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Abstract

The advancements in technology from the past decades and the widespread use of internet has
led to a significant increase in the generation and availability of information. Consequently,
large datasets are available to individuals, as well as businesses. Proper analysis of these
datasets is of paramount importance when used for real-life decision making. Anomaly detection
is one of these analysis tasks. Its task is to identify instances that deviate from an established
pattern. In practice it is used for fraud detection, health monitoring, cyber security, preventive
maintenance and many other areas. It is therefore indispensable for today’s data analysis.

The curse of dimensionality that large datasets have brought along has made unsupervised
anomaly detection increasingly difficult. It is essential that feature selection is applied to
reduce this high-dimensionality, in order to build comprehensible predictive models with
good performance. However, it has come to our attention that automatic feature selection is
an understudied part in unsupervised anomaly detection, as most hyperparameters tuning,
such as the setting of the percentage of selected features, is done by humans with domain
knowledge.

Hence, the aim of this research is to take the most important hyperparameter - the
percentage of selected features - as an example to explore automatic feature selection for
unsupervised anomaly detection tasks. Therefore, we create a pipeline in which automatic
feature selection for unsupervised anomaly detection is performed. Given an input dataset,
this automated ML model selects the best subset of features for an unsupervised anomaly
detection task.

Research on 5 different datasets with 10 different hyperparameter configurations based on
2 different feature selection algorithms and 2 different anomaly detection algorithms shows
that 1 out of 6 internal evaluation strategies is the most accurate. As a result, the use of this
model could be a first steps in automatic feature selection for unsupervised anomaly detection.
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1 Introduction

The availability of large amounts of data has given individuals, organisations and businesses
numerous possibilities. An example would be the customer-centric approach, which makes
use of associate rule mining. In this approach the business uses data to drive its actions.
An organisation can personalise messaging to its prospects and customers to create a more
effective way of approaching them. Or a simple classification problem, such as predicting
whether an email is spam and should be delivered to the junk folder, based on previously
acquired data. Further applications are fraud detection, health monitoring, cyber security and
preventive maintenance, where anomaly detection is essential. All these analysis tasks are
based on large amounts of data a specific entity has access to.

Anomaly detection is one of the tasks that has become increasingly important, consider-
ing the fact that anomalies in data often translate to critical and actionable information
in a wide variety of application domains such as fraud detection, health monitoring, cyber
security and preventive maintenance [1]. In preventive maintenance for example, more accurate
anomaly detection ensures lower maintenance costs and high system availability [2]. For that
reason anomaly detection will be further studied in this thesis.

Anomaly detection refers to ‘finding patterns in data that do not conform to expected
behaviour‘ [3]. The datasets on which anomaly detection is performed are becoming increas-
ingly large, due to increased storage of information. When looking at the previously mentioned
preventive maintenance, we can think of these features as a machine’s downtime, runtime,
power usage, temperature, and so on. The number of these features is referred to as the
dimensionality of the dataset. An issue that comes along with the increase of the dimen-
sionality, is that many traditional anomaly detection methods become ineffective as they
fail to retain sufficient accuracy. This phenomenon is referred to as the Curse of dimension-
ality [1]. Therefore using dimensionality reduction methods including feature selection on
the dataset before applying anomaly detection algorithms would tackle the curse of dimen-
sionality and thus improve efficiency and effectiveness of the anomaly detectors [1]. That
being the case shows the importance of choosing the right set of features for anomaly detection.

In recent work the effects of feature selection on anomaly detection algorithms have been
analyzed [5]. This study has systematically investigated the impacts of feature selection on
different anomaly detection algorithms. The results show that, in general, it is beneficial
to leverage feature selection in terms of efficiency, while there is no significant difference in
terms of accuracy. However, in this prior work the number of features selected has been kept
constant. In other works hyperparameter tuning is done by humans with domain knowledge,
which limits automation and efficiency in research related to feature selection. Which is a prob-
lem that we aim to tackle. This gave rise to the following question considering feature selection:

e Is there any effective automatic strategy to specify the number of selected features?

Furthermore, reference [0] has performed a systematic review of internal model evaluation
strategies for unsupervised anomaly detection, including stand-alone strategies and consensus-
based strategies. In that paper, they attempt to study the following problem: Given an
unsupervised anomaly detection task and a pool of anomaly detection algorithms, how to
select an anomaly detection algorithm and its associated hyperparameters?



The questions that arose from the research in reference [5] and the internal evaluation
strategies for unsupervised outlier model selection from research [6] has led to conducting the
following thesis research: Taking the most important hyperparameter- the number of selected
features- as an example, how to create a machine learning pipeline that can automatically
select the best hyperparameter values of a feature selection method for unsupervised anomaly
detection.

This thesis touches upon a, to our knowledge, not yet studied part for automatic hyper-
parameter tuning for unsupervised anomaly detection tasks. Due to this reason, we only use
one hyperparameter, the percentage of features selected. This study can easily be extended to
a selection of different types of hyperparameters in feature selection algorithms.

The contributions of this thesis are twofold. First, to explore the feasibility of perform-
ing automatic feature selection for unsupervised anomaly detection, we have carefully devised
a pipeline and conducted experiments, which we briefly descibe as follows.

For the automatic feature selection, we have created a pipeline that starts with a complete
high-dimensional unlabelled dataset. This dataset is then processed into 10 different lower-
dimensional sub-datasets. Lowering the dimensions is done by a feature selection algorithm.
Each one of the lower-dimensional datasets corresponds to a hyperparameter configura-
tion for a feature selection algorithm. Therefore, a hyperparameter(HP) configuration 0.X
(HP-configuration 0.X) means: the sub-dataset has 0.X dimensions of the total number of
dimensions from the complete dataset. These different HP-configuration are then processed
by an anomaly detection algorithm, leading to different sets of anomaly scores for every
HP-configuration. These anomaly scores are then analysed by internal evaluation strategies.
The internal evaluation strategies are necessary as this thesis focuses on unsupervised outlier
detection, meaning that there are no true labels for outliers in our model. Each internal
evaluation strategy automatically ranks the HP-configurations’ performances based on their
own metric. These rankings show the best HP-configuration for a dataset, given a feature
selection algorithm and anomaly detection algorithm based on different internal evaluation
strategies. Further explanation of the pipeline and the different variables will be given in
Section 3.

The initial findings and conclusions of this new pipeline are considered the second con-
tribution of this thesis, where by means of Spearman’s correlation coefficient we check whether
the automatically chosen set of features is in line with the best set of features based on the
ground truth. This part will be discussed in Section 4. Tests on five different datasets using
two different feature selection algorithms and two different anomaly detection algorithms
show that the UDR method (Section 3.5.1) has done a significantly better job in automatic
feature selection for anomaly detection, given a unsupervised outlier detection task. This will
be further discussed in section 5.



2 Preliminaries and related work

2.1 Definitions

Some technical terms in this thesis that are used interchangeable. These terms are explained
in this section to facilitate better understanding and add clarity.

e Feature is referred to as a column in a tabular data-set.

e Feature selection is the process of selecting a subset of features in a data-set. In this thesis
interchangeable with Hyperparameter configuration (HPconfiguration) [7].

e Anomaly is a datapoint that deviates significantly from the expected/typical pattern of
a dataset. The datapoint is different from other datapoints in terms of value. In this thesis
interchangeable with the term outlier [3].

e Outlier score / Anomaly score is a numerical value that quantifies to what degree a
datapoint can be considered as an oulier in a dataset. A high outlier score means a greater
deviation. Suggesting a higher likelihood of being an outlier. Conversely, lower outlier score
would suggest a more typical datapoint. In this thesis outlier scores are calculated using
anomaly detection algorithms [3].

e Anomaly detection is the process of identifying abnormal observations in data that deviate
from the norm [3].

e Internal evaluation strategies

In this thesis anomaly detection is performed on unlabelled datasets. In other words, unsu-
pervised anomaly detection. This means that for our automated model we do not have true
labels that say if an instance is an outlier. Therefore we use internal evaluation strategies to
determine the outliers. UDR, HITS and Cluster validation (Section 3.5) are the three different
internal evaluation strategies used in this thesis [0].

2.2 Related Work

Research on the effect of feature selection on unsupervised anomaly detection [5] gave rise
to initial questions on automated feature selection. A taxonomy of unsupervised feature
selection methods and a description of the main ideas behind them has been provided by
reference[7]. Moreover, reference [9] has elaborated on the feature selection algorithms used in
the experiments, namely Laplacian score and Spectral feature selection. Further explanation
will be done in Section 3.3.

A broad explanation of anomaly detection has been given by reference [3]. This reference
provided us with the necessary information for the anomaly detection algorithms One-class
support vector machine and K-nearest neighbour. These algorithms will be covered in Section
4. Adding to this, reference [10] has provided us with the metrics for the evaluations of
unsupervised outlier detection, namely using ROC AUC to use as ground truth. Another
essential element for anomaly detection has been the development of the package PyOD by
[11], which provided us with a set of 25 commonly used anomaly detection algorithms.

In addition, the review and evaluation of internal evaluation strategies [6] provided us with
different internal evaluation strategies such as UDR, HITS, and Cluster Validation metrics.
For the computation of the Cluster validation we used four different types that have been
used in reference [12]. These are the Davies-Bouldin index, Xie-Beni index, Calinski-Harabasz
index and Silhouette score.



3 Design of Pipeline and Experiments

3.1 Pipeline

In order to construct an automated machine learning method the code adheres a pipeline
structure in which different points determine key processes with the data. At these points
different variables have been chosen. Point one, starting point, is the data-set. Followed by
point two where a feature selection algorithm is used to create a new, lower-dimensional,
data-set. In this research we set 10 different values for the remaining number of features for
the original data-set. These are depicted by HP-configuration. After this step comes, point 3,
the anomaly detector. The anomaly detector results in a list with different outlier scores for
each HP-configuration. At the final point, point 4, an internal evaluation strategy is used to
rank the HP-configurations from best (1) to worse (10). Figure 1 gives a simple visualisation
of this pipeline.

Data-set 1.0, with Outlier scores, for
HPconfiguration (0,1) HPconfiguration (0,1)
HPconfiguration (0,2) HPconfiguration (0,2)
HPconfiguration (0,3) HPconfiguration (0,3)
HPconfiguration (0,4) HPconfiguration (0,4)
HPconfiguration (0,5) Anomaly HPconfiguration (0,5)
Data-set 1.0 HPconfiguration (0,6) Detector HPconfiguration (0.6)
HPconfiguration (0,7) HPconfiguration (0,7)
HPconfiguration (0,8) HPconfiguration (0,8)
HPconfiguration (0,9) HPconfiguration (0,9)
HPconfiguration (1,0) HPconfiguration (1,0)

Y

Internal
evaluation
strategy,

! | ,

Rank (UDR) Rank (HITS) Rank (CI. Val.)
HPconfiguration (0,1) : 1 HPconfiguration (0,1) : 1 HPconfiguration (0,1) : 1
HPconfiguration (0,2) : 2 HPconfiguration (0,2) : 2 HPconfiguration (0,2) : 2
HPconfiguration (0,3) : 3 HPconfiguration (0,3) : 3 HPconfiguration (0,3) : 3
HPconfiguration (0,4) : 4 HPconfiguration (0,4) : 4 HPconfiguration (0,4) : 4
HPconfiguration (0,5) : 5 HPconfiguration (0,5) : 5 HPconfiguration (0,5) : 5
HPconfiguration (0,6) : 6 HPconfiguration (0,6) : 6 HPconfiguration (0,6) : 6
HPconfiguration (0,7) : 7 HPconfiguration (0,7) : 7 HPconfiguration (0,7) : 7
HPconfiguration (0,8) : 8 HPconfiguration (0,8) : 8 HPconfiguration (0,8) : 8
HPconfiguration (0,9) : 9 HPconfiguration (0,9) : 9 HPconfiguration (0,9) : 9
HPconfiguration (1,0) : 10 HPconfiguration (1,0) : 10 HPconfiguration (1,0) : 10

Figure 1: This figure shows the pipeline for automatic feature selection for unsupervised
anomaly detection. The pipeline starts at the top left side. Data-set 1.0 is split into 10 smaller
datasets/HPconfigurations. The remaining features are selected by a feature selection algorithm.
For every HP-configuration an anomaly detection algorithm determines the outlier scores. Based
on these outlier score the three different internal evaluation strategies (UDR, HITS and Cl.Val.)
produce a ranking, showing the best HPconfiguration for Data-set 1.0.



3.2 Data sets

In the field of machine learning, datasets can be categorized into two main types: labeled and
unlabeled. On the one hand we have labeled dataset consisting of data points or examples that
have been explicitly assigned corresponding labels or target values. These labels are typically
provided by crowd-sourced content such as the ‘ImageNet database’ or human annotators
who possess domain knowledge and expertise. Labeled datasets are essential for supervised
learning algorithms, where the goal is to train a model to make predictions based on the given
inputs and their associated labels [13].

On the other hand, we have unlabeled datasets which lack explicit labels or target val-
ues. They contain raw data points without any predefined class or category information.
Unlabeled datasets are commonly used in unsupervised learning tasks, where the objective
is to discover patterns, structures, or relationships within the data without prior knowledge.
Unsupervised model selection is therefore complicated by the fact that there is labeled data.
This has made hyperparameter selection an understudied and difficult topic in unsupervised
outlier detection.

These unlabeled datasets have grown to be incredibly large, containing vast amounts of
information. However, this exponential increase in dataset size has led to a phenomenon known
as the Curse of dimensionality. Dimensionality refers to the number of features or attributes
used to describe each data point. The available data points become more isolated and spread
out in the feature space. This sparsity and scattering make it challenging to apply traditional
techniques or analysis methods that rely on close proximity or density of data points. Feature
selection then becomes increasingly important when using unsupervised outlier detection
algorithms [11].

For this research we use five different datasets from, the in total, twenty benchmark datasets
that are available in GitLab - LIACS [15]. These five have been chosen for their relatively
small number of datapoints. This property has made runtime smaller, which provided us with
the opportunity to focus on the correctness of the pipeline. The five datasets will go through
the complete pipeline. Further details of the datasets are described in Table 1.

Table 1: Benchmark datasets used to run through the pipeline

Dataset Domain Data size | Dimensionality | Outliers
1.WDBC Healthcare 367 30 10
2.Arrhythmia Healthcare 452 274 66
3.Ionosphere Science 351 32 126
4.Letter Recognition Images 1600 32 100
5.KDDcup99, reduced | Computer Traffic 4811 40 54




3.3 Feature selection

Feature selection is an essential step in unsupervised machine learning when working with
unlabeled datasets. It involves identifying the most relevant features that contribute to the
underlying patterns and structures within the data. Given a feature selection method we
can alter the hyperparameters, also called the HP-configuration. In this thesis we will look
at 10 different HP-configurations for each feature selection algorithm. These different HP-
configurations are the following: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0.

The HP-configuration of 0.X means that the dimensionality of the original data-set is reduced
to 0.X of the total number of features. Therefore a data-set, WDBC for instance, which has
a dimensionality of 30 will be reduced to a dimensionality of 15 at HP-configuration (0.5).
The set of features depends on the feature selection algorithm being used. For the preliminary
results of this thesis we will stick to the Laplacian score and Spectral feature selection, as
explained in the next subsections. The limited selection of feature selection algorithms is due
to computation time constraints. However, this section can easily be extended by using more
feature selection algorithms, present in reference [5]. The created pipeline is build in such a
way that these variables can be changed manually.

3.3.1 Laplacian score

Laplacian Score [16] is a method used to assess the significance of features based on their
ability to preserve the local relationships within a dataset. It achieves this by considering
each data point as a node and creating a graph based on the nearest neighbors. If a node
is one of the k nearest neighbors to another node, an edge is formed between them. Using
this information, a Laplacian Matrix is constructed, assigning higher weights to features that
effectively maintain the structure of the graph. The Laplacian Matrix is examined to identify
the features that contribute most to preserving the underlying graph’s characteristics [16].

Computation of the laplacian score as feature selector is done through the lapscore function
that is present in the scikit library [17]. This results in 10 different configurations of the
original dataset.

3.3.2 Spectral feature Selection

Spectral Feature Selection (SPEC) [18] utilises pairwise similarity between data points to
select features. Specifically, SPEC first constructs a graph to represent the pairwise similarities,
applying graph theory to similarity graph. Then, if a feature is consistent with the graph
structure, this feature is able to separate the data points better than a feature that is
inconsistent with the graph structure. Therefore, this feature is considered relevant and
assigned a high weight [15].



3.4 Anomaly detection

Unsupervised anomaly detection is a valuable technique used in various fields to identify un-
usual patterns or outliers within a dataset without relying on labeled examples. This approach
aims to discover deviations from the expected norm or behaviors that do not conform to the
established patterns, making it particularly useful. The process typically involves extracting
meaningful features from the data and employing statistical methods, clustering algorithms,
or density estimation techniques to detect abnormalities. By learning the inherent structure
and distribution of the dataset, unsupervised anomaly detection algorithms can effectively
identify anomalous instances.

In anomaly detection, the anomaly scores are calculated by an anomaly detection algo-
rithm. The process involves calculating a score for each data point, reflecting its degree
of abnormality compared to the rest of the dataset. These outlier scores are derived from
various machine learning techniques, such as distance-based measures, density estimation,
or model-based approaches [3]. The idea is to assign higher scores to instances that deviate
more from the expected patterns. By setting a threshold on the outlier scores, data points
surpassing this threshold are classified as outliers. This approach allows for flexible detection
of anomalies without relying on predefined labels, making it suitable for unsupervised outlier
detection tasks. Therefore, the outlier scores provide a quantitative measure of abnormality,
enabling us to 'pick the odd one out’.

So, for every HP-configuration we get an outlier score list. The values in these outlier score
list are different for all HP-configurations as they are based on different configurations of
the original data-set. Therefore we get a set of ten different outlier score lists, based on one
anomaly detection algorithm. In this thesis the preliminary results are based on OCSVM
and KNN as the anomaly detection algorithms. The limited selection of anomaly detection
algorithms is due to computation time constraints. However, this section can easily be extended
by using more anomaly detection algorithms, present in reference [5]. The created pipeline
has been build in such a way that these variables can be changed manually.

3.4.1 One-Class Support Vector Machine

The One-Class Support Vector Machine (OCSVM) [19] is a classification method that specifi-
cally deals with scenarios where there is only one desired class. It aims to identify anomalies
by considering data objects that do not belong to the target class. OCSVM achieves this by
creating a hyperplane with the largest possible margin (d in Figure 2) to separate the target
class from the rest of the data. The hyperplane is adjusted to align with the distribution of
the data, pulling it closer to the data points [20]. The OCSVM algorithm has been used to
compute the outliers scores for the ten different HPconfigurations. This provides us with a set
of ten different outlier score lists. In the resulting lists with outlier scores, high values for a
data-point indicate more probable outliers.
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Figure 2: Shows the basic principle of the OCSVM algorithm used. In this approach, the training
points are considered as members of the positive class or inlier class, while the origin is treated as
the negative or outlier class.[19)].

3.4.2 K-Nearest Neighbour

K-Nearest Neighbors (KNN) computes similarity with the neighborhood data points and
considers the proximity of data points to identify anomalies. By calculating the distances
between a query point and its K nearest neighbors, the algorithm determines the local density
of the data point. Anomalies are often characterized by their significant deviation from the
neighboring points, resulting in a larger distance to the K nearest neighbors. By setting a
threshold for the distance, KNN can classify data points as either normal or anomalous. This
distance-based approach leverages the concept that anomalies tend to exhibit dissimilarity
in terms of distance compared to the majority of the data points, making KNN an effective
method for anomaly detection [1]. For that reason KNN has been chosen besides OCSVM to
run in the initial tests of the created pipeline. After using this algorithm on the ten different
HP-configurations, we are left with ten different outlier score lists. High outlier scores indicate
that a datapoint is more probable of being an outlier. Where Algorithm 1 is provided by
reference [1].

Algorithm 1 KNN Algorithm
Input: the training set 12, test object z, category label set 7
Output: the category e, of test object x, ¢, belongs to set
0: "Start’procedure KNN(D, z, ()
1: for ecach y € D do
2: Calculate the distance D(y, ) between y and .
3:  end for
4:  Select the subset N from the dataset D, where N contains
k training samples which are the & nearest neighbors of the fest
sample x .
5:  Caleulate the category of

Cy — arg IIH%X Z jl:r!lilil}i}-i(:"r;) — ('E]
ecl)

yeN

6: "End’procedure




3.5 Internal evaluation strategies

In this study, internal evaluation strategies are employed to automatically selected the best
HP-configuration without accessing the ground-truth labels. The selection process utilizes
internal information, which is limited to two key elements: the internal evaluation strategies
along with the outlier scores per HP-configuration [6]. The underlying principle shared by
all internal evaluation strategies in this research is the utilization of estimated heuristic
to asses their performance. This means that, among the various models using the internal
measure, the model with the highest value with respect to their chosen measure is the best
pest performing automated feature selection model. This research focuses on 3 different types
of internal evaluation strategies. These are UDR, HITS and Cluster validation metrics. They
have been selected to cover the each different type and strategy for internal evaluation [(].
Their properties are described in Table 2.

Table 2: Overview of internal evaluation strategies used in the experiments.

Method Type Based on Strategy
UDR Consensus | Outlier scores | One-shot
HITS Consensus | Outlier scores | Iterative
Cluster Validation Metrics | Stand-alone | Outlier scores | Cluster quality

3.5.1 UDR

The Unsupervised Disentanglement Rank (UDR) is adopted from deep learning and refers
to a process used to automatically choose or identify the most suitable model in the context
of unsupervised learning [6]. Hence the use of this concept for automatic feature selection.
In this internal evaluation strategy Tolstoy’s theorem is applied. To cite Tolstoy, ” All happy
families are alike; each unhappy family is unhappy in its own way.” Therefore a model that is
alike most others will be considered a good model as its outlier scores are more similar. The
idea of leveraging an agreement between the different HP-configurations used in this research
is referred to as a consensus-based type of internal evaluation strategy.

In this context we use the Kendall Tau coefficient as similarity metric for the outlier score lists
per HP-configuration. Therefore we construct a Kendall Tau matix for the outlier scores for
at each HP-configuration. Thus HP-configuration(0.1) is compared to HP-configuration(0.2),
(0.3), up until (1.0). An example of such a matrix can be seen in Table 3. Such a table is con-
structed for every combination of datasets, feature selection algorithm and anomaly detector.
The Kendall-Tau function used implements the Kendall tau-b as default. The mathematical
notation for the computation of Kendal tau-b.

P-qQ

"o V(P+Q+ Xo)(P+Q+Yp)

where P is the number of concordant pairs, the points are concordant if they are in the
same order with respect to each variable. Q is the number of discordant pairs, the points are
discordant if values are arranged in opposite directions. Xy is the number of pairs tied only
on the X variable and Yj is the number of pairs tied only on the Y variable [21].



Table 3: Kendall-Tau coefficients on WDBC dataset for different HPconfiguration with Laplacian
score, using OCSVM.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 1 0.825 0.723 0.623 0.578 0.533 0.504 0.477 0.458 0.410
0.2 ] 0.825 1 0.815 0.710 0.653 0.601 0.573 0.551 0.528 0.488
0.3 ]0.723 0.815 1 0.853 0.776 0.713 0.683 0.658 0.634 0.589
0.41]0.623 0.710 0.853 1 0.907 0.834 0.799 0.756 0.731 0.677
0.51]0.578 0.653 0.776 0.907 1 0915 0.876 0.827 0.794 0.730
0.6 | 0.533 0.601 0.713 0.834 0.915 1 0.928 0.870 0.825 0.750
0.710.504 0.573 0.683 0.799 0.876 0.928 1 0.927 0.877 0.798
0.8 10.477 0.551 0.658 0.756 0.827 0.870 0.927 1 0.936 0.856
0910458 0528 0.634 0.731 0.794 0.825 0.877 0.936 1 0.906
1 10.410 0488 0.589 0.677 0.730 0.750 0.798 0.856 0.906 1

A sum of the scores in in every row of this table, Sum of each row, is the metric used to show
similarity. See Table 4. Therefore a higher sum value means better model. We compare the
output ranking based on Kendall-Tau similarity with the ranking based on ROC AUC (ground
truth) in Section 4. This has been done for the combinations of every dataset, feature selection
algorithm and anomaly detection algorithm that were mentioned in Sections 3.2, 3.3 and 3.4

Table 4: HP-configuration ranking for UDR, based on the results of Table 2.

HPconfiguration | Sum of Each Row | Rank
0.1 6.131 10
0.2 6.746 9
0.3 7.445 7
0.4 7.892 4
0.5 8.056 1
0.6 7.969 2
0.7 7.966 3
0.8 7.859 5
0.9 7.689 6
1.0 7.203 8

3.5.2 HITS

We can build on the idea of ModelCentrality through computing centrality in a network setting.
Centrality in a network works recursively, meaning that a node has higher centrality if it
points to nodes that are pointed to by other nodes with high centrality [0].

To adopt this idea to our benfit we can create a bipartite network. The basis for this

network are the outlier scores per HP-configuration. For every outlier score list we select
the top n values as data points, where top n refers to the n highest outlier values. For the

10



sake of feasibility we set the threshold value as the value of the n-th outlier score, where n is
the number of outlier that a data set has. We assume the number of outliers is known, for
simplicity.

To illustrate this with an simple example; a dataset with 100 datapoints has 10 outliers.
Therefore we select the 10th value in the sorted list of outlier scores as threshold value for
that specific HP-configuration.

After iteration over all HP-configuration using the process described above we can construct
the bipartite network. With on the left side the different HP-configurations and on the right
side the datapoints with outlier scores above a threshold value. For each HP-configuration,
an edge is constructed if this datapoint is above the threshold value (thus considered an
outlier). The centrality score for a HP-configuration is the edge count for all the corresponding
datapoints in the bipartite graph.

Percentage-6-2 Jata point 13

Percentagg 0.9

Percentaged.0

e

> - \ g == /// Ja point 64
a—

Percentag&e= ; Ja point 47

Percentage ~a;‘/ f “'

= PR
Percentagi 5:-114 ‘

Percentag&o-3 B=ta point 54

Figure 3: The bipartite network for a test dataset with HP-configuration (left) and data points
(right).
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Take percentage 0.2 for instance. The data points corresponding to this HP-configuration
are: 13, 64, 47 and 54. Their respective degrees (number of edges connected) are 7, 10, 10
and 7. The sum of these values give the Centrality Score HP(0.2) = 34. If we apply the same
reasoning on data point 0.8, we can see a Centrality Score HP(0.8) = 20. This means that
based on the outlier scores for each HP-configuration the top n points (the data points above
the threshold value/outliers ) for HP(0.2) have been selected ’better’ than for HP(0.8). A
computation of the centrality score based on the bipartite network in Figure 3 leads to a
HP-configuration ranking of the centrality score in Table 5. The bipartite graph and the
resulting ranking table are computed for the combinations of every dataset, feature selection,
algorithm and anomaly detection algorithm that were mentioned in Sections 3.2, 3.3 and 3.4

Table 5: HP-configuration ranking for HITS, based on the results from Figure 3.

HPconfiguration | Centrality Score | Rank
0.1 35 1
0.2 34 3
0.3 34 3
0.4 34 3
0.5 35 1
0.6 34 3
0.7 34 3
0.8 20 9
0.9 21 8
1.0 20 9

3.5.3 Cluster validation metrics

The basis for this internal evaluation strategy is the outlier score for a specific HP-configuration.
This means that the outlier scores list for one HP-configuration is used in cluster validation.
This method does not look for consensus in a pool of results, for that reason it is considered
a stand-alone type. Since UDR and HITS are both consensus-based methods, they both use
combinations of the outlier scores for all HP-configurations to get to one answer. The cluster
validation metrics only looks at the outlier score per HP-configuration. Therefore this method
is intuitively easier.

The intuition is that the cluster validation metric looks at the cluster quality of the chosen
clusters. These clusters are based on the outlier scores produced by an anomaly detection algo-
rithms, given a HP-configuration. The sorted outlier scores are divided into the outlier-cluster
and the inlier-cluster. The number of data points in the outlier-cluster is equal to the number
of data-points above the top n-th value, where n is the number anomalies in the dataset. For
this threshold setting the same intuition is used as for the HITS model. The remainder of the
data points correspond to the inlier-cluster.

Clustering aims to group similar objects together, while keeping objects from different clusters
distinct. Internal clustering validation measures primarily focus on two criteria: compactness
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and separation. Compactness evaluates the extent of similarity or dissimilarity among sam-
ples within the same cluster. Separation assesses how distinct or well-separated a cluster is
from other clusters [22]. Hence, we use clustering validation metrics to evaluate the anomaly
detection based on different HP-configurations.

The clustering validation metrics that will be tested for the evaluation of the goodness
of anomaly detection are Davies-Bouldin index, Xie-Beni index, Calinski-Harabasz index and
Silhoutte score [22]. These names will from now on be referred to as DB, XB, CH and S. For
DB and XB the smaller values present better clustering. Conversely, for CH and S larger
values mean that the clusters obtained are better.

Table 6: Notation and Meanings

Notation | Meaning
D Data set
n Number of objects in data set
c Center of D
NC Number of clusters
C; The ith Cluster
n; Number of objects in C}
¢ Center of C;
d(xz,y) | The distance between z and y

Davies-Boulding index (DB)
Is the average of cluster’s similarities. The similarity of each cluster is defined as the maximum
value of its similarities to other clusters. where DB is defined as follows.

1 1 1
DB = MZ%CE{ lm l{ZC?d(x.ci) + i Z d(;r,(tj)] /d(ci,cj)}

i zeCy

Xie-Beni index (XB)

Uses the minimum square distance between cluster centers as intercluster separation and
the mean square distance between each data object and its cluster center as the intracluster
compactness. This index is defined as the ratio of the compactness to the separation. The XB
index adheres the following notation.

S Caee, & (,00) [

min; ; d? (¢;, ¢;)

XB

Calinski-Harabasz index (CH)
Evaluates the cluster solution based on the average between- and within-cluster sum of squares.
This index is defined as follows.

CH = {Zi\:l nid? (ci,c) | (NC — 1)} / {Z;ﬁ Z(L‘EC; d?(x,¢;) / (n— NO)
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Silhouette (S)
Measures clustering partition based on the dissimilarity of each instance to its cluster’s
instances, and to its neigbour cluster’s instance [22]. The silhouette index is presented using

the following notation.

NC
| 1 b(z)—a(x)
= NC ; {n,z- Zme(?i max [b(x),a(x)]]’
1
a(x) = —— Zyem,y#.x: d(x,y),

1
b(x) = ;1}211 {; Zye(ﬁj d(x, y)} :

Computation of these cluster validation metrics enables us to rank the HP-configuration
based on DB, XB, CH and S. Table 7 a,b,c and d show these rankings when applied on the
WDBC data-set, using Laplacian score as feature selector and OCSVM as anomaly detection
algorithm. In the complete experiment this computation has been done for all combinations
of datasets, feature selection algorithms and anomaly detection algorithms.
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Table 7: HP Configuration rankings for cluster validation metrics, using Laplacian score as feature
selector and OCSVM as anomaly detector on the WDBC dataset.

(a) HP-configuration ranking based on DB

Score
HP Configuration | DB Score | Rank
0.1 1.606405248 10
0.2 0.529354753 9
0.3 0.45999627 4
0.4 0.47671772 5
0.5 0.484045825 6
0.6 0.527275923 8
0.7 0.504435676 7
0.8 0.452316164 3
0.9 0.425052191 2
1.0 0.414971229 1

(¢) HP-configuration ranking based on CH Score

HP Configuration | CH Score | Rank
0.1 670.1478863 10
0.2 1931.965826 9
0.3 2279.881137 1
0.4 2266.068663 2
0.5 2189.439548 3
0.6 1953.420189 8
0.7 2065.984211 7
0.8 2126.926498 4
0.9 2096.244801 6
1.0 2096.694989 5
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(b) HP-configuration ranking based on XB index

HP Configuration | XB Index | Rank
0.1 0.011855899 10
0.2 0.004112498 9
0.3 0.003484921 1
0.4 0.003506163 2
0.5 0.003628876 3
0.6 0.00406733 8
0.7 0.003845724 7
0.8 0.003735534 4
0.9 0.003790209 6
1.0 0.003789395 )

(d) HP-configuration ranking based on Silhou-

ette

HP Configuration | Silhouette | Rank
0.1 -0.152281273 10
0.2 0.063106043 1
0.3 0.033847521 3
0.4 -0.048447818 6
0.5 0.029413262 5
0.6 0.056544477 2
0.7 0.032875458 4
0.8 -0.060192376 8
0.9 -0.148665823 9
1.0 -0.048828244 7




4 Results and Analysis

The Spearman correlation coefficient is a statistical measure that is used to assess the
relationship between two sets of rankings [23]. It is perfectly applicable when we are dealing
with ordinal data where the actual values between ranks do not give proper insights. The
coefficient is calculated by assigning ranks to the observations in each set and then computing
the correlation between these ranks. The Spearman correlation ranges from -1 to 1, with
1 indicating a perfect positive relationship between the rankings, -1 indicating a perfect
negative relationship, and 0 suggesting no monotonic relationship. This coefficient allows us
to determine whether there is a consistent pattern in the rankings based on the different
internal evaluation strategies and the rankings based on ROC AUC score (considered the
ground truth).

To calculate this correlation we use the formula for Spearman’s correlation for data with
tied ranks, where i = paired score, defined as [23].

5 = Yilxi — ) —¥)
VELx — )2 Xy — 7)2

Tables 8,9,10 and 11 show the Spearman’s rank-order correlation between 'rankings of the
HP-configurations for 6 different internal evaluation strategies’ and the "HPconfiguration
ranking based on ROC AUC score’. A correlation coefficient approaching a value of 1 is needed
to verify that the chosen (best) hyperparameter setting is also correct based on the true outliers.

To analyse whether or not the results are only bound to a combination of a Feature se-
lection algorithm and an Anomaly detection algorithm, we have set different combinations
of Feature selection algorithms and Anomaly detection algorithms. Tables 8 and 9 show the
results for the Laplacian score as feature selection algorithm, where Table 8 shows the OCSVM
as an anomaly detector and Table 9 shows the K-Nearest Neighbour as an anomaly detector.
Tables 10 and 11 show the results with SPEC as feature selection algorithm, where Table 10
shows the OCSVM as an anomaly detector and table 11 shows the K-Nearest Neighbour as
an anomaly detector. In these tables the scores in bold show best ranking performance based
on internal evaluation strategies. In other words, they show the scores for the best performing
automatic feature selection method. We have the following main observation regarding the
results in Tables 8-11.

First, Table 8 shows the correlation coefficients based on Laplacian score as feature se-
lection algorithm and OCSVM as the anomaly detection algorithm. This combination has
been used on all 5 benchmark sets. Results for the best automatic feature selection are diver-
gent, all three internal evaluation strategies have at least once received the highest correlation
score. UDR, however, outperformed other methods twice, with one score approaching a perfect
correlation with the ground truth. Conclusively, there is not one automatic feature selection
method that appears to be consistently better than others, given the 5 data with laplacian
score and OCSVM.

Second, Table 9 shows the correlation coefficients based on Laplacian score as feature selection

algorithm and KNN as the anomaly detection algorithm. The results in this table conspic-
uously show that the UDR method outperforms the other models. On all 5 datasets UDR,
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has the highest, or shared highest, correlation coefficient. Therefore it appears that given the
combination of Laplacian score and KNN, the UDR method is a proper way to automatically
select the best subset of features.

Third, Table 10 shows the correlation coefficients based on SPEC as feature selection algorithm
and OCSVM as the anomaly detection algorithm. For this combination results vary a bit more,
in comparison to Table 8. UDR results is the best method in 3 out of 5 datasets, whereas in
the other 2 datasets cluster validation provide the best automatic feature selection. Therefore,
not one specific method can be considered the best methood for autmatic feature selection for
the combination of SPEC and OCSVM.

Fourth, Table 11 shows correlation coefficients based on SPEC as feature selection algo-
rithm and KNN as the anomaly detection algorithm. The results in this table, again, show
that UDR outperforms the other models (in 4 out of 5 times). Additionally, the coefficient
scores achieved are relatively close to 1. For that reason we can say that in for the combination
SPEC and KNN the UDR method would be the designated automatic feature selection method.

In summary, complete analysis of the Spearman’s rank-order correlation coefficients for
the different combinations of feature selection algorithms and anomaly detection algorithms,
has led to an important takeaway. Namely, the UDR model is the best performing automated
feature selection model for unsupervised anomaly detection out of the three models that have
been tested in this research. This claim is based on results shown in Tables 8,9,10 and 11,
where for the four different combinations of feature selectors and anomaly detectors, UDR
has a significant number of times where it outperforms other models. Namely, 14 out 20.
Furthermore its average coefficient value lays much higher than for the other models. Namely,
0.457 compared to 0.160, 0.044, 0.117, 0.406 and 0.041.
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Table 8: Correlation coefficient between HP-configuration rankings based on AUC and
the rankings of HP-configurations for internal evaluation strategies using Laplacian
score and OCSVM on different datasets.

Dataset UDR | HITS | DB XB CH S

WDBC 0.406 | -0.618 | 0.600 | 0.091 | 0.091 | -0.091
Arrhythmia -0.697 | -0.593 | -0.430 | 0.733 | 0.733 | -0.492
Tonosphere 0.345 | 0.285 | -0.188 | -0.224 | 0.212 | 0.297
Letter Recognition 0.321 | 0.333 | -0.261 | -0.261 | -0.261 | 0.103
KDDcup99, reduced || 0.988 | 0.800 | -0.079 | -0.673 | -0.673 | 0.430

Table 9: Correlation coefficient between HP-configuration rankings based on AUC and
the rankings of HP-configurations for internal evaluation strategies using Laplacian
score and KNN on different datasets.

Dataset UDR | HITS | DB XB CH S

WDBC 0.764 | -0.215 | -0.764 | -0.764 | -0.764 | -0.067
Arrhythmia 0.609 | 0.262 | 0.505 | 0.609 | 0.596 | -0.170
Tonosphere 0.927 | 0.309 | 0.927 | 0.927 | 0.927 | 0.139
Letter Recognition 0.333 | -0.036 | -0.176 | -0.273 | -0.273 | -0.042
KDDcup99, reduced || 0.838 | 0.838 | 0.130 | 0.093 | 0.093 | 0.235

Table 10: Correlation coefficient between HP-configuration rankings based on AUC and
the rankings of HP-configurations for internal evaluation strategies using SPEC and
OCSVM on different datasets.

Dataset UDR | HITS | DB XB CH S

WDBC 0.652 | 0.385 | -0.152 | -0.152 | -0.152 | -0.512
Arrhythmia -0.669 | -0.777 | -0.097 | 0.827 | 0.827 | -0.018
Tonosphere 0.188 | -0.146 | 0.612 | 0.758 | 0.758 | -0.042
Letter Recognition 0.612 | 0.394 | 0.067 | 0.103 | 0.103 | 0.115
KDDcup99, reduced || 0.787 | 0.170 | -0.097 | 0.778 | 0.778 | 0.043

Table 11: Correlation coefficient between HP-configuration rankings based on AUC and

the rankings of HP-configurations for internal evaluation strategies using SPEC and
KNN on different datasets.

Dataset UDR | HITS | DB XB CH S

WDBC 0.802 | 0.304 | 0.498 | 0.359 | 0.359 | 0.359
Arrhythmia 0.758 | 0.782 | -0.418 | -0.394 | -0.394 | -0.188
Tonosphere 0.842 | 0.176 | -0.006 | 0.055 | 0.055 | 0.564
Letter Recognition 0.648 | 0.442 | 0.067 | -0.055 | -0.055 | 0.467
KDDcup99, reduced || 0.681 | 0.107 | 0.146 | -0.201 | -0.201 | -0.298
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5 Conclusions and Further Research

This research has focused on a gap in the field of unsupervised anomaly detection. The missing
piece in the existing body of knowledge on this topic that we refer to is; automated feature
selection for unsupervised anomaly detection. We have created a pipeline that, given unlabelled
dataset, returns the best feature selection for an anomaly detection task, based on different
internal evaluation strategies.

For the preliminary results of this pipeline we have combined Laplacian score and SPEC
(feature selectors) with OCSVM and KNN (anomaly detectors) on different data sets, for
which we gathered the data and got results in the form of Spearman’s rank order correlation
coefficient. The results show that using UDR as the internal evaluation strategy in automatic
feature selection yields the best output.

Be that as it may, the claim is made on the foundation of a limited number of experiments.
This ties in with a critical note on this research, which is the number of experiments. A total
of 600 (5x10x3x4) experiments were conducted in this research. These experiments involved 5
different datasets, 10 distinct HP configurations, 6 internal evaluation strategies, and 4 feature
selection and anomaly detection algorithms. Therefore the conclusions that have been drawn
may only count for this specific set of data. The reason for the limited experiments is that
the complete construction of the pipeline using advanced internal evaluation strategies has
never been done before, in automatic feature selection for unsupervised anomaly detection.
Therefore, future research should focus on incrementing the number of datasets and increase
the number of feature selection algorithms and anomaly detection algorithms. This in order to
further prove, or disprove, that UDR model is a proper method for automatic feature selection.

Another significant improvement can be made in parts of the coding. Current output leads to
automatic ranking of features for the different internal evaluation strategies. They therefore
clearly show the best subset of features for a dataset with the chosen feature selection and
anomaly detection algorithm. However, computation of the Spearman’s rank-order has not
yet been fully automated. Meaning that for every set of ranking outputs it had to manually
be put into another part of the code to calculate the correlation between ranking output
based on internal evaluation strategies and the ground truth. Improvements in this part would
significantly reduce workload.

The strengths of this research lay in the well designed pipelines created for the UDR, HITS
and Cluster validation metric models. This pipeline is the cornerstone in our research for
automated feature selection. It enables us to systematically add datasets, feature selection
algorithms and anomaly detection algorithms in future research. This is necessary to improve
generalizability of the models that we used.
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