Computer Science

[lluminating the EC-Bestiary:
Conceptual Analysis and Benchmarking of the
Invasive Weed Optimization Algorithm

Barmad Shreef

Supervisors:
Dr. Elena Raponi & Haoran Yin

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 01/06/2024

www.liacs.leidenuniv.nl

Abstract

This thesis delves into a novel numerical stochastic optimization algorithm inspired by colo-
nizing weeds. These plants are known for their vigorous, invasive habits of growth, which pose
a serious threat to desirable plants, making them a threat to agriculture. They were found to
be highly adaptable to changes in the environment. It is tried to mimic these characteristics
in a simple but effective optimizing algorithm named Invasive Weed Optimization (IWO).
In this thesis, the feasibility, efficiency, and effectiveness of IWO are tested in detail through a
set of benchmark multi-dimensional test functions facilitated by the IOHprofiler, a comprehen-
sive benchmarking platform designed to evaluate the performance of iterative optimization
heuristics (IOHs).

We investigate the best parameter combinations for enhancing the algorithm’s adaptability
and performance across various scenarios. In addition, we provide a comprehensive comparison
with other recent evolutionary-based algorithms, including genetic algorithms, augmented
covariance matrix adaptation evolution strategy and bimodal population covariance matrix
adaptation evolution strategy.

The IWO performs well across a range of test functions, demonstrating competitive conver-
gence rates and robustness, particularly in lower-dimensional problems. While IWO excels
in its exploitation phase, making it effective in finding optimal or near-optimal solutions, its
performance tends to decline in higher-dimensional spaces compared to other algorithms.

Contents

1 Introduction

1.1 Background
1.2 Objectives
1.3 Thesis overview

2 Related Work
2.1 Invasive Weed Optimization . .

2.2 Compared nature-inspired algorithms

3 Algorithm Description

3.1 Problem definition
3.2 Input and Output specification Lo
3.3 Algorithm phases
3.4 Pseudocodeo
3.5 Edge cases and limitations
3.5.1 Nonlinear reduction equation
3.5.2 Maximum number of generations 00
3.6 Implementation
3.7 Originality:
3.7.1 Biological inspirationo
3.7.2 Comparison with Simulated Annealing
4 Experiments
4.1 BBOB functions
4.2 Implementation correctness
4.3 Original experiments Lo
4.4 Validation of original findings L o
441 CONVEIZENCe . . . o v v v vt it e e
4.4.2 Effects of tuning parameters
4.5 Performance optimization oL oL
4.5.1 Minimum & Maximum seeds
4.5.2 Maximum population sizeo
4.5.3 Standard deviation & Nonlinear modulation index
4.6 Performance comparison Lo
4.7 Experimental observations L

5 Conclusions and Future work
References

A Appendix
A.1 TWO implementation in Python

10
10
10
11
13
13
15
18
19
22
24
29
38

38

39

40

1 Introduction

1.1 Background

Many major problems involve determining the most efficient way to do a task. This frequently
entails determining the maximum or minimum value of a function, such as the minimum time
required to complete a particular journey, the minimum cost of doing a task, the maximum power
that a device can produce, and so on. Most of these problems can be dealt with by determining a
proper function and then applying mathematical techniques to determine the maximum or minimum
value required. However, when we have limited knowledge about the function we are attempting to
optimize, we use meta-heuristic search algorithms| |, which are algorithms inspired by natural
systems, to solve complex optimization problems.

The use of algorithms inspired by natural processes and/or occurrences to solve optimization
problems has received a lot of attention. For example, Genetic Algorithms (GAs)| |, are
standard optimization tools. Other numerical direct search optimization approaches include Sim-
ulated Annealing (SA)] |, Ant Colony Optimization (ACO)]| |, and Particle Swarm
Optimization (PSO)[].

The EC-Bestiary encompasses a diverse collection of bio-inspired optimization techniques that draw
their principles from natural phenomena | |. Over time, it has expanded to include numerous
newly developed evolutionary algorithms, each inspired by different aspects of nature.

1.2 Objectives

This thesis aims to delve into the mechanisms of one specific EC-Bestiary algorithm, namely
Invasive Weed Optimization Algorithm (IWO), proposed by Mehrabian and Lucas|], inspired
by an invasive weed colonization phenomena that is frequently observed in agriculture. The authors
claim that despite its simplicity, the algorithm has demonstrated its effectiveness in reaching the
optimal solution by utilizing fundamental characteristics of a weed colony, such as seeding, growth,
and competition.

The primary objective of this thesis is an in-depth examination of its components and underlying
principles. The research will involve the practical implementation of the algorithm, followed by
a benchmarking study to evaluate its performance utilizing the IOHprofiler| |. Through
this analysis, this thesis aims to contribute to the existing body of knowledge on nature-inspired
optimization algorithms.

1.3 Thesis overview

This thesis provides a comprehensive exploration of the IWO algorithm, and is structured as
follows. Section 1 introduces the study’s context and aims. Section 2 reviews existing literature and
other relevant information. Section 3 details the IWO algorithm’s mechanics and implementation.
Section 4 describes the experimental setup and analyses the obtained results. Section 5 summarizes
the key findings and suggests directions for future research.

This bachelor thesis is supervised by Dr. Elena Raponi at the Leiden Institute of Advanced
Computer Science (LIACS).

2 Related Work

Optimization algorithms are essential tools in solving a wide range of complex problems across
various domains, such as engineering, economics, and scientific research. Nature-inspired algorithms,
in particular, have gained significant attention due to their ability to effectively explore large,
multi-dimensional search spaces and find near-optimal solutions. These algorithms are modeled
after natural processes and behaviors, providing robust mechanisms for optimization tasks.

2.1 Invasive Weed Optimization

The IWO algorithm was introduced by Mehrabian and Lucas in 2006 | |. It is inspired by the
colonizing behavior of weeds, which are known for their ability to adapt and spread rapidly in
diverse environments. IWO mimics these characteristics by employing mechanisms such as seeding,
growth, and competition to explore the search space and converge on optimal solutions. In the next
chapter, we will provide a comprehensive description of the algorithm.

2.2 Compared nature-inspired algorithms

Benchmarking is crucial for evaluating the performance of optimization algorithms. Platforms
such as IOHprofiler | | and COCO | | provide standardized environments for
comparing iterative optimization heuristics. These platforms offer a suite of benchmark functions
and performance metrics, facilitating comprehensive assessments of algorithm efficiency, robustness,
and convergence speed.

In our benchmarking study, we compare the IWO algorithm to the following established baselines:
Genetic Algorithm (GA) and Covariance Matrix Adaptation Evolution Strategy (CMA-ES) in
addition to Random Search (RS). Additionally, we discuss SA, since it has some similarities with
the IWO algorithm.

Genetic Algorithms: Developed by John Holland in the 1970s | |, are among the most
widely used nature-inspired optimization techniques. GAs simulate the process of natural selection,
using operators such as selection, crossover, and mutation to evolve solutions over generations.
Covariance Matrix Adaptation Evolution Strategy: Developed by Hansen and Ostermeier in
2001 |], is known for its robust performance on non-separable and ill-conditioned problems.
Extensions like the augmented CMA-ES (a-CMA-ES) and Bimodal Population CMA-ES (BIPOP-
CMA-ES) further enhance its adaptability and performance.

Simulated Annealing: Introduced by Kirkpatrick, Gelatt, and Vecchi in 1983 |], is inspired
by the annealing process in metallurgy. SA explores the search space by probabilistically accepting
worse solutions to escape local optima, gradually reducing the acceptance probability as the
algorithm progresses. This method shares similarities with IWO in terms of balancing exploration
and exploitation, but differs in its single-solution focus compared to IWO’s population-based
approach.

Particle Swarm Optimization (PSO): Developed by Eberhart and Kennedy in 1995 |],
Particle Swarm Optimization is based on the social behavior of birds and fish. Which optimizes a
problem by iteratively improving a population of candidate solutions, called particles, based on
their own experience and the experience of neighboring particles.

3 Algorithm Description

3.1 Problem definition

The ITWO algorithm was developed to solve complex numerical optimization problems, which are
characterized by the need of finding optimal or near-optimal solutions in large, multidimensional
search spaces. These kinds of issues are common in many scientific, engineering, and economic
domains, where exact solutions can greatly improve productivity and performance. Traditional
optimization methods often struggle with the scale and complexity of these problems, leading to
suboptimal performance or insufficient computation times. The IWO method aims to effectively
explore the search space and converge on optimal solutions.

3.2 Input and Output specification

The TWO algorithm relies on a set of precisely defined inputs in order to initiate and execute the
optimization process. These inputs are essential since they not only initiate the process but also
impact the algorithm’s performance through various search spaces.

To adjust the algorithm’s performance to specific optimization problems, the user needs to explicitly
specify the following parameters (inputs):

e Nonlinear modulation index (n): Modulates dispersal and reproduction rates nonlinearly
across generations.

e Initial sigma: The initial value of standard deviation for seed dispersal.

e Final sigma: The final value of standard deviation for seed dispersal.

e Minimum seeds: The lowest number of seeds any weed can produce.

e Maximum seeds: The highest number of seeds the fittest weeds can produce.

e Number of generations: The total number of iterations the algorithm will execute.

e Initial population size: The number of initial solutions (weeds).

e Maximum population size: The upper limit of the number of weeds in the population.

After completing its run, the IWO algorithm provides main outputs that are critical for evaluating
its effectiveness:

e Optimal solution: The best solution found during the generations (iterations), representing
the most optimal or near-optimal solution to the problem.

e Fitness value: The evaluation score of the optimal solution, indicating how well it satisfies
the problem’s objectives.

3.3 Algorithm phases
The TWO algorithm progresses through the following phases:

Initialization

This phase involves the creation of an initial population of seeds (solutions), randomly distributed
over the d-dimensional search space.

Reproduction

In this phase, each plant in the population is allowed to produce seeds based on its fitness relative
to the colony’s overall range of fitness. In other words, the number of seeds a plant produces scales
linearly with its fitness, from a predefined minimum to a maximum. This relationship is illustrated
in Figure 1. Such a scaling mechanism ensures that the seed production incrementally increases
from the least fit to the most fit plants of the population.

This method of reproduction adds a crucial aspect to the search algorithm. It is a common as-
sumption in traditional evolutionary algorithms that individuals with higher fitness have a higher
chance of surviving and reproducing, while those who have lower fitness are usually eliminated. As
noted by Yuchi and Kim| |, this viewpoint, however, ignores a critical feature of evolutionary
algorithms: their probabilistic and recurrent nature. Sometimes, individuals that initially seem
less feasible may carry valuable information that can significantly contribute to the evolutionary
process. Additionally, traversing infeasible regions of the search space can sometimes facilitate
reaching optimal solutions more efficiently, especially in non-convex environments.

As a result, this strategy gives infeasible plants the opportunity to survive and reproduce, similar to
natural systems. In this way, the algorithm improves the search process by utilizing the information
that potentially exists within infeasible plants.

A]]
]]
max no. of seeds™f~ "~~~ """~~~ "--"---- i
N /0
[} o]
: / :
] 3]
: / :
floor ; P '
No.of g ¥ ____| _ ' yau 1
seeds S :
[H [}
minno.ofseeds"“'l'/‘"“T """"" ity
| | .
1 1 =
min fithess max fitness
in the in the

colony plant's fitness colony

Figure 1: Relationship between plant fitness and seed production in the IWO
algorithm. Plants with higher fitness produce more seeds, with the number of
seeds ranging from a minimum to a maximum value | .

Spatial dispersal

In this phase, randomness and adaptability of the algorithm are introduced where newly generated
seeds are randomly distributed across the d-dimensional search space using normally distributed
random numbers with a mean of zero and a varying variance: x ~ N (0,). This results in seeds
being dispersed close to their parent plant.

The standard deviation ¢ of the random distribution gradually reduces from an initial value ojuiial
to a final value og,, with each generation. As the algorithm progresses, this gradual reduction
narrows the search, focusing more on promising regions.

The nonlinear reduction of the standard deviation is shown in Equation (1) | |:

(genmax - gen)n
Ogen — (genmax>n (Uinitial - Uﬁnal) + Ofinal (1)

Where:
- gen, .. is the maximum number of generations (iterations).
- Ogen is the standard deviation at the present time step (current generation).
- n is the nonlinear modulation index.

This formulation adjusts the seed dispersal mechanism such that the likelihood of seeds being
dropped in distant locations decreases nonlinearly with each generation. This strategy results in
grouping fitter plants while less suitable ones are gradually eliminated.

Competitive exclusion

Finally, a selection mechanism is applied simulating ecological systems, where plant populations are
governed by the need for competition to prevent uncontrolled growth. Similarly, as the algorithm
iterates, rapid reproduction causes the number of plants in a colony to reach a predefined maximum
number of individuals in the population. At this point, it is generally observed that fitter plants
have reproduced more successfully than the less desirable ones. Once the upper limit is reached, an
elimination mechanism is activated to maintain population balance and enhance the quality of the
colony.

This works by first allowing each weed to produce seeds, as detailed in Section 3.3. These seeds
then spread over the search space, as explained in Section 3.3. When all seeds have found their
position, both seeds and their parent plants are together ranked by fitness. Then weeds with low
fitness are removed until the population reaches the limit, see Figure 2. This method of selection
guarantees that only the fittest individuals survive and grow, resulting in a strong and competitive
colony. As explained in Section 3.3, this process permits plants with lower fitness to reproduce, and
if their offspring have good enough fitness in the colony, they will survive.

Maximum population size

A —
S IWIWI|S|[SIWI|S W
Eliminated weeds " I

Fittest weed

Figure 2: Competitive exclusion process in IWO algorithm: (S) are seeds, (W)
are parent weeds. This illustration shows how less fit weeds (grey boxes) are
eliminated to maintain the maximum population size. The fittest weeds (white
boxes) survive and reproduce, ensuring that only the strongest individuals
remain in the population, thereby improving overall colony fitness.

3.4 Pseudocode

The IWO pseudocode is shown in Algorithm 1, to illustrate the sequence of steps performed by the
algorithm, encapsulating its core logic in a clear way.

Algorithm 1 Invasive Weed Optimization

1: fort=1— M, do

2: fi f(xi), x; <« U(x™0, xmex) > Initialize
3: end for

4: for g=1— G do

5: f, X « sort(f, X)

6: Nseeds <— Nterp(f, [fmin, fmax)s [Smax, Smin]) > Reproduction
7 Calculate o according to Equation (1)

8: fori=1— M do

9: for j = 1 — Ngeeas)t] do

10: sj + N (x;,0)

11: fs; < f(s)) > Spatial dispersal
12: end for

13: Xpew < concatenate(X, Xs)

14: Juew ¢ concatenate(f, fs)

15: end for

16: [, X < sort(foew, Xnew) > Competitive exclusion
17: X X[Mypax]

18: < f[Mmax]

19: end for

Definitions:
The following symbols are used throughout the pseudocode to represent key parameters and
variables of the IWO algorithm:

- M: Total number of individuals (weeds) in the population.

- M .: Maximum allowable size of the population.

- Mj: Initial population size.

- x;: Position or solution vector for the i-th individual in the population.

- fi: Fitness of the ¢-th individual.

- x™ x™a: Minimum and maximum bounds for the solution space.

- G: Total number of generations the algorithm will run.
- Ngeeds: Number of seeds produced by each individual.

- Shax, Smin: Maximum and minimum number of seeds that can be produced by the fittest and
least fit individuals, respectively.

- o: Standard deviation used in the normal distribution.
- s;: Position of the j-th seed produced by an individual.
- [fs;: Fitness of the j-th seed.

- Xhew, fuew: Temporary containers for newly generated seeds and their fitness values before
being merged back into the main population.

3.5 Edge cases and limitations
3.5.1 Nonlinear reduction equation

Using the original equation of the nonlinear reduction of the standard deviation as presented in
the paper (Equation (1)), the nonlinear modulation index (n) is constrained to a maximum values
up to 9 when maximum generation number (gen, ..) is set to 100. This limitation arises because
(gen,,,.)" results in exceedingly large numbers. It is impractical to evaluate higher values of n.
To address this issue, we propose a modification where n can be applied to the entire fraction as
shown in Equation (2):

o el 5y — &C1
Ogen =

sen > (Tinitial — Ofinal) + Ofinal (2)

This modification allows for testing significantly larger n values, even up to 1000, if desired.
Optimal performance for some test functions may be achieved with relatively large gen, .. values
(e.g., 800 as referenced in the paper) and high values of n. The original study only explored n values
up to a maximum of 3, with gen,, set at 800.

As we can see in Figure 3, employing values of n > 9, in the original equation, with the maximum
number of generations gen, .. set to 800 results in abnormal values for o. In contrast, the modified
equation yields correct and stable values for o even for significantly larger values of n. This enhances
the robustness and applicability of the algorithm for a broader range of n values.

7

Effect of Nonlinear Modulation Index (n) on Sigma Effect of Nonlinear Modulation Index (n) on Sigma

5.0 4

451

4.0

3541

sigma

n=16 204

\‘/\ AN N /\\ - ::'; 154
VWA N A

o 20 0 60 80 — n=23
Generation — n=24

-

Figure 3: Effect of Nonlinear modulation index (n) on ¢ Using the original
equation Equation (1) (left) and the modified equation Equation (2) (right).

3.5.2 Maximum number of generations

The performance of the IWO algorithm is significantly influenced by the number of generations.
This is because the transition from exploring the search space to exploiting the best-found solutions
is based upon the current generation number, as described in Equation (1). For instance, with a
limited computational budget, setting the maximum number of generations to a specific number
(e.g., 100), which allows the algorithm to have sufficient time (i.e., number of function evaluations)
to reach the exploitation phase, would make the algorithm more powerful than with the same
budget but a maximum number of generations set to a higher number (e.g., 1000). The algorithm
then lacks the necessary time to transition into the exploitation phase, resulting in more stochastic
performance.

However, arbitrarily choosing a large evaluation budget is not always possible due to time and
resource constraints. Therefore, it is crucial to select the maximum number of generations properly
to ensure that the algorithm maximizes the number of function evaluations used within the available
budget.

3.6 Implementation

The implementation of the IWO) algorithm was carried out using Python, utilizing the IOHprofiler
framework for benchmarking and performance analysis. The development environment was based
on Python 3, with essential libraries including:

- ioh: For problem interfacing and collecting analytical datal.

- numpy: For numerical operations?.

- sys: For handling command-line arguments?.

'https://github.com/I0Hprofiler/I0Hexperimenter
’https://numpy.org/
3https://docs.python.org/3/library/sys.html

https://github.com/IOHprofiler/IOHexperimenter
https://numpy.org/
https://docs.python.org/3/library/sys.html

The core of the implementation is the IWO class , which encapsulates all the functionalities required
to execute the optimization algorithm (see Appendix A.1 for more details). This class manages the
initialization of parameters, reproduction of solutions, spatial dispersal, and competitive exclusion
phases of the IWO algorithm.

The experiments were designed to test the algorithm on 24 benchmark functions from the BBOB
suite, across various dimensions and problem instances. The data were collected using IOHexperi-
menter then post processed using IOHanalyzer, providing insights into the algorithm’s performance
relative to other optimization methods.

3.7 Originality:
3.7.1 Biological inspiration

The TWO algorithm is inspired by the colonization behavior of weeds, which differentiates it from
other optimization algorithms.

While GAs are based on genetic evolution, SA is based on the annealing process in metallurgy
and PSO mimics the social behavior of birds or fish, IWO models the adaptive and reproductive
strategies of weeds, making it a novel approach in optimization.

3.7.2 Comparison with Simulated Annealing

Although TWO operates on a population of solutions, whereas SA typically improves a single
solution iteratively, IWO has some similarities with SA in terms of:

¢ Exploration to exploitation transition: The transition from exploration to exploitation
in SA is controlled by a temperature parameter. SA starts with a high temperature (maxr),
allowing a high probability of accepting worse solutions, encouraging exploration. As the
temperature decreases to a minimum (ming), the probability of accepting worse solutions
decreases, focusing on exploitation. The temperature decreases according to a cooling schedule,
which is based on the current iteration number. The cooling schedule can be linear, exponential,
or based on other functions.
In TWO the transition from exploration to exploitation is determined by the initial and final
value of the standard deviation (o). Initially, seeds are dispersed far from the parent plant
(high o), representing exploration. As the generations progress, the dispersion radius decreases
(low o), focusing on exploiting the best-known solutions. The transition from jpitiar t0 0 final
depends on the nonlinear modulation index (n), maximum generation number and the current
generation number (iteration number).

e Mechanisms of search: SA generates new solutions through random moves near the current
solution, whereas the IWO algorithm disperses seeds randomly around parent plants.
When IWO is configured with parameter values: Syax = 1, Smin = 0 and M, = 1, its behavior
closely mirrors that of SA. However, important distinctions and similarities exist between the
two algorithms in terms of their operational mechanisms and conceptual foundations.

Although the IWO shares some similarities with SA, such as the transition from exploration to
exploitation and the use of stochastic processes, its biological inspiration and distinctive mechanisms
make it unique.

4 Experiments

In this section, various experiments were conducted to evaluate the performance of the IWO
algorithm. The experiments are designed to achieve the following objectives:

- Verify the correctness of the IWO algorithm implementation.

- Reproduce the experiments and validate the findings of the original paper using the same
parameter settings and experimental conditions.

- Explore the effect of varying key parameters on the performance of the IWO algorithm.

- Compare the performance of the IWO algorithm against GA, a-CMA-ES, BIPOP-CMA-ES,
and a RS.

4.1 BBOB functions

The performance of the IWO algorithm was evaluated using the 24 continues and noise-free
BBOB functions | |. These functions are categorized into several groups based on their
characteristics, which provide a comprehensive assessment of optimization algorithms. Each category
tests different aspects of the algorithm’s performance. The categories are:

e Separable functions: These functions can be optimized by solving smaller, independent
subproblems. Examples: Sphere and Linear Slope functions.

e Low or moderately conditioned functions: These functions have a moderate condition
number, making them moderately difficult to optimize. Examples: Rosenbrock and Attractive
Sector functions.

e Highly conditioned functions: These functions have a high condition number, posing a
significant challenge for optimization algorithms. Examples: Discus and Bent Cigar functions.

e Multi-modal functions with adequate global structure: These functions have multiple
local optima but a clear global structure. Examples: Schaffer’s F7 and Weierstrass functions.

e Multi-modal functions with weak global structure: These functions have a complex
landscape with many local optima and a less clear global structure. Examples: Schwefel and
Katsuura functions.

4.2 Implementation correctness

To ensure the correctness of the IWO implementation, the algorithm’s performance is evaluated
on the Sphere function in a 2-dimensional search space using the IOHprofiler to verify that the
fitness values improve as expected over generations. Additionally, visualizations were created using
matplotlib to observe how the population evolves and progresses across generations.

10

The results in Figures 4, 5 , collectively validate the correctness of the IWO algorithm implementation.
The consistent improvement in fitness values over generations, as observed in IOHprofiler results,
confirms that the algorithm is functioning as expected. Additionally, the visualizations provide
a clear depiction of the population’s evolutionary process, further supporting the algorithm’s
correctness and its ability to effectively explore and exploit the search space.

100

=

0.01

Best-so-far f(x)-value

le—4-

Function Evaluations

——ioh data TOW(3.0 0.001 3.00 55100 10 1)

Figure 4: Fitness value progression of the IWO algorithm on Sphere function using
[OHprofiler. The plots show the best-so-far fitness value over the number of function
evaluations.

4.3 Original experiments

In the original IWO paper |], the authors evaluate the performance of the proposed algorithm
based on the following criteria:

1. Convergence: The algorithm’s ability to find the global minimum is tested for three widely
used benchmark functions: Sphere, Griewank, and Rastrigin functions. In order to show
that the algorithm consistently finds global solutions, these findings are compared to those
produced using a standard GA.

2. Effects of tuning parameters: The IWO algorithm is then tested with a high-dimensional
instance of the Rastrigin function with a dimensionality of d=30 with 100 runs in each param-
eter settings to show how the IWO algorithm’s parameter tweaking affects its performance.

11

Generation: 2

Generation: 0 Generation: 1
Best value: 89.6285027861467 Best value: 80.77651417308381 Best value: 80.77651417308381
Num population members: 18 Num population members: 82

Num population members: 5

<}
2
e

MM
Bk
Objective Valu

100

(a) (b) ()
Generation: 3 Generation: 4 Generation: 5
Best value: 79.57723924195011 Best value: 79.51119766819947 Best value: 79.48396719863003
Num population members: 100 Num population members: 100

Num population members: 100

G gy

g8¢g

e
B8y
g8¢g
bjective Value

bjective Valu

(d) (e) (f)
Generation: 6 Generation: 7
Best value: 79.48012945918167 Best value: 79.48007344567958
Num population members: 100

Num population members: 100

,HNN

-3 o

ERER-RS]
Objective Valye

Figure 5: This figure illustrates the evolution of the population over eight generations of
the IWO algorithm. Each subplot shows the best value found, the number of population
members, and a 3D representation of the solution space at each generation, highlighting

how the algorithm converges towards the optimal solution.

3. Comparison with GAs, MAs, PSO, and SFL: The IWO algorithm is compared to other
commonly used numerical optimization methods such as: GAs, PSO, Memetic Algorithms, and
Shuffled Frog Leaping. This comparison is performed by optimizing an extremely high-order
Griewank function with dimensions d=10, 20, 50, and 100, in addition to the EF10 function.

Comparison with SDS, SSA, and DSSA: Because of some similarities between the
proposed algorithm and SA method, the IWO algorithm is compared to several types of
simulated annealing, particularly Simplex Simulated Annealing and Direct Search Simulated
Annealing. This evaluation is carried out using the Easom and Griewank functions.

12

4.4 Validation of original findings

To validate and extend these findings, the same experiments were performed using the IOHexperi-
menter tool. This involved running the IWO algorithm on the functions used in the original paper
that are also included in the BBOB suite and comparing its results with the ones in the original

paper.

4.4.1 Convergence

The final fitness value observed in the original paper tested on the Sphere function was: 2.4362e-8,
with dimension d=2, where the optimal value is: 0.0.
Using the same parameter settings Table 1, the results in Figure 6, are obtained using IOHanalyzer:

max .
best worst worst mean median

] DIM funcld * runs succ budget evals

reached recorded reached reached reached

used

ioh_data_|OW(3.0
1 0.0013.0051015 2 1 100 2e-10 1 4128 4062 135.24 5.2e-8 i.1e-8 Ge-9
1000}

Figure 6: IWO algorithm performance on the Sphere function with d=2.

We can see in Figure 6, that the mean value reached is 1.1e-8 which is even better than the one
observed in the original paper. Which means that we accept the claim of the original paper about
the performance of the IWO on the Sphere function with dimension d=2.

Symbol | Description Value
My | Initial population size 10
M, 0 | Maximum population size 15
G | Total number of generations 100
d | Problem dimension 2
Smaz | Maximum number of seeds 5
Siin | Minimum number of seeds 0
n | Nonlinear modulation index 3
Oinitiar | Initial value of standard deviation 3
Ofinal | Final value of standard deviation | 0.001

Table 1: IWO parameter values for Sphere function minimization

Another challenging optimization problem is addressed to demonstrate the abilities of the IWO,
which is minimization of the Rastrigin function with dimension d=2, using parameter values as
shown in Table 2. The performance of the IWO is shown in the paper using a fixed-budget plot
against the GA, where the budget is: 500 iterations (see Figure 7).

13

™ - - T et
Q r : : e
= ‘ ; ' i i
g .2 S oy
102} A -
| | —e— mean value |
1 0'4 L - _GA_.m_i?.value o | it AL L S |
0 50 100 150 200 250 300 350 400 450 500

Figure 7: IWO algorithm performance on the Rastrigin function with
d=2 and budget 500 iterations |]-

Symbol | Description Value
M, | Initial population size 10
M, | Maximum population size 30
G | Total number of generations 500
d | Problem dimension 2
Smaz | Maximum number of seeds 5
Siin | Minimum number of seeds 0
n | Nonlinear modulation index 3
Oinitiar | Initial value of standard deviation 10
Ofinat | Final value of standard deviation 0.1

Table 2: IWO parameter values for Rastrigin function minimization

In Figure 7, we see that the minimum fitness value achieved by the IWO is consistently lower than
that of GA after certain iterations, suggesting that IWO might be more effective for this specific
problem within the given iterations.

To validate and compare the performance of the IWO with GA, I replicated the experiment using
the same parameter values as specified in Table 2, on the same benchmark function. Figure 8
illustrates the results obtained using IOHanalyzer.

As illustrated in Figure 8, the mean fitness values achieved by the IWO algorithm were consistently
higher than those achieved by the GA, indicating that, on average, the GA outperformed the IWO
under the chosen experimental settings.

However, considering that the original paper’s focus was on minimum values, it is plausible that
the IWO algorithm may outperform the GA in certain runs in terms of finding the best solutions,
despite its lower average performance.

14

Best-so-far f(x)-value
Best-so-far f(x)-value

Function Evaluations Function Evaluations
-~ GA —ioh_data_IOW(3.0 0.1 10.0 0 5 10 30 500 0) -~ GA —ioh_data_IOW(3.0 0.1 10.0 0 5 10 30 500 0)

Figure 8: IWO algorithm performance against GA on the Rastrigin function with d=2
and budget 500 iterations which is about 30512 function evaluations. Left figure shows
the mean value, and the right figure shows the individual runs.

4.4.2 Effects of tuning parameters

The IWO algorithm is then tested with a high-dimensional instance of the Rastrigin function with
a dimensionality of d = 30 with 100 runs in each parameter settings, see Table 3.

The presented results of the original paper in Figure 9 shows how the IWO algorithm’s parameter
tweaking affects its performance by looking at:

- the percentage of success, as represented by the number of trials required for the object
function to reach its known target values, which is equal or lower than 0.05 in this experiment.

[MLOG]

- the average value of the solution obtained in all trails. []

In all experiments, the search is stopped when the maximum number of generations (iterations) is
reached.

When replicating these experiments using the IOHprofiler with the same settings as specified in
Table 3, the results present a different picture.

In Figures 10 and 11, we can see that Increasing the values of the parameters n, M,,,, and G
separately, each consistently leads to lower mean values. This indicates that enhancing these
parameters individually improves the algorithm’s performance. This observation contrasts with
the findings of the original paper, where, under the experimental settings (n = 3, G = 100,
M = 20,40, and 60), the results indicated a decline in performance with an increase in
population size.

However, the success rate values reported in the original paper do not align with the outcomes
observed in the replicated experiments neither with the mean values reported in the original paper.
The definition of the success rate is ambiguous. The description states, “the percentage of success,
as represented by the number of trials required for the objective function to reach its known
target values, which is equal or lower than 0.05 in this experiment,” | | suggesting that a
lower percentage indicates better performance since fewer runs are needed to reach the desired
target. However, the results in Figure 9 and their interpretation in the original paper consider the
success rate as the number of runs in which the algorithm reached the desired target value.

15

If the success rate indeed represents the number of runs reaching the target, it is confusing that
using G = 500, n = 3, and M,,, = 60 results in a mean value of 62.2004, while using G = 100
with the same n = 3, and M,,,, = 60 results in a mean value of 1617.7, despite the success rate
for G = 100 being 67, which is significantly higher than the success rate for G = 500 which is 5. In
both cases the reached mean value is substantially distant from the desired target of 0.05.

Table 5 - Simulation results of high-dimensional Rastrigin

function optimization

Max. Nonlinear Max. no. Comparison criteria
population modulation of .
of weeds Index (n) iterations % Mea_n
Success solution
20 14 90.4242
40 3 500 12 69.3683
60 5 62.2004
20 27 2574.2
40 1 100 14 24271
&0 9 2368.3
20 93 49423
40 3 100 72 1538.7
&0 67 1617.7
1 11 230.74
20 2 500 26 92.957
3 20 85.76

Figure 9: IWO algorithm performance on the Ras-
trigin function with dimensions d=30 |).

Symbol | Description Value
My | Initial population size 10
M0 | Maximum population size 20, 40 or 60
G | Total number of generations 100 or 500
d | Problem dimension 30
Smaz | Maximum number of seeds 3
Smin | Minimum number of seeds 0
n | Nonlinear modulation index 1,2o0r3
Oinitial | Initial value of standard deviation 10
Ofinal | Final value of standard deviation 0.02

Table 3: IWO parameter values for Rastrigin function minimization
with dimensions d=30.

Using identical parameter settings, the best value obtained across all parameter settings during the
replicated experiments was 39.71, with the best mean solution value being 83.26. These results
are substantially distant from the desired target of 0.05, indicating a considerable deviation from
the original findings.

16

Function Evaluations

let6-

le+d-

100-

——ioh_data_IOW(1.0 0.02 10.003 10 20 100 0) —*= ioh_data_IOW(1.0 0.02 10.00 3 10 20 500 Q) --=-

g7 4 5 4

le+3

Best-so-far f(x)-value

——ioh data IOW(1.0 0.02 10.0 03 10 40 500 0) —+— ioh data IOW(1.0 0.02 10.00 3 10 60 100 0)

ioh data_TOW(2.0 0.02 10.0 0 3 10 20 100 0) ioh_data_TOW(2.0 0.02 10.0 0 3 10 20 500 0)

= ioh_data_TOW(2.0 0.02 10.0 0 3 10 40 500 0) ioh_data_IOW(2.0 0.02 10.0 0 3 10 60 100 0)

ioh _data_TOW(3.0 0.02 10.0 03 10 20 100 0) === ioh_data_IOW(3.0 0.02 10.0 0 3 10 20 500 Q) --=-

——ioh_data_IOW(3.0 0.02 10.0 0 3 10 40 500 0) —*= ioh_data_IOW(3.0 0.02 10.00 3 10 60 100 Q) --=-

00 -

ioh_data_ IOW(1.0 0.02 10.0 0 3 10 40 100 0)
ioh data IOW(1.00.02 10.0 03 10 60 500 0)
ioh_data_TOW(2.0 0.02 10.0 0 3 10 40 100 0)
ioh_data_TOW(2.0 0.02 10.0 0 3 10 60 500 0)
ioh_data_ TOW(3.0 0.02 10.0 0 3 10 40 100 0)

ioh_data_IOW(3.0 0.02 10.0 0 3 10 60 500 0)

Figure 10: IWO algorithm performance on the Rastrigin function with dimensions d=30

and various parameter settings.

17

D DIM funcld runs best reached * suce budget mes evala worst recorded worst resched mean reached median
used reached

L] 10 39.7: 271 701 10028 3 5.26 &
10 T 183 1EE4% 9 3! 1.1 805
4 10 586 1168 11650 15846, 1191 17087 15 8!
100 65.62 1 13786 19657 8373.29 185.48 119.62 11615
1z 100 6E.34 1 ZT10E 27041 1113507 16223 109.21 106.07
10 4. 123 1231 24 55.6 4.4 5153
7 10 B [2l 1017E.4: 485, 515.85 15.65
€ 10 L4 28092 1! 10E53.7! 411 374 57.24
15 10 355 43; 4 10821 04 470.8 2 34 30.74
'l 10 o 2094 0 9565.23 4143 4, 7255
100 23198 1 13443 13432 10E04 45 40208 30712 303.68
13 10 37.14 5. 2435 B0AL.T: 7.2 3827 75,7
1 100 262.05 1 61EE 6128 1284568 51812 3E5.09 375.28
100 266.97 1 4372 4241 101456 612.24 393.43 38269
100 29433 1 7654 2643 10497 33 63254 43158 43235
100 44858 1 382 6338 1060177 5aT.01 EEZ.26 65814
100 469.59 1 4533 4610 14002.74 95184 BER.51 €76.92
100 506.18 1 2915 2805 9B45.21 1186.4 74525 T4ZERA

Figure 11: IWO algorithm performance on the Rastrigin function with dimensions d=30
and various parameter settings.

4.5 Performance optimization

In this section, we focus on optimizing the parameters of the IWO algorithm to enhance its
performance across a diverse set of benchmarking scenarios.

Using IOHprofiler, these experiments were conducted on 24 functions from the BBOB benchmark
suite [HHANT10], tested on instances 1-5, for dimensions 2, 5, 20 and 40, with 5 runs per instance
to ensure statistical robustness.

The parameter values used in the experiments were varied and tested within specific ranges to
evaluate their impact on the performance of the IWO algorithm. The default values, tested values,
and the accepted range for each parameter are summarized in Table 7. To provide a standardized
basis for these experiments, all subsequent parameter optimization trials were performed using the
base setup values. The default values are taken from the original paper where the IWO algorithm
is tested on the Sphere function with dimensions d=2.

18

To ensure a fair comparison in parameter optimization, it is essential to consider the following
points:

- The number of function evaluations used in each parameter setting is significantly influenced
by the parameters: number of generations, minimum number of seeds, maximum number of
seeds, and population size.

- The performance of the IWO algorithm is heavily dependent on the number of generations.
This is because the shift from exploring the search space to exploiting the best-found solutions
depends on the current generation number. See Equation (1).

Therefore, comparing individual parameter settings that affect the number of function evaluations
without adjusting the corresponding parameters is unfair.

By using Equation (3), we can benchmark the effect of the minimum seeds, maximum seeds, and
population size by adjusting the number of generations accordingly. This adjustment ensures two
key points:

- The algorithm uses roughly the same number of function evaluations across different parameter
settings.

- The algorithm has sufficient time (i.e., function evaluations) to leverage both its exploration
and exploitation capabilities.

Nfe = Mo + (G X <Sm1n‘gsmax) X Mmax> R (3)

where:

- Nyt Number of function evaluations
- M ax: Maximum allowable size of the population.

My: Initial population size.

- G: Total number of generations the algorithm will run.

- Shaxs Smin: Maximum and minimum number of seeds that can be produced by the fittest and
least fit individuals, respectively.

4.5.1 Minimum & Maximum seeds

Theoretically, higher values of the minimum seed number enhance the explorative capabilities of
the algorithm by increasing the survival chances of weeds with lower fitness, leading to slower
convergence towards the optimal solution. Conversely, lower values facilitate faster exploitation
of the best-found solutions but increase the risk of becoming trapped in local optima. Similarly,
higher values of the maximum seed number directly boost the number of seeds produced by high-
fitness weeds, intensifying the search in promising areas and indirectly raising the survival chances
of lower-fitness weeds by enlarging the overall seed values. On the other hand, lower maximum
seed numbers may accelerate the exploitation of current best solutions but at the expense of diversity.

19

By calculating the number of function evaluations used in the basis parameter setting, we get Ny,
= 3760. To maintain roughly the same number of function evaluations across other values of the
minimum and maximum number of seeds, we adjust the generation number using the Equation (3).
See Tables 4 and 5:

Smin 0o l112]3]4]5
G 100 [83 | 71]62 5550

Table 4: Number of generations that should be used to maintain fair
comparison between different values of the minimum seeds number.

Smaz 1 2 3 4 5 |6 | 7] 8|9 102050100
G 500 | 250 | 166 | 125 | 100 | 83 | 71 | 62 | 55 [50 | 25 | 10 | 5

Table 5: Number of generations that should be used to maintain fair
comparison between different values of the maximum seeds number.

Proportion of (run, target, ...) pairs
o

Function Evaluations

= ioh_data_IOW(3.0 0.001 3.0 05 10 15 100 0) ioh_data_IOW(3.0 0.001 3.0 1 510 1583 0)
ioh_data_IOW(3.0 0.001 3.025 101571 0) ioh_data_IOW(3.0 0.001 3.03 510 15 62 0)
ioh_data IOW(3.0 0.001 3.04 5 10 15 55 0) ==~ ioh_data_IOW(3.0 0.001 3.0 55 10 15 50 0)

Figure 12: Aggregated ECDF across all functions and dimensions for different
minimum seed values (fourth parameter in brackets) of the IWO algorithm,
using BBOB spacing for the automatically generated ECDF-targets.

In Figures 12 and 13, we see how the IWO algorithm performs with different minimum seed values.
We can see that configurations with lower minimum seed values (e.g., 0 and 1) generally outperform
those with higher values (e.g., 4 and 5).

20

ioh_data_IOW(3.0 0.001 3.0 0 510 15 100 0)|

ioh_data_TOW(3.0 0.001 3.0 1 5 10 15 83 0) -

ioh_data_IOW(3.0 0.001 3.0 3 5 10 15 62 0}

ioh_data_IOW(3.0 0.001 3.0 25 10 15 71 0) |

ioh_data_IOW(3.0 0.001 3.0 55 10 15 50 0) |

ioh_data_IOW(3.0 0.001 3.0 4 5 10 15 55 0) |

"
% %, % b o 5
% N4 A A % -4
% % %, %, %, %
3 e, , “, .,
@, B, G, 0, o, 2,
> €3 (3 > &) (&
% % % % %% &)
%, %, %, %, %, %,
‘3 “3 ‘s ‘s “3 “
Q K2 Q K3 Q' Q.
%, R v, %, %, ",
0(' 0-7 Dl o/ a(OJ
% s, s s, 23
‘g, ® % i % 5
%, o 2 o) 2

Figure 13: Heat map across all functions and dimensions for different minimum
seed values (fourth parameter in brackets) of the IWO algorithm. Red means
the algorithm on the y-axis outperforms the one on the x-axis.

03-

0.235-

...) pairs

015-

01-

Proportion of (run, target,

1 2 H 10 2 § 100 2 5 let3 2 §

Function Evaluations
—— ioh_data TOW(3.00.0013.001 1015 5000) —— ioh_data_ IOW(3.00.0013.0010 101550 0) — ioh_data IOW(3.0 0.001 3.00 100 10155 0)
—*~ ioh_data JOW(3.00.0013.00210152500) ioh_data JOW(3.00.0013.00201015250) --*- ioh_data IOW(3.0 0.001 3.003 10 15 166 0)
—=— ioh_data TOW(3.00.0013.00410151250) — -~ ioh data IOW(3.00.0013.00510151000) --=- ioh_data IOW(3.0 0.001 3.00501015100)
-+er+ joh_data TOW(3.0 0.001 3.00 6 10 15 83 0) —— ioh_data JOW(3.0 0.0013.007 10 15 71 0) —=— ioh_data JOW(3.00.001 3.0 0 8 10 15 62 0)

ioh_data TOW(3.0 0.001 3.00 9 10 15 55 0)

Figure 14: Aggregated ECDF across all functions and dimensions for different
maximum seed values (fifth parameter in brackets) of the IWO algorithm, using
BBOB spacing for the automatically generated ECDF-targets.

21

In Figures 14 and 15, we see how the IWO algorithm performs with different maximum seed values.
We can see that configurations with lower maximum seed values (e.g., 1 — 5) generally outperform
those with higher values (e.g., >10).

ioh_data_IOW(3.0 0.001 3.0 0 2 10 15 250 0} - l
ioh_data_IOW(3.0 0.001 3.0 0 3 10 15 166 0} - l

ioh_data_IOW(3.0 0.001 3.0 0 4 10 15 125 0} -

ioh_data_IOW(3.0 0.001 3.0 0 1 10 15 500 0} -
ioh_data_IOW(3.0 0.001 3.0 0 5 10 15 100 0) -

ioh_data_IOW(3.0 0.001 3.0 0 7 10 15 71 0)

Figure 15: Heat map across all functions and dimensions for different maximum
seed values (fifth parameter in brackets) of the IWO algorithm. Red means the
algorithm on the y-axis outperforms the one on the x-axis.

4.5.2 Maximum population size

The maximum population size significantly impacts the diversity of the solutions. A larger popula-
tion size enhances the algorithm’s ability to explore a wider range of solutions, thereby increasing
the likelihood of discovering the global optimum. However, this comes at the cost of a higher compu-
tational budget. For simpler problems, a smaller but sufficiently large population size is preferable
to efficiently exploit the search space without excessive computational expense. Conversely, for
more complex problems, larger population sizes are beneficial as they mitigate the risk of early
convergence and help in avoiding local optima. Therefore, selecting an appropriate population size
should be guided by the complexity of the problem.

To maintain roughly the same number of function evaluations across other values of the maximum
population size, we adjust the generation number using the Equation (3). See Table 6.

Mipae | 10 | 15 [20 | 30 | 50 | 80 | 100 | 200 | 500
G 150 | 100 | 75 | 50 [30 | 18 | 15 | 8 3

Table 6: Number of generations that should be used to maintain fair
comparison between different values of the maximum population size.

22

03- T

...) pairs

0.15-

0.1-

Proportion of (run, target,

0.05-
0- ;
1 10 100 let3
Function Evaluations
—=— 10h_data JOW(3.00.0013.00510101500) —— 1o0h data IOW(3.00.0013.005 10100 150) 1oh_data IOW(3.0 0.001 3.005 10 15 100 0)

1oh_data TOW(3.00.0013.0051020750) —*~ 1oh_data_IOW(3.0 0.0013.005 10 2008 0) 10h_data_IOW(3.00.0013.005 103050 0)

ioh_data IOW(3.00.0013.0051050300) --*- ioh_data JOW(3.00.0013.0051050050) --*- ioh_data_JOW(3.00.0013.005 1080 18 0)

Figure 16: Aggregated ECDF across all functions and dimensions for different
maximum population size values (seventh parameter in brackets) of the IWO
algorithm, using BBOB spacing for the automatically generated ECDF-targets.

ioh_data_IOW(3.0 0.001 3.0 0510 10 150 0)- .

ioh_data_IOW(3.0 0.001 3.0 0 5 10 15 100 0)|

ioh_data_IOW(3.0 0.001 3.0 0 5 10 20 75 0) |

ioh_data_IOW(3.0 0.001 3.0 0 5 10 30 50 0)-|

ioh_data_IOW(3.0 0.001 3.0 0 5 10 50 30 0)-|

ioh_data_IOW(3.0 0.001 3.0 0 5 10 80 18 0) |

/02 ’o,z ’04\ o,z ’éé\ By 0) B
124 {24 £+ 4 124 Q% % {24
7 S, D, E?) C E? C C
% % % % % % % % %
‘“o,; /OJL "c,; \“o,b /OJL \’ozb “’o,b 0, \/D%
e >] > S e > e e
‘o) ‘o 3 -
%, %, %o, %, %, %, %, %, e,
% % % % 7 7 %
Yo %o Yo Yo o Yo Yo Yo Yo
o o o o o o © o o
s & s s > 5 & & &
“ ‘o ‘o ‘o ‘o ‘e ‘o ‘o ‘o
‘o s) % % ‘o, 3 %,
% 2 %
%%, “, <) % B2 ‘e 75 @ &
o o G < 7 o, % 2

Figure 17: Heat map across all functions and dimensions for different maximum
population size values (seventh parameter in brackets) of the IWO algorithm.
Red means the algorithm on the y-axis outperforms the one on the x-axis.

23

In Figures 16 and 17, we see how the IWO algorithm performs with different values of the maximum
population size. We can see that configurations with lower values (e.g., 10 — 20) generally outperform
those with higher values (e.g., >30). This is because increasing the population size results in a
higher number of function evaluations per generation, necessitating a reduction in the number
of generations to remain within the specified budget. Consequently, this reduction in generations
hinders the algorithm’s ability to fully exploit the information from the best solutions, as is more
effectively done with smaller population sizes.

4.5.3 Standard deviation & Nonlinear modulation index

The parameters giitial, Ofinal, and n do not influence the number of function evaluations used by
the algorithm. Therefore, there is no need to adjust other parameters to ensure a fair comparison
between different settings.

These parameters primarily affect the transition speed from the exploration phase to the exploitation
phase within the algorithm. Specifically, the oj,1;a determines the dispersion radius of the seeds
from the parent plant during the early generations, where the algorithm is focused on exploration.
In contrast, the ogn. determines how close the seeds will be to their parent in later generations as
the algorithm shifts towards exploitation. The nonlinear modulation index n governs the rate at
which ¢ transitions from its initial to final value (see Figure 18).

Effect of Nonlinear modulation index (n) on Sigma

5.0 1

4.5 4

4.0 4

3.5 4

Sigma

2.5 4

20— n=1

1.5+

533 335 3
[T T
W~ W

1.0+

0 Zb 4‘0) Gb BID 160
Figure 18: Effect of nonlinear modulation index (n) on standard deviation (o).

Higher n values leads to more exploitation than exploration (faster transition).
Lower n values leads to more exploration than exploitation (slower transition).

In Figures 19 and 20, we see how the IWO algorithm performs with different values of the nonlinear
modulation index (n). We can see that configurations with values (2 — 8) generally outperform
those with higher (e.g., >10) and lower values (e.g., <1). This ensures an appropriate balance
between exploration and exploitation.

24

03-

...} pairs

0.1-

Proportion of (run, target,

0.05-
0- v ; ; v . ; . " ; " " . ;
1 1 H 10 2 H 100 2 H le+3 2 H le+d
Function Evaluations
—— ioh_data_TOW(0.1 0.0013.005 10 15100 0) —+— ich_data_TOW(0.4 0.001 3.0 05 10 15 100 0) --+- ioh_data_TOW(0.8 0.001 3.0 05 10 15 100 0)
ioh_data TOW(1.0 0.001 3.0 05 10 15 100 0) ioh_data TOW(10.0 0.0013.00 510 15 1000) —*— ioh data IOW(2.00.001 3.0 0 5 10 15 100 0)
ioh_data_TOW(20.0 0.001 3.0 0 5 10 15 100 0) ioh_data_TOW(3.00.001 3.0 0 5 10 15 100 0) ioh_data_TOW(5.00.001 3.0 05 10 15 100 0)

—+— ich_data JOW(50.00.001 3.00 510 15 100 0) —=— ioh_data TOW(S.0 0.001 3.00 510 15 100 0)

Figure 19: Aggregated ECDF across all functions and dimensions for different
values of the nonlinear modulation index n (first parameter in brackets) of the
IWO algorithm, using BBOB spacing for the automatically generated ECDF-
targets.

ioh_data_IOW(3.0 0.001 3.0 0 5 10 15 100 0)-|

ioh_data_IOW(2.0 0.001 2.0 0 5 10 15 100 0}~

ioh_data_IOW(5.0 0.001 3.0 0 5 10 15 100 0)-|

ioh_data_IOW(1.0 0.001 3.0 0 5 10 15 100 0)

ioh_data_IOW(£.0 0.001 3.0 0 5 10 15 100 0}

ioh_data_IOW(10.0 0.001 3.0 0 5 10 15 100 0)-|

g
K C] K C] E)] % By o By K
2

Figure 20: Heat map across all functions and dimensions for different values of the
nonlinear modulation index n (first parameter in brackets) of the IWO algorithm.
Red means the algorithm on the y-axis outperforms the one on the x-axis.

25

In Figures 21, 22, 23 and 24, we see how the IWO algorithm performs with different initial and final
values of the standard deviation o. We can see that configurations with values of (1 < oipitia1 < 5)
and (le-5 < oguar < 0.01), generally outperform those with higher values (e.g., Tinitiar >10 and ogpa)
>0.1).

w02
‘=
a,
= 02
(7]
B0
g
2 o1s-
ey
o
c
£ ol-
g
o,
2
=M

0.05-

- e
S
——
0- : . : :
100 2 5 13
Function Evaluations
—— ich_data JOW(3.0 0.001 0.505 10 151000) —+— ich data TOW(3.0 0.001 1.00 5 10 15 100 0) --* ich data IOW(3.0 0.001 10.00 5 10 15 100 0)
ioh_data TOW(3.0 0.001 100.0 0 5 10 15 100 0) ioh_data_IOW(3.0 0.001 20.0 0 5 10 15 100 0) ioh_data_IOW(3.0 0.001 3.0 0 5 10 15 100 0)
ich data IOW(3.0 0.001 300.0 0 5 10 15 100 0) ioh_data IOW(3.00.0015.00510151000) —+— ioh data TOW(3.0 0.001 50.0 0 5 10 15 100 0)

—+— ioh_data_IOW(3.0 0.0018.005 10 15 100 0)

Figure 21: Aggregated ECDF across all functions and dimensions for different
values of the oipiia (third parameter in brackets) of the IWO algorithm, using
BBOB spacing for the automatically generated ECDF-targets.

26

ioh_data_IOW(3.0 0.001 1.0 0 5 10 15 100 0)-

ioh_data_IOW(3.0 0.001 3.0 0 5 10 15 100 0)-]

ioh_data_IOW(3.0 0.001 5.0 0 5 10 15 100 0}

ioh_data_IOW(3.0 0.001 8.0 0 5 10 15 100 0}

ioh_data_IOW(3.0 0.001 0.5 0 5 10 15 100 0}

ioh_data_IOW(3.0 0.001 10.0 0 5 10 15 100 0}

‘o, [‘e Lo Lo, e e {e ‘e o
"3 " 3 7 C7 " "3 3 C, C/
% % % % % % % % % %
o, g, ~ g, \"o,” g, g, \‘/Dlz, o)))
&)] 3 [~ > 3 3 > =] e
%, %, %, %4, %, ‘4, ‘4, % %, %
2, 2, 2, () 2, 2, ,) 2, 2,
v 4 ' z 7 ' z 7 “ 4
Z 3 £y & o 2, 2 3 < 3
o o o ‘o & Q Q @, % %
N o R o, o %5 % % o ‘o
2 % F2 2 % & & & Os Os
o, o, o, o, o, A A ‘o > .
&3 & & &3 &3 Zg N N @ °,
<, < 2 75 <5, . ", . 3 s
© © >] % % % FS 25
< & % < & o o 2 0@ o,
pd

Figure 22: Heat map across all functions and dimensions for different values of
the Oinitial (third parameter in brackets) of the IWO algorithm. Red means the
algorithm on the y-axis outperforms the one on the x-axis.

03-

n
3 025-
(=9
o
o 02
&
g
E s
Gy
(=]
=
.2
=
5 ol
o,
o
g
-
0.05-
0- 0 0 " 0 i i 0 ' ' 0 . "
1 1 H 10 2 5 100 2 3 1e=3 2 5
Function Evaluations
—— ioh_data_TOW(3.0 0.0001 3.00 5 10 15 100 0) —*— ioh_data_IOW(3.0 0.0013.005 10 15 1000) —*— ioh_data IOW(3.00.0023.005 10 15 100 0)
ioh_data TOW(3.0 0.005 3.0 05 10 15 100 0) ich_data TOW(3.0 0.013.00 5 10 15 100 0) —— ioh_data_TOW(3.0 0.053.005 10 15 100 0)
ioh_data_TOW(3.00.13.005 10 15 100 0) ioch_data_TOW(3.00.53.005 10151000) -+ ich_data_TOW(3.01.03.005 10 15 100 0)

—— ich_data JOW(3.0 1¢-053.0 05 10 15 1000) —*— ich_data_TOW(3.0 1e-06 3.0 0 3 10 15 100 0)

Figure 23: Aggregated ECDF across all functions and dimensions for different
values of the ogua (second parameter in brackets) of the IWO algorithm, using
BBOB spacing for the automatically generated ECDF-targets.

27

ich_data_IOW(3.0 1e-05 3.0 0 5 10 15 100 0)-

ioh_data_IOW(3.0 0.002 3.0 0 5 10 15 100 0}

ioh_data_IOW(3.0 0.005 3.0 0 5 10 15 100 0}~

ioh_data_IOW(3.0 0.01 3.0 0 5 10 15 100 0)-|

ioh_data_IOW(3.0 0.0001 3.0 0 5 10 15 100 0}~

ich_data_IOW(3.0 1e-06 3.0 0 5 10 15 100 0)

g "
% P
4 : % % % %, % % % i
@, @, LA @, @, x @, @ LA @, @,
2 c "3 3, C/ > C, C 7 D, C/
2 . R, R, R, R, R, R, R, R, R
G By Y, B o, Y e, Th, B g, Y
) e 3 =3 > (=] (&) 3 & &3 =]
? 5 2y
a Q a L7} a aQ Q [}
‘e, %, %, o, o, o %, o . s, Yo
23 S 2, s, 5), G 7, 5 ER 2, R
o "o o £ k] o ‘o % @ o o
] o c o,] o L e B
& £ £ " o £ £ 5 ‘o ‘o <o
% % < 2, % % 7 o, s o s
s RN Lo 6‘(. s g 6‘(5, g 2
< 2, 2) & < Z o, > % %
% % % 2 ‘o % % %, % 2 %
% o Z ° o < Z

Figure 24: Heat map across all functions and dimensions for different values of
the opna (second parameter in brackets) of the IWO algorithm. Red means the
algorithm on the y-axis outperforms the one on the x-axis.

Values

Symbol Description Default values Tested values Accepted

(Original) (Experiments) range
Mo Maximum population size 15 10 — 500 10 - 30
Smaz Maximum number of seeds 5 1 -10, 20, 50, 100 1-5
Simin Minimum number of seeds 0 0-5 0
M, Initial population size 10 10 10
G Total number of generations 100 5 — 500 00
n Nonlinear modulation index 3 0.1 -50 2-8
Cinitial Initial value of standard deviation 3.0 0.5 — 300.0 1-5
Ofinal Final value of standard deviation 0.001 le-6 — 1.0 le-5 — 0.01

Table 7: IWO parameter values used in the experiments.

28

4.6 Performance comparison

In this section, we benchmark the performance of the IWO algorithm against several well-established
optimization techniques, including GA, a-CMA-ES, BIPOP-CMA-ES, and RS. The benchmarking
process involves evaluating these algorithms on the 24 BBOB functions across different dimensions:
2, 5, 20, and 40.

The objective is to identify the scenarios in which IWO outperforms the other algorithms, thereby
highlighting its strengths and potential advantages in various optimization contexts.

The parameter settings used for the IWO algorithm in this study are shown in Table 8. Where the
number of generations is defined based on the problem dimension. Higher number of generations is
used with higher dimensions to ensure a thorough exploration of the search space while maintaining
a feasible computational budget for the exploitation process.

Dimensions | Generations | Budget
2 100 6000
5 500 30000
20 1000 50000
40 10000 500000
Symbol | Description Value
My | Initial population size 10
M, | Maximum population size 30
G | Total number of generations 100, 500, 1000 or 10000
d | Problem dimension 2,5, 20 or 40
Smaz | Maximum number of seeds 5
Smin | Minimum number of seeds 0
n | Nonlinear modulation index 8
Oinitiar | Initial value of standard deviation 5
Ofinal | Final value of standard deviation le-5

Table 8: IWO parameter values for performance comparison with GA,
a-CMA-ES, BIPOP-CMA-ES and RS.

In the context of benchmarking optimization algorithms, the Empirical Cumulative Distribution
Function (ECDF) is a crucial performance measure. The ECDF represents the proportion of
problems for which an algorithm can achieve a given target function value within a specified number
of function evaluations. In simpler terms, the ECDF provides a cumulative measure of an algorithm’s
success rate across different benchmark problems and targets, thus giving a comprehensive view of
its overall performance.

As illustrated in Figures 29, 25, 30, 26, 31, 27, 35, and 28, the performance of various optimization
algorithms exhibits notable trends across different problem dimensions. The IWO algorithm generally
demonstrates competitive performance, particularly excelling in lower-dimensional problems where it
outperforms both GA and RS, achieving faster convergence and lower fitness values, especially when
finely tuned. However, as the dimensionality of the problems increases, IWO’s relative performance
declines; it consistently surpasses RS but does not outperform GA as markedly.

29

Proportion of (run, target, ...) pairs

10 100 le+3 le=d les5 les6

Function Evaluations

—— BIPOP-CMA-ES --=- GA RANDOMSEARCH a-CMA-ES ioh_data_TOW(8.0 1e-055.00 5 10 30 100 0)

Figure 25: Comparison of the performance of BIPOP-CMA-ES, GA, RS, a-CMA-ES, and IWO
across 24 functions (F1 to F24) with a dimensionality of 2. The figure shows the aggregated ECDF
across all functions with a dimensionality of 2, using BBOB spacing for the automatically generated
ECDF-targets. The y-axis tracks the loss, defined as target precision.

SR

Proportion of (run, target, ...) pairs

10 100 le+3 le+d Le=5 les6
Function Evaluations

—— BIPOP-CMA-ES --=-- GA RANDOMSEARCH a-CMA-ES —— ioh_data TOW(8.0 1e-05 5.0 0 5 10 30 500 0)

Figure 26: Comparison of the performance of BIPOP-CMA-ES, GA, RS, a-CMA-ES, and IWO
across 24 functions (F1 to F24) with a dimensionality of 5. The figure shows the aggregated ECDF
across all functions with a dimensionality of 5, using BBOB spacing for the automatically generated
ECDF-targets. The y-axis tracks the loss, defined as target precision.

30

Proportion of (run, target, ...) pairs
I

Function Evaluations

—— BIPOP-CMA-ES --=- GA RANDOMSEARCH a-CMA-ES ioh_data_TOW(8.0 1e-055.00 5 10 30 1000 0)

Figure 27: Comparison of the performance of BIPOP-CMA-ES, GA, RS, a-CMA-ES, and IWO
across 24 functions (F1 to F24) with a dimensionality of 20. The figure shows the aggregated
ECDF across all functions with a dimensionality of 20, using BBOB spacing for the automatically
generated ECDF-targets. The y-axis tracks the loss, defined as target precision.

Proportion of (run, target, ...) pairs

1 10 100 le=3 led 1e=5 le§ Le=7 1ed
Function Evaluations

—— BIPOP-CMA-ES --=-- GA RANDOMSEARCH a-CMA-ES ioh_data IOW(8.0 1e-05 5.0 0 5 10 30 10000 0)

Figure 28: Comparison of the performance of BIPOP-CMA-ES, GA, RS, a-CMA-ES, and IWO
across 24 functions (F1 to F24) with a dimensionality of 40. The figure shows the aggregated
ECDF across all functions with a dimensionality of 40, using BBOB spacing for the automatically
generated ECDF-targets. The y-axis tracks the loss, defined as target precision.

31

In contrast, the BIPOP-CMA-ES and a-CMA-ES algorithms consistently exhibit superior per-
formance across most functions in all dimensions, showcasing their robustness and optimization
capabilities. Notably, IWO achieves faster convergence and lower function values than BIPOP-
CMA-ES and a-CMA-ES in specific functions. For example, in 2-dimensional problems, IWO excels
in functions F3, F15, F22, and F23; in 5-dimensional problems, in functions F16 and F23; and even
in higher-dimensional problems, such as in 20-dimensional problems, in functions F16, F20, F23,
and F24 (see Appendix A for more details).

A noteworthy aspect of IWO’s performance across all functions and dimensions is its strength
during the exploitation phase. During the early stages, the algorithm is in the exploration phase,
performing similarly to RS and GA. However, in the final stages, IWO effectively exploits the
best-known solutions, significantly enhancing the search process in the surrounding area of these
solutions. This characteristic is particularly advantageous in highly multi-modal functions with
weak global structures, where high exploitation is needed to achieve a satisfactory fitness value, if
not the optimal one, as observed in function F23 (see Figure 33). Additionally, IWO’s exploitation
capability is beneficial in problems with a global structure as in function F15 (see Figure 34).
The number of generations significantly impacts the algorithm’s performance, often resulting
in suboptimal outcomes when evaluated using anytime performance metrics. Therefore, it is
recommended that the IWO algorithm be employed with parameters finely tuned according to a
predetermined computational budget.

32

Best-so-far f(x) Best-so-far f{x) Best-so-far f(x) Best-so-far fix) Best-so-far f(x)

Best-so-far f(x)

le-3-

le9-

le+g-

fe+d-

le—d-

le-§-

letds

le—4-

le=§-

1e-12-

letg-

Ted-

le—d-

le§-

™ le—d-
| le-8-
1e-12-

1 100 lerd let6 1 100 le=d

Function Evaluations Function Evaluations

--= BIPOP-CMA-ES - GA RANDOMSEARCH

—1oh_data_IOW(8.0 1e-055.0 0510 30 100 0)

le—4-
le-8-
1-
le-3-
1e6-
le-9-
F23
1-
" p—
le-3-
1
1e6- \
1)
le-9- x -
1 100 letd 1e+6
Function Evaluations
a-CMA-ES

1e—6-

le-9-

le+d-

le—4-

le-8-

100-

0.01-

1 100 led

Function Evaluations

Figure 29: Comparison of the performance of BIPOP-CMA-ES, GA, RS, a-CMA-ES,
and IWO across 24 functions (F1 to F24) with a dimensionality of 2. The figure shows

“Best-so-far f(x)” versus function evaluations.

33

Best-so-far f(x) Best-so-far f{x) Best-so-far f(x) Best-so-far fix) Best-so-far f(x)

Best-so-far f(x)

le—d-

le—4-

le-8-

let3-

le-3-

le-9-

le3-

le9-

le-3-

1le-9-

1 100 le=4 letf 1 100 lerd 1e+6 1 100 le+d let6 1 100 fe=d les6

Function Evaluations Function Evaluations Function Evaluations Function Evaluations

--= BIPOP-CMA-ES - GA RANDOMSEARCH a-CMA-ES
—1oh_data_IOW(8.0 1e-05 5.0 0510 30 500 0)

Figure 30: Comparison of the performance of BIPOP-CMA-ES, GA, RS, a-CMA-ES,
and IWO across 24 functions (F1 to F24) with a dimensionality of 5. The figure shows
“Best-so-far f(x)” versus function evaluations.

34

Best-so-far f(x) Best-so-far f(x)

Best-so-far f(x)

Best-so-far f(x) Best-so-far f(x)

Best-so-far f(x)

le+3- . __F1
. \.\ Dy
] .'-
%
13 : o
B
1e6- .
\.
le-9-
le+d- F5.
1- e .,
| *,
le—d- -
1e-8- H S—
:
1e-12- :
dueh
F9
lesds -
e
1- e
1et- -
1e-8- v vant e
F13
le+3- k —
1 I
13 i
le—6- \..-.
le-9-
1o F17
ets -
——
1- T -
0
1e-3 Vimg
\
le—6- ‘!
lea. P
F21
100-
EY e
s
s L .
2 g
10- ‘w.....__‘ Y
5 —
. et
1- LY
1 100 letd le6

Function Evaluations

leg-

letd-

le—4-

le—8-

le+d-

le—4-

le-8-

le+8-
letd-

le—4-
le-8-

let3-

le-3-
le—6-
let3-
le—3-
le—6-

le9-

100-

= BIPOP-CMA-ES - GA
ioh_data_IOW(8.0 1e-05 5.0 0 5 10 30 1000 0)

100 le-4 le+6

Function Evaluations

RANDOMSEARCH

1e+8- F11

Te+d- iy,

le—4-

le-8-

le+d- s

led-

1e-8-

F23

1 100 le+4 le6

Function Evaluations

a-CMA-ES

le+d-

let3-

100-

letd-

le—4-

le-%-

le-3-

le—6-
le9-

let6-

le+d-

100-

001-

1 100 le+d le+6

Function Evaluations

Figure 31: Comparison of the performance of BIPOP-CMA-ES, GA, RS, a-CMA-ES,
and IWO across 24 functions (F1 to F24) with a dimensionality of 20. The figure shows

“Best-so-far f(x)” versus function evaluations.

35

Best-so-far f(x) Best-so-far f(x)

Best-so-far f(x)

Best-so-far f(x) Best-so-far f(x)

Best-so-far f(x)

le—6-

le-9-

le+d-

le—4-
1e-8-

1e-12-

F1 letg-
\-_ letd-
R
le—4-
le—8-
2 B
., le=d
%
.
% 1
L
le—4-
le-8-
Fo 1e=8
T lerd
S —
le—4-
SOPPICOUT U OUOTToe le-8
F13 1e=3
R — 1
le-3
le6
F17
—— les3-
T ey 1
e, (R
-
3 le3-
-\ le—6-
— le—9-
F21
100-
10-
1 100 le=d le+6

Function Evaluations

— BIPOP-CMA-ES - GA

F14 Lot - FI5

F22 F23

100 le-4 le+6 1 100 le+4 le6

Function Evaluations Function Evaluations

RANDOMSEARCH a-CMA-ES

ioh_data_IOW(8.0 1e-05 5.0 0 5 10 30 10000 0)

letd-

le-%-

le+10-

le=5-

le-3-

le—6-
le9-

let6-

le+d-

100-

001-

F12

F16

191
——
e
e
100 le=4 1626

Function Evaluations

Figure 32: Comparison of the performance of BIPOP-CMA-ES, GA, RS, a-CMA-ES,
and IWO across 24 functions (F1 to F24) with a dimensionality of 40. The figure shows
“Best-so-far f(x)” versus function evaluations.

36

o0

9

11217
: gég‘

=l

2,

Q

0. &%
e

#

o

0.

3 =
e -

(g M ol [8

Iol %)
o
-

(AATAN W
NONOA=q e
g s N

doplgb oo

O

*

o8

Figure 33: Surface plot (left) and 2D contour plot (right) of function F23 from the BBOB
suite on the COCO platform [HAN16], over 2-dimensional search space, illustrating the

complex multi-modal landscape.

50

100

150

200+

250

300 -
350

5¢
X
B

v

D A\
RN/
SRS
AW R

y P ROl
% v »{.{{\;)é-‘\

o
BeO& A \
WA 3(; 3

- >
-

('
¢

Figure 34: Surface plot (left) and 2D contour plot (right) of function F15 from the BBOB
suite on the COCO platform [HANMT16], over 2-dimensional search space.

37

4.7 Experimental observations

Through these experiments, we validated the effectiveness of the IWO algorithm across various
benchmark functions and compared its performance against other optimization algorithms. The
following encapsulates the main observations, advantages, and disadvantages derived from this
experimental study:.

e IWOQO'’s strength is particularly notable during the exploitation phase, where it effectively
enhances the search process around the best-known solutions.

e The performance of IWO tends to decline in higher-dimensional spaces compared to other
optimization algorithms like BIPOP-CMA-ES and a-CMA-ES.

e The performance of IWO can be significantly improved by fine-tuning parameters such as the
nonlinear modulation index, population size, and standard deviation values. Proper parameter
tuning is crucial for achieving optimal performance.

5 Conclusions and Future work

In this thesis, we have explored the IWO algorithm, a nature-inspired optimization method modeled
after the colonization behavior of weeds. Through a series of detailed experiments and analyses,
we have validated the effectiveness of the IWO algorithm across various benchmark functions and
compared its performance against other established optimization algorithms such as GA, a-CMA-ES,
BIPOP-CMA-ES, and RS.

Performance-wise, the IWO performs well across a range of test functions, particularly in lower-
dimensional problems. However, its performance varied significantly across different benchmark
functions and dimensions. In comparison to the BIPOP-CMA-ES algorithm, IWO exhibited
competitive performance in certain scenarios but generally lagged in high-dimensional spaces. The
strengths of IWO were particularly notable during the exploitation phase of the optimization
process.

The IWO algorithm demonstrated originality in its biological inspiration, distinguishing itself from
other algorithms, such as GA, SA, and PSO. The concept of weed colonization, with its emphasis
on seed dispersion and competitive exclusion, provided a unique approach to optimization.

Future research could concentrate on conducting experiments without the cutoff point used in the
[OHprofiler, as this may yield significant findings and provide a more comprehensive evaluation
of the algorithm’s performance relative to other optimization algorithms. Moreover, an in-depth
exploration of optimal parameter settings, designed to specific characteristics and dimensionality of
various problems, could significantly enhance the algorithm’s adaptability and effectiveness across
a broader spectrum of optimization challenges. Additionally, investigating the relationship between
parameter settings and the available computational budget is crucial, given that the performance
of IWO is highly dependent on the budget. Establishing a mathematical relationship or model to
optimize this interplay would be a valuable advancement in the practical application of IWO.

38

References

[CA21]

[DMCO6]

[DWY+18]

[EK95]

[HAM™*16]

[HOO1]

[Hol75]

[KGV83]

[MLOG6]

[Sor15]
[YKO5]

Felipe Campelo and Claus Aranha. Evolutionary computation bestiary. https://
github.com/fcampelo/EC-Bestiary, 2021. Accessed: 2024-06-12.

Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. The ant system: Optimization by
a colony of cooperating agents. IEEFE Transactions on Systems, Man, and Cybernetics
- Part B: Cybernetics, 26(1):1-13, 1996.

Carola Doerr, Hao Wang, Furong Ye, Sander van Rijn, and Thomas Back. Iohpro-
filer: A benchmarking and profiling tool for iterative optimization heuristics. CoRR,
abs/1810.05281, 2018.

Russell Eberhart and James Kennedy. Particle swarm optimization. In Proceedings
of the IEEE international conference on neural networks, volume 4, pages 1942—-1948,
1995.

Nikolaus Hansen, Anne Auger, Olaf Mersmann, Tea Tusar, and Dimo Brockhoff.
COCO: A platform for comparing continuous optimizers in a black-box setting. CoRR,
abs/1603.08785, 2016.

Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation
in evolution strategies. Evolutionary Computation, 9(2):159-195, 2001.

John H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan
Press, Ann Arbor, 1975.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.
Science, 220(4598):671-680, 1983.

A.R. Mehrabian and C. Lucas. A novel numerical optimization algorithm inspired from
weed colonization. Ecological Informatics, 1(4):355-366, 2006.

Kenneth Sérensen. Metaheuristics - the metaphor exposed. ITOR, 22(1):3-18, 2015.

Ming Yuchi and Jong-Hwan Kim. FKEcology-inspired evolutionary algorithm using
feasibility-based grouping for constrained optimization. In Proceedings of the IEEE
Congress on Evolutionary Computation, pages 14551461, Edinburgh, UK, September
2005.

39

https://github.com/fcampelo/EC-Bestiary
https://github.com/fcampelo/EC-Bestiary

A Appendix

100- s

Best-so-far f(x)-value

1e-10-
100
Function Evaluations

=== BIPOP-CMA-ES - GA RANDOMSEARCH a-CMA-ES
ioh_data_IOW(8.0 1e-055.00 510 30 100 0)

Figure 35: Comparison of the performance of BIPOP-CMA-ES, GA, RS, a-CMA-ES, and IWO

across on F3 with a dimensionality of 2. The figure shows “Best-so-far f(x)” versus function
evaluations.

100- I
=TTt
S .
1 S o i =
Soms
=
2 ”'\,
= .
N ;
£
=
E et
[=]
N
b7}
%
M 1es

1e-10-

Function Evaluations

-- BIPOP-CMA-ES - GA RANDOMSEARCH a-CMA-ES
1oh data IOW(8.0 1e-05 5.0 0 5 10 30 100 0)

Figure 36: Comparison of the performance of BIPOP-CMA-ES, GA, RS, a-CMA-ES, and IWO

across on F15 with a dimensionality of 2. The figure shows “Best-so-far f(x)” versus function
evaluations.

40

100-

Best-so-far f(x)-value
4
]

1e-10-

Function Evaluations

-- BIPOP-CMA-ES - GA RANDOMSEARCH a-CMA-ES
ioh_data_IOW(8.0 1e-05 5.0 0 5 10 30 100 0)

Figure 37: Comparison of the performance of BIPOP-CMA-ES, GA, RS, a-CMA-ES, and IWO
across on F22 with a dimensionality of 2. The figure shows “Best-so-far f(x)” versus function
evaluations.

Best-so-far f(x)-value

001-

1 2 5 10 2 5 100 2 s 1e=3 2 5 e
Function Evaluations

—— BIPOP-CMA-ES --+- GA RANDOMSEARCH a-CMA-ES ioh_data IOW(8.0 1e-055.00 51030 100 0)

Figure 38: Comparison of the performance of BIPOP-CMA-ES, GA, RS, a-CMA-ES, and IWO
across on F23 with a dimensionality of 2. The figure shows “Best-so-far f(x)” versus function
evaluations.

41

Best-so-far f{x)-value

100~

001-

led-

le—6-

le—8-

—— BIPOP-CMA-ES -+~

GA

RANDOMSEARCH

100 2 B le+3

Function Evaluations

a-CMA-ES —— ioh_data_TOW(8.0 1e-05 5.0 0 5 10 30 500 0)

lesd

Figure 39: Comparison of the performance of BIPOP-CMA-ES, GA, RS, a-CMA-ES, and IWO

across on F16 with a dimensionality of 5. The figure shows “Best-so-far f(x)’

evaluations.

Best-so-far f(x)-value

—— BIPOP-CMA-ES --*-

GA

RANDOMSEARCH

100 E s 1e+3

Function Evaluations

a-CMA-ES —— ioh_data JOW(8.0 1e-05 5.0 0 5 10 30 500 0)

?

versus function

Figure 40: Comparison of the performance of BIPOP-CMA-ES, GA, RS, a-CMA-ES, and IWO
across on F23 with a dimensionality of 5. The figure shows “Best-so-far f(x)” versus function

evaluations.

42

100~

Best-so-far f{x)-value

Function Evaluations

—— BIPOP-CMA-ES --=- GA RANDOMSEARCH a-CMA-ES ioh_data_TOW(8.0 1e-055.00 5 10 30 1000 0)

Figure 41: Comparison of the performance of BIPOP-CMA-ES, GA, RS, a-CMA-ES, and IWO
across on F16 with a dimensionality of 20. The figure shows “Best-so-far f(x)” versus function
evaluations.

Best-so-far f(x)-value

Function Evaluations

—— BIPOP-CMA-ES --+- GA RANDOMSEARCH a-CMA-ES ioh_data IOW(8.0 1e-055.00 5 1030 1000 Q)

Figure 42: Comparison of the performance of BIPOP-CMA-ES, GA, RS, a-CMA-ES, and IWO
across on F23 with a dimensionality of 20. The figure shows “Best-so-far f(x)” versus function
evaluations.

43

s =3

a

=

E]

T

W

&=

& 100.-

-] 2

D 8-

7 1

3

[22] 8-
100 2 3 13 2 H 1ot
Function Evaluations

—— BIPOP-CMA-ES --=- GA RANDOMSEARCH a-CMA-ES ioh_data TOW(8.0 1e-05 5.0 0 5 10 30 1000 0)

Figure 43: Comparison of the performance of BIPOP-CMA-ES, GA, RS, a-CMA-ES, and IWO
across on F24 with a dimensionality of 20. The figure shows “Best-so-far f(x)” versus function
evaluations.

44

A.1 IWO implementation in Python

The complete implementation is also available on GitHub at the following link:
https://github.com/BarmadShreef4 /iwo-project.git.

import ioh

import sys

import numpy as np

/ /. /, / /, / / /]WO / / / / /, / / /
class TWO:
777 Invasive Weed Optimization algorithm

Args:
min_seeds: minimum number of seeds allowed per individual
mazr_seeds: maximum number of seeds allowed per individual
n: the monlinear modulation index
final_sigma: final value of sigma (standard deviation)
init_sigma: initial value of sigma (standard deviation)
curr_sigma : current value of sigma
init_pop_size: initial population size
max_pop_size: mazimum population size
num_generations: total number of generations

20

def __init__(
self |
min_seeds: int,
max_seeds: int,
n: float ,
final_sigma: float ,
init_sigma: float ,
init _pop_size: int,
max_pop_size: int,
num_generations: int

save_visu_data: int = 0,

):
self . min_seeds: int = min_seeds
self . max_seeds: int = max_seeds
self .n: float = n
self.final_sigma: float = final_sigma
self.init_sigma: float = init_sigma
self . curr_sigma: float = 0.0
self.init _pop_size: int = init_pop_size
self . max_pop_size: int = max_pop_size

45

https://github.com/BarmadShreef4/iwo-project.git

def

def

def

self .num_generations: int = num_generations
self .save_visu_data: int = save_visu_data
self .population = []

self.fitness = []

_save_visu_data(self , generation):
777 Save the positions and fitness of the population members to a file.
For wvisualization purposes only.

Args:
generation (int): The actual generation number.
for agent_index in range(len(self.population)):
Append the data for each member of the population along
with the generation number
output_file.write (
7,7 join (
map (
str |
[generation |
+ np.append (
self .population [agent_index],
self.fitness [agent_index],
). tolist (),
)
)
+ 7\n”
)

_calculate_sigma (self , curr_generation: int) —> None:
777 Calculates the Spatial Dispersal coefficient (eq. 1).

Args:
curr_generation: Current generation number.
o
coef = (
(self .num _generations — curr_generation) / (self.num_generations)

) % self.n

self.curr_sigma = (
coef % (self.init_sigma — self.final_sigma) + self.final_sigma
)

_initialize_population (self , problem):
self .population = np.random. uniform (

46

low=problem . bounds.1b ,
high=problem . bounds.ub,

size=(self.init_pop_size , problem.meta_data.n_variables),
)
Fvaluate fitness for each agent (weed)
self.fitness = problem(self.population)

def _reproduction_phase(self):
Sort agents based on fitness
sorted_indices = np.argsort(self.fitness)

self.population = self.population|[sorted_indices |
self.fitness.sort ()

Calculate the number of seeds for each agent (weed) based
on its rank (its fitness)
n_seeds = np.round
np.interp (
self . fitness ,
[self.fitness [0], self.fitness|[—1]],
[self.max_seeds, self.min_seeds],

)
). astype(int)
return n_seeds

def _spatial_dispersal_phase(self, problem, generation, n_seeds):
calculat the sigma (standard deviation) for spatial randomness
for the current iteration (generation)
self. _calculate_sigma (generation)

iterate through each agent in the population
for agent_index in range(len(self.population)):
Generate positions for the seeds based on normal distribution
with the standard deviation curr_sigma
seeds = np.random.normal (
self.population [agent_index],
self.curr_sigma ,

size=(n_seeds [agent_index]|, len(self.population|[agent_index])),
)
if seeds.size != 0:

Fvaluate fitness for each seed

seeds_fitness = problem (seeds)

update population
self.fitness = np.concatenate ((self.fitness , seeds_fitness))

47

np.concatenate ((self.population, seeds))

self . population =

def _competitive_exclusion_phase(self):
Sort agents based on fitness

sorted_indices = np.argsort(self.fitness)

self .population = self.population|[sorted_indices |

self.fitness.sort ()

eliminate agents with lower fitness to reach the maximum

allowable population size

if len(self.population) > self.max _pop_size:
= self.population [: self.max_pop_size]

self . population =
self.fitness = self.fitness [: self.max_pop_size]

def __call__(self, problem: ioh.problem.RealSingleObjective) —> None:
7Optimize-the-problem-with-the-Invasive-Weed- Optimization-algorithm?”

/ A At Initialization phase ### T T
self. _initialize_population (problem)

iterating through each generation
for generation in range(self.num _generations):

7 7 A Reproduction phase # el A
n_seeds = self._reproduction_phase ()

if self.save_visu_data:
save population progress data across generations

(for wvisualization)
self. _save_visu_data(generation)

Spatial dispersal phase
self. _spatial_dispersal_phase (problem, generation, n_seeds)

Competitive exclusion phase

self._competitive_exclusion_phase ()

if _name. . = 7 __main__":
Retrieve command—line arguments
args = sys.argv|[1:]
usage_info = |
"\nUsage: -python3 -myIWO.py- [n]-[final_sigma]-[init_sigma]”,
”[min_seeds |- [max_seeds|-[init_pop_size |- [max_pop_size]”,
”[num_generations|-[save_visu_data]-[output_directory]\n\n",

n:-the-nonlinear -modulation-index\n”,

48

’’’’’’ final _sigma:-final-value-of-sigma-(standard-deviation)\n”,
//////// init_sigma:-initial-value-of-sigma-(standard-deviation)\n”
///////// min_seeds : -minimum-number- of - seeds -allowed - per-individual\n” ,
//////// max_seeds : -maximum-number - of - seeds - allowed - per -individual\n” ,
///// init_pop_.size:-initial -population-size\n”,

”””” max_pop_size: -maximum- population-size\n” ,

---num_generations: - total -number- of - generations\n” ,
----save_visu_data:-whether-to-save-data-for-visualisation-or-not\n”,
7--output_directory:-directory -where-to-store-output-files.”

"\n\nEx: -python3 -myIWO.py-3.0-0.1-10.0-1-5-5-40-50-1-./results/\n”,

b

]

Check if the correct number of arguments is provided
if len(args) != 10:

print (xusage_info)

sys.exit (1)

Convert arguments to appropriate types
n, final_sigma , init_sigma = map(float, args[:3])
(

min_seeds ,

max_seeds ,

init_pop_size ,

max_pop_size ,

num_generations

save_visu_data ,
) = map(int, args[3:—1])
output_directory = args|[—1]

Create a folder name for this run based on used parameters
ioh_data_folder_name = (

7ioh_data IOW (”
str(n)

» _»

str(final_sigma)

» "

str(init_sigma)

7 2

str(min_seeds)

7 2

str (max_seeds)
2 7

str(init_pop_size)

7 2

et S R

str (max_pop_size)

49

+ » _»
+ str(num_generations)

+ 9 9
+ str(save_visu_data)
+ 77)77

)

if save_visu_data = 1:

open the a file for writing population progress data
across generations

output_file = open(” population_progress.csv”, "w”)
experiment = ioh.Experiment (
algorithm=IWO(

min_seeds ,
max_seeds ,
n,
final _sigma ,
init_sigma ,
init _pop_size ,
max_pop_size ,
num_generations
save_visu_data ,
), # An algorithm instance
fids=list (range(1, 25)), # the id’s of the problems we want to test
iids=list (range(l, 6)), # the instances
dims=]|
27
iy
20,
40,
|, # the dimensions (number of wvariables for each agent)
reps=>b, # the number of runs for each combination (fids, iids, dims),
problem _class=ioh.ProblemClass .BBOB,
algorithm _name=ioh_data_folder_name |,
remove_data=True, # delete data in the folder (Not the .zip file)
zip_output=True,
algorithm _info="",
store_positions=True,
merge_output=True,
folder _.name=ioh_data_folder_name ,
output_directory=output_directory ,

)

print (”started:”, ioh_data_folder_name)

20

experiment ()

if save_visu_data = 1:
close the file
output_file.close ()

o1

	Introduction
	Background
	Objectives
	Thesis overview

	Related Work
	Invasive Weed Optimization
	Compared nature-inspired algorithms

	Algorithm Description
	Problem definition
	Input and Output specification
	Algorithm phases
	Pseudocode
	Edge cases and limitations
	Nonlinear reduction equation
	Maximum number of generations

	Implementation
	Originality:
	Biological inspiration
	Comparison with Simulated Annealing

	Experiments
	BBOB functions
	Implementation correctness
	Original experiments
	Validation of original findings
	Convergence
	Effects of tuning parameters

	Performance optimization
	Minimum & Maximum seeds
	Maximum population size
	Standard deviation & Nonlinear modulation index

	Performance comparison
	Experimental observations

	Conclusions and Future work
	References
	Appendix
	IWO implementation in Python

