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1 Abstract

To reduce the dosage of contrast agent necessary for accurate MRI imaging, a neural
field-based model is trained on two datasets of MRI images of patients with brain tumors
to generate full-contrast T1lce-weighted images from low-contrast T1. The low-contrast
images are simulated using a linear transformation, and a linear transformation with
added noise. Quantitative measures of the quality of the generated images are significantly
affected by the noise added to the low-contrast images, but visually the two methods of
low-contrast image generation are comparable. 25% dosage input leads to clearer images
of the tumors than 10% dosage input, which is in line with expectations. Most predicted
images are slightly darker or brighter than the true image, which should be investigated in
future work. We conclude that neural field-based models have potential for use in clinical
practice to generate full-contrast T1ce images from low-contrast images.

2 Introduction

Contrast agent is essential to MRI research. This agent is administered intravenously
and subsequently changes the relaxivity of certain bodily structures [5], making these
structures more visible in the images. However, there have been ongoing discussions about
the health risks associated with Gadolinium-Based Contrast Agents (GBCA) [4], the
most common group of contrast agents used for T'1-weighted MRI imaging [5]. Deposition
of Gadolinium in the brain may occur, which in rare cases may result in Nephrogenic
Systemic Fibrosis [6]. The European Medicines Agency has recommended to cease the use
of certain types of linear GBCAs altogether [1]. It is therefore important to investigate
ways in which the dosage of this contrast fluid that is necessary for high-quality images
may be reduced. One way of doing this is through deep learning methods, which have
recently gained popularity in the field of radiology [12]. If the full-contrast images can be
accurately generated, less GBCA is required in the imaging process. Several studies have
focused on generating full-contrast MRI images from low-contrast ones [7, 8, 10, 15, 17]. In
this study, we aim to generate full-contrast T1ce-weighted MRI images from low-contrast
T1 images using a neural field-based network.

Mallio and colleagues [13] performed a literature review to investigate all articles
on the topic of post-contrast simulation with Artificial Intelligence up until 2023. They
conclude that while more research is necessary, the artificial generation of full-contrast
MRI images has significant potential. An example of these studies is that of Pasumarthi
and colleagues [17], who implemented a deep neural network to predict full-contrast images
from a combination of pre-contrast T1 images and low-contrast ones. While in 10 percent
of the cases, radiologists found different enhancing patterns in the reconstructed images,
all of the diagnoses were the same as for the actual full-contrast image. This result is
promising, but ideally, there would be even less discrepancy between the reconstructed
images and the real full-contrast images. A similar model was used in two other studies [7,
8]. While the objective quality measures investigated by Haase and colleagues [8] yielded
sufficient results, lesion areas were often not of high enough quality for the predicted
images to be interchangeable with the real ones. Other networks, like a Bayesian deep
learning model, have also been implemented on the same task [10]. The images generated
with this model were quantitatively and qualitatively close to the real full-contrast images,
but the authors mention that Generative Adversarial Networks may yield even better
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results.

Chen and colleagues [3] proposed a version of a GAN named Conditional Neural fields
with Shift modulation (CoNeS) and tested it on two datasets: BraTS2018 and a dataset
of patients with a possible Vestibular Schwannoma. This study is different from previous
research in that it works with a neural field-based model, which makes it more spacially
aware than standard deep networks. Significant improvement compared to state-of-the-
art models was found on multiple translation tasks, such as the reconstruction of Tlce
from T1, T2, and FLAIR images. The model also outperformed others when predicting
Tlce from T2 alone. However, the performance on the BraTS dataset was significantly
better than on the Vestibular Schwannoma data, and a higher performance is necessary
for clinical implementation. In this study, we extend this research by using the CoNeS
model to predict T1ce images from low-contrast T1lce images. Using a low-contrast rather
than a precontrast image may help improve the model’s performance, since it contains
more information about the areas that should be enhanced.

Some patterns can be found concerning the methodology of the existing research on
this topic. Firstly, most previous research evaluates model performance using both overall
quantitative measures, like the peak signal-to-noise ratio and the structural similarity
index, and qualitative measures like the ability of radiologists to distinguish the original
from the generated T1ce. In this study, we focus on quantitative measures of performance.
Qualitative measures are out of the scope of the study. However, this will be added in
future research since this may further substantiate clinical implementation.

Secondly, in most previous research the full-contrast image is predicted from not only
the low-contrast one, but a combination of the low-contrast image with the pre-contrast
T1, or the T2-weighted image. While generally more input data yields better results be-
cause the model has more information to work with, it is often the case that one or more
modalities are not available [2]. Furthermore, the use of multiple modalities requires the
registration of all modalities to each other, which takes time and may introduce inaccura-
cies. Therefore, the model ideally has as few input modalities as possible while retaining
a high performance. To explore the quality of the prediction with as few modalities as
possible, only the low-contrast T1 image will be used as input for our model.

Third, most research on the reduction of contrast agent uses real low-contrast im-
ages. However, taking these images is uncommon since it requires two separate injections
and imaging sessions following each other directly. Therefore, to increase the amount of
available training data, it is useful to develop a method to generate low-contrast images
from the T1- and T1lce-weighted images. One other study was found where these images
were generated [15]. This study approached the issue by lowering the signal-to-noise ra-
tio (SNR) of the Tlce image. In our retrospective study, we combine this noise-based
method with a linear transformation to obtain the low-contrast images. We also test a
linear transformation on its own.

The purpose of this study is twofold: first, we apply both methods of generating low-
contrast images to the datasets at hand and evaluate their differences. Then, we use the
simulated low-contrast images to train the CoNeS model to reconstruct the full-contrast
images and evaluate the results.
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3 Methods

3.1 Model

The model used in this study is Conditional Neural fields with Shift modulation (CoNeS),
as proposed by Chen and colleagues [3]. This is a Generative Adversarial Network (GAN)
that uses Multi-Layer Perceptrons (MLP) rather than a Convolutional Neural Network
(CNN), to prevent the development of spectral biases. Furthermore, this model uses neural
fields, meaning the target images are represented as continuous coordinates rather than
discrete values like in a standard CNN. The model is conditional because the neural
fields are conditioned on latent information in the input images that is extracted with
a hypernetwork. Shift modulation refers to the linear mapping of the parameters of all
neurons in an MLP so that the parameters do not have to be generated pixel-wise. Shift
modulation is computationally less costly and is less likely to lead to overfitting. In this
study, the model was run for 250 epochs during training.

3.2 Datasets

Two datasets were used separately to train the model. The first is the train set of the
BraTS 2020 dataset [14], containing images of patients with brain tumors in 4 different
modalities (T1, Tlce, T2, FLAIR) as well as the segmentation of the tumor. BraTS 2020
provides a separate validation set, but this set was not used so that it can be used as a
test set in future research.

Characteristics Vestibular Schwannoma BraTsS 2020
Section thickness 1.0 mm 1.0 mm
In-plane resolution 0.35 x 0.35 mm 1.0 x 1.0 mm
Raw data Used in study Raw data Used in study
No. of patients 102 71 494 357
No. of imaging instances 433 175 494 357

Table 1: Statistics of the datasets.

Secondly, a dataset consisting of patients with a possible Vestibular Schwannoma
(VS), a benign tumor, was used [16]. Some patients from this dataset underwent multiple
scanning sessions, to track the possible growth of the Vestibular Schwannoma. These
scanning instances of the same patient were treated as separate data instances for the
model since the date of the scan is not relevant in our case. However, separate imaging
instances of the same individual were not split between the train and test sets (see 3.7).
An overview of the datasets can be seen in Table 1. Figure 1 displays an overview of
the preprocessing pipeline. All further steps of this pipeline will be discussed in the next
paragraphs.
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Figure 1: Preprocessing pipeline of the VS and BraTS 2020 datasets.

3.3 Registration and selection

The BraTS dataset is preregistered, but the VS dataset was not yet registered. Rigid
registration was applied using the Python extension of Elastix [11]. The resulting regis-
tered images were all manually checked for inconsistencies, and slices with missing data
were removed. 12 images were completely left out due to insufficient registration or image
quality. Some VS data instances did not have both the T1 and T1ce-weighted images, in
which case these were also removed.

3.4 Histogram equalization

Most of the pairs of T1 and T'1lce images, especially for the BraTS dataset, had different
intensity ranges. One extreme example is that of a T'1 image with a maximum intensity of
25000, while its complementing T1ce image had a maximum of 800. This is undesirable,
since it means the entire image is darker or lighter, not only the contrast-enhanced areas.
Therefore, the model will learn to darken or lighten the image as a whole. To prevent
this as much as possible, histogram equalization was applied. First, histogram matching
was tested. With histogram matching, a mapping function is applied to the intensity
histogram of one image to exactly match that of a second given image. While this method
worked, it was considered too extreme since pixel values are individually altered. A less
extreme method that was applied is scaling. The advantage of this method is that all
pixels are scaled with the same value, meaning the intensity relationship between the
pixels is maintained. The scaling was based on the peak of the intensity histograms of the
T1 and T1lce images, which were determined using Scipy’s find_peaks function. Different



hyperparameters of this function were tested to ensure at least one peak was found in each
image and that the location of the peaks was as accurate as possible. The T1lce image
was then scaled as follows:

T1
Tlcescaled = - (1)
peakrice * peakr

Where peaksi.. and peakr; are the intensity values corresponding to the peaks de-
termined previously. The assumption underlying this method is that the peaks in the
intensity histograms of both the T1 and T1lce images refer to the non-enhanced areas of
the images since the number of non-enhanced pixels is significantly larger than that of
enhanced ones. From this, we then conclude that the pixels that form these peaks should
be equal in intensity value. The enhanced areas are represented in the low-frequency,
high-intensity values in the T1lce histogram. An example of the histogram equalization
can be seen in Figure 2 and 3. The two rightmost images in Figure 2 are subtracted from
respectively the original T'1ce and the scaled T1ce and colorized to see the differences bet-
ter. These two subtraction images should theoretically only display the enhanced areas of
the image. The scaled subtraction image is therefore of higher quality than the original
subtraction image. In Figure 3 the associated histogram is displayed. As is visible, the
scaled T'lce image is more similar to the T1 than the original T1ce image.

Scaled Tlce Sub(T1ce,T1) Sub(Scaled Tlce,T1)

800
600
a00
200
0
-200

Figure 2: Example of histogram scaling. From left to right: Original T1, original T'lce,
scaled T1ce, T1 subtracted from original T1ce, T1 subtracted from scaled T1ce. The last
two images are colorized to see the differences better.
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Figure 3: Histogram corresponding to the images from Figure 2. The scaled T1ce image
is more similar to the T1 than the original T1ce image.



In some cases, the histogram equalization yielded worse results than the original im-
ages, which was either because the original images’ histograms were already sufficiently
close to each other, or because the wrong peaks were found. We manually checked all
images after histogram equalization for quality control. If the equalized images were not
of sufficient quality, it was checked whether the originals were better and if so, these were
used instead. If neither the equalized nor the original images were of good quality, the
image was left out altogether. For the Vestibular Schwannoma dataset, one image was left
out. 12 images were removed from the BraTS dataset.

3.5 Generation of low-contrast images

In this study, we test two methods to generate low-contrast images: a simple linear trans-
formation, and a linear transformation combined with noise based on the method found
in previous literature [15]. We simulated 10% and 25% dosage.

The first method for generating the low-contrast image is through linear transforma-
tion. If an image with x% contrast is required, it would be obtained through the following
formula:

z%contrast = (1 —x) « 11 + x % T ¢ (2)

This method is easy to apply to any dataset given that the T1 and T1lce-weighted
images are available. It also does not require thorough preprocessing or meta-knowledge
about the images that may be unavailable or costly to retrieve. Furthermore, it directly
generates an image that is interpretable from a clinical standpoint. On the other hand,
this method may be crude given that it assumes a linear relationship between dose and
contrast. For the GBCA Gadopiclenol a linear relationship between dose and contrast-to-
noise ratio was discovered between the concentrations of 0.025 mmol/kg and 0.10 mmol/kg
[18]. Given that the standard administration of GBCA is around 0.10 mmol/kg [9], low-
contrast images are of lower concentration than this, which would substantiate a linear
approach to the simulation of low-contrast images. However, it should be noted that the
linear relationship was determined based on only a few data points. We therefore do not
assume the linear relationship as a proven truth, but rather as a reasonable possibility.

The second method of generating low-contrast MRI images has been found in previous
literature [15]. In this study, the subtraction image (T1lce - T1) was lowered in quality
intentionally to simulate a lower dosage of contrast agent. This lower-contrast subtrac-
tion image was then used as input for the model. More specifically, given lower contrast
percentage [ and low-contrast subtraction image sub;., Gaussian noise was added to the
subtraction image as follows:

suby. = sub+ N(0?,0) (3)

The standard deviation of this Gaussian noise o is calculated as

o =07 * 2*1/;2—1 (4)

In this formula, op, refers to the standard deviation of the noise of the T1-weighted
image. Since this method assumes that the noise levels in the T1 and Tlce images are
identical, the noise of T1ce can also be used instead.



As is visible from the formula, this method depends on the Signal-to-Noise Ratio
(SNR) of the original images, which may be difficult to estimate. We used an SNR of 50
as suggested by the authors of the article. Another notable feature of the method is that
it works with the subtraction image rather than the 'real’ low-contrast representation.
The subtraction images cannot be used in real-life medical settings since they convey too
little information about the surrounding bodily structures. The subtraction image could
be added to the T1 image again, but this would not result in low-contrast images that
are similar to real-life ones. We therefore added the noise to the image as a whole. By
combining the linear method with this noise method, we aimed to create low-contrast
images that are realistic both in terms of the brightness of the enhanced areas, as well as
the noise of the overall image.

10%

10% + noise

Figure 4: Different simulated low-contrast images for an image from the VS dataset. The
images without noise were generated with the simple linear transformation. The ones with
noise were made using a combination of the linear transformation and SNR reduction.

Figure 5: Different simulated low-contrast images for an image from the BraTS dataset.

Figure 4 and 5 display an example of the simulated low-contrast images for the VS
and BraTS datasets, respectively. Visually, there does not seem to be a large difference
between the simple linear images and the linear images with noise. We also calculated
the Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR), and Structural
Similarity Index (SSIM) of all input images compared to the original T1ce. The MSE is
shown in Figure 6. The SSIM and PSNR display similar results, so these are not shown
here, but they can be found in Appendix B. For both low-contrast simulation methods,
the 25% dose image is closer to the Tlce than the 10% dose image. The methods with
noise have a higher average MSE and a larger variance than those without. This is likely
because measures like the MSE are sensitive to noise.

Despite the effect of the noise on the quantitative measures, the linear method with
noise seems the most realistic in practice, since it takes into account both the change in
brightness of enhanced areas as well as the noise of low-contrast images. However, the
simple linear transformation yields images with quantitative measures that are more in
line with the original T1 and T1ce. Because it would be interesting to see how the model’s
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performance changes based on whether there is noise in the input or not, we tested the
model with both methods.

MSE Vestibular Schwannoma - input images MSE BraTsS - input images
M no contrast M 10% no noise 25% no noise 10% with noise M 25% with noise M no contrast M 10% no noise M 25% no noise 10% with noise M 25% with noise
0,03 0,006
0,025 0,005
0,02 0,004
0,015 0,003
0,01

0,005 % % % 0,001 E 5 &

0 0

0,002

Figure 6: MSE of the real T1ce and the low-contrast input images for BraTS (right) and
VS (left). No contrast refers to the original T1 image.

3.6 Normalization

Before using as input to the model, the image intensities were normalized between [-1,1].
At first, this was done for all images separately. However, due to the differing intensity
ranges of the T1 and Tlce images from the same patient, this method of normalization
scaled the images at different strengths and therefore shifted the peaks of the intensity
histograms away from each other. In practice, this means that part of the histogram equal-
ization would be undone. To counter this issue, patient-wise normalization was applied.
Rather than using the maximum and minimum intensity values of each image separately
to apply normalization, the maximum and minimum values were determined over the T1,
T1ce and low-contrast images together. These values were then used to normalize all im-
ages. This method ensures the retention of the relative intensity frequencies. An example
of this normalization method is displayed in Figure 7. As is visible, the non-enhanced
areas of the patient-wise normalized images are significantly closer in brightness than the
individually normalized images.

Tl 25% Tlce

Individual
normalization
Tlce

T1 10% 25%
Patient-wise
normalization

Figure 7: Example of individual normalization versus patient-wise normalization shown
on the original T1, original T1ce, and linear low-dose simulations.




3.7 Training

Both datasets were first split into a train and test set. The BraTS data is presplit, and the
VS set was manually split 90%/10%. The number of 2D slices per imaging session differed
per patient, so splitting the data solely on the patient number would not be representative
of an actual 90%/10% split. Therefore, the train-test split was based on the number of
2D slices rather than the patient number. Slices from the same patient were kept in the
same set, to prevent introducing bias. This method resulted in 6041 slices in the train set
and 624 slices in the test set. Both train sets were further split 80%/20% for validation.
The test sets were not used in this study, so that they could be used in future research.

4 Results

First, the quantitative evaluation of the predicted T1lce images was performed. Table 2
displays the Mean Squared Error (MSE), Structural Similarity Index (SSIM) and Peak
Signal-to-Noise Ratio (PSNR) of the predicted images based on different datasets and
contrast agent dosages as input. Boxplots of the SSIM are shown in Figure 8. The SSIM
of the VS dataset follows the same pattern as when this measure is calculated for the
input image itself. The 25% dose input performs better than the 10% dose for both the
noise and no noise conditions. Furthermore, the model yields worse results when trained
on noisy inputs compared to inputs without added noise. These same patterns can also
be found in the PSNR and MSE, which is why these are not shown here (these can be
found in Appendix A). However, for the BraTS dataset, the predicted T'1ce from 10% dose
without noise seems to deviate from this pattern. This may be due to random chance,
but it warrants further investigation in the future. On average, the BraTS dataset yields
better results than the VS set.

Data MSE SSIM PSNR

BraTS 0% 0,00549-+0,00221 0,91686+0,01631 23,03738+2,15439
BraTS 10% 0,00420+0,00148 0,74112+0,02134 24,06235+1,68868
BraTS 10% + noise 0,00842-+0,00252 0,14263+0,02108 20,97765+1,51920
BraTS 25% 0,003114-0,00115 0,94735+0,01001 25,48128+2,13011
BraTS 25% + noise 0,0074140,00153 0,1543740,01958 21,40346+0,98867
VS 0% 0,00350+0,00280 0,7635440,07294 25,52571+£2,86196
VS 10% 0,00301+0,00272 0,79581+0,06531 26,31837+2,98394
VS 10% + noise 0,01569+0,00928 0,51210+0,10167 18,63893+2,23737
VS 25% 0,0023240,00241 0,83471+0,05472 27,55205-2,98896

VS 25% + noise 0,01379£0,00686 0,56461+0,11174 19,06021£2,02142

Table 2: Result of quantitative evaluation of model performance given the two datasets
and different contrast dosages as input. The values in the table represent mean + standard
deviation. The best value in each column per dataset has been highlighted in bold.

Figure 9 displays an example of the input, predicted, and real full-contrast images for
VS and BraTs, respectively. Two more examples can be found in Appendix C. Notably, the
BraTsS predicted images are significantly brighter than their corresponding T1 and T1ce.
This is less visible for the VS data. It seems the intensity values of the non-enhanced
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SSIM Vestibular Schwannoma
SSIM BraTS

M no contrast M 10% no noise M 25% no noise 10% with noise M 25% with noise
B no contrast M 10% no noise M 25% no noise 10% with noise B 25% with noise
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Figure 8: SSIM of the real Tlce and the predicted T1lce for BraTS (right) and VS (left)
based on different types of low-contrast inputs.

areas are overestimated, which may be due to the low input intensities or suboptimal
hyperparameters. For the 25% and 25%+noise inputs, this difference is less pronounced.
The tumors are usually most clear in the images generated with 25% dosage as input. In
some cases, like the example in Figure 9a, the tumor is not detected with 10% dosage
input. The models with 25% and 25%-+noise input are visually more similar to each other
than the MSE, PSNR and SSIM corresponding to the same images would suggest. It is
possible that a very small amount of noise remains that is too weak to see, but still affects
the quantitative results.

Input image Real Tlce

Predicted Tlce

ut image Real T1ce

Predicted Tlce

10%

-
10-,”mse.

25%+noise

(a) VS ) BraTS

Figure 9: Example of input, prediction and real images for both datasets.
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5 Conclusion and Discussion

In this study, we first simulated low-contrast T1 image from a combination of T1 and
T1lce images. The low-contrast images were simulated using two different methods: a
linear transformation with noise and the same transformation without noise. The former
method seems more realistic, given that it takes into account the noise that comes with
administering only a small amount of contrast agent. However, since both have their
advantages and drawbacks, both types of low-contrast images were used for the second
part of the study.

Next, we used a neural field-based model to predict full-contrast Tlce images from
the simulated low-contrast ones. Visually, the inputs without noise yielded slightly better
results than the inputs with noise. The 25% inputs performed better than the 10% input
across all conditions. The results for the BraTS dataset were better than for the VS
dataset, which is in line with previous findings [3]. Given that in some cases the tumor
was not detected with 10% dosage input, we conclude that a 25% dosage input is more
viable for clinical implementation than 10%.

This study has a few limitations that should be kept in mind. First and foremost,
since this is a retrospective study we did not have access to real low-contrast images
and therefore generated these ourselves. These images may slightly differ from the real
ones, meaning a generated image with 10% contrast may not be the same as a real
image with 10% contrast. This problem was addressed by testing different methods for
generating these images to find the method that most closely resembles real-life low-
contrast imaging. It should be noted that even when using real low-contrast images, it is
difficult to determine the exact dosage that the image represents due to the variability of
the exact time between contrast agent injection and imaging.

Second, the evaluation of the full-contrast images generated by the model was mainly
done using quantitative measures of the entire image and visual confirmation. More mea-
sures like evaluation by radiologists or comparisons of true and predicted tumor segmen-
tations were not feasible to include in the current study, but we aim to add this in the
future.

Third, only the 10% and 25% contrast images have been investigated in the current
study. We have made a start with determining the relationship between dosage and quality
of the generated image, but it would be insightful to further clarify this relation by using
more dosages as input for the model.

We further aim to improve the model by tuning its hyperparameters and improving
the normalization method of the images. This way, the overall brightness of the predicted
images will likely not differ as much from the true T1lce images as it did in the current
study. Lastly, we plan on applying k-fold cross-validation to the datasets to increase the
accuracy of the results in the future.

Reflection

In the last couple of months I have been able to experience working as a researcher for the
Division of Image Processing (LKEB) at the Leiden University Medical Center (LUMC).
I enjoyed being part of a group of people who are all focused on improving medical
procedures for patients. The work in this field has direct practical relevance, which is very
motivating.
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During my internship, I learned a lot. First, I have become more familiar with the
methods used to process MRI images, as well as the process of managing MRI data.
Besides this, I also have learned more about my functioning in a job as a researcher. I
enjoy this work and I am considering a career in bioinformatical science, starting with a
PhD.

I quickly noticed that the process of doing research is less linear than I had initially
expected. Some days and weeks, things ran smoothly and I felt I was making big steps,
while at other times I felt I needed a lot of time for a seemingly easy task. My planning
therefore had to be changed a lot. This issue was solved with some flexibility, and by
planning a little more time for tasks than they were expected to take. In line with this, I
have learned that the preprocessing of the data is an essential part of doing research and
that this process can take a lot of time. At the start of the project, I wanted to be done
with the preprocessing part as soon as possible because I felt that the ‘real work’ started
once this was finished. However, the preprocessing is an important step of the research,
and I kept returning to it even after doing model runs. In a future research project, I will
not expect to have preprocessed the data instantly, and I will be aware that preprocessing
problems can occur even out of my control.

In conclusion, I have enjoyed this internship very much and I have realized that this
kind of job might be something for me in the future. I look forward to continuing this
project for my thesis.
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Appendix A

SSIM Vestibular Schwannoma - predicted image
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Figure 10: Quantitative evaluation of model using the VS dataset as input. Each boxplot
refers to the SSIM, PSNR, or MSE measured on the actual T1lce and the predicted T1ce

based on different types of inputs.
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Figure 11: Quantitative evaluation of model using the BraTS dataset as input. Each
boxplot refers to the SSIM, PSNR, or MSE measured on the real T1ce and the predicted

T1ce based on different types of inputs.
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Appendix B

SSIM Vestibular Schwannoma - input images PSNR Vestibular Schwannoma - input images
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Figure 12: Quantitative evaluation of input images from the VS dataset. Each boxplot
refers to the SSIM, PSNR, or MSE measured on the real T1ce and the different types of
input images.
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Figure 13: Quantitative evaluation of input images from the BraT§S dataset. Each boxplot
refers to the SSIM, PSNR, or MSE measured on the real T1lce and the different types of
input images.
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Appendix C

Input image
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Figure 14: Further example of input, prediction and real images for both datasets.
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