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Abstract

This thesis investigates the optimization of neural network parameters using evolution-

ary algorithms (EAs). While gradient-based methods are well-established in network

training, EAs are also commonly used to aid optimization in this domain. However, re-

searchers often overlook the multimodal optimization (MMO) techniques within EAs.

This study aims to enhance EA population diversity and avoid local optima through

MMO techniques to facilitate network parameter optimization. We primarily explore

two niching methods, fitness sharing and dynamic fitness sharing, detailing their imple-

mentation, hyperparameter selection, and relationships with crossover and mutation.

Additionally, we implement a hybrid algorithm combining EA with stochastic gradi-

ent descent (SGD). Comparative experiments indicate that incorporating MMO into

traditional EAs and EA-SGD hybrid algorithms significantly improves their perfor-

mance, approaching gradient-based methods such as SGD and ADAM. Nevertheless,

these methods still underperform gradient-based methods in a fair comparison. The

study concludes that MMO-enhanced EAs offer a powerful alternative to traditional

methods, paving the way for further research in evolutionary deep learning and hybrid

optimization techniques.
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1 Introduction

Since the mid-20th century, an efficient and robust class of optimization algorithms

known as evolutionary algorithms (EAs) has been widely applied to various optimiza-

tion problems. By mimicking the process of biological evolution, EAs facilitate the

evolution of a population of individuals toward an optimal state by iteratively conduct-

ing crossover/recombination, mutation, and selection. Although EAs cannot guarantee

optimal solutions within a finite amount of time [7], they often provide reasonable so-

lutions at a relatively low development cost. Utilizing various exclusive tools, EAs can

be effective in search spaces of complex landscapes, addressing challenges posed by

multimodality, discontinuity, constraints, and other optimization conditions [5, 14, 42].

Meanwhile, over the past decade, neural networks (NNs) have emerged as the most

popular artificial intelligence model in computer science. They demonstrate outstand-

ing learning capabilities and have found widespread applications. However, the tasks of

data preparation, architecture design, parameter training, and model deployment for

NNs are nontrivial and demand significant time and effort from practitioners. Accord-

ingly, EAs become valuable tools for handling these tasks in NNs, such as optimizing

the data features, the network architecture, and sometimes the network parameters

[29]. The integration of EA and NN has evolved into a notable research direction

known as Evolutionary Deep Learning (EDL) [29] or neuroevolution [16].

In this work, we focus on optimizing NN parameters, i.e., neural network training,

which has a crucial impact on NNs’ performance. Gradient-based methods based on

backpropagation [45] (BP), such as stochastic gradient descent (SGD) and adaptive

momentum estimation (ADAM), have long been the primary choice for training neural

networks [8, 27, 44]. Alongside these methods, EA has also found its place in NN

training, either training network parameters by itself [10, 24, 36] or in combination

with gradient-based methods [12, 26, 51, 53].

Related works from [16, 29, 36] indicate that EAs are introduced to address the is-

sue of gradient-based methods being trapped in local optima or saddle points, thereby

finding the global optima. However, in most practical scenarios, there is not only a

single global optimum for the parameters of neural networks. Instead, multiple dis-

tinct global optima exist, meaning that different sets of NN parameters exhibit similar

performance and outperform each other on different test sets. Additionally, although

each individual in the population of EAs represents a solution, there is a tendency for

the diversity of solutions in the population to diminish gradually, converging towards

a single solution, even when multiple optima exist in the search space [3, 4, 31].
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Therefore, it is relevant to utilize multimodal optimization (MMO) metaheuristics

to ensure the diversity of solutions in the population of evolutionary algorithms. Single-

objective optimization is the task of obtaining the highest quality solution for a given

objective function. In contrast, MMO aims to obtain a diverse set of solutions with

fitness values exceeding a specified threshold [6].

As an extension of EAs, niching methods for MMO can obtain multiple optima

within a single run by preserving the diversity of individuals in the population [46]

based on their distances in the multimodal search space. With this approach, EAs can

discover various structurally distinct parameter combinations, yielding favorable NNs.

Moreover, different solutions from the population can be selected for different datasets

or requirements in practice.

Among various niching methods available, we commence with two classical ap-

proaches, fitness sharing [18] and dynamic fitness sharing [34], and apply them to our

designed evolution-based algorithms: an Evolution Strategy (ES), a Genetic Algorithm

(GA), and GA SGD. ES and GA represent the two fundamental types of EAs, while

GA SGD is our straightforward hybrid algorithm integrating SGD into GA.

In a series of experiments, the niching methods demonstrate significant improve-

ments for both GA and GA SGD, effectively diversifying the population and accelerat-

ing the optimization process of the algorithms. Although our evolutionary algorithms

and hybrid algorithms are still slower than SGD in a fair comparison, the parallel op-

timization and diversified population of GA SGD with niching present distinct advan-

tages over SGD, showcasing superior performance in specific tests. These foundational

results encourage further research into applying more MMO metaheuristics to complex

EAs or EA-Gradient hybrid algorithms for NN training.

Through this thesis, we aim to explore the performance of EAs applied with mul-

timodal optimization metaheuristics for neural network training. According to the

taxonomy of EDL proposed in the survey [29], our work performs parameter optimiza-

tion (PO) for neural networks using pure EAs or gradient-based EAs.

The remainder of this paper is organized as follows. Section 2 reviews existing

research using evolution-based algorithms for training neural networks and provides

motivation for this study. Section 3 elaborates on our EAs and niching methods, as

well as the results of relevant parameter experiments and comparative experiments.

Section 4 presents GA SGD and its application of niching methods, showcasing and

analyzing the results of comparative experiments and tests. Finally, Section 5 concludes

the paper and discusses future work.
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2 Related Work

Although related, the concepts of EDL and neuroevolution mentioned in the introduc-

tion are distinct. EDL encompasses the entire deep-learning process of data prepara-

tion, model generation, and model deployment [29]. For instance, it involves optimizing

data features, optimizing network parameters or architecture, and pruning models us-

ing EAs.

On the other hand, neuroevolution primarily focuses on the model generation phase

of deep learning. It utilizes EAs to optimize various components of neural networks,

such as activation functions, hyperparameters, architectures, parameters (weights and

biases), and even the optimization algorithms themselves [48].

In this discussion, we will focus on the work related to optimizing neural network

parameters using EAs while disregarding other aspects to ensure the audience’s under-

standing and engagement.

The research on using EAs to train neural network parameters emerged around the

1990s, yielding promising results as noted in section 2.1. However, as neural network

models became more complex and gradient-based algorithms overcame challenges and

achieved widespread success, researchers shifted their focus away from EAs in favor

of methods like SGD. Despite this shift, the early successes of EAs have continued to

inspire some researchers to employ EA-related methods for network training or to com-

bine EAs with gradient-based algorithms to leverage their complementary strengths, as

outlined in section 2.2 and 2.3. Additionally, when gradient information is challenging

to obtain or inaccurate, EAs are effective. This advantage is mainly applied in training

neural networks for reinforcement learning (RL), as detailed in section 2.4.

2.1 Early researches

In 1989, David J. Montana and Lawrence Davis utilized genetic algorithms (GA) to

train feedforward neural networks (FNNs) [35]. They trained an FNN with only 126

parameters using 236 sonar data samples for classification. The results indicated that

the GA optimization outperformed SGD regarding search efficiency. Although their

evaluation method was biased in favor of GA by allowing more iterations, the study

still demonstrated the potential of GA for optimizing small neural networks.

Their work inspired subsequent research in the 1990s. A 1995 study [41], using a

similar sonar data classification task, included simulated annealing (SA) in addition

to backpropagation and evolutionary algorithms for comparative experiments. The

study showed that evolutionary algorithms outperformed gradient-based algorithms in
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pattern classification tasks over the same number of iterations.

Following that, Christian Goerick and Tobias Rodemann successfully employed the

evolution strategy (ES, a subset of evolutionary algorithms) to optimize a model that

backpropagation could not handle due to premature saturation of hidden neurons [17].

In 1999, Xin Yao summarized the integration of evolutionary algorithms and neural

networks, focusing on optimizing network parameters, architectures, and input features

[52]. The study analyzed various operators in evolutionary algorithms, highlighting the

potential for combining evolutionary algorithms and neural networks to create powerful

AI models.

Furthermore, M. Mandischer compared ES and backpropagation in training neural

networks, concluding that ES could only compete with gradient-based algorithms on

small-scale problems. ES was also adept at handling non-differentiable activation func-

tions [32]. Additionally, the study found that as the NN parameters’ dimensionality

increased, ES’s performance diminished, and the tuning requirements for ES became

more stringent.

2.2 EAs for Training NNs

2.2.1 Genetic Algorithm

Karegowda et al. [24] employed the Pima Indians Diabetes Database (PIDD) to address

the classification task of diabetes diagnosis using a simple GA-optimized multilayer per-

ceptron (MLP) with a single hidden layer containing approximately 100 weights. The

authors claimed that their GA-based approach outperformed gradient-based methods

regarding accuracy; however, they did not specify the comparative methods, presum-

ably based on the same number of generations.

In 2016, Morse and Stanley [36] proposed the Limited Evaluation Evolutionary

Algorithm (LEEA), which, compared to traditional EAs, adopted minibatch training

from gradient-based algorithms and introduced fitness inheritance of offspring from

parents to mitigate the impact of varying fitness function, caused by different batches

between generations. Their experimental results demonstrated that LEEA surpassed

the traditional EA in learning efficiency when optimizing networks with over 1000

weights for three classic problems, performing comparably to SGD and RMSProp.

However, their evaluation approach based on the same number of training examples

neglected the complexity introduced by the population of EA, putting gradient-based

methods at a disadvantage.
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2.2.2 Others

Motivated by early studies such as [35, 41], EA variants akin to traditional EAs, such

as Multi-phase Particle Swarm Optimization (MPPSO) [1], Artificial Bee Colony Op-

timization (ABC) [23], and Ant Colony Optimization (ACO) [47], have been utilized

for the optimization of small-scale neural networks (typically with only around 100 to

200 weights or even fewer) in pattern classification tasks.

The results of [1] demonstrate that MPPSO exhibits better search efficiency and

outcomes than backpropagation in classical pattern classification problems. [23] shows

that ABC can achieve lower error rates than backpropagation given a longer time.

Moreover, [47] combines ACO with the Levenberg-Marquardt (LM) algorithm, yielding

superior performance compared to individual ACO, backpropagation, or LM.

Subsequent research also explored cooperative coevolution algorithms [10, 9], de-

composing the original optimization problem to address subproblems. For instance,

[10] merges the best-performing individuals from different subpopulations during co-

operative evolutionary optimization, thereby treating a single hidden layer as a sub-

component and constructing new neural networks.

2.3 EAs Combined with Gradient for Training NNs

The preceding section shows that the standalone use of EAs often proves suitable only

for small-scale problems. The challenges posed by increasing dimensions typically lead

to their suboptimal performance when applied to larger-scale models. Consequently,

researchers have increasingly integrated EAs with gradient-based methods, to alleviate

issues such as local optima or saddle points encountered by gradient-based approaches,

while leveraging gradient information to enhance the search efficiency. There are vari-

ous ways to combine EAs with gradient-based methods, categorized as follows:

1. Embedding the gradient-based method at a specific location within the EA or

integrating gradient information into an EA operator.

2. Utilizing the gradient-based method and the EA separately, regardless of order.

3. Utilizing the gradient-based method and the EA separately, regardless of order,

in each generation of evolution.

Related works [13, 38, 51] fall into the first category. David and Greental [13]

proposed a GA-assisted method for training autoencoders layer by layer from input
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to output. Experimental validation of their method on the MINIST dataset demon-

strated lower reconstruction error and sparser networks compared to traditional back-

propagation within the same runtime. Additionally, using Support Vector Machine

(SVM) classification on the encoded embeddings from autoencoders with GA assis-

tance yielded higher accuracy. Each generation of this method optimizes high-fitness

individuals using BP, discarding low-fitness individuals and replacing their positions

with high-fitness ones’ offspring generated through BP, selection, crossover, and mu-

tation. Utilizing uniform crossover helps avoid local optima, while the mutation of

randomly setting weights to zeros ensures network sparsity.

Pawe lczyk et al. [38] employed LeNet-4 for the multi-classification task on the

MINIST dataset. While structurally similar to the [13] approach, the algorithm in this

work incorporated different elitism methods, 1-point crossover, and 1-kernel mutation

based on CNN (Convolutional NN) structures. Notably, it optimized the number of

gradient descent steps alongside network parameters using GA, outperforming gradient-

based learning.

Unlike the above two, the approach of Yang et al. [51] did not use gradient-based

optimization methods directly. Instead, it incorporated gradient information into the

crossover operator of EA (gSBX: Gradient-Based Simulated Binary Crossover), ensur-

ing crossovers occur only in the direction of gradient descent. This method significantly

improved the search efficiency of the EA, resulting in performance comparable to or

even better than gradient-based methods.

Regarding the second category, examples like [22, 50] are notable. Ijjina et al.

[22], for human action recognition, utilize GA to optimize CNN parameters initially,

followed by gradient-based optimization, achieving higher classification accuracy than

only gradient descent. In contrast, [50] applied gradient descent first, followed by GA

optimization for facial expression recognition, demonstrating the effectiveness of EA in

both cases.

The third category includes GADAM (Genetic Adaptive Momentum Estimation)

and ESGD (Evolutionary Stochastic Gradient Descent) [53, 12]. In each generation,

GADAM [53] optimizes the population of networks using ADAM, followed by further

optimization through GA, selecting the best networks from both the populations after

ADAM and GA for the next generation. On the other hand, ESGD [12], in each gen-

eration, selects an optimizer from a collection of gradient-based optimizers to optimize

the population, followed by an evolution strategy. Unlike GADAM, the population for

the next generation is only selected from the networks after ES optimization in ESGD.

To ensure that the best fitness in the population never decreases, ESGD employs a
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back-off strategy during SGD steps and elitism within the evolution strategy.

Additionally, there are EA applications targeting the optimization of specific net-

work structures, such as [30, 25] focusing on optimizing the attention layer and Modular

Memory Unit (MMU).

2.4 EAs for Training NNs in Reinforcement Learning

In deep reinforcement learning (DRL), algorithms such as policy networks often rely on

sparse or deceptive rewards to compute gradient information for network optimization.

This results in inaccurate gradient information, adversely affecting the performance of

gradient descent. Consequently, numerous studies [49, 40, 11, 26, 33] have utilized EAs

to train policy networks in DRL.

In 2017, Such et al. [49] employed the genetic algorithm and novelty search (NS) to

optimize convolutional neural networks (CNNs), demonstrating that simple, gradient-

free, population-based GA could perform well on challenging deep RL tasks, includ-

ing Atari games and humanoid locomotion. Using advanced computational settings

and network parameter encoding based on random seeds, the GA successfully evolved

networks with over four million free parameters, outperforming methods such as ES,

Asynchronous Advantage Actor-Critic (A3C), and Deep Q-Network (DQN) in speed.

The introduction of novelty search showed that following the gradient is not always

the best choice for policy optimization, especially in tasks with deceptive or sparse

reward functions, encouraging exploration and addressing high-dimensional problems

where reward maximization algorithms like DQN, A3C, ES, and GA fail. Notably,

their GA utilized only selection and mutation without crossover. Following this, three

representative papers [40, 11, 26] in this field emerged in 2018.

Peng et al. [40] proposed a learning scheme utilizing an architecture comprised

of a feature learning network and a policy learning network, where sensor inputs are

first transformed into high-level features before being used for action prediction in the

policy. With a population of networks, this scheme uses NeuroEvolution of Augmenting

Topology (NEAT) to optimize the weights and architecture of the feature learning

network and employs Policy Gradient search (PGS) algorithms to optimize the policy

learning network. The three-stage PGS-NEAT-PGS training facilitated more effective

knowledge sharing and learning across multiple agents. Experimental results on Atari

games demonstrated that this novel learning scheme outperformed NEAT and several

PGS algorithms’ effectiveness and sample efficiency, particularly in large-scale and

high-dimensional tasks.
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Conti et al. [11] integrated novelty search and quality diversity (QD) into ES for

optimizing deep policy networks, promoting directed exploration through a population

of agents seeking novelty. Their proposed algorithms addressed environments with

sparse or deceptive rewards, achieving higher overall performance by avoiding local

optima. Experiments on simulated robotic control and Atari games showed that these

hybrid algorithms outperformed standard ES and gradient-based methods like DQN

and A3C.

khadka et al. [26] introduced EA into a classic policy gradient algorithm, DDPG

(Deep Deterministic Policy Gradient), with an actor-critic mechanism to create the

ERL (Evolutionary Reinforcement Learning) algorithm. ERL maintains a popula-

tion of actors, along with an actor and a critic, throughout the learning process. In

each generation, ERL uses GA’s fitness evaluation, selection, crossover, and muta-

tion to optimize the actor population, selecting policies that gain more rewards during

episodes. Subsequently, the policy gradient updates the additional actor and critic,

backward influencing the actor population. ERL also incorporates classic tricks such

as replay buffer and target network to aid convergence. ERL demonstrated significant

performance improvements over traditional policy gradient algorithms on six contin-

uous control tasks simulated in Mujoco, achieving faster convergence and better final

agent performance.

ES applications in DRL are extensive, with researchers considering ES’s optimiza-

tion of direction selection in the search space as an estimate of gradient information.

For instance, [33] improved the accuracy of ES’s gradient estimation and thus the

convergence rate by integrating the gradient descent directions of past optimization

steps.

2.5 Motivation

Upon reviewing related work, it is evident that the majority of studies did not consider

the use of multimodal optimization metaheuristics to assist EA in optimizing neural

networks. Furthermore, most related work utilized specialized versions of EA, with

some studies targeting particular problems or employing unfair evaluation methods

when comparing EAs with gradient-based approaches. Therefore, we aim to apply

MMO metaheuristics to classical EAs to optimize neural networks and address com-

mon problems. Additionally, we plan to design a fair evaluation method to compare

the performance of the algorithms, demonstrating the effectiveness of multimodal ap-

proaches.
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3 Quantitative Comparison of EAs for NN Training

In section 3.1, we explain the task for our experiments on neural networks, the dataset

employed, and the specific settings used to train the NN with different algorithms. Fol-

lowing this, section 3.2 provides a detailed exposition of the gradient-free algorithms

utilized in our study, including Nevergrad black-box optimization algorithms, an evo-

lution strategy, a genetic algorithm, and the niching methods. Corresponding to these

algorithms, section 3.3 describes the conducted experiments on them and analyzes the

results. At last, section 3.4 summarizes and discusses the findings of this section.

3.1 BBOB Function Data for Regression Task

To compare the performance of NN parameter-optimization algorithms, we need to

build NN problems for numerical comparison.

Similar to [36], we use function approximation for the NN to solve. The functions

selected are from the BBOB (Black-Box Optimization Benchmark) function set [15],

which have different characteristics and can fulfill our requirements of multimodality

and complexity. The general experiment process is as follows:

1. Generate 5000 training data samples of a 2-dimension BBOB function (selected

from all 24 functions) using Coco experimenter [20]. Selecting two as the number

of dimensions allows the ability to visualize the function approximated and is the

same as the function approximation problem in [36].

2. Build a neural network: (2, 50, 20, 1), using PyTorch [37], which does not change

during the training of NN. Such an architecture is chosen because it is simple

enough while being able to model the BBOB functions. The two inputs and one

output correspond to the 2d BBOB function with x1 and x2 as variables (inputs)

and y as value (output).

3. Train the neural network using the generated training data with different opti-

mization algorithms: SGD, ADAM, (1+1)-EA, ES, GA, GA-SGD... Gradient-

based methods, SGD and ADAM, utilize PyTorch’s built-in default implementa-

tion (torch.optim) with MSE (mean squared error) as the loss function. At the

same time, evolutionary algorithms optimize by using the network’s MSE on the

training samples as the objective function.

4. Evaluate the training results based on the averaged loss curve or statistics over

repetitions or further tests on test data.

11



3 Quantitative Comparison of EAs for NN Training

To demonstrate the effectiveness of function approximation on the BBOB bench-

mark, we utilize the (2, 50, 20, 1) neural network for function approximation across all

24 BBOB functions, illustrated in Figure 1.
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Figure 1: the learning loss curves for the function approximation of the 24 BBOB functions,
optimizing MLP (2, 50, 20, 1) using SGD over 200 epochs, with the batch size as 64 and the
learning rate as 0.00001.

The simple two-hidden-layer network can approximate most BBOB functions ef-

fectively, including functions 1, 3, 4, 5, 7, 13, 14, 16, 17, 19, 21, 22, 23, and 24. The

learning curves for these functions show a rapid reduction in loss during the initial

phase, indicating that the model can quickly and efficiently approximate these func-

tions. In the later stages, the loss still decreases, although it descends too slowly to

present a significant decline in the figure.

However, the losses during the learning process are very high for some functions,

such as functions 9, 11, 15, 18, and 20. Although the loss curves decrease continu-

ously over time or quickly at their beginning, they remain relatively high losses. This

phenomenon indicates that these functions are particularly challenging for our simple

network architecture. While the model approximates these functions to some extent,

the accuracy is lower compared to other functions, highlighting the limitations of the
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network architecture.

Additionally, the approximation of functions 2, 6, 8, 10, and 12 encounters numer-

ical instability issues, such as gradient explosion, resulting in NaN (Not a Number)

losses and halting the training process. Further experiments reveal that these specific

functions require extremely small learning rates. When an appropriate learning rate

is used, the model’s performance on these functions is similar to its performance on

functions 9, 11, 15, 18, and 20, where the effective approximation is difficult to achieve.

In our subsequent experiments, we select a subset of BBOB functions that the (2,

50, 20, 1) network could approximate well for data generation, network training, and

testing. The selected BBOB functions are functions 1, 3, 7, 13, 16, and 22, as depicted

in Figure 2. Functions 1 and 3 are separable, while functions 7, 13, 16, and 22 each

belong to different function categories [15]. The function names are provided below.

F1: Sphere Function; F3: Rastrigin Function; F7: Step Ellipsoidal Function; F13:

Sharp Ridge Function; F16: Weierstrass Function; F22: Gallagher’s Gaussian 21-hi

Peaks Function.
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Figure 2: the visualization of NN-approximated functions and true functions, including F1,
F3, F7, F13, F16, F22. The NNs here are trained for 1000 epochs, extending the experiment
illustrated in Figure 1. This figure demonstrates the network architecture’s ability to approx-
imate these six functions.

To further investigate the reasons behind the network’s inability to approximate

certain BBOB functions, we examine the value ranges of all BBOB functions. We find

that the BBOB functions where the network encounters approximation issues have

significantly larger function values, whereas other functions successfully approximated

have much smaller values.
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Therefore, after applying min-max scaling to the training data’s function values,

we conduct our experiment in Figure 1 again, as illustrated in Figure 3. The results

demonstrate that once the function value ranges are standardized to [0, 1], our network

architecture can approximate all 24 BBOB functions. However, in subsequent exper-

iments, we do not standardize the function values and instead utilize the selected six

functions that the network can already approximate without scaling their values.
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Figure 3: the learning loss curves for the function approximation of the 24 BBOB functions
(with standardized values), optimizing MLP (2, 50, 20, 1) using SGD over 200 epochs, with
the batch size as 64 and the learning rate as 0.00001.

3.2 Gradient-free Algorithms

Before implementing our evolutionary algorithms, we compare various black-box op-

timization algorithms implemented in Nevergrad with SGD, including evolutionary

algorithms such as OnePlusOne and CMA, as described in section 3.2.1.

To explore the role of niching methods for MMO in NN parameter optimization,

we apply them to two fundamental types of EA, the ES (Evolution Strategy) and GA

(Genetic Algorithm). We utilize an ES and a GA of our custom design, detailed in
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sections 3.2.2 and 3.2.3. Subsequently, section 3.2.4 explains how we apply two niching

methods, fitness sharing and dynamic fitness sharing.

3.2.1 Nevergrad

In this study, we utilize a selection of optimization algorithms from the Nevergrad [43]

platform to compare their performance with SGD on NN optimization. The algorithms

used are NGOpt (Nevergrad Optimizer), OnePlusOne ((1+1)-EA), CMA (Covariance

Matrix Adaptation), TwoPointsDE (Two Points Differential Evolution), TBPSA (Test-

based population-size adaptation), and RandomSearch.

NGOpt is a versatile, adaptive algorithm designed to dynamically select and com-

bine different optimization techniques based on the characteristics of the problem,

encompassing various other algorithms. OnePlusOne is a simple yet effective evolu-

tionary algorithm that maintains a single solution and iteratively improves it through

mutation. CMA is a robust evolution strategy that adjusts the covariance matrix

for the mutation, enabling it to navigate complex and high-dimensional search spaces

efficiently. TwoPointsDE is a variant of the Differential Evolution algorithm that opti-

mizes using two-point crossover and differential mutation. TBPSA is an algorithm that

adjusts the population size during optimization based on performance tests to balance

exploration and exploitation. RandomSearch is a baseline algorithm that randomly

samples solutions from the search space, providing a comparison point to evaluate the

effectiveness of more complex algorithms.

Each algorithm offers unique strengths and weaknesses, making the algorithms well-

suited for a comparative analysis surrounding NN optimization.

3.2.2 ES

Our evolution strategy comprises initialization, recombination, mutation, and selec-

tion. Each operator can be realized in various ways, while we opt for relatively simple

implementations. Each operator of our ES is described below in detail.

Initialization: The initialization step generates the initial population of networks

along with their corresponding standard deviations (σ). Each individual in the pop-

ulation is represented by an 1191-dimensional variable corresponding to the 1191 pa-

rameters of the utilized network. Thus, each individual represents a network and has

an associated σ. In the initial population of size µ, network parameters are set to 0,

and every σ is set to 1.

Recombination: During the recombination step, the algorithm employs discrete
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recombination for the network parameters and intermediate recombination for σ to

generate an offspring population of size λ. Specifically, two parents are randomly

selected for each offspring. Subsequently, each network parameter of the offspring is

randomly chosen from the two corresponding parameters of the two parents. The σ

value for the offspring is computed as the average of its two parents’ σ values.

Mutation: The mutation step is carried out by applying the one-σ mutation.

Initially, the mutation occurs on all σ as shown in Equation (1). Subsequently, each

network in the population undergoes mutation by adding normally distributed random

values scaled by its respective σ to each parameter, as described in Equation (2).

σ′ = σ exp(τ0N (0, 1)) (1)

x′
i = xi + σ′N (0, 1) (2)

The learning rate τ0 is set to the recommended value of 1√
1191

. N (0, 1) denotes the

standard normal distribution, and xi represents the i-th parameter of the network x.

Selection: The selection process employs the (µ + λ) selection mechanism. The

parent and offspring populations are merged and evaluated using the objective func-

tion. Subsequently, the merged population is sorted based on the objective function

values, and the top µ networks are selected for the next generation while retaining their

corresponding σ values.

Evolution Strategy: The evolutionary strategy process begins with initializing

a population and σ values. Subsequently, throughout each iteration, the algorithm

undertakes recombination to generate offspring, mutation to introduce variation, and

selection to identify the best individuals for the next generation. Throughout this

process, the loss for each iteration is the objective function value from the best network

in the entire population, with the number of iterations specified as the budget.

3.2.3 GA

The genetic algorithm includes initialization, fitness evaluation, parent selection, cross-

over, mutation, and selection. Each of these is explained below in detail.

Initialization: As the evolution strategy’s initialization, the GA initializes a popu-

lation of µ neural networks, with each network represented by 1191 network parameters.

During the initialization process, the parameters of each network are randomly gener-

ated according to the standard normal distribution N (0, 1). Unlike ES, GA does not

utilize standard deviation for mutation, so it only initializes these network parameters.
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Fitness Evaluation: After initialization, the algorithm evaluates the fitness of

each network in the population by calculating the objective function value, that is, the

MSE loss. Fitness is determined as the reciprocal of the objective function value. The

optimization goal is to achieve lower objective function values corresponding to higher

fitness scores.

Parent Selection: After evaluating fitness, the GA selects networks from the

current population as parents for producing offspring. In this implementation, the

roulette wheel selection (RWS) [19] with fitness scaling is used to choose parents based

on their fitness, ensuring that better networks are more likely to be selected.

The algorithm first sorts the population in descending order based on fitness scores.

It then elitistically selects the top 40% of the population for further selection. Before

the RWS, the fitness values of these individuals are scaled: the minimum fitness value

among them is subtracted from all fitness values, which are then divided by the total

sum of the adjusted fitness values to convert them into selection probabilities ranging

from 0 to 1. Finally, the roulette wheel selection is performed by generating random

values and comparing them to the selection probabilities to simulate the roulette wheel.

This process selects µ parents by spinning the roulette wheel µ times.

Crossover: Once the parent generation is selected, the GA proceeds with crossover

and mutation to generate offspring. The offspring population generated by crossover is

the input population of mutation. Three crossover types are implemented here, which

can be described as uniform crossovers of network parameters, nodes, and layers. We

default to using the uniform crossover of network parameters.

Through this process, each parent in the population is traversed precisely once to

crossover, where two offspring are randomly generated from every two adjacent parents.

Figure 4 depicts the generation of offspring. In each dimension of the individual, when

one offspring selects one unit from one parent, the other offspring always selects the

other unit from the other parent. Uniform crossover of network nodes involves treating

the weights and the bias of each node as a single unit that will not be crossed, while

uniform crossover of network layers treats the weights and biases of each layer as a

single unit.

Mutation: After crossover, the mutation introduces genetic diversity into the

population by making small random changes to the network parameters. In this im-

plementation, each network has a mutation probability of 4%. Upon mutation, each

parameter of the network is added with a value sampled from the uniform distribution

U(−0.1, 0.1).

Selection: Finally, the GA selects the top µ networks with the highest fitness scores
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Parent 1

Parent 2

Child 1

Child 2

×

Figure 4: the uniform crossover.

from the offspring resulting from parent selection, crossover, and mutation, as well as

from the initial population of this generation that did not undergo these operations,

to form the population for the next generation.

Genetic Algorithm: The genetic algorithm process starts with initializing a pop-

ulation and calculating its networks’ losses. Subsequently, in each iteration, the algo-

rithm performs fitness evaluation using losses, parent selection based on fitness scores,

large-scale changes through crossover, small-scale changes through mutation, and selec-

tion based on offspring evaluation to update the population. Like the ES, the objective

function value of the best network in the population represents the loss of the GA in

each iteration, with the number of iterations specified as a budget.

3.2.4 Niching

Our research primarily employs two classical niching methods: fitness sharing and

dynamic fitness sharing. These methods are integrated with both the ES and the GA,

merely modifying all the evaluations of individuals within ES and GA, specifically the

objective function evaluations in the ES and the fitness evaluations in the GA.

Since the ES is not based on fitness and only minimizes the objective function,

i.e., the MSE loss, we modify its objective function to the product of the (dynamic)

niche count and the original objective function value to maintain the same logic as the

niching methods described below.

In addition, during the selection process in ES and GA, the (dynamic) shared fitness

is used to evaluate the current population and its offspring in one population, replacing

the original evaluation.

Before explaining the sharing method, we define the term ”landscape”. A landscape

is determined by a function and a search space, representing the surface of the function’s

18



3 Quantitative Comparison of EAs for NN Training

values as they vary according to the varying search points in the search space.

In the context of NN parameter optimization, the search space of the landscape

corresponds to the value range of network parameters, and the function of the land-

scape is the MSE loss of the network on the training data, i.e., the loss function of

the gradient-based methods and the objective function of the evolutionary algorithms.

Furthermore, the fitness landscape differs from the general landscape in that its func-

tion represents fitness values, which are to be maximized, rather than the MSE loss to

be minimized.

Fitness Sharing: Sharing, a concept introduced in 1975 [21], is one of the earliest

concepts of niching. Goldberg and Richardson [18] later utilized it as a niching tech-

nique for genetic algorithms, demonstrating its practical application. As a classical

niching method primarily employed in GAs, fitness sharing has laid the foundation for

various subsequent successful MMO niching methods and continues to be effectively

applied in the field.

The core idea of fitness sharing is to treat the fitness of the fitness landscape as a

resource shared among individuals in the population. By distributing this resource to

individuals as evenly as possible, fitness sharing aims to reduce the prevalence of similar

individuals within the population, where similarity is measured based on distance.

In abstract terms, fitness sharing creates a niche around each individual in the

search space with a radius. Then the fitness of each individual varies based on the

number of individuals contained within its niche, resulting in a reduction of fitness

resources for closely situated individuals compared to their original fitness resources,

where the varied fitness is the shared fitness. The following equations define the sharing

function, niche count, and shared fitness:

sh(di,j) =

 1−
(

di,j

R

)αsh

if di,j < R

0 otherwise
(3)

mi =

µ∑
j=1

sh(di,j) (4)

fsh
i =

fi
mi

(5)

In Equation (3), di,j represents the distance between individuals i and j, imple-

mented as the Euclidean distance between the parameters of networks i and j. The

parameter R denotes the radius of each niche within the search space, and αsh ≥ 1 is

a control parameter set to the commonly used value of 1. When di,j is greater than
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or equal to the niche radius, the sharing function value is 0. Otherwise, the closer

individuals i and j are, i.e., the more similar networks i and j are, the higher the value

of the sharing function, approaching 1.

The mi in Equation (4) is the niche count, representing the sum of the sharing

function values for individual i with respect to all individuals in the population. Its

value is greater than or equal to 1 because the sharing function value of an individual

with itself is 1. The mi can be understood as the number of individuals, or networks,

that are similar to individual i within its niche.

Equation (5) expresses the original fitness of individual i as fi, specifically the

reciprocal of the MSE loss of network i on the training samples. The shared fitness,

fsh
i , is then defined as the raw fitness divided by the niche count mi. The shared fitness

is strictly positive and to be maximized. Consequently, the larger the mi, indicating

more networks in the population similar to network i, the smaller the shared fitness,

making it less likely to be selected by the evolutionary algorithms, aligning with the

goal of multimodal optimization.

By introducing a fixed parameter niche radius R and assuming that the distances

between optimal solutions are sufficiently large relative to R, fitness sharing can reduce

redundancy in the gene pool, particularly around the peaks of the fitness landscape

[46].

Dynamic Fitness Sharing: The dynamic fitness sharing [34] is an extension

of the fitness sharing. In each generation, it dynamically identifies N peaks forming

N niches within their niche radius R by Algorithm 1, and categorizes individuals as

members of one of these niches or the non-niche domain according to their distances to

the peaks. If the distance of an individual to a peak is smaller than R, the individual

belongs to the niche formed by the peak. Please note that when using dynamic fitness

sharing in our ES, we use Dynamic Peak Identification (DPI) to identify peaks only

in the parent population. In contrast, in the GA, we apply DPI to the population

integrating both the parent and offspring populations.

The sharing function of dynamic fitness sharing is the same as Equation (3). The

dynamic niche count and the dynamic shared fitness are defined as follows:

mdyn
i =

nj if individual i belongs to dynamic niche j

mi otherwise (individual i is non-niche)
(6)

fdyn
i =

fi

mdyn
i

(7)
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Algorithm 1 Dynamic Peak Identification (DPI) [34]

Require: P : population
Require: N : number of niches
Require: R: niche radius
1: Sort P in decreasing fitness order ▷ Identify peaks in decreasing fitness order
2: i← 1 ▷ The index of individual in P ranging from 1 to PopSize
3: NumPeaks ← 0 ▷ The number of peaks identified
4: DPS ← ∅ ▷ Dynamic Peak Set collecting peaks in the population
5: while NumPeaks ̸= N and i ≤ PopSize do
6: if Pi is not within sphere of radius R around any peak in DPS then
7: DPS ← DPS ∪{Pi}
8: NumPeaks ← NumPeaks +1
9: end if

10: i← i + 1
11: end while
12: return DPS

The dynamic niche count mdyn
i of individual i depends on its relationship with the

peaks in the Dynamic Peak Set (DPS). When the distance between individual i and

dynamic peak j is less than R, meaning that individual i belongs to dynamic niche j,

the value of mdyn
i is nj , which is the number of individuals contained in dynamic niche

j. Otherwise, if individual i does not belong to any peak, the value of mdyn
i reverts to

the standard niche count mi as defined by Equation (4).

The logic of dynamic shared fitness fdyn
i is analogous to shared fitness fsh

i , incen-

tivizing the evolutionary algorithm to explore more diverse individuals.

3.3 Experiments and Results

3.3.1 Nevergrad on BBOB F3

The built-in ”ask” and ”tell” functions in Nevergrad are employed for training. During

each iteration, the code requests a single individual of recommended network parame-

ters from the optimizer using ”ask” and subsequently provides the optimizer with the

objective function value (MSE) of the network via ”tell”, through which Nevergrad

optimizes the network parameters using the configured black-box algorithms. This

approach is consistent with the SGD training method, where the network parame-

ters are updated once per iteration based on gradients derived from the whole dataset

of 5000 data samples. For our experiments with Nevergrad, all Nevergrad algorithm

parameters are kept at their default settings.

21



3 Quantitative Comparison of EAs for NN Training

In the initial experiments, the learning rate for SGD was 0.0001, which was not

optimal. This resulted in poorer performance compared to the OnePlusOne, as depicted

in Figure 5. However, when the learning rate is 0.00005, SGD’s performance surpasses

that of all the Nevergrad black-box optimization algorithms, as shown in Figure 6.

Figure 5: the loss curves of the NN learning process using SGD and (1+1)-EA for the
(2,50,20,1) network on 5000 BBOB F3 data samples. We utilize the SGD and (1+1)-EA
on the dataset without other training tricks like data standardization or data batches. The
learning rate of SGD is 0.0001, and the (1+1)-EA is the default version of Nevergrad. The
curves are from a single training run of the algorithms.

Experiments conducted on Nevergrad indicate that SGD requires an appropriate

learning rate. For instance, a learning rate of 10−4 can cause fluctuations in the learning

curve, making it challenging to continue reducing the loss. Conversely, a learning rate

of 10−6 can decrease learning efficiency or lead to local optima.

The black-box algorithms in Nevergrad, while powerful, do not leverage gradient

information from the parameters of the optimized network. This limitation, while

posing a disadvantage during the optimization process, also presents an intriguing

challenge for further research and improvement. When an evolutionary algorithm is

only provided with the objective function value of a single individual per iteration, as

SGD, its performance after the same number of iterations is inferior to that of SGD.

OnePlusOne stands out as the top performer among the Nevergrad algorithms

tested, besides SGD. Its unique and straightforward logic, with a population size of

one, is particularly well-suited to this training method, sparking interest in its potential

applications.
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Figure 6: the loss curves of the NN learning process using SGD and Nevergrad algorithms for
the (2,50,20,1) network on 5000 BBOB F3 data samples. We utilize the SGD and Nevergrad
algorithms on the dataset without other training tricks like data standardization or data
batches. The learning rate of SGD is 0.00005, and the Nevergrad algorithms are the default
versions of Nevergrad. The curves represent the average loss over 10 independent training
runs.

3.3.2 ES & Niching on BBOB F3

In the experiments with our ES, we initially tune the parameters µ and λ using the

basic ES approach, as depicted in Figure 7a. Subsequently, for further parameter

experiments with ES, we choose (15 + 300) as the value for (µ + λ).

Next, we conduct experiments with fitness sharing on ES, revealing that a niche

radius R of 0.1 yields the best performance, as shown in Figure 7b. Upon closer

inspection, it is observed that the second best performance for ES sharing occurs with

R set to 5, outperforming other values between 0.1 and 5. As a result, it is conjectured

that fitness sharing is nearly ineffective when R = 0.1, exerts some influence with R

values between the two best settings, and becomes effective at R = 5.

Figure 7c presents the experiment results varying the number of niches for ES -

dynamic, with R set to the previously best value of 0.1. The results indicate that ES

performs best when the number of niches N is set to the maximal 15.

Based on these parameter experiments, both ES sharing and ES dynamic do not

demonstrate significant performance enhancements over plain ES. This unfavorable

outcome could be due to the algorithms not converging sufficiently yet requiring a

longer training time. Alternatively, setting R too small may render fitness sharing

ineffective. Or fitness sharing might require a larger population size µ to maintain

multiple niches.
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(a) Basic ES tuning the population size µ
and offspring size λ

(b) ES sharing (ES with fitness sharing) tun-
ing the niche radius R

(c) ES dynamic (ES with dynamic fitness
sharing) tuning the number of niches N

(d) SGD vs. the basic ES, ES sharing (R =
5), ES dynamic (R = 5, N = 15)

Figure 7: the loss curves of the experiments on our evolution strategies training the
(2,50,20,1) network on 5000 BBOB F3 data samples. We utilize the SGD and evolution strate-
gies on the dataset without other training tricks like data standardization or data batches.
The learning rate of SGD is 0.0001, and the evolution strategies are described in section 3.2.
In Figures 7b and 7c, the (µ + λ) values for ES sharing and ES dynamic are both set to
(15+300), with the R for ES dynamic in Figure 7c being 0.1. In Figure 7d, the (µ+λ) values
for ES, ES sharing, and ES dynamic are (15 + 300), (50 + 300), (50 + 300), respectively. The
curves in the first three subfigures represent the average loss over 5 independent training runs,
while the curves in the last subfigure represent the average loss over 10 independent training
runs.

Therefore, in the comparative experiment shown in Figure 7d, the parameters µ and

R for ES sharing and ES dynamic are increased to 50 and 5, respectively. However,

these niching methods still do not benefit ES here.

Our ES and GA’s training methodology differs from the ”Ask&Tell” approach used

in Nevergrad experiments. Here, they evaluate and update the entire population of

networks per iteration, as described in the algorithm section.
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3.3.3 GA & Niching on BBOB F3

Unlike the parameter experiments conducted for ES, the parameter experiments for

GA omit the search for the population size µ. Instead, they only sequentially adjust

the niche radius R in GA sharing and the number of niches N in GA dynamic. Here,

we omit the parameter experiment plots and only present the final comparison results

among SGD and GAs. As shown in Figure 8, with appropriate parameter settings,

both GA sharing and GA dynamic enhance the performance of GA. Moreover, with

the same number of iterations, GAs achieve a lower loss compared to SGD, although

this comparison is biased due to the utilization of the population in GAs.

Figure 8: the loss curves of the NN learning process using SGD and GAs for the (2,50,20,1)
network on 5000 BBOB F3 data samples. We utilize the SGD and GAs on the dataset without
other training tricks like data standardization or data batches. The learning rate of SGD is
0.00005, and the GAs are described in section 3.2 with population size µ = 1000. For the
GA sharing (GA with fitness sharing), the niche radius R = 5. For the GA dynamic (GA
with dynamic fitness sharing), the niche radius R = 5 and the number of niches N = 50. The
curves represent the average loss over 3 independent training runs.

Additionally, Table 1 presents the statistics on the losses of all networks obtained

from three repeated runs for GA, GA sharing, and GA dynamic. The table demon-

strates the successful application of the niching method by showing the number of peaks

(n solution) in each algorithm’s population, indicating effective dispersion of individ-

uals within the population. Furthermore, based on other statistics, it is evident that

GA sharing is more stable than the other two methods, while GA dynamic achieves

the lowest losses among the three.
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Table 1: the table of loss statistics, calculated on the collection of 3000 = 3∗µ final solutions
from 3 repeated runs, including the GA, GA sharing, and GA dynamic. The collections
are first filtered by DPI (R = 5, N = 3000), which only saves the peak set of solutions
(discards others) for statistical analysis of their losses. The n solution represents the number
of solutions, i.e., the size of the peak set.

Algorithm mean loss best loss std deviation std error 1Q 2Q 3Q n solution
GA 497.20 470.91 40.60 23.44 473.82 476.72 510.34 3
GA sharing 384.38 337.17 31.65 0.58 345.61 388.74 420.66 2960
GA dynamic 304.03 240.00 46.51 0.85 241.52 318.11 352.50 2959

3.3.4 GA & Niching on BBOB F1, F3, F7, F13, F16, F22

Before starting the experiment, we modify the experimental setup to ensure a more

fair and comprehensive comparison of various optimization algorithms. First, we stan-

dardize the input variables of the 5000 training samples using the StandardScaler from

the scikit-learn package [39]. Additionally, we introduce ADAM optimization and in-

corporate batch learning with batch size 64 for both SGD and ADAM. To ensure

that gradient-based methods perform well when training the network to approximate

various BBOB functions, we fix the learning rate at 0.00001.

For the GAs, we maintain their parameter settings the same as those described in

section 3.3.3, including population size (µ = 1000), mutation rate (pm = 0.04), niche

radius (R = 5), and the number of niches (N = 50). However, we introduce different

crossover types into the GAs. Besides the default crossover, which treats each network

parameter as a unit, we also include crossover methods that treat the parameters of a

network node or layer as a unit, as described in section 3.2.3.

More importantly, we change the comparison between gradient-based and evolution-

based algorithms from being based on the same number of iterations to being based on

the same number of network traversals. The x-axis of the loss curves now represents

network traversal times instead of iterations.

For gradient-based methods, during each epoch, the 5000 samples in the training

set undergo one forward pass and one backward pass through the network, resulting

in 10000 network traversals per epoch. For GAs, during each generation, the 1000

networks in the population each undergo a forward pass of the 5000 samples in the

training set, resulting in 5000000 network traversals per generation. Notably, the first

generation of the GAs requires an additional 5000000 network traversals to evaluate

the initial population.

Therefore, in the plots, the loss of the 1st generation of the GAs is aligned with the

loss of the 1000th epoch of the gradient-based methods, and the loss of each subsequent
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generation is aligned with the loss every 500 epochs. This comparison method still has

a problem, discussed in section 4.2.

Based on previous results, we now aim to explore further the performance of the

GA combined with fitness sharing across the entire problem set, approximating F1, F3,

F7, F13, F16, and F22 using the neural network. Figure 9 corresponds to the training

process of various optimization algorithms for approximating these six functions.

0 20 40 60 80 100
Number of evaluations (×5000000)

10 2

10 1

100

101

102

M
SE

 L
os

s (
lo

g 
sc

al
e)

F1
Adam
SGD
GA (param)
GA (layer)
GA (node)
GA_sharing (param)
GA_sharing (layer)
GA_sharing (node)
GA_dynamic (param)
GA_dynamic (layer)
GA_dynamic (node)

(a) F1

0 20 40 60 80 100
Number of evaluations (×5000000)

102

103

104

M
SE

 L
os

s (
lo

g 
sc

al
e)

F3

Adam
SGD
GA (param)
GA (layer)
GA (node)
GA_sharing (param)
GA_sharing (layer)
GA_sharing (node)
GA_dynamic (param)
GA_dynamic (layer)
GA_dynamic (node)

(b) F3

27



3 Quantitative Comparison of EAs for NN Training

0 20 40 60 80 100
Number of evaluations (×5000000)

103

104

105

M
SE

 L
os

s (
lo

g 
sc

al
e)

F7

Adam
SGD
GA (param)
GA (layer)
GA (node)
GA_sharing (param)
GA_sharing (layer)
GA_sharing (node)
GA_dynamic (param)
GA_dynamic (layer)
GA_dynamic (node)

(c) F7

0 20 40 60 80 100
Number of evaluations (×5000000)

10 1

100

101

102

103

104

105

106

M
SE

 L
os

s (
lo

g 
sc

al
e)

F13

Adam
SGD
GA (param)
GA (layer)
GA (node)
GA_sharing (param)
GA_sharing (layer)
GA_sharing (node)
GA_dynamic (param)
GA_dynamic (layer)
GA_dynamic (node)

(d) F13

0 20 40 60 80 100
Number of evaluations (×5000000)

103

104

M
SE

 L
os

s (
lo

g 
sc

al
e)

F16
Adam
SGD
GA (param)
GA (layer)
GA (node)
GA_sharing (param)
GA_sharing (layer)
GA_sharing (node)
GA_dynamic (param)
GA_dynamic (layer)
GA_dynamic (node)

(e) F16

28



3 Quantitative Comparison of EAs for NN Training

0 20 40 60 80 100
Number of evaluations (×5000000)

102

103

104

105

106

M
SE

 L
os

s (
lo

g 
sc

al
e)

F22

Adam
SGD
GA (param)
GA (layer)
GA (node)
GA_sharing (param)
GA_sharing (layer)
GA_sharing (node)
GA_dynamic (param)
GA_dynamic (layer)
GA_dynamic (node)

(f) F22

Figure 9: the loss curves of the NN learning process using ADAM, SGD, GA, GA sharing,
and GA dynamic for the (2,50,20,1) network on 5000 standardized data samples of BBOB
function 1, 3, 7, 13, 16, and 22. The learning rate of the gradient-based methods is 0.00001,
and their batch size is 64. The GA, GA sharing, and GA dynamic of different crossover types
are described in section 3.2 with population size µ = 1000. For GA sharing, the niche radius
R = 5. For GA dynamic, the niche radius R = 5 and the number of niches N = 50. The curves
represent the average loss over 5 independent training runs, and the shaded areas represent
the standard deviation confidence intervals across runs.

Using the same hyperparameters, SGD consistently outperforms Adam except for

F1. Because these two gradient-based algorithms require different learning rate set-

tings, and the settings used here are more suitable for SGD. Under the same number

of network traversals, both SGD and Adam outperform GAs on all the BBOB function

approximation problems.

Additionally, crossover at the layer or node level performs poorly. Layer-level

crossover has a more negative impact than node-level crossover, as evidenced by the

highest loss curves corresponding to GAs using layer-level crossover. This negative

effect is more pronounced for GA sharing and GA dynamic than the plain GA.

For GAs using node crossover, the learning process significantly slows down in

approximating functions 3, 7, 13, and 22 compared to the default parameter crossover.

However, for functions 1 and 16, node-level crossover performs similarly to parameter-

level crossover.

When the number of generations is less than 100, fitness sharing methods do not

show an apparent improvement for GAs, although there is a slight enhancement for

some functions like F1 and F7. This implies that the multimodal optimization approach

29



3 Quantitative Comparison of EAs for NN Training

requires more generations to be effective in the later optimization stages. Meanwhile,

the niche radius and the number of niches need to be further tailored to each problem,

as values suitable for F3 may not suit other function approximation problems.

Therefore, after modifying the experimental details as previously mentioned and

extending the time to allow GAs to evolve for 400 generations, we reproduce the results

for section 3.3.3 to confirm that fitness sharing methods still work. As shown in Figure

10, the curves indicate that after adding data standardization, fitness sharing methods

continue to improve GA performance, while the difference between dynamic fitness

sharing and fitness sharing becomes negligible.
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Figure 10: the loss curves for the ADAM, SGD, and GAs, as an extension of the experiment
shown in Fig. 9b, with its time budget extended to 400 GA generations.

To investigate the impact of crossover further, we conduct ablation experiments on

the crossover, exploring the performance of GAs without crossover. The results are as

Figure 11.

When not utilizing a crossover, GA sharing and GA dynamic exhibit the poor-

est performance compared to other crossover types. However, the plain GA without

crossover still often performs slightly better than using crossover at the network layer

level, which means both yield better results than the layer-crossover GA sharing and

GA dynamic.

Analyzing the relationships among the performances of various crossover types or

GAs, we observe a strong correlation between the use of fitness sharing and the presence

of crossover. For fitness sharing to perform well, the crossover must be employed,
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preferably happening on each network parameter.

According to our analysis, fitness sharing’s intention of dispersing the population

within the search space can partially hinder mutation, thereby reducing the algorithm’s

exploitation of local areas. If there is not a sufficiently thorough crossover to escape

local regions and conduct global searches, an algorithm that continues to use fitness

sharing may become self-limiting and struggle to improve. Fitness sharing can only

effectively disperse the population across a broader space to aid optimization when

used in conjunction with crossover.
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Figure 11: the loss curves of the NN learning process using GA, GA sharing, and GA -
dynamic with layer, node, parameter, or no crossover for the (2,50,20,1) network on 5000
standardized data samples of BBOB function 1, 3, 7, 13, 16, and 22. The GA, GA sharing,
and GA dynamic of different crossover types are described in section 3.2 with population size
µ = 1000. For GA sharing, the niche radius R = 5. For GA dynamic, the niche radius R = 5
and number of niches N = 50. The curves represent the average loss over 5 independent
training runs, and the shaded areas represent the standard deviation confidence intervals
across runs.

3.4 Discussion

In comparative experiments with the commonly used black-box algorithms in Nev-

ergrad, the simple evolution strategy, and the simple genetic algorithm, the gradient-

based methods demonstrate absolute superiority in our network optimization problems.

This finding underscores the crucial role of precise gradient information in optimizing

efficiency. Notably, among the commonly used black-box algorithms in Nevergrad with

default settings, OnePlusOne exhibits the highest network optimization efficiency, per-

forming similarly to SGD with a suboptimal learning rate.

When employing our simple ES, the network losses are higher than those of One-

PlusOne, GAs, and SGD, and the niching methods do not enhance its performance.

This could be attributed to the evolution strategy’s homogeneous initialization, which

restricts the optimization path. Meanwhile, the one-sigma mutation is simplistic, lim-

iting the variation across different variable dimensions. Additionally, the appropriate

population size for ES is small, and its discrete recombination with no filtering of flawed

individuals is too random to be effective. These factors and the data without stan-
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dardization constrain the ES performance and make niching ineffective in dispersing

the limited population’s distribution to improve outcomes.

On the other hand, our simple GA has shown promise. Its advantage of a large

population size enables the network optimization performance to surpass SGD within

the same number of iterations. However, it still lags behind gradient-based methods

with batch learning and data standardization during the same number of network

traversals. When applied with appropriate parameters, the niching methods help the

GA explore the search space more extensively, resulting in lower training losses in the

later optimization stages. Furthermore, uniform crossover for each network parameter

proves to be the most effective in all crossover types. Adequate crossover is crucial to

ensuring the effectiveness of the niching methods.

Our GA’s significant improvement over our ES is attributed to its larger population

size, initialization based on a normal distribution, fitness-based parent selection mech-

anism, uniform crossover compared to discrete recombination, and different mutation

using a uniform distribution.

In summary, due to the low exploration efficiency of mutations in evolutionary

algorithms and the simplicity, speed, and effectiveness of gradient-based methods, in-

corporating gradients into GA to assist population updates undoubtedly will enhance

network parameter optimization in GA, further supported by utilizing GA’s crossover

and niching methods. The proposed algorithm in section 4 encapsulates this promising

idea.
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4 Proposed GA SGD sharing

4.1 Algorithm

Algorithm 2 outlines the GA SGD, which integrates the previous GA and SGD. This

algorithm is similar to the algorithms proposed in the related works [13, 38, 51] as

described in section 2.3, where gradient-based methods are embedded within GA for

neural network optimization. However, unlike these works, our algorithm utilizes our

custom GA with traditional simple operators and does not employ any operator intro-

ducing stochastic mutation, making it relatively simpler.

Algorithm 2 GA SGD

Require: µ: population size
Require: Net: network (2,50,20,1)
Require: Fobj : objective function
Require: Ng: number of generations
Require: Ne: number of epochs
Require: lr: learning rate
Require: B: batch size
Require: D: training data
Require: C: criterion such as MSE
1: P ← Initialization(µ,Net)
2: ▷ Initialize the population P
3: PopLoss ← Fobj(P )
4: ▷ Calculate the losses of the individuals in P
5: for i = 1 to Ng do
6: ▷ Start evolving generations
7: PopFitness ← Fitness Evaluation(PopLoss, P )
8: ▷ Evaluate the fitness values of the individuals in P
9: Parents ← Parent Selection(PopFitness, P )

10: ▷ Select the parents from the individuals in P according to PopFitness
11: Parents ← SGD steps(Parents,Net, D,C,Ne, lr, B)
12: ▷ Optimize the parents using SGD with specified settings
13: Offspring ← Crossover(Parents)
14: ▷ Generate Offspring by the crossover of Parents
15: OffspringLoss ← Fobj(Offspring)
16: ▷ Calculate the losses of the individuals in Offspring
17: PopLoss, P ← Selection(OffspringLoss,PopLoss,Offspring, P )
18: ▷ Evaluate the fitness values of the individuals in P and Offspring
19: ▷ Select P and update PopLoss for the next generation
20: end for
21: return PopLoss, P
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The Initialization, Fitness Evaluation, Parent Selection, Crossover,

and Selection in GA SGD are consistent with the operators described in section

3.2.3 for GA. After parent selection and before crossover, the selected parents undergo

SGD optimization for the specified number of epochs Ne with learning rate lr and batch

size B. Consistent with the application of (dynamic) fitness sharing in GA as described

in section 3.2.4, GA SGD sharing or GA SGD dynamic incorporates (dynamic) shared

fitness calculation during Fitness Evaluation and Selection within GA SGD, in

the lines 7 and 17 of Algorithm 2.

However, unlike section 3.2.4, in GA SGD sharing or GA SGD dynamic, the cur-

rent population P and its offspring Offspring in Selection are not first merged into

a single population for shared fitness calculation. Instead, they are treated as two sep-

arate populations, with shared fitness calculated individually for each. This method

eliminates the mutual influence between parents and offspring when considered to-

gether, reducing the demand for sparse distribution search. Consequently, it enhances

the exploration of the local optimization space, allowing the selection of more individ-

uals with lower loss values to advance to the next generation.

4.2 Experiments and Results

The experimental setup for GA SGD is identical to that in section 3.3.4, using the same

dataset, number of network traversals, and other relevant configurations. Algorithms

are employed to optimize the NN to approximate BBOB functions with GA SGD’s

default parameter settings as specified in Table 2.

Table 2: the table of hyperparameters for Algorithm 2 in the experiments.

Ng µ Ne lr B C D Fobj Net
100 200 2 0.00001 64 MSE 5000 standardized BBOB F1/F3/F7/F13/F16/F22 samples MSE on D (2, 50, 20, 1)

4.2.1 GA SGD on BBOB F1, F3, F7, F13, F16, F22

Initially, we compare GA SGD with SGD and ADAM across the entire problem set,

ensuring that SGD and ADAM use the same learning rate, batch size, and loss function

as GA SGD. The results are depicted in Figure 12.

While GA SGD’s performance slightly lags behind SGD for the same number of

network traversals, it nearly matches SGD on specific functions like F3 and F7. Mean-

while, GA SGD generally outperforms the non-optimal ADAM except for F1 and F13.

Specifically, the simple GA SGD, which effectively runs SGD optimization in par-

allel over 200 (= Ng ·Ne) epochs by utilizing GA, competes with the SGD or ADAM
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running over 50000 epochs in the experiments. By mitigating SGD’s randomness in

search paths with GA’s population and operators, GA SGD improves the optimization

efficiency per epoch in parallel while decreasing the optimization efficiency per epoch

or network traversal. Because the GA SGD expends 400 (= µ ∗ Ne) epochs during

a single generation for only 2 (= Ne) epochs in parallel, while the SGD and ADAM

utilize this budget to run 500 epochs straightly.

The parallel optimization characteristic of GA SGD, based on its population and

consuming more computational resources, is also one of the reasons why it is difficult

for GA SGD to surpass SGD under the current fair evaluation.
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Figure 12: the loss curves of the NN learning process using GA SGD, SGD, and ADAM
for the (2,50,20,1) network on 5000 standardized data samples of BBOB function 1, 3, 7,
13, 16, and 22. The GA SGD is described in section 4.1 with default parameter settings in
Table 2. The learning rate of all SGD and ADAM steps is 0.00001, and their batch size is 64.
The curves represent the average loss over 5 independent training runs, and the shaded areas
represent the standard deviation confidence intervals across runs.

4.2.2 GA SGD & Niching on BBOB F3

To explore the impact of niching methods on GA SGD, we first conduct experiments

on BBOB F3 by incorporating (dynamic) fitness sharing into GA SGD, as in Figure

13.
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(a) GA SGD sharing varying niche radius R on BBOB F3 data.
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(b) GA SGD dynamic varying number of niches N on BBOB F3 data.

Figure 13: the loss curves of the NN learning process using GA SGD, GA SGD sharing,
GA SGD dynamic, and SGD for the (2,50,20,1) network on 5000 standardized data samples
of BBOB F3. The GA SGD, GA SGD sharing (R=*), and GA SGD dynamic (R=* N=*)
are described in section 4.1 with default parameter settings in Table 2. The learning rate of all
SGD steps is 0.00001, and their batch size is 64. The curves represent the average loss over 5
independent training runs, and the shaded areas represent the standard deviation confidence
intervals across runs.

Figure 13a illustrates that when the niche radius R for fitness sharing is between 1

and 50, it enhances the optimization performance of GA SGD. This results in a later

convergence with a lower training loss, approaching that of SGD, while SGD converges

to a slightly lower loss than other algorithms much more quickly. We select R = 5 as

the optimal setting for our dynamic fitness sharing experiments, as shown in Figure

13b. The loss curves of GA SGD dynamic with different numbers of niches are almost

identical to the GA SGD sharing curve, showing no significant variation.

On BBOB F3 data, our proposed algorithms achieve training losses comparable to

those of SGD, motivating us to conduct further tests for performance comparison.

For the test, we first generate 100 test sets, each containing 5000 test samples,

determined by a seed. For each test set, the function variables x1 and x2 are randomly

generated within the interval (-5, 5), and the function value y is the corresponding

BBOB function value for variables x1 and x2. The BBOB function is specified by the

instance in the Coco experimenter, with the instance fixed at 1, ensuring the BBOB

function does not change with different seeds. Since the training is performed using

standardized data, the test data are also standardized before testing.

Each algorithm obtains 100 losses corresponding to the 100 test sets, and we com-
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pute the statistics of the 100 losses as the algorithm’s test results. During testing, two

different methods are employed to obtain the loss of an algorithm on a test set.

1. The first method collects all the final network individuals obtained from the five

repeated runs of the algorithm during training into a single population, such as

a population of 1000 (= 5 ∗ µ) networks from 5 independent runs of GA SGD.

The algorithm’s loss on this test set is the lowest in this population, calculated

by testing each network from this population with this test set and selecting the

lowest test loss. This method reduces the impact of overfitting on the test results.

2. The second method considers the five networks, with the best training loss in the

five final populations from the five repeated runs of the algorithm during training,

respectively, as a population. The algorithm’s loss on this test set is the average

of this population’s test losses, calculated by testing the five networks with this

test set and averaging their five test losses.

The test results for the BBOB F3 using both methods are presented in Table 3.

Regardless of the test method, fitness sharing and dynamic fitness sharing enhance

the performance of GA SGD, consistent with the training loss relationships shown in

Figure 13, indicating that GA SGD, GA SGD sharing, and GA SGD dynamic do not

suffer from overfitting in this budget.

For the first test method, GA SGD sharing outperforms SGD, leveraging the ad-

vantage of a large population brought by GA. However, SGD significantly outperforms

other algorithms for the second test method, which aligns with the training loss curves.

When SGD has more than 50000 epochs, it presents noticeable overfitting with poorer

test results shown in the statistics of the second test method, even worse compared to

GA SGD sharing and GA SGD dynamic.

Table 3: the statistics of 100 test losses on 100 test sets, each having 5000 standardized
BBOB F3 data samples, using the two test methods for GA SGD, GA SGD sharing (R = 5),
GA SGD dynamic (R = 5 N = 20), and SGD.

Test Method Algorithm mean loss best loss worst loss std deviation std error 1Q 2Q 3Q

1

GA SGD 107.65 100.31 138.12 6.92 0.69 103.37 105.60 108.82
GA SGD sharing 101.25 91.20 125.57 6.74 0.67 96.06 100.55 103.80
GA SGD dynamic 102.80 95.90 127.60 6.44 0.64 98.73 100.67 104.12

SGD (50000 epochs) 105.57 90.22 155.15 13.61 1.36 97.09 101.51 107.03
SGD (59689 epochs) 102.68 92.18 137.77 8.60 0.86 97.06 100.37 104.48

2

GA SGD 117.69 110.21 124.27 5.48 2.24 115.09 116.40 122.27
GA SGD sharing 115.43 108.86 122.95 6.14 2.51 110.24 114.90 120.44
GA SGD dynamic 115.20 106.15 121.58 5.51 2.25 112.70 116.43 118.45

SGD (50000 epochs) 106.29 101.87 114.54 4.32 1.76 104.60 105.25 106.17
SGD (59689 epochs) 116.27 98.36 143.17 15.79 6.44 106.81 113.44 121.81

Note the two SGD variations in the table: one with 50000 epochs, calculated based

41



4 Proposed GA SGD sharing

on the network traversal counting method described in section 3.3.4, ensuring the

same number of network traversals as GA SGD and other algorithms. Unfortunately,

this counting method has a flaw. As in SGD, after the forward propagation of 5000

data samples, the backward propagation does not necessarily result in 5000 backward

network traversals. Instead, with a batch size of 64, there is one gradient update

per 64 data samples, which is counted as one backward network traversal by the new

counting method. In this new method, 59689 SGD epochs match the budget of other

algorithms. However, the batch size-based method still has an issue preferring SGD,

as one gradient update on a batch is significantly more time-consuming than a single

network traversal. We can regard these two counting methods as two extremes of a

fair comparison.

4.2.3 GA SGD sharing on BBOB F1, F3, F7, F13, F16, F22

Based on the current results, GA SGD dynamic does not show a significant improve-

ment over GA SGD sharing and requires the consideration of an additional parameter,

the number of niches N . Therefore, we choose the simpler GA SGD sharing as the

better algorithm for further experiments on other BBOB functions, with results shown

in Figure 14.

Table 4: the statistics of 100 test losses on 100 test sets, each having 5000 standardized
BBOB F7 data samples, using the two test methods for GA SGD, GA SGD sharing (R = 20),
and SGD.

Test Method Algorithm mean loss best loss worst loss std deviation std error 1Q 2Q 3Q

1

GA SGD 1124.56 1034.61 1239.90 43.87 4.39 1093.36 1124.79 1149.69
GA SGD sharing 1121.21 1052.76 1213.65 37.58 3.76 1094.63 1122.58 1143.09

SGD (50000 epochs) 1134.58 1042.70 1400.15 59.38 5.94 1100.34 1120.46 1162.49
SGD (59689 epochs) 1157.40 1008.84 1314.82 69.56 6.96 1113.94 1155.24 1209.67

2

GA SGD 1251.25 1122.72 1464.24 130.82 53.41 1151.91 1222.23 1316.27
GA SGD sharing 1321.89 1155.17 1695.08 206.52 84.31 1172.17 1259.91 1378.76

SGD (50000 epochs) 1222.65 1144.21 1437.44 110.68 45.19 1154.20 1189.49 1221.98
SGD (59689 epochs) 1363.72 1162.34 1655.48 210.03 85.74 1194.57 1304.00 1524.80

Table 5: the statistics of 100 test losses on 100 test sets, each having 5000 standardized
BBOB F13 data samples, using the two test methods for GA SGD, GA SGD sharing (R = 5),
and SGD.

Test Method Algorithm mean loss best loss worst loss std deviation std error 1Q 2Q 3Q

1

GA SGD 52.93 3.67 500.25 68.73 6.87 17.59 29.75 68.27
GA SGD sharing 47.63 2.35 480.93 65.73 6.57 15.34 26.84 60.80

SGD (50000 epochs) 53.65 2.22 503.94 69.55 6.95 17.64 30.46 69.51
SGD (59689 epochs) 53.91 2.16 506.32 69.97 7.00 18.09 29.99 69.47

2

GA SGD 169.91 30.32 577.07 206.64 84.36 46.42 102.75 159.86
GA SGD sharing 169.90 30.71 574.74 205.53 83.91 46.58 103.95 159.91

SGD (50000 epochs) 168.59 30.81 570.32 203.99 83.28 45.83 103.04 158.94
SGD (59689 epochs) 169.58 30.00 577.81 207.23 84.60 45.30 102.16 159.82
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Figure 14: the loss curves of the NN learning process using GA SGD, GA SGD sharing,
and SGD for the (2,50,20,1) network on 5000 standardized data samples of BBOB function
1, 7, 13, 16, 22. The GA SGD and GA SGD sharing (R=*) are described in section 4.1 with
default parameter settings in Table 2. The learning rate of all SGD steps is 0.00001, and their
batch size is 64. The curves represent the average loss over 5 independent training runs, and
the shaded areas represent the standard deviation confidence intervals across runs.

Figure 13 and 14 indicate that fitness sharing significantly enhances GA SGD in

most of our function approximation problems, including BBOB F1, F3, F13, and F22.

Fitness sharing aids the GA SGD optimization of NNs on F3 and F13, making their

performance in the final stages of training similar to that of SGD. However, fitness

sharing does not have a notable impact on F7 and F16.
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The function approximation of F7 by the NN may be sufficiently straightforward

that GA SGD can perform well without the need for fitness sharing. On the other

hand, for F16, the limited capability of GA SGD itself constrains the effectiveness of

fitness sharing. The finite epochs of SGD within GA SGD might not be sufficient

for F16, causing both GA SGD and GA SGD sharing to converge prematurely while

SGD continues to improve. Moreover, experimented on F1 and F22, neither the faster-

learning SGD nor the slower GA SGD sharing converge by the end of training, resulting

in GA SGD sharing still trailing behind SGD in performance.

According to the findings, we opt to continue testing the algorithms using the two

test methods on F7 and F13, where the training loss curve of GA SGD sharing is close

to that of SGD. The test results are presented in Tables 4 and 5.

Similar to the test results on BBOB F3, the statistics of GA SGD sharing on F7 and

F13 present superior performance to those of SGD when using the first test method.

However, GA SGD and GA SGD sharing underperform compared to SGD when using

the second test method, although GA SGD sharing outperforms the overfitting SGD

with more epochs on BBOB F7, as on F3. With the second method to test on F13,

the performance of GA SGD and GA SGD sharing is only marginally worse than that

of SGD.

4.3 Discussion

After introducing SGD into GA, the optimization efficiency of GA SGD significantly

improves compared to the original GAs. However, it remains lower than the efficiency

of SGD alone while generally surpassing that of ADAM under the same experimental

settings, potentially because these settings are not ideal for ADAM. Notably, the paral-

lel optimization feature of GA SGD enhances the efficiency of each parallel SGD epoch,

making it suitable for advanced computing environments such as parallel computing.

Incorporating fitness sharing into GA SGD results in GA SGD sharing, which shows

a marked improvement over GA SGD in most of our NN function approximation prob-

lems. Despite this improvement, it still struggles to surpass the efficiency of SGD and

shows no significant difference in performance on the overly simple F7 and the exces-

sively difficult F16. Specifically, GA SGD sharing’s performance on F3, F7, and F13

is very close to SGD in the end, and it still has not converged on F1 and F22 (SGD

either), while failing to help GA SGD breakthrough on F16.

Furthermore, consistent with the results from section 3.3.4, the GA SGD dynamic

with dynamic fitness sharing does not outperform GA SGD sharing with fitness sharing
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on F3, indicating that fitness sharing adequately addresses difficulties with no need for

its dynamic version after data standardization. The effectiveness of fitness sharing in

enhancing GA SGD performance is insensitive to niche radius R and number of niches

N , with R settings between 1 and 50 being generally effective.

The lower efficiency of GA SGD compared to SGD in training can be attributed to

the inherent nature of GA, which introduces an entire population of networks. This

parallel optimization mechanism of GA SGD does not enhance the efficiency of each

epoch or network traversal above SGD while allowing more budget for crossover and

selection among different optimization paths brought by the randomness of SGD op-

timization in the population of networks. Thus, GA SGD improves the efficiency of

each parallel SGD epoch. In experiments, this manifests as GA SGD running 200

SGD epochs in parallel for 200 individuals in the population, while SGD can run 50000

epochs or more with the same number of network traversals.

(a) the 1st partial landscape.
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(b) the 2nd partial landscape.

Figure 15: the partial landscapes of NN parameter optimization for the BBOB F3 approx-
imation, using the implementation and methodology from [2, 28]. The vertical axis represents
the MSE loss and the other two axes refer to the 2d projection of network parameters.
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Figure 15 visualizes the landscapes of NN parameter optimization for the BBOB F3

approximation, only representing a partial landscape view on the entire search space.

In these landscapes, a valley region is discernible. Typically, algorithms initiate

optimization from a random peak, descending along the gradient to reach a point

within the valley region. From there, they continue a gradual descent to find the

global optimum. Although frequently hindering the algorithms, the local optima on

the slopes are relatively easy for the algorithms to overcome. In contrast, the local

optima in the valley are more challenging to surmount. Therefore, it is advantageous

for the optimization algorithm to reach areas of relatively lower losses within the valley.

This target cannot be reached simply by random restarts of SGD. Instead, employing

EAs and SGD to balance exploration and exploitation with a population might be

more beneficial, which is also why we are trying GA SGD.

During SGD optimization, the loss quickly converges to a point in the valley and

slowly decreases for a lower region. On the other hand, GA SGD sharing first descends

the hill more slowly than SGD and reaches the valley later, vertically close but still

higher to SGD, with fewer SGD epochs and an equivalent number of network traversals.

Besides F3, the optimization of SGD and GA SGD sharing on F7 and F13 have similar

processes, while the algorithms perhaps have not reached the valley in F1 and F22

experiments.

Testing on F3, F7, and F13, where GA SGD sharing and SGD show comparable

training performance, demonstrate that GA SGD sharing yields the best test results

when the best-performing individuals in the population for testing are selected for

testing, presenting the advantage of a large dispersed population. Conversely, when

the best-performing individuals in training are selected for testing, SGD provides the

best test results, aligning with its training performance.

In the function approximation of F16, GA SGD sharing gets stuck midway. This

failure suggests that when the landscape on the search space requires many SGD epochs

to find the correct direction, the limited number of SGD epochs in GA SGD restricts

its ability to break through traps and reach the same level as SGD.

Overall, the efficiency of GA SGD is inherently lower than that of SGD but higher

than ADAM under suboptimal settings. Using niching methods such as fitness sharing

and dynamic fitness sharing, originally intended for MMO, significantly enhances the

performance of GA SGD, bringing it closer to SGD. Furthermore, in the valley region

of the landscape, the dispersed network population of GA SGD sharing likely contains

better-performing networks for testing than the single network of SGD, although in a

lower landscape region, after the same time budget at the late optimization stages.
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5 Conclusion

This thesis aims to apply multimodal optimization (MMO) metaheuristics to classi-

cal evolutionary algorithms (EAs) and explore their performance in optimizing neural

network (NN) parameters.

As a result, we implement simple evolution-based algorithms such as ES, GA, and

GA SGD, apply fitness sharing and dynamic fitness sharing from niching methods to

them, and conduct a series of experiments. These evolution-based algorithms, along

with gradient-based methods, are used to train a simple neural network architecture

(2, 50, 20, 1) to approximate six BBOB functions of appropriate difficulty.

Our experimental results consistently demonstrate the efficiency of gradient-based

methods, which achieve lower loss with fewer network traversals compared to the larger

computational demands of population-based evolutionary algorithms. The OnePlu-

sOne algorithm from the Nevergrad black-box optimization suite, utilizing its popu-

lation of size one, exhibits the highest optimization efficiency among the Nevergrad

algorithms under default settings, while slightly inferior to SGD.

In experiments with basic EAs, ES performs significantly worse than both GA and

SGD. Fitness sharing and dynamic fitness sharing, designed for GA, improve GA’s

optimization performance but do not affect ES. Our GA, with a large population,

outperforms basic SGD over the same number of iterations but remains inferior to SGD

when compared based on network traversals. Additionally, a condition for sharing to

improve GA’s optimization performance is sufficient crossover in GA, such as uniform

crossover on each network parameter.

Based on our experiments with basic EAs, we introduce gradient-based methods

into the basic GA, termed GA SGD. GA SGD shows a marked improvement in opti-

mization efficiency over GAs, approaching the performance of SGD and outperforming

non-optimally configured ADAM. Incorporating fitness sharing into GA SGD, result-

ing in GA SGD sharing, further enhances optimization performance, bringing it closer

to SGD, though still not surpassing it. We also observe that dynamic fitness sharing

does not improve performance over fitness sharing because fitness sharing is already

effective in tackling most problems.

Following this, we select three of the six BBOB functions for further testing, where

GA SGD sharing’s performance is close to SGD. Using standard testing methods with

the best network from training, SGD slightly outperforms GA SGD sharing, consis-

tent with the training results. However, using a special testing method that selects the

network with the best test performance from the population, GA SGD sharing outper-
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forms SGD, indicating that its population likely (> 50%) contains networks with lower

test losses than SGD’s single network.

In summary, our research demonstrates that distance-based niching methods such

as fitness sharing and dynamic fitness sharing significantly enhance the performance

of evolution-based GA and hybrid GA SGD in NN parameter optimization. We also

explore the hyperparameters, implementation, and relationship with crossover for these

niching methods. Although GA SGD sharing does not surpass SGD in overall perfor-

mance, its superior results in specific tests validate the advantages of a niching-enabled

network population.

Based on our study, we propose the following directions for future research:

• Incorporating distributed and parallel computing techniques into GA SGD shar-

ing to alleviate its inherent redundant computations while leveraging the advan-

tages of population-based parallel evolution.

• Integrating fitness sharing to enhance the training frameworks proposed in related

works [13, 38, 51], which are similar to our GA SGD sharing.

• Introducing other niching methods or MMO metaheuristics into evolutionary

and hybrid evolutionary-gradient optimization algorithms, such as clearing and

crowding. (Clustering has poor results in our trials.)

• Further refining the GA SGD sharing algorithm with additional features, such

as mutation and parameter tuning.

• Testing the niching methods on larger problems with more complicated network

architectures such as CNN.
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