s state. Therefore, fine-tuning VIT in the first stage to make it
suitable for specific downstream tasks might be worth exploring.

Finally, it is also worth trying this method on videos of other sports. Although soccer
has specialized terminology, other sports share common terms such as score, pass, and run.
Applying a soccer-specific model to other sports could be an interesting experiment.
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Chapter 9 Conclusion

This thesis aims to explore the use of VLP models like BLIP-2 for video captioning.
I pre-processed video data and text files in my experiments, then modified the existing

model to suit this specific task. I conducted various comparative experiments, including
testing different methods of video feature fusion, models for text generation, choices
of language models, and hyperparameter adjustments, among others. Most of these
experimental results align with the expectations and analyses.

Different language models require varying resources to achieve convergence, and the
experimental outcomes differ. The OPT model performs significantly better than LSTM
but requires more epochs. Regarding the number of frames, the results for a single frame
are pretty good, but in some metrics, average frames yield better results due to the inclusion
of more temporal information. The visual encoder is also a crucial component, and a
fine-tuned visual encoder may achieve better results. As for epochs, more epochs generally
lead to better outcomes. Changing the language model’s tokenizer has little impact on the
experimental results, but fine-tuning does have a significant effect, significantly improving
the results.

Last, I will address the questions raised in the introduction.

1. Through experiments, it has been demonstrated that BLIP-2 can handle video under-
standing tasks.

2. The main difference between using multiple frames and a single frame is the presence
or absence of temporal information. While single frames perform well in many video
captioning tasks, football videos often lack temporal context. Temporal information
is crucial in football match videos. Since this experiment utilizes average pooling
to merge frame data instead of directly using video features, temporal information
is inherently missing. As a result, multiple frames and single frames show similar
performance in this experiment.

3. From the experiments, it is evident that the most significant factor affecting the
results compared to the baseline model is whether the model has been fine-tuned.
The most important factors are the correct use of the image encoder, the choice
of language generation model, and the number of epochs. The number of frames,
feature fusion methods, and tokenizer choices show relatively minor differences in
impact.
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