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Abstract Effective and accurate analysis of 3D microscopy images is crucial
for advancing cancer drug research. This study aims to establish a foundation for
anti-cancer drug screening by developing a segmentation pipeline for cell cycle state
analysis of 3D spheroid nuclei cluster images. Leveraging open-source deep learning
tools, we introduce novel processing strategies to facilitate cell cycle state analysis
based on FUCCI reporter sensors. We developed, refined, and compared U-Net,
Cellpose and StarDist models for 3D nuclei segmentation in order to establish the
fundamental framework for subsequent cell cycle state analysis. To address the
biomedical imaging challenges of low image quality, limited 3D data and highly
demanding 3D annotation, we present a pipeline and segmentation model that
optimize downstream analysis. Experimental validation confirmed that our approach
achieved a segmentation performance of 77% with minimal manual annotation and
wielding inferior 3D image quality as well as efficient open-source models. These
results form the basis for accurate 3D segmentation and facilitate cancer drug
discovery by identifying critical factors for scientific work with FUCCI nucleus
segmentation and analysis.
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1 Introduction

Breast cancer presents a lethal threat to women worldwide, stated as the leading cause of
death by cancer on a global scale [1]. The aggressive and rapid proliferation is a characteristic
behavior of tumor cells and is therefore targeted in treatment research. With the help of modern
microscopes, 3D imaging of cancer spheroids is becoming more and more popular. Detailed 3D
structures preserve more information and give valuable insight to composition and structure,
superior to 2D imaging [2, 3]. Hence, researchers target the distinct tumor proliferation behavior
in drug research, mastering even cancer cells that are resistant against chemotherapy [4]. To
observe the cell cycle state of quiescent like breast cancer cells, the Fluorescence Ubiquitination
Cell-Cycle Indicator (FUCCI) imaging system is utilized [5]. The FUCCI reporter exploits gene
expression to signal the exact cell cycle state of each nucleus, allowing to observe the phases of
nuclei in a spheroid in real time.

The overall goal of this research is to utilize 3D microscopy imaging to monitor cell cycle behavior
to indicate the effectiveness of drugs on the breast cancer cells.

Accurate and reliable nuclei segmentation is crucial for downstream cell cycle analysis. While
nuclei segmentation is well-established in 2D, it becomes considerably more challenging in 3D
due to factors such as low signal-to-noise ratio, poor contrast, and dense nuclear clustering.
Traditional methods, such as watershed algorithm and thresholding, often fail in accuracy and
reliability in 3D image segmentation. As a result, researchers have encountered a bottleneck in
downstream analysis rather than in image acquisition [6]. Recent advancements in deep learning
(DL) have shown great success in addressing these challenges. DL models are known as favorable
tool for processing high-throughput microscopy data and are widely used for analysing large cell
image data. Convolutional neural networks (CNNs) have excelled at extracting and recognizing
patterns in images, making them a popular choice for biomedical image analysis. Applying CNN
models accelerates an accurate cancer drug screening workflow. The biomedical community
employed the use of DL for 3D segmentation successfully in histopathology, cancer research, and
tissue analysis [7, 8].

In this study we explore a novel approach to cancer drug screening by utilizing 3D DL models -
Cellpose, StarDist, and U-Net – to accurately segment noisy and challenging 3D nuclei images
with the least possible manual correction.

1.1 Biological Background

Fighting and understanding cancer is one of the major goals in medicine research. This
study investigates the potential of 3D spheroid breast cancer models as a more physiologically
relevant platform for drug discovery and safety assessment. By identifying and tracking the
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proliferation dynamics of malignant tumor cells, this research supports the ongoing efforts to
identify and characterize potential anticancer agents. Using novel spheroid cultures is shown to
be beneficial towards 2D cultures, based on almost in vivo characteristics of the cultivated cells [3].
Segmentation methods are crucial to identify, differentiate and quantifying the FUCCI emitted
fluorescent signals for downstream cell cycle analysis. As component of high content screening,
segmentation in combination with the analysis is employed to asses cancer drug efficacy. Cell
cycle analysis reveals which drugs lead to cell cycle arrest or cell death. The accurate and precise
segmentation especially in densely clustered nuclei is crucial and demonstrates the bottleneck of
this research pipeline [9]. Utilizing FUCCI reporter promotes the process of identifying concrete
cell proliferation states in sample cells while improving conventional cell-cycle markers [5]. Using
fluorescent confocal microscopy imaging technology, a life and in vivo observation of proliferation
activity of our cancer cell samples at the same time is achievable and will be used thorough this
work [10].

The adoption of 3D microscopy images has gained prominence in segmentation tasks, as they
provide valuable spatial information that aids in the differentiation of clustered cells. Furthermore,
there is a high availability for certain image types that are already implemented in medical
pathology, such as brain MRI or CT images of various organs [9]. Nevertheless, 3D image
availability and variation is still a represents a central challenge, due to most diverse microscopy
images and imaging techniques. Greenwald et. al. solved the shortage of images by constructing a
diverse and distinct tissue dataset for 2D images [11] . To the best of our knowledge, comparable
approaches are lacking in the 3D case.

1.1.1 Microscopy Imaging Parameters

To evaluate the efficacy of novel cancer drugs, 3D microscopy images are acquired. These images
provide spatial information essential for identifying and tracking individual cells within spheroids.
The quality of these images depends on various factors, including sample preparation, staining,
and microscopy settings.

High-resolution 3D images are desirable but can be computationally demanding. For that reason
image quality with data efficiency is crucial. Pinhole size, objective lens, and pixel spacing
influence image resolution. Smaller pinholes and higher numerical aperture (NA) lenses improve
resolution and contrast. Microscopes with oil immersion offer higher numerical aperture (NA),
leading to better resolution and light-gathering ability. Air objectives provide lower NA, resulting
in lower resolution. Previous studies have explored optimal imaging conditions and revealed
the trade off between high image resolution and vast data generation for 3D cell analysis. Le
et al. and Wagner et al. initially employed large images (2000, 1000, 500) pixels with a fine
z-step size (1.0µm) in their CellSeg segmentation model. To improve computational efficiency,
subsequent versions of the model utilized smaller images (512, 512, 30) pixels [12, 13]. Weigert
et al. demonstrated that a 63x oil immersion objective and sampling at 0.116µm and 0.122µm
per pixel can produce high-quality images for training DL segmentation models [14]. This
configuration yielded exceptionally high-resolution images, enabling detailed analysis of their
model organisms. With 28 and 6 images respectively, they acquired sufficient data to train a
deep learning segmentation model. The image dimensions were (1157, 140, 140) and (512, 512, 34)
pixels. Notably, previous state-of-the-art 3D segmentation models employed smaller pinhole
sizes of 89 µm (0.6 − 1.0 airy units) and coarser pixel spacing of 0.2µm or 0.126µm, 0.126µm for
the XY axes and 0.122 − 1.0µm for the Z axis [15, 12, 14, 16].
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1.1.2 FUCCI Reporter

Observing the dynamic behavior of living cells provides insights into growth processes. Cell
proliferation is a primary indicator of tumor growth [17]. The lifespan of a cell is divided in
four states, G1, S, G2 and M. G1, S and G2 represent the interphase of a cell, M describes
the mitotic cell division phase. During the G1 phase, the cell reproduces its organelles and
mainly gains physiological stability and largeness. Subsequent, in the synthesizing S phase
the cell produces a comprehensive copy of its DNA, stored in the cell nucleus. Lastly, the cell
increasingly grows in size and number of organelles to fully prepare for mitosis in the M phase
[18]. The complex procedure of mitosis can take between 9h for fast proliferating cells and up to
24h in human cells. The stages of Mitosis are prophase, metaphase, anaphase and telophase
and describe how the DNA condensates, reorganizes, separates and finally divides in two filial
cells [18]. Exactly this intricate process is where the FUCCI reporter makes use of the countless
proteins that assists and guide throughout the phases and stages.

Developed in 2008, Sakaue-Sawano et al. were able to genetically design and implement
fluorescent protein that label the cell cycle phases [17]. The authors identified made use two
protein named Geminin and Cdt1, that oscillate in expression level based on the cell cycle phase,
that the cell is currently in. In this study, Green Fluorescent protein (GFP), Cyanine3 (Cy3)
and Hoechst as nuclear counterstain were employed.

Genetically modifying the unique indicator proteins made it possible that every nuclei of each
cultivated cell emits either a red signal (Cy3) for G1 phase and a green signal (GFP) for S, G2
and M phase. The transmission from G1 to S will produce an yellow or orange like fluorescent
signal, provoked by the overlaying expression of the red and green protein labels [17]. Hence,
accurate representation of the spatiotemporal cell cycle patterns, as the effect of drugs on the
nucleus and its mitosis activity, can be discovered. Providing this powerful method to visualize
and analyse the cell cycle behavior of any target cells, secured the process for various subsequent
research projects that applied and improved the FUCCI method with different fluorescent protein
markers and target cells in cancer and stem cells [19, 10].

The concept of observing cancer cells in real time was discussed from Shuya Yano et al. [4]. His
work documented the success of identifying the cell cycle state of chemo-resistant cancer cells,
that were then monitored while induced with drug that arrest the cells in a phase, that was
most vulnerable to existing chemotherapeutic treatments. Likewise, this work will utilize the
FUCCI system to monitor the proliferation behavior of breast cancer cells to identify drugs that
arrest the cell cycle state when induced. The green fluorescent protein (GFP), the cyanine3 dye
(Cy3) as a red G1 signal and the Hoechst stain were selected as stains. The Hoechst staining
binds to DNA molecules and is excited by UV-light, emitting a blue fluorescent signal and is
therefore used to identify the nuclei of a cell [20]. Hoechst is excited by a wavelength of 409, 8,
GPF by 489, 0 and Cy3 by 562, 6 nanometer.

1.2 Technological Background

The rise of DL led to the application of CNN’s in computer vision tasks, enabling fast processing
of high-resolution, high-throughput microscopy images [21]. Nuclei and cell segmentation remain
fundamental to biomedical research, supporting diagnosis, treatment, and disease understanding
[13]. Developing DL methods for 3D image segmentation is an active research area with potential
for significant biomedical impact [22].
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Figure 1: Visualization of the FUCCI system. The genetically modified fluorescent
proteins are transcribed during cell cycle. The red signal Cy3 is emitted during G1
phase. During the S, G2 and M phase, only green, fluorescent signals from GFP are
emitted. In the early S phase, overlapping red and green signals are associated with
a yellow color. Lastly, the change from M to G1 is indicated by an absence of both
markers and is covered by a nuclei stain such as Hoechst. Image taken from[10]

Traditional 3D segmentation is known to be labor intensive and requires extensive human
expertise. Trained CNN’s offer a crucial advantage by automatically recognizing and extracting
relevant features for computer vision tasks without expert knowledge [22]. These networks are
extensively trained on large amount of annotated data, using supervised learning. Once trained,
the network can generalize and apply the learned ”knowledge” to new, unseen data, making the
effort of further annotations and human expert knowledge obsolete. Recent advancements in DL
have been applied to the medical and biomedical fields, including prediction of stem cell state
prediction and osteogenic differentiation feature measurement [23, 24].

1.2.1 Deep Learning Segmentation Models

The work of Caicedo et. al. emphasizes the design of this study to implement DL into the field of
analyzing microscopy images. The authors work with nuclei images and compare DL approaches
to classical approaches, demonstrating that DL can improve accuracy in nuclei segmentation and
aids minimizing the segmentation errors [25]. Biomedical image data varies widely, including
CT, sonar, tissue microscope, and fluorescent images. Generalization becomes challenging due to
the unique characteristics, quality, and interpretation requirements of each image type. Despite
these challenges, DL has shown superior efficiency and accuracy in complex segmentation and
classification tasks compared to manual methods like image thresholding, especially in terms
of generalization [26, 7]. The superiority of DL becomes particularly evident when working
with large datasets, such as those generated by 3D microscopy [7]. This makes DL a promising
approach for addressing the challenges associated with analyzing diverse biomedical image data.

Several models were developed in recent years, often based and inspired by the influential
U-Net architecture, designed for fine-grained image segmentation in 2015 [27]. Based on the
field of application, researchers developed models specifically trained on certain data, such as
the PlantSeg model is only designed for plant tissue segmentation [28]. While U-Net employs
pixel-wise class prediction based on loss functions, other methods utilize more conceptual image
information. StarDist predicts distances to mimic polygon shaped cell representation and was
one of the first model to generalize from different cell types while maintaining segmentation
accuracy [29]. In 2021 Cellpose was developed with the aim of generalization across various
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tissues, shapes and cell sizes, employing multiple models for gradient based predictions [30].
However, most models were trained on 2D data, limiting the exploitation of spatial information.
The foundation for 3D models was laid in 2016 by implementing 3D convolutional layers and
therefore extending the input shape of the U-Net model to 3D [31]. More complex models
such as StarDist and Cellpose addressed the increased complexity of 3D space by simplifying
predictions and stitching multiple axial 2D predictions to an 3D image [14, 30] .

1.2.2 Scarceness of Training Images

The development of robust 3D segmentation models in biomedical image analysis has been
hindered by the lack of large, annotated 3D datasets and the computational complexity associated
with 3D processing. Although 3D imaging is becoming more accessible, 3D images exhibit diverse
structures, resolutions, qualities and types. Most important, annotating 3D data is considerably
infeasible and more challenging in time and expertise [32]. Hence, annotating and manual
labeling of 3D image data is one of the biggest challenges in the field of nuclei segmentation.
Researchers have proposed various strategies to address these limitations, including pipelines and
toolkits for streamlining the workflow, leveraging pre-trained 2D models for few-shot training on
3D data, and combining automated training with manual refinement in a human-in-the-loop
approach [15, 14, 32]. The challenge of 3D annotation is demonstrated by Thiyagarajan et al.
who try to reduce the human time to produce annotations significantly by training a DL model
to extend sparsely annotated 2D data into dense 3D annotations [32].

1.2.3 Class Imbalance and Validation metrics

Medical images introduce a lot of their own challenges, such as bad noisy to image relation,
underexposure or densely clustered cells. A significant challenge in medical pixel-wise segmenta-
tion lies in the class imbalance of rare observations, such as tumors in pathology, specific organs
in whole CT scans, or cell detection[33, 34]. As a result, the imbalance poses challenges for
traditional metrics like accuracy, which will provide misleading indicators of segmentation quality
of segmentation algorithms. For instance, in nuclei microscopy datasets the predominance of
pixel are classified as background class. Hence, in majority and easy to classify the overall
image accuracy will invariably appear high. The same issue applies to precision and recall when
averaged over all classes and reported as a single value. To address this limitation, in this study
segmentation quality assessment is consistently reported using class-specific accuracy, recall, and
precision, alongside visual inspection examples.

1.2.4 Loss Functions

To effectively train DL models, carefully selected loss functions are essential for guiding the learn-
ing process and minimizing the discrepancy between predicted and ground-truth segmentations.
While differentiable loss functions are essential for training convolutional neural networks, class
imbalance and segmentation metrics like accuracy and precision are not suitable due to their
non-differentiability. The assessment of segmentation masks typically involves pixel-by-pixel
comparison with ground truth masks, resulting in binary (True/False) evaluations. However, the
use of class probabilities during training and binary masks during validation introduces different
metrics for each phase.
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Addressing class imbalance in multiclass 3D images is a significant challenge in this study.
The small fraction of target classes can lead to instability in training pixelwise and semantic
segmentation systems [34, 33]. Various strategies have been proposed to mitigate this issue,
including adapting the training set with sufficient examples for each class and reducing variance
through pixel standardization and normalization [35]. Given the limitations of generating and
annotating large-scale 3D microscopy datasets, finding and adapting a suitable loss function
that addresses class imbalance is a more sophisticated approach, as demonstrated in previous
medical image segmentation studies [27, 36, 33, 37].

While metrics like Intersection over Union (IoU) and Dice Score can help mitigate over and
under-classification, reporting them for the entire image may introduce bias towards the overrep-
resented class. Similarly, loss functions that incorporate the discrepancy between predictions and
ground truth on a pixel-by-pixel basis may be biased as well, hindering the learning process for
underrepresented classes. To address this, specialized loss functions are necessary, as suggested
in previous research [37, 38, 39, 36]. Several authors have proposed adapted versions of existing
loss functions or metrics to compensate for class imbalance in various ways [33, 40, 41, 42].

1.2.5 Human in the Loop

Human-in-the-loop (HITL) strategies offer a potential solution to the challenges posed by the
tedious nature of 3D image annotation, especially in the field of deep learning-based nuclei
segmentation [32]. The strategy was introduced back in 2018, initially only for machine learning
and has since gained popularity in various fields. The survey by Xingjiao Wu et al. shows
how the new nature of interaction between DL models and humans is being leveraged [43, 44].
It shows that embedding human knowledge into machine learning processes can significantly
improve the performance and efficiency of models [44]. The key idea is the interplay of iterative
human correction of DL model results, which leads to progressively improved results when used
again to train the models. In turn, subsequent results require fewer corrections and speed up the
learning process while minimizing human effort. This work provides an interface for the HITL
strategy to be used in future work to optimize model performance while reducing reliance on
laborious manual annotation.

1.3 Research Objectives

Accurate 3D nuclear segmentation remains challenging due to data limitations and complexities.
Acquisition and annotation of 3D image data is a laborious process prone to inter- and intra-
observer variability [32]. Furthermore, the pronounced class imbalance found in microscopy nuclei
images intensifies the difficulty of training models on limited annotated data. The crucial success
of training a DL model relies on a suitable ground truth dataset, containing a representative
amount of annotated training examples for every class, which is often unavailable. The absence
poses a particular challenge, which this work attempts to overcome. Image quality also impacts
model performance, with noisy and low-resolution nuclei, as found in spheroids, posing additional
challenges. Computational resources are another critical factor, as 3D image processing is
computationally demanding and requires high-performance computing (HPC) infrastructure like
ALICE [45]. Despite these challenges, models trained directly on 3D volumes have the potential
for superior performance, especially when dealing with complex 3D structures.
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This study addresses these limitations and challenges by developing a reliable 3D nuclear
segmentation model tailored to specific conditions of FUCCI-labeled nuclei spheroids. The
architecture is designed to be lightweight and class balances are taken into account by testing
and evaluating dedicated loss functions. To reduce the consequences of poor image quality, we
employ carefully selected image pre- and post-processing techniques that have been proven to
significantly improve performance [16]. We propose to optimize the U-Net architecture and
parameter configurations while minimizing manual annotation effort and utilizing minimal
amount of low-quality training data. To evaluate the effectiveness of training from scratch versus
utilizing a pre-trained model, we compare the U-Net implementation to a pre-trained state of
the art model (StarDist). This comparative analysis provides insights into the trade-offs between
model complexity and data specificity.

For downstream applications and cell cycle analysis, using FUCCI labeling provides valuable
insights into drug efficacy. Laying the foundations to be able to track individual cells over time
can enhance the understanding of cellular behavior and response to treatments. Incorporating
temporal information into the segmentation process, through methods such as recurrent networks
or transformers, holds the potential to significantly improve the accuracy of these downstream
applications.

On the whole, this work aims to facilitate downstream applications and future work in drug
discovery and development.

1.4 Structure of the Thesis

The presented study is structured as follows. Section 1 provides a brief overview of the research
goal, highlighting existing research gaps and the motivation behind the study. Key concepts
and terminology are introduced, placing the research within the broader research context.
Subsequently, Section 2 outlines the methodological foundation, introducing the main models
employed, data and image acquisition, image processing techniques, as well as explanation of
metrics and validation techniques. A detailed description of the manual 3D image annotation
process follows. The experimental results are presented in Section 3, supported by visual
representations. Building upon these findings, Section 4 offers a comprehensive discussion that
places the results within the theoretical framework and states study limitations. Potential steps
for future research are explored, linked to the limitations and key findings. Finally, the paper
concludes by summarizing key contributions and stating the data accessibility.

2 Methods

2.1 Workflow

As expected, problems emerged during the work on this project. Several strategies where
tried out, changed and adapted. Figure 2 illustrates the proposed workflow, outlining the
sequential steps and methodologies employed in this study. The diagram also incorporates a
HITL intersection for future work to enhance the outcomes of the study. The workflow is divided
into three sub-pipelines: A, B and C, corresponding to distinct work areas. A represents image
acquisition and preprocessing, B integrates manual labeling steps and C depicts model training
and its interaction with other components. To align the workflow with the thesis structure,
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Figure 2: Workflow overview. This figure illustrates the pipeline of the thesis. A represents
image acquisition and preprocessing. B integrates manual labeling steps. C depicts
model training and its interaction with other components. The numbers in bold
above the steps correspond to respective chapter sections of this work. The legend is
located in the lower right corner. The grey dataset placeholder indicates the potential
intersection human in the loop procedure, which is not implemented in this work.
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chapter numbers above steps and result signs indicate where methods are described and
results are reported.

The diagram differentiates between DL models (blue diamond), Datasets (stack of unique
colored images) and pipeline steps and processing that was conducted in this research (green
rectangles). These steps encompass literature review, software and model testing, microscopy
image acquisition coordination, and DL model development, deployment, testing, and evaluation.
Additionally, the steps include software development, DL model training, manual image review,
Jupyter notebook deployment for pre- and post-processing, and other tasks indicated in step
titles. The image stacks are color-coded to represent their status and attributes.

2.2 U-Net Model

Ronneberger et al. introduced a novel deep convolutional neural network (CNN) architecture,
known as the U-Net, which revolutionized biomedical image segmentation tasks and paved the
way for subsequent models [27]. The authors main objective was to address a significant challenge
in biomedical imaging which is the shortage of training images and ground truth datasets. Until
today, researchers endeavor with the creation of correctly labeled ground truth images due to
the laborious and time-consuming manual labeling process, requiring expert domain knowledge
[6, 32, 15].

U-Nets architecture is built on a convolutional encoder - decoder principle, compressing the input
image while simultaneously doubling the number of features, followed by an expanding phase
deploying upconvolution and dividing the feature layers to restore the original input resolution
[27]. In detail, the encoder architecture was implemented by employing double convolution
blocks utilizing a 3x3 convolution kernel with Rectified Linear Unit (ReLU) [46] activation
functions, along with a stride 2 max-pooling layer to reduce image dimensions while doubling the
feature dimension. Subsequently, the decoder part was implemented by an upconvolution block
with a 2x2 kernel to increase image size while halving the feature channel dimension followed by
the same double convolution block utilized in the encoder part. Finally, a 1x1 convolutional
layer reduces the feature dimension to the desired output classes of the output segmentation
map [27]. The networks architecture is illustrated in Figure 3.

Double convolution blocks with a 3x3 convolution kernel, ReLu, a stride 2 maxpooling layer to
decrease the image size while double the feature dimension and finally the upconvolution block
with a 2x2 kernel increasing the image size while halving the feature channel dimension in each
step, followed by the same double convolution block as in the encoder part [27].

Thus, the ”U” shaped architecture, visible in Figure 3, combines two critical components: learning
location information from the encoder section and acquiring contextual information from the
decoder section. To impede information loss during downsampling, the authors introduced,
which concatenate learned features from the encoder level to corresponding features in the
decoder level. This enables U-Net to preserve and enhance spatial information, facilitating the
segmentation of finer details compared to fully connected networks [27].

Overall, the achievement of U-Net lies in its ability to achieve high pixel-based classification
accuracy using only a small number of annotated training images, reducing training time and
computational resources in terms of memory and network complexity [27].
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Figure 3: U-Net architecture.This image, taken from the original U-Net paper illustrates the
typical ”U”-shaped network architecture [27]. Skip connection as grey horizontal line
transfer feature information from encoder to decoder part of the network. Building
blocks consist of double convolution blocks.

For this work, a custom adaptation of U-Net was implemented with pytorch and tested on a
laptop with NVIDIA GPU (2GB) with initially smaller input image size. The implementation
was designed to work and handle the specific image type of our dataset. More importantly,
it balanced the tradeoff between a lightweight model that required as little GPU memory as
possible with the best possible segmentation and feature detection capability. The development
of the program also considered the possibility of application by non-data science users. In the
further stages of the project, Leiden University kindly provided access to the Academic Leiden
Interdisciplinary Cluster Environment (ALICE), which was used for training with larger images
and correspondingly high memory requirements of up to 24 GB [45].The architecture of the final
model can be seen in Figure X. The online platform wandb was used for the visualization and
tracking of ML experiments [47]. Implemented customized functions in combination with wandb
facilitated real-time observation of the learning curve, evaluation metrics and actual segmentation
predictions online, independent of the server or laptop infrastructure. The advantage of this
stand-alone implementation was that we had full control over evaluation methods, intermediate
results, parameter settings and optimization strategies compared to using existing packages and
tools.

2.3 StarDist Model

In 2018, Schmidt et al. addressed the challenge of segmenting densely packed cell instances with
overlapping boundaries in noisy microscopy images. They proposed a method that combines
pixel-wise segmentation with instance localization using bounding boxes [29]. Utilizing deep
learning architectures to learn complex relationships between image features and cell properties
allows the model to adapt to different cell types in challenging conditions. This approach
contrasts with the traditional bottom-up approach of semantic segmentation followed by pixel
merging, which struggles in such scenarios as shown by Caicedo et al. [25]. The latter approach
often requires manual intervention or assigning high weights to boundary classes [25]. Conversely,
top-down approaches, such as Mask R-CNN, have shown success in localizing instances using
pre-defined bounding boxes [e.g., Mask R-CNN source].

However, the axis-aligned nature of bounding boxes limits their ability to accurately capture
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complex cell shapes [29]. To address this limitation, Schmidt et al. introduced the StarDist
model, which utilizes a more accurate cell shape representation based on star-convex polygons
[29]. By assuming a generally circular morphology for the nuclei in the microscopy images,
StarDist, in conjunction with non-maximum suppression, achieves superior performance on
challenging clustered microscopy datasets compared to conventional methods [29].

The model architecture is based on a lightweight U-Net architecture variation, elevating the
low computational resources while maintaining competitive segmentation accuracy. The core
functionality of StarDist is based on the prediction of two crucial pieces of information for each
pixel, Object Probability and Star-convex Polygon Distances. The Object probability
reflects the likelihood of a pixel belonging to a cell, calculated as the normalized Euclidean distance
to the nearest background pixel and provides more information than a binary classification
into background and cell. Also, prioritizing polygons associated with pixels closer to the cell
center, leads to more accurate segmentations. Second, the model predicts distances to the object
boundary along a set of predefined radial directions. The amount of radial directions, describing
an nucleus instance is crucial for the shape resolution and can be set as a hyperparameter [29].

Extending U-Net and Cellpose for 3D segmentation presented a greater challenge compared to
2D applications. Weigert et al. [14] successfully addressed this in the year 2020 by focusing on
three key factors: 1) developing an efficient way to represent 3D polyhedral shapes, 2) optimizing
the implementation for GPUs without significantly increasing computational demands, and 3)
incorporating the anisotropic properties of 3D microscopy data, which can pose a significant
obstacle for image analysis. Lastly, the authors evaluated their method on two demanding
datasets revealing its significant advantages over both traditional and deep learning-based
techniques [14].

2.4 Cellpose Model

Stringer et al. [30] addressed the challenge of limited training data in biomedical image segmenta-
tion by introducing Cellpose, a novel general-purpose approach. This method prioritizes working
across a wide range of microscopy image types while minimizing model training requirements
and facilitating user execution without the need for extensive parameter tuning [30]. Cellpose
stands out in delivering accurate segmentation results without extensive user customization or
retraining, making it a broadly applicable tool. Trained on a highly diverse dataset exceeding
70, 000 segmented objects, the model demonstrates proficiency in handling various user-provided
data while maintaining high segmentation accuracy. Initially developed as a 2D prediction
model for image analysis, Cellpose has been extended to a 3D variant that leverages its core 2D
network for 3D prediction. This is achieved by strategically slicing the 3D volume (X, Y, Z)
into a series of 2D sections (XY, XZ, YZ). The trained 2D prediction network is then applied to
each section, and the resulting pixel-wise predictions are ultimately combined to generate a 3D
segmentation mask. Notably, Cellpose achieves accurate segmentation in 3D applications by
employing pre-trained 2D weights, without requiring any dedicated 3D training [30].

The core innovation of Cellpose lies in its unique architectural design. In contrast to conventional
methods that directly predict segmentation masks (e.g., U-Net), Cellpose employs a two-stage
process. The first stage involves predicting vector flow fields. These flow fields represent the
horizontal and vertical intensity gradients within the image, essentially providing information
about potential cell locations and their corresponding boundaries. This is achieved through a
binary segmentation mask. Subsequently, the model leverages these flow fields in the second
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Table 1: Comparison of model architecture and features. StarDist and Cellpose extend
the U-Net architecture with specialized strategies and refined architectures, including
residual layers and distinct output channels (object-, distance and gradient-prediction).
These modifications enhance segmentation accuracy but increase model complexity and
computational demands compared to the original U-Net. [14, 30].

Feature U-Net3D StarDist 3D Cellpose nuclei

Backbone U-shaped CNN ResNet based CNN U-Net with residual
building blocks

Prediction method pixelwise class prediction
object probability and
centroid distances based
polyhedrion shape prediction

gradient based
shape prediction
with binary refinement

trainable params 22.396.739

Encoder
symmetrical 3D
convolution +
skip connections

3D convolution + ResNet blocks 3D convolution

Decoder
symmetrical 3D
trilinear deconvolution
+ skip connections

ResNet and non
maximum supression

upsampling and
feature summation

Output
Segmentation
mask of background,
nuclei and edge

object probability,
StarConvex radial distances

horizontal+vertical
gradients as shape,
and binary pixelwise
prediction (refinement)

stage to generate the final, refined segmentation masks. This two-step approach contributes
to the robustness and adaptability of Cellpose, making it a valuable tool for a wide range of
cellular image analysis tasks [30].

Unlike U-Net’s direct mask prediction, Cellpose utilizes a two-step approach. The first stage
involves a convolutional neural network (CNN) specifically designed to predict ”flow” fields within
the image. The architecture of this prediction network follows an encoder-decoder principle with
residual convolutional building blocks, as described by Stringer et al. [30]. To further enhance
performance, Cellpose incorporates several architectural modifications. These modifications
include using average pooling only in the smallest convolutional layer and employing feature
summation instead of traditional skip connections [30]. The resulting flow fields essentially
encode the direction and magnitude of intensity gradients, guiding the model towards accurate
object boundary detection.

Furthermore, Cellpose incorporates a user-friendly Graphical User Interface (GUI) that empowers
researchers to select models, adjust hyperparameters, and crucially, perform manual correction
and refinement of predicted segmentation masks.

2.5 Dataset and Image Acquisition

The dataset used in this work contains 3D images of breast cancer cell spheroids. The spheroids
were cultured and imaged in the laboratories of the Leiden Academic Centre for Drug Research
(LACDR). The image files have a shape of (3, 512, 512, 21) with (C, X, Y, Z), containing 3
reporter channels (C), X/Y pixels and 21 slices (z), saved in Tagged Image File format (TIF).
For downstream preprocessing and as model input, we extracted the three reporter channel
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Table 2: Settings of the confocal fluorescence microscope. The mentioned settings were applied for
image acquisition. A low pinhole size, a minimum Z-step size and a high magnification
are important for a high resolution.

Setting Value
Magnification 20x
Numerical Aperture 0.75
Refractive Index 1
Pinhole Size 60 µm
Timepoints per Specimen 11
z-slices 21
z-step size 5 µm
x/z pixel size 1.243 µm

individually and converted the 16-bit to 8-bit grayscale images. In that way, the pixel intensity
range was reduced from 0−65535 into the 8-bit grayscale range of 0−255 using the NIS-Elements
Viewer Imaging software [48].

The spheroids are induced with the FUCCI reporter system that indicates the cell cycle state
of each cells nucleus, making it possible to report the proliferation activity of that cancer
specimen type. With that, the effectiveness of induced experimental cancer treatment can be
observed, reported and analyzed in downstream analysis application. Ten different specimen
were imaged over seven continuous days with two pictures per well, every 30 minutes. The images
were acquired with a NikonC2plus confocal fluorescent microscope to enhance and capture the
different emitted fluorescent reporter signals in a sequential point by point manner. Combining
fluorescent microscopy and confocal acquisition has the benefit of increased effective resolution,
improved signal to noise ration and reduced blurring in the image due to background illumination.
Especially in thick specimen, such as spheroids, the consecutive sharp focus point with adjusted
laser power should provide the best possible quality for every slice of the sample. Table 2
provides the acquisition details.

2.6 Preprocessing of 3D image data

Microscopy images are known to have low signal to noise ratios and are of low quality due to
challenging microscopy acquisition. To improve image quality for downstream segmentation
tasks using ML and deep learning DL algorithms, several image preprocessing steps were applied.
These steps targeted contrast enhancement, noise reduction, detail preservation and enhancement,
as well as oversampling correction. The effectiveness of image preprocessing in computer vision,
particularly for segmentation tasks, is well documented in the literature. [49].

Handling the 3D spheroid images, two primary challenges were addressed. Improving poor signal
to noise ratio and reducing the overall present background noise. The high background noise hid
true nuclei signals, while the fluorescent laser settings caused overly intense (glowing) nuclei,
leading to merged clusters and a loss of detailed 3D nuclear shapes. Furthermore, small artefacts
in the cytoplasm that caught fluorescence required removal to minimize misinterpretation of the
true signal.

The raw microscope data (.nd2 format) was imported into NIS-Viewer software for channel
separation i. e. Cy3, GFP and Hoechst [48]. Then, each image was converted to 8-bit grayscale
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(intensity range: 0-255) as described in the dataset and image acquisition section (2.5). A
thresholding step was applied as a preprocessing measure to eliminate background noise. Pixel
intensities equal to or greater than 7 were set to zero. The NIS-Viewer software’s Look Up Table
(LUT) function allowed for channel-specific adjustment of the 32-bit intensity range, enhancing
threshold selection through immediate visual feedback and precise background noise reduction.
This capability is considered valuable for future analyses with new datasets.

Gamma correction is then applied to reduce noise and enhance details at the same time. This
technique adjusts the image’s luminance to selectively emphasize darker regions for improved
signal details or suppress overexposed artefacts. The chosen gamma value (γ) controls this
non-linear transformation, with γ > 1 darkening bright areas and γ < 1 brightening dark areas.
Importantly, gamma correction does not skew the overall intensity distribution of the histograms
image [50].

Subsequently, Contrast Limited Adaptive Histogram Equalization (CLAHE) was em-
ployed to address challenging lighting variations within the images. CLAHE is an image
processing tool that enhances contrast by dividing the image into local regions and then adjust-
ing their contrast histograms individually [51]. Unlike standard Adaptive Histogram Equalization
(AHE), CLAHE incorporates a clip limit value to prevent excessive contrast amplification. This
localized approach, achieved by dividing the image into a grid and applying CLAHE to each
grid section, allows for contrast adjustments based on local nuclei characteristics, independent
of uneven background illumination [52].

Even though CLAHE tried to prevent the noise amplification, it usually did not succeed entirely,
and background noise was amplified. For this reason, the next step was to apply a medium soft
filter to compensate for the residual noise. Despite prior processing, some minor overexposure
artefacts remained, visible as small, bright dots in the image. To eliminate these smaller than a
certain threshold, a Tophat white filter was employed. This filter effectively identifies small,
isolated bright regions, allowing them to be subtracted from the original image, resulting in a
cleaned final image [53].

The parameter of the preprocessing pipeline threshold, γ, CLAHE-grid size, CLAHE clip value
and median blur size were determined through a series of experiments and carefully chosen to
optimize image quality across all three channels. These parameters can be further fine-tuned
based on specific input image characteristics in future work. The impact of applying individual
pre-processing steps and the entire pipeline is presented in the results section. The effect of
applying individual and full preprocessing is shown in the results section.

2.7 Postprocessing of 3D ground truth masks data

Cellpose achieved the highest mean average precision on unseen data when compared to StarDist
and a U-Net, as demonstrated in the work by Vijayan et al. Using Cellpose to create the initial
ground truth dataset was consistent with their findings [15]. To increase the segmentation
performance on our specific dataset, preprocessing was applied. Nevertheless, the output of the
Cellpose nuclei model was not sufficient to be used as a ground truth dataset for further training.
Manual examination revealed distorted, pixelated and grossly segmented cell boundaries. Nuclei
masks were not evenly connected across the z-slices, noise was segmented into non-uniform
shapes and nuclear shapes were incorrectly segmented into myriads of small unconnected masks.
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Manual correction of all segmentation errors was impractical due to time constraints and expert
resource limitations. Therefore, to address this and improve the segmentation performance
of newly trained DL models, a post-processing step was applied to the segmentation masks.
The steps aimed to smooth out falsely segmented, pixelated cell boundaries, merge masks
corresponding to clustered nuclei and eliminate small, irrelevant masks. It is important to note
that Cellpose segmentation only generated masks for background and cell classes, lacking an
edge class. Research by Weigert et al. (2020) shows that incorporating an edge class significantly
improves the separation of clustered and touching nuclei instances [14]. By predicting boundaries
around nuclei, DL models can effectively distinguish them within the 3D image space. Hence, an
edge class was added to the output mask images. The Cellpose segmentation output consisted of
16-bit TIF files with a shape of (21, 512, 512). These files encoded binary segmentation classes
for background and nuclei, additionally integrating unique intensity values (>= 1) for consistent
nuclei instance labeling across all z-slices.

The post-processing pipeline applied the following steps to every Cellpose output image. First,
it loaded and converted the image into a NumPy array for efficient processing. A crucial step
involved maintaining the original instance labeling while adding edges and smoothing the masks
across the entire 3D volume of the image. To achieve this, the pipeline identified the total number
of unique masks (represented by intensity values) within the array. It then iterated through
each intensity value, corresponding to a specific mask, slice by slice (among the z-axis) using a
double loop. If a mask with the corresponding intensity value was absent from a specific slice,
subsequent operations were not performed. Otherwise, the area of the mask was compared to a
certainminimum area threshold. Masks falling below this threshold were removed. Qualifying
masks were processed with a 2D convolutional filter with a small kernel to smooth out their
boundaries and eliminate unwanted convex artefacts. Next, the smoothed mask was used
to generate its corresponding edges through dilation and subtraction operations. Finally, the
edge pixels were scaled to the edge classifier value of 1 and merged with the smoothed mask.
The resulting post-processed ground truth was saved as a TIF file with the same dimensions
as the input. This file encoded intensity values for background = 0, edge = 1 and nuclei >= 2.
When analysing the images, a class imbalance distribution of approximately 93% background,
1% edge and 6% cell class was found in our data set. Visualizations of this process are presented
in the results section.

2.8 Validation Metrics and Loss Functions in Semantic Segmentation

Biomedical segmentation seeks to combine instance and semantic segmentation at once. The
StarDist selected for use is able to assign pixel wise labels and distinguish instances from each
other with unique identifiers. U-Net on the other hand, focuses on identifying the class label for
each pixel in the image only. This work used several validation metrics intended for semantic
segmentation to score the classification of neighboring pixels (e.g. nucleus).

2.8.1 Validation Metrics

The success of the prediction in this work is measured by comparing each pixel class prediction
to the ground truth pixel label. In the binary case, the class will be either 0 = background or
1 = cell . In the multi class prediction problem, per definition the classes are 0 = background,
1 = celledge and 2 = cell.
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To asses the performance of prediction, the following scores are used in this work, calculated
based on the per-class classification results: true positive (TP), false positive (FP), true negative
(TN), and false negative (FN). This allows for the definition of various metrics for comprehensive
evaluation.

Accuracy = TP + TN

TP + TN + FP + FN
(1)

Precision = TP

TP + FP
(2)

Recall = TP

TP + FN
(3)

Accuracy (Eq. 1) measures the overall success rate of the classified class. It scores the proportion
of correctly classified pixels out of all predictions made.

Precision (Eq. 2) and recall (Eq. 3) are emphasizing the over and under classification of a
model, providing a possibility to penalize FP and FN pixel classification. The refined metric
precision is also known as the positive prediction value and describes the proportion of TPs
in the subset of all positive predictions made by the model. Additionally, recall is known as
the sensitivity of a models classification performance. The importance of this measurement is
demonstrated by medical test that have to detect every SARS-COV-2 virus in a sample of one
million cells to be reliable.

The F1-score or also known as Dice Score (Eq. 4) calculates the harmonic mean of precision
and recall, creating a balanced perspective of both metrics. Penalizing both FP and FN, the F1
score is especially useful in medial segmentation where both errors are treated as problematic.

As an alternative to the Dice Score, this work used a similarity descriptor developed by Grove
Karl Gilbert in 1964 [54]. The Jaccard index is used in the field of object recognition and also
called Intersection over Union (IoU) score, seen in Eq. 5. It measures the overlap of two
bounding boxes or sets, i.e. the true and the predicted segmentation mask, and results in 1 for a
perfect overlap and 0 for no overlap [38, 41]. The IoU score penalizes FP and FN more strictly
than the DiceScore and thus provides a direct measure of segmentation quality.

DiceScore/F1Score == Precision + Recall = 2 ∗ TP

2 ∗ TP + FP + FN
== overlapArea

totalArea
(4)

JaccardScore = IoU = TP

TP + FP + FN
= Intersection

AreaofUnion
= |A ∩ B|

|A ∪ B|
(5)
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2.8.2 Loss Functions

The baseline used in this work is the least intuitive but most commonly used loss for pixel-wise
segmentation of multiple classes: the cross-entropy loss (CE) [55]. We are interested in the
pixelwise disparity of the predicted probabilities to the boolean ground truth classes of the
complete image. To address the class imbalance, one can assign a weight factor ωi for each class,
to emphasize or impair a class which describes the weighted cross entropy loss (WCE). Equation
6 shows the definition, with the ground truth class yn and the softmax transformed logits
outputs pn, for n ∈ 1, .., N pixel input associated to the i ∈ 1, ...cth class, summed up to provide
a numerical measure of the models prediction error.

WCE L = −
c∑
i

ωiyi,n log(pi,n) (6)

With the WCE loss we are able to find class weights, that forces the model to weight feature
learning for under represented classes more than for other classes. Since the search for suitable
weights is arbitrary, it does not guarantee the best performance for each data set.

WCE does have its limitations in underrepresented hard to classify classes, which this work is
dealing with. Hence, we implemented the work of Lin et al. [36], who developed Focal Loss
(FL) as tuned CE. The authors prove that it outperforms WCE and CE by defining a function
that regulates the class weights according to the networks prediction certainty [36]. Equation
7 describes FL as combination of CE with the automatic weight scaling in the γ controlled
regularization term (1 − pi,n) and introducing α, γ as additional hyperparameter to regulate the
power of weight adjustment.

FL = −α
c∑
i

(1 − pi,n)γyi,n log(pi,n) (7)

To compare the effectiveness of weight scaling and regularization terms, this study employed the
IoU score as a loss function. Equation 8 displays the calculation of the IoU loss for each class c,
considering every predicted pixel p and its corresponding ground truth pixel value y. A small
value, ϵ, is added as a smoothing term to avoid division by zero. The IoU loss is particularly
well-suited for this purpose due to its ability to strictly penalize FP and FN, effectively acting
as a regularization term. Compared to the Dice Score, the IoU loss’s strict penalization makes it
more suitable as a loss function.

To obtain a single overall loss value, the IoU scores for all classes are averaged and then subtracted
from 1 (Eq. 8. This ensures that a perfect overlap between the predicted and ground truth
segmentations results in a loss of 0, allowing for optimization.

IoULoss = 1 − mean

( ∑c
i ωipi,nyi,n∑c

i ωipi,n + yi,n − (∑c
i ωipi,nyi,n) + ϵ

)
(8)
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2.9 Manual Labeling Tools

This study investigated two labeling tools and their effectiveness in improving segmentation
quality and effortless accurate labeling.

Cellpose, as a significant contribution to 3D deep learning tools, provided a built-in user
interface that claimed to be easy to use. Research confirmed that Cellpose was the most
competent tool for creating a labeling dataset from a few ground truth examples and achieving
the best generalization. Consequently, the Cellpose GUI was selected to apply the pretrained
Cellpose model, manually segment, and correct the output. Special emphasis was placed on the
promised user-friendliness for potential integration into biological researchers’ workflows.

Cellpose, as a segmentation tool, was primarily designed for use with its built-in models
and lacked significant cross-platform features. The GUI allowed for immediate correction of
segmentation results, automatically saved manual changes, and highlighted detected nuclei on
the original image. The masks, flowcharts, metadata, and original TIF image could be saved in
a Cellpose-generated Python format (.npy). Additionally, the masks were saved as grayscale TIF
files, with background labeled as 0 and nuclei instances labeled as 1, 2, . . . , n. While originally
designed for 2D cases, the Cellpose GUI could merge manually segmented nuclei per slice into a
3D volume. However, 3D rendering was not possible for closer inspection. Cellpose assisted with
mask drawing, but users had to provide an area for edge detection. Per-pixel labeling was not
possible, as the tool was designed for mask shape correction. Erasing single pixels in the mask
was also not supported, requiring deletion of the entire produced mask.

Segmenting a 3D image could take up to 0.5 hours without a GPU, significantly hindering
efficient ground truth generation. If the model was not well-trained for specific images, the
segmentation results were often inaccurate, necessitating full deletion of the mask object to
improve accuracy.

Labkit serves as a plugin of the open source image processing package Fiji [56] and was easy to
install [57]. It was designed to work seamlessly with large biological image data, has a detailed
online documentation, works with GPU and high-performance clusters and is developed for
pixel-based segmentation. The initially overwhelming menu and user interface was quickly
understood thanks to well documented online resources and a quick learning curve. Compared
to Cellpose GUI, Labkit boasts broader data compatibility and applicability across various
image analysis tasks. Importantly, Labkit utilizes TIF files for both input and output, ensuring
seamless integration with other tools and platforms [57, 56].

To acquire segmentation masks, raw images were loaded into Fiji using the Labkit plugin. The
random forest classifier within the segmentation module was employed for pixel-wise segmentation.
Various filters, including Gaussian, min/max, Hessian, and eigenvalue structure tensors, were
available for customization. Basic filter settings were applied based on image characteristics. To
train the classifier, manually drawn pixel masks were provided as examples. Unlike Cellpose
GUI, only a general outline of regions was required, simplifying the labeling process. An iterative
approach was used, with additional examples incorporated and the classifier retrained to refine
segmentation. The classification process was efficient, taking approximately 5 minutes per image,
with GPU acceleration possible.

Explicit drawing tools in Labkit enabled precise correction of the exported binary segmentation
masks. The NIS 3D viewer was used for 3D visualization to assist in separating overlapping
nuclei. The binary segmentation class was exported as a TIF image, and the classifier was saved
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for future use. The exported TIF file was then loaded into Fiji for instance segmentation using
the MorphoLibJ plugin’s ”Connected Component Labeling” function. A connectivity parameter
of 6 was used to convert the binary image into a 16-bit grayscale image containing individual
mask instances. To further refine instance segmentation, the original image was opened in
Labkit, and the imported instance segmentation masks were overlaid. Manual adjustments were
made to achieve optimal segmentation accuracy for each mouse. The final segmentation result
was saved as a TIF linked to the original image.

This workflow enabled precisely masking challenging microscopy images of various types with a
fair time effort of 15-20min per image and accurate results for downstream DL model training
and validation.

2.10 Final Performance Validation

To assess the actual segmentation accuracy and retrieve a metric, a final segmentation score
was created and applied to manual labeled evaluation images. The dataset marked in red in
Figure 2 suits as test set to be applied as last step in training a DL model. Naturally, this
set of images need to have masks that are as accurate as possible. Therefore, Labkit was used
to manually draw masks for one 3D images per channel. This manual labeling was conducted
rather strict, masking only the most evident nuclei in the images. In that way, it was assured
that the compared models are evaluated on their ability to find the explicit signal nuclei as
fundamental approach.

First, trained U-Net3D and StarDist models were used to predict segmentation masks for unseen
validation images. The resulting output TIF files (21, 512, 512) were standardized to a binary
class (background and nuclei). U-Net3D did not produce instance labels, so the connected
component labeling function of the cc3d package was used to identify and label 3D components
[58]. By looping through the unique labels of each image, mask characteristics such as mask
areas, centroids, bounding boxes and cloud-coordinates where saved for downstream analysis.

To evaluate predicted masks, a comparison was made with corresponding ground truth masks
from the manual validation set and composed in the Evaluation Score (Eq. 9). Using the
ground truth mask coordinates, the corresponding regions in the predicted masks were identified
and isolated. A DiceScore was calculated for each predicted mask against its ground truth,
and a sub-region DiceScore within a certain tight bounding box of the ground truth mask was
computed. A weighted combination of these scores determined the overall segmentation success,
as detailed in Equation 9. The separation of clustered nuclei was prioritized with a weight of
1.05 over subregion segmentation (weight of 0.95). Sub-regions were necessary to address the
model’s oversegmentation tendency, especially in regions with noise or clustered nuclei. The
cc3d package’s connected component labeling function struggled with noisy or clustered nuclei,
often combining them into a single label. By isolating nuclei within sub-regions, false positive
segmentations were effectively eliminated, enabling more accurate evaluation.

EvaluationScore = (0.95 ∗ subregionScore + 1.05 ∗ fullScore)
2 (9)
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Figure 4: Raw Cellpose Segmentation Results. Panel A presents the raw segmentation
masks, where each unique gray value represents an individual nucleus. Here, poor
segmentation and clumping of nuclei are evident. B depicts an overlay of the binary
segmentation mask (blue) on the original microscopy image. While strong signals are
segmented well, noisy regions pose a challenge for Cellpose.

3 Results

3.1 Post-Processing

Due to absence of expert-labeled ground truth data, the initial segmentation masks generated
by the Cellpose model demonstrated inaccuracies. To address this limitation, a post-processing
notebook was applied to refine the masks, creating more precise ground truth annotations.
Accurate nuclei segmentation is crucial for the subsequent DL model training and directly
impacts their overall performance.

Cellpose exhibited limitations in accurately segmenting nuclei in our dataset as shown in Figure
4. Segmentation masks instances visualized in distinct grey values for differentiation. Panel A
of Figure 4 depicts distorted nuclei shapes with frayed out edge structures, instances split into
multiple incorrect masks, and over-segmentation of noise surrounding true nuclei. Each gray
value represents a nucleus identified by Cellpose. Figure 4B shows the same binary segmentation
mask as an overlay (colorized in blue) over the corresponding microscopy image. It demonstrates,
the amount of nuclei missed by the model. In addition, the model was not able to separate
single nuclei in densely packed regions. Similarly, the model struggled with noise while correctly
segmenting strong signals.

Figure 5 displays the outcome of the post-processing pipeline step. A detailed view of a 2D
slice showcases the transformation: irregular Cellpose mask edges (unrealistic nuclei shapes) are
smoothed and merged into improved ground truth masks. Notably, instance segmentation is
preserved. Each nucleus retains its unique gray value label in 3D space, but masks smaller than
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Figure 5: Post-Processing of Cellpose Output. Figure A shows the raw segmentation
output from Cellpose, while B demonstrates the effects of the post-processing pipeline
step. This process effectively smoothed and merged irregular mask shapes, resulting
in a more accurate ground truth mask. The figure provides a detailed view of a slice
from the B10 T01 Cyr microscopy image.

20 voxels (in 2D slice) are eliminated. By looping through every intensity value individually, the
post-processing pipelines assures that every nucleus gains an edge, which separates clustered
instances from each other along the z-dimension. Consequently, new deep learning models can
learn a more accurate shape representation from the microscopy images.

To reduce the amount of oversegmentation, division of single nucleus into multiple masks and to
align the segmentation mask shape to a more realistic round shape, certain image processing
steps were included. Figure 6 demonstrates the effectiveness of the chosen image processing
methods, resulting in a more accurate ground truth. Figure 6A highlights the limitations of
post-processing without top-hat and dilation steps, while Figure 6B showcases the final result
with improved nuclei shapes and the removal of small perturbing instances. With these improved
and corrected shapes, they serve as better ground truth segmentation masks for the subsequent
DL model training.

Figure 7A illustrates a challenging case of post-processing in a densely clustered nuclei region.
The noisy and overlapping nature of these nuclei led Cellpose to oversegment the area, resulting
in merged nuclei and unrealistic shapes. Despite the applied post-processing operations the
extensive masking of uncertain nuclei boundaries hindered complete correction. As a result,
Figure 7B presents a dense, noisy oversegmentation that is unsuitable as a ground truth mask.
However, the instance-wise edge creation effectively separates individual masks even in highly
cluttered regions, visualized as white boundaries.

3.2 StarDist Training

As introduced in the Methods section, the pretrained StarDist model was employed as a state-of-
the-art reference benchmark. Fine-tuning, prediction, and data processing were conducted using
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Figure 6: Effect of image processing methods. Panel A shows the intermediate result of
post-processing without top-hat and dilation. Panel B displays the final post-processed
segmentation mask with improved core shapes and edges.

Figure 7: Post-Processing Dense Cellpose Segmentation Output. Displayed in A is the
raw Cellpose output of a challenging region with densely clustered nuclei and noise. The
post-processed result in B demonstrates the limitations in generating accurate ground
truth masks. Despite instance-wise edge creation effectively separating individual
masks, oversegmentation and noise remains due to the challenging nature of the image
data.
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Table 3: Comparison of StarDist training metrics. Various StarDist model configurations, trained
on an Nvidia RTX 2080Ti, and the resulting training metrics are shown here. All
models included a ResNet backbone except StarDist-U-Net, which was trained with a
U-Net architecture. The best results per metric are highlighted in bold.

Wandb-ID Time Input Epochs n-Rays T-Loss MAE IoU
StarDist-Resnet 2h18min (12,512,512) 400 96 0.267 1.165 0.630
StarDist-U-Net 1h32min (12,512,512) 400 96 0.272 1.120 0.615

small-patch 6min (4,128,128) 400 96 0.243 0.935 0.6231
small-patch-128Ray 6min (4,128,128) 400 128 0.243 0.933 0.624

small-patch-1k 14min (4,128,128) 1k 96 0.211 0.796 0.559

the provided Jupyter notebooks [14]. GPU-accelerated training was performed on the ALICE
server, enabling GPU RAM intensive tasks. Table 3 outlines the model configurations and
training parametersVariations in training patch size, StarDist backbone architecture, number
of rays, and epochs were investigated. Direct comparison of training success with U-Net was
ineffective due to the differences in loss function. Furthermore, the absence of wandb style
visualization and custom F1-scores limited model assessment. Instead, training performance
was evaluated based on epoch loss curves, measuring the distance mean absolute error (MAE),
epoch loss and distance IoU metrics.

Table 3 provides an overview of training metrics for all tested configuration. It shows, that
increase the n-rays did not benefit the training process. Increasing the number of rays did not
improve performance. While small patch sizes significantly reduced training time (6 minutes
versus 1.5-2 hours), this advantage did not translate consistently to improved IoU, indicating a
potential trade-off between speed and segmentation performance. Extending training epochs
to thousand lowered the loss but did not enhance IoU, indicating model overfitting. Despite
lower loss values, StarDist ResNet achieved the highest IoU of 0.630 as the most important
metric. Based on these findings, StarDist ResNet, U-Net, and small-patch were selected for
further analysis and performance evaluation.

Figure 8 presents a comparative analysis of loss curves for the most relevant models, evaluating
training success. StarDist-smallPatch exhibited the lowest training loss, indicating superior
training convergence compared to StarDistResnet and StarDistU-Net. However, the IoU score
revealed the opposite trend, with small-patch demonstrating the poorest performance. The IoU
score was calculated on the same validation images as in the U-Net training. ResNet consistently
outperformed U-Net across all metrics.

3.3 U-Net Training and Parameter Tuning

This section will present the hyperparameter tuning results of the U-Net-3D implementation.
The online tool wandb [47] was utilized to facilitate tracking and visualizing the experiments.
This platform assigns unique names to the experimental runs, simplifying differentiation between
them. The names are noted down in the results tables as ”Wandb-ID” such as ”fine Yogurt”,
”golden Pond” or ”comic Firefly”.

Every experiment was executed on the ALICE HPC, using GPU nodes such as Tesla A100 and
GeForce RTX 2080i. The default configuration is a model with input shape of (15, 500, 500), lr
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Figure 8: StarDist training losses. Visualized here are the training loss curves for three
StarDist models: ResNet (pink), U-Net (green), and SmallPatch (black). The y-axis
represents the loss value, while the x-axis indicates the number of training epochs.
While minimal differences in training curves were observed between U-Net and ResNet,
the latter exhibited marginally lower MAE and total training loss. The SmallPatch
model consistently outperformed both U-Net and ResNet in terms of loss, although it
achieved a lower IoU score compared to the other two models.
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Table 4: Comparison of Loss Function and weight combination. Displayed here, are the results
of the loss function experiments, the best and second best F1 scores are highlighted.

Wandb-ID weigths Loss lr F1 edge/cell time
avid hill 1.0,2.5,1.5 CrossEntropy 0.001 0.000 / 0.5854 1h 14m
earnest salad 1.0, 1.0, 1.0 FocalLoss 0.001 0.395 / 0.812 1h 17m
lemon feather 1.0, 2.0, 1.5 FocalLoss 0.001 0.410 / 0.7764 1h 16m
genial water 1.0, 2.5, 2.5 CrossEntropy 0.001 0.509 / 0.8146 1h 17m
comic firefly 1.0, 3.0, 2.0 CrossEntropy 0.001 0.529 / 0.815 1h 15m
unique sea 1.0, 1.0, 1.0 CrossEntropy 0.001 0.359 / 0.814 1h 15m
divine violet 1.0, 1.0, 1.0 IoULoss 0.0001 0.542 / 0.840 1h 18m
skilled meadow 1.0, 1.0, 1.0 IoULoss 0.001 0.521 / 0.840 1h 15m
golden pond 1.0, 3.0, 2.0 IoULoss 0.0001 0.552 / 0.850 1h 20m
fine yogurt 1.0,2.0,1.5 IoULoss 0.0001 0.555 / 0.853 1h 17m

= 0.001, Adam as optimizer, image normalization, [64, 128, 256] as network feature layers and 2
validation images (GFP, Cy3) cropped to (2, 200, 200) for visual performance comparison in wandb.
These configurations are the results of previous testing on smaller GPU and recommendation
out of the authors papers [31, 14, 59].

To estimate the performance, not the loss but the segmentation metrics were used. The DiceScore
(F1) of edge and cell segmentation was considered as most impact.

3.3.1 Loss Function and Weights

Table 4 presents a comparative analysis of loss functions and weight configurations. Loss function
such as Cross Entropy (CE) and Focal Loss (FL) incorporate class weighting with certain
chosen factors to address imbalanced datasets. These factors are noted down as [x, y, z] for
x=backgound, y=edge and z=cell class. FL, with gamma = 5 exhibited the worst performance
in edge and cell-F1. CE demonstrates better results, except “avid hill” which drops mid training
and fails to segment anything. The best results are exhibited by the IoU loss, which achieves
better performance than CE and FL in any parameter configuration. Reaching (0.555 / 0.853)
at max for edge-F1 and cell-F1 respectively and a weight of [1.0,2.0,1.5] it beats the best CE
run “comic firefly” with (0.529 / 0.815) and stronger weight emphasize of the edge class [1.0, 3.0,
2.0]. Interestingly, the same weights decrease the performance of IoU, as seen in “golden pound”
and a result of (0.552 / 0.850). CE on the other hand benefits from stronger weights for edge
and cell. This can be seen in the edge and cell weight of “unique sea” with [1.0, 1.0, 1.0] and
“genial water” with [1.0, 2.5, 2.5] and results of (0.359 / 0.814) and (0.509 / 0.8146). Only here,
the weighted FL loss “lemon feather” surpasses CE in the edge F1 score (0.410 / 0.7764), but
underlays in cell segmentation.

The only difference in comparison between CE and IoU loss was the lr in those experiments.
Whereas CE was executed with a lr of 0.001, IoU had a lr of 0.0001. This leads us to the next
experiments, CE FL and IoU loss with different lr settings. As described in the next section, IoU
with lr of 0.001 still outperforms CE and FL with default configurations as seen in run “skilled
meadow” and F1 scores of (0.521 / 0.840).
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Table 5: Learning Rate and gamma
Wandb-ID weigths loss lr F1 edge/cell time gamma
smart sea 1.0, 2.0, 1.5 CrossEntropy 0.001 0.498 / 0.797 1h 17m n.a.
glad vortex 1.0, 2.0, 1.5 CrossEntropy 0.00001 0.376 / 0.814 2h 48m n.a.
amber glitter 1.0, 3.0, 2.0 CrossEntropy 0.0001 0.557 / 0.844 2h 51m n.a.
hearty voice 1.0, 2.0, 1.5 CrossEntropy 0.005 0.482 / 0.773 2h 49m n.a.
deep cherry 1.0,2.5,1.5 CrossEntropy 0.0001 0.524 / 0.838 1h 23m n.a.
skilled sun 1.0, 1.0, 1.0 FocalLoss 0.005 0.301 / 0.811 2h 45m 7
glowing dew 1.0, 1.0, 1.0 FocalLoss 0.001 0.441 / 0.835 2h 50m 7
drawn firebrand 1.0, 1.0, 1.0 FocalLoss 0.0001 0.459 / 0.841 2h 48m 7
whole galaxy 1.0, 1.0, 1.0 FocalLoss 0.0001 0.418 / 0.822 1h 20m 8
skilled meadow 1.0, 1.0, 1.0 IoULoss 0.001 0.521 / 0.840 1h 15m n.a.
fine yogurt 1.0,2.0,1.5 IoULoss 0.0001 0.555 / 0.853 1h 17m n.a.

3.3.2 Learning Rate and Gamma

Table 5 presents the results of taking the best configurations out of the previous run and
investigating the behavior of increased and decreased lr. The experiments prove, that the loss
functions suffer from greatly diverging values. Here, IoU is most sensitive to and increased lr of
0.001 compared to 0.001, diminishing the edge-F1 score from (0.542 / 0.840) to (0.521 / 0.840)
with same weights. Decreasing the learning rate while having strong class weights for CE and
increased gamma for FL leads to an increase in edge-F1 and cell-F1. The default lr configuration
reaching (0.529 / 0.815) was improved to (0.557 / 0.844) with run “amber glitter”. For FL, a
higher gamma of 7 in combination with the lr of 0.0001 leads to an improvement from (0.395 /
0.812) to (0.459 / 0.841), not surpassing CE in edge but approaching the cell same accuracy, as
demonstrated in run “drawn firebarn”. Choosing a higher gamma (8), performance gain stops
and decreases again, as seen in run “whole galaxy”. The worst performance is visible in run
“skilled sun” with the highest lr of 0.005. As expected, the training was unstable and concluded
in the worst edge-F1 score of 0.301. Noticeably, the FL in combination with a high gamma of 7
was still able to segment the cells precisely, what the cell-F1 of 0.811 shows. Nevertheless, FL
combined best F1 scores of (0.459 / 0.841) was achieved with the decreased lr of 0.0001 same as
CE. In contrast, IoU does not favor of stronger weights with lr of 0.001. The results of “golden
pond” (0.552 / 0.850) perform slightly worse with weights like CE [1.0, 3.0, 2.0] compared to
“fine yogurt”. Its weights of [1.0,2.0,1.5] represent the best performance in F1 scores for the
whole experiments so far (0.555 / 0.853).

All in all, the lr of 0.0001 benefits all loss functions and together with carefully chosen emphasize
on underrepresented classes the models achieved new maximal performance values.

3.3.3 Network Architecture

Crucial part to recognize and learn patterns and features in images is the network architecture.
Based on the number of parameters in each layer, the networks ability to learn varies. The
following experiments added and minimized the number of convolutional blocks. To be able to
train the network without exceeding the GPU resources, the model input size was reduced to
18x350x350 pixel for some runs. Table X displays the results. Reducing the feature parameter
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Table 6: Network architecture and Input shape
Wandb-ID weigths Layers Loss Input hape lr F1 edge/cell
rare-sun 1.0, 3.0, 2.0 [64,128] CE 15,500,500, 0.001 0.519 / 0.797
divine armandillo 1.0, 3.0, 2.0 [128,256] CE 15,500,500, 0.001 0.525 / 0.813
worthy lion 1.0, 3.0, 2.0 [64,128,256,512] CE 20,500,500 0.001 0.438 / 0.771
upbeat armadia 1.0,2.0,1.5 [64,128,256,512] IoU 20,500,500 0.0001 0 / 0
distincitve snowflake 1.0,2.0,1.5 [128,256] IoU 15,500,500, 0.0001 0 / 0
cosmic smoke 1.0,2.0,1.5 [64,128] IoU 15,500,500, 0.0001 0.489 / 0.838

and double convolutional building blocks to [128,256] results in the best edge and cell F1 scores
for CE with (0.525 / 0.813), as seen in “divine armandillo”. By omitting the low-level pattern
recognition of the first layer with [64], the model was able to learn the details of intricate edges.
Changing the layers to [64,128] results in a cell-F1 with similar results, only the edge-F1 suffers
(0.519 / 0.797), as seen in “rare sun”. Nevertheless, the measured GPU utilization exceeds 29GB
with the [128,256] double convolution blocks, which is significantly more than the usual 8 – 9 GB
of the default configuration. Comparing to the baseline, there was not a noticeable increase of
performance for CE neither FL, hence the excessive GPU utilization is disproportionate to the
marginal increase in performance. Adding an extra feature layer to the model while minimizing
the input shape to 18x350x350 decreases the performance for CE and FL from (0.529 / 0.815)
and (0.410 / 0.7764) to (0.488 / 0.786) and (0.373 / 0.754) respectively. To assure that the
reduced input size had no great effect, the added layer was tested on the same configuration
with run “worthy lion”. The results demonstrate that with higher GPU utilization of 20.1 GB
the performance of the model still does not exceeds the baseline. Similar behavior was seen
for the IoU loss. Adding [512] and changing to [128, 256] is leading to a complete failure of
learning edge and cell, the whole image was segmented into the background class. Only “cosmic
smoke” was able to learn properly, with [64, 128] configuration. Still, segmentation performance
decreased drastically from the best to the worst of (0.489 / 0.838).

In summary, the trade of between GPU utilization, network architecture and image size could
not exceed the baseline performances.

3.4 Performance Validation

This section presents the calculated evaluation scores and a visual analysis of the segmentation
performance for StarDist3D and U-Net models. A custom-built analysis function assigned unique
labels to each nucleus in the three ground truth evaluation images. Utilizing the label-based
point coordinates of segmentation masks, 3D representations of predicted and ground truth
masks were generated using matplotlib. As described in the methods section, subarray and
full image Dice scores from the final performance evaluation were visualized as 3D overlays to
highlight FP, TP FN and TN mask predictions.

3.4.1 Evaluation Score Table

The evaluation score introduced in Method section 2.10 was used to assess the successful
segmentation performance of each trained model. Table 7 displays the results of models that
stood out in the parameter training. The Score was calculated for each channel independently
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Table 7: Final evaluation results. The final performance evaluation results of the trained StarDist
and U-Net model configuration are presented here. Highlighted are the best averaged
results and the highest channel scores of each Stardist (top) and U-Net (bottom).

channel av. Cy3 GFP Hoechst
StarDistResnet 0.776 0.608 0.896 0.826
StarDistU-Net 0.778 0.652 0.879 0.804
StarDistSmall 0.663 0.434 0.844 0.712

fineYogurt 0.725 0.826 0.810 0.543
amberGlitter 0.763 0.869 0.844 0.576
goldenPond 0.744 0.847 0.827 0.559
divineViolet 0.715 0.826 0.793 0.527
drawnFirebrand 0.692 0.739 0.844 0.494
comicFirefly 0.771 0.826 0.862 0.625
glowing dew 0.537 0.500 0.758 0.353

to identify strength and weaknesses of the model and image channels. To propose the best
performing model the channel scores were averaged. Here, Table 7 presents the StarDist model
as best model, beating all U-Net architectures with scores of 0.778, 776 for StarDistU-net and
StarDistResnet respectively. Closely followed by comic firefly with an averaged score of 0.771.
The highest per channel scores were produced by amber glitter (0.869) for Cy3, StarDistResnet
(0.896) for GFP and again StarDistResnet (0.826) for Hoechst. Especially the result for Hoechst
diverges greatly from the strongest U-Net model with 0.635. It shows that Hoechst poses a
challenge especially for U-Net models, whereas Cy3 represents the best performance for U-Net
models.

Surprisingly, the results do not correlate with the F1 edge and cell segmentation results from the
parameter tuning experiments. Fine Yogurt, Amber Glitter and Drawn Firebrand achieved the
best F1 values in the experimental comparison, but fell short of these standards in the evaluation.
As a result, Comic Firefly impressed with average F1 scores and the best average rating. Only
amber glitter achieved the highest evaluation score for Cy3 and carried over the success from
the F1 values to the final evaluation score.

3.4.2 Visual examination

To further investigate the results in Table 7, several representative examples are shown. The
provided visualization illustrates the performance of a prediction model in relation to a ground
truth. The assignment of an image to case 1 or case 2 is labelled in the top left-hand corner of
the image. The key elements are:

• Overlap (Yellow): This represents areas where the prediction of the model correctly
matches the ground truth.

• False Positive: These are regions where the model predicted an object or area that does
not exist in the ground truth. This is known as oversegmentation. Shown in purple for
case 1 and green for case 2.
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• False Negatives (Purple): These are areas where the model failed to detect an object or
area that is present in the ground truth. This is known as undersegmentation and shown
only in case 2.

Figure 9 and 10 demonstrate the ability of the model to separate nuclei within challenging
clustered regions, emphasizing the distinction between subarray and full image score results.
Figure 11 highlights the superior segmentation performance of amber glitter in the Cy3 channel,
seen in Table 7. It presents a consistent segmentation along the z-axis. To demonstrate the
impact of merged nuclei on Dice score, a nucleus with adjacent neighbors in the z and x-y
planes was selected. Figure 12 compares the best-performing model, StarDistResnet, to lower-
performing models (amber glitter, comic firefly, glowing dawn) ranked by decreasing full image
Dice score, underscoring the significance of accurate edge segmentation.

To evaluate detailed accuracy of the best performing models, a nucleus with a concave shape
was analyzed. Figure 14 exhibits segmentation results for comic firefly, amber glitter, fine yogurt,
and StarDistResnet. Interestingly, model performance deviated from the overall evaluation
scores, with StarDist demonstrating difficulty in segmenting the complex shape while comic
firefly captured more details. However, all models failed to accurately represent the nucleus’s
concave structure.

4 Discussion

The following discussion aims to interpret the findings, explore their potential implications and
outline directions for future research. The findings conclude that the U-Net architecture achieves
good segmentation performance. Trained from scratch, using only a small number of 3D images
that were improved in quality by preprocessing, the U-Net can compete with the state of the art
StarDist segmentation performance. Using Cellpose as initial ground truth generation, refining
the masks automatically with image processing and finally training a versatile and efficient open
source network like U-Net successfully reduces the human annotation effort and the demand for
large training datasets. The segmentation performance of StarDist compared to U-Nets suggests
that the need for training a model on a specialised image dataset only, does not guarantee better
performance than fine tuning pretrained models with the exact same image data.

Nevertheless, the findings do not answer the question weather the fine tuned performance can be
exceeded with better image and annotation quality or if it is the utmost. Comparing the distance
based segmentation of StarDist with the pixel wise classification confirms U-Nets efficacy and
potential in simplicity. The findings of the loss function demonstrate, that the class imbalance
in 3D images can only be addressed through specialised loss functions or heavy weight factors
that correct for underrepresented class examples. The decrease in segmentation performance
when extending the U-net architecture indicates that the gray scale nuclei images do not benefit
from large feature representation and efficiency in architecture and computational resource is in
favor of this work.

4.0.1 Cellpose and Postprocessing

Cellposes ability to serve as an initial ground truth generator was proven experimental in the
research of Vijayan et. al. and is congruent with our findings [15]. The power to generalize with
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Figure 9: Segmentation of clustered region. This Figure visualizes the 3D segmentation
mask together with the ground truth segmentation mask. Here, the segmentation of
gt label 197 (Hoechst) from model drawn firebrand and model StarDistResnet are
put into comparison. In A the subarray segmentation of drawn firebrand with a
DiceScore of 0.616 is shown, in B the segmentation of the full image DiceScore with
0.044.C exhibits the subarray segmentation of StarDistResnet with a score of 0.799.
StarDistResnet was able to correctly separate that nuclei in the clustered region, hence
achieving the same score for the full image. In Case 1, overlapping regions between
ground truth and prediction are highlighted in yellow, while purple indicates false
positive segmentations. In Case 2, false positive regions are displayed in green and
false negative segmentations are colored in purple.
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Figure 10: Clustered nuclei Comparison for U-Net. This Figure illustrates an example of
failed and successful separation for the U-Net model on nuclei label 92 (Hoechst).
In A drawn firebrand is exhibited with sub array DiceScore of 0.529, in B its
full image DiceScore of 0.031. C and D display segmentation results of comic
firefly with sub array score of 0.532 and full image DiceScore of 0.131. Comic
firefly achieving the highest F1-edge score, proving a better nuclei separation than
drawn firebrand, who achieves the higher F1-cell score. In Case 1, overlapping
regions between ground truth and prediction are highlighted in yellow, while purple
indicates false positive segmentations.
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Figure 11: Highest Cy3 segmentation value ”amber glitter” This figure demonstrates the
best segmentation of the highest Cy3 result (amber glitter shown in A) compared to
the second worst Cy3 result (drawn firebrand in shown in B). Amber glitter achieves
a subarray dice score of 0.822, and drawn firebrand in B achieves a subarray dice
score of 0.788. During training, both models reached a similar cell F1 value, only
the edge F1 value is lower for drawn firebrand. In Case 2, false positive regions are
coloured in green and false negative segmentations in purple.

unseen data originates most likely from a diverse training set, including a variety of different
cell- and microscopy - type images and additionally natural shape patterns such as shells and
stones [30] . Even though, no 3D images were used for training the stitching strategy seems to
reveal the relations in the 3D dimension, which is promising for all future 3D model application
that could be based on existing 2D training sets.

Regardless the practicability, visual inspections as seen in the result section (Figure X) revealed a
devastating poor segmentation quality. Cellpose greatly over segmented noise, divided nuclei into
numerous tiny parts and failed to separate clustered nuclei. The applied post-processing strategy
of the output segmentation masks reduced tiny artifacts, emulated round shapes and separated
clustered nuclei by introducing edge classes. Automate this process saved significantly on time
and human annotation effort even thought, the masks were still not perfect and definitely lack
on refinement. It is save to say, that without the mask correction, neither U-Net nor StarDist
would be able to learn from the data. Indisputably, this step offers room for improvement, which
will also influence the subsequent performance and downstream analysis. As 3D segmentation is
an active field of research, this learning can be usefeull for future model refinement and creation.

4.0.2 StarDist Training

Training the StarDist model followed the objective of sourcing the best performance out of
this benchmark model. The model specific parameter with the most theoretical impact are the
backbone architecture and the n-rays that were used to predict the polyhedral shape of the cells.
For our purpose, 96 rays conferment to be enough to train well, as Table 3 supports. There was
no noticeable effect of the backbone architecture on the training performance either, Resnet
and U-Net were suitable equally with a slight advantage for the Resnet architecture. The most
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Figure 12: Visualization of touching borders in GFP. This figure shows the complete image
segmentation of gt nuclei label 18, which touches two other nuclei in 3D space at the
sides and bottom. The separation ability of the best to worst model, i.e. from A to
D are demonstrated. In A, StarDistResnet achieves the best full image DiceScore
and thus the best separation with 0.496. B displays amber glitters performance with
0.337, closely followed by comic firefly (C) with 0.322. The worst segmentation, in
line with the evaluation score, was achieved by glowing dawn (D) with 0.1052. Only
StarDist (A)was able to separate the neighboring cores to z-depth. In Case 2, false
positive regions are coloured in green and false negative segmentations in purple.
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Figure 13: Segmentation results for a representative Hoechst nucleus (label 47). This
figure presents Dice Scores for sub-array segmentation, demonstrating the models’
ability to accurately delineate nuclear regions. Fine Yogurt (A) achieved the highest
sub-array Dice Score of 0.944, followed by amber glitter (B (0.9332) and comic
firefly (C) with 0.9307. In contrast, StarDist Resnet (D) yielded a lower Dice Score
of 0.6953. Notably, this example highlights a challenging segmentation region where
StarDist Resnet (D) failed to fully encompass the nuclear stain. Interestingly, comic
firefly C, despite exhibiting the highest overall Hoechst performance, did not surpass
the performance of Fine Yogurt (A) or amber glitter (B) in this specific instance. In
Case 2, false positive regions are coloured in green and false negative segmentations
in purple.
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Figure 14: Subarray segmentation of challenging nuclei shape in GFP. The specific
gt nuclei (label 20 GFP) exhibits a concave structure illustrating a challenge for
segmentation. None of the displayed models is able to fully capture the shape. The
sub array score decreases from A-D. Comic firefly (A) yielding 0.8495 followed
by amber glitter reaching (B) 0.8377. Fine yogurt (C) on the bottom left achieves
a score of 0.8368 followed by StarDistResnet (D) yielding the lowest DiceScore of
0.8224. In alignment with the final performance score, comic Firefly (A) beats other
U-Net configuration but also the StarDist models. The concave part of the nuclei was
entirely filled with FP predictions by all models. In Case 2, false positive regions
are coloured in green and false negative segmentations in purple.
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Figure 15: Complete 3D rendering of best segmentation model. StarDistResnet segmen-
tation masks are shown in violet and as overlay to the Cy3 channel evaluation image
in blue. Above the XY top down view, below that the z-axis view.
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significant difference was observed, when minimizing the image input shape to (4, 128, 128),
reducing the training time to 6min instead of 1.5-2h. The metrics, indicating the learning success
of the model were also improved by this reduction and even more improved when extending
the training to one thousand epochs. Nevertheless, the training metrics are not reflecting the
actual segmentation performance but the ability to pic up the features out of the training images.
For that reason, IoU loss used as most demonstrative segmentation performance indicator.
Here, small-patch and small patch-1k were yielding the lowest scores confirming the problem of
overfitting for those models. The model was learning patterns only present in the training set
but failing to recognize nuclei of unseen images. This is also supported by a unstable learning
and IoU curve in Figure 3. Another reason could be the poor quality of the training image
dataset. Training very successfully on poor segmentation masks forces the model to learn the
poor segmentation as gold standard and can therefore not re adapt when tested against the
manual ground truth images. This would also explain the poor final evaluation score of the
starDist small model in Table 7, where Resnet and U-Net scored higher while yielding lower
training metrics. Another reason could be the that the small input size was not capturing the
full complexity towards all dimensions but only scoring high on a tiny section of the image.
Literature implies the advantage of StarDist and U-Net handling big input data [14, 29, 31].
These findings suggest training StarDist with low input size on perfect manually labelled ground
truth data.

Still, StarDists ability to train significantly faster with comparable performance is a great benefit
of this model and confirms its complex learning and approximation algorithms. Also, thanks to
the provided notebooks the data handling, model training and prediction was straightforward to
apply and execute, assuming a suitable GPU is available.

4.0.3 Final Performance Validation

Investigating the results of Table 7, difference in segmentation performance per channel become
obvious. The poor score of approximately 0.5 for the Hoechst channel is due to the cluttered,
dispersed nature of the fluorescent signal caused by unsuccessful staining in the experiment.
Furthermore, the score involves a crucial bottleneck, declining the full Score of every U-Net
model. U-Net outputs a binary segmentation mask, edges are predicted to separate clustered
nuclei. For accurate segmentation and evaluation, every nuclei needs to be labeled with an
identifier, which is called instance segmentation. In the 3D space, this represents an even harder
challenge and field of research. For this work, we used the connected component function of
the cc3d packages, which determines where a nuclei ends and another starts [58] If only at one
point, the edge prediction failed and two nuclei touch each other, the function considered them
as one instance. As the Figures 10, 9 demonstrate, this leads to huge merged instances that are
punished by the evaluation score (Eq. 9, even though within the subregion, the segmentation
was successful. The clustered nature of the Hoechst staining suffers the most out of the three
channels under these circumstances. This could have been improved with better segmentation
performance of the model or with an additional post-processing of the segmentation mask. This
can be seen in Figure 12, where only glowing dawn connects all neighboring nuclei resulting in a
significantly lower score. Finally, more accurate and precise ground truth images would mitigate
the effects of this bottleneck.

Unexpectedly, the model with the best final evaluation score differs from the best training F1
score. The observed high performing U-Net models (amberGlitter, drawn firebrand, Fine yogurt)

40



do not completely correlate with the evaluation score of Table 7. The ”FineYogurt” run as an
example exhibits an average good performance and is beaten by run ”comic Firefly”. This could
have the following two reasons. All experiments were trained on the same images, and evaluated
on 2 evaluation images, excluded from the training set. Since only GFP and Cy3 were chosen for
evaluation, the poor performance on the Hoechst channel of ”fine Yogurt” was unnoticed and
revealed in the final evaluation only. Second, this study employed effortful manually annotated
images for the final score evaluation, as mentioned in methods. Here, the accuracy of manual
segmentation excels the Cellpose generated ground truth images and is therefore challenging
different capabilities of the models. To maintain a fair comparison, the images for F1-scores and
final evaluation had to differ. Certainly, the score is influenced by the connected component
bottleneck as well. Even though the F1-score for edge segmentation were demonstrative, the
final scores suggest that the model was not able to sufficiently separate clustered nuclei. The
effectiveness of the edge class as separator is evidenced by the poor F1-edge performance and
resulting low final score of ”drawn firebrand” and therefore consistent with the literature [14].

The crucial role of the edge class as a segmentation boundary is evident in Figure 10, While
Comic Firefly achieved the highest overall evaluation score, Drawn Firebrand excelled in cell
F1-score. Visual inspection underscores the importance of the edge class while also highlighting
the potential of Focal Loss. Although Focal Loss demonstrated the ability to learn intricate
feature representations, it struggled with underrepresented classes such as edges. Figure 11
further emphasizes the nuanced differences in detailed shape segmentation. Again, Focal Loss in
Drawn Firebrand showcased potential for capturing fine details, but weighted CE consistently
outperformed it. This is supported by Table 7, where only edge F1-scores varied significantly,
while both models achieved comparable high cell F1-scores. This suggests the effectiveness of
weighted CE in addressing class imbalance when appropriate weights are applied.

The challenges of 3D segmentation in densely packed regions are shown in Figure 12, which
presents the best achieved score of only 0.496, reflecting the complexity of 3D segmentation.
Despite these difficulties, the models demonstrated the capacity to identify and separate specific
nuclei within highly clustered areas.

Figure 14 illustrates the limitations of current methods in accurately capturing non-convex
nuclear shapes. Even the top-performing model struggled to delineate the concave region of
the selected nucleus. The underperformance of StarDist, previously the best model, can be
attributed to its underlying assumption of polyhedral nuclear shapes. Surprisingly, Fine Yogurt
with IoU loss achieved comparable results to weighted CE, suggesting alternative loss functions
may offer advantages in specific scenarios.

4.0.4 Potential Limitations and Human in the Loop

A comprehensive review of the literature and our experimental findings highlighted the pivotal
role of human intervention in achieving accurate 3D segmentation performance. Recent research
focused on reducing annotation burden with novel strategies rather than developing advanced
network architectures or algorithms [32, 60]. The integration of expert corrected segmentations
aimed to promote the learning process of CNN models and create a synergistic relationship
between lowered human expertise and accelerated machine learning [59, 15, 14] Unfortunately,
our current study was limited in this aspect. To address this, the workflow of this study was
structured to incorporate human in the loop refinement as described by Vijayan et al. to
maximize learning from image data. [15]. Figure 2 visually outlines the human in the loop

41

Lu Cao
Comment on Text
put in limitation



component, highlighted by the pink box, which includes iterative steps accessible to human
correction. Successive model retraining benefits from the improved ground truth, while human
correction effort is eased through reduced segmentation errors and an increasingly capable model.
Future work is able to apply this strategy to the existing models of this work to optimize overall
performance.

5 Limitations

Despite achieving promising results, the lack of qualitative and quantitative comprehensive
ground truth annotations limited the full realization of this study’s potential. The search for
tools and programs to handle the specific type of 3D data was tedious and time consuming.
While specialized tools like Labkit were available, initial efforts focused on less specialized options
such as CellPose-GUI. Other comparable software packages, such as napari and its plugins,
presented slow learning curves due to complex user interfaces [61]. Managing, structuring and
processing large volumes of 3D TIF images was labor-intensive and tougher than working with
2D images. Furthermore, establishing the appropriate infrastructure for computational work
was more challenging than expected. DL models for 3D image analysis require substantial GPU
resources, often exceeding 8GB and reaching up to 29GB of GPU RAM. Initial limitations in
GPU access, restricted to a laptop with a 2GB GPU hindered the model development. GPU
constraints will always represent a limiting factor for research processing large 3D image datasets.
In addition, the microscopy parameters that determine the quality of image acquisition affect the
performance of the model. Optimal image acquisition requires high resolution, minimal signal
to noisy ratio, limited over expression to prevent nuclei overlap, and robust staining capable
of penetrating deep tissue layers, unlike Hoechst stain. Nevertheless, the field of 3D image
segmentation in fluorescent microscopy is rapidly evolving, with new methodologies, models,
and publications published regularly, providing novel insights into the ongoing challenges in this
challenging research area.

6 Future Work

Further research and refinement are beyond scope of this thesis. Future research should focus on
generating manual segmentations as part of a profound ground truth training dataset. Labkit
and its machine learning tools will serve as aid in these efforts. Given that, further in-depth
evaluations of model performances can be conducted with more expressive results. The human
in the loop strategy should be implemented as suggested in this study, to minimize the human
effort in segmentation and gaining the most performance out of it. Once a dataset, build of
high-quality 3D images, representing the channels and classes in appropriate manner is build,
a future direction of research could be the exploitation of novel 3D segmentation models and
backbones for U-Net implementation. Finally, future work involves the identification of cell cycle
states based on the FUCCI signal of the segmented nuclei. Automating this process will enable
the cell cycle analysis, crucial for novel drug screening and efficacy assessment.

Another interesting direction is the integration of time series images in the 3D space. Previous
tracking of localized nuclei will not only advance accurate segmentation of clustered nuclei, but
also enable more sophisticated cell-cycle analysis in real time.
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7 Conclusion

In conclusion, this study successfully curated 3D microscopy images, processed them into a
training data set and trained, tuned and applied deep learning nuclei segmentation models. The
study was not able to perform a cell cycle analysis on breast cancer spheroids. Nevertheless, it
proved its strength in providing a profound foundation based on literature research theoretical,
considerations as well as identifying useful tools and techniques. The study demonstrated a
successful approach to gaining meaningful 3D nuclei segmentation out of a raw, noisy dataset
and integrating as little as possible human annotation effort. Concluding results were decent
and exemplify the potential of simple network architectures, competing with pretrained complex
models.

Overall, this research provides a robust foundation for precise 3D nuclei segmentation, thereby
facilitating downstream in-depth analyses of cell cycle progression and contributing to the
advancement of cancer drug discovery.

8 Data Availability

9 Thanks To
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