
Master Computer Science

Working Towards Category Theoretic Semantics for Separation Logic

Berend van Starkenburg

Supervisors:
Dr. H. Basold
T.F.R. Ralaivaosaona
Prof. dr. M.M. Bonsangue

MASTER THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 20/09/2023

www.liacs.leidenuniv.nl

Abstract

Separation logic has emerged as a powerful formalism for reasoning about memory management
and resource sharing in complex software systems. This thesis presents a category-theoretic
framework for reasoning about locality and compositionality, as it occurs in separation logic,
which forms the foundation of working towards an abstract framework that fully captures the
underlying logic of separation logic. The framework is based on a sheaf-theoretic model, defined
by the category of sheaves over a topological space L. The core contribution of this work lies in
uncovering the semantic foundation of process interaction via shared memory, which serves as
the foundation for looking at separation logic through sheaves. Additionally, we provide a clear
and comprehensive construction of Kleisli objects internally to a category with pullbacks and
small products, establishing their relationship with their external counterparts. Our results
demonstrate that the sheaf condition of our categorical construction enables local reasoning
about effects of programs on specific memory regions and the subsequent composition of these
local effects to derive the overall impact on the entire memory uniquely and consistently.

2

Contents

1 Introduction 1

2 Separation Logic 2

3 Related Work 5
3.1 Categorical Logic . 5
3.2 Extensions of the Frame Rule . 6
3.3 Sheaves . 6
3.4 preliminaries . 6

4 Local State Monad 7
4.1 Binary Product Functor . 9
4.2 Global State Monad . 10
4.3 Summary of Notation and Definitions . 16
4.4 Local State Monad . 18
4.5 Proofs of Monad Structure . 24
4.6 Modelling Stateful Computation . 27

5 (Co-)Sheaves of Kleisli Morphisms 30

6 Internal Categories 33
6.1 General internal structures . 33
6.2 Externalisations . 35
6.3 Internally Defining the Kleisli Category . 39
6.4 The Category of Sheaves over L . 43

7 Separation Logic and Process Composition 45

8 Conclusion and Discussion 47
8.1 Future Work . 48

References 50

1 Introduction

In 1996, the maiden flight of the Ariane 5 rocket, developed by the European Space Agency
(ESA), ended in a catastrophic failure just 37 seconds after liftoff. The rocket veered off course,
self-destructed, and was lost, resulting in a significant financial loss and a considerable setback
to the space program. The primary cause of the failure was traced back to a software issue in
the rocket’s Inertial Reference System (IRS), which used a 64-bit floating-point number to rep-
resent horizontal velocity. However, the actual horizontal velocity during the launch exceeded
the range represented by a 64-bit floating-point number [LIO]. In hindsight, this software issue
could have been identified and prevented using formal methods, such as formal verification and
testing techniques. Formal verification could have mathematically proven the correctness of the IRS
software for the Ariane 5 rocket’s specific trajectory, ensuring that critical properties, such as range
limits for floating-point numbers, were respected. After this incident, the European Space Agency
recognised the importance of formal methods. It significantly enhanced the application of formal
verification and testing in designing and verifying critical software for future space missions. This
example demonstrates how we have to rely increasingly on formal verification techniques that can
guarantee the correctness of complex systems in the rapidly evolving landscape of modern technology.

The formal verification system, which will be the focus of this thesis, is separation logic. Separation
logic was introduced by Reynolds and O’Hearn [ORY01] in 2001. The system builds upon Hoare
logic [Hoa69] in which program specifications are represented by the triple {P}C{Q}, where P is
the set of assertions that describe the initial state of the system and Q is the set of assertions that
describe the state of the program after executing the program C. The key idea behind separation
logic is that it facilitates local reasoning over programs with shared mutable data structures. One
can then scale these local observations to get a more global specification of the program’s behaviour.
This is achieved by the separating conjunction, ∗, which asserts that P and Q hold for disjoint
parts of the memory, and the frame rule that states that for the Hoare triple {P}C{Q} the effect
of the program C on the memory outside that region is independent of the frame’s content. The
frame represents the portion of the heap unaffected by the program C.

A conventional research perspective for such formal verification models would be to see how
concrete instances of these models should be implemented. Problems that often arise with such
a perspective is that a concrete implementation of a formal verification model is tailored to a
specific programming language, formalism, or verification tool. Also, detailed modelling of program
behaviours and resource management is required. These requirements lead to a lack of generality,
a high complexity that is hard to manage when either the programming language becomes more
feature-rich to support advanced constructs or the separation logic is extended. The specific imple-
mentation leads to certain design choices that will limit the full expressive power of separation logic
and obfuscate the underlying theoretical principles of separation logic. Therefore, this thesis will
consider a different perspective and investigate how we can use categorical abstractions to capture
the underlying logic of separation logic in a higher-level framework. The relationship between
category theory and logic has been established by Lawvere [Law69], Jacobs [Jac99], Fourman
and Scott [FS79], Makkai and Reyes [MR77], and Johnstone [JJ02], among others. Their research
provides insight into how categorical frameworks are useful for quickly identifying models that fall
under the framework and transposing knowledge to new instances. We expect that developing such

1

an abstract framework for separation logic provides similar benefits found in this earlier research.

The objective of this thesis is to provide the foundation of an abstract framework that captures
the semantics of separation logic. We will define the local state monad and its associated Kleisli
category to model processes operating on memory. Sheaves are a mathematical abstraction that
we can then use to assemble processes interacting with each other via shared memory to a more
extensive system that models this interaction. A complete abstract framework that provides seman-
tics for separation logic would be beyond the scope of a master’s thesis. Such a framework should
include structure to verify and specify how assertions are transformed after program execution,
include logical connectives such as the separating conjunction, and categorical constructions relate
extensions of separation logic to the underlying logic in a way that the semantics of this underlying
logic are preserved. We aim to give insight into how our foundational work forms the basis for a
complete abstract framework through concrete examples derived from our categorical construction.
Specifically, we show how key aspects of resource separation, local reasoning, and compositionality
are captured within the categorical context. We hope the insights obtained from these examples
demonstrate the generality and abstraction of the foundational framework that served as our
motivation to investigate separation logic from this perspective. Furthermore, they suggest building
upon this foundation to work towards the ultimate goal of developing a complete framework that
provides unified semantics for separation logic.

In Section 2, we will give the necessary background on separation logic. Next, we will discuss
literature related to the topic and provide a better understanding of categorical frameworks in
Section 3. In Sections 4 and 6, we will define the categorical constructions that form the basis of
our framework and use the concepts of internal categories and externalisations to confirm that
these constructions are compatible with the framework. In Section 5, we will introduce the concept
of sheaves. Finally, in Section 7, we will demonstrate how to extract the semantics of separation
logic from the context of our framework by providing examples.

2 Separation Logic

Before we can give a category-theoretic framework for separation logic, we first need a deeper
understanding of the semantics of separation logic. This section focuses on separation logic, a
specialised logic for reasoning about programs with shared mutable states. We will emphasise
the role of the separating conjunction and the frame rule, which provide features for breaking
down complex proofs and ensuring composability when dealing with memory regions. The intro-
duction given here is based on the storage separation logic explained in a paper by Reynolds [Rey02].

For clarity, we divide the introduction on separation logic into three parts:

1. The storage model: a stack describing contents of registers and a heap representing shared
mutable data structures.

2. The programming language defines effects of programs on the shared data.

3. Assertions that describe the shared data structures.

2

Storage model:
The storage model in the storage separation logic is defined as follows: for storage access, we define
a RAM model where values are natural numbers and addresses are integers:

Values
def
= N Addresses

def
= Z

The heaps are the partial maps taking addresses to values

H
def
=

⋃
A⊆
fin

Addresses

(A ⇁ Values)

where the set Addresses is infinite, but the sets A considered in the union are required to be finite
subsets of the set of Addresses
The stack S is a mapping from a finite set of variables V to values:

S
def
= V → Values

Now the state is a pair of the stack and the heap:

States
def
= S ×H

Programming Language:
The programming language considered in separation logic is given formalised by Hoare [Hoa69] and
extended by the following heap-manipulating commands:

⟨comm⟩ ::= ⟨comm⟩;⟨comm⟩
| ⟨var⟩ := cons({⟨exp⟩, ..., ⟨exp⟩})
| ⟨var⟩ := [⟨exp⟩]
| [⟨exp⟩]:= ⟨exp⟩
| dispose ⟨exp⟩

This syntax is an extension of the imperative language formalised by [Hoa69]. The first command
⟨comm⟩; ⟨comm⟩ denotes sequential composition of commands, ⟨var⟩ := cons({⟨exp⟩, ..., ⟨exp⟩})
allocates n consecutive cells, initialises them with the values of the expressions in the list and
stores the address of the first cell in ⟨var⟩, where n is the number of expressions in the list. The
command ⟨var⟩ := [⟨exp⟩] looks up the content in the address [⟨exp⟩] and stores it in ⟨var⟩. The
command [⟨exp⟩] := ⟨exp⟩ mutates the value stored in ⟨[exp]⟩ by the value of the expression. Finally,
dispose⟨exp⟩ deallocates the address.

Let us look at how this language can be used in an example.

Command Current Stack Current Heap Stack After Heap After
Allocation x := cons(1, 2); x : 3, y : 4 empty x : 7, y : 4 7 : 1, 8 : 2
Lookup y := [x]; x : 7, y : 4 7 : 1, 8 : 2 x : 7, y : 1 7 : 1, 8 : 2
Mutation [x+ 1] := 3; x : 7, y : 1 7 : 1, 8 : 2 x : 7, y : 1 7 : 1, 8 : 3
Deallocation dispose(x+ 1); x : 7, y : 1 7 : 1, 8 : 3 x : 7, y : 1 7 : 1

3

Assertions: In order to describe the heap, the following assertions are introduced:

⟨assert⟩ ::= emp
| ⟨exp⟩7→ ⟨exp⟩
| ⟨assert⟩ * ⟨assert⟩
| ⟨assert⟩−∗ ⟨assert⟩

The grammar is explained as follows:

• Empty heap: emp
The heap is empty.

• Singleton heap: e 7→ e′

The heap contains one element at location e with value e′.

• Separating conjunction: p1 ∗ p2
The heap can be divided into two disjoint parts H,H ′ such that H ∩H ′ = ∅ and p1 holds for
H and p2 holds for H ′.

• Separating implication: p1 −∗ p2
If there exists the heap H, for which p1 holds, then the separating implication states that the
heap can be extended for a disjoint heap H ′, and then, p2 holds for the extended heap, where
H ′ is universally quantified.

In separation logic, programs are reasoned about using Hoare triples such that for a Hoare triple
{p}C{q}, if starting from any state in which the set of assertions {p} holds, if the program C is
executed, we land in a state where the set of assertions {q} holds. The following example shows
how the effect of a program can be described in separation logic:

{x 7→ 3 ∗ y 7→ 5}
[x] := [x] + 1

{(x 7→ 4 ∗ y 7→ 5) −∗ y 7→ 5}

While the assertions describing the heap give a local specification of the memory, we can infer
the global specification of the memory via the separating conjunction. Consider a program that
modifies no variables occurring in a part of the heap described by assertions r. We can write this
as the Hoare triple: {p ∗ r}C{q ∗ r} for a program c. As this specification is tight, the union of the
parts of the heap that p, q, and r specify should form the whole memory. Therefore, we can see
that for the following specification, {p}c{q}, the initial Hoare triple holds for the entire memory.
This can be used to form the following inference rule, called the frame rule:

{p}C{q}
{p ∗ r}C{q ∗ r}

With the frame rule, we can extend the heap mutating commands that only mutate a part of the
heap:

(local)
{e 7→ −}[e] := e′{e 7→ e′}

4

to commands that mutate the entire memory:

(global)
{(e 7→ −) ∗ r}[e] := e′{(e 7→ e′) ∗ r}

We can even reason backwards using the separating implication:

(backwards reasoning)
{(e 7→ −) ∗ ((e 7→ e′) −∗ p)}[e] := e′{p}

via the following inference rule:

p

q ∗ (q −∗ p)

If the memory satisfies q and the changes specified by q −∗ p can be made without affecting the
rest of the memory described by q, then the resulting memory must satisfy p.

In the subsequent sections, we will build upon this understanding of separation logic and use it to
investigate which mathematical abstractions could lead to an abstract framework that brings out
the underlying logic.

3 Related Work

In this section, work related to the topic of separation logic will be presented. The introduction
briefly mentioned our motivations for viewing separation logic from a category-theoretic perspective.
As categorical logic is connected with this approach, literature dealing with this topic will be
discussed to emphasise the value of categorical frameworks.

3.1 Categorical Logic

First, we must ask ourselves: What does giving a categorical framework or categorical semantics of
a logic mean? To see what this means, we will compare by providing concrete implementations of a
logic to see what the differences are and understand what a categorical framework is. Let us say we
design an algorithm to sort a list of numbers. In a conventional model, we write a step-by-step
algorithm explicitly defining how to compare elements, swap them, and repeat until the list is sorted.
This algorithm serves as a direct instance of the sorting process. Now, consider a different approach.
Instead of implementing a specific algorithm, we specify properties that a sorting algorithm must
satisfy. This framework then defines essential properties of sorting algorithms without dictating the
exact implementation. To pull this back to categorical logic, we emphasised specifying relationships
and properties between mathematical structures. Lawvere [Law69] made significant contributions
by pioneering the development of categorical semantics for logic. His work laid the groundwork for
understanding the relationships between logic and category theory, opening up new perspectives for
the study of formal systems and their interpretations. Later in his book Categorical Logic and Type
Theory, Jacobs [Jac99] provides a categorical framework from the perspective of fibred categories.
In this book, he aptly points out some advantages of categorical frameworks as opposed to concrete
models. For instance, the ability to quickly identify that specific models are an instance of a

5

logical framework or the advantage of deepening one’s understanding of logical systems. Providing
categorical semantics has been explored before in the context of separation logic. A type calculus for
separation logic, or more specifically, higher-order frame rules, has been constructed by Birkendal
and co-authors [BBTS07a] [BTSY06]. In [MS18], Melliès and Stefanesco establish the frame rule
and its concurrent variant using game semantics.

3.2 Extensions of the Frame Rule

Another advantage, not explicitly mentioned by Bart Jacobs, of categorical frameworks is that these
frameworks transpose knowledge of earlier models to novel models via the language of category
theory. As the frame rule is highly adaptive, it can be used to describe the separation of all kinds of
other resources. Because of this, many variations on separation logic and the frame rule have been
constructed. To bring attention to the primary: in [O’H04], O’Hearn extended the frame rule to
establish the correctness of concurrent programs. A separation logic for probabilistic programming
has been developed by [BHL19]. Biering and co-authors used bunched implication hyper-doctrines
to extend separation logic to include higher-order types [BBTS07b].

3.3 Sheaves

We will use the sheaf theory to synchronise local observations on the shared mutable data to a
global observation. We refer to Section 5 for a more detailed explanation of sheaf semantics. The
idea that sheaves can be utilised to glue together local observations to provide a global observation
consistently highlights the relevance of sheaves in addressing challenges related to the interaction
of distributed systems, that is, which properties can be verified modularly when connecting the
systems or the modelling of concurrent systems. In the paper of Tsukada and Luke Ong [TO15],
the authors use game semantics to provide a model for stateless non-determinism. They point out
that infinite non-determinism provides difficulties for reasoning about concurrent programs since it
becomes challenging to prove that a particular event must always occur in all possible executions,
as there are infinitely many interleavings of the program’s actions. They use the notion of sheaves
to prevent requiring additional information of infinite traces. Sofronie-Stokkermans [Sof09] develops
a modular method for verifying the properties of distributed systems. A topology models the
interacting systems, and sheaves capture states and transitions. The author then exploits the logic
of sheaves to determine which properties are kept when connecting the systems. To our knowledge,
sheaves have not been employed before in the context of separation logic.

3.4 preliminaries

In the coming sections we will define categorical constructions. This section will be used to clarify
the notation we will use to define these structures.
For categories, we use calligraphic writing:

C,D,L...

We write fundamental categories such as Set, the category of sets or Mnd(Set), the category of
monads on Set in Roman font.

6

We use capital letters for objects and functors:

C ∈ C, F : C → D, ...

For natural transformations, we use lower-case Greek letters:

α : F ⇒ G, η : Id⇒ T, ...

We use lower-case letters for morphisms:

f : C → D, i : ℓ′ → ℓ

There are, of course, exceptions. For objects in the preorder category, we use ℓ, ℓ′, or ℓ1.
We use boldface in two instances: To denote the Grothendieck construction G and to define the
base category B in which internal categories live.
For fibres, we use the lower-case letter p; for projections used in pullbacks, we use p1 and p2.
However, we use π for projections of products and ends.

4 Local State Monad

In order to investigate the essence of the frame rule from a category-theoretic perspective, we first
need to provide a categorical framework for reasoning about the effects of a program on a set of
initial states. Take the Hoare triple {P}C{Q} for example. We want a way of reasoning about
the programmatic effects of the program C for all possible initial states {P} and then be able to
prove the Hoare triple holds. Utilising category theory to provide models describing computational
effects has been explored thoroughly. Eugenio Moggi [Mog91] introduced categorical semantics
for programmatic effects based on monads. Moggi identifies the following computational effects:
partiality, nondeterminism, side-effects, exceptions, continuations, and interactive

input and output. In order to give a notion to these computational effects, Moggi introduces a
monad T as a unary type constructor and then obtains an object of computation by applying T to
the object of values. Then, he forms the category of programs to give a common notion of these
effects by constructing the Kleisli category for a given Kleisli triple.

Definition 4.1 (Kleisli triple and Kleisli Category). Given a monad T on a category C, being the
triple (T, η, µ), where T is the endofunctor T : C → C together with two natural transformations
η : Id⇒ T and µ : T 2 ⇒ T , we define the following concepts:

1. Kleisli Triple:

• A Kleisli triple over a category C is a triple (T, η,⊙) where:
– T : C → C is an endofunctor.

– ηA : A→ TA for all objects A in C.
– f⊙ : TA→ TB for all morphisms f : A→ TB in C

• It satisfies the following equations:

– ηA⊙ = idTA

7

– f ⊙ ◦ηA = f for all f : A→ TB

– g ⊙ ◦f⊙ = (g ⊙ ◦f)⊙ for all f : A→ TB and g : B → TC

The Kleisli triple corresponds with the monad, and while the notation ⊙ might seem
suggestive now, its place will become clear in the definition of the Kleisli category.

2. Kleisli Category

• The Kleisli category CT of a monad T on the category C has the following properties:

(a) Objects in CT are the objects in C.
(b) Morphisms in CT from A to B are the morphisms f : A→ TB in C.

• The Kleisli composition in CT is defined as follows: for morphisms f : A → TB and
g : B → TC, the Kleisli composition is given by g ⊙ f = µC ◦ T (g) ◦ f : A→ TC.

• Identity morphisms in CT on objects A are the Kleisli morphisms given by the unit on
A : ηA : A→ TA.

The Kleisli category for a given Kleisli triplet then serves as the category of programs, where
the morphisms are the programs themselves and the objects A are the computational notions of
programs of type A. In the same paper, Moggi shows how to provide a model to understand the
read and write operations of a memory register as a specific monadic effect called the state monad.
Moggi defines this monad as follows: One defines a monad in the category of sets as follows:

T : Set→ Set

such that for a given set A and a fixed set of states S, we have that

TA = (A× S)S

where each element of S is a finite list representing the states of each allocated register.

While this traditional state monad may allow us to provide a framework for reasoning about
the programmatic effects of C, separation logic extends the Hoare triple with the separation
conjunction to reason about different parts of the memory independently. Therefore, the focus
will lie more on reasoning about the effects of a program on local states and, when the affected
regions are disjoint, compose the effects to model the interaction of the local effects so that we
can reason about the entire state. Plotkin and Power [PP02] point out that the perspective of
Moggi does not provide a model on which to compare the notions of programmatic effects. Most
importantly, there is, for instance, a distinction between global and local phenomenons of the notions
of computation that the perspective of Moggi does not capture. Therefore, the traditional state
monad loses this local perspective, so we require a monadic construction that allows us to analyse
the local state. In the paper of Maillard and Melliès[MM15] and in the paper of Plotlin and Power
discussed earlier, the authors investigate how to construct such a monad. We will use some ideas in
these papers and develop a local state monad that aligns well with the frame rule in separation logic.

We start by defining our memory model. Let Loc be a finite set regarded as memory locations. We
define the following index category:

L = (P(Loc),⊆)

8

This category arises from the powerset of memory locations P(Loc).
In this section, we will show there exists a functor S and define this functor that sends objects in
Lop to the category of monads:

S : Lop → Mnd

4.1 Binary Product Functor

Lemma 4.1. For A ∈ Set, a binary product A× (−) induces a functor

F : Set→ Set

such that for every set X, we have that FX = A×X.

Proof. Given a map f : X → Y , we have that Ff : A × X → A × Y , induced by the universal
mapping property(UMP) of the binary product:

A×X

A X

A Y

A× Y

π2π1

Ffid f

π1 π2

By this result, we have that applying F to idX induces the unique morphism F idX : FX → FX,
such that the following diagram commutes,
and π1 ◦ F idX = π1, and π2 ◦ F idX = π2:

A×X

A X

A×X

π2π1

F idX

π1 π2

Now any other morphism that makes the above diagram commute must be the morphism F idX , so
to show that idFX = F idX , we show that π1◦ idFX = π1 and π2◦ idFX = π2, which hold by definition
of the identity. F also preserves composition. Given morphisms f : X → Y and g : Y → Z, applying
F to the composition of g and f induces the unique map F (g ◦ f) : A×X → A× Z, such that
π1 ◦ F (g ◦ f) = π1 and π2 ◦ F (g ◦ f) = g ◦ f ◦ π2. We will now show that Fg ◦ Ff = F (g ◦ f) by
showing π1 ◦ Fg ◦ Ff = π1 and π2 ◦ Fg ◦ Ff = g ◦ π2 ◦ Ff . This holds by the UMP of the product:
Fg induces a unique map, such that π1 ◦ Fg = π1, and π2 ◦ Fg = g ◦ π2. The diagrams below
summarise the proof:

9

A×X A×X X

X A Y

A A× Y Y A× Z Z

Z

A× Z

π1
Ff

π1

F (g◦f)

π2

f

f g

π1

π2

π2

Fg

g

π1

π2

π1

π2

Now that we have proven that a binary product induces a functor, we proceed by constructing a
functor that sends an object ℓ in L to the category of monads. Recall the traditional state monad
defined by Moggi: TA = (A× S)S. We can use Lemma 4.1 to prove that there exists a functor that
sends an object in Set to the binary product as seen in the traditional state monad.

Proposition 4.1. Let M : Lop → Set be a functor defined for every ℓ in L by M(ℓ) = [ℓ,Z], the set
of all maps from ℓ to Z. For a morphism i : ℓ ⊆ ℓ′ in L the functor is defined asM(i) :M(ℓ′)→M(ℓ).
For a fixed ℓ in L, the mapping F : Set→ Set defined for every X in Set by FX =M(ℓ)×X, is a
functor.

Proof. We have thatM(ℓ)×X is a set, and by Lemma 4.1, F preserves identity and composition.

4.2 Global State Monad

Before we show the construction of the local state monad, some intuition behind how we choose to
define the construction is required. Eventually, we want to construct a state monad that, at a given
state, returns a set of operations that can be applied to the memory specified by the set of maps
M(ℓ) for some set of memory locations ℓ in L after transitioning between states. Then, we want to
utilise the properties of sheaves to infer information about this set of operations based on local
observations for some ℓ′′ ⊆ ℓ′, for objects ℓ′, ℓ′′ in L.
First, define the slice category L/ℓ of the category L over an object ℓ in L, where objects are all
the morphisms i : ℓ′ ⊆ ℓ in L, and morphisms are from j : ℓ′′ ⊆ ℓ′ to i : ℓ′ ⊆ ℓ in L, such that for
morphisms k : ℓ′′ ⊆ ℓ, we have that i ◦ j = k.
To get a sheaf of state monads, we have to construct a presheaf that, given an inclusion ℓ′′ ⊆ ℓ′ can
take a subset of possible memory operations M(ℓ′) associated with a set of memory operations
M(ℓ′). Therefore, we want to define the following functor:

Definition 4.2. For the memory specified by an object ℓ in L, we want to define a functor

Tℓ : (L/ℓ)op → Endo(Set)

that is defined on objects i : ℓ′ ⊆ ℓ in L/ℓ as

Tℓ(i) = [M(ℓ),M(ℓ′)× Id]

10

Now, Tℓ(i) is a set of functors that for a given map m ∈M(ℓ), which is a memory operation on
the memory ℓ, take m to the pair (m′ × id), with m′ ∈ M(ℓ′). This pair represents a state after
executing the operation m, where m′ is a memory operation on the memory ℓ′ and id represents the
set of possible states we can transition to.

On morphisms between i and j : ℓ′′ ⊆ ℓ in L/ℓ for some morphism k : ℓ′′ ⊆ ℓ′ as

Tℓ(k) : Tℓ(i)→ Tℓ(j)

These maps can be seen as a natural transformation restricting the set of output maps of the state
monad, with all objects X in Set having components

Tℓ(k)X : Tℓ(i)(X)→ Tℓ(j)(X)

with Tℓ(i)(X) = [M(ℓ),M(ℓ′)×X] and Tℓ(j)(X) = [M(ℓ),M(ℓ′′)×X]. Naturality of Tℓ(k) will be
proven later in this section.

Let us look at the construction Tℓ in the context of modelling stateful computation. We can specify
what happens for state transformations and state transitions for a part of the memory specified
by ℓ. Eventually, we want to specify how these transitions occur for different subsets of the global
memory, ℓ′ ⊆ ℓ. Therefore, we also want a natural way of altering the domain of the functor Tℓ′ ,
L/ℓ′ to the domain L/ℓ of the functor Tℓ for an inclusion i : ℓ ⊆ ℓ′. These maps essentially extend
the input maps of the state monad. Now, as our functors require maps extending the input maps
and restricting the output maps, a well-organised solution to manage these restrictions is needed. A
good example of this problem is the following: given objects ℓ′′, ℓ′, ℓ in L with ℓ′′ ⊆ ℓ′ ⊆ ℓ and the
functor Tℓ′(ℓ

′ ⊆ ℓ′). We restrict ℓ′ ⊆ ℓ′ to ℓ′′ ⊆ ℓ′ and map Tℓ′ to Tℓ, giving the functor Tℓ(ℓ
′′ ⊆ ℓ′).

The domain of Tℓ is L/ℓ, so we need a way to lift the restriction ℓ′′ ⊆ ℓ′ to ℓ′′ ⊆ ℓ. We will introduce
the Grothendieck construction to solve this problem.

Definition 4.3 (opfibration [Jac99]). Given a base category B and the total category E , a functor
p : E → B is an opfibration if the functor p : Eop → Bop is a fibration. The cartesian arrows in Eop
are opcartesian arrows in E . A cleavage for an opfibration consists of opcartesian arrows ϕ : e→ e′

such that for a morphism p(e′)→ b in B there exists a cartesian lifting such that p(ϕ) = f . A choice
of a cleavage, therefore, gives rise to the functor Σf : Ea → Eb for each morphism f : a→ b in B.

Definition 4.4 (Grothendieck Construction [GR71]). Given a functor F : C → Cat for a category
C, the Grothendieck construction of F , denoted as G(F) has as objects the pairs (C,A) for an object
C in C and an object A in F (C). Morphisms in the Grothendieck construction between objects (C,A)
and (C ′, A) with C ′ are the pairs (f, ϕ) given the morphism f : C ′ → C in C and the morphism
ϕ : F (f)(A)→ A′.

Now that we have established the fundamental definitions of opfibrations and the Grothendieck
construction, we will introduce the construction of these concepts that fit with our goal of solving
the mixed variance of the functor Tℓ for an object ℓ in the index category L.

Definition 4.5. Given the index category L = (P(Loc),⊆) we define a functor

L/(−) : L → Cat

11

taking objects ℓ in L to the opposite slice category (L/ℓ)op. The functor is defined on morphisms
i : ℓ ⊆ ℓ′ as L/(i) : L/ℓ→ L/ℓ.

Definition 4.6. We define the functor

P : L → Cat

that is given by composing [−,Endo(Set)] : Catop → Cat and L/(−) : L → Cat.
The functor P takes an object ℓ in ℓ to the category of all functors from L/ℓ to Endo(Set).
Now, we define the Grothendieck construction of P , denoted as G(P). Objects in G(P) are the pairs

(ℓ, F)

with ℓ an object in L and F ∈ [L/ℓ,Endo(Set)] = P (ℓ).
Morphisms between (ℓ′, G) and (ℓ, F) with ℓ, ℓ′ in L, F ∈ P (ℓ) and G ∈ P (ℓ′) are the pairs

(i, ϕ)

with i : ℓ′ ⊆ ℓ being a morphism in L and the morphism ϕ : P (i)(G)→ F .
The Grothendieck construction G(P) gives rise to the opfibration p : G(P) → L, which in turn
induces the functor

Σi : L/ℓ′ → L/ℓ

for all morphisms i : ℓ′ ⊆ ℓ in L.
The functor is defined on objects k ⊆ ℓ′ in L/ℓ′ as

Σi(k ⊆ ℓ′) = k ⊆ ℓ

and on morphisms f : (k ⊆ ℓ′)→ (u ⊆ ℓ′) as

Σi(f) : (k ⊆ ℓ)→ (u ⊆ ℓ)

If we now come back to see how P is defined on the morphisms i : ℓ′ ⊆ ℓ in L, we let P (i) = Σi

and for a functor G in P (ℓ′) we have that

P (i)(G) = G ◦ Σi

Now given the natural transformation ϕ : P (i)(G)→ F in the Grothendieck construction G with F
in P (ℓ) we have that

ϕ(P (i)(G))(k ⊆ ℓ′) = ϕ(G ◦ Σi)(k ⊆ ℓ) = F (k ⊆ ℓ)

Given morphisms f : (k ⊆ ℓ′) → (u ⊆ ℓ′), ϕ is defined by composing f with the functor Σi and
applying ϕ to P (i)(G):

ϕ(P (i)(G)(f)) = ϕ(G ◦ Σi)(Σi(f)) = F (Σi(f))

Proposition 4.2. The mapping P : L → Cat is a functor.

12

Proof. Identity is preserved:

P (idℓ)(F) = F ◦ Σid:ℓ⊆ℓ = F ◦ idL/ℓ = idP (ℓ)(F)⇒ P (idℓ) = idP (ℓ)

Composition is preserved:

P (ℓ1 ⊆ ℓ2 ◦ ℓ2 ⊆ ℓ3)(F) = P (ℓ1 ⊆ ℓ3)(F) = F ◦ Σℓ1⊆ℓ3

and
P (ℓ1 ⊆ ℓ2) ◦ P (ℓ2 ⊆ ℓ3)(F) = P (ℓ1 ⊆ ℓ2) ◦ F ◦ Σℓ2⊆ℓ3

= F ◦ Σℓ1⊆ℓ2 ◦ Σℓ2⊆ℓ3

= F ◦ Σℓ1⊆ℓ3

with F ∈ P (ℓ).

This shows that we have defined a construction that, given a morphism i : ℓ′ ⊆ ℓ lifts a functor
in P (ℓ′) to a functor in P (ℓ), whilst respecting the objects and morphisms in the respective slice
categories involved.

Now, we will still have to see how we can extract the state monad Tℓ from this perspective
for an object ℓ in L. We define the functor △1, that maps an ℓ ∈ L to the category ∆ℓ, with only
one object, let us say ∗, and a unique morphism id∗. Then, we define a natural transformation
between △1 and P in such a way that the fibres of its Grothendieck construction give back the state
monad. When we take the Grothendieck construction of △1, we obtain an isomorphism between
the Grothendieck construction and the category L:

Theorem 1. The Grothendieck construction of the functor ∆1 : L → Cat, sending objects ℓ in L
to the terminal category, is isomorphic to the category L:

L ∼= G(∆1)

Proof. We define two maps, ζ : L → G(∆1) and θ : G(∆1)→ L and show their compositions yield
the identity functors. We first define ζ as follows:

1. For each object ℓ ∈ L, ζ maps ℓ to the object (ℓ, ∗) in G(∆1), where ∗ is the unique object
in the terminal category. For each morphism i : ℓ′ ⊆ ℓ in L, ζ maps i to the morphism
(i, id∗) : (ℓ

′, ∗)→ (ℓ, ∗) in G(∆1).

2. For each object (ℓ, ∗) in G(∆1), θ maps (ℓ, ∗) to the object ℓ in L. For each morphism
(i, id∗) : (ℓ

′, ∗)→ (ℓ, ∗), θ maps (i, id∗) to the morphism i : ℓ′ ⊆ ℓ in L.

Now we verify that the compositions yield the identity functor:

13

1. ζ ◦ θ = idG(∆1): for each object (ℓ, ∗) in G(∆1), θ maps it to the object ℓ in L and ζ maps
each object ℓ in L back to the objects (ℓ, ∗) in G(∆1). For each morphism (i, id∗) in G(∆1), θ
maps it to the morphism i : ℓ′ ⊆ ℓ in L. Then ζ maps each morphism i : ℓ′ ⊆ ℓ in L to the
morphism (i, id∗) : (ℓ

′, x)→ (ℓ, ∗) in G(∆1). Since only one morphism exists in the terminal
category, id∗ is uniquely determined. Therefore, the morphisms in G(∆1) between (ℓ′, ∗) and
(ℓ, ∗) are in one-to-one correspondence with the morphisms between objects ℓ′ and ℓ in L.
Therefore ζ ◦ θ is the identity functor on G(∆1).

2. θ ◦ ζ = idL: for each object ℓ in L, θ maps it to the object (ℓ, ∗) in G(∆1) and ζ maps that
object back to the same object ℓ in L. For each morphism ℓ′ ⊆ ℓ in L, ζ takes it to the
morphism (i, id∗) : (ℓ

′, ∗)→ (ℓ, ∗) in G(∆1), which θ takes back to the same morphism i in L,
again, since there is a one-to-one correspondence between the morphisms, showing that θ ◦ ζ
is the identity functor on L.

Proposition 4.3. There exists a natural transformation α : ∆1 → P , such that for objects ℓ in L
the fibres of G(α) give back the functor Tℓ 4.2.

Proof. We need to define the components of α at each ℓ in L and then show that these components
satisfy the naturality condition. For an object ℓ1 in L, we define a functor αℓ1 : 1→ P (ℓ1).

On objects: for the only object ∗ in ∆1, αℓ1(∗) with the alternative notation Tℓ1 is defined
as a functor as follows:

1. On objects: Tℓ1 is the endofunctor that maps ℓ2 ⊆ ℓ1 in L/ℓ1 to [M(ℓ1),M(ℓ2)× Id].

2. On morphisms: Consider the morphism j : ℓ3 ⊆ ℓ2 such that ℓ3 ⊆ ℓ2 ⊆ ℓ1 in L/ℓ1. Morphisms
in the slice category are defined as the commutative triangle i : ℓ2 ⊆ ℓ1, j : ℓ3 ⊆ ℓ2 and
k : ℓ3 ⊆ ℓ1, such that i ◦ j = k. Therefore, we apply j to i, which sends ℓ2 ⊆ ℓ1 to ℓ3 ⊆ ℓ1.
This means that Tℓ1 is defined on every morphism j : ℓ3 ⊆ ℓ2 in L/ℓ1 as

Tℓ1(j) : Tℓ1(k)→ Tℓ1(i)

with
Tℓ1(k) = [M(ℓ1),M(ℓ3)× Id], Tℓ1(i) = [M(ℓ1),M(ℓ2)× Id]

Now, we need to show that these component functors satisfy the naturality condition for each
morphism ℓ′ ⊆ ℓ by showing the diagram below commutes.

1 P (ℓ′)

1 P (ℓ)

∆1(i)

αℓ′

P (i)

αℓ

To show that the diagram commutes, we have to show that

αℓ(∗) = P (i) ◦ αℓ′(∗)

14

These are defined as follows:

P (i) ◦ αℓ′(∗) = [L/ℓ,Endo(Set)]

αℓ(∗) = [L/ℓ′,Endo(Set)]
We know that P (i) lifts L/ℓ′ to L/ℓ so P (i) ◦ αℓ′(∗) is a functor in [L/ℓ,Endo(Set)], just as αℓ(∗)
is. Therefore, we have to show that

P (i) ◦ αℓ′(∗)(i) = αℓ(∗)(i)

for all objects i : ℓ′ ⊆ ℓ in L/ℓ.
We have that

P (i) ◦ αℓ′(∗)(i) = [M(ℓ),M(ℓ′)× Id]

and
αℓ(∗)(i) = [M(ℓ),M(ℓ′)× Id]

This means we have to show that

P (i) ◦ αℓ′(∗)(i)(m) = αℓ(∗)(i)(m)

for all m in M(ℓ).
Given an object X in Set we say that αℓ(∗)(i)X maps m to the tuple (m′, x), which is an object in
the binary product M(ℓ′)×X with projections π1 :M(ℓ′)×X →M(ℓ′) and π2 :M(ℓ′)×X → X.
Then P (i) ◦ αℓ′(∗)(i)X maps m to the tuple (m′′, x′), which is an object in the binary product
(M(ℓ′)×X)′ with projections π′

1 : (M(ℓ′)×X)′ →M(ℓ′) and π′
2 : (M(ℓ′)×X)′ → X. This shows

that
π1 ◦ αℓ(∗)(i)(m) = π′

1 ◦ P (i) ◦ αℓ′(i)(m)

and
π2 ◦ αℓ(∗)(j)(m) = π′

2 ◦ P (i) ◦ αℓ′(∗)(i)(m)

Putting this together, we have a natural transformation that, given inclusions i : ℓ′ ⊆ ℓ, j : ℓ′′ ⊆ ℓ′

and ℓ′′ ⊆ ℓ in L, the natural transformation (P (i) ◦ αℓ(∗))(Tℓ)(j) = P (ℓ′)(Tℓ′)(j) restricts the
first argument in αℓ(∗)(j) from [M(ℓ),M(ℓ′′ × Id] to [M(ℓ′),M(ℓ′′ × Id] = αℓ′(∗)(j), and the map
αℓ(∗)(Tℓ)(j), where j is now seen as a morphism in (L/ℓ)op restricts αℓ(∗)(Tℓ)(i) = [M(ℓ),M(ℓ′)×Id]
to αℓ(∗)(k) = [M(ℓ),M(ℓ′′)× Id], showing that the map restricts the second argument.

Recall that we want Tℓ to be an endofunctors-on-Set-valued presheaf on L/ℓ. Currently, we define
Tℓ as a functor in αℓ(∗). Functors in αℓ(∗) are defined on morphisms k : (j : ℓ′′ ⊆ ℓ)→ (i : ℓ′ ⊆ ℓ)
in L/ℓ as

Tℓ(k) : Tℓ(j : ℓ
′′ ⊆ ℓ)→ Tℓ(i : ℓ

′ ⊆ ℓ)

but for Tℓ to be a presheaf we want Tℓ to be defined on k as

Tℓ(k) : Tℓ(i : ℓ
′ ⊆ ℓ)→ Tℓ(j : ℓ

′′ ⊆ ℓ)

Earlier we have defined the functor M : Lop → Endo(Set). As M is contravariant, we can instead
define Tℓ(k) as

Tℓ(k) = [M(ℓ),M(k : ℓ′′ ⊆ ℓ′)× Id] : [M(ℓ),M(ℓ′)× Id]→ [M(ℓ),M(ℓ′′)× Id] = Tℓ(i)→ Tℓ(j)

15

Proposition 4.4. A functor Tℓ, or αℓ(∗) for an object ℓ in L is an endofunctor-on-Set-valued
presheaf on L/ℓ.

Proof. For objects i : ℓ′ ⊆ ℓ in L/ℓ, Tℓ(i) is defined on objects X in Set as

Tℓ(i)(X) = [M(ℓ),M(ℓ′)×X]

and on morphisms f : X → Y as

Tℓ(i)(f) : Tℓ(i)(X)→ Tℓ(i)(Y)

Functoriality of Tℓ and Tℓ(i) has been proven earlier in this section. We have that Tℓ(i)(X) is an
object in Set so all that is left to prove is that for morphisms k : (j : ℓ′′ ⊆ ℓ)→ (i : ℓ′ ⊆ ℓ) the map
Tℓ(k) : Tℓ(i)→ Tℓ(j) is a natural transformation. To prove this, we have to show the diagram below
commutes for all components

Tℓ(k)X : Tℓ(i)(X)→ Tℓ(j)(X)

with X in Set and for all morphisms f : X → Y in Set.

Tℓ(i)(X) Tℓ(i)(Y)

Tℓ(j)(X) Tℓ(j)(Y)

Tℓ(k)X

Tℓ(i)(f)

Tℓ(k)Y

Tℓ(j)(f)

For all functors h :M(ℓ)→M(ℓ′′)×X in Tℓ(i)(X) we have that

(Tℓ(j)(f) ◦ Tℓ(k)X)(h) = (id× f) ◦ (M(k)× id) ◦ h

and
(Tℓ(k)Y ◦ Tℓ(i)(f))(h) = (M(k)× id) ◦ (id× f) ◦ h

Because of functoriality of Tℓ, we have that

(Tℓ(k)Y ◦ Tℓ(i)(f))(h) = (id× f) ◦ (M(k)× id) ◦ h

showing the diagram commutes, proving naturality of Tℓ(k).

4.3 Summary of Notation and Definitions

In earlier sections, we defined many constructions. For clarity, in this section, we will summarise the
key constructions that will form the foundation of the local state monad. The definitions of 1, ∆1

and G(P) (the Grothendieck construction of P) will not be restated as they will not be regularly
used in the coming sections.

• The category
L = (P(Loc,⊆)

is an index category with objects ℓ in the powerset of memory locations P(Loc). For objects
ℓ′, ℓ in L, a morphism i : ℓ′ → ℓ exists if ℓ′ is included in ℓ. Therefore, we write the morphism
i as i : ℓ′ ⊆ ℓ. As L is an index category, the inclusion morphisms are unique.

16

• The functor
M : Lop → Set

is defined on objects ℓ in L asM(ℓ) = [ℓ,Z], which is the set of maps from the memory location
ℓ to the set of integers. M is defined on the morphisms i : ℓ′ ⊆ ℓ as M(i) :M(ℓ)→M(ℓ′).

• The slice category
L/ℓ

is the slice category of L over ℓ, where ℓ is an object in L. Objects in this category are all
morphisms i in L, such that cod(i) = ℓ, where cod(i) is the co-domain of the morphism i.
Morphisms in this category from j : ℓ′′ ⊆ ℓ to i : ℓ′ ⊆ ℓ are the morphisms k : ℓ′′ ⊆ ℓ′ in L,
such that k ◦ i = j.

• The functor L/(−) 4.5,
L/(−) : L → Cat

is the “slice-functor” that maps all objects ℓ in L to the opposite slice category L/ℓop. The
slice-functor is defined on morphisms i : ℓ′ ⊆ ℓ as L/(i) : L/(ℓ′)→ L(ℓ).

• The functor P 4.6,
P : L → Cat

given by composition of [−,Endo(Set)] : Catop → Cat and L/(−) is defined on objects ℓ in L
as P (ℓ) = [L/ℓ,Endo(Set)], which is the category of functors from (L/ℓ) to the category of
set valued endo-functors. P is defined on morphisms i : ℓ′ ⊆ ℓ as the natural transformation
P (i) : P (ℓ′)→ P (ℓ).

• The natural transformation
α : ∆1 → P

has as components the functors αℓ : 1→ P (ℓ) for all objects ℓ in L. For the terminal object
∗ in 1, this functor is also written as Tℓ.

• The functor
Tℓ : L/ℓ→ Endo(Set)

that maps objects i : ℓ′ ⊆ ℓ in L/ℓ to [M(ℓ),M(ℓ′)× Id].

It is defined on morphisms k : (ℓ′′ ⊆ ℓ)→ (ℓ′ ⊆ ℓ) in the slice category by composition with
the functor M , which gives the definition

Tℓ(k) : Tℓ(ℓ
′ ⊆ ℓ)→ Tℓ(ℓ

′′ ⊆ ℓ)

with Tℓ(ℓ
′′) = [M(ℓ),M(ℓ′′)× Id]

• For an object i : ℓ′ ⊆ ℓ in L/ℓ the functor

Tℓ(i) : Set→ Set

defined on objects X in Set as Tℓ(i)(X) = [M(ℓ),M(ℓ′)×X] and on morphisms f : X → Y
in Set as Tℓ(i)(f) : Tℓ(i)(X)→ Tℓ(i)(Y).

17

4.4 Local State Monad

There are certain limitations to using a point-wise approach for understanding these constructions.
Studying the natural transformation α at individual components ℓ does not capture the overall
coherence of the objects and morphisms in L. Also, with this local approach, it becomes cumbersome
to analyze the complex interactions that the functor αℓ(∗) might have with various objects and
morphisms in L, as seen in the proof of Proposition 4.3. Therefore, we will introduce a complex limit,
called end, that can provide a global view of the functor’s behaviour. This is especially advantageous
when dealing with functors of mixed variance, such as the state monad, where interactions between
objects in L and its opposite category present intricate relationships that are best understood
through a complete perspective.

Definition 4.7 (Dinatural transformation). Given two categories C and D, and two functors
Q,R : Cop × C → D, a dinatural transformation α : Q

.−→ R consists of a family of components
αc : Q(c, c) → R(c, c) for all objects c in C, such that the following diagram commutes for all
morphisms f : c→ c′ in C:

Q(c′, c)

Q(c, c) Q(c′, c′)

R(c, c) R(c′, c′)

R(c, c′)

Q(f,id)

Q(id,f)

αc αc′

R(id,f)

R(f,id)

Definition 4.8 (Wedge). Given a functor Q : Cop × C → D, a wedge from an object x ∈ D to the
functor Q, in the category of wedges from x to Q, Wd(x,Q) consists of a family of components
ec : x → Q(c, c) in D for all objects c in C such that the following diagram commutes for all
morphisms f : c→ c′ in C:

x Q(c, c)

Q(c′, c′) Q(c, c′)

αc′

αc

Q(id,f)

Q(f,id)

Definition 4.9 (End). Given a functor Q : Cop × C → D, the end of Q, written as
∫
c∈C Q(c, c)

or end(Q) is an object in D, such that a wedge in Wd(end(Q), Q) is a terminal wedge, with as
universal property that for any other wedge Wd(x,Q) the following diagram commutes for a unique
morphism w : x→

∫
c∈C Q(c, c) for all morphisms f : c→ c′ in C:

18

x

∫
c∈C Q(c, c) Q(c, c)

Q(c′, c′) Q(c, c′)

w

βc′

βc

αc′

αc

Q(id,f)

Q(f,id)

In Definition 4.9, we define an end of the functor Q : Cop × C → D, which is a two-variable functor.
It is also possible to take an end of a one-variable functor. Consider the functor R : C → D. The
end of R,

∫
c∈C R(c) is then an object in D such that the wedge w : end(R) → R is universal. In

Definition 4.8, we see the wedge defined for a two-variable functor, but how is the wedge for a
one-variable functor then defined? If we see the functor Q : Cop × C → D as a functor in which we
keep the first argument constant, we define a wedge in Wd(end(Q), Q) as the commutative diagram
below, with extranatural components πc for all objects c in C and morphisms f : c→ c′ in C.

end(Q) Q(c, c)

Q(c′, c′) Q(c, c′)

πc′

πc

Q(id,f)

Q(f,id)

As we kept the first argument constant, we have that Q(f, id) = id; therefore, we can consider the
wedge as the following limiting cone: v : end(Q)→ Q, such that the diagram below commutes for
all components πc and morphisms f : c→ c′ in C.

end(Q)

Q(c, c) Q(c′, c′)

πc

πc′

Q(f,f)

This informs us that the end of R is the universal cone

end(R)

R(c) R(c′)

πc

πc′

R(f)

We can see the end of R as a generalization of the concept of a limit, so we also write the end of R
as

∏
c∈C Q(c).

We will now see how the end can be used to get a more global understanding of the constructions we
defined in Section 4.2. Recall the natural transformation α : ∆1 ⇒ P , the Grothendieck construction
of α defines a functor from G(∆1) ∼= L to G(P):

G(α) : G(∆1)→ G(P)

19

This functor is defined on the objects (ℓ, ∗) in G(∆1) as G(α)(ℓ, ∗) = (ℓ, F) with F ∈ P (ℓ) and on
morphisms (i : ℓ ⊆ ℓ′, id∗) as G(α)(i, id∗) = (i, ϕ), or just G(α)(i) for short, with ϕ : P (i)(F)→ G
and G ∈ P (ℓ′).
We can take the end of the Grothendieck construction of α, giving us the following definition:∫

ℓ∈L
Gα(ℓ, ∗) ∼=

∏
ℓ∈L

[L/ℓ,Endo(Set)]

The universal wedge w :
∫
ℓ∈L G(α(ℓ, ∗)→ G(α) is defined by the commuting diagram below, for all

ℓ in L, all inclusion maps i : ℓ ⊆ ℓ′ and components πℓ.∫
ℓ∈L G(α)(ℓ, ∗)

G(α)(ℓ, ∗) G(α)(ℓ′, ∗)
πℓ

πℓ′

G(α)(i)

Now we will prove a few results using this construction to make life easier, after which we will
define the functor that maps objects i : ℓ ⊆ ℓ′ in L/ℓ to the category of monads on Set.

Lemma 4.2. Given the functor G(α) : G(∆1) → G(P), a wedge w : X → G(α) with X in G(P)
in the category of wedges from X to G(α), Wd(X,G(α)) is the same as giving a map from X to
G(α)(ℓ, ∗) in Set(X,G(α)(ℓ, ∗):

Wd(X,G(α)) ∼= Set(X,G(α)(ℓ, ∗))

Proof. We define maps

ψ : Set(X,αℓ(∗))→Wd(X,G(α))

χ : Wd(X,G(α))→ Set(X,αℓ(∗))

and show that ψ ◦ χ = idWd(X,G(α)) and χ ◦ ψ = idSet(X,G(α)(ℓ,∗)). First, we show how the map χ is
defined. We have that w : X → G(α) is defined for all objects ℓ in L, all components πℓ and all
inclusion maps i : ℓ ⊆ ℓ′ as the commuting diagram below.

X

G(α)(ℓ, ∗) G(α)(ℓ′, ∗)
πℓ

πℓ′

G(α)(i)

We define χ for all wedges w in Wd(X,G(α)) as χ(w) = πℓ. From χ(w), we can retrieve w, because
the component πℓ projects X to G(α)(ℓ, ∗), where ℓ is the lowest index of all objects in L, and
therefore can always extend G(α)(ℓ, ∗) to G(α)(ℓ′, ∗) for an inclusion i : ℓ ⊆ ℓ′ with G(α)(i), such
that the diagram below commutes.

X

G(α)(ℓ, ∗) G(α)(ℓ′, ∗)

f
G(α)(i)◦f

G(α)(i)

20

Therefore, we define ψ for every map f in Set(X,G(α)(ℓ, ∗)) as ψ(f) = G(α)(i) ◦ f = w. Now it
remains for us to check if ψ and χ are inverses.

χ(ψ(f)) = χ(w) = πℓ

Since G(α)(i) ◦ f = G(α)(i) ◦ πℓ, we know that f = πℓ and therefore χ ◦ ψ = idf .
We have that ψ(χ(w)) = G(α)(i) ◦ f = w, so ψ ◦ χ = idw showing that the isomorphism exists.

Corollary 4.2.1. Lemma 4.2 can be extended for any object ℓ1 ⊆ ℓ in L/ℓ, such that a wedge
from X to G(α)(ℓ, ∗) is the same as giving a map from X to G(α)(ℓ, ∗)(ℓ1 ⊆ ℓ). Recall that
G(α)(ℓ, ∗) ∈ [L/ℓ,Endo(Set)] and G(α)(ℓ, ∗)(ℓ1 ⊆ ℓ) = [M(ℓ),M(ℓ1)× Id]. For this, we will show
the following:

Wd(X,G(αℓ(∗))) ∼= Set(X,G(α)(ℓ, ∗)(ℓ1 ⊆ ℓ)

Proof. A wedge w in Wd(X,G(αℓ(∗))) is defined by the commuting diagram below for all objects ℓ
in L, all projections πℓ in the wedge, and all inclusion maps i : ℓ ⊆ ℓ′ in L.

X

G(α)(ℓ, ∗)(ℓ1 ⊆ ℓ) G(α)(ℓ′, ∗)(ℓ1 ⊆ ℓ′)

πℓ′

πℓ

T (i)ℓ1

with T (i)ℓ1 = G(α)(i)(ℓ1 ⊆ ℓ).
If we analyze how the projections of the wedge are defined, the projection

πℓ :

∫
ℓ∈L

G(α)(ℓ1 ⊆ ℓ)→ G(α)(ℓ′, ∗)(ℓ1 ⊆ ℓ′)

for instance maps the functor from G(α)(ℓ, ∗) to G(α)(ℓ′, ∗), which means the slice category L/ℓ is
mapped to the slice category L/ℓ′. Therefore, the inclusion object ℓ1 ⊆ ℓ gets extended to ℓ1 ⊆ ℓ′.
Again, a map f in Set(X,G(α)(ℓ, ∗)(ℓ1 ⊆ ℓ) maps X to G(α)(ℓ, ∗)(ℓ1 ⊆ ℓ) where ℓ has the lowest
index. As the map G(α)(i)(ℓ1 ⊆ ℓ) is defined by ϕ : P (i)(F)→ G, with P (i) = Σi, F ∈ P (ℓ) and
G ∈ P (ℓ′) we see how the Grothendieck construction provides a way to lift the functor G(α)(ℓ, ∗)
to the functor G(α)(ℓ′, ∗) for all ℓ′ that have a higher index than ℓ, which means that we can
reconstruct the wedge from the map f and that the projection to the lowest index of all ℓ in L is
used to obtain the map f from the wedge.

Proposition 4.5. For an object ℓ in L, taking the end of G(α)(ℓ, ∗), defined by the commuting
diagram below for all objects ℓ in L, inclusions ℓ ⊆ ℓ′ and components πℓ :

∫
ℓ∈L G(α)(ℓ, ∗)∫

ℓ∈L G(α)(ℓ, ∗)

G(α)(ℓ, ∗) G(α)(ℓ′, ∗)
πℓ

πℓ′

T (i)

induces the functor
S : Lop → Endo(Set)

that is defined on all objects ℓ1 in L as S(ℓ1) =
∫
ℓ∈L G(α)(ℓ, ∗)(ℓ1 ⊆ ℓ), which is the end defined by

the commuting diagram below for all components πℓ and inclusions i : ℓ ⊆ ℓ′

21

∫
ℓ∈L G(α)(ℓ, ∗)(ℓ1 ⊆ ℓ)

G(α)(ℓ, ∗)(ℓ1 ⊆ ℓ) G(α)(ℓ′, ∗)(ℓ1 ⊆ ℓ′)

πℓ

πℓ′

T (i)ℓ1

with T (i)ℓ1 = G(α)(i)(ℓ1 ⊆ ℓ).
On all morphisms k : ℓ2 ⊆ ℓ1 in L, S is defined as

S(k) : S(i)→ S(j)

with j : ℓ2 ⊆ ℓ in L and S(j) =
∫
ℓ∈L[M(ℓ),M(ℓ2)× Id] summarized in the diagram below.

S(i) S(j)

[M(ℓ),M(ℓ1)× Id] [M(ℓ),M(ℓ2)× Id]

πℓ

S(k)

πℓ

Tℓ(k)

Proof. First, we have to show that for morphisms k : ℓ2 ⊆ ℓ1 the map S(k) exists for objects ℓ1, ℓ2
and the morphism k in L. By Lemma 4.2 the map

f = G(α)(ℓ, ∗)(k) ◦ πℓ :
∫
ℓ∈L

G(α)(ℓ, ∗)(ℓ1 ⊆ ℓ)→ G(α)(ℓ, ∗)(ℓ2 ⊆ ℓ)

induces the following wedge ∫
ℓ∈L G(α)(ℓ, ∗)(ℓ1 ⊆ ℓ)

G(α)(ℓ, ∗)(ℓ2 ⊆ ℓ) G(α)(ℓ′, ∗)(ℓ2 ⊆ ℓ′)

f T (i)ℓ1◦f

T (i)ℓ2

with T (i)ℓ2 = G(α)(ℓ, ∗)(ℓ2 ⊆ ℓ).
By the universal property of the end, the unique morphism S(k) : S(ℓ1)→ S(ℓ2) is induced, such
that S(ℓ1) factors through the universal wedge of S(ℓ2) via this map.
Now, we still have to show that S preserves identity:

idS(ℓ1) = S(idℓ1)

Nevertheless, as idS(ℓ1) respects the extranatural components of S(ℓ1) per definition and S(idℓ1)
is uniquely induced by the universal property of the end such that it respects the extranatural
components of S(ℓ1), they are the same. We also have to show that S preserves composition for
morphisms k : ℓ2 ⊆ ℓ1 and m : ℓ3 ⊆ ℓ2

S(m) ◦ S(k) = S(m ◦ k)

with S(m ◦ k) : S(ℓ1)→ S(ℓ3) and S(m) ◦ S(k) : S(ℓ1)→ S(ℓ3).
Similarly, this follows from uniqueness of the maps S(m) ◦ S(k) and S(m ◦ k).

22

The intuition behind S is that instead of having a state monad such as Tℓ(i : ℓ
′ ⊆ ℓ) = [M(ℓ),M(ℓ′)×

Id] that only evaluates memory operations on the memory of ℓ we now can project to all ℓ in L via
the projections of S to evaluate the memory operations at all these subsets of the whole memory.
Furthermore, the UMP of the end provides a unique way to restrict the memory of the output in
M(ℓ′) to all subsets of memory that are included in ℓ′, with ℓ′ in L.

Proposition 4.6. The functor S is an endofunctors-in-Set-valued presheaf on L

Proof. First we have to see how S(ℓ1) : Set→ Set is defined, where ℓ1 is an object in L. We define
S(ℓ1) for all objects X in Set as S(ℓ1)(X) =

∫
ℓ∈L G(α)(ℓ, ∗)(ℓ1 ⊆ ℓ)(X), which is defined by the

commuting diagram below for inclusions i : ℓ ⊆ ℓ′.

S(ℓ1)(X) =
∫
ℓ∈L[M(ℓ),M(ℓ1)×X]

G(α)(ℓ, ∗)(ℓ1 ⊆ ℓ)(X) G(α)(ℓ′, ∗)(ℓ1 ⊆ ℓ′)(X)

πℓ

πℓ′

T (i)ℓ1,X

with T (i)ℓ1,X = G(α)(i)(ℓ1 ⊆ ℓ)(X) : [M(ℓ),M(ℓ1)×X]→ [M(ℓ′),M(ℓ′)×X]
We define S(ℓ1) on all morphisms f : X → Y in Set as

S(ℓ1)(f) : S(ℓ1)(X)→ S(ℓ1)(Y)

Again, Lemma 4.2 together with the UMP of the end induces the unique morphism S(ℓ1)(f) via
the map

G(α)(ℓ, ∗)(ℓ1 ⊆ ℓ)(f) ◦ πℓ :
∫
ℓ∈L

G(α)(ℓ, ∗)(ℓ1 ⊆ ℓ)(X)→ G(α)(ℓ, ∗)(ℓ1 ⊆ ℓ)(Y)

That S(ℓ1) preserves identity and compositions follows from the uniqueness of this map (we have
seen this before), which proves functoriality of S(ℓ1).

Finally, we have to show that for a morphism k : ℓ2 ⊆ ℓ1 in L the map

S(k) : S(ℓ1)→ S(ℓ2)

is a natural transformation, which is the case if the diagram below commutes for all morphisms
f : X → Y in Set.

S(ℓ1)(X) S(ℓ1)(Y)

S(ℓ2)(X) S(ℓ2)(Y)

S(ℓ1)(f)

S(k)X S(k)Y

S(ℓ2)(f)

For this, we need to show that the compositions S(ℓ2)(f) ◦ S(k)X and S(k)Y ◦ S(ℓ1)(f) are equal.
One only has to show these compositions are uniquely induced with respect to the components
of the wedge from S(ℓ1)(X) to G(α)(ℓ, ∗)X using Lemma 4.2 together with the UMP of the end,
which proves the compositions are equal. Note that the functor G(α)(ℓ, ∗)X sends objects ℓ1 ⊆ ℓ in
L/ℓ to G(α)(ℓ, ∗)(ℓ1 ⊆ ℓ)(X) for an object X in Set.

23

4.5 Proofs of Monad Structure

We now have defined constructions that we suspect can serve as a traditional state monad, the
endofunctor Tℓ(ℓ1 ⊆ ℓ) = G(α)(ℓ, ∗)(ℓ1 ⊆ ℓ), and a local state monad, the endofunctor S(ℓ1) with
ℓ1 in L and ℓ1 ⊆ ℓ in L/ℓ. We still have to define units ηTℓ and η, and multiplications µTℓ and µ for
Tℓ and S respectively and prove that the monad axioms hold.

Proposition 4.7. For an object ℓ1 in L, S(ℓ1) is a monad and the maps η : Id → S(ℓ1) and
µ : S2(ℓ1)→ S(ℓ1) exist and serve as the unit and multiplication of S(ℓ1) respectively.

Proof. First, we will show that the unit η : Id → S(ℓ1) exists. Given the functor Tℓ, we define
the global state monad as Tℓ(ℓ1 ⊆ ℓ), with a unit ηTℓ : Id→ Tℓ(ℓ1 ⊆ ℓ). By Lemma 4.2 this map
induces a wedge from Id to Tℓ such that the diagram below commutes

Id

Tℓ(ℓ1 ⊆ ℓ) Tℓ′(ℓ1 ⊆ ℓ′)
η
Tℓ
ℓ1⊆ℓ

η
Tℓ′
ℓ1⊆ℓ′

T (i)ℓ1

for all objects ℓ in L, inclusions i : ℓ ⊆ ℓ′ and components ηTℓ1⊆ℓ : Id → Tℓ(ℓ1 ⊆ ℓ) and with
T (i)ℓ1 = G(α)(i)(ℓ1 ⊆ ℓ).
The end S(ℓ1) is defined as the following universal wedge:∫

ℓ∈L G(α)(ℓ, ∗)(ℓ1 ⊆ ℓ)

G(α)(ℓ, ∗)(ℓ1 ⊆ ℓ) G(α)(ℓ′, ∗)(ℓ1 ⊆ ℓ′)

πℓ

πℓ′

T (i)(v⊆u)

By the UMP of the end, there exists a unique map from Id to S(ℓ1) such that the diagram below
commutes: ∫

ℓ∈L G(α)(ℓ, ∗)(ℓ1 ⊆ ℓ)

Id

G(α)(ℓ, ∗)(ℓ1 ⊆ ℓ) G(α)(ℓ′, ∗)(ℓ1 ⊆ ℓ′)

η
πℓ

πℓ′

η
Tℓ
ℓ1

η
Tℓ′
ℓ1

T (i)ℓ1

We define the unit
η : Id→ S(ℓ1)

to be this unique map.

Given the map πℓ ∗ πℓ : S2(ℓ1) → (G(α)(ℓ, ∗)(ℓ1 ⊆ ℓ))2, where ∗ denotes the Godement prod-
uct of the projection πℓ of the end S(ℓ1), and given the map of the global state monad

µTℓ
ℓ1

: (G(α)(ℓ, ∗)(ℓ1 ⊆ ℓ))2 → G(α)(ℓ, ∗)(ℓ1 ⊆ ℓ)

24

the map
µTℓ
ℓ1
◦ (πℓ ∗ πℓ) : S(ℓ1)2 → G(α)(ℓ, ∗)(ℓ1 ⊆ ℓ)

induces a wedge from S(v ⊆ u)2 to G(α)(ℓ, ∗) by Lemma 4.2. As we have seen with the unit, this
wedge entails the existence of the unique map from S2(ℓ1) to S(ℓ1), which respects the extra natural
components of S(ℓ1). We define the multiplication

µ : S(ℓ1)
2 → S(ℓ1)

to be this map.

Now, given this unit and multiplication, we have to prove the unit axioms, for which we need to
show the four diagrams below commute:

S(ℓ1) S2(ℓ1) S(ℓ1) S2(ℓ1)

S(ℓ1) S(ℓ1)

S3(ℓ1) S2(ℓ1) S2(ℓ1)(X) S2(ℓ1)(Y)

S2(ℓ1) S(ℓ1) S(ℓ1)(X) S(ℓ1)(Y)

ηS(ℓ1)

id µ

S(ℓ1)η

id µ

µS(ℓ1)

S(ℓ1)µ µ µX

S2(ℓ1)(f)

µY

µ S(ℓ1)(f)

For the first diagram, as both η and µ respect the extra-natural components of the end S(ℓ1), we
have that the composition of these maps respects this extra-natural transformation as well. Per defi-
nition idS(ℓ1) also respects these components, so we have that id = µ◦ηS(ℓ1) proving the left unit law.

By Lemma 4.2 the map

(πℓ ∗ πℓ) ◦ S(ℓ1)η : S(ℓ1)→ (G(α)(ℓ, ∗)(ℓ1 ⊆ ℓ)ℓ(∗))2

induces a wedge from S(ℓ1) to (G(α)(ℓ, ∗))2. By the UMP of the end, the map S(ℓ1)η is then unique
with respect to the extra natural components, showing that S(ℓ1)η = ηS(ℓ1) and thereby proving
the right unit law.

The same proof pattern can be used to prove the equivalence of µS(ℓ1) and S(ℓ1)µ to show
that µ ◦ µS(ℓ1) = µ ◦ S(ℓ1)µ.

Now for the last diagram, by Lemma 4.2 the map

πℓ ◦ S(ℓ1)(f) ◦ µX : S(ℓ1)
2 → G(α)(ℓ, ∗)(ℓ1 ⊆ ℓ)(Y)

induces a wedge from S2(ℓ1)(X) to Tℓ,Y defined by the following commuting diagram

25

S2(ℓ1)(X)

G(α)(ℓ, ∗)(ℓ1 ⊆ ℓ)(Y) αℓ′(∗)(Tℓ′)(v ⊆ u)(Y)

πℓ◦S(ℓ1)(f)◦µX c

T (i)ℓ1,Y

where c = T (i)ℓ1,Y ◦ πℓ ◦ S(ℓ1)(f) ◦ µX . The map

πℓ ◦ µY ◦ S2(ℓ1)(f) : S
2(ℓ1)(X)→ G(α)(ℓ, ∗)(ℓ1 ⊆ ℓ)(Y)

also induces a wedge from S2(ℓ1)(X) to G(α)(ℓ, ∗)(Y). This entails that the maps S(ℓ1)(f) ◦ µX

and µY ◦ S2(ℓ1)(f) are both unique with respect to the extra natural components of these wedges
and therefore they must be equal, proving naturality of µ.

Proposition 4.8. Given objects ℓ1 and ℓ2 and a morphism k : ℓ2 ⊆ ℓ1 in L the map S(k) : S(ℓ1)→
S(ℓ2) is a monad morphism.

Proof. For a monad S(ℓ1) with unit ηℓ1 : Id→ S(ℓ1) and multiplication µℓ1 : S2(ℓ1)→ S(ℓ1), and
a monad S(ℓ2) with unit ηℓ2 : Id→ S(ℓ2) and multiplication µℓ2 : S2(ℓ2)→ S(ℓ2), we have to show
the diagrams below commute.

Id S(ℓ1) S2(ℓ1) S(ℓ1)(S(ℓ2)) S2(ℓ2)

S(ℓ2) S(ℓ1) S(ℓ2)

ηℓ1

ηℓ2
S(k) µℓ1

S(ℓ1)(S(k)) S(k)(S(ℓ2))

µℓ2

S(k)

For the first diagram, we have by Lemma 4.2 and the UMP of the end that the map

πℓ ◦ S(k) ◦ ηℓ1 : Id→ G(α)(ℓ, ∗)(ℓ2 ⊆ ℓ)

shows that S(k) ◦ ηℓ1 is unique with respect the the extra natural components of the end S(ℓ2).
Similarly, πℓ ◦ ηℓ2 : Id→ S(ℓ2) shows the map ηℓ2 is unique with respect to the same components,
proving the maps are equal.

For the second diagram, we first have to see how the map S(ℓ1)(S(k)) is defined. We have that
S2(ℓ1) =

∫
ℓ∈L[M(ℓ),M(ℓ1)×

∫
ℓ∈L

[M(ℓ),M(ℓ1)× Id]].

The projection πℓ maps S2(ℓ1) to [M(ℓ),M(ℓ1)×
∫
ℓ∈L[M(ℓ),M(ℓ1)× Id]], which can be denoted

as G(α)(ℓ, ∗)(ℓ1 ⊆ ℓ)(S(ℓ1)). As we have seen before, the map f : X → Y in Set induces the map
G(α)(ℓ, ∗)(ℓ1 ⊆ ℓ)(f) : G(α)(ℓ, ∗)(ℓ1 ⊆ ℓ)(X)→ G(α)(ℓ, ∗)(ℓ1 ⊆ ℓ)(Y). Now, we have the map

S(k) : S(ℓ1)→ S(ℓ2)

which induces the map

G(α)(ℓ, ∗)(ℓ1 ⊆ ℓ)(S(k)) : G(α)(ℓ, ∗)(ℓ1 ⊆ ℓ)(S(ℓ1))→ G(α)(ℓ, ∗)(ℓ1 ⊆ ℓ)(S(ℓ2))

Now we see how we can use Lemma 4.2 together with the UMP of the end to show that the map
G(α)(ℓ, ∗)(ℓ1 ⊆ ℓ)(S(k)) ◦ πℓ induces the unique map S(ℓ1)(S(k)) with respect to the extranatural

26

components of S(ℓ1)(S(ℓ2)). By Lemma 4.2 and the UMP of the end, the map Tℓ(k)(S(ℓ2)) ◦ πℓ :
S(ℓ1)(S(ℓ2))→ G(α)(ℓ, ∗)(ℓ2 ⊆ ℓ)(S(ℓ2)) induces the unique map S(k)(S(ℓ2)) with respect to the
components of S2(ℓ2). The maps µℓ1 and µℓ2 are unique with respect to the components of S(ℓ1)
and S(ℓ2) respectively. That S(k) is unique with respect to the components of S(ℓ2) we have seen
in the proof of the first diagram. Now we use the fact that the composition S(k) ◦ µℓ1 is unique
with respect to the components of S(ℓ2) and the composition µℓ2 ◦ S(k)(S(ℓ2)) ◦ S(ℓ1)(S(k)) is
unique with respect to the components of S(ℓ2), proving that the diagram commutes.

4.6 Modelling Stateful Computation

Now that we have defined a construction for the local state monad, we will analyse which insights
the construction can give us on reasoning about programs interacting with memory from a local
and global perspective. First, we need to see how we can reason about programs in a category
theoretical way. For this, we need a construction that can compose computation steps of a program
that interact with memory, which will be represented as morphisms in a certain category. With these
program steps, computational side effects arise, so our construction must be able to handle these.
We still need to keep abstraction to hide details of specific programs and memory configurations.
For this, we will use the Kleisli category introduced in Section 4.1.
In the papers of Plotking and Power [KK13] and Beohar and co-authors [BKKS16], examples
are given of how the Kleisli category can be used to model transition systems and incorporate
side effects produced by a monad. In our following example, we will model a concurrent stateful
computation, where states represent values stored in memory locations at a particular moment
in the computation, and transitions represent the execution of instructions that modify memory
locations. Each memory location can be associated with an integer value. We use Kleisli morphisms
to capture the transitions between memory configurations and represent computations.

Example 4.1. Consider the labelled transition system L, where L = (Q,Λ, T).
The set of States Q is in P [7]. Labels represent assignments to memory using maps in M(Loc) =
[Loc,Z], associated with transitions between states in the system, for Loc = {X, Y, Z} with P(Loc)
being the set of objects in L. Labelled transition relations T with (p, a, q) ∈ T , a ∈ Λ, and p, q ∈ Q
are the set of computations

T = {(0, X := 0, 1), (0, X := 0, 3), (1, Z := 2, 2), (2, Z := 3, 4), (3, Z := 5, 4), (4, X := 1, 5),
(5, Y := 5, 6), (6, X := 0, 7)}

Pictorially, this labelled transition system is represented by the diagram below.

27

0

1 2

3

4 5 6 7

X
:=
0

X
:=
0

Z := 2

Z
:=
3

Z :=
5

X := 1

if σ(X) = 0

else

Y := 5 X := 0

Transition relations are modeled by the Kleisli morphisms c ∈ Kl(S(Loc)), defined by the functor
S : Lop → Mnd(Set), defined on objects ℓ1 in L as the end

∫
ℓ∈L G(α)(ℓ, ∗)(ℓ1 ⊆ ℓ), summarized by

the universal wedge below for inclusions i : ℓ ⊆ ℓ′ with the map T (i)ℓ1 = G(α)(i)(ℓ1 ⊆ ℓ)

S(ℓ1)

[M(ℓ),M(ℓ1)× Id]] [M(ℓ′),M(ℓ1)× Id]

πℓ

πℓ′

T (i)ℓ1

The type of the Kleisli map c is
c : [7]→ S(Loc)(P [7])

The state transitions that assign values to memory are modelled by a map σ ∈M(Loc) = [Loc,Z]
such that for a map σ in M(Loc) and the state 1 ∈ Q, we have that

c(1)(σ) = (σ[Z 7→ 2], {2})

where σ[Z 7→ 2] models an update of the memory in Z. Now, we will see how the computations
proceed.

Starting from state 0:
c(0)(σ) = (σ[X 7→ 0], {1, 3})

Now, we have two possible transitions from state 0:

1. Apply label X := 0 and transition to state 1 with the updated memory σ[X 7→ 0]

2. Apply label X := 0 and transition to state 3 with the updated memory σ[X 7→ 0]

Next:

c(1)(σ) = (σ[Z 7→ 2], {2})

From state 1, we have a single transition:
Apply label Z := 2 and transition to state 2 with the updated memory σ[Z 7→ 2].

28

Next:

c(2)(σ) = (σ[Z 7→ 3], {4})

From state 2, we have a single transition:
Apply label Z := 3 and transition to state 4 with the updated memory σ[Z 7→ 3].

Next:

c(3)(σ) = (σ[Z 7→ 5], {4})

From state 3, we have a single transition:
Apply label Z := 5 and transition to state 4 with the updated memory σ[Z 7→ 5].

Next:
c(4)(σ) = (σ[X 7→ 1], {5}) if σ(X) = 0

c(4)(σ) = (σ, {4}) if σ(X) ̸= 0

From state 4, we have two possible transitions:

1. If σ(X) = 0, then apply label X := 1 and transition to state 5 with the updated memory
σ[X := 1].

2. If σ(X) ̸= 0, then no memory update occurs, and we stay in state 4 with the same memory
configuration.

Next:

c(5)(σ) = (σ[Y 7→ 5], {6})

From state 5, we have a single transition:
Apply label Y := 5 and transition to state 6 with the updated memory σ[Y 7→ 5].

Finally:

c(6)(σ) = (σ[X 7→ 0], {7})

From state 6, we have a single transition:
Apply label X := 0 and transition to state 7 with the updated memory σ[X 7→ 0].

There are some important things to take note of in this example. The Kleisli composition lets us
combine two Kleisli morphisms to obtain a new one. In the context of transition relations, this
enables us to compose different transitions to get a more complex computation. Suppose we have
two Kleisli morphisms:

c(0) : [7]→ S(Loc)({1, 4})

c(1) : [7]→ S(Loc)({3})

29

To compute the transition from state 0 to state 3, we can use the Kleisli composition. It involves
applying the map c(1) to all the local memory locations generated by c(0). This combines the
transition specified by c(0) and c(1) to obtain a new transition from state 0 to state 3. Secondly,
the end in the monad S(ℓ1) = [

∫
ℓ∈LM(ℓ),M(ℓ1) × Id] with ℓ1 in L allows us to switch between

local and global computation. The first argument of S(ℓ1) represents a collection of local memory
configurations, i.e., configurations of all subsets of memory locations ℓ ∈ L. The second index of
S(ℓ1) represents the part of the memory that can be operated on by the maps specified by M(ℓ1)
after transitioning between states. By using the end to vary the memory in the first index, applying
a map σ ∈M(ℓ) to S(ℓ1), we are performing a local computation. It means we consider the possible
transitions for each local memory configuration and, after the state transition, specify possible
memory operations specified by the fixed part of the memory location ℓ1. If we moved the end to
the second index, we would only update the state based on the fixed part of the memory global
memory when applying σ to S(ℓ1), potentially leading to a more restricting computation, especially
when the part of the memory specified by ℓ1 does not include the memory that is needed to update
the values between state transitions. If we consider Example 4.1 with the monad in which we take
the end over the output maps and specify the fixed part of the memory for the input maps to be
ℓ1 = {Y, Z}, we do not know how the computation c(0)(σ), with

c : [7]→
[
M(ℓ1 = {Y, Z}),

∫
ℓ∈L

M(ℓ)× P([7])
]

because this computation step requires access to the memory described by X.

5 (Co-)Sheaves of Kleisli Morphisms

Now that we have seen how the Kleisli category can be used to model stateful computations, we
can also find a way to intuitively comprehend the frame rule in the context of Kleisli morphisms:
we can consider objects ϕ in the Kleisli category Kl(S(ℓ)) as a set of assertions that hold for a
particular memory location ℓ. Morphisms in this Kleisli category can be seen as program effects
modifying memory stored at ℓ. Given an assertion ϕ for some part of the heap ℓ, and twp disjoint
memory locations ℓ1 and ℓ2, if we execute a program that only touches the memory in ℓ1, we can
frame the formula ϕ, with the programs effect and obtain a new formula ϕ′ over the combined
memory locations ℓ1 ∪ ℓ2, such that ϕ′ holds over the entire combined memory. The essence of this
perspective is that we “glue” local states back together to obtain a global state over which we can
reason with the observations from the local states. Sheaves are a mathematical abstraction that
can provide this property.

Definition 5.1 (Presheaf). Let X be a topological space. A presheaf F on X functor from the
category of open sets to Set:

F : Xop → Set

For every open set U in X, there is an associated set F (U), and from every inclusion map V ⊆ U
of open sets in X, there is a restriction map ρUV : F (U)→ F (V), such that ρ respects identity and
compositions.

Definition 5.2 (Sheaf). Let X be a topological space. A sheaf F is a presheaf that satisfies the
following two additional properties:

30

1. Locality (Identity Axiom): for every open set U in X and every open cover {Ui}i∈I of U ,
if two sections s, t ∈ F (U) agree on each Ui, meaning that for all i ∈ I ρUUi

(s) = ρUUi
(t), then

s = t.

2. Gluing (Gluability Axiom): for every open set U in X and every open cover {Ui}i∈I of U ,
if there exists a collection of elements {si ∈ F (Ui)} such that they agree on overlaps, meaning

that for any Ui and Uj with i, j ∈ I and Ui ∩Uj ≠ ∅, ρUi
Ui∩Uj

(si) = ρ
Uj

Ui∩Uj
(sj), then there exists

a unique element s ∈ F (U) such that for all i ∈ I, the restriction of s to Ui coincides with si,
meaning that ρUUi

(s) = si.

The gluing axiom is captured by the isomorphism between F (U) and the limit of the presheaf F over
the directed set of open covers of U [Cur14]:

F (U)
≃−→ lim(

∏
k∈I

F (Uk) ⇒
∏
i,j∈I

F (Ui ∩ Uj))

Proposition 5.1. Given the Kleisli category associated with a monad S(ℓ), Kl(S(ℓ)), with ℓ ∈ L,
the underlying presheaf of Kleisli morphisms induced by composition with S : Lop → Mnd(Set),
Kl(X, Y) : Mnd(Set) → Set, which are of the form c : X → S(ℓ)(X) ∈ Kl(X, Y), with X, Y in
Set is a sheaf.

Proof. First we check if Kl(X, Y) is well-defined: Given N1, N2 ∈ Mnd(Set), with monad morphism
ϵ : N1 → N2, we have that Kl(X, Y)(N1) = Kl(N1)(X, Y), and Kl(X, Y)(ϵ) is given by the
composition Kl(X, Y)(ϵ)(c : X → N1(ℓ)) = ϵY ◦ c. Now, we need to formulate a sheaf condition.
For each ℓ ∈ L and for each open covering of ℓ denoted as {ℓi}i∈I the sheaf condition requires the
following:

For any compatible family of Kleisli morphisms {ci ∈ Kl(S(ℓi))(X, Y)}i∈I , where compatible
means that for any pair of indices i, j ∈ I, the restriction of ci and cj to (ℓi ∩ ℓj) are the same:

ci|(ℓi∩ℓj) = cj|(ℓi∩ℓj)

then there exists a unique Kleisli morphism c ∈ Kl(S(ℓ))(X, Y) such that for each i ∈ I the
restriction of c to ℓi gives back the respective ci.

We proceed as follows. We have that ℓi ∩ ℓj ⊆ ℓi ⊆ ℓ and ℓi ∩ ℓj ⊆ ℓj ⊆ ℓ. The end S((ℓi ∩ ℓj)) is
the following universal wedge. For clarity, we write ℓo for (ℓi ∩ ℓj).∫

ℓ∈L[M(ℓ),M(ℓo)× Y]

[M(ℓ),M(ℓo)× Y] [M(ℓ′),M(ℓo)× Y]

πℓ

πℓ′

T (i)ℓo,Y

First, we prove existence and uniqueness of the map c : X → S(ℓ)(Y). The map πℓ ◦ S(ℓo ⊆ ℓ)Y :
S(ℓ)(Y) → G(α)(ℓ, ∗)(ℓo ⊆ ℓ) induces a wedge from S(ℓ)(Y) to G(α)(ℓ, ∗)Y . By definition of the
end, this wedge is universal. Now we show the wedge w : X → G(α)(ℓ, ∗) exists.

31

By assumption, we have that for any pair of indices i, j ∈ I, we have that

ci|ℓo = cj|ℓo

with ci : X → S(ℓi)(Y) and cj : X → S(ℓj)(Y). We also have maps πℓ ◦ ci : X → G(α)(ℓ, ∗)(ℓi ⊆
ℓ)(Y) for all i ∈ I and by Lemma 4.2, this induces the wedge w : X → G(α)(ℓ, ∗)Y . Now, by the
UMP of the end, we have that this wedge factors through the universal wedge from S(ℓ)(Y) to
G(α)(ℓ, ∗)Y via the unique map c : X → S(ℓ)(Y). This proof is summarised by the commuting
diagram below:

S(ℓ)(Y)

X

S(ℓj)(Y)

G(α)(ℓ, ∗)(ℓo ⊆ ℓ)(Y) S(ℓo)(Y) S(ℓi)(Y)

πℓ◦S(ℓo⊆ℓ)(Y)

cj

c

ci

S(ℓo⊆ℓj)(Y)

πℓ S(ℓo⊆ℓi)(Y)

We still have to prove the sheaf condition holds, meaning that ci = c|ℓi for all i ∈ I, for which the
following diagram needs to commute:

X S(ℓ)Y

S(ℓi)Y

ci

c

S(r:ℓi⊆ℓ)

for morphisms r : ℓi ⊆ ℓ in L for all i ∈ I. The maps S(r) ◦ c and ci are both unique with respect
to the extra-natural components of S(ℓi)Y , showing that ci = S(r) ◦ c thereby proving the sheaf
condition holds.

Remark. Another perspective that might be worth investigating is, instead of restricting memory
in M , extending memory by letting M be covariant and constructing a (pre-)cosheaf construction.
One can then extract a compatibility axiom by looking at the isomorphic colimit of this cosheaf,
which we denote as Ŝ

colim(
∐
i,j∈I

Ŝ(ℓi ∪ ℓj) ⇒→
∐
k∈I

Ŝ(ℓk))
≃−→ Ŝ(ℓ)

which is the coproduct of the extension maps for the inclusion of each ℓi into ℓ and where the arrows
are the coproducts of extension maps for the inclusion of ℓi ∪ ℓj into ℓi and ℓj, respectively.

Another way to shift the perspective is by looking at how the local state monad is defined by
Plotkin and Power [PP02]. Instead of using an end to define the local state monad, they use a
coend, which is dual to the notion of the end.

32

6 Internal Categories

Given the functor Sℓ : (L/ℓ)op → Mnd(Set) we obtain a presheaf of monads (or a pre-cosheaf for
the functor Ŝ). The category of monads does not form a concrete category, so how do we formulate
the sheaf condition? We can solve this problem by considering the category Sh(L) of set-valued
sheaves over L and then define functors and monads internally to Sh(L). First, we will show how
these structures can be defined internally for general categories, then define the structures for the
specific category Sh(L).

6.1 General internal structures

Definition 6.1 (Internal Category). A category C internal to an ambient category B consists of an
object of objects C0 and an object of morphisms C1, together with target and source maps s : C1 → C0,
t : C1 → C0, and the identity map e : C0 → C1, such that the following diagram commutes:

C0 C1

C1 C0

e

e

s

t

One can think of C0 as the objects of C and of C1 as the morphisms as C.
The composition of morphisms is defined on the pullback MC = s×C0 t:

MC C1

C1 C0

p1

p2 t

s

together with the morphism c :MC → C1 such that the following diagrams commute:

MC C1 MC C1

C1 C0 C1 C0

p1

c s

p2

c t

s t

The composition also expresses the unit law, such that the following diagram commutes:

id×C0 t s×C0 t s×C0 id

C1
p2

C×id

c

id×C

p1

Now, given categories C,D internal to B, one can internally define a functor F : C → D.

Definition 6.2 (Internal Functor). Given an ambient category B and categories C,D internal to B,
an internal functor F : C → D consists of a morphism of objects F0 : C0 → D0, and a morphism of
morphisms F1 : C1 → D1 such that it respects the maps s, t, e, c:

33

C0 C1 MC

D0 D1 MD

e

F0

t

s

F1

c

s×F1
t

e

s

t
c

Meaning that s ◦ F1 = F0 ◦ s, t ◦ F1 = F0 ◦ t, e ◦ F1 = F0 ◦ e, and c ◦ s×F1 t = F1 ◦ c, where s×F1 t
is the composition MC in D.

To define monads internally, we first require an internal definition of natural transformations.

Definition 6.3 (Internal Natural Transformation). Given internal functors F : C → D and
G : C → D:

C1 C0

D1 D0

i

G1F1

s

t

G0F0

e

s

t

A natural transformation between functors F,G is a morphism α, such that it respects the source
and target maps:

D1 C0 D1

D0 D0

t

α α

G0

F0
s

and satisfies the naturality condition:

C1 D1

D1 D1

F1

α◦s α◦t

G1

The compositions α ◦ t◦F1 and G1 ◦α ◦ s are uniquely defined on the following pullbacks respectively:

D1 D0

MD D1

D1 D0

F1

t

u1
α

F0
p1

p2 s

t

We have that t◦F1 = s◦α◦t, because we have that F0◦t = t◦F1 and s◦α = F0 by our earlier diagrams.

We do the reverse for the composition G1f ◦ αX :

34

D1

MD D1

D1 D0

D0

s

F1

u2

p1

p2 t

s

α
G0

Again, we have that s ◦G1 = t ◦ αs because s ◦G1 = G0 ◦ s, since the functor respects the source
map, and t ◦ α = G0 since the natural transformation respects the target map. By the UMP of the
pullback, we have that u1 = u2, proving the axiom of a natural transformation is satisfied.

6.2 Externalisations

Now we can try to define a monad on C internal to B as the endofunctor F : C → C a unit
η : C0 → C1 and a multiplication µ : C0 → C1. A problem arises when we have to prove the monad
axioms. For instance, how do we define the component of the unit at X, ηX : X → F0X, with
X ∈ C0? As seen in the complexity of Definition 6.3, working with internal natural transformation
will become cumbersome.
Therefore, to take away a load of internal reasoning, we introduce the concept of externalisations
to take away a load of internal reasoning.

Definition 6.4 (Externalisation). Given an ambient category B and a category C internal to B the
externalisation of C is the fibration PC : C → B, where objects of C are pairs (I,X : I → C0) and
morphisms the maps (u : I → J, f : I → C1) with commuting diagrams:

I C1 I C1

C0 J C0

f

X
s

f

u t

Y

Composition of morphisms (u : I → J, f : I → C1) and
(v : J → K, g : J → C1) is defined as

(v, g) ◦ (u, f) = (v ◦ u, c ◦ ⟨f, g ◦ u⟩)

with ⟨f, g ◦ u⟩ : I → s×C0 t and c : s×C0 t→ C1.

Now if we show an equivalence between the category of split fibrations over B, SpFib(B) and the
ambient category Cat(B, we can define a fibred monad on PC which then should reflect a monad
internal to B, which reduces the load of internal reasoning.

Theorem 2. Given an ambient category B, there exists an equivalence of categories between the
category of split fibrations over B, SpFib(B) and Cat(B.

35

Proof. Given the internalisation
i : SpFib(B)→ Cat(B)

and externalisation
(−) : Cat(B)→ SpFib(B)

and categories C,D internal to B, to show the equivalence of categories, we have to prove the
natural isomorphism

i ◦ (−) = IdCat(B)

(−) ◦ i = IdSpFib(B)

exists.
For this, we have to show that:

F 7→ F

α 7→ α

iG←[G

iγ ←[γ

With functors F,G : C → D, internal natural transformation α : F ⇒ G and external vertical
transformation γ : F ⇒ G.

First, we need to define a functor F : C → D for externalisations PC : C → B, PD : D → B for
internal categories D, C ∈ B together with F : C → D.
We define the action of F on the objects of C as

F (I,X : I → C0) = (I, F0X : I → D0)

and on the morphism as
F (u, f) = (u, F1f : I → D1)

First, we prove the F preserves identity. The identity of X ∈ C is defined as the composite map
e ◦X.

F id(I,X)
= (idI , F1(e ◦X)) = (idI , eF0X)

since F1e = eF0 holds by functoriality of F . Also, (idI , eF0X) = idF (I,X).

F also preserves composition: We have to show that

F (v, g) ◦ F (u, f) = F (v ◦ u, c ◦ ⟨f, g ◦ u⟩)

and we have that
F (v, g) = (v, F1g)

F (u, f) = (u, F1f)

(v, F1g) ◦ (u, F1f) = (v ◦ u, c ◦ ⟨F1f, F1(g ◦ u)⟩)

F (v ◦ u, c ◦ ⟨f, g ◦ u⟩) = (v ◦ u, F1(c ◦ ⟨f, g ◦ u⟩))

36

By functoriality of F , we have that c ◦MF = F1 ◦ c, with MF : MC → MD. If we can show that
⟨F1fv, F1g⟩ defines the map C1 ×C0 C1 → F1C1 ×C0 F1C1, by the UMP of the pullback MD, we have
thatMF ◦⟨f, g ◦u⟩ = ⟨F1f, F1(g ◦u)⟩ and c◦⟨F1f, F1(g ◦u)⟩ = F1(c◦⟨f, g ◦u⟩) and by the following
diagram the functor F preserves composition:

C1 MC K

D1 MD

C1

I MD D1

J C1 D1 D0

C0

F1 MF

c

⟨f,g◦u⟩

⟨F1f,F1(g◦u)⟩

c

F1

t u

f

⟨F1f,F1(g◦u)⟩
p2

p1

t

g

Y

F1

s

s

F0

We have that t ◦ F1 ◦ f = s ◦ F1 ◦ g ◦ u, because F0 ◦ s = s ◦ F1 and F0 ◦ t = t ◦ F1 because of
functoriality of F , and Y ◦ u = t ◦ f and s ◦ s = Y , because of PC being a fibration. Consequently,
the unique arrow concerning the UMP of the pullback ⟨F1f, F1(u ◦ g)⟩ is induced.

K

MC C1 C0

C1 MD D1

C0 D1 D0

⟨f,u◦g⟩

p1

p2
MF

t

F1

F0

s
F1

p1

p2 t

F0

s

We have that F0 ◦ s ◦ p2 ◦ ⟨fv, g⟩ = F0 ◦ t ◦ p1 ◦ ⟨fv, g⟩, so MF ◦ ⟨fv, g⟩ is unique by the UMP of
the pullback, proving

F1 ◦ c ◦ ⟨f, u ◦ g⟩ = c ◦MF ◦ ⟨f, u ◦ g⟩

and thereby proving that

F1 ◦ c ◦ ⟨f, u ◦ g⟩ = c ◦ ⟨F1f, F1(u ◦ g)⟩

This proves an internal functor F = ⟨F0, F1⟩ : C → D yields a split fibred functor F : C → D.

37

Now, for the split fibred functor F , the functor iF is defined on objects as

iF (I,X) = i(I, FX) = FX

and on morphisms as
iF (u : I → J, f : I → C0) = i(u, F1f) = F1f

showing that the split fibred functor F induces a functor iF between the corresponding internal
categories, such that objects and morphisms in the internal categories are preserved, proving that i
sends split fibred functors to internal functors.
Now, we go on to prove the correspondence of an internal natural transformation α : C0 → D1

and a vertical natural transformation γ : F ⇒ G. For each morphism X : I → C0 in C, we get
the components γX : I → D1, which are morphisms in D. We want to show that we get a unique
internal natural transformation α, such that α = γ. Now we let I = C0, X = idC0 , which results in a
unique morphism α = γidC0 : C0 → D1. As we want to show that iγ ←[γ, we let α = γidC0 = iγ. Now
we have to show that iγ = γ, which is the case if iγ

(I,X)
= γ(I,X) but this follows from naturality of

γ, if we consider the morphism (X, e ◦X) : (I,X)→ (C0, idC0):

F (I,X) G(I,X)

F (C0, idC0) G(C0, idC0)

F (X,e◦X)

γX

G(X,e◦X)

γidC0

By definition of composition, we have that

γ(C0,idC0) ◦ F (X, e ◦X) = (X, c ◦ ⟨F1eX, γ(C0,idC0)⟩

G(X, e ◦X) = γ(I,X) = (X, c ◦ ⟨γ(I,X), G1eX⟩
meaning that

c ◦ ⟨F1eX, γ(C0,idC0)⟩ = c ◦ ⟨γ(I,X), G1eX⟩
By the unit laws of the composition, we have that

c ◦ ⟨eF0x, γidC0 ◦X⟨= c ◦ (e× id) ◦ ⟨F0X, γidC0X⟩

= p2 ◦ ⟨F0X, γidC0X⟩
= γidC0

Now, the other way around

c ◦ ⟨γ(I,X), G1ex⟩ = c ◦ ⟨γX , eG0X⟩

= p1 ◦ ⟨γX , G0X⟩
= γX

Proving that iγ ◦ X = γX . Uniqueness of α is easily proven by taking another internal natural
transformation α′ and showing they share the same components at X and the same naturality
condition.
Now, to show that the internal natural transformation α yields an external vertical transformation,
we have to show that α satisfies the naturality condition for every object (I,X) in C. We have that
αX = α ◦X = iγ ◦X = γC0,idC0 = γI,X , which means α shares the components of γ, which entails
that α satisfies the naturality condition for every object (I,X) in C.

38

6.3 Internally Defining the Kleisli Category

Now that we know how to define structures internally and have shown the correspondence between
Cat(B) and SpFib(B), we will see how a Kleisli object can be defined internally to the category of
categories.

Definition 6.5 (Internal Kleisli Object). First, we describe an internal Kleisli object. Cat(B) and
SpFib(B) are both 2-categories. A monad in SpFib is a fibred functor, together with a fibred natural
transformation. Now, for the 2-category Cat(B), we can define a monad internally. We define a
1-cell in Cat(B), T : C → C, which is an internal functor. We define the 2-cell η : Id→ T , with the
1-cell Id, and we define the 2-cell µ : T ◦T → T . Both η and µ are internal natural transformations.
Now, we describe a Kleisli object CT , with 1-cell fT : C → CT and 2-cell λ : fT ◦ T → T , meaning
fT (X) = TX, fT (f) = Tf , and λY : T 2Y → TY = µY . Splitting T into an adjunction gives us the
following diagram:

CT

C D

CT

!T

⊣
⊣

⊣

The map CT → CT is unique such that for any other D, g : C → D, γ : g ◦ T → g there exists a
unique arrow k : CT → D, such that k ◦ fT = g, and the 2-cell kλ : kfTT = gT → g = γ is induced
by whiskering.

Now that we have a description of an internal Kleisli object, we still need a construction. The way
we achieve this is by seeing how the Kleisli category is defined in Cat.

Theorem 3. For a category C, internal to Cat, together with the internal functor T : C → C and
internal natural transformations µ : C0 → C1 and η : C0 → C1, we can define the internal Kleisli
category CT .

Proof. Objects CT,0 are the same as the objects in C, C0. Morphisms CT,1 are captured by the
equalizer:

CT,1 C0 × C1 C0
j T◦p1

t◦p2

We define the identity assigning morphism e : CT,0 → CT,1 by inducing it with the universal property
of the equalisers as illustrated in the diagram below:

39

CT,1 C0 × C1 C0

CT,0 C0

j T◦p1

t◦p2
e

⟨id,η⟩
T0 tη

As we have that T0X = tη, the unique map e : CT,0 → CT,1 is induced, and it is defined by the unit
η of the associated monad T .

We let the source and target maps be the following maps respectively:

s = s ◦ p2 ◦ j : CT,1 → CT,0

t = p1 ◦ j : CT,1 → CT,0
Now, it remains to define the composition morphism. For an external Kleisli category, given Kleisli
morphisms f : X → TY , g : Y → TZ, notice that g ◦Kleisli f = µZ ◦ Tg ◦ f . Therefore, we will
try to show that the composition map can be induced by the universal property of the equaliser,
using the multiplication of the associated monad and the composition of the morphisms C1 × C1,
corresponding to the morphisms CT,1 ×CT,0

CT,1, and applying T to the second projection of this
product. To get this composition, which we can see as Tg ◦ f per abuse, we will see how the map
CT,1 ×CT,0

CT,1 → C1 × C1 is defined on the following pullback:

CT,1 ×CT,0
CT,1 CT,1 C0 × C1

CT,1

C0 × C1 C1 C1 ×C0 ×C1 C1

C1 C0

p2

p1

⟨p2◦j◦p1,p2◦T◦j◦p2⟩

j

p2

j

T

p2

p1

p2 t

s

Now, we want to compose this composition with the multiplication applied to the object of objects
obtained by the first projection after applying j to the second morphism in CT,1 ×CT,0

CT,1, which, if
we follow the example of the external Kleisli composition, can, per abuse, see as Z, which gives us
the map c ◦ ⟨c ◦ ⟨p2 ◦ j ◦ p1, p2 ◦ T ◦ j ◦ p2⟩, µ ◦ p1 ◦ j ◦ p2⟩ : CT,1×CT,0

CT,1 → C1. As we need the map
CT,1 ×CT,0

CT,1 → C0 × C1, we obtain C0 from CT,1 ×CT,0
CT,1 with the map p2 ◦ j ◦ p1, finally giving

us the following map:

⟨p2 ◦ j ◦ p1, c ◦ ⟨c ◦ ⟨p2 ◦ j ◦ p1, p2 ◦ T ◦ j ◦ p2⟩, µ ◦ p1 ◦ j ◦ p2⟩⟩ : CT,1 ×CT,0
CT,1 → C0 × C1

Now, to induce the map c : CT,1 ×CT,0
CT,1 → CT,1 with the universal property of the equaliser, we

need to find two maps from CT,1 ×CT,0
CT,1 to C0 and show they are equal. The first map is given

byt ◦ c⟨c ◦ ⟨p2 ◦ j ◦ p1, T ◦ p2 ◦ j ◦ p2⟩, µ ◦ p1 ◦ j ◦ p2⟩. The second map is given by t ◦ p2 ◦ j ◦ p2. By
the pullback

40

C1 ×C0 C1 C1

C1 C0

c

p2 t

t

we have that t◦c = t◦p2, showing that t◦c◦⟨c◦⟨p2◦j◦p1, T ◦p2◦j◦p2⟩, µ◦p1◦j◦p2⟩ = t◦µ◦p1◦j◦p2.
By diagram 6.3, we have that t◦µ = T , showing that T ◦p1◦j◦p2 = T ◦p1◦j◦p2 and by the universal
property of the equaliser we have that T ◦p1 ◦ j = t◦p2 ◦ j, showing that T ◦p1 ◦ j ◦p2 = t◦p2 ◦ j ◦p2,
proving the maps are equal, and inducing the map c : CT,1×CT,0

CT,1 → klM . The relevant maps are
shown in the diagram below, with ∗ = ⟨p1 ◦ j ◦ p2 c ◦ ⟨c ◦ ⟨p2 ◦ j ◦ p1, T ◦ p2 ◦ j ◦ p2⟩, µ ◦ p1 ◦ j ◦ p2⟩⟩,
e1 = t ◦ p2 ◦ j ◦ p2, and e2 = t ◦ c ◦ ⟨c ◦ ⟨p2 ◦ j ◦ p1, T ◦ p2 ◦ j ◦ p2⟩, µ ◦ p1 ◦ j ◦ p2⟩

CT,1 C0 × C1 C0

CT,1 ×CT,0
CT,1

j T◦p1

t◦p2

∗ c1 c2

c

Now, it remains for us to check the laws of the internal category CT . First, we check the axioms
for the source and target of the identity assigning morphism by showing the following diagrams
commute:

CT,0 CT,1 CT,0 CT,1

C0 × C1 C0 × C1

C0 C0

e

id

j

e

id

j

p1 s◦p2

By the universal property of the equaliser, we have that j ◦ e = ⟨id, η⟩, meaning that we have to
show that p1 ◦ ⟨id, η⟩ = id, which holds by definition, and that s ◦ p2 ◦ ⟨id, η⟩ = id. We have that
p2 ◦ ⟨id, η⟩ = η, and that s ◦ η = id, since the unit of the internal monad has to respect the source
and target maps, proving that s ◦ p2 ◦ j ◦ e = id.

Now, for the composition axioms, we first have to show the diagram below commutes:

CT,1 ×CT,0
CT,1 CT,1 C0 × C1

CT,1 C0 × C1 C0

c

p1

j

s◦p2

j s◦p2

By the universal property of the equaliser, we can substitute j ◦ c for

⟨p1 ◦ j ◦ p2, c ◦ ⟨c ◦ ⟨p2 ◦ j ◦ p1, T ◦ p2 ◦ j ◦ p2⟩, µ ◦ p1 ◦ j ◦ p2⟩⟩

Now we have to show that

s ◦ p2 ◦ ⟨p1 ◦ j ◦ p2, c ◦ ⟨c ◦ ⟨p2 ◦ j ◦ p1, T ◦ p2 ◦ j ◦ p2⟩, µ ◦ p1 ◦ j ◦ p2⟩⟩ = s ◦ p2 ◦ j ◦ p1

41

s◦p2◦⟨p1◦j◦p2, c◦⟨c◦⟨p2◦j◦p1, T◦p2◦j◦p2⟩, µ◦p1◦j◦p2⟩⟩ = s◦c◦⟨c◦⟨p2◦j◦p1, T◦p2◦j◦p2⟩, µ◦p1◦j◦p2⟩

By the composition axioms, we have that s ◦ c = s ◦ p1, giving

s ◦ c ◦ ⟨c ◦ ⟨p2 ◦ j ◦ p1, T ◦ p2 ◦ j ◦ p2⟩, µ ◦ p1 ◦ j ◦ p2⟩ = s ◦ c ◦ ⟨p2 ◦ j ◦ p1, T ◦ p2 ◦ j ◦ p2⟩

s ◦ c ◦ ⟨p2 ◦ j ◦ p1, T ◦ p2 ◦ j ◦ p2⟩ = s ◦ p2 ◦ j ◦ p1
proving this holds.

Secondly, we have to show the following diagram commutes:

CT,1 ×CT,0
CT,1 CT,1 C0 × C1

CT,1 C0 × C1 C0

c

p2

j

p1

j p1

Again, we substitute j ◦ c. As we have to prove that p1 ◦ j ◦ c = p1 ◦ j ◦ p2, applying the first
projection to the substitution of j ◦ c, gives us p1 ◦ j ◦ p2, which proves the diagram commutes.

Finally, we have to prove the unit laws for composition holds, for which we need to show that the
following diagram commutes:

CT,0 ×CT,0
CT,1 CT,1 ×CT,0

CT,1 CT,1 ×CT,0
CT,0

CT,1

e×CT,0
id

p2
e

id×CT,0
e

p1

First, we prove the left unit law. If we consider the equaliser

CT,1 C0 × C1 C0
j T◦p1

t◦p2

We have that the map p2 is unique concerning the universal property of this equaliser, such
that T ◦ p1 ◦ j ◦ p2 = t ◦ p2 ◦ j ◦ p2. Now, for any other map f : CT,0 ×CT,

id for which we
have that T ◦ p1 ◦ j ◦ f = t ◦ p2 ◦ j ◦ f , we have that f = p2. Therefore, we will show that
T ◦ p1 ◦ j ◦ c ◦ e×CT,0

id = t ◦ p2 ◦ j ◦ c ◦ e×CT,0
id but as c is already unique such that

T ◦ p1 ◦ j ◦ c = t ◦ p2 ◦ j ◦ c

this is the case. In a similar vein, the right unit law can be proven.

42

6.4 The Category of Sheaves over L
Now that we have a description of an internal Kleisli object and have a construction of the Kleisli
category internal to Cat, we will now see how the Kleisli category is defined internally to the
category of sheaves over L by defining the functor S : Lop → Mnd(Set) internally to this category.
Before we can define our constructions internally to Sh(L), we must consider the size of our objects
and constructions. If we, for instance, consider the constant sheaf in Sh(L) that takes objects ℓ in
L and maps them to the category on which S(ℓ) operates, we observe the following. The domain of
this sheaf is the collection of objects in the powerset of memory locations P(Loc). The target of
the sheaf is the category on which the functor S(ℓ) operates, which is the category of large sets. It
is hard to get an explicit concept of the category of large sets, which would mean we have to define
the set of all sets we want to avoid. Therefore, we introduce a concept that allows us to define the
set of all sets of a specific size, namely the Grothendieck universes.

Definition 6.6 (Grothendieck Universe [ML69]). A Grothendieck Universe U is a pure set satisfying
the following properties:

1. Closure Under Subsets: For any set x ∈ U , if y ⊆ x then y ∈ U .

2. Closure Under Cartesian Products: If x, y ∈ U , then x× y ∈ U .

3. Closure Under Function Spaces: If X ∈ U and y is a set of functions from sets in U to
sets in U , then the set of all functions from x to y is also in U .

4. Closure Under Union: If I ∈ U and xi is an I-index family of sets with xi ∈ U for all
i ∈ I, then the union

⋃
i

xi is in U .

5. Closure Under Powersets: If x ∈ U , then P(x) ∈ U .

6. Limit-Preservation: If λ is a limit ordinal and {xα|α < λ} is a collection of sets in U
then the union

⋃
α<λ

xα is also in U .

Now we define two universes U0 and U1 such that for the Grothendieck universe U , we have that
U = U0 ⊆ U1 and U0 ∈ U1. By Definition 6.6, U0 and U1 are closed under set operations and respect
limits.
We also defined the category of U−sized categories U − Cat, in which the collection of objects is
bound by U0.
We can now define the size of categories relative to other universes via the following scheme:

|C| ⊆ U |C| ∈ U

C(A,B) ⊆ U (U−)Cat Locally large
C(A,B) ∈ U Locally (U−) small Small (U−)Cat

where |C| is the collection of objects in C and C(A,B) is the collection of morphisms in C.
The idea now is to show that Sh(L) is locally U1−small. As a consequence of this, a small U−category
is a category internal in Sh(L).

43

Proposition 6.1. The category of sheaves over L, Sh(L) is locally U1−small.

Proof. We have that the target category of objects in Sh(L) are elements in U1. The category of
sheaves over L is a subset of the category of presheaves over L meaning that |Sh(L)| ⊆ [Lop, U1],
showing that the collection of objects in |Sh(L)| is bounded by U1. Now we have to show the
collection of morphisms in Sh(L) is an element in U1, for which we have to determine the size of
the morphisms in [Lop, U1]. We have that the set of memory locations Loc is an element in U0. As
U0 is closed under set operations, P(Loc) ∈ U0, meaning that L ∈ U0. For every ℓ ∈ L, we have a
collection of morphisms. This means the collection of morphisms in [Lop, U1] can be written as∏

ℓ∈L

[Fℓ, Gℓ]

with Fℓ, Gℓ ∈ [Lop, U1]. Fℓ and Gℓ are U1−sets. By Definition 6.6 a set of functions between two
U1−sets is also an object in U1, proving that Sh(L) is locally small.

Objects in Sh(L) are set-valued sheaves over L with a sheaf condition of the following form. A
presheaf over L is a functor F : Lop → Set. The presheaf F is a sheaf over L if and only if for
each object ℓ in L and for each open covering of L, {ℓi}i∈I there exists a unique element s in F (ℓ)
such that s|ℓi = si for any compatible family of elements {si ∈ F (ℓi)}i∈I . Morphisms in Sh(L) are
morphisms of sheaves, which are morphisms of the underlying presheaves.

Proposition 6.2. The functor S : Lop → Mnd(Set) leads to a monad internal in Sh(L) on the
following category C internal in Sh(L).

Proof. The category C is defined as the constant Set sheaf, meaning that the object of objects
C0 is the constant sheaf that maps all objects ℓ to the category on which the functor S operates,
which is the category of sets, Set. The object of morphisms C1 is the constant sheaf that maps all
ℓ in C to the morphisms in the category on which S operates, which are morphisms in Set. Now
to show that S(ℓ) is a monad internal in Sh(L), we use Theorem 2 and show that S(ℓ) forms a
monad in SpFib(Sh(L)). A monad in SpFib(Sh(L)) is a fibred monad on PC : C → Sh(L), where
C is the externalisation of C. As C is the constant set sheaf, by Theorem 2 its externalisation is
isomorphic to the category Set, meaning we can use the original definition of S(ℓ) for all ℓ in L, to
obtain a fibred monad on PC. C0 and C1 actually are sheaves, as for all inclusions i : ℓ1 ⊆ ℓ2 the
restriction maps ρ012 : C0ℓ2 → C0ℓ1 and ρ112 : C1ℓ2 → C1ℓ1 actually have to be the identity maps on
the category on which S operates, as C0 and C1 assign the same set to every open subset in L. The
glueing axiom trivially holds because of this.

As a consequence of Proposition 6.2, we can construct the internal Kleisli category CS corresponding
with this internal monad as follows.

Definition 6.7. We define CS,0 as the constant sheaf that maps all objects ℓ in L to the objects in
Set. We define CS,1 as the sheaf that maps objects ℓ in L to the collection of all Kleisli morphisms
in Kl(S(ℓ)). Again, we consider the following equaliser to capture these morphisms:

CS,1 C0 × C1 C0
j T◦p1

t◦p2

44

which exists as Sh(L) is a Grothendieck topos and therefore is (co-)complete and presentable [Bor94].
Now, the maps cS, eS, sS, tS are defined as follows:

cS = ⟨p2 ◦ j ◦ p1, c ◦ ⟨c ◦ ⟨p2 ◦ j ◦ p1, p2 ◦ T ◦ j ◦ p2⟩µ ◦ p1 ◦ j ◦ p2⟩⟩ : CT,1 ×CS,0 CT,1 → CS,1

eS = ⟨id, η⟩ : CS,0 → CS,1
sS = s ◦ p2 ◦ j : CS,1 → CS,0
tS = p1 ◦ j : CS,1 → CS,0

That CS,1 is a sheaf, is the consequence of Proposition 5.1.

With these constructions, we can finally see how to form a sheaf condition for a “sheaf of Kleisli
morphisms” by analysing the sheaf condition of CS,1: For any compatible family of Kleisli morphisms
{fi ∈ CS,1(ℓi)}i∈I , meaning that for any pair of indices i, j ∈ I, fi|ℓi∩ℓj = fj|ℓi∩ℓj , then there exists a
unique Kleisli morphism f ∈ CS,1(ℓ) such that f |ℓ1 = f1.

7 Separation Logic and Process Composition

To analyse how we can extract process composition and separation logic from this perspective, we
will give a few examples using the definitions and construction of the Kleisli category internal to
Sh(L)

Example 7.1. First, we give an example to illustrate the restriction of Kleisli morphisms associated
with different memory locations.

Suppose we have three memory locations in L: ℓ1 = {1, 2, 3}, ℓ2 = {2, 3, 4}, ℓ3 = {3, 4, 5} and an
open covering ℓ = {ℓ1, ℓ2, ℓ3} of their union.

Suppose the Kleisli morphisms are as follows:

1. f1 is a Kleisli morphism in CS,1(ℓ1) from X → S(ℓ1)Y

2. f2 is a Kleisli morphism in CS,1(ℓ2) from X → S(ℓ2)Y

3. f3 is a Kleisli morphism in CS,1(ℓ3) from X → S(ℓ3)Y

We consider the intersections

1. ℓ1 ∩ ℓ2 = {2, 3} and the restriction of f1 to ℓ1 ∩ ℓ2 denoted as

f12 = f1|ℓ1∩ℓ2

2. ℓ1 ∩ ℓ3 = {3} and the restriction of f1 to ℓ1 ∩ ℓ3 denoted as

f13 = f1|ℓ1∩ℓ3

45

3. ℓ2 ∩ ℓ3 = {3, 4} and the restriction of f2 to ℓ2 ∩ ℓ3 denoted as

f23 = f2|ℓ2∩ℓ3

The gluing axiom states that if f12 = f13 = f23, then there exists a unique Kleisli morphism f over
ℓ such that f |ℓ1 = f1, f |ℓ2 = f2, and f |ℓ3 = f3.

In this example, we see that the sheaf condition ensures that the Kleisli morphisms on the in-
tersections are compatible, and we can glue them together consistently to obtain a unique Kleisli
morphism together consistently to obtain a unique Kleisli morphism over the entire memory state ℓ.

Example 7.2. We consider a scenario where we have two processes, P1 and P2, each represented
as a Kleisli morphism in CS,1. We assume each process operates on a distinct memory location ℓ1
and ℓ2 in L respectively:

1. P1 : X → S(ℓ1)Y

2. P2 : Y → S(ℓ2)Z

In this context, X, Y, Z are objects in Set and represent the types of data that the processes oper-
ate on, and S(ℓ1) and S(ℓ2) are the Kleisli extensions associated with the memory locations ℓ1 and ℓ2.

We want to compose these processes sequentially, meaning that the output of P1 will serve as
the input for P2. To achieve this composition, we will use the glueing axiom of our sheaf in the
following way:

1. Restrict P1 to ℓ1 ∩ ℓ2:
P1|ℓ1∩ℓ2 : X → S(ℓ1 ∩ ℓ2)Y

2. Restrict P2 to ℓ1 ∩ ℓ2:
P2|ℓ1∩ℓ2 : Y → S(ℓ1 ∩ ℓ2)Z

Now, we check if these restricted processes satisfy the sheaf condition, which is the case if the
restrictions of P1 and P2 to ℓ1 ∩ ℓ2 are compatible.

If the restricted processes satisfy the sheaf condition, we can form the composed process

P2|ℓ1∩ℓ2 ◦ P1|ℓ1∩ℓ2 : X → S(ℓ1 ∩ ℓ2)Z

The sheaf condition guarantees that the composed process is well-defined and consistent with the
individual processes.

Example 7.3. Suppose we have the following Kleisli morphisms in CS,1:

1. c1 ∈ CS,1(ℓ1) : X → S(ℓ1)Y , a program effect modifying ℓ1

2. c2 ∈ CS,1(ℓ2) : X → S(ℓ2)Y , a program effect modifying ℓ2

3. c12 ∈ CS,1(ℓ1 ∪ ℓ2) : X → S(ℓ1 ∪ ℓ2)Y , a program effect modifying both the contents in ℓ1 and
ℓ2

46

We assume the memory locations ℓ1 and ℓ2 are disjoint. By this assumption, the following equations
hold:

1. c12|ℓ1 = c1, meaning the program effect on ℓ1 ∪ ℓ2 is the same as the effect on ℓ1 alone

2. c12|ℓ2 = c2, meaning the program effect on ℓ1 ∪ ℓ2 is the same as the effect on ℓ2 alone

Because of these qualities, we use the sheaf condition to compose the local effects to infer the global
effect on the entire memory state: the sheaf condition ensures the existence of a unique Kleisli
morphism c : X → S(Loc)Y such that:

• c|ℓ1 = c1, meaning the effect of c on ℓ1 is the same as the local effect

• c|ℓ2 = c2, meaning the effect of c on ℓ2 is the same as the local effect

Therefore, we have composed the local effect c1 and c2 into a global effect c representing the overall
effect on the entire memory state.

8 Conclusion and Discussion

This thesis makes two contributions. First, the category-theoretic foundation for reasoning about
locality and compositionality allows working towards a complete abstract framework for separation
logic. Secondly, a clear description and construction of Kleisli objects internally to a category
with pullbacks and small products and the relationship with their external representation. A
sheaf-theoretic framework was constructed by defining the category of sheaves over a topological
space L, where L represents the preorder category of memory locations. This framework allows for
precise definitions, systematic reasoning, and by using category theory to infer global properties of
computational states based on local observations. By defining the Kleisli category internally to this
category, we enriched the semantic expressiveness of the framework so that we can represent and
reason about side effects or other computational aspects within the context of the sheaf-theoretic
model. An isomorphism between how the structures occur internally and their external represen-
tation has been established to reduce the load of reasoning in internal categories. Example 7.3
adequately gives insight into how our construction forms the foundation for an abstract framework
for separation logic, while showing that additional structure is required for a complete framework.
If we analyse this example more closely and introduce predicates P (ℓ1) and P (ℓ2) that represent
properties of the data stored in the memory described by ℓ1, ℓ2 ∈ L we can use the sheaf condition
to reason about the effect of c on the predicates P (ℓ1) and P (ℓ2) based on the effects of c1 on P (ℓ1)
and c2 on P (ℓ2) which would lead to the semantics of the frame rule. However, in this scenario, we
require the ability to reason about how the predicates P (ℓ1) and P (ℓ2) evolve as a result of applying
c1 and c2, respectively. This involves predicate transformers, which our current construction does
not support.

Additional limitations are that our model does not include quantification over predicates. In
separation logic, multiple predicates can describe the heap’s state. To express multiple predicates
with our framework, we must define specific sheaf objects for multiple predicates and reason about
their glueing and compatibility to infer their property. This approach does not scale well and is

47

impractical. Secondly, while the direct mapping of memory provided by the functor M provides a
pleasing simplicity, it does not capture all the nuances and complex relationships that arise in more
advanced memory models. It restricts our model to be limited to theoretical exploration.

8.1 Future Work

The first natural step to proceed to a complete framework is adding structure for reasoning about
predicates and how they change when transitioning between states in a program. Notions of fibred
categories are known to provide predicates over categories [Jac99]. In the study of [AK20], the
authors characterise Hoare Triples as morphisms in the lifting of a monad on a category modelling
computational effects along a fibration mapping a category of predicates to this underlying category.
This concept helps provide predicate transformers in our categorical construction. Once this
framework has been established, the next step of further research would be to investigate how the
underlying logic of the framework relates to extensions of separation logic. Secondly, while the direct
mapping of memory provided by the functor M provides a pleasing simplicity, it does not capture
all the nuances and complex relationships that arise in more advanced memory models. It restricts
our model to be limited to theoretical exploration. In the paper of Ferreira and co-authors [FFS10],
a parameterised memory in the context of concurrent separation logic is discussed that could serve
as inspiration.

References

[AK20] Alejandro Aguirre and Shin-ya Katsumata. Weakest preconditions in fibrations. Elec-
tronic Notes in Theoretical Computer Science, 352:5–27, 2020. The 36th Mathematical
Foundations of Programming Semantics Conference, 2020.

[BBTS07a] Bodil Biering, Lars Birkedal, and Noah Torp-Smith. Bi-hyperdoctrines, higher-order
separation logic, and abstraction. ACM Transactions on Programming Languages and
Systems, 29(5):24, 2007.

[BBTS07b] Bodil Biering, Lars Birkedal, and Noah Torp-Smith. Bi-hyperdoctrines, higher-order
separation logic, and abstraction. ACM Trans. Program. Lang. Syst., 29(5):24–es, aug
2007.

[BHL19] Gilles Barthe, Justin Hsu, and Kevin Liao. A probabilistic separation logic. Proc.
ACM Program. Lang., 4(POPL), dec 2019.

[BKKS16] Harsh Beohar, Barbara König, Sebastian Küpper, and Alexandra Silva. A coalgebraic
treatment of conditional transition systems with upgrades. Logical Methods in Computer
Science, 14, 12 2016.

[Bor94] Francis Borceux. Handbook of Categorical Algebra, volume 3 of Encyclopedia of
Mathematics and its Applications. Cambridge University Press, 1994.

[BTSY06] Lars Birkedal, Noah Torp-Smith, and Hongseok Yang. Semantics of separation-logic
typing and higher-order frame rules for algol-like languages. Logical Methods in
Computer Science, Volume 2, Issue 5, 2006.

48

[Cur14] Justin Curry. Sheaves, cosheaves and applications, 2014.

[FFS10] Rodrigo Ferreira, Xinyu Feng, and Zhong Shao. Parameterized memory models and
concurrent separation logic. Programming Languages and Systems, page 267–286, 2010.

[FS79] M. P. Fourman and D. S. Scott. Sheaves and logic. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1979.

[GR71] Alexander Grothendieck and Michèle Raynaud. Revêtements Etales et Groupe Fon-
damental, volume 224 of Lecture Notes in Mathematics. Springer, Berlin, Heidelberg,
1971.

[Hoa69] C. A. Hoare. An axiomatic basis for computer programming. Communications of the
ACM, 12(10):576–580, 1969.

[Jac99] B. Jacobs. Categorical Logic and Type Theory. Number 141 in Studies in Logic and
the Foundations of Mathematics. North Holland, Amsterdam, 1999.

[JJ02] Peter T. Johnstone and Peter T. Johnstone. Sketches of an Elephant: A Topos Theory
Compendium: Volume 1. Oxford Logic Guides. Oxford University Press, Oxford, New
York, September 2002.

[KK13] Henning Kerstan and Barbara König. Coalgebraic trace semantics for continuous
probabilistic transition systems. Log. Methods Comput. Sci., 9(4), 2013.

[Law69] F. William Lawvere. Adjointness in foundations. dialectica, 23(3–4):281–296, 1969.

[LIO] J. L. LIONS. Ariane 5 flight 501 failure report by the inquiry board.

[ML69] Saunders Mac Lane. One universe as a foundation for category theory. In Reports of
the Midwest Category Seminar III, pages 192–200, Berlin, Heidelberg, 1969. Springer
Berlin Heidelberg.

[MM15] Kenji Maillard and Paul-André Melliès. A fibrational account of local states. In 30th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto,
Japan, July 6-10, 2015, pages 402–413. IEEE Computer Society, 2015.

[Mog91] Eugenio Moggi. Notions of computation and monads. Information and Computation,
93(1):55–92, 1991. Selections from 1989 IEEE Symposium on Logic in Computer
Science.

[MR77] Michael Makkai and Gonzalo E. Reyes. First Order Categorical Logic: Model-Theoretical
Methods in the Theory of Topoi and Related Categories, volume 611 of Lecture Notes
in Mathematics. Springer, Berlin, Heidelberg, 1977.

[MS18] Paul-André Melliès and Léo Stefanesco. A game semantics of concurrent separation
logic. Electronic Notes in Theoretical Computer Science, 336:241–256, 2018.

[O’H04] Peter W. O’Hearn. Resources, concurrency and local reasoning. CONCUR 2004
Concurrency Theory, page 49–67, 2004.

49

[ORY01] Peter O’Hearn, John Reynolds, and Hongseok Yang. Local reasoning about programs
that alter data structures. Computer Science Logic, page 1–19, 2001.

[PP02] Gordon D. Plotkin and John Power. Notions of computation determine monads. In
Foundations of Software Science and Computation Structures, volume 2303 of Lecture
Notes in Computer Science, pages 342–356. Springer, 2002.

[Rey02] J.C. Reynolds. Separation logic: A logic for shared mutable data structures. Proceedings
17th Annual IEEE Symposium on Logic in Computer Science, 2002.

[Sof09] Sofronie-Stokkermans, V. Sheaves and geometric logic and applications to modular
verification of complex systems. Electronic Notes in Theoretical Computer Science,
230:161–187, 2009.

[TO15] Takeshi Tsukada and C.H. Luke Ong. Nondeterminism in game semantics via sheaves.
2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science, 2015.

50

	Introduction
	Separation Logic
	Related Work
	Categorical Logic
	Extensions of the Frame Rule
	Sheaves
	preliminaries

	Local State Monad
	Binary Product Functor
	Global State Monad
	Summary of Notation and Definitions
	Local State Monad
	Proofs of Monad Structure
	Modelling Stateful Computation

	(Co-)Sheaves of Kleisli Morphisms
	Internal Categories
	General internal structures
	Externalisations
	Internally Defining the Kleisli Category
	The Category of Sheaves over L

	Separation Logic and Process Composition
	Conclusion and Discussion
	Future Work

	References

