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Abstract

Deep neural networks have made great advancements in recent years, leading to them
being deployed in a wide range of domains. Despite this, neural networks have been shown
to be vulnerable to a class of attacks known as adversarial attacks, where an input image is
slightly altered to produce arbitrary misclassifications. Such vulnerabilities could prevent
neural networks from being used in safety-critical tasks, where these risks are unacceptable.
To defend against these categories of attacks, methods that can mathematically guarantee
a neural network’s robustness against adversarial attacks have been proposed, although
providing these guarantees is a computationally expensive task. In this thesis, we propose a
novel framework called Auto-Verify that makes experimentation and portfolio construction
with neural network verification tools more convenient. Auto-Verify provides interfaces
for applying algorithm configuration techniques to four state-of-the-art neural network
verification tools, as well as managing the environments and installation of these verification
tools. Moreover, we improve the efficiency of neural network verification by leveraging
parallel portfolios of different neural network verification tools. Thereby, we overcome
several challenges typically associated with formal neural network verification, such as
selecting a verification tool given one or more instances, and not having a uniform interface
for each verification tool. Our experiments on MNIST, CIFAR and TLL Verify Bench
datasets show that using parallel portfolios of neural network verification tools can lead
to a speed-up in total time by a factor of up to 1.5, and reduce the number of timeouts
by a factor of up to 1.12 compared to using a single verification tool. Lastly, we find
that automatically configuring the verification tools in a parallel portfolio to achieve a
meaningful improvement in performance remains challenging, due to long running times,
heterogeneous instances, and error-prone verification tools.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Recent advances in the field of deep learning have greatly improved the performance
of deep neural networks in many domains such as computer vision, natural language
processing, game-playing, and medical diagnoses to name just a few. Consequently, deep
neural networks have been deployed on an increasingly wide range of domains, including
safety-critical applications like autonomous driving, facial recognition, and cyber security.
As neural networks grow in size and complexity, they effectively become "black-box" al-
gorithms, meaning it becomes increasingly difficult to reason about their decisions and
behaviours. This lack of "explainability" is troublesome when neural networks are deployed
on a safety-critical task, where confident deployment and formal guarantees are a necessity.

By now it is widely known that neural networks are vulnerable to adversarial attacks [GSS15]
(see Figure 1.1), where an input is altered to have the model make arbitrary (wrong) pre-
dictions. In the case of image classification, these changes to the image can be so small (as
small as changing a single pixel [SVS19]) that the human eye cannot detect them anymore.
If a model is susceptible to small changes in the input producing different classifications,
we say that the model is not locally robust. Local robustness considers robustness w.r.t. a
single input, while global robustness reasons about the input space as a whole [Sun+22].
In this thesis, we focus on local robustness, which aims to prove if a perturbation within a
given radius of the original image exists that would lead to a misclassification.

Different methods have been proposed to defend against such adversarial attacks, in-
cluding empirical defences and formal verification methods. While empirical defences
generally scale to larger neural network sizes than formal verification, they only provide
a limited perspective on the robustness of a neural network. Empirical defences can usu-
ally be broken again by sophisticated attackers, and can also not provide us with the full
picture of robustness given that the input space is virtually infinite in cardinality. Formal
verification, however, can give us rigorous mathematical guarantees on certain properties
of input-output combinations, at the cost of increased computational complexity and, thus,
even worse scalability.

Although significant progress has been made with regard to the scale and complexity
of neural networks on which verification queries can be completed within a reasonable
amount of resources, state-of-the-art methods scale up to (specifically trained) networks of
around 105 neurons [Xu+20]. This still leaves many neural networks out of the question, as
their architectures and sizes make formal verification infeasible.
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Image Classifier

Stop Sign ✅ 120 km/h ❌

Original Original +

Figure 1.1: An example of an adversarial attack. The original image is correctly classified as a stop
sign. By applying a specific perturbation to the original image, it is possible to make the image
classification model generate an arbitrary prediction even though the image is still clearly a stop
sign. Source: https://kennysong.github.io/adversarial.js/

Prior work by König et al. [KHR22] shows that by using algorithm configuration tech-
niques to construct a portfolio of MIP-based verification systems, a significant decrease in
CPU time on verification instances can be achieved. To be more specific, CPU times were
reduced by factors ranging from 1.6 up to as high as 10.3. These results form the foundation
that we build this work upon, in which we aim to extend and streamline the process of
automatically configuring complete neural network verification systems.

Applying algorithm configuration techniques to tools that can prove properties on neural
networks is by no means a trivial task, considering the high running times and heteroge-
neous problem instances. Furthermore, these tools often do not directly expose or document
all their hyperparameters, do not perform similarly (or are not compatible) on the same
problem instances, and do not have uniform interfaces. Additional work by König et al.
[Kön+23] has also shown that there is not one verification tool that consistently dominates
all others, making the use of parallel portfolios of different verification tools an interesting
potential source for further improvement in performance.

We developed Auto-Verify,1 a user-friendly software package aimed at automatically con-
figuring and using parallel portfolios of neural network verification tools. Furthermore,
Auto-Verify provides uniform interfaces to streamline interaction with neural network
verification tools, hyperparameter spaces to sample configurations for verification tools,
and additional utilities such as automated installation scripts and managing environments
to run verification tools.

1https://github.com/ADA-research/auto-verify. Licensed under the BSD-3 license.
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CHAPTER 1. INTRODUCTION

Our contributions are the following:

• We developed a novel framework for neural network verification with a focus on
automated algorithm configuration and portfolio construction;

• we investigate the use of parallel portfolios of different (configured) neural network
verification tools on benchmarks from the neural network verification literature based
on prior work by König et al. [KHR22]; and

• we discuss our findings and challenges associated with neural network verification
and applying algorithm configuration in this field.

Our experiments show that running parallel portfolios of unconfigured neural network
verification tools, i.e., with default settings, leads to an improvement in performance up to
a factor of 1.5 and a reduction in timeouts by a factor of up to 1.12, while configuring the
hyperparameters of neural network verification tools did not yield a meaningful improve-
ment within our budget and resource constraints.

The rest of this thesis is structured as follows: Chapter 2 dives into the required back-
ground information. Chapter 3 discusses related work, also highlighting the overlap
algorithm configuration in neural network verification has with algorithm configuration in
SAT solving. Chapter 4 takes an in-depth look at Auto-Verify, discussing examples, inner
workings and design decisions. Chapters 5 through 7 outline the experiments we ran to test
the performance of parallel portfolios created by Auto-Verify. Lastly, Chapter 8 summarises
the findings and proposes future research directions.

3



CHAPTER 2. BACKGROUND

Chapter 2

Background

We follow common equations for neural networks and robustness in this chapter, such as
the equations described in “Algorithms for Verifying Deep Neural Networks” by Liu et al.
[Liu+21], where the symbols outlined below have the following meaning:

• Scalars and scalar functions: lowercase italic letters (x)

• Vectors and vector functions: lowercase bold letters (x)

• Matrices and matrix functions: uppercase bold letters (X)

• Sets and set functions: uppercase calligraphic letters (X )

2.1 Neural Networks

Neural networks are a class of machine learning algorithms, inspired by the workings of the
human brain [Hin05], that are capable of learning complex patterns and relationships within
data. Typically, a neural network consists of an input layer, one or more hidden layers and
an output layer. Inside the layers are one or more neurons that perform computations on
their inputs and produce outputs that can be passed on to other nodes via weighted edges.
An example of a simple neural network with three layers can be seen in Figure 2.1.

Input

Hidden

Output

Figure 2.1: A simplified view of a small neural network with an input, hidden and output layer.
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The strength of a connection between nodes is determined by weights and biases, which
are hyperparameters that are learned during the training of the neural network to optimise
the performance of the neural network. Nodes in the network receive input signals via
these connections, on which they can then perform computations, which then become the
output of that node and can subsequently become the input of connected nodes. Before
the output is produced however, nodes will usually apply a non-linear activation function.
These activation functions allow the neural network to model more complex patterns and
relations by introducing non-linearity. There are many types of activation functions, and
the choice of which to use and where in the neural network influences the performance of
the neural network.

2.2 Robustness Verification

Because the computation obtained by training a neural network is discovered in an au-
tomated fashion [LBH15], it is difficult to interpret said computation. One would expect
that a neural network trained for image classification on a large dataset will be robust to
small changes made in the input, but that does not seem to always be true (see Figure 1.1).
Adversarial examples can be created by applying slight perturbations to the input that
maximise the model error while staying in proximity of the original input [Sze+14; Yua+19;
Ues+18; ACW18]. This problem has been widely studied, resulting in the creation of differ-
ent methods and approaches to evaluate the robustness of a neural network and protect
against adversarial attacks. [TXT19; Bot+20; Bas+16; Bun+18; Dvi+18; Ehl17; Geh+18; HL20;
HL21; Kat+17; Kat+19; Sch+15; Wan+18a; XTJ18; Bak21; Wan+21; Fer+22]

Traditionally, the validation of neural networks primarily involved feeding a large number
of inputs into the network and checking if these yielded the intended outputs, see e.g.
cross-validation [Bro00]. But this does not paint a full picture of the robustness of a given
network, since the amount of possible inputs may be very large, too large to test all possible
inputs. Different empirical defences have been proposed that aim to defend against adver-
sarial examples. These defences use a variety of techniques, such as obfuscated gradients
[XZZ20; Ma+18; Guo+18], or using ensembles of models to improve robustness [VS19;
Pan+19; SRR20]. The disadvantage of these defences is that attacks can be created to bypass
even the most sophisticated defences [Tra+20a; Ues+18; ACW18]. This cat-and-mouse game
between attackers and defenders, plus the lack of certainty provided by empirical methods
motivates the need for formal verification.

Formal neural network verification techniques can provide rigorous mathematical proof of
whether certain input-output properties of a given network hold. As described by Liu et al.
[Liu+21], properties can be formulated as statements, for example: if the inputs belong to
some set X , the outputs will belong to some set Y . While formal verification can provide us
with strong guarantees whether properties hold, verifying even a simple property has been
proven to be an NP-complete problem [Kat+17].

Given a feed-forward neural network with n layers with a k0-dimensional input, km-
dimensional output, input x ∈ Dx ⊆ Rk0 and output y ∈ Dy ⊆ Rkm , where Dx and Dy are
the domains of possible values for x and y, respectively. This neural network can be used
to represent a function f , as y = f(x). To solve the verification problem, we have to check
whether input-output relationships of f hold. In local robustness verification in image
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classification networks, where we want to verify if input instances within a predefined
radius to a certain input x0 belong to the same output class as x0, we can formulate the
problem as follows:

∀x : ∥x− x0∥p ≤ ϵ =⇒ f(x) = f(x0) (2.1)

Where x is a sample in the neighbourhood of x0, denoted by an ℓp distance metric, such
as ℓ1 [Car+17; Che+18], ℓ2 [Sze+14] or ℓ∞ [GSS15; Pap+16]. The allowed radius of pertur-
bations is denoted by ϵ. For a broader definition that extends to other problems besides
classification problems, we refer to the work of Liu et al. [Liu+21].

Approaches to robustness verification can be characterised by soundness and completeness.
A formal verification algorithm is one of the following two:

• Sound: Will only state if a property holds, if it actually holds.

• Complete: Will correctly state that a property holds, whenever it holds.

Sound verification algorithms are commonly referred to as incomplete verification, complete
algorithms as complete verification. Verification algorithms can return one of three possible
results to a verification query, namely:

• Satisfiable

• Unsatisfiable

• Unknown (sound algorithms only)

If a property is unsatisfiable, the property holds. For example, there does not exist an
adversarial perturbation that will cause a misclassification. If it is satisfiable, the property
is violated, e.g. there exists an adversarial perturbation that causes a misclassification. The
case of “unknown” is only produced by sound algorithms, since complete algorithms are
guaranteed to state if a property holds given enough time and resources. While complete
verification is more desirable, incomplete methods can scale to larger networks than com-
plete methods. Due to the long running times of verification queries, a fourth possible
result to a verification query is usually introduced: a timeout, which is a predetermined
amount of time for which the query is allowed to run after which the process is forcibly
stopped. Note that when a timeout is returned, we also do not know the outcome of the
verification query.

2.3 Methods of Robustness Verification

In this work, we limit ourselves to only considering complete verification. We leave similar
studies on incomplete methods to future work.

The verification problem can be viewed from different angles and thus solved by dif-
ferent methods and approaches, of which we will discuss the most prominent methods.
Most available complete verification methods do not support every type of neural network
architecture and activation function, with most only supporting the ReLU activation func-
tion [Kön+23]. Note that it is possible to simplify networks to allow more neural network
verification methods to be used, by applying transformations that preserve semantics on
the operation graph of the network [SED21].

6
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2.3.1 Solver-based Methods

Feed-forward ReLU networks can be encoded as a conjunction of linear inequalities [LXL23],
which makes it possible to use SMT solvers to find a solution to the verification query.
Similarly, the problem can also be encoded as a mixed-integer program (MIP) — opening
the door to using highly optimised MIP solvers. Early work by Pulina et al. [PT10; PT11;
PT12] on using SMT solvers for complete verification was able to achieve state-of-the-art
results at the time, but verification of networks of realistic size within a reasonable time
limit remained an open problem. Katz et al. introduced Reluplex [Kat+17] and Marabou
[Kat+19], which both make use of the Simplex algorithm [Dan02] to scale verification to
larger networks. The use of SMT solvers is generally not scalable to large networks [PT12].

Building on Equation 2.1, the equation can be formulated as a minimisation problem.
Let λ(x) be the true class label for any x, and Xvalid ⊆ Dx be the domain of valid inputs,
and p a distance metric such as ℓ1, ℓ2, or ℓ∞. If Equation 2.2 can be solved, it will yield an
adversarial example.

min
x

∥x− x0∥p

s.t. argmaxi(fi(x)) ̸= λ(x0)

∥x− x0∥p ≤ ϵ

x ∈ Xvalid

(2.2)

In addition to making use of existing highly optimised commercial MIP-solvers, additional
techniques such as tighter formulations and presolving can be applied to further reduce
verification time [TXT19].

Cheng et al. [CNR17] and Lomuscio et al. [LM17] were among the first to show the potential
of MIP solvers in complete verification. Subsequent work [Dut+18; TXT19; Bot+20; FJ18]
successfully used MIP solvers to achieve new state-of-the-art results, being able to verify
both larger and more complex networks within reasonable time limits. Networks trained
in standard ways or of larger size however still remain problematic, with verification even
timing out with generous time limits [KHR22].

2.3.2 Branch-and-Bound Methods

Branch-and-Bound (BaB) [LD60] is a technique used for solving hard optimisation problems
where exhausting the entire search space would be intractable. In a nutshell, branch-and-
bound works by systematically splitting (branching) the original minimisation problem
into smaller subproblems, which form a rooted tree structure. During the procedure, the
global upper bound represents the current candidate for the global minimum. When the
lower bound of a subproblem becomes greater than or equal to the current global upper
bound, this branch is pruned (bounding). These steps of branching and bounding reduce
the size of the search space, which leads to efficient minimisation, since regions that cannot
lead to better solutions are not explored.

Equation 2.2 is one such minimisation problem that can be solved efficiently by using
the branch-and-bound paradigm. In the case of satisfiability problems, the global upper
bound can be initialised to 0. In the context of neural network verification, that means that
any branch with a lower bound greater than 0 cannot contain a counter-example, and thus
be pruned. The nature of the branch-and-bound algorithm leads to various design choices

7
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in the algorithm, such as the search strategy, branching rule and bounding method. The
lower bounds of the subproblems created during the branch-and-bound procedure can be
obtained using incomplete verification algorithms such as [Xu+21; Pal+21a; Pal+21b; Ehl17;
WK18; Sin+19]. Upper bounds are found using falsification algorithms, such as [Don+18;
Ehl17; Bun+20; Xu+21]. Different branching strategies include [Zha+18; Bun+18; De +21].

Compared to solver-based verification methods, neural network verification tools based on
the branch-and-bound paradigm are able to verify bigger neural networks in reasonable
time limits than solver-based approaches. In the 2022 edition of VNNCOMP [Mül+22] (see
Section 2.6), an annual neural network verification competition, the top three competitors
all used branch-and-bound techniques in their implementations.

2.3.3 Set Representations

The set of valid inputs Xvalid for the network can be represented in different ways, which
can lead to more efficient verification. Different representations of these sets have their own
characteristics that may be able to solve a problem more efficiently in some cases compared
to other set representations. Set representations that have been studied include star-sets
[Bak21], zonotopes [Geh+18; Sin+18; Bak21], polyhedra [Sin+19; Zha+18] and (error-based)
symbolic interval propagation [Wan+18a; Wan+18b; HL20; Bot+20; KBS22].

2.4 Automated Algorithm Configuration

2.4.1 Algorithm Configuration

Achieving peak performance of any given algorithm is important for many different
practical or economical reasons. To obtain this peak performance, algorithms often require
that their hyperparameters are configured to suit the specific problem scenario at hand.
The process of algorithm configuration (AC) (or hyperparameter tuning) however, can be a very
complex and undesirable task to do by hand for a number of reasons:

• Requires extensive domain knowledge;

• potentially large number of hyperparameters to configure;

• irreproducible, tedious and error-prone process.

Because of these problems, many different hands-off, automated approaches for algorithm
configuration have been proposed.

In the problem of algorithm configuration, we have four distinct elements: a target al-
gorithm A, its hyperparameter search space Θ, a set of problem instances Π and a cost
metric that measures the performance of a hyperparameter configuration on an instance:
c : Θ×Π → R. We want to find a hyperparameter configuration θ∗ ∈ Θ that minimises the
cost metric across all instances in Π, see Equation 2.3

θ∗ ∈ arg min
θ∈Θ

∑
π∈Π

c(θ, π) (2.3)

In general, algorithm configuration methods are first given a set of training instances in the
offline phase. These instances are used by the algorithm configuration method to produce
a hyperparameter configuration, see Figure 2.2. The new configuration can then be used in

8



2.4. AUTOMATED ALGORITHM CONFIGURATION CHAPTER 2. BACKGROUND

Instance π, Configuration θ

Cost c(θ,π)

Configurator Target Algorithm

Configuration θ*

Instances ΠHyperparameter Space Θ

Figure 2.2: Schematic illustration of the Algorithm Configuration procedure. The configurator takes
as input a hyperparameter space Θ and a set of instances Π. By observing the cost of the target
algorithm using different configurations, the configurator tries to find the configuration θ∗ that has
the best performance.

the online phase, where the expectation is that the performance during the offline phase
will generalise to previously unseen instances.

2.4.2 Methods for Algorithm Configuration

By performing random or grid searches over the hyperparameter search space Θ, the
process of finding the best-performing hyperparameter configuration can be naively auto-
mated. However, conducting the search for hyperparameter configurations in this manner
leads to an issue: a lot of time is spent evaluating hyperparameter configurations that are
not promising, leading to long running times and wasted resources. In practice the search
space of hyperparameters can have dozens of hyperparameters that impact performance,
making it increasingly difficult to justify the use of random and grid search methods for
such search spaces [YS20]. Hyperparameters can also affect each other or impose con-
straints on each other, which also plays a role. For example, hyperparameter x may only
be a valid hyperparameter in the search space if Boolean hyperparameter y is set to true.
Additionally, constraints can be imposed on the search space beforehand if it is known that
some hyperparameter configurations are nonsensical or lead to undefined behaviour in the
target algorithm.

The complex nature of the problem has led to the development of more sophisticated
methods that are able to more efficiently explore the hyperparameter search space. Such
methods can be broadly categorised into two categories [Sch+22]: model-free and model-
based methods. As the names suggest, the difference between the two is in whether they
make use of a learned model to gain insight into the performance of a hyperparameter
configuration.

In this work we use SMAC [HHL11; Lin+22], a model-based state-of-the-art framework

9
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for determining well-performing hyperparameter configurations. SMAC is a sequential
model-based optimisation (SMBO) approach, that defines a surrogate model ĉ(θ, π) whose
purpose is to approximate the cost metric c (see Eq. 2.3) as close as possible. By making use
of an acquisition function that picks a set of configurations to be evaluated by considering the
current approximation provided by ĉ, the resulting data from said evaluations can be used
to iteratively train the model and improve its approximation of the target function. In the
end, the knowledge gained about the performance of different configurations can be used
to provide a hyperparameter configuration that yields the best performance on the problem
instances. SMAC makes efficient use of random forests [Bre01] as the surrogate model and a
core Bayesian optimisation [SLA12] loop combined with aggressive racing [Hut+09]. It has
been shown SMAC can achieve state-of-the-art results on large hyperparameter spaces in
various domains, such as determining the feasibility of radio spectrum repackings [NFL18].

2.4.3 Portfolio Construction

While automated algorithm configuration methods alone can produce very well-performing
configurations, there is a problem: when only one configuration is given by the configu-
rator, this configuration may not perform well on every instance in the instance set. This
occurs when the instance set is not homogeneous, meaning different instances have different
“characteristics”. A configuration may perform well on one type of instance, but poorly on
another. If the configurator can only produce one single configuration, it may be impossible
to capture the heterogeneity of the instance set. To illustrate this, consider the following
hypothetical scenario:

• We have distinct instances A and B in our uniformly distributed instance set.

• The hyperparameter space for the target algorithm consists of two Boolean hyperpa-
rameters: x and y.

• If x is true: A is solved efficiently, B is not

• If y is true: B is solved efficiently, A is not

• x and y cannot both be true at the same time

An algorithm configuration procedure that returns one configuration could, in this case,
not find a configuration that performs well on the entire instance set and is thus forced to
choose which instance to optimise over. While this is a trivial example meant to illustrate
the problem, much more nuanced cases arise in real problems where similar situations of
one configuration not being able to cover all instances can happen.

To solve this issue, we can make use of methods that construct portfolios of configura-
tions. A portfolio of configurations is a collection of different configurations for one or
more target algorithms. The key idea of portfolios is that the different configurations and
algorithms in the portfolio each have distinct strengths that complement each other in
order to achieve better overall performance. Looking at the previously given hypothetical
example, we could create a portfolio P := {θ1, θ2}, where θ1 is a configuration with x set
to true and y set to false and θ2 the inverse. Because crafting such portfolios by hand
leads to the same problems as manual hyperparameter tuning, approaches for automated
portfolio construction have been proposed.

There are basically two ways in which a portfolio can be used: running the algorithms in
the portfolio in parallel or selecting an algorithm from the portfolio to run per instance.

10
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This work does not consider the latter, we are mainly interested in running the algorithms
in parallel. Parallel portfolios work by distributing the available resources to all algorithms,
which are run in parallel until one of the algorithms finds a solution to the verification
query. As previously stated, the outcome of a verification query should either be satisfiable
or unsatisfiable. Once one of the algorithms returns one of these answers, all other running
algorithms can be stopped as the answer to the verification query has been found. This can
lead to both a decrease or an increase in CPU time, as multiple algorithms are being run in
parallel.

A well-known approach for portfolio construction is Hydra [XHL10], which has been
proven to work in the context of MIP-based neural network verification [KHR22]. Hydra
is a greedy algorithm, whose main idea is scoring a configuration with its real score if it
performs better than the portfolio on the current instance, but with the cost of the portfolio
if it performs worse. Potential configurations are thus scored only by how much they
improve the current portfolio leading the configurator to optimise for instances on which
the current portfolio does not yet perform well.

Hydra systematically constructs portfolios as follows: Let Pi be the portfolio after iter-
ation i, with P0 := {} being the empty portfolio. At iteration 1, we run a configurator to
obtain the first configuration θ1 which is added the the portfolio, resulting in P1 := {θ1}.
After the first iteration, the performance metric is updated as follows: if the incumbent
configuration performs worse than the portfolio on an instance, it is instead scored with the
performance of the portfolio. After each iteration, the performance of the new configura-
tion(s) is evaluated and the portfolio is updated according to a portfolio updating strategy,
resulting in a new portfolio Pi = Pi−1 ∪ {θ1, . . . , θn}.

2.5 Neural Network Verification Standards

To verify properties on a neural network we need two things: a network and a property. The
lack of standard formats for networks and properties has been an issue in neural network
verification in the past, but efforts to establish standard formats for networks and properties
have been made recently by initiatives such as VNNCOMP [Mül+22].

2.5.1 ONNX

For networks, the ONNX [BLZ+23] format has been proposed as the default format. ONNX
aims to create an open format for machine learning models, such as neural networks,
but also more traditional machine learning models. Definitions for creating an extensible
computational graph are given, whose operators can be used across different frameworks.
This flexibility and active ecosystem that supports conversion for many common formats
makes it a suitable option to standardise the network formats in neural network verification.

2.5.2 VNN-LIB

The format proposed for properties is VNN-LIB [Gui+23], which builds upon the ONNX
and SMT-LIB [BFT16] formats. VNN-LIB provides support for the most common opera-
tions used in ONNX networks and the common networks in neural network verification
literature. It is heavily inspired by the SMT-LIB format, an established language for spec-
ifying Satisfiability Modulo Theories (SMT) problems. A property in VNN-LIB consists
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of a pre-condition that encodes the bounds of an input space and a post-condition that
defines the “safe-zone” in which the outputs should land. VNN-LIB is a good candidate to
standardise input formats, due to its interoperability with ONNX and making use of the
well-known SMT-LIB format.

2.6 VNNCOMP

VNNCOMP [Mül+22] is an annual neural network verification competition which aims
to bring together tools and research concerning neural network verification as well as
benchmark the existing state-of-the-art. The competition started in 2019 and has success-
fully managed to bring in competitors, push standard formats, and establish a variety of
interesting benchmarks to be studied. Varied benchmarks have been proposed by different
authors to be studied in VNNCOMP, ranging from easy to very hard benchmarks that
represent different domains in which neural network verification can be applied. This
collection of benchmarks, as well as the reproducibility of the results on said benchmarks,
makes them an interesting choice to benchmark our own methods on and compare the
results.
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Chapter 3

Related Work

3.1 Algorithm Configuration in SAT Solving

An area of research that faces a lot of the same challenges as neural network verification is
that of satisfiability solving (SAT solving). Both are NP-complete problems that try to state
if a formula (or property) is satisfiable, which is why many of the algorithm techniques
applied to SAT solving make sense to use for neural network verification.

One of the ways that make solving NP-complete problems such as SAT feasible is the
use of heuristics. Over the last decades (the first SAT-solving algorithms date back to
the 1960s), many different heuristics have been developed and improved upon, making
it feasible to solve larger and larger instances. An important insight here is that some
heuristics work well on some types of instances, while other heuristics work better on
other instances. This is why finding a good configuration for a SAT solver is important; a
heuristic that does not suit the given problem instances may perform very poorly. Methods
for algorithm configuration such as Hydra (Section 2.4.3) were initially developed with the
intent of improving SAT-solving performance. Previously discussed approaches to tackling
neural network verification such as MIP (Section 2.3.1) and BaB (Section 2.3.2) have been
extensively researched in the context of SAT solving, yielding many high-performance
solvers, insights, and ideas that can be leveraged for improving neural network verification.

3.2 Automated Algorithm Configuration in NNV

Work on automated algorithm configuration in the context of neural network verification is
sparse. While most neural network verification tools come with a number of performance-
relevant hyperparameters, these hyperparameters are usually not the focus of the study.
Consequently, the configurations used in most studies are defaults or produced by hand.

König et al. [KHR22] showed the effectiveness of automated algorithm configuration
and portfolio construction for MIP-based neural network verification tools. While their
work shows very promising results, there is still room for improvement. The study only con-
sidered MIP-based verification tools, which are by now no longer state-of-the-art. Moreover,
only the hyperparameters of the embedded MIP solver were configured. Tools themselves
can also have hyperparameters that are relevant to performance. The portfolios constructed
consisted of one verification tool with different configurations, but portfolios can contain
more than one verification tool which could lead to an improvement in performance as
verification tools have different characteristics. Further work by König et al. [Kön+23]

13



3.3. NEURAL NETWORK VERIFICATION SYSTEMS CHAPTER 3. RELATED WORK

on CPU-based neural network verification revealed that verification tools exhibit a strong
complementarity, further strengthening the case for the use of mixed algorithm portfolios.

3.3 Neural Network Verification Systems

DNNV [SED21] is a framework aimed at reducing the burden on users, developers and
researchers doing neural network verification. By standardising in- and output formats,
simplifying neural network operations and providing further utilities for convenience,
DNNV is closely related to the tool we propose in this work. However, there are some key
differences:

• Hyperparameters cannot be configured through DNNV.

• Recent state-of-the-art tools are not available, such as those using GPU resources.

• At the time of writing, DNNV is infrequently updated and/or maintained.

Goose [Sco+22] is a meta-solver that combines three techniques: algorithm selection, proba-
bilistic satisfiability inference and time iterative deepening. By combining different veri-
fication tools with the aforementioned techniques, Goose is able to achieve speedups in
verification time. At the time of writing, however, there is no public implementation of
Goose available. Furthermore, Goose does not tune the hyperparameters of the verification
tools that are used.
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Chapter 4

Auto-Verify

4.1 Overview

As neural network verification in isolation is already a very challenging problem, it is our
vision that it should not be made even more difficult by having to deal with numerous
technical, often time-consuming challenges. Some of the most notable which we aim to
address are:

• No support for algorithm configuration
Most verification tools expose a number of hyperparameters that impact performance.
However, determining the right hyperparameters to use for a particular set of in-
stances is very hard since in-depth expert knowledge of said hyperparameters is
required to make the proper changes. Since verification tools can have many dozens
of hyperparameters to configure, exhaustively traversing the search space is infeasible.
Selecting the right hyperparameter configuration for a scenario is important, as this
can have a big impact on performance.

• Selecting the right verification tool
As shown by König et al. [Kön+23], there is not a single verification tool that performs
the best across all problem instances, indicating that selecting the right verification
tool is important. Given arbitrary problem instances, it is not clear how to select this
optimal verification tool without doing manual experimentation or having expert
knowledge. While DNNV [SED21] has addressed this issue, it does not provide the
level of control we need for using algorithm configuration methods, and also differs
from Auto-Verify in other ways (see Section 3.3).

• No uniform interface
Verification tools each have their own interfaces to run the verification procedure. If
one wants to compare performance between one or more verification tools, this forces
them to write scripts to conform their experiments to each individual interface per
verification tool. Additionally, the verification tools may also not support the same
input and output formats.

• No support for (parallel) portfolios
There are no trivial ways to construct and run portfolios of (different) verification
tools, which can potentially lead to faster verification of properties.

• Varying installation procedures
Different verification tools have different requirements and installation methods,
again making installing verification tools a time-consuming process.
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To address these problems, we have created a user-friendly framework for neural network
verification, which includes the following main features:

• Python API to interface with various verification tools.

• Support for applying algorithm configuration and portfolio construction methods.

• Command line interface to install verification tools and manage environments for
said tools.

• Extensible to include new and/or custom verification tools.

• Open-source, documented, maintained and easily installable.

Auto-Verify is intended as an extensible framework for neural network verification which
provides support for algorithm configuration and parallel portfolios, while tackling many
of the difficulties associated with neural network verification.

To assure the quality of Auto-Verify, we have adhered to high software engineering stan-
dards. This includes strongly typed Python code, docstrings explaining the use of functions
and classes, and general use of best practices in software engineering. Furthermore, all
relevant parts of the code are extensively tested. Adding to this, we have also created a
continuous integration pipeline that executes both unit and integration tests each time code
is pushed to an important branch of the repository. The integration tests make sure that
Auto-Verify is properly working by creating a new Docker container1 and installing Auto-
Verify and the verification tools supported by Auto-Verify while checking if all procedures
finish without any errors.

In this chapter, we will first show and discuss the Auto-Verify Python API for verify-
ing properties on neural networks. Afterwards, we will show its capability to perform
algorithm configuration and parallel portfolio methods for neural network verification.

Note: Code examples shown in this chapter have various parts simplified or cut out for the sake of
clarity. Working examples can be found in the documentation.2

4.2 Verification

After using Auto-Verify to install a verification tool, Listing 1 shows how the Auto-Verify
API can be used to verify a local robustness property on a network using a specific verifica-
tion tool.
After supplying the network, property and verifier, we can get one of 4 possible outputs to
the verification process: SAT, UNSAT, TIMEOUT or ERR. While we stated in Section 2.2
that there are 3 possible outcomes in complete verification, in practice, programs can crash
during the verification of a property, which is given its own error result state. Additional
information that is reported are counter-examples (in VNNCOMP format3) in case of a
violated property and if supported by the verification tool, time used to verify the property,
and the output of the verification tool.

1https://www.docker.com/resources/what-container/
2https://ada-research.github.io/auto-verify/
3https://docs.google.com/document/d/1wdzF_WVME4XFqlg_ReCLavxwT5eX7h1OGPV16O21BGc/

edit
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$ pip install auto-verify
$ auto-verify install nnenum

from autoverify.verifier import Nnenum

network = "my_network.onnx"
prop = "my_propery.vnnlib"
verifier = Nnenum()

result = verifier.verify_property(network, prop)
print(result) # => SAT | UNSAT | TIMEOUT | ERR

Listing 1: Example of installing Auto-Verify, installing a verification tool (nnenum [Bak21] in this
case), and using nnenum to verify a property on a network.

4.2.1 Interface

All the available verification tools in Auto-Verify are classes that inherit from the same
abstract class which provides a public interface, see Figure 4.1. In general, it is assumed
that any verification tool implemented works via a command line interface (CLI). Since
a verification tool may be implemented in any arbitrary way, a CLI is a flexible and
generalising option. Internally, the flow of the verification process then goes as follows:

1. A verification problem instance, consisting of a network, property and timeout, is
given by the user.

2. If a configuration was also provided, this configuration is initialised by the child
class. This is necessary because verification tools often use their own mechanism for
managing configurations, so conversion between formats might need to happen.

3. Based on the verification instance and configuration, the CLI command is constructed
by the child class.

4. The base class enters the environment and contexts required to run the verification
tool and executes the CLI command, recording and returning the observed results.

The data returned after verification includes the verification result, seconds taken, counter
example (if SAT) and the tool output (stdout and stderr). To support using portfolios of
verification tools, it is possible to specify the number of resources a verifier is allowed to
use, specifically the number of CPU cores and the number of GPUs. This is required to be
able to distribute the resources of a machine among verification tools and allow them to be
used in parallel.

4.3 Algorithm Configuration

To apply algorithm configuration techniques and configure the hyperparameters of ver-
ification tools, we need a verification tool with its space of valid configurations, a set of
instances to train on and a configurator, see Listing 2.
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<Abstract>
Verifier

+ name:string
+ config_space:ConfigurationSpace

+ contexts:list[ContextManager] [0..1]

+ verify_instance(instance, config):VerificationResult
+ sample_config():Configuration

- run_verification(run_cmd):VerificationData
- get_run_cmd(instance, configuration):tuple[str, Path | None]

- parse_result(output, result_file):VerificationResultStr
- init_config(instance, config):Configuration | Path

MyVerifier

+ name:string
+ config_space:ConfigurationSpace

+ contexts:list[ContextManager] [0..1]

- get_run_cmd(instance, configuration):tuple[str, Path | None]
- parse_result(output, result_file):VerificationResultStr

- init_config(instance, config):Configuration | Path

Figure 4.1: UML diagram of the abstract “Verifier” class and a child verifier class that inherits from
it. Public methods are denoted with a “+”, and private methods with a “-”. All of the available
verification tools in Auto-Verify inherit from this class, which allows for the creation of new verifier
classes that are compatible with Auto-Verify.
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from autoverify.verifier import AbCrown
from autoverify.tune import smac_tune_verifier
from autoverify.instances import read_vnncomp_instances

verifier = AbCrown()
instances = read_vnncomp_instances("mnist_fc")
time_limit = 60 * 60 * 8 # 8 hours

config = smac_tune_verifier(verifier, instances, time_limit)
print(config)

Listing 2: Code example of configuring the hyperparameters of a verifier (α,β-CROWN in this case)
on a set of instances for 8 hours, using SMAC as the configurator. The process returns the best
configuration SMAC was able to find, which can then be used (passed as an argument) to verify
properties as shown in Listing 1.

Table 4.1: Number of hyperparameters, conditions and forbiddens used in Auto-Verify for each of
the 4 included neural network verification tools.

α,β-CROWN nnenum VeriNet Oval-BaB
Hyperparameters 14 24 25 40
Conditions 6 2 0 0
Forbiddens 2 1 0 0

Since our work builds upon the study by König et al. [KHR22] (which uses SMAC as the
configurator), we have created hyperparameter spaces that are compatible with SMAC
[HHL11; Lin+22], which uses the ConfigurationSpace [Lin+19] package for representing
hyperparameter spaces. For each of the verifiers that are included by default in Auto-Verify
we made hyperparameter spaces to the best of our abilities, see Tables 4.1, A.1, A.2, A.3 and
A.4. As visible from Table 4.1, ConfigurationSpaces consist of three main elements:

• Hyperparameters

• Conditions

• Forbiddens

hyperparameters are, as the name implies, named values that can have an impact on perfor-
mance. Their values can either be categorical (finite number of choices) or be sampled from
a numerical interval of valid values. An example of a categorical hyperparameter could be
Nnenum’s branching strategy, which has four valid values: Split Largest (0), Split One Norm
(1), Split Smallest (2) and Split Inorder (3). An example of a numerical hyperparameter range
is α,β-CROWN’s BaB-Cut-Learning Rate, which can take any value inside the interval [0, 1].

Conditions and forbiddens can impose additional constraints on the hyperparameter space. A
condition determines whether a hyperparameter is active or not, for example: α,β-CROWN’s
PGD-Attack Mode hyperparameter is only valid if PGD-Attack Order is not set to Skip. For-
biddens are used to make combinations of hyperparameters invalid. For example, Nnenum’s
Split Order hyperparameter cannot be in {0, 1, 2} if the Eager Bounds hyperparameter is set
to False.
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While the hyperparameters, conditions and forbiddens make it possible to express a large
part of the hyperparameter space, one of the design choices behind ConfigurationSpace is
that each hyperparameter space must be serialisable. This means that it becomes impossi-
ble to express certain constraints within our hyperparameter space, leading to the space
becoming larger than it should be. Another limitation of the hyperparameter spaces we
made is that they are not as accurate as they could be due to the valid space of hyperpa-
rameters not being strongly defined or documented. It is infeasible to analyse the entire
codebase of a verification tool to find all possible conflicts, ranges, values and quirks of
hyperparameters. This can lead to the space of possible hyperparameter configurations
containing invalid configurations that crash the verification tool. These challenges further
highlight the difficulties that come with adopting algorithm configuration techniques in
the context of neural network verification.

Although the representation of the hyperparameter spaces might not be perfect, SMAC can
negate this issue to some extent. If the process is started with an illegal configuration it
should crash relatively quickly. SMAC treats crashed runs differently by setting their cost
to infinity, which should steer the configuration process away from further exploring that
part of the hyperparameter search space.

4.4 Portfolios

Portfolios in Auto-Verify are separated into two parts: automatically creating portfolios
and running portfolios in parallel.

4.4.1 Automatic Portfolio Construction

Auto-verify provides built-in support for constructing portfolios of verification tools using
the Hydra algorithm (see Section 2.4.3). Hydra should take as input a number of available
verification tools, the instances the portfolio should be constructed for and output a portfolio
of one or more (configured) verification tools. An example of how this can be done in
Auto-Verify is shown in Listing 3. The PortfolioScenario object takes more arguments
that further specify how Hydra should work, for a full list of these options we refer to the
Auto-Verify documentation.
In each iteration of the Hydra algorithm, two important things need to happen. First, a
verification tool must be selected and secondly, this verifier should be configured further
on the instances. There are two approaches to this:

• Make one big ConfigurationSpace that includes the verification tool and its hyperpa-
rameters. Meaning there is a parent hyperparameter that determines the verifier that
will be used.

• Split the Hydra iteration into two isolated parts: selecting a verification tool and
configuring its hyperparameters.

Because the individual range of valid configurations for the verification tools is already
quite large, we opted to pick the second approach: splitting each Hydra iteration into a
selection and configuration part. A hyperparameter that determines the time spent on each
of these two parts, α ∈ [0, 1], is exposed. The fraction of time spent on selecting a verifier is
given by 1−α, and the fraction of time spent configuring is given by α. During the selection
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from autoverify.portfolio import Portfolio, PortfolioScenario, Hydra
from autoverify.instances import read_vnncomp_instances

instances = read_vnncomp_instances("mnist_fc")
pf_scenario = PortfolioScenario(

["nnenum", "abcrown", "ovalbab", "verinet"],
instances,

)

hydra = Hydra(pf_scenario)
portfolio = hydra.tune_portfolio()

portfolio.to_json("example_pf.json")

Listing 3: Example of how to automatically construct a portfolio of verification tools in Auto-Verify,
using the Hydra algorithm, on the mnist_fc dataset with four possible verification tools. The
resulting portfolio is serialisable and can be exported to different formats.

stage, SMAC is given a ConfigurationSpace containing only the verification tools passed as
input in the PortfolioScenario (see Listing 3). SMAC is then used to configure this single
hyperparameter, making it select one of them. After one has been selected, the hyperpa-
rameters of the verification tool are then configured using SMAC. We assume here that the
performance of the default configuration of a verification tool provides an indication of its
performance after configuring the hyperparameters. If the best-performing configuration
can only be found after first selecting a verification tool whose default configuration does
not perform well, this approach will not be able to find that configuration.

Another consideration when setting up the scenario for portfolio construction is the al-
location of available resources. The current default strategy used by Auto-Verify is to
divide the number of CPU cores equally across all verification tools in the portfolio and
give each GPU-based verifier 1 GPU. It should be specified in the scenario if a verification
tool needs a GPU. This way all the CPU cores and GPUs in the machine can be fully utilised.

The portfolios used in Auto-Verify are serialisable, meaning they can be exported to and
read from different formats. This allows portfolios to be shared and stored for further
usage.

4.4.2 Parallel Portfolio Execution

After the portfolio has been constructed, Auto-Verify also provides interfaces for executing
the portfolio in a fully parallel fashion, see Listing 4.
As discussed in Section 2.4.3, the procedure for running a parallel portfolio of verification
tools works as follows:

1. Each verification tool in the portfolio is launched in parallel on the same verification
instance. All verification tools are assigned unique CPU cores and GPUs to run their
verification procedures on.
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from autoverify.portfolio import Portfolio, PortfolioRunner
from autoverify.instances import read_vnncomp_instances

instances = read_vnncomp_instances("mnist_fc")
portfolio = Portfolio.from_json("example_pf.json")

pf_runner = PortfolioRunner(portfolio)
pf_runner.verify_instances(instances, out_csv="results.csv")

Listing 4: Example of how to read and run a parallel portfolio of verification tools using Auto-Verify.
Every verification tool inside the portfolio is launched in parallel for each instance, once one of the
verification tools solves the instance (or a timeout is reached) the entire portfolio moves on to the
next instance. Results are accumulated into a CSV file.

2. If one of the verification tools finds that the property is (un)satisfiable the instance is
considered solved and the procedure moves on the the next instance.

3. If every verification tool times out, the instance is treated as a timeout and the
procedure moves on to the next instance.

By running all the verification tools in parallel, we ensure that the strength of each (config-
ured) verification tool is leveraged. Note that is also possible to select a verification tool for
each instance, which will free up additional resources for this verification tool since it does
not have to share with the verification tools in the portfolio. This approach has been shown
to work well in MIP contexts [Xu+11], but is outside the scope of this thesis.

4.5 Available Verification Tools

Auto-Verify currently supports the four verification tools listed below out of the box. These
were selected based on their support for the ONNX and VNNLIB formats, their vast
configuration space, being open-source, and their performance in VNNCOMP 2022.

α,β-CROWN [Zha+18; Xu+21; Wan+21; Zha+22] α,β-CROWN is a neural network verifi-
cation tool that is based on the linear bound propagation framework. It combines
different methods into one: CROWN [Zha+18] and α-CROWN [Xu+20] for optimising
intermediate bounds, β-crown [Wan+21] for branching and bounding, GCP-CROWN
[Zha+22] as a cutting-plane method, and MIP formulations for smaller networks.
α,β-CROWN supports a large range of network architectures, is GPU optimised and
won the 2021 and 2022 editions of VNNCOMP.

nnenum [Bak21] Nnenum is a CPU-based verification tool that implements efficient path
enumeration by making use of star set overapproximations [Tra+19], the ImageStar
[Tra+20b] method, and parallelised RELU-case splitting [Bak+20].

VeriNet [HL20; HL21] VeriNet is a symbolic interval propagation-based neural network
verification tool. By using symbolic interval propagation to create linear abstractions
of networks, LP solvers can be used to find solutions. VeriNet further uses a branch-
and-bound phase to achieve completeness and implements further optimisations
such as gradient-based local search, optimal relaxations and node splitting. VeriNet
supports a wide array of activation functions and can make use of the GPU.
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OVAL-BaB [Bun+18; Bun+20; Pal+21a; Pal+21b; Pal+21c] OVAL-BaB uses a specialised
branch-and-bound framework for the verification of neural networks. Methods used
include various branching strategies such as FSB [Pal+21c], and different bounding
techniques such as β-crown [Wan+21] and active set [Pal+21a]. Counter-examples are
found using MI-FGSM [Don+18]. OVAL-BaB is GPU optimised.
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Chapter 5

Experiments

To assess the performance of parallel portfolios of verification tools constructed and exe-
cuted by Auto-Verify, we set up a number of experiments on existing benchmarks from the
neural network verification literature. The following sections will explain our choices and
detail the experimental setups.

5.1 Benchmarks

To study the effectiveness of parallel portfolios, we selected three well-studied and broadly
supported benchmarks. The main criteria we used to select these benchmarks were their
support for verification tools that are included by default in Auto-Verify, and if they had
been used in existing studies on neural network verification, to ensure that verification
algorithms are actually tested and studied on these networks. Note that not all verification
tools support all types of operations used in neural networks, with most only supporting
RELU-based networks [Kön+23]. Using these criteria, we selected the following three
benchmarks:

• MNIST
We took 25 networks trained on the MNIST [Den12] dataset from existing neural
network verification literature, and 100 local robustness properties (ϵ = 0.012) for
each network, leading to a total of 2500 verification instances. Each instance has a
5-minute timeout.

• CIFAR
From the existing literature on neural network verification, we selected 33 networks
trained on the CIFAR-10 [KH09] dataset. Similar to the MNIST benchmark, we used
100 local robustness properties (ϵ = 0.012) for each network, which created 3300
verification instances in total. Each instance has a 5-minute timeout.

• TLL Verify Bench
TLL Verify Bench is a benchmark that consists of Two Level Lattice [FKS22] networks,
which are networks that adhere to a certain architecture that favours verifiability.
The benchmark contains 32 TLL networks and 32 local robustness properties (1 per
network), totalling 32 verification instances. Each instance has a 10-minute timeout.
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5.2 Experiments

To determine the performance of parallel portfolios of verification tools, we compare their
running times against running four individual verification tools: α,β-CROWN, Oval-BaB,
nnenum, and VeriNet. Both the portfolio and individual verification tools get access to
all resources of a single compute node, during which we measure in wall-clock time how
long it takes to solve each instance in the benchmark. While work by König et al. [KHR22;
Kön+23] measured CPU-time, the verification tools we experiment with also make use
of the GPU (except nnenum). To compare the performance of the verification tools and
parallel portfolios, we give each full access to all the hardware on a node and measure
performance in wall-clock time. Two types of parallel portfolios constructed by Hydra are
tested:

• Portfolio of verification tools with their default configurations

• Portfolio of configured verification tools

As described in Section 4.4.1, a hyperparameter α was introduced to control the amount
of time Hydra spends on selecting and configuring a verification tool each iteration. For
constructing the portfolios of verification tools with default configurations α is simply set
to 0, meaning Hydra spends all its budget each iteration on selecting a verifier to add to
the portfolio. For constructing portfolios of configured verification tools, α is set to 0.9,
indicating that 90% of the budget is spent on configuring the verification tool that could
be added to the portfolio, and 10% was spent on selecting this verification tool from the
available candidates. Note that we do not have the resources to determine the optimal value
for α, but went for a rather large value of α as the hyperparameter space of a verification
tool is a significantly larger search space than choosing from a number of verification
tools (four options in the case of our experiments). Future work could study the effect
α has on the portfolio construction procedure by studying how much time the selection
and configuration phases both need compared to each other to find the best-performing
verification tool or configuration and if this has a significant impact on performance.

5.3 Evaluation

Our evaluation is centred around two key concepts: The speed at which instances are
solved and the fraction of solved instances. To get an accurate picture of these two metrics,
we:

• Compute the sum, mean and median of the running times over all instances (where
timeout values are used if an instance times out, see Section 5.1 for exact values);

• report the fraction of solved, timed out and crashed instances;

• plot an Empirical Cumulative Distribution Function (ECDF) plot, which shows an
estimate for the distribution of solving times for the different verification tools and
parallel portfolios.

Runs on verification instances inside the configurator were scored with wall-clock time.
Following best practices in algorithm configuration literature, runs that time out are pe-
nalised by multiplying the cost by some factor k. Conforming with the existing literature
on algorithm configuration, we use k = 10, meaning if a run times out at 300 seconds, the
total cost becomes 300 ∗ 10. This cost metric is referred to in the literature as penalised
average running time k; PAR10 in this case.
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5.4 Experimental Setup

Each evaluation, be that a parallel portfolio or individual verification tool, gets access to one
full compute node. The nodes we used in this study ran on CentOS Linux 7 and included
the following hardware:

• Intel Xeon E5-2683 CPU, 2.10 GHz, 32 cores

• 2x NVIDIA GeForce GTX 1080 Ti, 11 GB Memory

• 94 GB RAM

Hydra was given 24 hours per benchmark to construct a parallel portfolio. We used the
most up-to-date (as of September 2023) publicly available versions of all verification tools
we studied. For the configurator, we used SMAC3 version 2.0.2.

Once the portfolios were constructed they were run on the aforementioned benchmarks,
and their wall-clock running times and instance results were recorded. The results are
presented in the next section.
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Chapter 6

Results

This section shows and describes the outcome of our experiments. A detailed discussion
of the results can be found in Section 7. In the tables and figures, portfolios of verification
tools with their default hyperparameters are referred to as “Portfolio [D]”, and portfolios of
configured verification tools as “Portfolio [C]”.

As previously described, Hydra was given a budget of 24 hours for each experiment
to construct a parallel portfolio. We show the results per benchmark, where we show
ECDF plots containing the performance of the individual verification tools and the parallel
portfolios. Table 6.1 shows the composition of each portfolio and the fraction of instances
for each benchmark on which a verification tool was the fastest. Note that in portfolios
of verification tools with their default hyperparameters, the same verification tool cannot
appear twice, because it would be an exact duplicate, and thus have the same performance.
In the configured portfolios this is not the case, as the same verification tool with different
configurations will behave differently. Table 6.2 shows the number of instances on which
a verification tool or portfolio produced errors that halted the verification process. In the
subsequent plots and tables, these errors are grouped with timeouts for simplicity.

Table 6.1: Contents of portfolios and the fraction of solved instances on which they were the fastest
for the MNIST (2500 instances), CIFAR (3300 instances) and TLL Verify Bench (32 instances) datasets.

MNIST CIFAR TLL
Portfolio [D] Frac. Fastest Portfolio [D] Frac. Fastest Portfolio [D] Frac. Fastest
nnenum 0.898 α,β-CROWN 0.465 nnenum 0.591
Oval-BaB 0.093 Oval-BaB 0.340 α,β-CROWN 0.318
α,β-CROWN 0.009 nnenum 0.196 Oval-BaB 0.091
Portfolio [C] Frac. Fastest Portfolio [C] Frac. Fastest Portfolio [C] Frac. Fastest
nnenum 0.917 α,β-CROWN-1 0.494 α,β-CROWN 0.455
Oval-Bab 0.083 α,β-CROWN-2 0.470 nnenum 0.409

nnenum 0.037 Oval-BaB 0.136
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Table 6.2: Fraction of instances for the MNIST (2500 instances), CIFAR (3300) instances and TLL
Verify Bench (32 instances) on which the verification tools or portfolios produced errors that halted
verification.

MNIST CIFAR TLL
Verification Tool Frac. Errors Verification Tool Frac. Errors Verification Tool Frac. Errors
nnenum 0.000 nnenum 0.818 nnenum 0.344
Oval-BaB 0.000 Oval-BaB 0.000 Oval-BaB 0.000
α,β-CROWN 0.000 α,β-CROWN 0.089 α,β-CROWN 0.000
VeriNet 0.081 VeriNet 0.223 VeriNet 0.025
Portfolio [D] 0.000 Portfolio [D] 0.130 Portfolio [D] 0.000
Portfolio [C] 0.000 Portfolio [C] 0.245 Portfolio [C] 0.281

6.1 MNIST

Table 6.3, and Figures 6.1 and 6.2 show the results on the MNIST dataset. The portfolio of
verification tools with default configurations performs the best, achieving the best score in
all categories. This is also visible from the ECDF plot, where all the graphs for the individual
verification tools are largely contained inside the portfolio graph. Out of the individual
verification tools, α,β-CROWN performs the best, followed by nnenum. Both Oval-BaB
and VeriNet perform significantly worse. Compared to the best individual verification
tool, the parallel portfolio achieved a speedup by a factor of 1.5 in terms of total time, and
reduced the number of timeouts by a factor of 1.08. From Table 6.1 we can see that in close
to 90% of solved instances, nnenum was the fastest. Table 6.2 shows that VeriNet was the
only verification tool that produced errors on the MNIST dataset, on 8.1% of the instances.

The constructed portfolio of configured verification tools contained a configuration for
nnenum and Oval-BaB, see Table 6.1. From the data we can see that the configured parallel
portfolio performs worse than the unconfigured portfolio, having a higher total time and
more timeouts than the unconfigured portfolio. Performance decreased by a factor of 0.92,
timeouts by a factor of 0.95, and on more than 90% of the solved instances, nnenum was
the fastest.

Table 6.3: Aggregated measures of individual verifiers and parallel portfolios on the MNIST
dataset (2500 instances). “Portfolio [D]” is the portfolio with verification tools and their default
configurations, “Portfolio [C]” is the portfolio with configured verification tools.

Verifier Total (s) Mean (s) Median (s) Timeouts
nnenum 59715 23.9 2.6 141
α,β-CROWN 55210 22.1 9.4 99
Oval-BaB 369441 147.8 8.0 1199
VeriNet 146234 58.8 11.1 370
Portfolio [D] 36929 14.8 2.5 92
Portfolio [C] 40024 16.0 2.5 104
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Figure 6.1: ECDF Plot of individual verification tools and two parallel portfolios showing the
fraction of solved instances on the MNIST benchmark (2500 instances). The parallel portfolios were
constructed using the Hydra algorithm. “Portfolio [D]” is the portfolio with verification tools and
their default configurations, “Portfolio [C]” is the portfolio with configured verification tools
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Figure 6.2: ECDF Plot of the portfolio of default configurations and the configured portfolio,
showing the fraction of solved instances on the MNIST benchmark (2500 instances). Portfolios were
constructed with Hydra (α = 0.9). “Portfolio [D]” is the portfolio with verification tools and their
default configurations, “Portfolio [C]” is the portfolio with configured verification tools.

6.2 CIFAR

Table 6.4, and Figures 6.3 and 6.4 show the results on the CIFAR dataset. Similar to MNIST,
the parallel portfolio of verification tools with default configurations performs the best
on each metric. The speedup factor over the best individual verification tool, once again
α,β-CROWN, is 1.1. The number of timeouts compared to the best individual verification
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tool was reduced by a factor of 1.12. The margin between the parallel portfolio and α,β-
CROWN on the CIFAR dataset is smaller than on the MNIST dataset. As visible from Table
6.1, α,β-CROWN is the fastest verification tool on the majority of solved instances (46.5%),
but not by a large margin. The other two verification tools are the fastest on a significant
fraction of the solved instances as well (Oval-BaB on 34% and nnenum on 19.6%). From
Table 6.2, we can see that Oval-BaB was the only verification tool that did not produce any
errors on the CIFAR dataset. We can see that most verification tools produce a significant
amount of errors on the CIFAR dataset, with the highest being nnenum, which produced
errors on 81.8% of instances.

Contained in the portfolio of configured verification tools were two configurations for
α,β-CROWN and one configuration for nnenum (see Table 6.1). The performance of the
configured portfolio is noticeably worse than the unconfigured portfolio, with the number
of timeouts increasing by a factor of 1.88 and total time by a factor of 1.74. Both α,β-
CROWN configurations solved close to the same fraction of instances in the fastest time,
with the nnenum configuration only solving 3.7% of instances the fastest.
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Figure 6.3: ECDF Plot of individual verification tools and two parallel portfolios showing the
fraction of solved instances on the CIFAR benchmark (3300 instances). The parallel portfolio were
constructed using the Hydra algorithm. “Portfolio [D]” is the portfolio with verification tools and
their default configurations, “Portfolio [C]” is the portfolio with configured verification tools.
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Table 6.4: Aggregated measures of individual verifiers and parallel portfolios on the CIFAR dataset
(3300 instances). “Portfolio [D]” is the portfolio with verification tools and their default configura-
tions, “Portfolio [C]” is the portfolio with configured verification tools.

Verifier Total (s) Mean (s) Median (s) Timeouts
nnenum 814942 246.9 300.0 2701
α,β-CROWN 168240 51.0 7.6 482
Oval-BaB 631454 191.3 300.0 2072
VeriNet 394956 119.7 11.1 1237
Portfolio [D] 152958 46.4 8.1 430
Portfolio [C] 265894 80.6 8.2 808
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Figure 6.4: ECDF Plot of the portfolio of default configurations and the configured portfolio,
showing the fraction of solved instances on the CIFAR benchmark (3300 instances). Portfolios were
constructed with Hydra (α = 0.9). “Portfolio [D]” is the portfolio with verification tools and their
default configurations, “Portfolio [C]” is the portfolio with configured verification tools.

6.3 TLL Verify Bench

Table 6.5, and Figures 6.5 and 6.6 show the results on the TLL Verify Bench dataset. This
time, the portfolio of configured verification tools has the best performance, although only
by a factor of 1.007 compared to the best individual verification tool. The number of time-
outs remained the same. Performance between verification tools for this benchmark is a lot
closer compared to the MNIST and CIFAR benchmarks, which is also due to the fact the
benchmark has only 32 instances. Regardless, the portfolio is able to leverage the fact that a
single verification tool is not the fastest on every instance, even on a smaller benchmark,
since the total verification time is still lower compared to running one verification tool.
Table 6.1 confirms this, where we can see that all three verification tools contribute to being
the fastest on at least a couple of instances. In Table 6.2 we can see that nnenum and
Portfolio [C] both produce a large number of errors on the TLL Verify Bench dataset, while
the other verification tools do not produce any errors.
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The portfolio of configured verification tools contained a configuration for α,β-CROWN,
nnenum and Oval-BaB (see Table 6.1). The configured portfolio was able to slightly improve
over the unconfigured portfolio in total time but still had an equal amount of timeouts.
Out of the verification tools in the portfolio (see Table 6.1), α,β-CROWN was the fastest on
45.5% of solved instances followed closely by nnenum on 40.9% of instances, Oval-BaB was
the fastest on 13.6% of the solved instances. We can see in Table 6.2 that nnenum, VeriNet,
and Portfolio [C] produced errors.

Table 6.5: Aggregated measures of individual verifiers and parallel portfolios on the TLL Verify
Bench dataset (32 instances). “Portfolio [D]” is the portfolio with verification tools and their default
configurations, “Portfolio [C]” is the portfolio with configured verification tools.

Verifier Total (s) Mean (s) Median (s) Timeouts
nnenum 6822 213.2 20.1 11
α,β-CROWN 6213 194.2 9.6 10
Oval-BaB 6865 214.5 19.0 11
VeriNet 12715 397.4 600.0 15
Portfolio [D] 6188 193.4 9.7 10
Portfolio [C] 6169 192.8 8.1 10
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Figure 6.5: ECDF Plot of individual verification tools and two parallel portfolios showing the
fraction of solved instances on the TLL Verify Bench benchmark (32 instances). The parallel portfolio
were constructed using the Hydra algorithm. “Portfolio [D]” is the portfolio with verification tools
and their default configurations, “Portfolio [C]” is the portfolio with configured verification tools.
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Figure 6.6: ECDF Plot of the portfolio of default configurations and the configured portfolio, showing
the fraction of solved instances on the TLL Verify Bench benchmark (32 instances). Portfolios were
constructed with Hydra (α = 0.9). “Portfolio [D]” is the portfolio with verification tools and their
default configurations, “Portfolio [C]” is the portfolio with configured verification tools.
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Chapter 7

Discussion

Our results confirm the findings of prior work by König et al. [KHR22; Kön+23] that there
is not one single verification tool that dominates all others on every instance. While the
degree of complementarity varied per benchmark, combining the verification tools in a
principled way always led to an improvement in the total time spent on verification and
almost always to an improvement in the number of solved instances.

On the MNIST, CIFAR and TLL Verify Bench benchmarks we were able to achieve improve-
ments in total time by factors of 1.5, 1.1, and 1.007 respectively. The timeouts were reduced
by factors of 1.08 and 1.12 on the MNIST and CIFAR benchmarks, while the timeouts on
the TLL Verify Bench stayed the same. These improvements were from running portfolios
of default configurations in parallel, and thus do not require much additional effort or
resources to perform. Our configuration procedures never ended up selecting VeriNet to be
in the parallel portfolios. This indicates VeriNet is often outperformed by one of the other
three verification tools, indicating there is little to no complementarity with the other three
verification tools we used. The usefulness of parallel portfolios seems to grow with the size
and diversity of benchmarks because this is where the complementarity of a portfolio can
be maximally exploited.

Despite this, automatically configuring the verification tools still poses a significant chal-
lenge. From our experiments, the main factors contributing to the difficulty of the problem
were the following three:

• Long running times

• Heterogeneous instances

• Error-prone verification tools

Even though we limited our timeouts to 5-10 minutes per instance, this still means the
process of configuration might take a long time if benchmarks have thousands of instances.
Adding to this, instances are often heterogeneous which makes it difficult to assess the
performance of a configuration after only evaluating a subset of all instances. This is also
why we think the parallel portfolio of configured verification tools can turn out to be worse
than the default configurations; the configurator can make incorrect judgements about the
performance of a configuration if the budget does not allow for each configuration to be
evaluated on all instances.
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Other problems that we encountered were of a more technical nature. Verification tools of-
ten return (undefined) errors when trying to automatically configure their hyperparameters.
The space of valid hyperparameters was not strongly defined for any of the verification
tools we used, and can also depend on the instance (e.g. certain hyperparameters only work
for certain network architectures). For example, by sampling random configurations for
α,β-CROWN and using these configurations on randomly sampled instances of the MNIST
benchmark, we found that in 30% of all cases α,β-CROWN would produce an undefined
error. Having to consider these factors meant that within our available resources, achieving
meaningful performance improvements proved very difficult. Furthermore, we can see
from Table 6.2 that benchmarks can sometimes be largely unsupported by verification tools.
For example, nnenum produced errors on 81.8% of instances in the CIFAR dataset. Despite
this, nnenum was still selected to be in both portfolios, indicating that it performed well
on the instances that it did not crash on. The CIFAR dataset in particular seems to be the
least well-supported among the verification tools, with each producing a number of errors,
except for Oval-BaB. Having broader benchmark support for each verification tool would
also benefit the performance of portfolios of verification tools, as it would not exclude some
of the verification tools in the portfolio from being ran on some of the instances.

We think that verification tools would greatly benefit from strongly defining hyperpa-
rameter spaces, from both a performance and user-friendliness perspective. To achieve
the best performance in VNNCOMP, three out of the four verification tools in Auto-Verify
used a different configuration for each benchmark (all except nnenum), with α,β-CROWN
sometimes using multiple configurations per benchmark. This highlights the importance
the configurations have on maximising performance. While authors of verification tools
can use their expertise to create these configurations, users without the required domain
knowledge cannot. As discussed, attempting to find a well-performing configuration in
an automated fashion, is also challenging. The organisers of VNNCOMP also discussed
this issue in their report reflecting on the first three years of the competition [Bri+23]. They
acknowledge that tuning verification tools per benchmark or even per instance is problem-
atic and time-consuming when trying to adapt these verification tools to new problems.
Because of this, they suggest that future iterations of VNNCOMP might restrict tuning for
some benchmarks to encourage tools to implement auto-tuning strategies.
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Chapter 8

Conclusions and Future Work

8.1 Conclusion

In this thesis we presented Auto-Verify: a tool for portfolio-based verification of neural
network properties. Auto-Verify provides uniform interfaces, parameter spaces, parallel
portfolios, and further utilities to make using neural network verification easy and conve-
nient. By using Auto-Verify, it becomes possible to quickly iterate and try out new ideas
without having to deal with the many pain points of neural network verification. We tested
Auto-Verify by constructing two different types of parallel portfolios and showed that we
can improve performance on well-known benchmarks by factors of up to 1.5 in terms of
total time, and reduce timeouts by a factor of 1.12.

Automatically configuring the hyperparameters of neural network verification tools re-
mains a challenge, due to the long running times, heterogeneous instances, and loosely
defined hyperparameter spaces. With the resources at our disposal, we were not able to
meaningfully improve performance by configuring the neural network verification tools in
our portfolios.

Employing verification tools on a wide range of benchmarks can still be a time-consuming
process. The lack of support for different architectures among verification tools makes it
difficult to meaningfully compare them on anything except the most well-known bench-
marks. Defining the hyperparameter spaces of verification tools more strictly would further
streamline the usage of algorithm configuration, since determining the hyperparameter
space takes quite some effort, due to the lack of documentation and ranges of valid values
provided for these hyperparameters. Another observation we made is that benchmarks
with large networks quickly run out of GPU memory, even on relatively small batch sizes.
Needing expensive GPU hardware to run large benchmarks is something that could hamper
the broad adoption of neural network verification.

8.2 Future Work

Different automated algorithm configuration and portfolio methods could be studied in
the context of neural network verification. Many such methods, such as algorithm selection
[Ker+19], have already been shown to work in the context of SAT solving [Xu+08] (which
is related to neural network verification, see Section 3.1). Studying automated algorithm
configuration methods that have been proven to work in other optimisation fields could
further analyse which methods are most suited to increasing the performance of neural
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network verification tools.

Current experiments can be easily scaled up by using better hardware and giving configu-
ration procedures more time and including more benchmarks. Additional verification tools
can also be added to further make use of the complementarity of verification tools.

Creating strongly defined hyperparameter spaces in verification tools would improve
the efficiency of applying automated algorithm configuration procedures to neural network
verification, by reducing the time spent on evaluating invalid configurations and reducing
the size of the hyperparameter space that has to be searched.

Furthermore, combining existing state-of-the-art techniques into one single verification tool
would greatly simplify the process of algorithm configuration. Having to rely on multiple
independent, sometimes unmaintained, verification tools introduces a lot of overhead
which makes it easy for methods that perform well on a smaller subset of instances to be
overlooked. Alternatively, a framework that facilitates implementing verification methods
could also achieve a similar desired outcome: combining the work of many authors to
make neural network verification more efficient for everyone.
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Appendix A

Configuration Spaces

Table A.1: ConfigurationSpace used for α,β-CROWN

Hyperparameter Values

complete verifier {bab, mip, bab-refine, skip}
enable incomplete verification {true, false}
loss reduction func {sum, min, max}
bound prop method {alpha-crown, crown, forward, forward+crown, alpha-forward, init-crown}
bab branching method {kfsb, babsr, fsb, kfsb-intercept-only}
bab branching reduceop {min, max}
bab branching input split enable {true, false}
bab branching input split enhanced bound prop method {alpha-crown, crown, forward+crown, crown-ibp}
bab branching input split enhanced branching method {naive, sb}
bab branching input split enhanced bound patience [10, 120]
bab branching input split attack patience [10, 120]
pgd attack order {before, middle, after, skip}
enable mip attack {true, false}
attack mode {diversed_PGD, diversed_GAMA_PGD, PGD, boundary}

Table A.2: ConfigurationSpace used for nnenum

Hyperparameter Values

single set {true, false}
compress init box {true, false}
eager bounds {true, false}
contract zonotope {true, false}
contract zonotope lp {true, false}
contract lp optimized {true, false}
overapprox near root max split [1, 5]
overapprox gen limit multiplier (0.0, 3.0)
inf overapprox min gen limit {true, false}
overapprox min gen limit (1, 100)
inf overapprox lp timeout {true, false}
overapprox lp timeout (0.0, 5.0)
overapprox both bounds {true, false}
branch mode {overapprox, ego, ego_light, exact}
try quick overapprox {true, false}
split order {largest, one_norm, smallest, inorder}
offload closes to root {true, false}
split tolerance (1e-9, 1e-7)
split if idle {true, false}
glpk timeout (10, 120)
glpk first primal {true, false}
glpk reset before minimize {true, false}
skip compressed check {true, false}
skip constraint normalization {true, false}
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Table A.3: ConfigurationSpace used for VeriNet

Hyperparameter Values

precision {32, 64}
queue depth (1, 10)
max children suspend time (300, 900)
max accepted memory increase (10, 30)
use one shot attempt {true, false}
use pre processing attack {true, false}
max estimated mem usage (64 ∗ 108, 64 ∗ 1011)
optimised relu relaxtion max bounds multiplier (1, 3)
use ssip {true, false}
store ssip bounds {true, false}
input node split {true, false}
hidden node split {true, false}
indirect hidden multiplier (0.5, 1.0)
indirect input multiplier (0.5, 1.0)
use bias separated constraints {true, false}
perform lp maximisation {true, false}
use optimised relaxation constraints {true, false}
use optimised relaxation split heuristic {true, false}
use simple lp {true, false}
num iter optimised relaxations (1, 5)
use lp presolve {0, 1}
gradient descent interval (1, 5)
gradient descent max iters (1, 10)
gradient descent step (0.01, 0.2)
gradient descent min loss change (0.001, 0.1)

Table A.4: ConfigSpace used for Oval-BaB

Hyperparameter Values

n1 bounding algorithm {propagation}
n1 nb steps (1, 10)
n1 initial step size (0.1, 10.0)
n1 step size decay (0.9, 1.0)
n1 joint ib {true, false}
n1 type {alpha-crown, beta-crown, gamma-crown}
n1 auto iters {true, false}
n2 bounding algorithm {dual-anderson}
n2 bigm {init}
n2 cut {only}
n2 bigm algorithm {adam}
n2 nb iter (200, 1000)
n2 cut frequency (150, 750)
n2 max cuts (2, 22)
n2 cut add (1, 4)
n2 initial step size (0.001, 0.1)
n2 final step size (0.000001, 0.001)
n2 nb_outer_iter (500, 1500)
n2 larger irl if naive init {true, false}
n2 restrict factor (0.5, 3.0)
n2 auto iters {true, false}
n2 hard overhead (1, 20)
bounding do ubs {true, false}
bounding parent init {true, false}
ibs use lb {true, false}
ibs tight ib {null}
ibs fixed ib {true, false}
ibs joint ib {true, false}
ub method {mi_fgsm}
ub iters (250, 750)
ub lr tensor {true, false}
ub num adv ex (50, 150)
ub check adv (1, 3)
ub mu tensor {true, false}
ub decay tensor {true, false}
branching heuristic type {FSB, SR}
branching max domains (25000, 75000)
branching bounding algorithm {propagation}
branching best among {KW, crown, naive}
branching bounding type {best_prop, crown}
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