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Abstract

Modern roads now offer unprecedented levels of mobility, and the number of vehicles

on these roads has been steadily rising since the early 20th century [1]. In the Nether-

lands, the majority of paved roads in highway network have a top layer of PA (Porous

Asphalt Concrete). Ravelling, which refers to the loss of stones from the pavement

surface, is the most common form of damage in PA top layers [2]. This can result in

windshield damage, hazardous traffic conditions, and loss of performance with respect

to noise reducing properties. As a result, well-planned road maintenance is essential to

ensure optimal performance for users and minimize disruptions, ensuring seamless and

efficient traffic. The Dutch Highway Agency annually detects the stone loss on road sur-

face to plan maintenance. This information has potential to be used as bases for service

life prediction models, however due to the time horizon and extensive road network in

the Netherlands, the data size is rich and it is of high need to analyze the data to make

asphalt pavement performance predictions since maintenance decision should be made.

Therefore, in this project, the purpose of this research is to utilize information on actual

performance in machine learning and deep learning settings to predict future stone loss.

Keywords:Asphalt Pavement, Deep Learning, Machine Learning, Neural Net-

works, Degradation Model

2



Contents

1 Introduction 5

2 Problem Statement 7

2.1 Ravelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Research Sub-Questions . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Related Literature 10

3.1 The cause of ravelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Approaches for predicting pavement lifespan . . . . . . . . . . . . . . . . . . 11

4 Dataset and Preprocessing 12

4.1 Dataset Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2 Dataset Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Methodology 15

5.1 Machine Learning Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.1.1 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.1.2 Multilayer Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.1.3 XGBoost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.1.4 Linear SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.1.5 CatBoost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.1.6 Hyperparaeter Optimisation . . . . . . . . . . . . . . . . . . . . . . . 17

5.2 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.2.1 Multilayer Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.2.2 Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . . 19

5.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6 Experiments 23

6.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.1.1 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.1.2 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3



6.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.2.1 Run traditional ML Models . . . . . . . . . . . . . . . . . . . . . . . 23

6.2.2 Average LCMS Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.2.3 One-Hot Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.2.4 Stack nearby hectometer . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.2.5 Stack multiple years . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7 Results 27

7.1 Results for Machine Learning Models . . . . . . . . . . . . . . . . . . . . . . 27

7.2 Results for Deep Learning Models . . . . . . . . . . . . . . . . . . . . . . . . 29

7.2.1 MLP and CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7.2.2 Stack segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7.2.3 Over sample the data . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.3 Discussion of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8 Conclusion 37

9 Future Work 38

Reference 41

4



1 Introduction

Road infrastructure plays a crucial and dynamic role in the progress of cities and communities.

It is regarded as one of the key elements contributing to the well-being and comfort of road

users. Additionally, it is one of the sectors that influence the socio-economic development of

nations. [3]. In the Netherlands, which has one of the most densely branched road networks

in the world [4], the majority of the paved roads in the highway network have a top layer

of PA. And one of the advantages of using PA mixes is the reduction in noise levels, the

improvement of driving comfort and skid resistance in rainy conditions. Ravelling, the loss of

stones from the surface is by far the decisive damage mechanism for PA service life [5]. Severe

ravelling problems reduce ride quality, increase noise, and the risk of windscreen damage [4].

Therefore, evaluating and forecasting the performance of porous asphalt pavement with respect

to ravelling is of great importance, after which a maintenance decision will be made based

on the results. The primary challenge lies in developing an effective prediction model that

integrates all road pavement and environmental parameters and variables. [6].

In order to determine the stone loss, without having the need of inspectors on the pave-

ment, a new automated road pavement inspection system was developed and deployed by the

Dutch Highway Agency in 2009 [7]. They installed sensors that are integral components of

pavemetrics’ Laser Crack Measuring System (LCMS) on the vehicle to generate a detailed

3D road surface. Then based on the 2D ‘Stone(a)way’ algorithm described by Van Ooijen et

al [8], the stone loss per area was determined. The ravelling per square meter is then used

to compute the percentage of stone loss in each individual 1 meter section. Once a year the

agency conducts this survey. Due to the high resolution, the time horizon of more than 10

years and the 6000 km of road sections, this results in a large amount of data to be mined for

prediction.

TNO has released this project. TNO (Dutch organization for Applied Scientific Research)

is an independent statutory research organization in the Netherlands dedicated to applied

science. [9]. It has 9 units focusing on several domains, and this project is under the purview

of the Road Structures Expertise team from the Building Materials & Structures (BMS) Unit.

The thesis is organized as follows. In Section 2 the problem description is presented with

more detail and research questions are formulated. Section 3 reviews literature on ravelling

and service life predicting methods. Section 4 introduces the dataset and preprocessing work.
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Section 5 explains approaches and methodologies implemented. Experiments and results are

included in Section 6 and 7 respectively. Finally conclusions and future works are included in

Section 8 and 9 respectively.
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2 Problem Statement

In the Netherlands, specifically, for PA, the main damage is ravelling, which is the release of

stone/minerals from the surface of PA. Most importantly, maintenance of ravelling is the most

expensive one [10]. In this section, the mechanisms and causes of ravelling will be introduced.

2.1 Ravelling

Ravelling is a common form of deterioration in different asphalt pavements. Possible factors

contributing to the loss of aggregate particles include inadequate binder, incorrect aggregate

grading, poor adhesion between the binder and aggregate, errors in compaction, excessive wear

from traffic, and deterioration caused by climatic conditions. [11].

Figure 1: Ravelling of PA in the Netherlands [12]

There are two sides of failure, as we can see in the right part of Fig 2 , on the left top side

is the load and on the right bottom side the resistance to this load. For a bitmounius material

the material’s ability to withstand the applied force changes over time, due to ageing of the

material. As a result the material becomes more brittle over time and the risk of a load being

more than the material can resist becomes larger.
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Figure 2: Mechanism of ravelling [13]

There is a wide spread in performance between different roads. Brown and Johnson indicate

that roads experiencing heavier traffic or oversized vehicles are more prone to accelerated

wear and ravelling, necessitating ongoing maintenance and repair efforts to sustain optimal

performance [14]. Construction quality is another critical factor affecting road performance.

During construction, the degree of compaction of the asphalt mixture is directly related to

the road’s resistance to ravelling. Kim et al. found that insufficient compaction can lead

to ravelling on the road surface, while over-compaction can cause asphalt aging and cracking

problems [15]. Materials also play a crucial role in influencing road ravelling. Research indicates

that different types of asphalt mixtures exhibit significant differences in resistance to ravelling.

For example, the use of high-quality polymer-modified asphalt (PMA) can significantly enhance

the anti-ravelling performance of roads. Sullivan et al. noted that PMA materials, due to their

superior adhesive properties and elastic recovery abilities, demonstrate better durability under

prolonged load conditions [16].

Therefore, there is a need to predict the performance of pavements, as raveling problems

reduce ride quality, increase noise, and pose a risk of windscreen damage. Additionally, it is

believed that using actual field performance data could lead to more accurate predictions.

2.2 Research Question

In this master thesis project. The primary emphasis of the thesis is the prediction of ravelling,

the relevant data is provided by Rijkswaterstaat. However, currently, this data is only used to

describe the current state of the pavement. In order to predict its future state, it is a high

priority to include the historical data and implement proper models to make asphalt lifespan

predictions. Generally, the research question is ”How to investigate life span prediction

through data-driven models using machine learning and deep learning techniques”.
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2.2.1 Research Sub-Questions

The topic can be further broken into some sub-questions based on the methodology and models

chosen. Here are some refined sub-questions:

• Will Deep Learning models surpass traditional Machine Learning models in performance?

• Does stacking segments improve prediction accuracy, given that nearby hectometers

are assumed to exhibit similar stone loss trends due to their geographical proximity?

By stacking them together to create a new dataset, could the prediction accuracy be

improved?”

• Does the length of historical data influence the prediction accuracy?

• Will averaging over multiple meters in particular segments of the road improve the

results?
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3 Related Literature

3.1 The cause of ravelling

There are several factors that contribute to the development of ravelling. Wang et al. intro-

duced spatial-temporal maps as a means to qualitatively examine and compare data, aiming

to comprehend the correlation between pavement ravelling and traffic characteristics. This

methodology was implemented in five different study areas within the Dutch highway network.

The findings demonstrate that the movement of vehicles significantly affects the smoothness

of travel. The correlation can be classified by lanes, revealing that the ravelling is uniform

in both the through and auxiliary lane. [17]. In addition, ravelling will occur more frequently

after a period with more freeze-thaw events. Furthermore, ravelling is also affected by the

mixture composition since construction can cause a large variation in the mixture composition

within a section as well as between different road sections [2]. Results from laboratory tests.

Cheng et al found that increased number of UV aging cycles showed an increased trend of

mass ravelling loss rate in asphalt specimens. Additionally, an increase in freeze-thaw cycles

also lead to greater mass ravelling loss rate [18]. Besides, binder aging is a significant factor

that has a substantial impact on the overall characteristics of asphalt mixtures and can lead

to an increase in ravelling. [19]. Furthermore, the air void level in the mixture gradation also

has an impact on ravelling [20]. Temperature also affects the process of ravelling. Visscher et

al. tested the impact of temperature by altering the temperature during the ravelling tests. It

was discovered that the occurrence of ravelling became more frequent as the test temperature

increased [21].

To find the mechanism of ravelling, Ahmed et al concluded that concerning the process of

ravelling in asphalt surfaces, there are two basic theories that can be applied [20]. One theory

is connected to the load and is based on the stress imparted to a specific aggregate particle

that exceeds the bond strength between the particle and the surrounding mastic. The other

theory relies on the deterioration of the cohesive and adhesive properties of the bituminous

binder as it ages, mostly owing to oxidative and UV aging. The two approaches are mutually

beneficial and it is anticipated that a combination of both impacts will occur in most real-world

situations.
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3.2 Approaches for predicting pavement lifespan

It is of great importance to predict road lifespan to make maintenance and prevent potential

economic losses. Since ravelling can cause significant hazards, such as reduced skid resistance,

increased risk of accidents, and higher maintenance costs, it is crucial to understand and

mitigate this issue. In order to predict pavement lifespan, different approaches are implemented

to make predictions. Artificial Neural Network (ANN) has been widely discussed since the

1980s [22], and it has been widely used in other areas of pavement analysis [23]. Mostafa et al

implemented ANN to forecast the Pavement Condition Index (PCI) by considering qualitative

variables such as the year of inspection and the type of pavement. The study revealed that

the recommended multi-step approach resulted in an optimal ANN that greatly improves the

performance and accuracy of the model. Furthermore, the error of this optimized ANN is less

than half of that observed in a standard ANN model. [24]. Similarly, Amjad predicted the PCI

based on pavement features and the result shows that using ANN to predict PCI is a feasible

and effective method [25].

Karballaeezadeh et al. used multi-layer perceptron (MLP) and radial basis function (RBF)

neural networks to predict PCI by analyzing pavement surface deflections [26] in Iran. However,

the Ministry of Roads and Urban Development did not utilize advanced pavement inspection

devices, such as 2D/3D laser scanning and image-based approaches, due to financial con-

straints. Instead, a convolutional neural network approach is implemented by Spek et al to

improve the classification of pavement cracks in the Netherlands [1] based on 3D pavement

surface measurements, and the classification accuracy could reach 99%. Furthermore, Lin et al.

employed artificial neural networks with a back-propagation approach to predict IRI (Interna-

tional Roughness Index) for pavement distress in Taiwan [27], the results indicate a coefficient

of determination (R2) of 0.944 between the 25 testing records of the input variable and their

corresponding prediction values.

Machine Learning (ML) models are also widely used. Karballaeezadehet et al. proposed

a Random Forest model to predict tensile strength (TS), compressive strength (CS), and

flexural strength (FS) of roller-compacted concrete pavement (RCCP) in Iran [28], and the

results outperformed other regression models. Inkoom et al. implemented Regression Tree

(RT) and ANN to predict cracking condition on pavement surfaces in Florida based on the

road features. The RT outperformed ANN with R2 0.89 compared with 0.41 for ANN [29,30].
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4 Dataset and Preprocessing

4.1 Dataset Description

The Dutch Highway Agency (Rijkswaterstaat) implemented pavement monitoring system

based on Laser Crack Measurement System-2 (LCMS) [31]; it is also called DOS(Detectie

Oppervlakte Schade / Detection Surface Damage)-LCMS. To perform the measurements, a

vehicle is equipped with sensors, as we can see in Fig 3. The vehicle drives along the roads

that need to be measured and the sensors are able to generate a detailed 3D road surface.

Based on the 2D ‘Stone(a)way’ algorithm, stone loss was determined [32]. Ravelling per meter

square is then used to compute the percentage of stone loss in each individual meter. Fig 4

illustrates the working mechanism of LCMS. As depicted in the right picture of Fig 4, the

white dots indicate a loss in the number of stones.

Figure 3: LCMS-2 Vehicle

3D Data 2D ‘Stone(a)way’ algorithm Ravelling surface

Figure 4: The working mechanism of LCMS [33]

Subsequently, the data is transferred to an Excel spreadsheet, comprising 140 columns and

encompassing historical data spanning from 2011 to 2022. I streamlined the dataset to retain
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only the pertinent columns and the dataset could be seen in Fig 5. Our focus is limited to

specific columns that include the features related to road imports. These are:

Figure 5: Example of HiRav data [34]

• Weg: The name of the road, there are 48 different roads with 1748.5km in total.

• Bps start , Bps stop: The measuring begins and ends at a spot, with a length of around

100 metres.

• Baan: If the string finishes with ’L’ (for example, ’1HRL’), it indicates that the road is in

a left direction. Additionally, the values of bps start from a larger number and decrease,

and vice versa.

• Strook: Different lanes within a road. Typically, the lane that experiences a high volume

of traffic tends to have a shorter lifespan.

• m i: The stone loss percentage per square meter section is represented as follows: for

example, m 91 = 1.05 indicates that the stone loss percentage at the 91st meter square

is 1.05%.

4.2 Dataset Preprocessing

Since the initial data includes 140 columns and it cannot be used directly due to unqualified

entries (string values, missing values), it needs to be cleaned and formatted. Therefore, various

data preprocessing techniques are employed to implement models. These techniques include:

• Valid Data: Only use valid data will be used, whereas invalid data is not considered. Fig 6

provides instances of measurements that are considered invalid, with the colour green

indicating validity and red indicating invalidity due to the excessive degree of bending

in the tested section. In the CSV file, in the ’valid’ column, 1 represents valid and 0

represents invalid.
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Discontinuous measurement

Turning point

Figure 6: Examples of invalid measurements [35]

• Average sv l and sv r: we average the performance of sv l and sv r instead of sv given

that sv contains outliers, it is crucial to acknowledge that sv l and sv r represent the

raveling in the wheel paths, while sv encompasses the entire width of the lane.

• Numeric string data: As models do not accept strings as valid input, we convert columns

containing string data into numeric format for training purposes.

• Average multiple measurements: The road sections with more measurements in a single

year are the measurement calibration sections, where the measuring vehicles demonstrate

their performance. The observed variation in this context provides insights on the extent

of measurement variability. We average the corresponding data.

Finally, unrelated columns have been deleted and all the columns used for models have

been formatted properly.
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5 Methodology

This project aims to forecast the future percentage of stone loss using a regression program.

In order to obtain precise forecasts, both Machine Learning (ML) and Deep Learning (DL)

methodologies are utilized. Machine Learning (ML) is a specific field within the broader do-

main of artificial intelligence (AI) that is dedicated to constructing systems capable of acquiring

knowledge and making informed choices by analyzing and interpreting data. ML systems are

not explicitly programmed for tasks; instead, they are trained using extensive data to recognize

patterns and make predictions or decisions. It is also adept at handling non-linear behavior,

which we expect to see in ravelling. In section 5.1, traditional machine learning models imple-

mented for this project from Scikit-learn will be introduced. Since it is a multi-output regression

problem, some ML models could not be implemented.

Deep Learning (DL) is a subfield of machine learning, which is itself a subfield of artificial

intelligence. The primary focus is on utilizing deep neural networks, which consist of multiple

layers, to effectively represent intricate patterns found within extensive datasets. The revolu-

tionary nature of this field has driven advancements in diverse areas, including computer vision,

natural language processing, healthcare diagnostics, and autonomous driving. In Section 5.2,

two Deep Learning models and their key concepts are introduced.

Then several experiments are conducted based on these two approaches to improve pre-

diction accuracy. These include averaging scores over 10 meters, using different ML and DL

methods, and incorporating multi-year scores. Section 6.2 will explain the different experiments

in detail.

5.1 Machine Learning Models

5.1.1 Random Forest

Random forest is a very classic ensemble learning method. It belongs to the class of bagging

algorithms. Random forests are well-suited for problems and datasets with a large number of

features as each decision tree in a random forest is constructed using a randomly selected

subset of the features [36]. This means that each tree is trained on different combinations

of features, which helps in dealing with datasets with many features. It reduces the risk of

overfitting and ensures that even less important features get considered. It is used for regression

15



(denoted as RandomForestRegressor) to make stone loss predictions.

5.1.2 Multilayer Perceptron

The Multilayer Perceptron network models are widely utilized network architectures in various

research applications [37]. The architecture comprises multiple input layers, one or more hidden

layers, and output layers. (Fig 7). Every layer contains multiple processing units, and each unit

is completely interconnected with weighted connections to units in the following layer. The

MLP maps m inputs to n outputs using nonlinear activation functions. [38]. The input layer

consisting of a collection of neurons that encode the input characteristics. Every individual

neuron within the hidden layer undergoes a transformation on the summation of weight factors

and input values which are from previous layers w1x1 + w1x1 + · · ·+ wmxm, by applying an

activation function, the weights are initialized randomly and will be updated by using gradient

descent back propagation (BP) algorithm. The output layer obtains inputs from the final

hidden layer and converts them into output values.

Figure 7: Architecture of MLP

5.1.3 XGBoost

Gradient boosting decision trees can take advantage of multiple weak decision trees to improve

the overall performance of the model [39]. However, the traditional implementation is very

time-consuming. We use LightGBM (i.e., Light Gradient Boosting Machine) for regression

and prediction (denoted as LightGBMRegressor). LightGBM is fast and efficient, has low
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memory usage and can be parallelized [40].

5.1.4 Linear SVM

Support Vector Machines (SVMs) are supervised machine learning models that use max-margin

algorithms to analyze data for classification and regression analysis. Since it is a multi-output

regression problem, Linear SVM rather than SVM could be implemented, Linear SVM is a

highly efficient method used for applications involving high-dimensional data, such as document

classification and time series analysis [41].

5.1.5 CatBoost

CatBoost is a novel gradient boosting technology proposed by Yandex Comp [42]. This is a

novel gradient boosting decision tree (GBDT) algorithm that effectively handles categorical

features, distinguishing it from conventional GBDT algorithms. [43]. And it can effectively be

utilized with various types and formats of data [44] and successfully be applied in various fields

such as time series data [45,46].

5.1.6 Hyperparaeter Optimisation

Hyperparameter tuning is an essential part of the data science process. Properly implemented

hyperparameter tuning can indeed enhance the performance of the model [47]. This can be

categorised into into two categories: model parameters for machine learning, such as pooling

size and number of hidden layers, and training parameters for deep learning, such as regular-

ization, learning rate, and batch size. [48]. This approach will be implemented after running

the fundamental models.
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5.2 Deep Learning

5.2.1 Multilayer Perceptron

Multilayer Perceptron is a well-established form of Artificial Neural Network that comprises

several layers, such as an input layer, hidden layers, and an output layer. Every layer is composed

of neurons that are fully connected. [49]. MLP is a feedforward neural network, meaning it

does not have feedback connections where outputs of the network are fed back into itself.

This method updates the weights through a process called backpropagation. During training,

the network makes predictions, and the error between the predicted and actual outputs is

calculated. The backpropagation algorithm then adjusts the weights by propagating this error

backward through the network, using gradient descent to minimize the error over time.

Assume an L-layer neural network, where the l-th layer (l = 1, 2, . . . , L) consists of n(l)

neurons. Let a(l) denote the activation vector of the l-th layer, W(l) the weight matrix, and

b(l) the bias vector. The computation for the l-th layer is represented as:

z(l) = W(l)a(l−1) + b(l) (1)

a(l) = f (l)(z(l)) (2)

Here, a(0) represents the input vector, and f (l) is the activation function for the l-th layer

(typically a nonlinear function such as ReLU, sigmoid, or tanh).

The description for different layers could be seen as follows:

• Input Layer: It receives input data from external sources. Each neuron in the input layer

corresponds to one feature of the input data.

• Hidden Layers: It can comprise one or more intermediate layers positioned between the

input and output layers. The neurons in each hidden layer establish complete connections

with the neurons of the preceding layer, which can be either the input layer or another

hidden layer. Every individual neuron performs a calculation where it multiplies each

input by a specific weight, adds them together, and then applies an activation function

(such as sigmoid or ReLU) to generate an output. This output is then used as input for

the next layer.
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• Output Layer:It receives input data from external sources. Each neuron in the input layer

represents a distinct characteristic of the input data.

5.2.2 Convolutional Neural Network

Convolutional Neural Networks (CNNs) are a widely used subset of neural networks that fall

under the broader category of deep learning techniques. The key to their success lies in their

meticulously crafted architecture, which is adept at taking into account both the local and

global characteristics of the input data. [50]. A key benefit of CNNs is their capacity to

autonomously acquire valuable features from complex data sets without the need for manual

feature engineering [51]. Several recent studies have utilized Convolutional Neural Networks

(CNNs) for time series forecasting tasks [52].

In Convolutional Neural Networks (CNNs), there are 1D, 2D, and 3D CNNs. 2D CNNs are

primarily used for processing two-dimensional spatial data, such as in image processing and

computer vision tasks. They extract features by applying convolution operations across the

height and width of the input data. On the other hand, 3D CNNs are used for three-dimensional

spatial data, such as video data or medical imaging, allowing for convolution operations across

the height, width, and depth of the input data.

In this project, 1D CNNs approach is implemented, which is suitable for processing one-

dimensional spatial data, such as time series data and signal processing. By sliding convolutional

kernels along one dimension of the input data, 1D CNNs can effectively capture and learn

patterns and features within sequential data.

1D CNNs is a convolution operation performed in a single direction (usually the time axis).

The principle of 1D convolution is to perform convolution on the input by sliding a fixed-size

convolution kernel (i.e., filter). In one-dimensional convolution, the convolution kernel is a one-

dimensional tensor of length kernel size, which is used to filter each time step of the input.

The size of the convolution kernel affects the output shape after convolution, which can be

calculated using the following formula:

outputlength =
inputlength− kernelsize+ 2 ∗ padding

stride
+ 1 (3)

• Input length: The length of each input vector it should be based on our data structure.
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• Output length : The length of each output vector, it should be either 10 (average every

10 meters for each hectometer), 100 (individually) or 150 (stacking hectometer).

• Kernelsize: The number of elements the kernel covers along the input dimension.

• Padding: Padding is used to adjust the input sequence so that the kernel can be applied

in a way that achieves the desired output dimensions.

• Stride: Stride is the number of positions the filter moves along the input sequence at

each step..

Conv1D Layers can set several parameters, such as the size of the convolution kernel,

the stride length, the filling method, the activation function, and so on. By adjusting these

parameters, the time series features in the input data can be effectively extracted for subsequent

tasks such as classification and regression.

Suppose the input data is x, the convolution kernel is w, the offset is b, the step size is s,

and the size of the padding is p. For one-dimensional convolution, we can represent both the

dimensions of x and w as length, for example:

x = x1, x2, x3, . . . , xn w = w1, w2, w3, . . . , wm (4)

And the output for yi should be calculated as follows:

yi =
m∑
j=1

wj · x(i−1)×x+j
+ b (5)

The output of the first layer would be the input of the second layer, after stacking 1D CNN

neural network layers, the output dimensions are 10, 100, or 150, depending on the chosen

data structure. An simple explanation of convolution process could be seen in Fig 8.
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Figure 8: Explanation of Convolution process

5.3 Evaluation Metrics

As this is a regression problem, we will utilize Mean Squared Error (MSE) and R-square

(R2) as our evaluation metrics. These metrics are chosen to effectively gauge the predictive

performance of the model.

MSE equals the the mean value of all the error square, and error is the difference between

true and predicted values, the equation could be seen as follows :

MSE =

∑N
i=1 (yi − ŷi)

2

N
(6)

R-square (R2) is the square of the correlation coefficient between the predicted values

and the actual values of the dependent variable in a regression model. In simpler terms, it’s

a measure of how well the regression line (or curve) fits the observed data points. The value

ranges from 0 to 1, with 1 indicating a good prediction result. The equation of R-square could

be seen as follows:

R2 = 1−
∑

(yi − ŷi)
2∑

(yi − ȳ)2
(7)

• yi: represents each true value of the dependent variable y, which is the percentage of

stone loss.

• ŷi:represents each predicted value of the dependent variable y from the model.
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• ȳ: represents the mean value of the dependent variable, in our case is the mean individual

stone loss percentage.

• N : The number of observations, in our case is individual hectometer.
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6 Experiments

6.1 Experimental setup

6.1.1 Software

The implementation is created in Python 3.9. Pytorch 2.0.1 is used as a deep-learning frame-

work with Pytorch as programming software . CUDA 11.8 with cuDNN 7 is employed to provide

GPU accelerated functionality.

6.1.2 Hardware

Training and testing of our models is done using a GeForce GTX 3090 Ti 24GB graphics card.

It can significantly accelerate the training speed of machine learning models, especially deep

learning models, which are computationally expensive.

6.2 Experiments

6.2.1 Run traditional ML Models

The application of traditional machine learning models are explored. These models, such as

Random Forest, XGBoost, and Support Vector Machines, provide foundational techniques for

analyzing and predicting data patterns without the complexity of deep learning architectures.

Their performance in various tasks will be evaluated.

6.2.2 Average LCMS Data

It should be noted that location data can vary over the years due to inconsistencies in GPS

data collection methods and accuracy. Therefore, measurements for specific 1-meter sections

are not guaranteed to be accurate to within 1 meter. In practice, data collected in subsequent

years is often not precisely aligned with previous measurements. While the general location

matches, it is common for measurements to vary by up to 5 meters in either direction along

the route. Additionally, maintenance could be focused at the individual meter level, and nearby

sessions also need to be considered.

Fig 9 illustrates the instance that the start of a hectometer is not exactly the same for each

lane measured at a specific section in 2014, demonstrating one aspect of location inaccuracy.
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Fig 10 shows the stone loss percentage over the years. Upon evaluating the peaks in the figure,

it appears that there is a shift of 2 to 4 meters in measurements from 2021 to 2022.

Therefore, this ‘location inaccuracy’ explicitly is taken into account, for instance by aver-

aging the stone loss data over 10 meters.

Figure 9: Example of different start location for each line [53]

Figure 10: Measurement bias by years [53]
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6.2.3 One-Hot Encoder

Since there are lots of unique values in road features, even if we convert them into numeric, the

models might not be able to work directly with categorical data. One-hot encoding converts

these categories into a numerical format that the algorithms can handle. One-hot encoding

converts categorical data into a binary vector representation. A binary vector represents each

category, where only one element represents that category will be 1 and all other categories

for this vector will be presented as 0.

6.2.4 Stack nearby hectometer

Initially, there is an assumption that nearby hectometers would exhibit similar stone loss per-

centages trend due to their geographical proximity. Consequently, the nearby hectometers with

consecutive BPS Start values are stacked. During this process, directional discrepancies, as

the data structure differs for hectometers in the left and right directions are addressed. The

distribution of stacked segments could be seen in Fig 11.

Stacked Lines’ distribution Count of line length

Figure 11: Data for stacked lines

As shown in the figure, the data distribution of the segments is very sparse (the dark blue

color indicates parts with no corresponding data), and there are significant differences among

the data points, the longest segment spans 82 km, with most segments being shorter than

20 km. To expedite the training process, the focus is on segments shorter than 15 km, which

comprise 90% of data. Without this filtering, the training time would be significantly longer

due to the larger data size, with each vector containing 820 data points instead of 150. The

25



results could be seen in Fig 12. It is obvious that after filtering the lengths of the segments

are quite similar.

Figure 12: Stacked Lines’ distribution after filtering

6.2.5 Stack multiple years

Building on the hectometer data stacking, data across multiple years are stacked, by which

it allows us to capture long-term trends and seasonal variations, significantly boosting the

model’s predictive capability. Three, four, five, six years temporal data are stacked. Table 1

illustrates the number of datasets available after stacking by years. It is evident that as the

years progress, the number of datasets decreases. This trend is attributed to the presence of

missing values across different years, which hinders the stacking process.

One Year Three Years Four Years Five Years Six Years

Dataset Length 292075 181420 151547 123840 97840

Table 1: Number of datasets for after stacking by years
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7 Results

7.1 Results for Machine Learning Models

Historical data from 2011 to 2020 is used for training, data from 2021 for validation, and

data from 2022 for testing. The results could be seen in Table 2. It’s clear that predicting

each individual meter for every hectometer yields relatively low accuracy. However, when we

average every 10 meters, the results marginally improve. Additionally, incorporating extra road

features using a one-hot encoder further enhances the accuracy, though there is still room for

improvement.

Model Normal Average every 10 meters Average + one hot encoder

Random Forest 0.6031 0.665 0.647

Multilayer Perceptron 0.5842 0.5999 0.6481

XGBoost 0.6082 0.6437 0.6879

Linear SVM 0.4049 0.6189 0.6211

CatBoost 0.6087 0.6584 0.6751

Table 2: Best results for each methodology based on hyperparameter fine tuning

Moving onto visualizing the results based on the best model identified in Table 2, deeper

insights into the model’s performance will be shown. Fig 13 illustrates the relationship between

the true values and the predicted values for several roads. In this scatter plot, the x-axis

represents the true values, while the y-axis represents the predictions made by the model.

The blue line in the figure corresponds to the equation y=x, which serves as an ideal ref-

erence line. Points that lie exactly on this line indicate perfect predictions, where the predicted

values match the true values exactly. Ideally, all points should be as close to the blue line as

possible, signifying that the model is making accurate predictions.

However, upon examining the scatter plot, it is evident that many points deviate signifi-

cantly from the blue line. This indicates that the model has made numerous over-predictions

and under-predictions. The spread of these points reflects the variability and inconsistencies in

the model’s performance across different roads. Despite this, it is worth noting that for certain

roads, the predictions appear to be relatively accurate, as evidenced by points that are closely

27



aligned with the blue line.

The scatter plot thus highlights both the strengths and weaknesses of the model. It shows

that while the model can achieve good predictions in some cases, there is a considerable

number of instances where the predictions are less reliable. This visualization is crucial for

understanding where the model performs well and where there is room for improvement.

Figure 13: Comparison of model prediction versus true values for roads
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7.2 Results for Deep Learning Models

7.2.1 MLP and CNN

Initially, the data was not stacked but instead averaged over every 10 meters, with different

years used for the predictions. A random split approach is utilized to partition the dataset,

allocating 80%, 10%, 10% for training, validation, and testing respectively. The outcomes of

this approach are presented in Table 3.

From the table, it is evident that both the Multilayer Perceptron and Convolutional Neural

Network models outperform traditional machine learning models in terms of predictive accu-

racy. Moreover, as the number of years included in the training data increases, we observe

a corresponding rise in the R-square values. This indicates that incorporating more historical

data enhances the model’s ability to explain the variance in the target variable, leading to more

accurate predictions. However, these improvements are still relatively modest, leaving ample

room for further enhancement.

MLP 1DCNN

Training Validation Test Training Validation Test

Five Years 0.7432 0.7332 0.7143 0.7045 0.6945 0.7181

Four Years 0.7355 0.7242 0.7123 0.6935 0.7032 0.7015

Three Years 0.7229 0.7154 0.7008 0.6886 0.7155 0.6963

Two Years 0.6499 0.6178 0.6645 0.6857 0.5334 0.664

One Year 0.6558 0.6061 0.6286

Table 3: Best results for MLP and CNN by years

7.2.2 Stack segments

After stacking the segments for CNN, the best performance achieved with an R Square value

at 0.7234. The corresponding results are visualized in Fig 14.

As depicted in the left figure of Fig 14, the model generally performs adequately on

average, yet there are slight discrepancies evident between the blue (predictions) and orange

(true values) lines. As shown in the right figure of Fig 14, the x-axis represents the stone loss

percentage intervals, while the y-axis depicts the number of counts (in thousands) within each
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Overall prediction in ten meters level
Prediction Results vs True Value in intervals

Figure 14: Results for stacking the segments

interval. Upon examining the distribution of predictions, it becomes apparent that the model

struggles notably with forecasting larger values. Notably, there are only 872 instances predicted

in the 10+ interval, where ideally there should be 2879. Similarly, in the 5-10 interval, there

is a noticeable gap of 8369 between the predicted and true values.

In detail, as depicted in Fig 15, some results are picked and visualized, the model exhibits

a general deficiency in predicting locations with high stone loss percentages, often favoring

those with lower percentages instead. This is because the training set contains many lines with

a lower stone loss percentage and only 0.5% of the lines have a high stone loss percentage,

which prevents the model from learning the trend for high stone loss effectively. However, the

model effectively tracks maintenance trends, as evidenced in the top-left figure of Fig 15, a

significant drop in values corresponds to maintenance activities in 2020, which the predictions

also reflect.

The remaining three panels illustrate a notable disparity between predicted and actual

values for locations experiencing high stone loss percentages. Overall, while the model demon-

strates competence in following maintenance patterns, it struggles with accurately predicting

locations where stone loss is significant due to a lack of sufficient corresponding data in the

training set.
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Figure 15: Prediction for places that exhibit high stone loss percentage

7.2.3 Over sample the data

Initially, challenges were encountered in predicting areas with severe damages characterized by

high stone loss percentages. The model might not effectively learn the trends in these areas

due to their low representation in the training set, which accounts for only about 1% of the

data. To address this, oversampling strategy is employed.

I increased the representation of critical data points by oversampling instances with stone

loss percentages between 5-10% by five times. Additionally, for areas where the stone loss

percentage exceeds 10%, which are typically the focus of maintenance efforts, these instances

are over sampled by ten times. The number of training data increases dramatically as we can

see in Table 4. This approach ensures that the model better learns the patterns associated

with significant stone loss, thereby improving its predictive accuracy in areas most affected by

severe damage. Results could be seen in Fig 16 and Table 5.

In Table 5, in the CNN Architecture column, the number of square brackets in each row
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indicates the number of 1D CNN layers. Each set of four digits within the square brackets

represents the channel in, channel out, filter size, and stride for the corresponding 1D CNN

layer respectively. In the MLP Architecture column, the number of values indicates the number

of layers, and each value represents the number of neurons in the corresponding layer.

Dataset length originally Training data originally Training data after oversampling

One Year 292075 217660

Three Years 181420 145136 537865

Four Years 151547 121237 508060

Five Years 123840 98784 457500

Six Years 97840 78272 394575

Table 4: Comparison of the number of training data

Train

R Square

Validation

R Square

Test

R Square

Test

Loss
Batchsize

CNN

Architecture

Dropout

Rate

MLP

Architecture

Three

Years
0.8493 0.8212 0.8213 0.301 2048

[3,32,7,2],

[32,32,7,2],

[32,16,5,2]

0.4 [240,256,150]

Four

Years
0.8385 0.8183 0.8067 0.3264 4096

[4,32,7,2],

[32,32,7,2],

[32,32,5,2],

[32,16,3,2]

0.2 [112,256,150]

Five

Years
0.863 0.8161 0.8008 0.3109 2048

[5,32,7,2],

[32,32,7,2],

[32,32,5,2],

[32,16,3,2]

0.2 [112,256,150]

Six

Years
0.9029 0.8806 0.8736 0.2006 2048

[6,32,7,2],

[32,32,7,2],

[32,16,5,2]

0.4 [240,256,150]

Table 5: Best model’s configuration by years

It is obvious from Table 5 that the best result witnessed is 0.8736 for R2 for CNN model,

this is the final model with model configuration as follows.

• Batch Size: 2048
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– This indicates that during training, 2048 samples will be processed in each batch.

• Convolutional Layers:

– Layer 1: 6 input channels, 32 output channels, kernel size of 7, stride of 2.

– Layer 2: 32 input channels, 32 output channels, kernel size of 7, stride of 2.

– Layer 3: 32 input channels, 16 output channels, kernel size of 5, stride of 2.

– These layers apply convolution operations to the input data, with specified kernel

sizes and strides, transforming the spatial dimensions and depth of the input tensor.

• Fully Connected Layers:

– Layer 1: 240 units

– Layer 2: 256 units

– Layer 3: 150 units

– These dense layers are applied after the convolutional layers to perform the final

transformation and classification of the data.

• Dropout Rate: 0.4

– During training, 40% of the units in the layers will be randomly set to zero to

prevent overfitting by encouraging the model to learn more robust features.

• Batch Normalization: Enabled

– Batch normalization will be applied after each convolutional and fully connected

layer. Normalizing the inputs of each layer aids in stabilizing and expediting the

training process.

As we can see in the left figure of Fig 16, the results for predicting stacked hectometers

are averaged, and the two lines for predicted and true results are very close to each other, with

only a slight difference compared to the smaller difference shown in Fig 14. As we can see on

the right figure, where X-axis presents the stone loss percentage interval, now the model has

a better capability to predict high stone loss percentage with 2034 counts in the 10+ interval

compared to only 872 counts before. Similar for the 5-10 stoneloss interval, which increased

by 4332 counts in this interval.

33



Overall prediction
Prediction Results vs True Value in intervals

Figure 16: Best Results for stacking the segments

As shown in Fig 17 below, the model demonstrates a strong capability to predict high

stone loss percentages, as indicated by the comparison between the yellow line (representing

real data for the corresponding year) and the red line (representing predictions). Although

there are some instances where the gap between the predicted and actual values is relatively

large, the model consistently predicts high values or their nearby sessions, effectively providing

early warnings for maintenance.
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Figure 17: Prediction for places that exists high stone loss percentage

7.3 Discussion of Results

Hereby, the best performance for both traditional Machine Learning models and Deep Learning

models is compared in Fig 18 below.
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Figure 18: Best performance for each model, 0 means experiment missing

It is evident that Deep Learning models significantly outperform traditional Machine Learn-

ing models. Moreover, as the number of years for prediction increases, the performance of Deep

Learning models continues to improve. In contrast, the performance of traditional Machine

Learning models does not show similar improvement over time. This is primarily because Con-

volutional Neural Networks (CNNs) is used as the deep learning approach. CNNs excel at

capturing the spatial features of time series data. Consequently, with more years of historical

data, the model can learn and identify trends more effectively.

Additionally, the architecture of CNNs allows them to handle complex patterns and de-

pendencies in data, which traditional Machine Learning models struggle to do. As the dataset

grows with each passing year, the CNN’s ability to generalize and make accurate predictions

enhances significantly. This continual improvement is less pronounced in traditional Machine

Learning models, which often reach a performance plateau regardless of the increasing amount

of historical data.

In summary, the superior performance of Deep Learning models, particularly those employ-

ing CNNs, is attributed to their advanced capability to capture intricate patterns in extensive

datasets. This advantage becomes increasingly apparent as the dataset expands over the years,

leading to progressively better predictive accuracy compared to traditional Machine Learning

models.

Code

All of our code can be downloaded via this link. With this link you can access the code.
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8 Conclusion

In our project, both traditional Machine Learning and Deep Learning models are implemented

to predict stone loss percentage. Initially, it is obvious that ML models yielded unsatisfactory

results and struggled to forecast severe damage, even with techniques like one-hot encoding

or using multiple years for predictions.

Transitioning to Deep Learning, it is witnessed that both Multilayer Perceptron and Con-

volutional Neural Network models initially outperformed the ML models. Further experiments

using stacked architectures and CNN models did not significantly enhance performance. How-

ever, when oversampling techniques applied to address severe damage instances, the results

dramatically improved to an impressive 0.87, demonstrating the model’s capability to predict

severe damages accurately.

For the sub questions in this project. In comparison to ML models, Deep Learning models

showcased superior ability to capture temporal and spatial data trends and perform well,

especially in predicting severe damages.

Moving onto years, as observed in Tables 3 and 5, there is a clear trend showing that

prediction accuracy improves with the increase in the number of years of historical data. This

indicates that the more years of historical data that are incorporated, the higher the observed

prediction accuracy.

Averaging over multiple meters in specific segments of the road improves the results, as

shown in Table 2. Consequently, averaged meter data file is used in Deep Learning models

to enhance performance. Finally, stacking nearby segments did not improve prediction accu-

racy. However, when data indicating severe damages is oversampled, the accuracy increased

dramatically, which means the model could predict next year’s stone loss percentage effectively.
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9 Future Work

Even though our model effectively predicts stone loss, there are additional steps we can take to

further improve its performance. Implementing these enhancements will help refine predictions

and provide more accurate and actionable insights.

• Hyper parameter fine-tuning: Hyperparameter tuning is a critical aspect of training deep

learning models. It involves adjusting various parameters of the model, such as learning

rate, batch size, number of network layers, number of filters, etc., to enhance the model’s

performance. Even if we modified some parameters manually(batchsizes, number of lay-

ers, dropout rate), However, manually tuning these parameters can be time-consuming

and may not yield the best results. Therefore, automated hyperparameter optimiza-

tion methods, such as genetic algorithms, become particularly important. Genetic algo-

rithms are heuristic optimization methods that mimic the process of natural selection.

It is a commonly used optimization method that involves a directed random search ap-

proach [54]. This is particularly advantageous for intricate optimization problems with

a large number of parameters, where obtaining analytical solutions is challenging [55].

It finds the optimal set of parameters through operations like crossover, mutation, and

selection. Since we didn’t implement this approach in this project, we believe that the

performance could be improved if this approach is implemented.

• Additional Road Features: Since only a few road features(Weg, Baan, Strook, Bps start)

are considered, apparently other features such as traffic flows, road conditions, environ-

mental factors and etc could provide more comprehensive insights into road usage and

safety. By incorporating these additional features, the analysis can be enhanced and more

informed decisions can be made. For example traffic intensities data from INWEVA con-

tains detailed traffic information that can be integrated with our current LCMS data.

By incorporating this data, valuable road features can be added, and the importance of

various traffic patterns can be captured. It could also enhance the model’s performance

and capture the critical aspects of ravelling.

• Stack additional years: In current analysis, data from two to six years of historical records

is stacked. The findings indicate that incorporating more years of data can lead to

improved results. Therefore, one of the key future directions is to extend the timeframe
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and stack additional years of historical data. This enhancement has the potential to

significantly boost model performance and provide deeper insights.
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titioning, bootstrap forest, boosted trees, näıve bayes, and k-nearest neighbors,” Journal

of Transportation Engineering, Part B: Pavements, vol. 145, no. 3, p. 04019031, 2019.

[31] G. Leegwater, W. van Aalst, W. Courage, M. Moenielal, S. Wang, H. Böhms, and
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