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Abstract

Due to the inherent subjective nature of art appreciation, designing a program to generate visually appealing
or otherwise inspiring art may seem like an impossible task. However, the existence of evoMUSART [2], the
International Conference on Artificial Intelligence in Music, Sound, Art and Design, suggests people will still
try. Inspired by the various papers presented at evoMUSART, this thesis documents an attempt to use Genetic
Programming, a sub-field of evolutionary algorithms, to generate and evolve art. Suggested indicators of
potential aesthetic appeal implemented include rotational symmetry, positional alignment of individual parts,
regulations on colour variety, and more. As part of the genetic programming nature of the implementation,
generated art will evolve and, ideally, improve. Input-parameters will be experimented with to best tune the
implementation to aesthetic appeal.
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Chapter 1

Introduction

As shown by the rising popularity of evoMUSART [2], the International Conference on Artificial Intelligence
in Music, Sound, Art and Design, there is an increasing interest in using the fields of artificial intelligence and
evolutionary computation for the development of generative visual art. Applications made in these fields are
numerous. The Painting Fool [6] makes use of a hybrid hill-climbing and evolutionary approach to render scenes.
Crossover and mutation are applied to a population of scenes for several generations. The most fit individual
will have each of its attributes randomised a set number of times. If the new value leads to an improvement, it
would be kept, otherwise discarded. Art Done Quick [7] is an app that allows its users to mutate or crossover
generated art as a form of casual creation. By ensuring offspring are neither too similar nor too different from
their parents users can feel in control. Art Done Quick generating titles for the artworks provides additional
pleasure when the user sees the artwork in a new light. Deep Convolutional Neural Networks have been used
in the Camera Obscurer app [42] to retrieve images visually similar to photos taken and uploaded by users.
Retrieved images would be either abstract or realistic, where the former may serve as inspiration for design
tasks.

In this thesis, genetic programming (GP) will be used to generate art; Specifically, compositions of orna-
ments. GP is a field of evolutionary computation in which a fitness or objective function is used to measure
the performance of a program to solve a problem. Given this problem, a population of candidate solutions is
generated and iterated on to solve it. The following research question (1) is posed: “Can genetic program-
ming be used to compose ornaments on a canvas?” In tandem, another question (2) is posed: “Can genetic
programming be used to evolve quantifiable aesthetic measures?”

Poli & Koza [21] list several properties commonly shared in areas where genetic programming has proven
to be especially productive. GP was chosen due to how well the problem matches some of these properties,
such as “An approximate solution is acceptable...” and “Small improvements in performance are routinely
measured...”

The compositions are created by arranging ornaments/symbols on a canvas. ORNAMIKA is a reposi-
tory/archive and company which “exist[s] to preserve and popularize ornamental heritage of the world and
increase cultural empathy in modern society through design.” [1]. These symbols, or ornaments, have been
extracted from existing patterns by ORNAMIKA [1], see Figure 1. As part of their mission, ORNAMIKA also
creates new graphics using these ornaments. The program presented in this thesis, SymbolPlacer, or SymPla,
aims to mimic this, by use of GP.

More background information on generating art and genetic programming will be provided in Section 2.
Section 3 will go into more detail regarding SymPla and its fitness function and elaborate on why the different
aspects of the fitness function were chosen. Section 4 will elaborate on different experiments run on SymPla.
The results will be interpreted in Section 5 and discussed in Section 6.
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Fig. 1: Existing patterns (1) have had symbols extracted (2). These symbols get rotated and scaled before
being placed on a canvas (3) by SymPla.



Chapter 2

Background

2.1 Generating Art

Many tools exist for the generation of art [38, 7, 22, 9]. Examples of work done in this field include:

– A program which combines patterns to generate Zentangle images [22]. Users can generate and interac-
tively evolve images, or collaborate with other users by further evolving their images [40]. These images
will be put through Wave Function Collapse [16] which will generate patterns similar to the input image.
These patterns will be combined into the final Zentangle image output.

– An interface to let an AI draw art based on a person’s electroencephalographic (EEG) waves [36]. A
Generative Adversarial Network [15] is trained on EEG waves and paintings, both of which have been
labelled with emotions. After training, a person’s EEG signals will be processed by an encoder model
before being input to another model generating the paintings. The result would be an AI which can make
use of the human emotion it would otherwise oft lack.

– An AI which, when given input paintings, generates a chimera image to inspire artists [23]. By decomposing
an artwork into objects of different classes, and reconstructing it using a visual universe, a collection of
snippet images, these chimera images are created. By specifically using neural networks which are not
trained on paintings and/or not state of the art in recognising objects in the input artwork, the ability to
reinterpret works beyond the artists’ intention would be mimicked.

– A genetic algorithm-based program used to evolve graphic designs [24]. Generated images are compared
to a target image to calculate fitness. Despite this, goal is to help create designs that are disruptive and
don’t follow whatever is considered trendy design. One particular use-case mentioned is that of helping
design posters.

– The Painting Fool [6], Art Done Quick [7] and Camera Obscurer [42], mentioned in Chapter 1.

Often, the goal in generating art is to create something that can generate works that provide aesthetic
pleasure. The extent to which visual art is pleasing will be used to define aesthetic pleasure. Optimising for
aesthetic pleasure can be difficult due to its subjective nature. Still, attempts have been made to measure
what generally does and does not lead to aesthetic pleasure. Common causes for invoking aesthetic pleasure
are interpretation, even where no meaning was intended [23, 42, 24], complexity and symmetry [47, 18], size
(where bigger is better) [41], repeated exposure to an object [52, 51], prototypicality (how representative an
object is to its category) [29], whether an object is curved or sharp [3] and the peak shift effect [35] to name
a few.

Another aspect to generating aesthetically pleasing artworks is the process of improving the aesthetics.
Ultimately, a universal aesthetic measure remains elusive [27], however various systems have been used to
attempt to quantify and improve aesthetics. [38, 7, 22, 9] for example, provide a number of applications of
bio-inspired systems in art.

2.2 Genetic Programming

As mentioned in Chapter 1, GP is a field of evolutionary computation which aims to solve a problem by
generating and iterating over a population of candidate solutions. These candidate solutions come with a
genotype and a resulting phenotype interpretation. The phenotype will be the end result, whereas the genotype
will be a more abstract form to which genetic operations can be applied to. Genetic operations are used
to iterate on the candidate solutions, with two of the most common genetic operations being crossover
and mutation. Crossover allows two candidate solutions to (partially) exchange genetic info akin to sexual
recombination [21]. Mutation allows a candidate solution to replace part of its genetic info with newly generated
info, effectively abandoning part of its identity to adopt something new.
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During the GP loop, generations of populations are iterated on. During each iteration, genetic operations
would be applied to the offspring of the previous generation’s candidate solutions, the parent population.
Selection then determines which candidate solutions of the offspring population and the parent population
would form the next generation’s parent population. Typically, the fitness function plays a large role here,
as the goal is to maximise the candidate solutions’ fitness values. This process repeats for generations until
some termination criterion is met. This criterion could be any of the following: A certain amount of candidate
solutions has reached a specified fitness value, a limited budget of fitness evaluations has run out, a limited
ceiling of generations has been reached [8], to name a few.

As an abstract form, the genotype of a candidate solution can be represented by various means. A short,
by no-means comprehensible list of different representations of genotype (and sometimes phenotype) follows:

– Monolithic GP [8] represents the genotype as a tree. Nodes contain either functions or terminals. function
nodes have at least one child, whereas terminal nodes are leaves. Crossover involves two trees swapping
out subtrees. Mutation is performed by excising a tree’s subtree, and generating a new subtree to take its
place.

– Multigene GP [8], or MGGP, represents the genotype as a forest of smaller trees. Each tree’s fitness value
is weighed before being accumulated in a symbolic regression model. The trees’ weights, the bias term,
and the symbolic regression algorithm, providing the model, are all coefficients of this representation [39].

– Gene Expression Programming [8, 13], or GEP, attempts to get the best of both Genetic Algorithms’ fixed-
length strings and (monolithic) GP’s tree representation. The genotype is represented as a fixed-length
string separated into a head and a tail. The phenotype is a tree of which neither shape nor size is fixed.
Even further inspiration is drawn from biology by allowing parts of the genotype to not encode into the
phenotype. Whilst only applying genetic operators to the head of the string, this allows genetic operators
to replace terminals with functions (expanding the phenotype tree) and vice versa. As a result, genetic
operators do not need to be as restricted in their implementation as they would need to in GP or Genetic
Algorithms [13].

– Linear GP [8, 31] represents programs as functions and applies genetic operators to these functions. By
representing the candidate solutions as functions instead of trees, there is less of a need to build a genetic
programming system in an interpreting language, which could otherwise be a major source of overhead [31].

– Dimensionally aware GP [20] aims to take away some of the abstract nature of GP. By adding units
of measurement, or dimensionality, an effort is made to obtain results that are not only syntactically
correct, but also semantically valuable. Variables and constants are accompanied by a unit of measurement
exponent and operations such as addition, multiplication, etc. are redefined to handle these exponents in
the function set.

– Cartesian GP [28] makes use of the graph as phenotype, whilst using an integer string for the genotype.
Benefits over monolithic GP include a graph being more general than a tree, multiple forms of redun-
dancy leading to an increased possibility of neutrality (multiple genotypes mapping to the same or similar
phenotypes) and an improved ability to learn Boolean functions.

– Machine-coded GP or AIM-GP (Automatic Induction of Machine Code with Genetic Programming) [32]
takes advantage of the lack of a need for an interpreter when using machine code as genotype. This
saves time when executing (partial) solutions. Furthermore, the linear nature of machine code runs very
analogous to genes in DNA, lending further credibility to AIM-GP.



Chapter 3

Methodology

In this thesis, SymPla [44] is proposed. SymPla is a program which uses GP to generate candidate solutions,
rectangular-shaped canvases containing zero or more symbols arranged in such a fashion that they could,
ideally, be aesthetically pleasing. Symbols are as explained in Section 1 and Figure 1. The canvas is the
phenotype. SymPla is written in Python [49] and makes use of the pillow fork [5] of the Python Imaging
Library [26], among other libraries. SymPla can be found online at https://github.com/s1551396/GP [44].

To keep things simple, monolithic GP, introduced in Section 2.2, was chosen as the model for SymPla.
Monolithic GP will be referred to simply as GP from now on. In order to use GP, a genotype definition
of a solution is also necessary. A candidate solution’s genotype is a tree consisting of nodes and branches.
Section 3.1 details how trees (genotype) translate to canvases (phenotype), and the make-up of a tree’s nodes.

Whereas candidate solutions are initialised by randomly picking values and symbols from a pool of pos-
sibilities for each parameter, candidate solutions also need to be iterated on. SymPla does this in its main
loop: Multiple trees are generated to form an initial parent population. The offspring population is formed
by repeatedly selecting two candidate solutions from the parent population, using tournament selection [34].
These potentially go through mutation and/or crossover, before being added to the offspring population. Once
the offspring population reaches a set capacity, it is added to the parent population. The merged population is
then cut to the same size as the original parent population, leaving out the least fit candidate solutions, (µ+λ)
selection. This population will serve as the parent population of the next iteration. This loop is repeated a
given number of times. Once this process finishes, the most fit candidate solution from the parent population
will be presented as solution. Pseudocode and a flowchart of this process are given in Figure 2 and Figure 3,
respectively.

As mentioned before, Section 3.1 details how trees translate to canvases, and the make-up of a tree’s nodes.
Section 3.2 details how a tree’s fitness is determined. Section 3.3 and Section 3.4 will cover the implementation
of crossover and mutation, respectively.

3.1 Genotype

As mentioned before, a candidate solution’s phenotype, the canvas, is a rectangular-shaped image file. The
genotype is a tree complete with nodes and branches. A node’s depth refers to how many edges are between
it and the tree’s root node. We will refer to nodes as units. A unit is a class that consists of a number of
components. For a unit, u, its origin, scale and angle components are relative to its ancestors’ and referred
to as ou, su and θu, respectively. In order to translate these nodes to the phenotype, there is also a need for
absolute origin, scale and angle, Ou, Su and Θu. u’s parent is indicated as u− 1. A list of all components of
a unit follows.

– children. Either a symbol or a list of children-units, determined by arity.
– arity. This indicates how many children a unit has. Arity is zero if the unit is a leaf.
– symbolIndex. Index of the symbol stored in children. If unit is not a leaf, it doesn’t have a symbol

and symbolIndex is zero. symbolIndex is used to find the symbol in the symbolsCache if this option is
enabled.

– origin in pixels. A tuple representing the unit’s location relative to its parent’s location. If the unit has
a symbol, origin refers to where the centre of the symbol is located. A unit’s absolute origin is defined in
Definition 1.

Definition 1 (Unit’s absolute origin). For unit, u, with relative origin ou = (oxu, o
y
u) and absolute origin,

Ou = (Oxu, O
y
u), u’s absolute origin, (Oxu, O

y
u), is calculated as:

Oxu =
∑d
u=1 cos(θu) ∗ oxu − sin(θu) ∗ oyu +Oxu−1.

Oyu =
∑d
u=1 sin(θu) ∗ oxu + cos(θu) ∗ oyu +Oyu−1.

This calculation is an adaptation of Fisher et al.’s [14] transformation.
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1: randomly generate parent population
2: initialize loopcounter to zero
3: while loopcounter is less than generations limit do

4: initialize offspring population as empty set
5: while size of offspring population is less than maximum offspring population size do

6: tournament select parent population and store winner in offspring1
7: tournament select parent population and store winner in offspring2

8: initialize value to random value between zero and one
9: if value is less than crossoverrate then

10: crossover offspring1 and offspring2
11: end if

12: initialize value to random value between zero and one
13: if value is less than mutationrate then
14: mutate offspring1
15: end if

16: initialize value to random value between zero and one
17: if value is less than mutationrate then
18: mutate offspring2
19: end if

20: add offspring1 to offspring population
21: if size of offspring population is less than maximum offspring population size then
22: add offspring2 to offspring population
23: end if
24: end while

25: select best of parent population combined with offspring population and store the result in parent popu-
lation

26: increment loopcounter
27: end while

28: pick and present the most fit unit in the parent population

Fig. 2: Pseudocode of SymPla’s main process for iterating on candidate solutions.
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Fig. 3: Flowchart of SymPla’s main process for iterating on candidate solutions.
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– angle in degrees. The unit’s rotation around its origin. Angle is relative to its parent’s origin and angle.
A unit’s absolute angle is defined in Definition 2.

Definition 2 (Unit’s absolute angle). For unit, u, with relative angle θu, u’s absolute angle, Θu, is
calculated as:

Θu =

{
θu, if u is root.

Θu−1 + θu, otherwise.

– scale in pixels. A tuple representing the unit’s width and height relative to its parent’s width and height.
A unit’s absolute scale is defined in Definition 3.

Definition 3 (Unit’s absolute scale). For unit, u, with relative scale su = (sxu, s
y
u) and absolute scale,

Su = (Sxu , S
y
u), u’s absolute scale, (Sxu , S

y
u), is calculated as:

Sxu =

{
sxu, if u is root.

Sxu−1 + sxu, otherwise.
Syu =

{
syu, if u is root.

Syu−1 + syu, otherwise.

– repetition. An instance of the custom Repetition class. This class is used to draw a unit multiple
times. For unit u with repetition r, being drawn for the xth time, r consists of the following components:
• Count, cr. The number of times u is repeated.
• Origin, or. The relative origin of each repeatedly drawn unit to their previous iteration. Oux = Ou +
or ∗ x. Where Ou is as defined in Definition 1 and 2-tuple and scalar multiplication is as defined in
Definition 4.

Definition 4 (2-tuple and scalar multiplication). Given 2-tuple S = (x1, y1) and scalar a, S ∗a =
(x1 ∗ a, y1 ∗ a).

• Angle, θr. The relative angle of each repeatedly drawn unit to their previous iteration. Θux = Θu +
θr ∗ x.

• Scale, sr. The relative scale of each repeatedly drawn unit to their previous iteration. Sux = Su+sr∗x.
Where 2-tuple and scalar multiplication is as defined in Definition 4.

– fitness. Holds the unit’s fitness, if the unit is a root node, otherwise set to zero. Used to avoid recalcu-
lating fitness.

– fitnessAspects. List of individual fitness aspects’ scores, before applying weights. Fitness aspects are
detailed in Section 3.2.

– parent. The unit’s parent. Set to NULL/None if the unit is a root node.
– childNumber. As units can have multiple children, this variable indicates the how-manieth child of its

parent the unit is.
– drawnLeaf. This is used to count how many leaves were drawn for the DRAWABLELEAF fitness aspect.

Figure 5 displays an example unit tree. Figure 4 displays the drawn representation of this tree.

3.2 Fitness function

The fitness function, f , takes a Unit class instance, u, as input and produces a fitness score as output. The
fitness score is an accumulation of punishments and rewards based on various factors and traits of u, which
we will call fitness aspects, f1 through f6. Each of these aspects were initially chosen based on an intuitive
understanding of aesthetics, ideally rewarding things that improve aesthetic pleasure, and punishing things
that reduce aesthetic pleasure. Further motivation for each aspect can be found in their respective sections
(Sections 3.2.1 to 3.2.7).

Each of the aspects of the fitness function, f1, through f6, is tested to see if expected results are being
reproduced. The methodology for testing each fitness aspect will be discussed in Sections 3.2.1 to 3.2.7. For
these tests a canvas size of 200x200 pixels is used (sheetWidth = sheetHeight = 200). arityMax, the maximum
arity a node can have, is set to 3 and treeDepth, the maximum depth a tree can have, is set to 4. Each aspect,
fx, can hold a value between 0 and 100. This value is multiplied by a weight, wx. Table 1 details which weights
were attributed to which aspects. Punishments use negative weights, whereas rewards use positive weights.
The final scores of each aspect are then added up to form the fitness score.
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Fig. 4: A generated canvas with some additional highlighting for
explanation. The area outside the dashed rectangle isn’t drawn
on the final canvas. The relative and absolute origin of the root,
r is at (400, 400). r’s first child, s, has an absolute origin at (92,
459). s’ first child, t, has an absolute origin at (383, 203). t’s
first child, leaf u, has an absolute origin at (190, 421). Marked
in blue is u’s symbol. Also marked in blue are the four times
this symbol is repeated due to s’ repetition count being four.
Note how the five symbols form an ordered rotation around t’s
origin.

Fig. 5: A subtree of the canvas
in Figure 4. Shown, per node,
are the relative origin, repeti-
tion count and first child or
symbol if the node is a leaf.

Fitness aspects

f1 f2 f3 f4 f5 f6

−8 −1 +5 +3 −2 +2

Table 1: Default weight values, wx, used by each fitness aspect, fx.
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3.2.1 Rotational symmetry

Given a unit, u, with repetition, r, rotational symmetry can be detected by using count, cr, and angle,
θr. Figure 6 provides an example of rotational symmetry. This aspect was chosen to take advantage of
aesthetic pleasure provided by symmetry [47, 19]. A decision was made to scrap this fitness aspect, and
instead incorporate it into the unit-generation process. This means that most generated units have varying
orders of rotational symmetry.

Fig. 6: An example of rotational symmetry. By taking the centre as an origin, the figure can fit in itself
four times in a whole rotation. This means the order of rotational symmetry is four. [19]

3.2.2 Overlapping symbols

f1 punishes overlapping symbols. Inspiration is loosely drawn from works such as [45, 4], where overlap is
fundamental in generating images. Before drawing a symbol, we count the number of nontransparent pixels
in the symbol, ps. Each symbol’s ps is accumulated into an expected pixel count, pe. Any pixel with an alpha
channel value greater than zero is considered nontransparent. The formula for finding the value of the fitness
aspect of overlap is f1 = 100− 100 ∗ (p/max(pe, 1)) where p is the total number of nontransparent pixels in
the canvas.

Using the symbol in Figure 7, Symbol1, we craft the tree in Figure 9, Tree1. Using Gimp’s [46] histogram
feature, see Figure 8, we can see that in Symbol1 5166 pixels are nontransparent. The expected nontransparent
pixelcount for Tree1 where neither instances of Symbol1 overlap would be 5166∗2 = 10332. Using Gimp’s [46]
histogram feature on Tree1, see Figure 10, this expectation is met; f1 is expectantly zero in this case.

Fig. 7: Symbol1, Klimov 022 reco 1. Re-
sized to 99x100. This image is in RGBA
mode. Each pixel uses 8 bits for each of
four channels: red, green, blue, alpha.

Fig. 8: Gimp [46] histogram of Symbol1 in
Figure 7. Bottom right states 5166 pixels
have an alpha value in interval [1, 255].

Rotating Symbol1 45 degrees using pillow [5] gives us a nontransparent pixelcount of 5164. Tree2, see
Figure 11, draws this rotated symbol on top of a regular Symbol1. Due to partial overlap, the nontransparent
pixelcount of Tree2 is not 5164 + 5166 = 10330, the addition of Symbol1’s nontransparent pixelcount with
its 45-degree rotated counterpart’s. Gimp’s [46] histogram feature, see Figure 12, tells us Tree2 has 6024
nontransparent pixels. Our implementation did expect 10330 pixels, and did count 6024, making f1 ≈ 86.2.
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Fig. 9: Tree1. A tree drawing two of Fig-
ure 7’s symbol. The symbols do not over-
lap.

Fig. 10: Gimp [46] histogram of Figure 9.
Bottom right states 10332 pixels have an
alpha value in interval [1, 255].

To account for size of the canvas, the formula is changed to f1 = min(max(0, pe − p) ∗ 100/(l/8), 100),
where l = sheetWidth ∗ sheetHeight. This formula results in a fitness aspect value of f1 ≈ 86.1 for Tree2.

Fig. 11: Tree2. A tree drawing two of Fig-
ure 7’s symbol. The symbols overlap par-
tially.

Fig. 12: Gimp [46] histogram of Figure 11.
Bottom right states 6024 pixels have an
alpha value in interval [1, 255].

3.2.3 Punish too few/too many pixels

f2 punishes a ratio of empty pixels above a certain threshold, maxp, or below a different, lower, thresh-
old, minp < maxp. This aspect was chosen to take advantage of aesthetic pleasure potentially provided by
complexity [47].

Using Tree2, see Figures 11 and 12, we have a nontransparent pixel count of p = 6024. Using l as the
width of the canvas multiplied by its height, the canvas being 200 by 200, then minimum pixel threshold is
defined as minp = l/8 = 5,000. The maximum pixel threshold is defined as maxp = l/2 = 20,000. Finally,

f2 =


(p−maxp)/max((l −maxp)/100, 1), if p > maxp

(minp−p)/max((minp /100), 1), if p < minp

0, otherwise.

Tree2, see Figures 11 and 12, has a pixel count greater than the minimum threshold, and lesser than the
maximum threshold: f2 = 0.
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Tree3, see Figures 13 and 14, has a nontransparent pixel count of 31074. This value is greater than the
maximum pixel count threshold: f2 ≈ 55.4.

Tree4, see Figures 15 and 16, has a nontransparent pixel count of 1346. This value is lesser than the
minimum pixel count threshold: f2 ≈ 73.1.

Fig. 13: Tree3. A tree drawing nine of
Figure 7’s symbol. The symbols consume
more than half of the canvas.

Fig. 14: Gimp [46] histogram of Figure 13.
Bottom right states 31074 pixels have an
alpha value in interval [1, 255].

Fig. 15: Tree4. A tree drawing one of Fig-
ure 7’s symbol at half the scale. The sym-
bol consumes less than an eighth of the
canvas.

Fig. 16: Gimp [46] histogram of Figure 15.
Bottom right states 1346 pixels have an
alpha value in interval [1, 255].

3.2.4 Reward leaves drawn on the canvas

f3 rewards symbols that are drawn on the canvas. This is done by increasing the reward based on how many
draw-able leaves the tree has, correcting for the amount of leaves the tree has. This aspect was chosen to
minimise the appearance of empty canvases.

A unit’s leaves each contain a symbol which can be drawn multiple times on the canvas. l is the amount
of leaves a tree has. dl is the amount of a tree’s leaves which are drawn at least once. The maximum amount
of leaves a tree can have, maxl, is the maximum arity any node can have to the power of the maximum depth
the tree can have. For our parameters this would be 43 = 64.
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f3 = dl/l ∗ 100. One problem that was run into is that trees with fewer leaves, need fewer of their leaves
to be drawn on the canvas for a higher fitness score as well. A root node which is also a leaf will have
the maximum fitness aspect score of f3 = 100 if its one symbol can be drawn. Hence f3 was changed to
f3 = (dl ∗ 100)/max(maxl, 1). This indirectly rewards complexity as trees with more leaves are more likely to
have a higher count of draw-able leaves.

Tree4, see Figure 15, consists of one leaf which is drawn; f3 ≈ 1.6.
Tree3, see Figure 13, despite drawing nine symbols, also consists of one drawn leaf. This leaf repeats twice,

and its parent also repeats twice, hence nine symbols appear on the canvas; f3 ≈ 1.6.
Tree2, see Figure 11, consists of two drawn leaves: f3 ≈ 3.1.
Tree5, no figure, tries to draw a symbol out of the canvas’ bounds. This leaves the canvas empty; f3 = 0.
Tree6, see Figure 17, consists of 64 drawn leaves. This would be the maximum amount of possible draw-able

leaves a tree could have under our current parameters; f3 = 100.

Fig. 17: Tree6. A tree drawing 64 of Figure 7’s symbol. Each symbol drawn by a different leaf.

3.2.5 Reward symbols that touch one another

f4 rewards symbols that touch one another. Per symbol, Si, the location and size is compared to each other
symbol, Sj , to determine whether there’s overlap. As symbols are not necessarily rectangular, every pixel, p,
in the overlapping area is iterated on to see if p is nontransparent in Si and if any of the eight adjacent pixels
- two horizontal, two vertical, four diagonal - is also nontransparent in Sj or vice versa. If p is nontransparent
in both Si and Sj , no reward for this symbol-pair is given as the symbols are not touching, but overlapping.
This aspect was chosen out of personal curiosity.

To determine whether two symbols, Si and Sj , touch, each symbol’s location and size is tracked. By using
Image.getbbox [5] transparent areas are cropped out. Comparing Si’s location and dimensions with Sj ’s
reveals a surface, A, where overlap or touch on the canvas is possible. If so, SymPla generates two lists, Li
and Lj , of all pixels’ alpha values in A. One for each symbol. If some alpha value αi∈ Li such that αi> 0 and
the corresponding αj∈ Lj such that αj> 0, SymPla will recognise the Si and Sj symbol-pair as one featuring
overlap. This pair will therefore be considered as not touching.

Otherwise, if some alpha value αi∈ Li such that αi> 0 and one or more of the eight alpha values, αj
′,

directly above, below, left, right or diagonal to the corresponding αj∈ Li such that αj
′ > 0, SymPla will

recognise the Si and Sj symbol-pair as touching.

f4 =

{
100− maxTouch−C

maxTouch
∗ 100, if C < maxTouch.

100, otherwise.

Where maxTouch is the number of drawn symbols on the canvas multiplied by a parameter with a value
in [0, 1]. This parameter is set to 1

2 . C is the amount of symbol pairs that touch.
For Tree1, Figure 9, f4 = 0. The rightmost symbol starts at (100, 50), after the leftmost symbol ends at

(99, 150), therefore these symbols are considered to not be touching.
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Tree2, Figure 11, f4 = 0. The only two symbols drawn overlap, therefore they are considered to not be
touching.

Tree3, Figure 13, f4 = 100. There are eight symbol-pairs that touch. Numbering the symbols from left-
to-right, top-to-bottom, starting at S1 at the top-left, the pairs are: (S1, S5), (S2, S4), (S2, S6), (S3, S5),
(S4, S8), (S5, S7), (S5, S9), (S6, S8). maxTouch = 9 ∗ 1

2 = 4.5. C = 8. As C ≥ maxTouch, f4 = 100.

3.2.6 Punish a variety of colours being present

f5 punishes canvases for having a number of distinct colours greater than some threshold. Most symbols
use a few distinct colours. However, these colours are distinct only in human eyes, and are stored as many
slightly different hues of the same colour on the system side, see Figure 18. scikit-learn’s [33] DBSCAN [12]
implementation was used to cluster colours, in an attempt to recapture the colours as perceived by human
eyes. This aspect was inspired by the relevance of colour in various articles [25, 30, 17].

Fig. 18: Two pixels of the symbol on the right are highlighted and enlarged on the left. The RGBA values
for each pixel are noted directly below the enlarged pixels. As the edge of the symbol is ‘soft’, pixels on
this edge blend into the background, achieved by a gradually decreasing alpha-value. Other pixels have
no transparency at all, indicated by alpha being 255.

Unlike the other fitness aspects, f5 is tested on generated canvases of size 800x800. DBSCAN [12] uses
two notable parameters, eps, the maximum distance determining whether two points are neighbours, and
minPts, the minimum amount of neighbours a point needs to have to be considered a core point. Two core
points, ca and cb, can form two separate clusters, unless they are density-reachable. This means there is a
path p1 → ...→ pn where p1 = ca, pn = cb and the distance between pi and pi+1 ≤ eps, where i ∈ [1, n].

Initially, a problem occurred in canvases containing many different colours. For these canvases, every core
point is density-reachable by every other core point. The colours would end up blending together into one
cluster, see Figure 19. To minimise the prevalence of this issue, eps was lowered.

Another issue with f5 is the time taken to calculate it. At first, the distance between colours was determined
by taking the sum of the absolute differences in the red, green and blue channels. As this would prove to be
very time-consuming, Pillow’s [5] Image.histogram() feature was used instead. This function returns “a list
of pixel counts, one for each pixel value in the source image. ... If the image has more than one band, the
histograms for all bands are concatenated.” [5] This means a pixel can be grouped into multiple clusters, one
per each channel. See also Figures 20 and 21.
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Fig. 19: A SymPla result. Canvas on the left, with fitness values shown on the right. Note how COLOUR is
zero, meaning no punishment is given for f5.

Fig. 20: Canvas from Figure 19 with cluster-highlighting. The colour of each pixel indicates which cluster
it belongs to. The sum of the absolute differences in the red, green and blue channels is used to calculate
each pixel’s value, before running them through DBSCAN.
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Fig. 21: Canvas from Figure 19 with cluster-highlighting per band. The colour of each pixel indicates
which cluster it belongs to. Each canvas represents a different band (red (top-left), green (top-right), blue
(bottom-left), alpha (bottom-right)). This is how a pixel could be part of up to four different clusters.
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Finally, a decision was made to instead apply DBSCAN [12] to a canvas of size 100 by 100 times the
amount of different symbols. This canvas would contain one instance of each symbol. Each symbol would be
resized to w by h, where either w or h would be 100 pixels and the other dimension would hold a value such
that the original width-height ratio would be preserved. This would allow for there to be no overlapping of
symbols. A program, DBSCANSymbols was written to create this canvas.

DBSCANSymbols would then apply DBSCAN [12] to this canvas and keep track, per symbol, which clusters
were represented in that symbol. By comparing the size of each symbol’s cluster-set to human-manually
counted colours of that symbol, DBSCANSymbols would be able to calculate an error per symbol, which would
accumulate to a total error for all symbols. This process would repeat for different eps and minPts values,
with the aim of finding for which parameters the total error would be lowest. The lowest error found For 82
symbols was 38. eps = 13, minPts = 400.

Now, instead of having to use DBSCAN [12] in the fitness function, each symbol was assigned a set of
colour clusters by DBSCANSymbol.py. This means that these values are pre-calculated, speeding up the fitness
function.

3.2.7 Reward aligning symbols

f6 rewards symbols that align. Each symbol’s polar coordinates, distance and angle, are calculated by taking
the centre of the canvas as origin. The difference in distance to the origin and angle of each symbol-pair are
then added to determine f6. The Cartesian distance between each symbol pair is used to weigh the effect the
pair has on f6. This aspect was inspired by wallpaper [19] patterns and patterns artificially made by certain
animals [37, 48].

f6 = 100− (f
′

6/max( (n−1)∗n
2 , 1)) ∗ 100,

where n is the amount of drawn symbols and

f
′

6 =
∑n−1
i=1

∑n
j=i+1(| RSi

−RSj

max symbol distance/2 |+ |
Θ

′
Si
−Θ

′
Sj

4π |) ∗ (1−
√

(Ox
Si
−Ox

Sj
)2+(Oy

Si
−Oy

Sj
)2

max symbol distance
),

where RSa is the polar distance of symbol a, Θ
′

Sa
is the polar angle of symbol a, ObSa

is the Cartesian absolute

origin of symbol a, max symbol distance is
√
sheetWidth2 + sheetHeight2.

For Tree4, Figure 15, f6 = 0 as there are no symbol pairs. Tree1, Figure 9, contains two symbols, hence
one symbol pair; f6 ≈ 83.9. Tree2, Figure 11, like Tree1, contains two symbols, however, both are at the
origin, meaning their polar coordinates are (0, 0). This means they align perfectly, hence f6 = 100. Tree3,
Figure 13, with nine symbols, contains 36 pairs; f6 ≈ 85.3.

3.3 Crossover

The offspring population is formed by repeatedly selecting two children from the parent population using
tournament selection [34]. Tournament selection was chosen as it’s “the most commonly employed method
for selecting individuals in GP” [34]. If two children crossover, a node in each tree will be chosen at random.
This node, its children, its children’s children, and so forth, will form a subtree. The two trees’ subtrees are
then swapped out, resulting in two new trees.

As crossover would very often result in trees with lower fitness, most trees would not appear in the next
generation. To reduce stagnation, the crossover-rate was set to 0.75, meaning there is a three-in-four chance
two children will crossover.

Crossover could lead to ever expanding trees, and therefore bloat. To counter this, a maximum tree depth
parameter was used. Should a tree, due to crossover, exceed the maximum depth, nodes exceeding this depth
will be pruned. Any nodes that are turned into leaves as a result of this, will be assigned a randomly selected
symbol.

There is an example crossover between two trees in Figure 22.

3.4 Mutation

If a unit mutates, one of its nodes will be selected at random. This node, its children, its children’s children,
and so forth, will form a subtree.

As with crossover, mutation also rarely leads to an improvement of fitness. To reduce stagnation, the
mutation rate is set to 0.75, meaning there is a three-in-four chance a child will mutate.
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Fig. 22: Crossover between the left and right trees. First, two subtrees are selected, highlighted in red for
the left tree, blue for the right tree. Next, the subtrees are swapped out. The left tree discards its subtree
and takes on the right tree’s, whereas the right tree takes on the left tree’s subtree in the spot where
it discarded its subtree. Finally, to ensure the maximum tree depth is preserved, the right tree has two
nodes converted to leaves. These nodes are marked as filled-out rectangles in the previous step.
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Node height is used to determine if a node is eligible for this selection. A node’s height is determined by
the depth of its deepest leaf relative to its own depth. A leaf has a height of zero. A node whose children are
leaves has a height of one, etc. A node can be selected if its height is greater or equal to zero and lesser or
equal to half of the maximum tree depth.

The selected node’s subtree will be discarded; A new subtree is generated to take its place, whilst ensuring
the generated subtree will not make the original tree exceed the maximum tree depth. There is an example
mutation in Figure 23.

Fig. 23: The top tree will undergo mutation. First a subtree is selected, highlighted in red. Then, the
subtree is discarded and replaced by a newly generated subtree.



Chapter 4

Experiments

Two experiments were performed. Both experiments attempt to reveal if fitness is affected by different param-
eter settings, and how these settings affect fitness evolution. Experiment 2 also tests whether a higher fitness
score reflects a more aesthetic canvas.

4.1 Experiment 1

SymPla was run under six different parameter settings, p1 through p6, using the same seed for the random
number generator to ensure results are not affected by seed difference. For each of these six runs, SymPla
would run 25 times, producing samples Pi. The average fitness aspects’ scores, f1 through f6, and overall
fitness scores, f , for these samples can be found in Table 2 and are plotted in Figures 24 and 25. The evolution
of the fitness value is plotted in Figure 26. Five parameters were experimented with:

1. gen, the number of generations a run would go through before returning the most fit individual. Default
value is 200.

2. parentPop, the number of units making up the parent population. Default value is 100.
3. childPop, the number of units making up the child population. Default value is 50.
4. treeDepth, the maximum depth a tree could have. Default value is 3.
5. maxArity, the maximum arity any node in any tree could have. Default value is 2.

Parameter values Results averaged over the runs

gen parentPop childPop treeDepth maxArity f1 f2 f3 f4 f5 f6 Total Time

p1 200 100 50 3 2 −27 −6 +395 +102 −7 +175 +631 4059
p2 100 100 50 3 2 −28 −13 +337 +109 −3 +176 +576 2546
p3 200 50 50 3 2 −17 −4 +397 +121 −7 +174 +663 3952
p4 200 100 25 3 2 −43 −9 +330 +106 −7 +173 +549 2309
p5 200 100 50 4 2 −39 −14 +191 +195 −6 +174 +501 21617
p6 200 100 50 3 3 −36 −17 +111 +198 −2 +177 +430 7531

Table 2: SymPla was run 25 times for the parameter settings pi for i ∈ (1, 2, ..., 6) on the left, producing
samples Pi for i ∈ (1, 2, ..., 6). The average fitness aspect scores and overall fitness for these samples
are in the right columns. Fitness aspects are as detailed in Section 3: f1 is symbol overlap. f2 is pixel
count. f3 is amount of drawn leaves. f4 is symbol touch. f5 is colour variety. f6 is symbol alignment. The
corresponding weights can be found in Table 1. A fitness aspect’s score can take a value anywhere between
zero and a hundred, multiplied by its corresponding weight. The final column, Time, is the average time
taken per run of the corresponding sample. Time is expressed in seconds.

Overall, save for p2 and p4, all settings use about the same amount of fitness evaluations or fitness budget,
with slight variations due to mutation and crossover not being guaranteed to trigger. Figure 26, made in
IOHanalyzer [10], depicts how fitness improves over a run’s generations. As can be seen in Figure 26, p2
ends up with a smaller budget due to p2 being the same as default, p1, but using a smaller generation size.
p4 also uses up a smaller budget as it’s the same as p1, but has a smaller sized child population. p3 uses a
smaller parent population, but this only impacts the fitness budget for one generation. p5 and p6 take over
the same parameters affecting the fitness budget from p1, instead making the cost of each fitness evaluation
more expensive by increasing the complexity of the genotype.

As another means of visualising the evolution of the canvases, Figure 27 features a collage of a run of
parameter setting p1. This collage shows how the canvas with the highest evaluated fitness changes over
generations. Appendix C also contains collages for one run of each of the other fitness parameter settings, p2
through p6.
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Fig. 24: Box-plots for each fitness aspect. Each box represents the fitness aspect’s score, as indicated on
the vertical axis, for the most fit individual of 25 runs given the specific parameter setting, p1 through
p6, as indicated on the horizontal axis.
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Fig. 25: Box-plot for overall fitness. Each run produces a most fit individual. As SymPla was run 25 times
for each parameter setting, p1 through p6, as indicated on the horizontal axis, 25 most fit individuals were
created for each parameter setting. Each box represents the fitness scores, as indicated on the vertical
axis, for these 25 most fit individuals. Using the weights as specified in Table 1, fitness can take a value
in [−1100,+1000].
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Fig. 26: Best-so-far fitness plotted against number of fitness function evaluations for each parameter
setting, p1 through p6. After generation of the initial population, new fitness function evaluations take
place when mutation and/or crossover happens, during generation of the next generation’s population.
Note how best-so-far fitness evaluation for p2 and p4 stagnate after ∼ 5000 fitness evaluations, as these
two parameter settings only get about half the evaluation budget as the others.
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Fig. 27: Collage of the most fit canvases of each generation, generated by SymPla under parameter setting
p1. Generations for which the most fit canvas is identical to the previous generation’s, are not displayed.
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Next, to determine whether the different parameter settings affect the final fitness values, Kolmogorov-
Smirnov tests [43] (specifically scipy.stats.kstest(alternative=‘two-sided’, mode=‘exact’) from
SciPy v1.7.1 [50]) were run. One for each sample pair. The results can be found in Table 3. The null hypothesis
is: “Two samples are drawn from the same distribution.” This hypothesis does get rejected for some sample
pairs, implying different parameter settings do affect fitness.

Sample pair KS-test statistic p-value Reject or do not reject null hypothesis.

P1, P2 0.44 0.0148 Do not reject.
P1, P3 0.28 0.2850 Do not reject.
P1, P4 0.52 0.0019 Reject.
P1, P5 0.68 8.4942e− 06 Reject.
P1, P6 0.88 3.1010e− 10 Reject.
P2, P3 0.48 0.0056 Do not reject.
P2, P4 0.28 0.2850 Do not reject.
P2, P5 0.44 0.0148 Do not reject.
P2, P6 0.76 2.5141e− 07 Reject.
P3, P4 0.52 0.0019 Reject.
P3, P5 0.64 3.9640e− 05 Reject.
P3, P6 0.84 3.6437e− 09 Reject.
P4, P5 0.32 0.1558 Do not reject.
P4, P6 0.6 0.0002 Reject.
P5, P6 0.4 0.0356 Do not reject.

Table 3: Results of running KS-tests [43] on the overall fitness values of each sample. One test for each
(Pi, Pj) pair where i, j ∈ (1, 2, ..., 6) and i 6= j. The null hypothesis is that the two samples are drawn
from the same distribution. The alternative hypothesis is that the two samples are drawn from different
distributions. The α-value is set at α = 0.05. Applying the Bonferroni [11] correction, we reject the null
hypothesis if p ≤ α

15 ≈ 0.0033.

As some of the parameters that were modified (gen, parentPop, childPop) would result in a greater or
smaller evaluation budget, the decision was made to run another experiment where these parameters would
remain constant. This experiment is detailed in Section 4.2.
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4.2 Experiment 2

SymPla was run under three different parameter settings, p1, p2, p3, all using the same seed for the random
number generator to ensure results are not affected by seed difference. For each of these three settings SymPla
would run 25 times, producing samples P1, P2, P3. The resulting average fitness aspects’ scores and overall
fitness scores for these samples can be found in Table 4 and are plotted in Figures 28 and 29. for each parameter
setting, the number of generations is 200, with a parent population size of 100 and a child population size of
50. Two parameters were experimented with:

1. treeDepth, the maximum depth a tree could have. Default value is 3.
2. maxArity, the maximum arity any node in any tree could have. Default value is 2.

Parameter values Results averaged over the runs

treeDepth maxArity f1 f2 f3 f4 f5 f6 Total Time

p1 3 2 −27 −6 +395 +102 −7 +175 +631 4073
p2 4 2 −39 −14 +191 +195 −6 +174 +501 17010
p3 3 3 −36 −17 +111 +198 −2 +177 +430 6614

Table 4: SymPla was run 25 times for the parameter settings pi for i ∈ (1, 2, 3) on the left, producing
samples Pi for i ∈ (1, 2, 3). The average fitness aspect scores and overall fitness for these samples are in
the right columns. Fitness aspects are as detailed in Section 3: f1 is symbol overlap. f2 is pixel count. f3 is
amount of drawn leaves. f4 is symbol touch. f5 is colour variety. f6 is symbol alignment. The corresponding
weights can be found in Table 1. A fitness aspect’s score can take a value anywhere between zero and a
hundred, multiplied by its corresponding weight. The final column, Time, is the average time taken per
run of the corresponding sample. Time is expressed in seconds.
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Fig. 28: Box-plots for each fitness aspect. Each box represents the fitness aspect’s score, as indicated on
the vertical axis, for the most fit individual of 25 runs given the specific parameter setting, p1 through
p3, as indicated on the horizontal axis.
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Fig. 29: Box-plot for overall fitness. Each box represents the fitness score, as indicated on the vertical axis,
for the most fit individual of 25 runs given the specific parameter setting, p1 through p3, as indicated on
the horizontal axis. Using the weights as specified in Table 1, fitness can take a value in [−1100,+1000].
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Next, to determine whether the different parameter settings affect the final fitness values, Kolmogorov-
Smirnov tests [43] (specifically scipy.stats.kstest(alternative=‘two-sided’, mode=‘exact’) from
SciPy v1.7.1 [50]) were run. One for each sample pair. The results can be found in Table 3.

Sample pair KS-test statistic p-value Reject or do not reject null hypothesis.

P1, P2 0.68 8.4942e− 06 Reject.
P1, P3 0.88 3.1010e− 10 Reject.
P2, P3 0.4 0.0356 Do not reject.

Table 5: Results of running KS-tests [43] on the overall fitness values of each sample. One test for each
(Pi, Pj) pair where i, j ∈ (1, 2, 3) and i 6= j. The null hypothesis is that the two samples are drawn
from the same distribution. The alternative hypothesis is that the two samples are drawn from different
distributions. The α-value is set at α = 0.05. Applying the Bonferroni [11] correction, we reject the null
hypothesis if p ≤ α

3 ≈ 0.017.

In Table 5 the null hypothesis is rejected when comparing P1 to P2 and P1 to P3, yet when comparing P2

to P3 the null hypothesis is not rejected. This implies that different parameter settings do affect fitness. The
decision was made to run SymPla another 100 times under parameter setting p1. The resulting sample, P ′1,
had average aspect scores of f1 = −33, f2 = −8, f3 = +377, f4 = +126, f5 = −7, f6 = +175, an average
total fitness of +629 and an average time per run of 3533 seconds.

By personally looking at P ′1s generated canvases, a distinction was made between “pleasing” and “non-
pleasing” canvases. 21 were deemed as “pleasing”, 79 were deemed to be “non-pleasing”. Figures 31 and 32
in Appendix A and Appendix B display these canvases. To determine if the difference between pleasing and
non-pleasing canvases is captured by any or multiple of the fitness aspects, a boxplot was made, see Figure 30.
more KS-tests were run as well, see Table 6.

Fig. 30: Boxplot comparing values of fitness aspect scores in pleasing and non-pleasing canvases. Red
represents pleasing images. Green represents non-pleasing images. The horizontal line in each candle
represents the median value.
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Fitness aspect KS-test statistic p-value Reject or do not reject null hypothesis.

f1, OVERLAPSYMBOL 0.1820 0.5708 Do not reject.
f2, EMPTYPIXEL 0.0916 0.9957 Do not reject.

f3, DRAWABLELEAF 0.1549 0.7535 Do not reject.
f4, TOUCH 0.1447 0.8199 Do not reject.
f5, COLOUR 0.1844 0.5546 Do not reject.

f6, ALIGNMENT 0.3822 0.0110 Do not reject.

Table 6: Results of running KS-tests [43] on the aspect scores for pleasing and non-pleasing canvases, as
depicted in Figure 30. One test for each fi fitness aspect, where i ∈ (1, ..., 6). For each fitness aspect, the
null hypothesis is that the pleasing and nonpleasing canvases draw their scores from the same distribution.
For each fitness aspect, the alternative hypothesis is that the pleasing and nonpleasing canvases draw
their scores from different distributions. The α-value is set at α = 0.05. Applying the Bonferroni [11]
correction, we reject the null hypothesis if p ≤ α

6 ≈ 0.008.

As the null hypothesis is not rejected for any fitness aspect, fi where i ∈ (1, .., 6), in Table 6, the implication
is raised that none of the fitness aspects’ scores, affect whether a canvas is pleasing or nonpleasing. The
similarity of the candles in the boxplot of Figure 30 supports this conclusion.



Chapter 5

Conclusion

In this thesis, genetic programming and multiple aesthetic measures were implemented in SymPla, which, by
transforming and placing symbols on an initially clear canvas, sets out to answer the research question (1):
“Can genetic programming be used to compose and evolve ornaments on a canvas?” as well as (2): “Can
genetic programming be used to evolve quantifiable aesthetic measures?”

The different fitness aspects used as aesthetic measures to determine the aesthetic pleasure a generated
canvas would provide, do not all get consistently fully optimised under default parameters, as shown in Fig-
ure 30. Note that OVERLAPSYMBOL, EMPTYPIXEL and COLOUR are rewarded for minimising their aspect
score, unlike DRAWABLELEAF, TOUCH and ALIGNMENT which are rewarded for maximising their aspect
score.

– As shown by the multitude of outliers, especially simple to get wrong seems to be EMPTYPIXEL, which
punishes the canvas for either having too little or too much content. Granted, the median value is still
zero. COLOUR also has a median value of zero, with fewer outliers but more scores in the relatively small
interquartile range.

– DRAWABLELEAF, which in theory would be simple to optimise by ensuring a tree’s every node has its
arity set to max, still commonly does not reach score 100. This might also be due to leaves in the tree
which do not end up getting drawn on the canvas.

– Despite having a very high average fitness score of > 80, ALIGNMENT generally varies very little. There is
a very small interquartile range with few outliers. SymPla seems to have difficulty optimising this arguably
nebulous aesthetic measure. Like OVERLAPSYMBOL and COLOUR, the different parameter settings
don’t seem to have much of an effect on ALIGNMENT either, as can be seen in Figure 28.

– TOUCH seems to highly vary in both pleasing and nonpleasing images according to Figure 30. Unlike
DRAWABLELEAF’s high variation, TOUCH’ median is quite a bit lower.

To see how well the implemented aesthetic measures, or fitness aspects, capture aesthetic beauty, the
author used their own subjective appreciation of the generated canvases to classify pleasing and non-pleasing
canvases, as depicted in Appendix A and Appendix B. Ultimately, as shown in Table 6, no significant difference
was found in any of the fitness aspects between pleasing and non-pleasing images, implying that the fitness
aspects do not reflect at least the author’s interpretation of aesthetic beauty.

Whereas Appendix A and Appendix B aim to glean value from the aesthetic measures used, Figure 27 in
Section 4.1 and figs. 33 to 37 in Appendix C set out to answer question (1) and question (2) by showcasing
how canvases develop over the generations.



Chapter 6

Discussion & Future Work

Whether by use of genetic programming, or evolutionary computation in general, many (successful) attempts
have been made by others to create applications or programs which can generate images to inspire people [42,
7, 6]. Something this thesis did not pursue is evaluate whether the canvases generated by SymPla can inspire
people. Camera Obscurer [42] is a work that also aims at inspiring people, and a crowdsource experiment was
set up to test its efficacy. Perhaps a setup similar to the one of this experiment could be used to evaluate
SymPla in future work.

The posed research questions (1) and (2) are not explicitly answered in Section 5. Instead, Appendix C
and Figure 27 are referenced and hailed as answer. Appendix C does go into how canvases develop over time,
but offers little deeper interpretation.

Appendix A and Appendix B originally set out to answer a previous research question, “Can genetic
programming be used to inspire artists or designers?” This question was dropped as Appendix A and Appendix B
would not provide an adequate answer.

Something that could have provided more insight is testing values lower than the default values for param-
eter settings in Section 4. Of the parameter settings mentioned in Section 4, p2 uses a higher treeDepth than
default, yet there was no parameter setting using a value for treeDepth lower than the default. The same goes
for maxArity and p3, where p3 sets maxArity greater than default, but no similar parameter setting, using a
value lower than the default was run.

Another potentially missed opportunity lies in the lack of incorporating different crossover and mutation
rates in the parameter settings presented in Section 4.

Some of the data in Section 4 can be misleading. Of the fitness aspects, f3, DRAWABLELEAF, is biased
towards the default parameter settings, p1. Both an increased treeDepth or maxArity increases the amount
of leaves a tree can have, which also means a greater chance for at least one of those leaves to not be
drawn on the canvas. This is reflected by the results in Figure 28, where p1 has the highest median value for
DRAWABLELEAF. At the opposite end of the spectrum is f4, TOUCH, which is biased towards p2 and p3
instead, as more complex trees means more symbols drawn on the canvas, which increases the likelihood of
symbols touching one another.

Regarding the fitness aspect for touching symbols, as mentioned in Section 3.2.5, Tree1, Figure 9, f4 = 0.
The rightmost symbol starts at (100, 50), after the leftmost symbol ends at (99, 150), therefore these symbols
are considered to not be touching. Instead of TOUCH requiring an overlap of exactly one pixel, it could be
argued that if a pixel of one symbol is next to a pixel of another, these two symbols should be considered as
touching. If adapting this new definition of TOUCH, symbol pair (S1, S5) in Tree3, Figure 13, as mentioned
in Section 3.2.5, would not be considered as touching as there is a one-pixel overlap of pixels that are mostly
blending into the transparent background. In that case it might be better if overlap is determined if alpha >
some value greater than 0 instead of alpha > 0.



Appendix A: Non-pleasing Images

SymPla was run under p1 one-hundred times. Each run’s most-fit individual was collected. Of these 100
canvases, 21 were “pleasing” canvases and 79 were “non-pleasing”. “Pleasing” and “non-pleasing” are defined
as by the author’s own taste. Figure 31 displays the 79 “non-pleasing” canvases. Certain canvases look “non-
pleasing” due to large empty areas on the canvas, such as image 1, 7, 11 and 46 in Figure 31. Other images
are very busy, such as image 62 and 72.

Fig. 31: The 79 “non-pleasing” canvases are displayed here. Sorted by ascending order of generation.
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Appendix B: Pleasing Images

SymPla was run under p1 one-hundred times. Each run’s most-fit individual was collected. Of these 100
canvases, 21 were “pleasing” canvases and 79 were “non-pleasing”. “Pleasing” and “non-pleasing” are defined
as by the author’s own taste. Figure 32 displays the 21 “pleasing” canvases. Certain canvases look “pleasing”
due to ‘full’ shapes forming, such as the three circlish shapes in canvas 2, the two ‘buzz-saws‘ in canvas 5 or
the ‘shurikenesque’ shapes in canvas 8. Other canvases seem structured, such as canvas 10, 17 and 19. Finally,
some canvases seem to represent whirlpools, such as canvas 4, 14 and 21.

Fig. 32: The 21 “pleasing” canvases are displayed here. Sorted by ascending order of generation.
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Appendix C: Evolving Images

As part of visualising the evolution of canvases by SymPla, collages of a run of each parameter setting p1
through p6, of Experiment 1, Section 4.1, were made. Figure 27 in Section 4.1 and Figures 33 to 37 display
these collages.

Fig. 33: Collage of the most fit canvases of each generation, generated by SymPla under parameter set-
ting p2, detailed in Section 4.1. Generations for which the most fit canvas is identical to the previous
generation’s, are not displayed. Note how generation 93’s most fit canvas has a lower overall fitness than
the previous most fit canvas, shown at generation 47. This is due to restarting: When the most fit canvas
remains the same for too many generations the population is cleared and generated anew.
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Fig. 34: Collage of the most fit canvases of each generation, generated by SymPla under parameter set-
ting p3, detailed in Section 4.1. Generations for which the most fit canvas is identical to the previous
generation’s, are not displayed.
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Fig. 35: Collage of the most fit canvases of each generation, generated by SymPla under parameter set-
ting p4, detailed in Section 4.1. Generations for which the most fit canvas is identical to the previous
generation’s, are not displayed.
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Fig. 36: Collage of the most fit canvases of each generation, generated by SymPla under parameter setting
p5, detailed in Section 4.1. Generations for which the most fit canvas is identical to the previous gen-
eration’s, are not displayed. Note how after the restart in generation 104, the most fit canvas gradually
improves its fitness score to 378 by generation 194, exceeding the fitness score of the most fit canvas of
generation 86, which is 364, the best fitness score of this run prior to the restart.
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Fig. 37: Collage of the most fit canvases of each generation, generated by SymPla under parameter set-
ting p6, detailed in Section 4.1. Generations for which the most fit canvas is identical to the previous
generation’s, are not displayed. Note the restarts at generations 24 and 75.
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J. Romero, A. Ekárt, T. Martins, and J. Correia, Eds., Springer International Publishing, pp. 17–34.

8. Danandeh Mehr, A., Nourani, V., Kahya, E., Hrnjica, B., Sattar, A. M., and Yaseen, Z. M. Genetic
programming in water resources engineering: A state-of-the-art review. Journal of Hydrology 566 (2018), 643–667.

9. den Heijer, E., and Eiben, A. Comparing aesthetic measures for evolutionary art. pp. 311–320.
10. Doerr, C., Wang, H., Ye, F., van Rijn, S., and Bäck, T. IOHprofiler: A Benchmarking and Profiling Tool
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