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1 Abstract

The aim of this research, conducted on behalf of PrimeVision, is to develop an effective
methodology for correcting colloquial Dutch care text. In the absence of Dutch grammatical
error correction datasets, synthetic data creation through error introduction methods and text
generation is explored. Experiments are performed using different seq2seq transformer models,
error introduction methods and corpora of text. We evaluated 11 models trained using differ-
ent error introduction methods and GPT-generated base texts through automated metrics and
human evaluation. The 11 models were selected based on in-training GLEU+ scores, suspected
to be corrupted. Despite this suspicion, identical ranking among peer models between post and
in-training GLEU+ scores suggests a potentially reliable model selection process. Human as-
sessment, yielding a Cohen’s kappa of 0.54 (moderate agreement), and post-training GLEU+
scores identified the UL2 model in combination with interpunction & replace bigram errors as
the most effective model-error combination for correcting Dutch colloquial texts. BERTScore
and Sentence-BERT semantic similarity identified this model-error combination as a top per-
former for preserving semantic information. The final experiment compared the effectiveness
of GPT-generated base texts and off-topic mC4 texts for synthetic training data using er-
ror introduction. Both human evaluation (Cohen’s kappa of 0.67, substantial agreement) and
GLEU+ scores consistently favored the GPT-generated text model over the mC4 model, high-
lighting the superior performance of generated on-topic texts. Post-training GLEU+ scores
ranked model performance similiarly to human evaluation, indicating it’s use for further model
enhancement without time-consuming human evaluation. All code and non-sensitive data are
available on Github1.

1https://github.com/skylerf1/paraphraser_code/tree/main
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2 Introduction

In the field of elderly care, care professionals interact with vast amounts of different clients
every day. Care is provided by many different employees that differ significantly in level of
training. All these employees have to be up to date with the situation of their clients. To
achieve this, caregivers are obliged to write a report after each interaction with a client about
their status. Subsequently, these reports can be read by caregivers before interacting with a
client. While specific charts exist for vital information such as prescribed medication, these
reports are important to remain informed about a client. Additionally, the reports are used to
inform the family of clients about their situation. The reports are also used to assess the level
of care required for the client and plan future care.

Writing reports in Dutch poses a challenge for care professionals. Without explicit formatting
guidelines, the records lack structure. Additionally, the demanding workload leads to hastily
written, sloppy and ungrammatical notes, especially for those with lower level of proficiency in
Dutch.

On behalf of PrimeVision, we aim to create a tool which can improve the clarity of care
professional’s reports while maintaining the meaning. This would contribute to making reports
more legible and understandable. This tool aims to elevate the experience of reading reports
for both employees and family members, ultimately enhancing the overall service quality. This
tool should enhance care professionals’ reports by generating improved and more readable
versions. It would then prompt caregivers to confirm whether the revised text maintains the
original message or if further adaptation is required. Figure 1 shows an example report along
with possible corrections.

Original Sentence: Kennisgemaakt met mw. en 3 zoons mw. komt uit Pentagon 17
oost. Altijd gezonde dame. Collumfractuur waarvoor revalidatie in Pentagon. Dementie
gediagnostiseerd. Doofheid waarvoor 2 hoortoestellen. Galblaas wordt niet geopereerd.

Improved Sentence: Ik heb kennisgemaakt met mevrouw en haar 3 zoons .
Mevrouw woont in Pentagon 17 oost. Ze is altijd een gezonde dame geweest.
Ze heeft een collumfractuur waarvoor ze revalidatie ontvangt in Pentagon. Er is de-

mentie gediagnostiseerd. Ze heeft last van doofheid waarvoor ze 2 ge hoortoestellen

heeft . Haar galblaas wordt niet geopereerd.

Figure 1: Anonimized report and a possible improved report.

For this tool, a system is required which can generate a corrected text, based on incorrect in-
put text. The field of research closest associated to this is grammatical error correction (GEC).
Despite it’s name this field focuses on the correction of all types of errors in text, not just
grammatical errors. Currently, neural machine translation (NMT) models are the best at GEC
(Qorib et al., 2022; Sun and Wang, 2022; Omelianchuk et al., 2020; Rothe et al., 2021). To
correct input text, they usually utilize sequence-to-sequence (seq2seq) and sequence-tagging
deep learning models. An additional challenge for this research is the fact that most GEC
research is focused on English text, with some research in Arabic (Mohit et al., 2014), Chinese
(Lee et al., 2018), Czech (Náplava and Straka, 2019), Russian (Rozovskaya and Roth, 2019),
Ukranian (Syvokon and Nahorna, 2021), German (Boyd, 2018) and Japanese (Koyama et al.,
2020). There is currently no Dutch language GEC dataset or research conducted using NMT.
Therefore, we first need to create synthetic training data. To create this tool, this research
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will delve into deep learning models, GEC for low-resource languages and methods to generate
synthetic training data. This research aims to address the following questions:

Main Research Question: What is the effectiveness of different error introduction meth-
ods on LLM-based generated Dutch care texts for enhancing the performance of end-to-end
deep learning models for correcting colloquial Dutch care text while preserving the semantics
of the original text?

• Subquestion 1: How should we generate our Dutch care texts?

• Subquestion 2: How can we assess the performance of the models, including the gen-
erated Dutch care texts and error introduction methods?

• Subquestion 3: How can we determine the most suitable error introduction methods
and models for effectively correcting colloquial Dutch care text?

To address Subquestion 1, methods for creating synthetic training data for seq2seq models
are discussed. This is followed by a discussion of experiments with Generative Pre-trained
Transformers (GPT) as a means to generate annotations, errorful text, and on-topic texts.

To answer Subquestion 2, different evaluation methods to assess corrections created by a
model are explored. This will also include metrics to measure semantic preservation between
original sentence and candidate sentence. Both human and automatic metrics will be used.

To answer Subquestion 3, we will discuss different error introduction methods and models
of prior research. We will also go into an experimental design using the evaluation metrics from
Subquestion 2 to select the most suitable models and methods. Finally we will discuss if it is
possible to rely solely on automated metrics as human evaluation is highly time consuming.

Firstly, we will delve into the theoretical framework (3) of this field. Subsequently, we will
elaborate on our methodology (4), followed by a description of the experimental setup. Next,
we will present the results (5), which will be thoroughly discussed in the following section (6).
Finally, we will conclude our study (7).

3 Theoretical Framework

The goal of this research is to correct Dutch care reports. Therefore we will discuss the way
grammatical error correction (GEC) is approached in prior research since this is the most similar
task at hand. In order to utilize end-to-end neural models effectively, a significant amount of
data is required. While we have access to a large corpus of care reports, these lack annotations
which are required to train models. Furthermore, we do not have the capacity to label large
amounts of care reports manually due to the expensive nature of the task. Consequently, we
will go into the process of synthetic data generation and explore relevant data augmentation
techniques. This is particularly crucial due to the non-existance of Dutch GEC data.

Next, methods of evaluation for GEC systems will be discussed, since quality control of
text correction and text generation is not straightforward. Furthermore, automated evaluation
metrics as well as human evaluation are looked into. Finally we look into semantic preservation
and if we can incorporate semantic similarity metrics in our solution.

7



3.1 Grammatical Error Correction

Grammatical Error Correction (GEC) is vital in correcting errorful text, therefore it is a key focus
of this research. GEC considers the task of detecting and correcting errors in text automatically.
These errors can be all types of mistakes including spelling errors and semantic errors, not just
grammatical errors, as the name suggests. In practice, the goal of GEC is to create error-
free text from errorful text while maintaining the same intended meaning, using minimal
modifications. This goal is less ambitious than the example in Figure 1 which aims to include
contextual information, even if this is not present in the text itself. Furthermore, GEC usually
operates at the sentence level, so cross-sentence contextual information is lost. GEC has a
long history of rule-based methods, statistical classifiers and statistical machine translation.
However the current state-of-the-art systems are based on NMT models (Qorib et al., 2022;
Sun and Wang, 2022; Omelianchuk et al., 2020; Rothe et al., 2021), which will be the focus
of this paper.

The foundation of modern GEC models is data. Generally GEC data consists of text which
is badly written and annotated by an annotator with corrections. Due to the nature of the GEC
task acquiring annotated data is an expensive and slow process since erroneous text has to be
carefully read and corrected. Furthermore the text can be corrected in numerous ways and the
chosen correction is subjective to the annotator (Bryant and Ng, 2015; Choshen and Abend,
2018a). To normalize the annotation method as much as possible, annotation guidelines are
made. The most popular methods are minimal corrections and fluent corrections (Table 1).
The idea of minimal correction is to change as little as possible to create a grammatically
sound text. Most GEC datasets are annotated according to the minimal corrections method.
However Sakaguchi et al. (2016) argue that this leads to unnatural corrections and they come
up with the idea of fluent correction. Fluent correction aims to correct a sentence by optimizing
any additional unnatural aspects of text. This usually means changing a word to a different
one. Instead of building a sentence around a misused word, as minimal correction would do,
fluent correction improves the word choice. Minimal correction guidelines are generally easier to
use for annotators than fluent corrections although fluent corrections are more desirable. Both
methods have their shortcomings but aim to give an annotator some clearly defined guidelines.
These guidelines do not take away the labour intensive nature of manually annotating erroneous
text in a consistent manner. This results in there being less available data in the field of GEC
compared to similar tasks like machine translation, especially in low-resource languages. There
is only one Dutch GEC dataset as far as we can tell which is the Dutch section of the lang-8
dataset (Tajiri et al., 2012). The problem with this dataset is the fact that it is corrected by
users instead of professionals, and therefore contains many errors. It also consists of at most
588 sentences, since many German texts are mislabeled as Dutch as well.

Original She always hand me good advices when I need it.
Minimal corrections She always hands me good advice when I need it.
Fluent corrections She always offers me valuable advice when I need it.

Table 1: Minimal and Fluent grammatical error corrections examples

3.2 Levenhstein distance

The Levenshtein distance (Levenshtein et al., 1966), or edit distance, is the minimum number
of single-character edits needed to transform one string into another. These character edits
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include insertions, deletions, and substitutions. Calculated through dynamic programming, it
reflects the minimal cost of transformations. This measure is used in many evaluation metrics
and error-introduction methods.

3.3 Synthetic Data

Given the data sparsity inherent in GEC tasks, extensive research has been conducted to
generate synthetic data. This synthetic data is intended to address the demand for substantial
datasets required by neural machine translation models. Given the scalability of neural models
with increased data, the acquisition of additional data that enhances the performance of
the model holds significant value. This is especially crucial for low-resource languages where
alternative data sources are limited, therefore the generation of data becomes even more
valuable.

The original idea of creating synthetic data for GEC is to introduce errors to correct text.
Usually, correct text is found from websites, books, articles or other sources of clean text which
are similar to the type of text that needs to be corrected down the line. Research by Felice
and Yuan (2014) underscores the significance of considering the context of the text, as it
plays a significant role in influencing the quality of the dataset used for GEC. By corrupting a
clean sentence a ’learner’ sentence is created which is paired along with the original sentence
which serves as a reference. There are numerous ways to generate this noise but the dominant
methods fall under noise injection and back-translation (Kiyono et al., 2019). We will discuss
these methods in the next sections.

3.4 Noise injection

Noise injection is the idea of injecting errors into clean text corpora. The injected noise is
either a pattern of errors which is common in the downstream GEC task or rule-based error.

3.4.1 Rule-based

Rule-based error is created by defining rules which apply changes to the clean text based
on linguistic knowledge. Each rule has a probability associated with it which controls when
it will apply. These probabilities can be based on the available data distribution, empirical
experimentation or can be chosen arbitrarily (Bryant et al., 2022). The introduced error can
be focused on the character or word level. Lichtarge et al. (2019) introduce spelling errors
to Wikipedia edit history by replacing, inserting, deleting and swapping characters. In their
study, Zhao et al. (2019) employ comparable techniques focusing on the word level. These
techniques encompass the deletion, insertion, shuffling, and replacement of words within a
sentence. Combinations of word and character noising were used by the succesful approach of
Grundkiewicz et al. (2019). Rule-based error introduction can be used both offline to generate
more training data or during training to increase the error rate in a parallel corpus instead of
creating additional data (Zhao and Wang, 2020).

3.4.2 Error patterns

Another method to introduce errors to clean text is by identifying and injecting error patterns
which frequently occur in relevant text. The advantage of this method is that the introduced
errors are relevant and more similar to human error. Rozovskaya and Roth (2010) introduced
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three distinct approaches for incorporating article errors, drawing from the error distribution
observed in English as a Second Language (ESL) data. These approaches involve adding article
errors based on the distribution of articles in the original text, the distribution of articles in the
corrected text, and the distribution of article corrections themselves. Yuan and Felice (2013)
explored an alternative approach to mimic human errors by extracting correction patterns
from GEC datasets. They applied the inverse of those corrections on grammatically accurate
sentences, taking inspiration from the corrections found in the NUCLE corpus (Dahlmeier et al.,
2013). These methodologies require detailed GEC datasets which is a problem for low-resource
languages.

3.5 Back-translation

A more automated way of generating human error is by using a noisy channel model which
is essentially an inverted GEC model. Instead of using a learner sentence as the source and
a reference sentence as the target as training data, the learner sentence becomes the target
with the reference as the source. The method was initially introduced as a means to generate
supplementary data in the domain of machine translation (Sennrich et al., 2016). However, its
applicability extends seamlessly to GEC. This approach was applied to GEC first by Xie et al.
(2018). While this is a valuable research direction it will further be excluded from this research
since there are no Dutch GEC models nor datasets which can be used for this approach.

3.5.1 Round-trip translation

An alternative approach to back-translation, which is less commonly used, is round-trip trans-
lation. This method generates synthetic sentence pairs by utilizing a bridge language, such
as English-Japanese-English (Madnani et al., 2012). The key idea here is that the translation
model will not be perfect and introduce translation errors to the text. This will create new
learner sentences along with the correct original, expanding training data. Zhou et al. (2019)
introduce the idea of using two translation models, a low and a high quality model, and using
these to generate a learner and reference sentence respectively. This can be of value if there
is a relevant dataset in a different language for additional data.

3.6 Low-resource approaches

Kiyono et al. (2019) perform extensive experimentation with the settings for generating syn-
thetic data. They corrupt text using both back-translation (BackTrans) and noise injection
(DirectNoise). BackTrans was introduced by Xie et al. (2018). It is a modification of back-
translation that incorporates noise into the scoring process. The method involves adding a
randomly sampled noise term, βrandom, to the score of each hypothesis in the beam at every
time step. In this case, the noise value r is uniformly sampled from the range [0, 1], while
βrandom ∈ R ≥ 0 is a hyper-parameter that determines the scale of the noise. If βrandom is set
to 0, BackTrans becomes equivalent to the standard back-translation method.The DirectNoise
method entails inserting different types of noise. First of all using masking with the placeholder
token ’<mask>’. Secondly, deleting tokens. Thirdly, inserting a random token. Finally, keeping
the original token. For each token, the choice is made based on the categorical distribution
(µmask, µdeletion, µinsertion, µkeep). The best settings they found in their experimentation
are: (µmask, µdeletion, µinsertion, µkeep) = (0.5, 0.15, 0.15, 0.2). These settings are used
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together with a large database of clean text to generate pseudo data, used for pre-training a
model. The best settings this approach found lead to severely corrupted text.

Náplava and Straka (2019) research GEC in low-resource scenarios using synthetic data.
Their method is based on Grundkiewicz et al. (2019). They draw a probability perror word

from a normal distribution with a predefined mean and standard deviation. They multiply this
probability with the amount of words in a sentence and get the number of words to introduce
permutations to. These permutations are selected based on predefined probabilities. For the
model to be robust they also apply the same noise to characters based on perror char sampled
from a different distribution. They assigned a value of 0.15 to perror word and 0.02 to perror char.
To estimate the error distributions of individual operations, they used the development sets of
each language. They used the permutations described below.

• Substitution: substituting using spellchecker suggestions/random character with a prob-
ability pword sub 0.6-0.7 and pchar sub 0.2-0.25

• Deletion: deleting with a probability pword del 0.05-0.1 and pchar del 0.2-0.25

• Swap: swapping the word with it’s right-hand neighbour with a probability pword swap

0.01-0.1 (only for words)

• Insertion: inserting a random word after the selected word with a probability pword sub

0.1-0.2 and pchar ins 0.2-0.25

• Capitalization: removing or adding capitalization with a probability pword cap 0.2-0.25
and pchar cap 0.2-0.25

White and Rozovskaya (2020) conducted a comparative analysis of the synthetic data
generation techniques employed by the top-performing submissions in the restricted and low-
resource tracks of the BEA-2019 Shared Task on Grammatical Error Correction (Bryant et al.,
2019). UEDIN-MS (Grundkiewicz et al., 2019) and Kakao&Brain (Choe et al., 2019) performed
best on these tracks. UEDIN-MS utilized an inverted spellchecker to introduce noise to clean
text. The spellchecker suggests a list of words for a word. These words are then ordered based
on the Levenshtein (Levenshtein et al., 1966) based weighted edit distance and phonetic
distance. This results in a confusion set consisting of 20 words. In this approach, the number
of words to modify in each sentence is determined by considering the word error rate observed
in the real dataset. For each selected word, one of the following operations is applied:

• With a probability of 0.7, the word is replaced with a randomly chosen word from the
confusion set.

• With a probability of 0.1, the word is deleted.

• With a probability of 0.1, a random word is inserted.

• With a probability of 0.1, the position of the word is swapped with an adjacent word.

These operations are also applied at the character level to 10% of the words to generate
spelling errors. This method was created to introduce general noisy data to train a general
purpose GEC model.
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Kakao&Brain use two noising methods. First of all they use a small sample of real data with
annotated error patterns to capture common errors. These common errors are then used on
generated data in reverse to generate errors. Secondly, if a word does not have an associated
common error associated to it, they apply a type based noising scheme based on parts-of-
speech (POS). Only prepositions, nouns and verbs are selected with a probability of 0.15.
During the transformation process, propositions are substituted with alternative propositions,
nouns undergo either pluralization or singularization, and verbs are morphologically modified.
According to experiments from White and Rozovskaya (2020), the method of Kakao&Brain
performs better than UEDIN-MS, especially in conjunction with an off the shelf spellchecker
during preprocessing.

The sequence-tagging approach presented by Omelianchuk et al. (2020) for GEC differs
from traditional seq2seq GEC models. Their system uses a pre-trained language model (BERT)
and 9 million synthetic sentence pairs to train a modified BERT model (Devlin et al., 2018).
While seq2seq models generate the corrected text from an input text, Omelianchuk et al.’s
approach generates a sequence of edits which have to be applied to the input text, resulting in
a ten-fold increase in inference time. To address the challenge posed by token-based edit op-
erations, which may sometimes fall short in capturing more complex, multi-token fluency edits
(Lai et al., 2022), Omelianchuk et al. employ multiple iterations of correction. Omelianchuk
et al.’s method reaches near state-of-the-art performance with a significant inference speed
reduction.

Rothe et al. (2021) introduce a simple recipe for multilingual grammatical error correction.
They apply a language agnostic method to generate a large amount of synthetic pre-training
data. Their method consists of using the mC4 corpus and splitting all the paragraphs into
sentences. 98% of the sentences are corrupted using a combination of the following operations:
dropping spans of tokens, swapping tokens, dropping spans of characters, swapping characters,
inserting characters, lower-casing or upper-casing the first character of a word. 2% of the
sentences are left unaltered to teach the model that input can be correct. They do not share
the exact probabilities of these operations. Since this approach is focused on multilingual
applications they refrain from using language specific text corruption methods because those
methods would be difficult to apply to all languages. Additionally, Rothe et al. (2021) tried
out three options for pre-training their seq2seq models: pre-training with a mix of synthetic
GEC data and hand-annotated gold standard data, with and without different prefixes to signal
what type of data it is to the model. Finally they tried using synthetic GEC data pre-training
until convergence and fine-tuning on gold standard data afterwards. While the latter is the
most computationally expensive, it performed the best.

3.7 Evaluation

To measure the performance of GEC systems, evaluation metrics are used. Due to the compli-
cated nature of comparing pieces of text, this is an active area of research and there are many
different evaluation metrics. We will discuss the most used and relevant evaluation metrics for
our research. There is a distinction between reference-based evaluation metrics and reference-
less metrics. Reference-based metrics are generally more powerful, while reference-less metrics
are easier to apply, but tend to be less powerful.
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3.7.1 Maxmatch

Maxmatch (M2) scorer (Dahlmeier and Ng, 2012) is a reference-based evaluation metric. It
compares hypothesis corrections and human annotated corrections, where a correction consists
of a set of edits. An edit consists of a word or span of words from an original sentence along with
a correction, for example for the original sentence ’The car has driving to the store by Joe.’ an
edit can be [has driving → was driven]. When an hypothesis edit matches the human correction
it is considered a true positive (TP). If a hypothesized edit is not present in the reference it
is considered a false positive (FP) and if a reference edit is not present in the hypothesis it
is considered a false negative (FN). These TP, FP and FN can be used to calculate precision
and recall. Precision and recall represent the amount of hypothesis edits that were correct and
the amount of reference edits that were present in the hypothesis respectively. Precision and
recall can be used to calculate the Fβ score. In GEC research it is standard to use β = 0.5
which weights precision twice as much as recall since it is generally considered more important
to be accurate than to capture all errors. A problem of edit based measures is that there is
often numerous ways to define the same edit. e.g an edit can be considered [has driving → was
driven] as well as [has → was] and [driving → driven]. Traditionally these were not considered
TP however M2 employs Levenshtein alignment (Levenshtein et al., 1966) between original
text and the hypothesis which makes it possible to consider all ways to combine edits so the
hypothesis edits maximally match the reference edits. M2 does require specific annotation
methods to acquire the edits.

P =
TP

TP + FP

R =
TP

TP + FN

Fβ =
(1 + β2)× P ×R

(β2 × P ) +R

3.7.2 ERRANT

ERRANT is similar to M2 as it is also a reference- and edit-based evaluation metric. ERRANT
expands on M2 by going into detail and judging systems based on their performance on
specific error types. It uses a Damerau-Levehnstein alignment algorithm to filter edits from
a hypothesis text (Felice et al., 2016). ERRANT then uses rule based framework to classify
the changes to error types. This makes it possible to calculate Fβ scores for each error type
individually. It has three levels of error distinction listed below. ERRANT was initially developed
for the English language and has been extended to multiple languages. However, Dutch is not
currently supported. This is currently the most detailed error type specific error metric.

• Edit Operation (3 labels): Replacement, Missing, Unnecessary

• Main type (25 labels): e.g., Verb, Noun, Verb Tense, Spelling

• Full type (55 labels): e.g., Replacement Verb, Missing Noun, Unnecessary Verb

13



3.7.3 Generalized Language Evaluation Understanding

Generalized Language Evaluation Understanding (GLEU) (Napoles et al., 2016a) is another
reference based metric, inspired by BLEU (Papineni et al., 2002). Shortly after initial pub-
lication, GLEU+ was introduced in Napoles et al. (2016b), improving their methodology. It
differs from M2 and ERRANT since it only requires a corrected reference text and not ex-
plicit edit annotations. The core idea behind GLEU+ is to recognize and reward hypothesis
n-grams that align with the reference but differ from the original text, while also imposing
penalties on hypothesis n-grams that match the original text but differ from the reference.
In equation 1 the calculation of GLEU+ precision pn is shown. Assume a set of original sen-
tences O = {o1, . . . , ok} and their respective hypothesis sentences H = {h1, . . . , hk} and
reference sentences R = {r1, . . . , rk}. oi, hi, and ri represent the sequences of n-grams of
length n = {1, 2, . . . , N} (where N = 4 is the default in GLEU+) present in the sentences
instead of the sentences itself. These n-gram sequences oi, hi, and ri are then utilized to com-
pute a precision term pn which considers the intuitive idea of rewarding and punishing n-gram
overlap. If more than one reference sentence is available, a random reference is selected and
the score is averaged over 500 iterations of this random selection.

pn =

∑|H|
i=1

(∑
g∈{hi∩ri} counthi,ri(g)−

∑
g∈{hi∩oi}max[0, counthi,oi(g)− counthi,ri(g)]

)
∑|H|

i=1

∑
g∈{hi} counthi

(g)

counta(g) = number of occurrences of n-gram g in a

counta,b(g) = min(number of occurrences of n-gram g in a, number of occurrences of n-gram g in b)
(1)

3.7.4 Human evaluation

Various approaches have been suggested for the human assessment of system outputs. For
GEC, this was initially done by ranking corrections of various systems against each other using
the Appraisal framework (Federmann, 2012). This framework involves ranking randomly chosen
samples of n system hypotheses to get pairwise judgments and calculate an overall system
ranking. This methodology was later deemed unreliable due to varying correlation coefficients of
research while they essentially performed the same experiment (Bryant et al., 2022). Choshen
and Abend (2018b) found that these methods were unreliable partially due to low inter-
annotator agreement (IAA). In their exploration of reliable methods for collecting human
ratings of competing systems, Sakaguchi and Van Durme (2018) and Novikova et al. (2018)
found that partial ranking with scalers (PRWS) works best. The method involves presenting
participants with the original sentence and n corrected versions, along with a continuous
scale to score the sentence. they both found that evaluators implicitly adjust their scores
for each hypothesis to be relative to the other hypotheses, making the numeric scores more
discriminative.

This method was adopted by Napoles et al. (2019) for their human evaluation. They selected
hypothesis sentences from five models with a respective continuous scale from 0 (Completely
ungrammatical) to 100 (Perfect). They introduced 3 ’systems’ as a baseline: source sentence,
randomly chosen reference sentence and the source sentence with 1-2 errors introduced. They
ensured to perform human and automatic evaluation on their entire dataset to adress the
criticism of inconsistant sampling from Choshen and Abend (2018a). These judgments on the
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continuous scale were then used to calculate human scores for each sentence per system by
averaging over the 8 evaluators.

To determine the effectiveness of automated metrics, extensive research has been con-
ducted with the premise that the best metric is the one that exhibits the highest correlation
with ground-truth human judgments. Initial studies by Napoles et al. (2015) and Grund-
kiewicz et al. (2015) used the Appraise evaluation framework (Federmann, 2012). Subsequent
research by Napoles et al. (2019) acknowledged the subjectivity issue brought forward by
Choshen and Abend (2018b) and introduced a continuous scale and collected evaluations on
all sentence-pairs to combat sampling bias. They discovered that the dataset does impact
metric performance, likely due to inconsistent human judgments across different error type
distributions. Bryant et al. (2022) note that using ground-truth human judgments as a bench-
mark for metric performance seems like an intuitive approach, however it’s highly subjective
and should be taken with caution. The case of the I-measure illustrate this well. It was initially
thought to have a weak correlation with human judgments (Grundkiewicz et al., 2015), then
turned out to have a good correlation at the sentence level (Napoles et al., 2016b), and finally
was considered the best metric across different domains (Náplava and Straka, 2019). This
inconsistency highlights the ongoing challenge of figuring out reliable methods for evaluating
automatic metrics.

3.7.5 Semantic similarity

There are two types of semantic similarity evaluation; human and automatic evaluation (Zhou
and Bhat, 2021). We will first go into automatic evaluation metrics to assess semantic similar-
ity. First of all BLEU was used to judge the performance of GEC models. BLEU was originally
made to evaluate machine translation models. BLEU focuses on precision of the n-gram overlap
between generated and reference (Papineni et al., 2002). Secondly Rouge is used to capture
the recall and other aspects such as skip-bigrams and the longest common subsequence from
the original sentence within the paraphrase (Lin, 2004). However, both BLEU and ROUGE are
unable to assess semantic similarity between words since they are based on n-grams and just
look for identical text. Metric for Evaluation of Translation with Explicit ORdering (METEOR)
(Banerjee and Lavie, 2005) attempts to capture the semantic equivalents between sentences.
This is done based on unigram matching, including stemming and dictionary-based synonymn
search. However, for the Dutch language no synonymn dictionary is present for this metric.

Recently contextualized text embeddings have been used to compare semantic similarity
between texts. Contextualized text embeddings consist of different high-dimensional represen-
tations for the same word in different texts, depending on the the adjacent words. BERTScore
(Zhang et al., 2019a) is an evaluation method which uses the contextualized text embed-
dings directly from a BERT model (Devlin et al., 2018). BERTScore computes pairwise cosine
similarity between each token in the hypothesis and reference text (Figure 2). Next each hy-
pothesis token is matched to their most similar reference token, to capture both precision and
recall between the texts. Optionally, the inverse document frequency (IDF) can be used to
increase the weight of rarely used words, assuming they are highly indicative of meaning. Fi-
nally, BERTScore is calculated by averaging the cosine similarity between all best found token
pairs, with or without IDF weighting. This results in a score between 0 and 1 of how similar a
text is. Which BERT model layer performs best for the contextualized sentence embeddings
is based on tuning using the WMT16 metric evaluation dataset (Bojar et al., 2016).
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Figure 2: How BERTScore works (taken from Zhang et al. (2019a))

Contextualized embeddings have been shown to perform well at paraphrase detection as well
as being able to capture distant dependencies (Devlin et al., 2018). BERTScore is also more
robust to adversarial data from the PAWS high lexical overlap dataset (Zhang et al., 2019b).
BERTScore is available in multiple languages, including Dutch. However, only a multilingual
model has been properly tested for the application in the Dutch language.

Another method for generating contextualized sentence embeddings is Sentence-BERT
(SBERT) (Reimers and Gurevych, 2019). SBERT is a modified version of BERT designed
to efficiently generate semantically meaningful sentence embeddings. Unlike BERT, SBERT
focuses on enabling tasks like semantic similarity search and clustering with reduced com-
putational time. It achieves this by using siamese and triplet network structures, which al-
lows sentence embeddings to be compared using cosine similarity efficiently. In comparison
to BERTScore, which evaluates the quality of machine-generated text, SBERT is tailored for
generating embeddings and assessing semantic similarity, offering a more efficient approach
for tasks like similarity search.

Given the focus of automatic evaluation metrics on n-gram overlap rather than meaning, hu-
man evaluation is used for a more accurate and qualitative assessment of the generated output.
In human evaluation, annotators are tasked with scoring sentences on similarity. Despite the
manual efforts involved, human evaluation, although costlier than its automatic counterpart,
emerges as a more representative measure of the generated output’s quality.

3.8 Models

The focus of this research is on pre-trained seq2seq transformer models that have been pre-
trained on Dutch text. This pre-training process involves training the model on raw text data
without any human annotations or labels. This approach allows the model to leverage a vast
amount of publicly available text data. The models use an automatic process to derive inputs
and corresponding outputs from this text corpus, making it a valuable tool for a wide range
of NLP tasks.

3.8.1 Unifying Language Learning model

The ’Unifying Language Learning’ (UL2) model has a classic T5 model architecture (Raffel
et al., 2020). The T5 (Text-to-Text Transfer Transformer) model, operates as an encoder-
decoder architecture, and it approaches all natural language processing (NLP) problems in a
text-to-text format. The model closely resembles the original Transformer architecture pro-
posed by Vaswani et al. (2017), with a few changes. Specifically, they eliminate the layer norm
bias and relocate layer normalization outside the residual path. They also adopt an alternative
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position embedding scheme. It’s trained using the UL2 Mixture-of-Denoisers (MOD) objective
(Tay et al., 2022).

The UL2 MOD objective consists of R-denoising, X-denoising and S-denoising (Figure 3).
R-denoising (or regular span corruption) is the original T5 span corruption objective. It masks
a range of 2 to 5 tokens, which results in around 15% of the input tokens being masked. The
goal of this short span denoising method is to acquire knowledge about language. X-denoising
is an extreme form of denoising since the model must reproduce much of the input, while it
only has a small amount of it. This scenario simulates a situation where the model is tasked
with generating an extensive output from a memory source that contains a comparatively
limited amount of information. To do this 50% of the input tokens are masked. This is done
by increasing the corruption rate per token or increasing the span length of masking. A pre-
training task is considered extreme when it has a long span (>11 tokens) or a high corruption
rate (>30%). It is to used interpolate between a downstream language model objective and
regular span corruption. S-denoising is a specific case of denoising. Here a sequential order is
maintained between the inputs to target. The input text is divided into two sub sequences and
the first part is always the context and the final part is the target. This means that the target
tokens never rely on future information. This denoising method is different because a target
token can never appear before the context. The model is provided with a specific prefix for
each type of denoising, to inform what type of denoising it should consider for an input text.
During inference the UL2 model also expects a prefix. For general language understanding
fine-tuning tasks, usually the R-denoising prefix is used.

Figure 3: Visualisation of R,S and X-denoising (taken from Raffel et al. (2020))

3.8.2 Multilingual Bidirectional and Auto-Regressive Transformers model

Multilingual Bidirectional and Auto-Regressive Transformers (mBART) (Liu et al., 2020) is a
denoising auto-encoder with a seq2seq architecture, pre-trained on monolingual datasets across
multiple languages, utilizing the BART pre-training methodology (Lewis et al., 2020). This
pre-training objective uses text corrupted by using masking, sentence permutation, document
rotation, token deletion and span prediction. Sentence permutation swaps sentences around,
span prediction selects 35% of the tokens based on a Poisson distribution and masks these.
Document rotation entails that the sentences are shuffled randomly. The model uses the
standard seq2seq Transformer setup (Vaswani et al., 2017). This method is employed for
many languages in the same model; including Dutch.
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3.9 Large Language Models

Large Language Models (LLMs) have emerged as valuable tools in natural language process-
ing. They demonstrate significant advancements in understanding and generating human-like
text (Brown et al., 2020). These models utilize deep learning and are often pre-trained on
massive datasets to acquire a comprehensive understanding of language patterns, structures,
and semantics.

3.9.1 Generative Pre-trained Transformers

The most well-known version of LLMs is the family of Generative Pre-trained Transformers
(GPT), developed by OpenAI. GPT relies on the transformer architecture for capturing intricate
linguistic features supported by unsupervised learning, where the model is pre-trained on diverse
and extensive textual corpora, enabling it to learn the intricacies of language without task-
specific annotations.

GPT operates autoregressively, generating text one token at a time based on the context
of input and the generated text so far. This is facilitated by self-attention mechanisms in
the transformer architecture (Vaswani et al., 2017), which allows GPT to consider an entire
input sequence when predicting the next token. The attention mechanism enables GPT to
capture long-range dependencies and nuanced context. This results in coherent text generation,
exemplified in the popular ChatGPT model.

For this research we will discuss GPT-3 over GPT-2 and GPT-4 since GPT-2 is outdated
and GPT-4 was unavailable at the beginning of this research. GPT-3 is a 175-billion pa-
rameter transformer model (Vaswani et al., 2017), including modified model initialization,
pre-normalization and reversible tokenization (Brown et al., 2020). GPT-3 is pre-trained on
an extensive dataset consisting of a filtered version of CommonCrawl, the English-language
Wikipedia combined with high-quality reference corpora. According to Brown et al. (2020),
GPT can understand language at different levels, recognizing grammar, meaning, and practical
usage. This versatility makes GPT a valuable asset for numerous natural language processing
tasks, including text generation and language understanding.

GPT-3 can perform few-shot and zero-shot learning. Zero-shot learning consists of instruct-
ing a model on a task using only words, without any examples. Few-shot learning involves
providing examples of the desired task to the model. Based on these instructions GPT-3 can
generalize the information and is capable of performing various tasks described in this manner.

In the context of this research, GPT-3 is leveraged to generate synthetic Dutch care text,
contributing to the creation of a contextually relevant dataset. Further details on the specific
implementation and application of GPT models in this study will be discussed in subsequent
sections.

4 Method

In the method section, we delve into a detailed examination of our subquestions.
Firstly, we attempt to answer Subquestion 1: ’How should we generate our Dutch care

texts?’ To answer this we discuss different approaches to generate Dutch care texts and their
merits and drawbacks.

Secondly we address Subquestion 2: ”How can we assess the performance of the models,
including the generated Dutch care texts and error introduction methods?” This involves
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a detailed examination of relevant human and automatic evaluation methods, including an
examination conducted on the evaluation of semantic preservation.

Third, to answer Subquestion 3: ”How can we determine the most suitable error introduction
methods and models for effectively correcting colloquial Dutch care text?” There will be a
detailed description of the chosen error introduction methods and models. Finally we will
discuss our experimental setup.

Before delving into the subquestions, we will first offer a detailed overview of the available
dataset, outlining the data preprocessing steps, and describing the methods we employ to
generate a synthetic dataset. All our generated synthetic data is available on Github2

4.1 Data

This research has access to a dataset comprising textual reports written by employees of
an elderly care organisation, detailing both in-house and external care patients. This data
belongs to an anonymous private healthcare provider with facilities in multiple cities in the
Netherlands. These records encompass a diverse range of texts, extending beyond employee-
patient interactions to include a spectrum of updates, observations, and notes related to
patients. The primary purpose of these entries is to facilitate communication among co-workers,
ensuring that all relevant team members remain informed about a patient’s status. Moreover,
these records are also used to offer updates to family members. They are accessible online
through the care organization’s website, if given access by the patient. In the absence of
any formatting guidelines, the records are unstructured. Furthermore, due to the employees’
numerous responsibilities, the quantity of notes that need to be written and their often limited
proficiency in Dutch, the notes are often sloppy and ungrammatical. There are up to 32 possible
fields available per care report entry, however most fields are empty and unused. The fields
that are consistently used are the time and date of creation, client ID and employee ID. While
there is a specific field dedicated to ’pulse pressure’ it is empty even when this information
is mentioned in the care report. This indicates how most fields are unused in general. Due
to privacy regulations, it is not allowed the share samples from the data, however, to give an
impression of the data we will provide a few anonymized examples (Table 2). Note that due to
the extreme diversity and lack of guidelines, many different types of reports are also present
in the corpus.

2https://github.com/skylerf1/paraphraser_code/tree/main/data/synthetic_error_data
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Entry # Anonymized care entry
1 Meneer vanmorgen gedoucht. Alles schoon aangedaan kon geen schonen ondergoed

vinden. Kleding die er hing heb ik in de wasmand gedaan. Bed was schoon dit
opgemaakt.

2 Meneer op de gang tegen gekomen. Meneer vroeg aan mij of ik zijn trui aan kan
trekken omdat hij koffie wilt gaan drinken. Aangegeven dat ik zijn trui een halfuur
geleden uit heb getrokken.

3 Middag: O:Mevr heeft vanmiddag 50 cc urine in haar opvangzak. P:Mevr extra
drinken aanbieden. Avond: O:Mevr heeft blauwe plekken op de heupen.

4 Meneer liep hart over de gangen heen en telde regelmatig Meneer zag er moe uit
Meneer is rond 20.30u naar bed gebracht is echter nog wel wakker om 22.20u.

5 zus was op bezoek vanmiddag even kort gesprek gehad met zus; zus geeft aan dat
meneer in principe opgenomen zou worden op 03/04 in Richterburg/afd Dronte
(tussentijdseopvang + wenning) zus heeft het idee dat dit nu niet meer doorgaat
aangegeven dat meneer hier voor crisis is en niet voor tussentijdse.

Table 2: Example anonimized care entries

4.2 Data Preprocessing

The initial dataset was provided in a comma-separated values (CSV) file. Due to corruption,
certain columns were concatenated with others. To address this issue, we parsed the data,
identifying complete entries by checking if the first value in a row was an integer matching the
size of an employee ID and the last two values were datetime. This parsing process resulted
in 12.865.246 care entries. Subsequently, we applied an abbreviation substitutor to all text,
replacing medical abbreviations with their fully written counterpart to enhance comprehension.
The abbreviation substitutor was developed based on discussions with a care professional who
works with these texts. It included only basic substitutions, lacking advanced and uncommon
abbreviations.

Next, all care entries which had less than 3 or more than 150 words were removed. This
was done to filter out brief entries, which typically lack substantial information. We excluded
entries with more than 150 words since 95% of reports were shorter than 150 words. Longer
entries were infrequent and often resulted from data corruption, involving concatenations of
different data fields. This left us with 11.458.241 entries. The distribution of word length for
these texts is found in Figure 4a. It clearly follows a long-tail distribution with most entries
being relatively short.

In response to the client’s request for a model operating at the sentence-level, we proceeded
to convert the entries into individual sentences, resulting in 45.429.596 sentences. Figure 4b
shows the distribution of amount of words per sentence. Some sentences were 150 words long,
the entire entry. Texts often are multiple sentences without any interpunction applied to them
(Entry 4 & 5 in Table 2). However, the majority of sentences are under ten words, with a
median of 7 words per sentence.

A word frequency analysis was conducted on the processed dataset. The occurrences of
each word and their frequency were recorded. These word-frequency pairs were stored for
subsequent use in a spellchecker. To determine the legitimacy of a token as a word, we
established a threshold based on its frequency within the dataset. A token was considered a
legitimate word if it appeared at least once in every two and a half million words. Consequently,
tokens occurring more than 170 times were deemed real words. This threshold was chosen
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after a thorough exploration of the data, inspecting the lower levels of the word frequency list,
to identify when the majority of tokens stopped being legitimate words. The objective was to
incorporate care-related words unique to our topic into the spellchecker wordlist, as they might
be overlooked when relying solely on generic Dutch word lists.

(a) Distribution of words per entry (b) Distribution of words per sentence

Figure 4

4.3 Data generation

To train a neural machine translation (NMT) system for correcting Dutch medical text, a
substantial amount of training data is required. However, Dutch GEC data is non-existent,
posing a challenge. Although we possess a substantial corpus of relevant sentences in need
of correction, these texts lack annotations. Regrettably, large-scale manual annotation is not
feasible due to its expensive nature. Consequently, to answer Subquestion 1 we explored alter-
native methods, including Large Language Model (LLM) annotation, LLM-generated incorrect
text, and LLM-generated correct text, as potential alternatives.

During our exploration of these models, we encountered challenges with their performance
on Dutch text. Stanford’s LLM, Alpaca (Taori et al., 2023), and Meta AI’s LLM, LLama
(Touvron et al., 2023), did not meet the desired level of Dutch language proficiency, as they
were unable to correct basic Dutch erroneous sentences and would respond with English text.
This limitation prompted us to shift our focus to GPT-3 models Brown et al. (2020), which
demonstrated significantly higher capabilities as they were able to correctly enhance diverse
Dutch erroneous sentences. Therefore they were subsequently selected for further exploration
in our study. Due to budget constraints, we selected GPT-3.5 Turbo, OpenAI’s most cost-
effective model. Despite its affordability, the model demonstrated high capability, as evidenced
by its use in the popular Chat-GPT application.

4.3.1 LLM annotation

Initially, we considered leveraging state-of-the-art LLMs to annotate our textual care reports,
due to their impressive linguistic capabilities. The aim was to generate a dataset with accurate
annotations for a fraction of the cost. Zero-shot instructions were given to the GPT-3.5 model
in Dutch: Verbeter nederlandse medische tekst. Als de input verbeterd kan worden, geef de
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verbeterde versie van de tekst en niets anders. Als de input niet verbeterd kan worden, reageer
met de input tekst. Als de input onbegrijpelijk is reageer dan met de input tekst. Geef geen
extra informatie.’ Translated to English this means: ’Improve Dutch medical text. If the input
can be improved, provide the improved version of the text and nothing else. If the input cannot
be improved, respond with the input text. If the input is unclear, respond with the input text.
Do not provide additional information.’ Refer to Appendix B for a complete list of all further
used prompts. The instructions were in Dutch because, if given in English, the model would
occasionally correct text in English. During experimentation we used the Dutch section of the
lang-8 dataset (Tajiri et al., 2012). Despite occasional misunderstandings, this prompt and
model seemed to perform effectively in labeling erroneous texts and replicating correct ones
during experimentation (See Table 3). However, given that OpenAI retains records of input
data, which is a clear violation of privacy laws surrounding personal medical information, we
ultimately decided that automatic annotation of the corpus was no longer a viable option for
this research.

4.3.2 LLM-generated incorrect text

Since we were unable to directly label our erroneous text, we opted to generate erroneous
medical data using GPT models, thereby overcoming the privacy issues. These generated
erroneous texts would then be annotated using GPT to create our training dataset. Recognizing
the need for more context from the previous approach, we refined our approach to provide
the model with a clearer understanding of the type of text we aimed to generate. This was
attained by performing few-shot learning, including two examples of realistic entries in the
prompt. We created 150 similar anonymized texts based on the real data. We revised the
prompt by including two randomly sampled distinct texts as examples each time the model
generated new texts. This resulted in texts which were more similar in context to the real data.
However, the generated errors were not as diverse as in our actual corpus. Most errors were
spelling errors and problematic sentence structure (See Table 3 for examples) Furthermore,
the model would sometimes refuse to generate incorrect texts. Therefore we decided to stop
directly generating the errors using the GPT model, as the model excelled at generating correct
text.

22



GPT-generated incorrect care entry GPT-generated annotation
De clint heft las van zijn bene. Hij klacht
dat hij niks meer kan. Ik heef hem medici-
jne gegeven en hem geholpen met het aan-
doen van zijn schoene. Hij had ze verkeert
om gedaan en het was moeilijk om ze goed
te krijgen. Hij heef gezegd dat hij pijn heeft
in zijn hofd, dus ik heb hem paracetamol
gegeven. We hebben saamen kofie gedronken
en gepraat over het weer. De clint is erg
dankbaar dat ik er ben om hem te helpen.

De cliënt heeft last van zijn benen. Hij klaagt
dat hij niets meer kan. Ik heb hem medicijnen
gegeven en geholpen met het aandoen van
zijn schoenen. Hij had ze verkeerd om gedaan
en het was moeilijk om ze goed te krijgen.
Hij heeft gezegd dat hij hoofdpijn heeft, dus
ik heb hem paracetamol gegeven. We hebben
samen koffie gedronken en gepraat over het
weer. De cliënt is erg dankbaar dat ik er ben
om hem te helpen.

Meervrouw voeld zich soms heel erg duizelig.
Zij klaagd ook van hartkloppingen. Ik heb
daarvoor een elektrocardiogram gemaakt.
Het lijk normaal te zijn. Meervrouw wilt
graag medicijnen. Ik heb uitgelegd dat ze de
medicijnen regelmatig moet innemen. Maar
zij zegd dat ze de medicijnen altijd op het-
zelfde tijdstip inneemt. Ik heb haar uitgelegd
dat dit niet goed is. Ze was heel geirriteerd
en wilt dat ik de medicijnen voorschrijf zon-
der te kijken naar haar medische conditie.

De vrouw voelt zich soms duizelig en klaagt
over hartkloppingen. Ik heb een elektrocar-
diogram gemaakt, maar deze lijkt normaal
te zijn. De vrouw wil graag medicijnen, maar
ik heb uitgelegd dat ze deze regelmatig moet
innemen. Ze zegt dat ze de medicijnen al-
tijd op hetzelfde tijdstip inneemt, maar ik
heb haar uitgelegd dat dit niet goed is. Ze
was gëırriteerd en wilde dat ik medicijnen
voorschrijf zonder naar haar medische con-
ditie te kijken.

Gisteren is meneer opstaan geholpen door de
verpleger. Hij heb niet zo lekker geslapen en
heeft geklaagd van een zore rug. We hebben
de dokter gebeld om de medicijnen te wis-
selen, en de afspraak zal plaatsvinden in
3 weken. De toestemmingsverklaring heb ik
onderteken en in de documenten geplaast.
Hopelijk voelt meneer zich beter na de medi-
cijn wisseling.

Gisteren is meneer geholpen met opstaan
door de verpleger. Hij heeft niet zo lekker
geslapen en heeft geklaagd over een zere rug.
We hebben de dokter gebeld om de medici-
jnen te veranderen en de afspraak zal over
3 weken plaatsvinden. Ik heb de toestem-
mingsverklaring ondertekend en in de docu-
menten geplaatst. Hopelijk voelt meneer zich
beter na de medicijnwisseling.

Table 3: Example of LLM-generated incorrect texts & LLM-generated annotations

4.3.3 LLM-generated correct text

To create synthetic erroneous data, people typically use a large corpus of grammatically sound
texts and introduce errors. However, aligning the content of this corpus with the specific type
of text that needs correction can be challenging. In our case, focusing on Dutch medical text
correction, an ideal scenario would involve a large corpus of accurately written Dutch medical
texts in our writing style. To address the lack of access to such data, we turned to GPT for a
solution. We opted to generate accurate medical texts, similar to our corpus, that we would
later intentionally corrupt to create our erroneous and target texts. The corruption process
is discussed further in the error introduction section. This data generation process aims to
produce a wide variety of accurately written texts, capturing the diversity found in our medical
corpus. This approach is rooted in the idea that a model trained on contextually similar data
will outperform a model trained on off topic data, as Felice’s research (Felice and Yuan, 2014)
suggests.
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Therefore, we shifted our focus to generating correct care entries. These texts could be
used as our relevant corpus. We instructed the GPT model to emulate a Dutch medical care
professional who communicates in plain language and provides daily or partial-day updates on
the care situation of elderly individuals. This led to a varied array of descriptions depicting
relevant situations. However, we observed that the generated data did not describe similar
events as our actual dataset. To address this, we applied few-shot learning. We used the same
150 examples of medical entries described in the previous section. These were based on random
samples from the real corpus, however no sensitive information was present in them. We then
prompted the GPT model with the same instructions, along with two distinct randomly selected
examples. We chose for two examples over one because different combinations of examples
could result in different outcomes. Additionally, more than two examples would likely result in
even better text. However, the more examples used, the more is paid per generated sentence
since more tokens are used. It was our reasoning that the model would be able to generate
more diverse texts with more examples. This was supported by the decrease in the amount of
duplicate sentences. While zero-shot learning resulted in 16% of the sentences being duplicates,
few-shot learning resulted in 6% duplicated sentences. Based on a qualitative assessment, it
appears that the model tends to generate texts with a higher similarity to our real corpus
compared to the other approaches.

Later, we incorporated a Named Entity Recognition (NER) model, provided by a colleague
at PrimeVision working on the same dataset (Clemente, 2023). This NER model, tailored for
this dataset, was specifically trained to identify entities such as persons, locations, diseases,
medications, statuses, body parts and dosages. Applying the NER model to the care reports
corpus produced word-NER tag combinations. Utilizing the identified words with NER tags
(excluding person and location for confidentiality reasons) as keywords, we prompted the
GPT model. These keywords, combined with hand-written examples, guided the GPT model
to generate text mimicking a care professional (Full prompt in Appendix B). Each prompt
involved three keywords and two example entries, contributing to the realistic nature of the
generated data. This strategy should enhance the diversity of the generated text, and as a
result, the scalability of the generation process was improved. This was supported by a further
decrease in the occurrences of duplicate sentences to 1%.

To compare error introduction methods and models, we needed a clean care entries corpus.
Therefore, we used the above method to generate enough care entries for 100.000 sentences
(See Table 4 for some example sentences). We decided to generate five care entries per prompt,
we did this because we wanted to experiment whether these texts would be significantly
different and it was very cost effective. Subsequently, we split these texts into sentences. The
generated entries consisted of approximately 4.7 sentences per entry on average. Finally, we
checked for duplicate which we removed. We deemed 1% of duplicate sentences low enough
to select this approach as our answer to Subquestion 1: ’How should we generate our Dutch
care texts?’

4.4 Error Introduction

With our newly generated corpus of Dutch care sentences in hand, the next step was to
corrupt the correct sentences by introducing errors, aiming to align it more closely with our
actual corpus of care entries. Examples of the corruption methods used are found in Figure 5
and 6.

We base our methods on error introduction methods for low resource scenarios from Náplava

24



and Straka (2019), Grundkiewicz et al. (2019), Choe et al. (2019) and Rothe et al. (2021).
We have devised four distinct pipelines for introducing errors to our corpus of originally correct
care entries. All of these versions involve word replacement through a spell-checker, and we will
begin by elaborating on this process. Afterwards we will discuss the different error introduction
versions and how we apply them.

4.4.1 Spell-checker replacement

We intend to apply the error introduction method proposed by Náplava and Straka (2019) to
our generated texts. This method involves applying replacement, deletion, swapping, insertion,
and recasing operations to words and characters. These operations are relatively straightfor-
ward; however, the replacement of words necessitates having words for substitution. In the
original approach by Náplava and Straka (2019), words selected for replacement were substi-
tuted with English spell-checker suggestions from ASpell.

To enhance this method, we leverage the extensive corpus of errorful care entries at our
disposal (see section 4.1). This was inspired by Choe et al. (2019) to combine spell-checker
replacement with error pattern introduction. This decision arises from the observation that
the Dutch ASpell vocabulary is less advanced than its English counterpart, and the basic
Dutch ASpell vocabulary lacks Dutch medical terms found in our corpus. Consequently, we
replace words with errors identified by a Levenshtein distance spell-checker within the care
entries for those words. The spell-checker is supported with a Dutch wordlist from Opentaal
(Simon Brouwer, 2023), enriched with words which occurred over 3 times in the Dutch NOS
news dataset (Scheijen, 2022). Additionally, we include words occurring at least once every
2.5 million words in our corpus of care entries. We implemented this criterion because we
noticed that, beyond this frequency threshold, words exhibited a higher tendency to no longer
be legitimate words. This combined Dutch word list aimed to capture correct Dutch words and
medical terms not present in both Dutch news and OpenTaal words. Following a spell-checker
analysis on the complete care corpus, 95% of the words generated by GPT-3 were discovered
to have at least one associated corrected error, if a word was selected which did not have an
associated error, it was left alone.
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Figure 5: Examples of text corruption methods used in our error-introduction versions

Figure 6: Examples of text corruption methods used in our error-introduction versions
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4.4.2 Version 1 - Baseline

We implement the error introduction method proposed by Náplava and Straka (2019) in our
generated texts. This method was originally designed for general low-resource synthetic data
generation in the context of GEC based on Grundkiewicz et al. (2019). In the following error
introduction versions we aim to extend on this method based on patterns found in our corpus
of care entries and research. This will be a baseline with general error introduction for low-
resource languages.

The method involves applying replacement, deletion, swapping, insertion, and recasing
operations to words and characters. Each text undergoes an iterative corruption process. When
a text is selected, it is split into words. While iteration over the words, each word has a 15%
chance of being corrupted. If a word is chosen for corruption, there is a 70% chance for it to
be replaced, 10% chance to be deleted, 10% chance to be swapped with its right neighbor, 5%
chance for a random word from the vocabulary to be inserted on either side, and a 5% chance
for the word to be recased. Replacement is executed following the method detailed earlier in
the spellchecker paragraph. After the word corruption process is completed the corrupted text
goes through further character corruption. Every character has a 0.5% chance to be corrupted.
If a character is selected there is a 25% chance of either deletion of the character, replacement
with a random other character, insertion of a random character to either side or swapping with
right neighbor character (Figure 7).

Figure 7: Version 1 - Baseline error introduction

4.4.3 Version 2 - Interpunction error & replace bigram

This error introduction method extends on the method of version 1. It involves introducing
punctuation errors and replacing bigrams with identified errors (Figure 8).

Given the rushed nature of care entries, we noticed a lack of punctuation during data
exploration. To address this issue, our aim is to train the model to incorporate punctuation
into these texts. Our approach involves introducing a new base text, onto which we apply
version 1 errors. This base text is constructed from two consecutive correct sentences extracted
from our generated texts. Subsequently, we deliberately remove punctuation marks from the
text. Additionally, we introduce a 50% probability of removing the capitalization of the word
following the punctuation mark. This is done because entries often capitalize words to indicate
the start of a new sentence but do not consistently employ punctuation. Furthermore, comma’s
are removed 30% of the time for all texts to teach the model to introduce them too.
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We have also incorporated bigram replacement into our approach. After spell-checking care
entries, we identified many errors where two words were erroneously combined and required
separation to be corrected. Given the prevalence of these errors in our dataset, we sought
to introduce them into the synthetic data through bigram replacement. In this process, we
introduced the possibility of selecting a word for bigram replacement. If chosen, we examine
the selected word and its right-side neighbor to check for a bigram error. If such an error is
present in our error dictionary, both words are replaced with a random choice from the relevant
errors. If not, we attempt to replace the unigram as in normal word replacement. To use this
method, we adjusted the probabilities of text corruption, we redistributed the original 70%
chance of unigram replacement to a 40% chance of attempting bigram replacement and a
30% chance of unigram replacement.

Furthermore, we incorporate a 2% probability for a sentence to remain unaltered. This
addition is inspired by the work of Rothe et al. (2021), aiming to teach models that text can
be correct without modification, which is true for the care entries.

Figure 8: Version 2 - Interpunction error & replace bigram

4.4.4 Version 3 - Span corruption

The third error introduction method is an extension of the second method. It draws inspira-
tion from the span corruption method applied by Rothe et al. (2021). Their method involves
removing and swapping spans of tokens for general GEC, with good results. This was fur-
ther supported by identified issues during data exploration, where many instances exhibited
sequences of missing words or were arranged in the wrong order.

To reproduce these type of texts, we expand our error introduction by incorporating span
corruption into a sentence. When a text is selected for span corruption, there is an equal
likelihood of either span deletion or span swapping being applied. We made this choice to
avoid sentences being affected by both, as it would excessively distort the sentence structure.
Span deletion should simulate situations where spans of words are missing from care entries.
Span swapping should simulate situations where text is hastily written and in the incorrect
order. Both span operations have ranges for the length of sequences to be altered. In the
case of deletion, a minimum of 2 to a maximum of 4 words were deleted. For span swapping,
sequences ranging from 1 to 4 were exchanged with another span of 1 to 4 words. If the
selected numbers did not align with the sentence length, they were chosen again until the
numbers aligned.
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Additionally, we adjust the probabilities for regular word deletion and swap deletion. The
deletion probability is reduced from 10% to 5%, as we expect removing spans of words in
combination with a lot of word deletion can result in substantial information loss. Simulta-
neously, the swapping probability is increased from 10% to 15%. This will allow the model
to encounter swapped spans in conjunction with swapped words, hopefully facilitating the
correction of jumbled texts.

Figure 9: Version 3 - Span corruption

4.4.5 Version 4 - Syntactic dependency based deletion

Finally, we extend error introduction version three with syntactic parsing to delete words in a
smart manner, replacing span deletion and word deletion entirely while keeping span swapping
in place. Choe et al. (2019) utilized smart POS noising to improve performance, we aim for
this method to remove words in a more realistic manner than random word deletion, thereby
creating more realistic erroneous text.

When exploring the data, we applied spaCy’s natural language processing module (Honni-
bal and Montani, 2017) to both hand-corrected and erroneous care entries. We checked the
syntactic labels that were present in correct text and missing from incorrect text by comparing
their respective counts. This gave us insight in what kind of words were often missing from er-
roneous sentences. Armed with this information, we delete crucial types of words from correct
sentences to emulate the errors prevalent in the care entries corpus.

The syntactic dependency labels significantly more present in correct text, in descending
order, were: auxiliary verbs, nominal subjects, root of the sentence, determiner, coordinating
conjunction, nominal subject (passive), auxiliary verb (passive), copula (verb linking the subject
to the subject complement) and case marker.

During text corruption, we apply spaCy’s syntactic labelling module, selectively removing
each of the above-mentioned word types with a probability of 0.375%. In previous error in-
troduction versions, the odds of word deletion were around 1.5% per word, and we aimed to
adhere to this by scaling the syntactic deletion probability with how often the chosen labels
were present proportionally.

To maintain consistency with prior error introduction versions and accommodate the re-
moval of the 10% chance of regular word deletion, we adjusted the scaling accordingly. This
was achieved by increasing replace bigram, replace unigram, insert word, swap word and recase
word by 10% in combination with lowering the original 15% probability to 13.5% to maintain
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a balanced distribution in the overall error introduction process. This adjustment ensures that
the combined odds return to the required total of 1.

Figure 10: Version 4 - NER deletion

Version Original Corrupted

Version 1
Mevrouw heeft ook aangegeven dat ze
meer haarverlies ervaart dan normaal.

Mevrouw ook heeft aangegeven dat zj
meer haarverlies ervaart dan normaal.

Version 2
Ze geeft aan dat haar buik erg rommelt
en dat ze meerdere malen naar het toi-
let is geweest.

Ze geeft aan dat haar buik werg rom-
melt koMt en dat ze meerdere naar het
toilet is geweest.

Version 3

Incident: Vandaag vond er een incident
plaats waarbij mevrouw tijdens de zorg
voor haar ogen transpireerde. Het is be-
langrijk om hier extra aandacht aan te
besteden en ervoor te zorgen dat haar
ogen goed schoon en droog blijven.

Incident: Vandaag vond er een incidet
plaats waarbij tijdens mevrouw zorg
haar Voor ogen transpireerde Het is be-
langrijk om hier extra aandacht aan te
besteden en ervoor te zorgen dathaar
goed schoon en droog blijven.

Version 4

Daarnaast is haar po-gebruik ver-
hoogd om haar stoelgang regelmatig te
houden en obstipatie te voorkomen. We
houden nauwlettend in de gaten of de
klachten verminderen en zullen de kuur
indien nodig aanpassen.

Daarnaast haar po-gebruik verhoogd
om haar stoelgang regelmatig te
houden obstipatie te Voorkomen we
houden Nauwlettend in de gaten of de
klachten verminderen en zullen de kuur
indien nodig aanpsasen.

Table 4: Example of a generated text and a corrupted text for each error introduction
version

4.5 Models

The primary models of interest for GEC in our study are the seq2seq ”UL2” transformer model
and the ”Multilingual BART” (mBART) transformer model (Liu et al., 2020; Tay et al., 2022).
State-of-the-art systems (Rothe et al., 2021; Sun and Wang, 2022) are built upon these type of
models because of their pre-training with denoising objectives, a feature that closely aligns with
the goals of GEC. By utilizing pre-trained models, we can avoid the need to teach language to
a model and leverage its embedded linguistic knowledge. Additionally, they both have available
pre-trained models on Dutch language. We steered clear of BERT models, despite the success
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of sequence-tagging models by Omelianchuk et al. (2020). While this approach is interesting
due to the ten-fold decrease in inference speed, their BERT (Devlin et al., 2018), RoBERTa
(Liu et al., 2019) and XLNet (Yang et al., 2019) ensamble approach is outperformed by the
singular seq2seq models on the CoNNL-14 (Ng et al., 2014) and BEA-2019 (Bryant et al.,
2019) benchmarks.

4.6 Evaluation

To evaluate models during training, 283 sentences from the care entry corpus were hand-
annotated by the author, as references are required for reference-based evaluation metrics. The
sentences were extracted from 100 randomly selected care entries. The references were hand-
annotated using the minimal corrections guidelines by the author. While increasing the number
of annotated sentences could enhance the evaluation’s robustness, practical considerations led
to the decision to limit the dataset to 100 care entries. This choice was motivated by the fact
that scoring numerous model candidates for each annotated sentence during human evaluation
would be a resource-intensive task.

A challenging aspect of GEC is the inherent variability in correcting incorrect text. Mul-
tiple corrections are possible, and determining the optimal correction is subjective, relying
on individual perceptions. Nevertheless, as argued by Choshen and Abend (2018b), preparing
reference sentences that encompass all conceivable corrections is an unrealistic task and we
stick to a singular reference text. The aim is to identify an automated metric which aligns
with human judgments, thereby eliminating the need for human judgments when improving
error-introduction methods.

4.6.1 Evaluation metrics

For model evaluation during training, we opted for GLEU+ (Napoles et al., 2016a) as the
metric of choice. This decision was driven by its simplicity, requiring only a source, candidate,
and reference text for computation. Furthermore, GLEU+ was specifically designed with GEC
in mind, utilizing the source, hypothesis and reference sentence while generic metrics like
BLEU (Papineni et al., 2002) and ROUGE (Lin, 2004) do not. We considered the METEOR
(Banerjee and Lavie, 2005) metric however the lack of a Dutch dictionary for synonymn
checking made it less powerful than GLEU+. Several lesser known GEC specific evaluation
metrics were excluded from further consideration for various reasons: incompatibility with
Dutch (GoToScorer (Gotou et al., 2020), Scribendi Score (Islam and Magnani, 2021), PT-M2

(Gong et al., 2022)), baseline GEC model requirement (GFM (Asano et al., 2017)), specific
hypothesis annotating required to use (SOME, (Yoshimura et al., 2020), Usim (Choshen and
Abend, 2018b)), extensive ensamble methods (GMEG (Napoles et al., 2019)). While widely
used metrics like M2 and ERRANT are effective, they require human-annotated edit spans,
which can be unpredictable and time-consuming to collect. Moreover, extending these metrics
to Dutch would be a resource-intensive task, outside the scope of this research. Finally, GLEU+
was selected as it aligned with human judgment in our initial experiments.

After completing the training phase, we assess the semantic preservation of information in
the generated hypothesis sentences by employing BERTScore and a SBERT model along with
cosine similarity in comparison to the target sentences produced by the models. These scoring
methods measures help identify when a model alters the semantics of a text. This approach
serves as a valuable metric for evaluating the efficacy of the models in maintaining semantic
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consistency.
For BERTScore (Zhang et al., 2019a), we employ the default BERT model for Dutch

sentence similarity3 as is recommended by the developers. Although it is possible to use a
pre-trained Dutch monolingual BERT model, which would reasonably perform better than a
multilingual model, we opted for the default multilingual version because the optimal model
layer to use for this model was already found. To use a pre-trained Dutch monolingual BERT
model would require additional tuning to determine the optimal layer for sentence similarity
which the authors do based on the WMT16 metric evaluation dataset (Bojar et al., 2016).
This is problematic since this dataset does not contain Dutch translations and can therefore
not be used for a monolingual Dutch model.

For SBERT, we utilize a sentence-transformer model4 (Reimers and Gurevych, 2019). This
model is a fine-tuned version of a monolingual Dutch RoBERTa model5 (Liu et al., 2019).
The model is fine-tuned using Dutch frequently asked question-answer pairs from the CLIPS
Multilingual corpus of Questions and Answers (MQA) (De Bruyn et al., 2021). This model
provided the sentence embeddings which were used in combination with cosine similarity to
calculate the sentence similarity.

4.6.2 Human evaluation

Robust evaluation is still an unsolved problem in GEC. The comparison of metrics in GEC
poses challenges due to the subjectivity of human judgments. Human evaluations, while in-
tuitive, are subjective and caution is advised. However, given that there is no consistently
reliable automated metric and humans will ultimately utilize the model-generated sentences,
we considered it crucial to depend on human judgments to assess the alignment between the
chosen evaluation metric and human assessments.

Therefore, we decided to evaluate the performance of models by humans along with the
automated GLEU+ metric. This involved scoring the performance of different models using
the same set of 283 sentences that were previously used for evaluation with the GLEU+ metric
during training. We instructed the evaluators with the instructions found in Appendix A. This
included instructions about judging sentences on semantic consistency, fluency, grammatical
correctness and spelling. We also instructed them to consider multiple interpretations of the
available context when judging model corrections. Hypothesis sentences generated by the mod-
els were assessed by humans and assigned a score on a scale of ’significant deterioration, slight
deterioratation, no deterioration/improvement, slight improvement, significant improvement.
Two human evaluators were presented with the original sentence along with eleven model
hypotheses, in randomized order to prevent bias. They then ranked these hypotheses within
the provided range of options. The rankings will subsequently be rescaled to a numerical scale
of 1 to 5 for computation. Using these scores the Cohen’s Kappa between evaluators will be
calculated. We will use dynamic weighting for Cohen’s kappa to account for the fact that the
scores are in an ordinal range.

3—bert-base-multilingual-cased model from Huggingface.
4jegorkitskerkin/robbert-v2-dutch-base-mqa-finetuned model from Huggingface.
5pdelobelle/robbert-v2-dutch-base model from Huggingface.
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4.7 Experimental setup

The best method for evaluating synthetic data quality remains difficult to answer, with no
solution for the most effective approach (Htut and Tetreault, 2019; White and Rozovskaya,
2020). Kiyono et al. (2019) attempt to compare noise injection and back-translation. However
they find it is difficult to compare error introduction methods directly. Therefore most research
indirectly evaluates the quality of synthetic data by examining its impact on the performance
of experiments. Therefore we will experiment with different combinations of error introduction
datasets and models (See Figure 11). We then compare the performance of these models using
GLEU+, human evaluation and semantic similarity scores.

We create four training datasets using the four different error introduction methods, these
will be used to compare their quality. To ensure a fair comparison between approaches, each
method should introduce a similar number of errors based on the specified probabilities in
their respective paragraphs. Additionally, we use a consistent set of around 100.000 GPT-
generated sentences to be corrupted, resulting in four distinct training datasets of erroneous
and reference sentences based on the same clean texts. However, for versions 2, 3, and 4, we
randomly selected 25% of the sentences to conform to the format required for punctuation
error introduction, as outlined in error introduction version 2. After introducing punctuation
errors, these sentences were combined with the remaining 75%, and errors were applied to
them following the same procedure as in version 1, with the incorporation of the features
unique to each error introduction version. Additionally, 2% of all texts were intentionally left
unaltered before corruption.

The UL2 model6 used was pre-trained through self-supervised learning on the Dutch text
from the mC4 cleaned corpus (Raffel et al., 2019). The data has been cleaned by removing
sentences containing: Less than 3 words, a word longer than 250 characters, a symbol outside
of the end-of-sentence punctuation or text associated to javascript code (e.g. {), lorem ipsum,
policy information in Dutch or English. After sentence filtering they also reject all documents
with less than 5 sentences, less than 500 or more than 50.000 characters or documents not
identified as mainly Dutch by the LangDetect package.

The mBART model7 is pre-trained as described in Tang et al. (2020) using the BART
objective for multiple languages at once using a source language token and a target language
token. For GEC purposes we translate from Dutch to Dutch and use the Dutch language token
for both the source as the target token.

We fine-tune our models on batches of 16 source and target texts for 10 epochs with a
learning rate of 2e-5. Throughout the training process, the model performance was evaluated
using our hand-annotated evaluation data of 283 sentences. The GLEU+ (Napoles et al.,
2016a) score for each input-candidate-reference combination was calculated, and the average
was returned to judge the quality of each model iteration.

The aim of this experiment is to identify effective error-introduction versions and models
for Dutch care GEC. Additionally, the goal is to identify models that best preserve semantic
information. Finally, the alignment of GLEU+ scores with human judgments would be valuable
for future iterative enhancements of the error introduction versions. This would eliminate the
need for time-consuming human evaluation.

6’yhavinga-UL2-large-Dutch’ model from Huggingface.
7facebook/mbart-large-50 model from Huggingface.
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Figure 11: Experimental setup, visualising data generation, error introduction, model
selection and evaluation

5 Results

In this section, we address subquestion 3: ’How can we determine the most suitable error
introduction methods and models for effectively correcting colloquial Dutch care text?’ To
answer this question, we discuss the training process of the models, their GLEU+ scores on the
evaluation set, and the corresponding human evaluation results, as outlined in the experimental
setup section. We then present the outcomes of our experiments aimed at identifying the most
effective model and error introduction method for correcting colloquial Dutch care sentences.
To evaluate the preservation of semantic meaning, we delve into the semantic similarity scores
of BERTScore and Sentence Similarity between hypothesis sentences generated by the models
and the hand-written target sentences of the evaluation set.

5.1 Training

To pinpoint the optimal models, we assessed their performance throughout the training process,
utilizing the evaluation set and the GLEU+ metric. Figure 12 displays the results of training
the 8 models—four UL2 and four mBART models, each with four different error introduction
versions. It’s important to note that GLEU+ scores fall within the range of 0 to 1, and a higher
score indicates better performance.

The GLEU+ scores indicate that the mBART model along with error introduction version
four performed best. Furthermore all mBART models outperform their UL2 error-introduction
version counterpart according to GLEU+. Both UL2 version 1 and mBART version 1 performed
worst compared to the other UL2 and mBART version combinations respectively, indicating
that error introduction version 1 performs worst for both model types, according to in-training
GLEU+ scores.

Based on the obtained results on the evaluation set, we opted for the models with their
respective highest GLEU+ score for human evaluation. Notably, some models demonstrated
peak performance at a relatively low number of training steps (UL2 v3, mBART v3, mBART
v4). To ensure a comprehensive assessment, we extended our evaluation to include models
trained for a longer duration—referred to as UL2 v3 with extended training, mBART v3
with extended training, and mBART v4 with extended training. Despite their comparatively
lower GLEU+ scores, we sought to evaluate models that underwent longer training periods.
Furthermore, this provides an opportunity to compare the judgement of GLEU+ and humans.
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Figure 12: GLEU+ scores during training on the evaluation set measured every 1000 steps

5.2 Human Evaluation

In Figure 13 we visualize the outcomes of the human evaluation. We present a horizontal bar
chart containing the average score per model for sentences in our evaluation set. The sentences
that remained unchanged across all eleven models were kept out of this visualization. These
sentences, denoted by a score of 3 in the evaluation metrics for all 11 models, were intentionally
excluded. Given that these sentences exhibited no improvement or deterioration, their inclusion
could introduce a bias, potentially misrepresenting the overall performance of the models. By
excluding them from the visualization, the analysis focuses on instances where meaningful
changes occurred, providing a more accurate reflection of the models’ performance. The x-axis
reflects the average scores on a scale ranging from one to five, originating from the predefined
categories discussed in the method section: ’significant deterioration’, ’slight deterioration’, ’no
deterioration/improvement’, ’slight improvement’, and ’significant improvement’. The y-axis
is ordered by the average scores of the two evaluators with the best performing model on top.
The chart clearly indicates the best performance is found by the UL2 model in combination
with error introduction version 2.

From this chart (Figure 13) it is clear that, according to human judgment, UL2 models
perform better than mBART models with the exclusion of UL2 v1. However, mBART v1 is
the worst performing model, this is an indication that error introduction version 1 performs
worst overall according to human evaluation. The best performing model according to human
judgments is UL2 with error-introduction version 2. Furthermore, in the context of mBART
model, we observe that humans align with the results from the GLEU+ scores, the mBART
with extended training models perform worse than their best-found GLEU-based counterparts.
However, this agreement is not observed for the UL2 with extended training models, as UL2
version 3 with extended training slightly outperforms the best-found GLEU-based UL2 version
3 model.
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Figure 13: Average human rating on evaluation set

Human Evaluation Cohen’s Kappa Agreement Sentence pairs analyzed

11 Models 0.54 Moderate 2574
MC4 vs GPT 0.67 Substantial 136

Table 5: Cohen’s Kappa of two human evaluators

Table 5 displays the Cohen’s Kappa score between the two evaluators. For the evaluation of
the 11 models the Cohen’s kappa is 0.54, indicating a moderate level of agreement according
to Cohen (1960). The Cohen’s Kappa scale ranges from -1 to 1. This score is derived from 2574
sentence pairs, which were compared using dynamic weighting. The remaining sentence pairs
from the evaluation set were excluded for the same reasons discussed earlier in the context of
Figure 13.

5.3 Semantic preservation

We also present the results for Dutch SBERT sentence similarity and BERTScore in table 6.
These metrics assess the similarity between two texts on a scale of 0 to 1. The calculations
involve comparing the hand-written target sentence with the hypothesis sentence generated
by the model based on a source sentence. These scores are the result of averaging the scores
over the 283 sentences of the evaluation set. For BERTScore, UL2 with error introduction
version 2 performed best, with both the GPT-generated sentences and MC4 sentences with
a score of 0.942. Meanwhile according to cosine similarity based on SBERT, UL2 combined
with version 2 and version 4 both performed best with a score of 0.945. These scores between
BERTScore and Sentence Similarity cannot be directly compared.
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Model BERTScore SBERT based similarity

UL2 v1 0.933 0.933
UL2 v2 0.942 0.945
UL2 v3 0.938 0.944
UL2 v4 0.940 0.945
mBART v1 0.933 0.930
mBART v2 0.934 0.935
mBART v3 0.936 0.934
mBART v4 0.937 0.942
UL2 mc4 0.942 0.930

Table 6: Semantic similarity measures on the evaluation set

6 Discussion

The primary aim of this research is to investigate the effectiveness of different error introduction
methods and end-to-end deep learning models in conjunction with LLM-based generated data.
Specifically, the study seeks to assess their impact on enhancing the performance for correcting
colloquial Dutch care text while preserving the semantic meaning of the original text. To
address the research question, the study is guided by three subquestions.

Subquestion 1, ’How should we generate our Dutch care texts?’ aims to find the most
appropriate method for generating synthetic data.

To answer the main question we need to identify methods of gauging the quality of the
data generation, error-introduction versions and models. Without a comprehensive approach
to evaluate the performance of these factors, it would be impossible to draw valid comparisons
between different error-introduction versions and models. In essence, Subquestion 2, ’How can
we assess the performance of the models, including the generated Dutch care texts and error
introduction methods?’ acts is the cornerstone that provides the necessary metrics and insights
to evaluate the success of each element involved in the correction process. Facilitating a robust
analysis of the main research question.

Subquestion 3, ’How can we determine the most suitable error introduction methods and
models for effectively correcting colloquial Dutch care text?’ is essential to develop practical
solutions for improving the quality of Dutch care text. The methods brought forward by an-
swering Subquestion 2 should provide the methods to compare different methodologies and
set up an experiment to compare different methods. Additionally, finding an automated metric
which aligns with human judgment consistently would be valuable to eliminate the need for
human judgments when enhancing error-introduction methods and GPT-generation further.

To answer Subquestion 1, the choice was made to generate synthetic data using GPT
since there were no available public Dutch care reports. We experimented with three different
approaches, LLM annotation, LLM-generated incorrect text and LLM-generated correct text.
LLM-generated correct text was selected as the best for this research since the other approaches
suffered from privacy issues, as the available corpus of colloquial care reports was not allowed
to be annotated using GPT. Finally the fact that GPT does not excel at generating diverse
incorrect text made us step away from direct incorrect text generation.

In the pursuit to answer Subquestion 2, we discovered that there is no effective direct ap-
proach to evaluate if two corpuses are similar. Instead, the common protocol involves applying
methods and then utilizing automated evaluation metrics and human judgments to compare
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performance between combinations of approaches, leading to meaningful conclusions.
To answer Subquestion 3, we set up an experiment where we compared four different error-

introduction pipelines and two different models using human and automatic evaluation. We
applied the error-introduction to 100.000 GPT-3-generated sentences and trained 8 different
models on the error-introduction-model combinations. We now present an overview of the
results from our investigation.

In terms of human evaluation, the two evaluators achieved a Cohen’s kappa of 0.54 on
2574 sentence pairs, indicating a moderate level of agreement. Error introduction version 1
showed the lowest performance in the human evaluation. The combination of the UL2 model
with error introduction version 2 performed the best according to human judgments. Notably,
human evaluation consistently favored all UL2 models over their mBART counterparts. While
human evaluation agreed with GLEU+ on the subpar mBART with extended training models,
there was a disagreement about the UL2 with extended training models. Human evaluators
preferred the UL2 with extended training models over their counterparts, which contradicted
the GLEU+ rankings.

According to GLEU+ results, mBART combined with error introduction version 4 received
the highest score. Additionally, GLEU+ suggests that all mBART models outperform their UL2
error-introduction version counterparts. Error introduction version 1 shows the lowest GLEU+
performance for both UL2 and mBART models.

In conclusion, error introduction version 1 is found to have the lowest performance according
to both GLEU+ and human evaluation for both model types. Finally, while human evaluators
rank all UL2 models higher than their mBART counterparts, GLEU+ rates all mBART models
over the UL2 models. We now discuss the results and a final experiment in more detail in the
following sections.

6.1 MC4 VS GPT

To investigate further, we aimed to evaluate whether the GPT-generated texts with a relevant
topic contribute to the performance of models.

Therefore, we trained a new model using the error introduction method and model that
received the highest scores in human evaluation; the UL2 version 2 model. This new model
was trained on a distinct corpus of text, specifically a subset of the mC4 Dutch cleaned
corpus. Texts were randomly selected from this corpus, cleaned of emojis, and removed if
they included characters not present in our GPT-generated dataset. We selected a similar
amount of text as used for the other models and applied error introduction version 2 to it. We
then trained a UL2 model with this data. Next, we used human evaluation to compare the
new model with the top-performing model based on human judgment. This process mirrored
the evaluation of the 11 models but involved only two models. To ensure impartiality, the
evaluators were unaware of which model generated each text, as we randomized the order
of candidate texts. Furthermore, we used the same evaluation set, however we excluded all
sentences where both models generated the same output. This choice was made because no
distinction in performance can be made among identical texts.

The results are found in Figure 14, additional information is found in Table 5. The figure
shows the average score per evaluator for each model based on 136 sentences of the evaluation
set. This chart clearly shows the superiority of the model trained on GPT-generated data. Both
annotators reached a significantly higher average score for the UL2 GPT model. On average
the GPT model reached an average score of 3.65 and the mC4 model an average score of
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3.29. These results indicate that the GPT-generated relevant texts do improve the model
performance of a GEC model.

Figure 14: Average human rating on evaluation set MC4 and GPT

6.2 Semantic similarity

According to BERTScore scores, the UL2 model along with error-introduction version 2 per-
forms best, for both the GPT-generated sentences and randomly selected MC4 sentences with
a score of 0.942 (Table 6). Furthermore, according to SBERT embeddings and cosine similar-
ity, UL2 version 2 and 4 with GPT-generated sentences were the top performing models with
a score of 0.945.

Since these methods were originally designed to identify paraphrases and perform semantic
search, these methods are tailored to assess text on a scale of 0 to 1, spanning from complete
semantic dissimilarity to identical meaning. However, since we use these scores for GEC evalu-
ation, where generally most of the text should remain unchanged, the scores we see are in the
upper bounds of the score range. It is interesting to note that in the GEC context, where we
look at small differences between hypothesis and target sentences, the metrics seem to hold
up as they provide similar top models to human evaluation. These metrics agree on the su-
periority of the UL2 models, and the worst performance of error-introduction version 1. What
is interesting is the distinction between the metrics for UL2 in combination with MC4. While
BERTScore selects the MC4 model as one of the best, SBERT based embeddings identify
MC4 as tied worst performer. This suggests that SBERT based cosine similarity is more in line
with human judgments.
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6.3 Contrasting Metrics: GLEU+ vs. Human Evaluation

When we compare error introduction methods per metric and model type we see differing
trends. Examining GLEU+ scores (Figure 12), mBART achieves the highest performance
with versions 4, 2, 3, and 1, respectively. In contrast, UL2 model variations exhibit superior
performance in the order of 2, 4, 3, and 1. Turning our attention to human scores (Figure
13), for mBART, versions 4, 3, 2, and 1 emerge as the top performers. Conversely, error
introduction versions 2, 4, 3, and 1 exhibit the best performance for UL2.

From this we can conclude that error introduction version 1 performed worst for all models
according to the metrics. Furthermore we see that for the UL2 model, error introduction
versions 2 and 4 perform best according to both metrics. While mBART performs best with
version 4 according to all metrics. However, what the metrics do not agree on is which model
type performs best.

During model training (Figure 12) a noteworthy observation arises from the comparison
of mBART and UL2 models within each error introduction method. Specifically, mBART
versions (v1, v2, v3, and v4) consistently demonstrate superior performance over their UL2
counterparts (v1, v2, v3, and v4) according to the GLEU+ scores. This is a strong indication
that the mBART models generally outclass UL2 models according to the GLEU+ scores.
Yet, according to the human evaluation in Figure 13 and Table 7 UL2 models systematically
outperform their counterpart mBART model.

This is opposite to what we expected as in initial experiments UL2 models performed
better than mBART models. This led to further investigation into the GLEU+ scores in an
post-training evaluation.

6.4 Comparing GLEU+ scores: disparities between post-training
and in-training evaluation results

We conducted a post-training analysis of the generated hypothesis sentences from the best-
selected models, utilizing various evaluation metrics, including GLEU+. Surprisingly, we ob-
served significant deviations in GLEU+ values for these texts compared to the results obtained
during training, despite using the exact same evaluation set (Table 7). Although the stochastic
nature of the models can lead to slightly varying results, some of the observed disparities sig-
nificantly surpass the expected range, especially for the UL2 models. mBART versions 1, 2, 3
and 4 score within the expected range of each other for both in-training and post-training eval-
uations. However UL2 versions 1, 2, 3 and 4 all score significantly better during post-training
GLEU+ evaluation. After further investigation we excluded that the disparity originated from
the GLEU+ calculation itself. We expect that the problem lies in the encoding-decoding pro-
cess of hypothesis texts and source texts during training, specifically due to the UL2 prefix.
We expect this is part of the problem since this is the only discernable difference between the
use of mBART and UL2. However, after thorough investigation, we were unable to pinpoint
the exact source of this discrepency.

This implies that the in-training GLEU+ scores may be corrupted. We exclusively relied on
these in-training GLEU+ scores to choose the best models, which we subsequently employed
to generate texts for human evaluation. In the worst-case scenario, our selection of models
for human evaluation could be based on a flawed metric, resulting in a random rather than
merit-based selection. Nevertheless, we observe that the top-performing models, identified
through in-training GLEU+ scores, exhibit consistent rankings for error introduction models
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when compared to the post-training evaluation, despite yielding different absolute values.
This observation suggests that, in spite of the corruption, the metric is still informative when
selecting the best relative model, despite the absolute value being wrong.

While encountering this issue is undesirable for any researcher, it also introduced a new set
of GLEU+ scores which were more in line with our expected results (7). Both the post-training
GLEU+ scores and human evaluations rank UL2 version 2 and UL2 version 4 as the top two
model-error introduction combinations. Notably, the post-training evaluation did not include
the ’with extended training’ versions of the models. Despite this limitation, UL2 version 3
is ranked as the third-best model by the post-training evaluation metric. In contrast, human
scoring places UL2 version 3 with extended training as the third-best and UL2 version 3 as
the fourth best, indicating a close alignment in rankings despite the absence of ’with extended
training’ versions in the post-training evaluation. The top three models display a significantly
higher post-training GLEU+ score than the other models.

In light of the post-training GLEU+ evaluation results, which demonstrated a close align-
ment with human evaluation results, it implies that the GLEU+ metric correlates effectively
with human judgments. This finding suggests the potential utility of the GLEU+ metric for re-
fining the error introduction method, dependant upon successful resolution of the unidentified
bug.

Model Human Score i-t GLEU+ p-t GLEU+ Human Rank i-t GLEU+ Rank p-t GLEU+ Rank

mBART v1 3.04 0.510 0.508 11 5 8
mBART v2 3.27 0.529 0.525 7 2 4
mBART v3 3.34 0.518 0.512 6 3 7
mBART v4 3.36 0.534 0.522 5 1 5
UL2 v1 3.27 0.504 0.522 8 9 6
UL2 v2 3.63 0.517 0.549 1 4 1
UL2 v3 3.43 0.507 0.537 4 7 3
UL2 v4 3.60 0.513 0.541 2 6 2
mBART v3 ext
train

3.20 0.504 n.d 10 10 n.d

mBART v4 ext
train

3.26 0.507 n.d 9 8 n.d

UL2 v3 ext
train

3.49 0.498 n.d 3 11 n.d

Table 7: Model evaluation by humans, in-training GLEU+, post-training GLEU+, and
their respective rankings amongst themselves

6.5 Human evaluation analysis

Human evaluators demonstrated a moderate and substantial level of agreement for their eval-
uation, as indicated by the Cohen’s Kappa score of 0.54 and 0.67, during the assessment of
11 distinct models and MC4 vs GPT. Choshen and Abend (2018b) argue that the reason
inter-rater-agreement (IRA) for human evaluation scores is generally low because people often
disagree when rating how grammatical sentences are, since it is a highly subjective task. While
the levels of moderate and substantial agreement are satisfactory, our aim is to identify vari-
ations among evaluators. To achieve this, evaluators engaged in a discussion about the task,
revealing specific challenges.

In our evaluation process, the assessors were the author of the paper and an individual
not directly involved in the research, both possessing similar educational backgrounds. The
first thing they noticed when discussing the differing scores was that one evaluator was more
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extreme in judging mistakes and positives while the other was more reserved. For example,
this led to one evaluator scoring a sentence with a 1 or a 5, whereas the other evaluator would
sooner use a 2 or a 4. Our interpretation of these observations suggests that the author, being
intimately involved in the development of the models, adopted a more lenient stance, striving
to understand and appreciate their performance. In contrast, the other evaluator, not directly
connected to the model creation, adopted a more critical perspective.

Secondly, the familiarity of one evaluator with the texts granted them a deeper understand-
ing of the original context of the sentences, compared to the other evaluator. This impacted
the understanding of sentences between evaluators, which could be found in the scoring. Fur-
thermore, this resulted in one evaluator penalizing the introduction of contextual information
not explicitly present in the text, while the other evaluator occasionally rewarded such addi-
tions if it agreed with his knowledge of the text. In future research this should be discussed in
even more detail in the instructions for human evaluation.

6.6 Identified patterns during human evaluation

The human evaluators examined numerous corrections produced by the correction models. On
average, they observed an improvement in input text quality but identified recurring issues.
The main issue was the product of a lack of contextual information for the models to use when
correcting text. This led to models fabricating information to create a grammatical text, while
the semantics changed from human interpretation (Example 3 in Table 8). This is problematic
for care texts as it is required that they are trustworthy. However, it is often impossible for
even humans to agree on the meaning of these errorful texts. To address this issue, future
model designs should prioritize providing access to extensive contextual information. This may
include surrounding sentences or a knowledge graph derived from previous care reports, aiming
to maximize the available information.

Furthermore, in some care entries, vital information present in the errorful text is omitted
to facilitate the creation of grammatically correct text (Example 4 and 5 in Table 8). This is
problematic, as it may result in the loss of potentially crucial meaning in these corrections.
The primary challenge in this context arises from the poor formulation of these texts, lead-
ing to uncertainty regarding their intended meaning. Consequently, creating a grammatically
accurate sentence with certainty of conveying the identical intended meaning of the unintelli-
gible input text becomes impossible. This suggests that there is a trade-off between ensuring
grammaticality in the generated text and capturing all possible available information from the
input text. For the medical field, capturing all available information is off the essence but the
current models seem to prioritize creating grammatical sentences. This means the model is
not ready to be used without confirmation from the caregivers if the correction it presents
conveys their intended message.

Finally, both evaluators noted a significant enhancement in model performance stemming
from the introduction of punctuation errors to address the care entries that lacked punctuation
(Example 2 in Table 8). This indicates that this is an effective method to combat interpunction
errors.
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Input text UL2-v2 correction

Toen mijn dienst gisteren was er die
middag niemand van personeel behalve
de gastvrouw in de woonkamer.

Toen mijn dienst gisteren begon , was
er die middag niemand van personeel
aanwezig behalve de gastvrouw in de
woonkamer.

Mevrouw haar stuit is nog heel ziet er
slecht uit n ieuwe vlinderplak op gedaan
.

Mevrouw haar stuit is nog heel , maar

ziet er slecht uit . Ik heb er een vlin-
derplak op gedaan.

O mw vanmorgen douche aangeboden
maar mw wilde het niet.

Mevrouw had vanmorgen een douche
aangeboden , maar mevrouw wilde het
niet.

O. mw kan moeilijk staan met col-
lega mw in de rolstoel geholpen
mw eet weinig wil geen bouwsteentje
mw heeft halve boterham gegeten en
kopje koffie glaasje sap

Mevrouw kan moeilijk staan
met haar collega . Mevrouw eet
weinig en wil geen bouwsteentje .
Mevrouw heeft een halve boterham
gegeten en een glaasje sap gedronken.

Graag apotheek bellen klopt niet wat
is binnen gekomen voor de catheter.

Graag de apotheek bellen, wat is bin-
nen gekomen voor de catheter.

Table 8: Example model corrections. Blue indicates a missing piece of information in the
correction, green indicates a good correction, yellow indicates a grammatical but uncertain
correction and red indicates a wrong interpretation

6.7 Limitations

While this study has yielded valuable insights into Dutch care GEC, it is essential to ac-
knowledge and address certain limitations inherent in the research design, methodology, and
execution.

First of all, the implementation of the GLEU+ metric during training is likely corrupted.
The selection of models to be evaluated by humans was affected by this.

Secondly, the implementation of the word-list for the spellchecker enables very common
errors to be present in the word-list, thereby disabling a spellchecker to correct them. Conse-
quently, errors more common than 170 instances were not identified and were not introduced
into our synthetic data through spell-checker replacement. However, it is still possible for them
to be introduced through character error-introduction, but ideally they should be introduced
with replacement too.

Thirdly, the evaluation set which we utilized in this research was annotated by the author
of the paper instead of a linguistic professional, which possibly led to faulty target sentences.

Next, context supplies essential information that is critical for fixing various grammatical
errors and addressing inconsistencies. Our approach performs sentence-based GEC, without
additional contextual information. This means there is a lack of contextual information fed to
the system while it does exist in surrounding sentences. Consequentially, these systems fail to
correct verb tense, pronoun and numerous types of errors, since they lack the information of
surrounding text. Additionally, this leads to corrections which convey a different message than
intended in the input text.

Additionally, the GPT generated texts were only evaluated in combination with many dif-
ferent factors. There is room for much more elaborate evaluation of the generated texts
themselves to decide the best alignment with our corpus.
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Furthermore, we performed human evaluation on 3113 pairs of sentences by two human
evaluators. One of the evaluators was the author which could have possible introduced a bias.
The inclusion of more evaluators would increase the reliability of this research and the conclu-
sions about the automated metrics. It’s essential to emphasize that, during human evaluation,
sentences were generally evaluated on a scale of 1-5. In future research, it would be beneficial
to incorporate separate scoring dimensions for assessment, such as fluency, grammaticality,
and semantic similarity, to provide a more nuanced and detailed analysis.

Finally as mentioned in method section, addressing the variability in correcting incorrect
text poses a challenge in GEC. With multiple possible corrections, determining the optimal
one becomes subjective, relying on individual perceptions. Therefore, there is room for an
extended amount of reference sentences, since only one is used per text. This means that
currently models might accurately correct text differently from the reference text and face
penalties for it, which is problematic.

6.8 Implications

This research provides insight in grammatical error correction for Dutch care texts using
seq2seq models and synthetic data. We identify the UL2 model as a better model than the
mBART model according to human judgments, post-training GLEU+ scores and semantic
similarity metrics. Furthermore we find that error-introduction which introduces interpunction
errors and bigram replacement in addition to the baseline errors based on Náplava and Straka
(2019) performs best according to human judgments and semantic consistency analysis. Ac-
cording to human evaluation, our method to introduce interpunction errors worked well for
this corpus. Granted that the in-training GLEU+ evaluation is fixed, we find that GLEU+ is
able to identify the best performing error-introduction-model-corpus combination compared to
human evaluation. Which can significantly decrease evaluation time when further enhancing
the correction models.

6.9 Future research

This research opens up avenues for various potential further investigations.
Building upon this research, additional exploration can be conducted to transform the

corrected sentences into formal, summary-style texts using paraphrasing and summarizing
models. This would complete the request of care facilities to utilize their care entries to inform
relatives in a more formal manner.

Furthermore, increased performance could be achieved by exploring methodologies to pro-
vide the models with more context, such as providing models with surrounding sentences, a
client’s care plan or all their care entries. This could improve performance significantly cross-
sentence.

Moreover, it would be intriguing to further investigate direct annotation using LLMs on non-
private data, or with an open-source LLM to evaluate the effectiveness of creating synthetic
training data using this approach.

In depth research can be performed in different training regimes for training the seq2seq
transformer models, as currently the default model settings were used. Potential improvements
in performance could be explored through experimentation with different learning rates, op-
timizers, and the creation of additional hand-annotated data for fine-tuning after pretraining
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on synthetic data, which is an effective way to improve performance according to Rothe et al.
(2021).

The error introduction methods can be expended upon significantly. Currently, the same
error introduction rates were used as in the baseline approach for substitution, deletion, inser-
tion and swapping. These could be experimented with further since our corpus arguably has
a different distribution of errors than general GEC. Additionally, the metaphone algorithm of
Philips (2000) could be integrated to expand on the Levenshtein distance with phonetic equiv-
alents to find erroneous words based on phonetic mistakes for the spellchecker word-list, as
Grundkiewicz et al. (2019) have done. Finally, there are limitless possible additions to be made
to error-introduction pipelines. To list a few: introduce Dutch ’dt’ errors, synonymn replace-
ment, determiner replacement, smart word deletion, error-type extraction from care corpus
and generating more text with medical abbreviations. It would be interesting to delve deeper
into an error introduction method based solely on linguistic errors. This approach moves away
from the conventional techniques of general deletion, substitution, insertion, and swapping,
opting instead to embrace strategies involving POS, phonemes, NER and more.

It would be valuable to work on more advanced evaluation metrics for Dutch. Such as
with tuning a Dutch pre-trained BERT model for BERTScore to improve the performance of
BERTScore. Additionally, extending the ERRANT or M2 metric to Dutch and applying it to
this problem would be a highly valuable asset for Dutch GEC as this would create more insight
in the distribution of different error-types.

7 Conclusion

In conclusion, there exists a high amount of information within care reports however they con-
tain errors. In response, on behalf of PrimeVision, our objective is to develop a system capable
of correcting these errorful care reports. This research aimed to address the main research
question: ”What is the effectiveness of different error introduction methods in combination
with LLM-based generated data in enhancing the performance of end-to-end deep learning
models for correcting colloquial Dutch care text while preserving the semantic meaning of the
original text?” To structure the investigation, three subquestions were formulated.

• Subquestion 1: How should we generate our Dutch care texts?

• Subquestion 2: How can we assess the performance of the models, including the gen-
erated Dutch care texts and error introduction methods?

• Subquestion 3: How can we determine the most suitable error introduction methods
and models for effectively correcting colloquial Dutch care text?

For Subquestion 1, GPT was chosen to generate synthetic Dutch care texts due to the
absence of public datasets. Three approaches were tested; LLM annotation, LLM-generated
incorrect text, and LLM-generated correct text. Opting for LLM-generated correct text was
based on its suitability for the research, as privacy issues were associated with LLM annotation.
GPT’s limited ability to generate incorrect text led to the decision to avoid incorrect text
generation.

To answer Subquestion 2, literature research identified effective methodologies for evaluat-
ing text quality, concluding that no strong direct approach is available. Instead, the conven-
tional approach involves setting up an experiment and subsequently using evaluation metrics
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to compare the performance of different combinations of models, generated text and error
introduction methods. To evaluate performance, the automated evaluation metrics GLEU+,
BERTScore and SBERT sentence similarity were used. Furthermore human judgments in com-
bination with Cohen’s kappa were employed.

To address Subquestion 3, an experiment compared four error-introduction pipelines with
two models, evaluated through both human and automatic methods. This resulted in the
assessment of eight models. Additionally, three more models underwent extended training,
bringing the total number of evaluated correction models to 11. Human evaluation achieved a
Cohen’s kappa of 0.54, indicating a moderate level agreement over 2574 sentence pairs. Both
human and automatic evaluation scored the general low-resource error-introduction method
(version 1) as the worst for both model types. Furthermore, humans scored the UL2 model in
combination with interpunction error & replace bigram errors (version 2) as the best model-
error combination. However, in-training GLEU+ scores indicated mBART and syntactic depen-
dency based deletion (version 4) as the best model-error combination. Next, human evaluation
consistently scored the mBART with extended training models as worse than their regular train-
ing counterparts while they preferred the UL2 with extended training model slightly over it’s
regular training counterpart.

The mBART error introduction-model combinations consistently exhibit superior perfor-
mance over their UL2 counterparts, as evidenced by consistently higher in-training GLEU+
scores. This suggests a general proficiency of mBART models compared to UL2 models based
on GLEU+ scores. However, Figure 13 and Table 7 reveal a contrasting outcome in human
evaluation, where UL2 models consistently outperform their mBART counterparts. Given the
unexpected reversal from our initial experiments, we conducted a post-training experiment to
further investigate. Despite using the same evaluation set, we observed significant deviations
in GLEU+ values compared to the training results, particularly for UL2 models. While mBART
versions demonstrated consistency in both in-training and post-training evaluations, UL2 ver-
sions, exhibited a significant improvement in GLEU+ scores during post-training evaluation.
Despite being unable to pinpoint the exact source of the discrepancy, our suspicion centers on
the encoding-decoding process during training, particularly linked to the UL2 prefix. Although
our reliance on in-training GLEU+ scores for model selection introduces the possibility of flawed
model selection, the top-performing model-error introduction combinations were consistent in
both in-training and post-training evaluations. This resulted in a new set of post-training
GLEU+ scores aligning more closely with our initial expectations. Post-training GLEU+ scores
exhibited a notable correlation with human evaluation results, suggesting the metric’s effec-
tiveness in reflecting human judgments. This implies the potential utility of the GLEU+ metric
for refining the error introduction method, contingent upon resolving the unidentified bug that
caused the observed discrepancies in the in-training GLEU+ scores.

Semantic similarity evaluation metrics BERTScore and SBERT based similarity further
confirmed the superiority of UL2 paired with error-introduction version 2 compared to model-
error version combinations. A notable observation is the disparity in metric evaluations for UL2
in combination with MC4. While BERTScore designates UL2 MC4 and UL2 v2 as the best
models, SBERT-based embeddings consider MC4 a tied worst performer. This discrepancy
suggests that SBERT-based similarity metric aligns better with human judgments.

Finally, to answer the main research question: ”What is the effectiveness of different error
introduction methods in combination with LLM-based generated data in enhancing the per-
formance of end-to-end deep learning models for correcting colloquial Dutch care text while
preserving the semantic meaning of the original text?” We conclude that the UL2 model in
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combination with error introduction interpunction error & replace bigram errors performs best
in correcting colloquial Dutch care text according to human evaluation, post-training GLEU+
scores and semantic preservation metrics. Furthermore the mC4 vs GPT experiment concluded
that the generated care reports are beneficial compared to off-topic Dutch text grammatical
error correction in the low-resource language Dutch. Finally, the post-training GLEU+ metric
aligns with human judgments and could replace the need for time-intensive human evaluation
in further enhancement of models.

This research opens the door to various possibilities for further exploration and enhancement
of low-resource GEC models. The findings underscore the effectiveness of GPT-generated texts
for grammatical error correction in the low-resource language Dutch. Experiments highlight the
effectiveness of the UL2 model when paired with the error introduction version incorporating
interpunction error and replacing bigrams. Furthermore, the results emphasize the effectiveness
of BERTScore and SBERT to evaluate semantics preservation, as they align with human
evaluations.
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A Appendix A - Human evaluation guidelines

Deze enquête vergelijkt verschillende tekstverbeteringsmodellen. Je krijgt een originele zin te
zien en 11 verbeteringen die door modellen zijn gemaakt op basis van de originele zin. Beoordeel
de verbeteringen van de modellen. Hierbij heeft u de keuze uit: erg verslechterd, een beetje ver-
slechterd, geen verbetering/verslechtering, een beetje verbeterd en erg verbeterd. Er zijn veel
verschillende fouten die op kunnen treden bij het verbeteren van tekst. Let op: 1) Semantische
betekenis: betekent de verbeterde zin nog hetzelfde als de originele zin? 2) Vloeiendheid: loopt
de zin goed en wordt er goede interpunctie gebruikt. 3) Grammaticale correctheid: de zin is
in correct Nederlands geschreven. 4) Spelling: woorden zijn correct geschreven. Vaak zijn er
verschillende manieren om een tekst te verbeteren. Zo lang de verbetering correct Nederlands
is en de semantische betekenis niet wordt veranderd is de verbetering goed. Soms is er te
weinig context in de originele zin aanwezig om een correcte zin te maken voor de modellen.
Als dit het geval is hou hier dan rekening mee door verschillende interpretaties van de orig-
inele zin te overwegen. Bijvoorbeeld: ’Mevrouw gewassen’ → ’Mevrouw is gewassen’ is een
correcte verbetering aangezien de context mist. Maar: ’Mevrouw heeft zich gewassen’ is ook
een correcte verbetering. Wanneer een zin op een bepaald vlak is verbeterd (bijvoorbeeld inter-
punctie) maar ergens anders achteruit is gegaan (bijvoorbeeld semantische betekenis) kan je
kiezen voor geen verbetering of verslechtering. De originele zinnen zijn fragmenten uit notities
uit het zorgdomein die geschreven zijn door medische professionals. Hierin zijn veel standaard
afkortingen aanwezig: (O: → Observatie, S: → Patient zei het volgende, P: → Procedure).
Probeer bij de afkortingen na te denken wat ze kunnen betekenen en of ze relevant zijn om
opgenomen te worden in een correcte zin.

B Appendix B - Prompts

LLM-annotation:

’role’ : ”system”, ”content”:”Verbeter nederlandse medische tekst. Als de input verbeterd
kan worden, geef de verbeterde versie van de tekst en niets anders. Als de input niet verbeterd
kan worden, reageer met de input tekst. Als de input onbegrijpelijk is reageer dan met de input
tekst. Geef geen extra informatie.”

LLM-generated incorrect text:

’role’ : ”system”, ”content”:”Genereer medische tekst met grammaticale en spellingsfouten.
De tekst beschrijft dagelijkse gebeurtenissen van de client onder zorg. Maak zeer diverse tekst.
Bijvoorbeeld: ” + voorbeeld zin + ”Bijvoorbeeld: ” + voorbeeld zin2”

LLM-generated correct text:

’role’ : ”system”, ”content”:”Genereer medische tekst. De tekst is kort en bondig geschreven
en brengt de essentie over van relevante gebeurtenissen van de dag of dagdeel. Het gaat
over een oudere client die zorg ontvangt. De tekst is geschreven door een zorgprofessional
die geen moeilijke woorden gebruikt. Bijvoorbeeld: ” + voorbeeld zin + ”Bijvoorbeeld: ” +
voorbeeld zin2”

”role”: ”user”, ’content’ : ’genereer 1 tekst met de volgende woorden: ’+ keywords
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