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Abstract

The advancements in astronomical data collection have necessitated more efficient and accurate
methods for galaxy classification. This thesis explores the development and application of a
quantum-inspired algorithm to enhance the classification accuracy of galaxies. Using techniques
from machine learning and computer vision, the study employs convolutional neural networks
(CNNs) and integrates singular value decomposition (SVD) and tensor networks to process and
analyze astronomical images. The proposed method aims to reduce computational complexity
while maintaining high classification performance. The results demonstrate that the quantum-
inspired algorithm achieves a classification accuracy that, compared to traditional methods,
is almost as good, but in most instances they use less data. But all methods significantly
perform better than the baseline proposed in this thesis. Additionally, this research highlights
the potential of quantum computing concepts in addressing complex problems in astronomy,
paving the way for further exploration and application in various scientific domains.
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1 Introduction

The classification of galaxies has always been a fundamental challenge in the field of astronomy [1].
The exponential growth in the volume of astronomical data, driven by advances in telescope tech-
nology and data acquisition methods, for example the launch of the James Webb Space Telescope
[2] in late 2021 and the release of the telescope’s first of many images in July 2022, cause traditional
manual classification techniques to become impractical due to time consumption. Automated and
accurate galaxy classification methods are now essential for managing and interpreting the large
datasets generated by modern astronomical surveys.

Machine learning and computer vision have emerged as powerful tools for tackling classification
problems across various domains, including astronomy. Convolutional neural networks (CNNs), in
particular, have shown remarkable success in image recognition tasks. However, the high compu-
tational cost and complexity associated with these methods necessitate the exploration of more
efficient algorithms.

This thesis investigates the application of a quantum-inspired algorithm for galaxy classification.
By integrating concepts from quantum computing with classical machine learning techniques, this
research aims to develop a method that not only improves classification accuracy but also reduces
computational requirements. The algorithm leverages singular value decomposition (SVD) and
tensor networks to process and analyze astronomical images more effectively.

The primary objectives of this thesis are:

• To design and implement a quantum-inspired classification model.

• Evaluate the quantum-inspired classification model performance against traditional CNN-
based methods.

• Demonstrate the quantum-inspired classification models potential in enhancing the efficiency
of galaxy classification tasks.

The classification model, the compression algorithms and the code to calculate the used parameters
in this project are released on the public GitHub corresponding to this project [3].

1.1 Thesis overview

Section 2 contains background information on subjects that are used in this project about quantum-
inspired classification algorithms; Section 3 describes the methods used to research and define the
problems in this thesis; Section 4 contains the results of the experiments carried out during the
project; Section 5 contains the conclusion of the project and touches on further work that can be
done on this subject.
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2 Background information

2.1 Machine learning

Machine learning [4] is a form of Artificial Intelligence (AI) that focuses on building systems that
can learn from the processed data or use data to perform better. This subject revolves around
the development of algorithms and models that enable computers to recognize patterns, make
predictions on these patterns and continuously refine their performance based on data inputs.
Machine learning can also be applied to computer vision allowing for the classification of structures
in images.

2.2 Computer vision

Computer vision [5] is an area of computer science that focuses on using computers to identify
objects and people in images and videos. Like other types of AI, computer vision attempts to
perform and automate human tasks. Computer vision focuses specifically on simulating human
vision and the way people process what they see. It involves the development of algorithms and
systems that empower computers to analyze and make decisions based on visual data, such as
images or video.

2.3 Convolutional neural networks

Convolutional neural networks (CNNs) [6] are a subclass of machine learning and artificial neural
networks which have the ability to determine particular features and patterns of a given input.
Because of this, they are distinguished from other neural networks and are commonly used in image
recognition. The capability of determining features is a result of the two types of layers used in a
CNN, the convolutional layer and pooling layer. These layers are alternated to detect patterns and
associate each pattern to a shape that is relevant to an image.

The convolutional layer makes use of a kernel, which determines features and patterns of a particular
input [7]. It can associate these features with a given output in the training process, and uses this
process to train the dataset. In contrast to that, a pooling layer reduces the dimensionality of the
input data, reducing the number of parameters in the input and reducing the computational cost
of the CNN [7].

2.4 Singular value decomposition

Singular value decomposition (SVD) is a matrix factorization technique used in linear algebra and
data analysis [8]. It decomposes a m×n matrix into three simpler matrices, revealing the underlying
structure and properties of the original matrix. Given a matrix A, singular value decomposition is
represented as

A = UΣV T
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Where:

• U is an m×m unitary matrix.

• Σ is an m× n diagonal matrix with non-negative real numbers on the diagonal, which are
the singular values.

• V T is the conjugate transpose of an n× n complex unitary matrix V .

These singular values are non-negative and describe the scaling factors applied to the rows and
columns of the matrix A by the transformations represented by U and V . SVD has various
applications, but most importantly for this project, image compression. Grayscaled images can
easily be transformed into a matrix representation. The singular values in matrix Σ correspond to
the square root of the eigenvalues obtained with matrix ATA. From matrix Σ, information of the
images can be resolved and used for image compression.

2.5 Tensor networks

Tensor networks are a mathematical framework used to represent and manipulate large multi-
dimensional arrays and are used in quantum physics, machine learning, and various other fields
to represent and manipulate high-dimensional data efficiently [9]. They involve tensors, which
are multi-dimensional arrays of numbers, and the networks connecting these tensors according
to specific rules. Tensor networks provide a structured way to approximate and analyze complex
systems by decomposing them into simpler components.
In quantum physics, tensor networks are utilized to study entanglement and simulate quantum states.
In machine learning, they offer a flexible framework for modeling and processing multi-dimensional
data, such as images or sequences.

2.6 Related work

A notable contribution on the topic of computer vision using tensors would be the paper of Stouden-
mire [10] on “Supervised Learning with Tensor Networks”. This is a paper on tensor methods in
machine learning. Here, the tensors are used to learn the MNIST dataset [11], which is a database of
handwritten digits containing a training set of 60,000 examples, and a test set of 10,000 examples.

Furthermore, there is a paper that relates to the project description and data reduction of the
Galaxy Zoo 2 (GZ2) database by Willet et al. [12]. This paper is on a citizen science project
with more than 16 million morphological classifications of around 239000 galaxies drawn from the
Sloan Digital Sky Survey. GZ2 uses classifications from volunteer citizen scientists to determine
morphologies of galaxies. Stating that, while the original Galaxy Zoo 1 (GZ1) [13] project identified
galaxies as early-types, late-types, or mergers, GZ2 defines finer morphological features. The full
morphological classification is described in appendix A.

Lastly, there is the Medium publication by Thomas McRobie on “Applying a Deep Learning
Approach to Galaxy Classification with Galaxy Zoo” [14]. This publication focuses on the difference
in learning capability between the GZ1 database morphology and the GZ2 database morphology,
concluding that the GZ2 morphological labels are much more useful than their GZ1 counterparts.
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3 Method

3.1 Data analysis

The GZ2 dataset [15] briefly described in section 2.6 will be used for the experiments in this
paper. As explained earlier, this is an improved version of the GZ1 database. When working on the
classification algorithm, which would be needed for comparison to the eventual quantum-inspired
algorithm, a problem occurred. Due to the fact that there were 818 classes, with some classes
having very few items in them, was causing nearly no chance to correctly validate these classes. So
after consideration it was decided to restrict it to a binary classifier of only spiralled and elliptical
galaxies. The dataset contains 141.386 usable samples for spiralled classified galaxies and 97.643
usable samples for elliptical classified galaxies.

Figure 1: Example of grayscaled image (right) of
a spiraled galaxy (left).

To reduce runtime of the classification al-
gorithm it was useful to experiment with
grayscaling the image as, presumably, the in-
tensity and spiraled structure of a galaxy
should not rely on the coloration of the
image in the visible spectrum. The use of
grayscaling is shown in figure 1. The main
advantage of having the images in black
and white is that for every image only
one third of the information of the origi-
nal image is kept, resulting in reduced run-
time.

To justify using a complex classification algorithm it should not be clear from looking at geomor-
phological features of the image to predict which class is looked at. To this end the mean and
variance of the intensity of each image was calculated. For both the mean and the variance the
classes were compared to each other. If these parameters contain a lot of similar values it is not
clear, when looking at these values alone, which class the specific image is in.

Figure 2: Kernel density estimate plot of the mean
intensity of typical galaxies.

The mean was calculated by taking the
sum of intensity per pixel divided by
the total number of pixels in the im-
age [16]. To get a visual representation of
the density per intensity of typical galax-
ies, a kernel density estimate plot was
made. This is the application of kernel
smoothing for probability density estima-
tion, so a non-parametric method to es-
timate the probability density function of
a random variable based on kernels as
weights [17]. The result can be seen in figure
2.
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In this figure the E stands for the elliptical galaxies and the S for spiralled galaxies. From figure 2
can be seen that the spiralled galaxies have more chance to have a lower overall intensity, but that
the distributions generally overlap so that calculating the mean of an image does not provide clear
information about the class.

The variance was calculated by measuring how far each intensity is from the mean for every pixel in
the image [16]. This is again plotted in a kernel density estimate plot to help visualize this metric
and can be seen in figure 3.

Figure 3: Kernel density estimate plot of the intensity
variance of typical galaxies.

From figure 3 it can be seen that elliptical
galaxies have a larger variance, which can
be explained after looking at, for example,
figure 4, which shows an elliptical galaxy
surrounded by a haze of light. This most
likely causes these higher variances in the
image, but again that the distributions
generally overlap so that calculating the
variance of an image does not provide
clear information about the class. So it
would not really be possible to distinguish
galaxies solely on these factors, hereby
justifying the need for a classification al-
gorithm.

3.2 Classification accuracy baseline

Figure 4: Example of grayscaled image (right) of an el-
liptical galaxy (left).

The next step consists of setting up
a baseline accuracy to compare with
the results of the classification algo-
rithm. In the GZ2 database, the au-
thors have added vote fractions [15]
to each entry containing information
on the fraction of people that voted
if a specific image was featureless,
thus an elliptical classified galaxy, or
if a galaxy contained a feature/disk,
thus being classified as a spiraled
galaxy.

By averaging the vote fraction per class
on entries that were actually labeled that
class, you would get the following percentages: the average percentage of people that voted that
the images they saw were elliptical galaxies that were actually classified as elliptical galaxies was
85,3%; the average percentage of people that voted that the images they saw were spiraled galaxies
that were actually classified as spiraled galaxies was only 47,1%.
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From this can be seen that on average only around 47% of the people who voted on a spiraled
galaxy were correct in their judgement on the galaxy being classified as spiraled. The authors of the
study assume that the reason for this is that a bias is present on the voting system for the galaxies
[18]. This is because a large amount of the galaxies in the dataset are more distant galaxies, which
are on average, both smaller and dimmer in the cutout images. This leads to a result where finer
morphological features are more difficult to identify. When looking through the images it becomes
more apparent what this means, as can be seen in figure 5. These galaxies are classified as spiraled
galaxies but show no obvious signs of these features.

Figure 5: Examples of spiraled classified galaxies without
clear signs of features.

They compensate this bias by using
the spectroscopic redshifts to determine
a better debiased fraction based on
“the assumption that for a galaxy of
a given physical brightness and size,
a sample of other galaxies with sim-
ilar brightnesses and sizes will share
the same average mix of morphologies.”
[12].

The average debiased percentage of peo-
ple that voted on elliptical galaxies that
were actually classified as elliptical galax-
ies was only 76,1%, the average debiased
percentage of people that voted on spi-
raled galaxies that were actually classified
as spiraled galaxies was 86,2%.

So on average, the biased percentage of votes that was correct was 66,2%, and the average debiased
percentage of votes was 81,2%. Since the debiasing method of the GZ2 paper is based on an
assumption, which perhaps holds no real precedent, the classification accuracy baseline for this
project will be 66,2%.

3.3 Classification model

The classification model used for this thesis was made with the Keras [19] open source library in
Python [20]. It features a convolutional neural network using 2 convolutional layers which are both
followed by pooling layers.

The convolutional layers are used to extract features from the input image and the pooling layers
are used to reduce the spatial dimensions of the feature maps while retaining the most important
information. The flatten layer flattens the output of the convolutional layer to a single array followed
by one dense layer which adds extra outputs. Finally, an L2 regulizer is used to prevent the model
achieving overfitting on the training dataset. A summary of the model used for the experiments in
this thesis is found in figure 6.
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4 Results

Figure 6: Convolutional neural network model sum-
mary.

In this section the results of the experiments
performed in this thesis will be discussed. In
total, 4 experiments were conducted. The first
was to look if the dataset containing only the
grayscaled images could be learned correctly by
the CNN model and then comparing it to the
baseline, which is described in section 4.1. The
second experiment was to compress the dataset
using singular value decomposition and com-
paring that to both the uncompressed dataset
and the baseline, The results of the second ex-
periment are described in section 4.2. The third
experiment compares the learnability of one of
the SVD compressed datasets to that of the
original dataset. These results are shown in sec-
tion 4.3. And finally, in the last experiment the
dataset was compressed again, but this time
the images were first loaded into tensors before
being compressed using SVD. These results are
then compared to the previous experiments and
can be found in section 4.4.

4.1 Classic convolutional neural network

First, the model was trained on images of the GZ2 dataset. These are images of 424 x 424 pixels
and were grayscaled to improve time complexity. The model was allowed to be trained over 8 epochs
and resulted into a validation accuracy of 79,4%. Comparing to the baseline set in the previous
paragraph shows that our model outperformes the baseline of 66,2% by a substantial amount. It
can also be seen that it almost reaches the debiased average percentage by still using the original
images, and not looking at spectroscopic redshifts attached to these images.

4.2 Singular value decomposition data

For comparison with later experiments using compression of the dataset, it was useful to test the
model using SVD compressed images. The variance of the top 20 singular values of each decomposed
image is an important benchmark of information that is conveyed in these images. By reducing
the amount of eigenvectors used for information, the image can be compressed into a perhaps less
detailed image but smaller file size. The first 20 singular eigenvectors corresponding to the first 20
eigenvalues of the images averaged over the dataset can be seen in figure 7.
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Figure 7: Logarithmic plot of first 20 singular eigenvectors
corresponding to the first 20 eigenvalues averaged over the
dataset.

To test the learning capability of
the model we had to compress
the SVD compressed data at cer-
tain value decomposed points. This
would then be compared to the orig-
inal model as a benchmark. The
images were compressed by using
only the first eigenvector and the
first 5, 10 15 and 20 eigenvectors,
thus using only these first few eigen-
values. Also, an image was ’com-
pressed’, but instead using all 424
eigenvectors corresponding to the
height and width of the original im-
age. This image would of course
look exactly the same as the orig-
inal image. An example of these
images can be seen in figure 8.

Figure 8: Galaxy images SVD compressed with all(top left), first(top middle), and the first 5(top
right), 10(bottom left), 15(bottom middle) and 20(bottom right) eigenvectors.

As can be seen from figure 8, the compressed image containing the information of only the first
eigenvector produces only a bright spot where the galaxy should have been displayed in the original
image. The first 5 eigenvectors shows an image that somewhat resembles a galaxy. The detail start
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to show up when using the first 10 eigenvectors and it would be possible to conclude that this
image contains a spiraled galaxy. The details keep getting better when increasing the amount of
eigenvector information to the image, with the 20 first eigenvector image almost looking exactly
the same as the original image.

Figure 9: Average model accuracy on the SVD compressed
image datasets and the full image dataset.

Since the data with only the first
eigenvector will not produce any in-
sightful images it will be left out
of the classification model, as most
likely the accuracy will be nowhere
near that of the other compressed
datasets.

With the same model, each dataset
was then learned over 8 epochs re-
sulting in the graph in figure 9. As
can been seen, the accuracy of the
model increases as the details of the
compressed images increases, with fi-
nally the first 15 and 20 eigenvectors
being only 0,2% lower than the ac-
curacy of the model on the full im-
ages.

4.3 Comparison model learnability 15 eigenvectors and full image

Figure 10: Downscaled model summary.

Another experiment worth doing was to look if
a downsized version of the classification model
could learn the dataset that uses only the first
15 eigenvectors, but would not be able to learn
properly on the dataset containing the original
gray scaled images. A model was made that
uses half of the convolutional and pooling layers
that the original model had. A summary of this
model can be seen in figure 10.
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The two datasets were then learned on the model and gave some interesting results. The dataset that
was compressed using only the first 15 eigenvectors could be learned consistently at around baseline
classification accuracy with a percentage of 69,3%. The dataset containing the uncompressed images
however would half of the time get stuck in a suboptimal minimum, resulting in accuracies below
60%, when it did not get stuck in a suboptimal minimum, the model would achieve a performance
of around 71%. This resulted in an average accuracy just above baseline prediction of 66,2%.

4.4 Tensor SVD compressed data

A similar method of performance measuring as for singular value decomposition was used on the
dataset that was put into tensors and then truncated with the SVD method. Again, the images
were compressed by using only the first eigenvector and the first 5, 10, 15 and 20 eigenvectors.
Again an image was ’compressed’ also using all 424 eigenvectors corresponding to the height and
width of the original image, resulting in an image looking exactly the same as the original image.
An example of these images can be seen in figure 11.

Figure 11: Galaxy images tensor SVD compressed with all(top left), first(top middle), and the first
5(top right), 10(bottom left), 15(bottom middle) and 20(bottom right) eigenvectors.

An obvious difference between the ordinary singular value decomposition and the decomposition on
the tensor is that the tensor SVD has a lot of issues with noise from the original image. In images
compressed with only a few eigenvectors these specks are large but only few. When increasing the
eigenvectors, the noise multiplies and becomes smaller.
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Figure 12: Average model accuracy on the tensor SVD
compressed image datasets and the full image dataset.

With the same model, each dataset was
then learned over 8 epochs resulting in
the graph in figure 12. As can been seen,
the accuracy of the model increases as the
detail of the compressed images increases.
But compared to the classically singular
value decomposed images, the classifica-
tion accuracy becomes worse. With the
most detailed test case, the tensor com-
pressed images with the first 20 eigen-
vectors, a classification accuracy of only
78,0% was reached

4.5 Highest accuracy per dataset

As shown in previous sections, the model could sometimes converge in a suboptimal maximum or
become overfitted, bringing the average accuracy down in the previous experiments. So it would
also be interesting to look at the best accuracy that the model achieved while validating each
dataset. On the original grayscaled image dataset the best accuracy was an accuracy percentage of
80,1% achieved on the 5th epoch.

For singular value decomposition the model achieved higher accuracy when trained on the dataset
that was truncated with only 15 and 20 eigenvectors in both cases, but only managed to get
there on average on epoch 6, with respectively achieving 80,3% and 80,2%. The datasets that
were compressed with less eigenvectors decreased in accuracy when compared to those with a
larger amount of eigenvectors, but both reached these accuracies at earlier epochs during training
the model. The dataset truncated with 5 eigenvectors performed with an accuracy of 78,4% at
epoch 5. The dataset truncated with 10 eigenvectors performed with an accuracy of 79,7% at epoch 3.

Overall, the tensor SVD compressed dataset has a lower maximum accuracy than that of the SVD
method. Another thing to mention is that all tensor SVD compressed datasets performed at their
best at a later stage of training compared to the experiments with the original dataset and the
regular SVD compressed dataset. The dataset with 5 eigenvectors performed with an accuracy of
77,4% at epoch 7. The truncated dataset with 10 eigenvectors performed with an accuracy of 79,3%
at epoch 8. The dataset with 15 eigenvectors performed with an accuracy of 79,1% at epoch 6. The
dataset with 20 eigenvectors performed with an accuracy of 79,3% at epoch 6.
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5 Conclusions and further research

The main goal of the thesis was to find out if it was possible to make a quantum-inspired algorithm
for galaxy classification.

A benchmark was proposed in section 3.2 to check the effectiveness of the model, since the dataset
did not originally come with one and it could also be used in further research by allowing other
compression models to be compared to this benchmark.

From the results it can be seen that, in comparison to this classification accuracy baseline, the
convolutional neural network defined in section 3.3, could get to a much better classification
accuracy when trained on the dataset containing the full sized imagery. Averaged over the full
training duration the classification model achieved a 13,2% better classification accuracy than the
baseline that was set in section 3.2.

From the experiment on singular value decomposition from section 4.2 it can be concluded that the
SVD truncated images, averaged over the full training duration, could almost get to the same level
of classification accuracy as the dataset containing the full sized imagery.

In contrast, the compressed data that was truncated using only the first 15 and 20 eigenvectors only
reached a 0,2% lower accuracy than the of the model on the full image. This means that, averaged
over the full training duration, the classification model learning on the 15 and 20 eigenvectors
truncated dataset achieved a 13% better classification accuracy than the baseline set in section 3.2.
The 5 and the 10 eigenvector truncated dataset achieved respectively a 11,3% and 12,7% better
classification accuracy than the baseline.

However this compression algorithm shows that even with only a fraction of the information of the
original image, the classification algorithm could still achieve a higher classification accuracy than
the baseline set in section 3.2. This means that a significant data reduction can be achieved on the
original dataset while still being more accurate than the classification accuracy baseline.

The main problem with the tensor SVD compressed data can be seen in the results from the
experiment in section 4.4, as the compression method used causes noise to appear in the images.
This could also be the cause of the neural network not correctly learning in the same capacity, as
the model does improve on the original and the SVD compressed dataset.

Overall the tensor truncated datasets performed worse than the full sized imagery dataset when
learned by the classification model, but still achieved better classification accuracy than the baseline
set in section 3.2. The datasets truncated with 10, 15 and 20 eigenvectors achieved around the
same classification accuracy and performed 11,5%, 11,6% and 11,8%, respectively, better than the
classification accuracy baseline. The worst performing dataset was the tensor truncated dataset
using only 5 eigenvectors with still a 9,4% better classification accuracy than the baseline.

Again this compression algorithm achieves a significant data reduction compared to the original
dataset while still being more accurate than the classification accuracy baseline. The exceptions to
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this conclusion are the 15 and 20 eigenvectors tensor SVD truncated dataset. These datasets have
a higher data size compared to the original dataset due to the increase in randomly located noise
in the images.

In conclusion, it can be seen that the dataset that was compressed by quantum-inspired algorithms
is harder to learn than the original dataset for this model. It also performs a little bit worse
compared to the dataset compressed using traditional singular value decomposition. All of these
methods do, however, perform better that the baseline, which means that it can identify galaxy
classes better than a normal person could.

Based on the results presented in this paper, it can be concluded that it is possible to create a
classification model using a quantum-inspired algorithm. However it does not perform as good as
singular value decomposition for usage as a compression algorithm.

5.1 Further Research

For further research it would be interesting to investigate the performance of the model on datasets
that are compressed with different algorithms such as JPEG (using dicrete cosine transform) or
PNG (using color quantization), and use the classification benchmark proposed in this thesis to
check their classification accuracy.

Furthermore, it could be interesting to check the model, and the compression algorithms, used in
this thesis to classify other types of astronomical objects, such as stars, quasars, and nebulae. This
would test the versatility and robustness of the algorithm across different datasets and classification
tasks.

Finally, it could be interesting to compare the quantum-inspired algorithm in this thesis with
other advanced machine learning models, to benchmark its performance and identify areas for
improvement.
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A Generating the abbreviation for a GZ2 morphological

classification

As part of the GZ2 data release [12], a short abbreviation (gz2 class) is provided that indicates the
most common consensus classification for the galaxy. It is emphasised by the authors of the GZ2
paper that the intent is not to create a new classification system; rather, this is only a convenient
shorthand for interpreting portions of the GZ2 results. The gz2 class string is generated for each
galaxy by taking the largest debiased vote fraction and selecting the most common response for
each subsequent task in the decision tree. Galaxies that are smooth have gz2 class strings beginning
with ‘E’. Their degree of roundness (completely round, in-between, and cigar-shaped) is represented
by ‘r’,‘i’, and ‘c’, respectively. Galaxies with features/disks have gz2 class strings beginning with
‘S’. Edge-on disks follow this with ‘er’, ‘eb’, or ‘en’ (with the second letter classifying the bulge
shape as round, boxy, or none). For oblique disks, the letter following ‘S’ is an upper-case ‘B’ if the
galaxies have a bar. The bulge prominence (‘d’ = none, ‘c’ = just noticeable, ‘b’ = obvious, ‘a’ =
dominant). Both bars and bulges follow the same general trends as the Hubble sequence, although
the correspondence is not exact. If spiral structure was identified, then the string includes two
characters indicating the number (1, 2, 3, 4, +, ?) and relative winding (‘t’=tight, ‘m’=medium,
‘l’=loose) of the spiral arms. Finally, any feature in the galaxy the users identified as “odd” appears
at the end of the string in parentheses: ‘(r)’=ring, ‘(l)’=lens/arc, ‘(d)’=disturbed, ‘(i)’=irregular,
‘(o)’=other, ’(m)’=merger, ‘(u)’=dust lane. Objects that are stars or artifacts have the gz2 class
string ‘A’. A few examples of gz2 class strings would be:
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• Er = smooth galaxy, completely round

• SBc2m = barred disk galaxy with a just noticeable bulge and two medium-wound spiral arms

• Seb = edge-on disk galaxy with a boxy bulge

• Sc(I) = disk galaxy with a just noticeable bulge, no spiral structure, and irregular morphology

• A = star

Sample images of the twelve most common GZ2 class labels are shown in Figure A.1.

Figure A.1: Example images with their GZ2 classifications.
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