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Abstract

The communication system is pivotal in parallel and distributed computing. In the realm of
high-performance computing (HPC), the Message Passing Interface (MPI) has emerged as
a dominant framework for inter-process communication, within which, Remote Memory Ac-
cess (RMA) is a module that allows efficient utilization of Remote Direct Memory Access
(RDMA) networks. Traditionally, MPI programs have been primarily developed using C/C++
and FORTRAN. However, these languages bring inherent drawbacks that can hinder develop-
ment efficiency and safety. Recently, with the advancement of Rust, a trend has emerged to
replace the traditional roles of C/C++ with this more modern language. This project intro-
duces RMA to the Rust ecosystem by implementing a binding that bridges the gap between its
primitive form in C and Rust. Our research question is, can RMA be well integrated into Rust,
making it as fast as C while enjoying the safe and modern language features Rust offers? We
have implemented a prototype Rust binding for RMA, and conducted comprehensive perfor-
mance evaluations to determine whether Rust, in conjunction with RMA, could maintain the
performance benchmarks set by its predecessors. Our findings indicate that the Rust binding
for RMA holds promise in terms of performance. Additionally, by leveraging Rust, program-
mers can benefit from its modern features, thereby enhancing the development experience and
improving software quality significantly.
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1 Introduction

Rust has been a rising star programming language prominently in system programming. It is
deemed an alternative to C and C++, as its safety properties are better than those of the
two older languages. However, in the domain of distributed parallel computing, MPI as one of
the dominant programming models, mostly written in C/C++ or FORTRAN, has not been
well integrated with Rust. With Rust, MPI developers would be able to enjoy the safety fea-
tures along with the modern language ecosystem. Furthermore, there have been studies that
implemented prototype components for MPI with Rust, as well as the language bindings. In
addition, as one of the latest features of MPI-3 [39] standard, RMA has opened a window
for developers to exploit RDMA [21] that may bring significant performance increment for the
MPI applications. However, RMA remains untouched by Rust.

With eyes on a larger scope, today’s computing infrastructure is inherently distributed, making
communication between machines essential. Various paradigms exist for inter-process commu-
nication (IPC). Among these, message passing stands out as a widely adopted method. In
message passing, two processes operate within isolated memory spaces, necessitating an ex-
ternal mechanism for transmitting messages. At the physical level, the Ethernet is the most
widely used networking technology. On top of the physical networks, there are communication
protocols that allow processes can understand each other, with TCP/IP, and UDP as the most
widely used ones. Built on top of the protocols, a plethora of libraries offer communication
functionalities for higher-level applications. However, these can be inefficient in performance-
critical scenarios, as the transmission of messages involves OS kernel participation, which may
incur interrupts that slow down communication. Parallel to TCP/IP, RDMA networks provide
a more efficient communication alternative by allowing kernel and TCP/IP stack bypass, by
which the message can be transmitted directly to a remote process and skip the involvement
of the kernel. Thus reducing the overhead associated with the TCP/IP stack. This technology
is facilitated by specialized networks such as InfiniBand [27] and RDMA over Converged Eth-
ernet (RoCE) [54].

In the domain of HPC, most workloads are executed within computing clusters, where numer-
ous interconnected computers function in concert despite being physically separate. Common
workload patterns involve large matrices or graphs that exceed the processing capabilities of a
single machine. Consequently, these problems are divided into smaller subparts, each allocated
to a different machine within the cluster. This partitioning significantly enhances computa-
tional power. However, inter-computer communication is essential to coordinate these dis-
tributed tasks. Several tools have been developed to facilitate this communication, including
Remote Procedure Call (RPC) frameworks like gRPC [24]. Nonetheless, given the stringent
performance requirements and specific programming paradigms of HPC applications, MPI [40]
remains the most widely utilized communication tool in this field.

As for programming with MPI, C/C++ and FORTRAN are the predominant languages. Due
to their intrinsic language features and historical complexities, developers often face a sub-
optimal programming experience. Issues stemming from low-level abstractions, susceptibility
to unsafe practices i.e. operating raw pointers, and cumbersome tooling frequently plague
programmers. Although higher-level language bindings like mpi4py for Python [10] and Open
MPI Java bindings [13] exist, their language-specific characteristics often limit their utility in
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performance-critical environments [36]. There is a marked need for a system programming lan-
guage that not only offers high-performance capabilities but also provides robust functionality
for low-level interactivity. Rust [57], emerging as a leading system programming language, is
considered a potential alternative to C/C++. It enforces safety rules such as immutability and
non-nullablity at compile time checking, combined with modern language syntax, and user-
friendly tooling while maintaining performance comparable to C/C++ [29]. These attributes
have significantly contributed to its growing popularity.

The RMA module in MPI, also known as ”one-sided communication”, provides an interface
similar to RDMA, enabling one process to directly transfer data to the memory region of
another process. This functionality reduces the overhead associated with the traditional send
receive pattern and enhances the utilization of RDMA networks [26]. However, the integration
of RMA with Rust remains insufficient. Currently, to program with RMA in Rust, program-
mers must write unsafe C-like code, which contradicts the advantages of using Rust. In this
thesis, based on the present MPI binding for Rust rsmpi [55], we design interfaces for RMA to
further extend the library, as well as throughout evaluations to show if the modern and safety
language features can be preserved along with efficient communication with RMA. With this
work, rsmpi users can easily write safe and fast parallel applications with RMA. The library
and evaluation programs have been open-sourced: [17, 18, 15, 16].

Therefore, our research question is, can RMA be well integrated into Rust, and can the
speed as written in C be preserved while benefiting from the safe and modern language features
offered by Rust? Concerning this question, we further propose sub questions:

1. At the current stage, what is the difference between programming with RMA in C and
Rust?

2. How to design a Rust RMA interface, so that with this interface, users can write safe
and Rust idiomatic code?

3. With the same program written in C and Rust, would there be a performance difference?

As rsmpi supports a range of essential operations but lacks RMA support, we will implement
the missing RMA part for rsmpi. Our work also aims to contribute to the open-source project.

This thesis unfolds as follows: Section 2 provides the detailed background necessary for un-
derstanding this thesis. Section 3 shows the full landscape of work around the communication
system and Rust. Section 4 demonstrates our methods for solving the integration problem of
RMA with Rust. The performance evaluation is presented in Section 5. We also present our
comments and limits regarding the work in Section 6. The thesis concludes in Section 7, with
future work.
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2 Background

This project is built around MPI, Rust, and RMA. The following sections will introduce these
components to provide the necessary background information for understanding this thesis.

2.1 MPI

Introduced in 1994, MPI has become the standard tool for writing parallel programs in dis-
tributed memory environments, where each process operates in its own memory space and
communication is achieved through message exchanges. This concept can be visualized using
the example of two computers that coordinate to perform matrix calculations. Imagine a ma-
trix is split into submatrices, with each machine handling a different submatrix. Each machine
is unaware of the other’s data. If one machine needs to process some rows from the other’s
submatrix, the necessary rows are transmitted using MPI. To transmit, there are different
communication mechanisms, one is the the traditional send-receive pattern, where both the
sender and receiver participate in the communication. There is also one-sided communication,
as the name implies, only one side is required to participate. Furthermore, MPI is a standard,
meaning that only the interface is specified. Various vendors offer their implementations of
this standard. Among these, Open MPI [51] is the most widely used. Another popular imple-
mentation is MPICH [46]. Their implementations are mostly written in C.

2.1.1 Send Recv

The send and receive pair [44] is the basic and widely used mechanism for point-to-point
communication in MPI. The methods used are MPI Send and MPI Recv. MPI follows Single
Program Multiple Data (SPMD) model [11], which implies that multiple processes execute
the same program, but on different data parts. A typical program that transfers data with the
standard send recv is shown in listing 1:
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1 #include <mpi.h> // Include MPI header file

2 #include <stdio.h>

3

4 #define ARRAY_SIZE 10

5

6 int main(int argc, char** argv) {

7 // Declaration of variables to hold MPI environmental info

8 // Size is how many processes to run this program

9 // Rank is the ID of the process

10 int rank, size;

11 // Initialize the MPI environment

12 MPI_Init(&argc, &argv);

13 // Obtain the rank of the current process

14 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

15 // Obtain the size

16 MPI_Comm_size(MPI_COMM_WORLD, &size);

17 // Declaration of a double array, this is local to the process.

18 // Therefore, other processes have to know the contents via message passing.

19 double data[ARRAY_SIZE];

20 // Since MPI follows the Single Program Multiple Data (SPMD) model

21 // To instruct the behaviour of a specific process,

22 // use conditional branch and rank

23 if (rank == 0) {

24 // Rank 0 initializes the array with any value

25 for (int i = 0; i < ARRAY_SIZE; i++) {

26 data[i] = i * 1.0;

27 }

28 // Rank 0 sends the array to rank 1 by invoking MPI_Send

29 // number of elements to send, element type should be specified

30 MPI_Send(data, ARRAY_SIZE, MPI_DOUBLE, 1, 0, MPI_COMM_WORLD);

31 } else if (rank == 1) {

32 // Rank 1 receives the array from rank 0,

33 // and writes the content to its local array.

34 // number of elements to send, element type should also be specified

35 MPI_Recv(data, ARRAY_SIZE, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD,

36 MPI_STATUS_IGNORE);

37 // Should display the value as Rank 0 initialized

38 for (int i = 0; i < ARRAY_SIZE; i++) {

39 printf("data[%d] = %f\n", i, array[i]);

40 }

41 }

42 // Before the program exits, every process should call this to terminate the MPI environment.

43 MPI_Finalize();

44 return 0;

45 }

Listing 1: Sample send recv in C
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The program can be compiled with mpicc [49], e.g. mpicc the program.c -o the program.
To run the program, use mpirun [50], by which the number of processors can be configured
with -n option, e.g. mpirun -2 ./send recv program. In the environment of a Linux com-
puting cluster, the program is often scheduled to be executed by Slurm [70], which is a popular
workload manager.

For the method MPI Send, it specifies the destination process by the rank argument. The
number of items to send and their data type are specified by the count and datatype ar-
gument. For the above example listing 1, the sender sends the content of the array of length
ARRAY SIZE to the destination process rank 1, and the element type is double. Thus passing
the pointer to the array, the number of elements to send, and the destination rank. The type
should be specified as well, which is MPI DOUBLE, as the equivalent data type to double in
C. Additionally, the tag argument is an extra identifier to the message envelope that seals
the message to be sent, which can be used by the receiver to identify the expected message.
The above example used 0 as its tag. Last but not least, the last argument of the method is
the communicator, which specifies the communication context of the send operation, which
can be understood as the group of processes the sender belongs to plus MPI environmental
information.

Symmetrically, the method MPI Recv is being called at the other rank. It in this case also speci-
fies a buffer to receive the incoming messages, which is also the double array[ARRAY SIZE].
However, the array is local to rank 1. Next, it also specifies the number of items to receive,
which can be different from the number of items to send to the sender side. Like the sender,
the receiver also needs to specify the data type, the rank of the sender, the communicator, and
the tag. Lastly, the receiver can specify a status argument for more details of the operation,
which is omitted in the example.

Since MPI Send and MPI Recv is a pair of blocking calls, the invocation of send will not
complete until the send buffer can be safely modified [40]. To safely modify the send buffer
after sending, it must be ensured that the data to be sent previously has been placed else-
where, either in a temporary system buffer or at the receiver buffer. As this process involves
additional memory allocation and copying, it would result in inefficiency for large-size messages.

2.1.2 Remote Memory Access

RMA, also known as One-sided communication, is a set of interfaces offered in MPI. It is
termed ’one-sided’ contrary to the traditional send receive pattern only one party—the data
source or the destination participates in data transfer. Whether it acts as the ’sender’ or ’re-
ceiver’ depends on the data transfer method called.

The following section introduces the core components of RMA [45]:

Window The window is the construct in the centre of RMA, which facilitates direct access to
a remote memory region. When discussing the window, there are indeed two concepts around
it: one is the memory region that is being opened for remote process access. Thus vividly called
”window”. The other is the window object [22], which acts as a handle to use the capabilities
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of RMA, such as calling RMA methods. The window object exposes a region of memory of a
process to a process group, which can be imagined as a set of processes. Moreover, a program-
mer can allocate memory but choose to not bind to a window object, thus preventing a remote
process from accessing this memory region. There are multiple ways to initialize a window: al-
locate a memory region separately, and create a window object upon it using MPI Win create.
Or let MPI allocate the memory region and window object by using MPI Win allocate. Com-
pared to MPI Win create the window is open to remote access since its creation, memory
region can also be dynamically attached or detached to the window object, hence turning
on/off remote access during runtime, and this is done by MPI Win create dynamic. Within
the scope of this work, only MPI Win create and MPI Win allocate are discussed.

Communication Calls There are four types of communication calls in RMA: Put, Get,
Accumulate and Request-based. Intuitively, it could be imagined that Put writes data to
the target process’s window, Get obtains data from the window of another process and writes
it into its memory. Accumulate is a set of methods that perform extra operations on top of
the previous two communication calls, such as sum, and subtraction. It provides a handier
way to perform computation. Request-based is a set of methods that allows attaching user-
defined methods with the previous three types of communications calls. Within the scope of
this project, we only focus on Put and Get.

Figure 1: Illustration for Put and Get method of RMA

Synchronization Calls Synchronization is another core concept in RMA. Unlike MPI Send

MPI Receive, the start and completion of communication calls must be explicitly synchro-
nized. There are two synchronization modes in RMA. Given that communication involves a
source process and a target process, one mode is Active Target Synchronization, where the
target process actively participates in synchronization. The other mode is Passive Target Syn-
chronization, where the target process does not engage in synchronization. If a process does
not call the synchronization method, it does not engage. To choose a mode, one should con-
sider the specific requirements of the program.

The simplest and most straightforward way to synchronize is using MPI Win fence. It is a col-
lective call, acting similarly to MPI Barrier, by which until all processes reach the same point,
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the program will not proceed. The downside of fence is overhead can be incurred if only a subset
of processes of a large process group needs to synchronize. In addition, MPI Win fence is the
active target synchronization mode, as all processes need to call it. In contrast, MPI Win lock

is passive target synchronization. It is akin to the common locking mechanism in single-process
concurrent programming. The window can be imaged as the shared resource, thus processes
accessing the region need to synchronize with locks. Unlike MPI Win fence, MPI Win lock is
not a collective call. Within the scope of the program, we used MPI Win fence, MPI Win lock

and MPI Win unlock, which only target a single process. There are also collective locks and
other active target synchronization methods, but we leave this to future work.

To demonstrate the basic usage, listing 7 does the same as the previous send recv code but
written with RMA.

The program starts similarly as send recv by initializing MPI environments. At line 10,
MPI Win allocate is invoked to allocate memory and open it as the window. This can be
deemed as if calling malloc [31] passing the size as the first argument. The second argument,
displacement, is equivalent to the size of each element of the array. Since the window is allo-
cated as an array of double, the size and displacement are specified using sizeof(double).
The method returns two results: the pointer to the window, and the pointer to the window
object. After allocation, the content of the window can be initialized. Before invoking MPI Put,
which is the communication call to write contents to the window at the target process, syn-
chronization should be performed. Here we used MPI Win fence. Moreover, MPI Win fence

is used in the form of a pair. Rank 0 as the source process, calls MPI Put to write data to the
destination which is rank 1, and then followed by another MPI Win fence. Finally, similar to
calling free when at the case where malloc is used, MPI Win free should be called to free
up the resources associated with the window. And as always, call MPI Finalize to terminate
the MPI environment.

As synchronization is explicitly done in RMA, the communication and synchronization are
decoupled. This opens a door for more flexible communication patterns: communication calls
are unblocking so that another communication call can take place right after a previous call is
invoked. Although send recv supports asynchronous communication, using RMA only requires
invoking the function on one side, and multiple communications can be cluttered within a pair
of synchronization calls. Moreover, there are synchronization calls for different levels of gran-
ularity, such as MPI Win fence is a collective call, MPI Win lock is between two processes.
The programmer can pick one based actual case. In contrast, in send recv, the receiver must
specify the matching sender, thus easing the programming efforts, and the synchronization
still happens between the two processes. However, the parameters of allocation and put are
lengthy and obscure, which can be intimidating to programmers. For common use cases such
as transmitting an entire array, always having all the arguments filled can be cumbersome and
error-prone. Therefore, it can be useful to implement bindings that wrap these methods.
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1 // Common operations omitted,

2 // i.e. header file inclusion, main function, MPI initialization

3

4 // Declaration of the pointer to memory piece and window object

5 double *data;

6 MPI_Win win;

7 // Allocate memory and create an MPI window on every rank

8 // ARRAY_SIZE * sizeof(double) as the window size

9 // sizeof(double) as the displacement, i.e. the size of each element

10 MPI_Win_allocate(ARRAY_SIZE * sizeof(double), sizeof(double),

11 MPI_INFO_NULL, MPI_COMM_WORLD, &data, &win);

12

13 if (rank == 0) {

14 // Initialize the array on rank 0

15 for (int i = 0; i < ARRAY_SIZE; i++) {

16 array[i] = i * 1.0;

17 }

18 }

19

20 // Synchronize, argument 0 is for optimization behavior, can be ignored.

21 MPI_Win_fence(0, win);

22

23 // Rank 0 puts data to rank 1

24 if (rank == 0) {

25 MPI_Put(array, ARRAY_SIZE, MPI_DOUBLE, 1, 0, ARRAY_SIZE,

26 MPI_DOUBLE, win);

27 }

28

29 // Alternatively, rank 1 gets the data from rank 0

30 // if (rank == 1) {

31 // MPI_Get(array, ARRAY_SIZE, MPI_DOUBLE, 0, 0, ARRAY_SIZE,

32 // MPI_DOUBLE, win);

33 // }

34

35 // Complete the RMA access epoch

36 MPI_Win_fence(0, win);

37

38 // This should be called to free up the resources

39 MPI_Win_free(&win);

40 MPI_Finalize();

41 return 0;

42 }

Listing 2: Sample RMA program in C

9



2.2 Rust

Initiated in 2006 [7], Rust has emerged as a promising programming language poised as an al-
ternative to C/C++ in the realm of system programming. It achieves memory safety and type
safety without compromising performance — a common drawback of garbage-collected lan-
guages like Java [35]. In contrast, Rust is free of garbage collection. Moreover, while C/C++
offers optimal performance, it is notoriously prone to unsafe memory access issues. Another
notable feature of Rust is its rich type system, which combines expressiveness with strict typ-
ing rules to prevent silent errors. The following subsections will introduce the features of Rust
that are utilized in this thesis, laying the foundational basis for our design and implementation.

2.2.1 Cargo

Cargo [5] serves as the all-in-one package manager for Rust and is highly regarded for its
modern features and convenience. Similar to Maven [1] for Java and npm [47] for JavaScript,
Cargo supports a wide range of functionalities including project creation, building, running,
releasing, publishing, and dependency management. Additionally, it uses TOML [63] for its
configuration files, which are designed to be both human-readable and machine-readable. In
contrast, the C/C++ ecosystem, due to its historical development, offers a variety of choices
such as Makefile, CMake, and Bazel for building, and package managers like Conan [9]. These
tools vary significantly in functionality and configuration syntax, often requiring programmers
to select based on specific project needs. As a result, the adoption of package manager is
not popular in C++ [41]. As a language not impeded by historical complexities, Rust was
developed with modern tooling from its inception, making it an attractive option for adoption.

2.2.2 Static and Strong Type System

Rust is both strongly and statically typed, by which the compiler can prevent many errors
instead of being caught during runtime. Influenced by concepts [28] such as algebraic data
types from SML and OCaml, as well as Typeclasses and type families from Haskell, Rust’s type
system enhances its expressiveness and elevated program safety. For example, Rust supports a
range of numerical types. Data types are explicitly declared by suffixing the value, for example,
3u32 denotes an unsigned 32-bit integer 3, and 6f64 indicates a 64-bit float 6. Rust does not
allow implicit type coercion among primitive types: to sum an u32 and a f64, one must be
cast to the other using the as keyword. This strictness by design underscores Rust’s rigorous
approach to type management.

2.2.3 Trait

Trait [64] is a significant feature in the Rust type system. It defines abstract behaviours across
various types. It can be comprehended as interface in Java, where the declaration of meth-
ods is provided, and the classes implementing the interface share similar behaviours. In Rust,
types implementing the same traits share akin behaviours. For example, the Eq trait includes
methods for comparison such as min, max. The vector type implements this trait, therefore
different vectors can compare with each other. The numerical types inherently implement the
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Eq trait, as they are naturally comparable to each other. Trait is also used in this project, and
the detailed usage will be introduced in later parts.

2.2.4 Generics

Generic data types [60] is another core feature, that also commonly exists in other languages.
It allows code reuse for different data types. Similar to C++ and Java, generics in Rust can
be easily declared. To declare a generic type, just put <T> in the function signature or trait.
In addition, generics can be combined with traits, meaning the generic type implements the
trait, thus the methods from the trait can be called within the generic type. The trait is called
trait bound. When substituting the generic with a concrete one, it must implement the trait.
Trait bound can be declared with the where keyword, see Listing 3 for an example:

1 // This function returns a value of the same type as the vector element

2 fn do_something_with_vector<T>(vec: &Vec<T>) -> T where T: Clone

Listing 3: A generic function with trait bound

As can be seen in the example, the function takes a reference to a generic vector. The element
of the vector has Clone [8] as its trait bound, where the Clone is a trait standing for an
object that can be duplicated. Therefore, when passing a concrete type to the function, the
type must implement Clone trait. If not, the compiler will detect this and fail the compilation.

2.2.5 Ownership

Ownership [62] is the core feature of Rust that makes it stand out among other languages.
The ownership can be imaged as a variable that ”owns” a piece of data. An ownership is con-
structed by variable binding, e.g. let v = [1, 2, 3];, which looks like a variable definition
in C/C++. However, by this statement, the array [1, 2, 3] is bound to the variable x. It
could be said v is the owner of the array, and there can only be one owner of the data. If
v is aliased by another variable, e.g. let x = v;, the ownership will be transferred to x, and
v becomes unavailable. Any attempt to access v will incur a compilation error. In contrast, if
such aliasing happens in C/C++, both variables are accessible.

Here are the key concepts around the ownership system to better understand the uniqueness
of Rust:

Immutability By default, a variable in Rust is immutable unless declared explicitly with let

mut. This distinguishes Rust from C++ and Java where a variable is mutable by default and
immutability is achieved by explicitly adding a modifier, which is const and final in C++ and
Java respectively. This relieves the burden for programmers to maintain data immutability in
programs as the compiler can guarantee that no unexpected mutations occur based on this rule.

Borrowing Like real life, an item that has its owner can be borrowed, but the borrower does
not have ownership over the item. In Rust, another variable can borrow value via referencing,
similar to a reference in C++. This is done by using &, e.g. let y = &x;. In this way, y
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borrows x, it is a reference to x. As a general programming practice, this is useful to function
invocations, where passing a value by reference reduces unnecessary data copies.

Immutability and borrowing are intertwined. There are rules regarding this. It can be summa-
rized as follows: for a value,

• either multiple immutable borrows can be made, or only one mutable borrow.

• If a mutable borrow was attempted between the creation and use of an immutable
reference, the compiler would fail the compilation and report this as an error. Same for
vice versa.

While this significantly improves program safety, it caused a steep learning curve and the in-
famous ”fight with the borrow checker” problem that requires thoughtful designs to solve the
compilation errors [59].

By default, data cannot be mutated through a reference, unless the reference is declared with
&mut. To create a mutable reference, the data must initially be declared as mutable with let

mut. It is worth noting that sometimes it may confuse programmers that placing the keyword
mut at the left-hand side (LHS) and right-hand side (RHS) of an equal sign has different
semantics. let mut x = &y; stands for the address rather than the data, that x points to
can be mutated. In contrast, let x = &mut y; allows the data that y owns to be mutated by
x. But x cannot be mutated to point to elsewhere. There are more specifications regarding the
borrowing rules which are omitted here for brevity. In summary, Rust imposes strict rules on
the immutability of variables and references, thereby saving efforts in preventing unexpected
mutations.

Lifetime Lifetime is the mechanism for preventing dangling references. Rust follows Resource
Acquisition Is Initialization (RAII) like C++ [53], where an object is created within a scope,
which is a pair of curly braces, and destructed when it goes out of the scope, the memory
associated will also be freed. The destructor is implemented via the Drop trait [19]. Hence an
object has its lifetime. A reference to an object cannot be used once the object is destroyed. In
Rust, this rule is also enforced by the compiler. An example to demonstrate how Rust prevents
dangling references by enforcing lifetime rules [68] can be seen in Listing 4:
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1 // The longest function returns a reference

2 // to the longer one from string x and y

3 fn longest<'a>(x: &'a str, y: &'a str) -> &'a str {

4 if x.len() > y.len() { x } else { y }

5 }

6

7 fn main() {

8 let longer_str = String::from("I am longer");

9 let shorter_str = String::from("short");

10

11 let result = longest(string1.as_str(), string2.as_str());

12 println!("The longest string is {}", result);

13 }

Listing 4: Rust lifetime demonstration (taken from [68])

In the example above, the longest function accepts two string references, determines the
longer string and returns its reference. Now let’s inspect the longest function in more detail,
the ’a is the lifetime annotation, and its single character with prime in front is Rust’s syntax.
The <’a> declares that the function has lifetime ’a, which is akin to the way generics are
declared. The function parameters and the return type are annotated with ’a meaning they
have the same lifetime. It is possible that the return value can either be x or y, but x and y are
in the two branches, which are two scopes and hence different lifetimes. The compiler cannot
determine the lifetime of the return value, therefore by annotating the parameters and return
value ’a, the compiler won’t be confused by the lifetime of the two parameters. It is also
worth noting that the lifetime annotation does not change the real lifetime of a reference. It
is just a way of telling the compiler the lifetime relationship between annotated references. In
the example above, the two parameters and return value have the same lifetime as perceived
by the compiler since they have identical lifetime annotations, but indeed only the returned
reference has the same lifetime as the reference to the longest string. The reference to the
shorter string will be destroyed before the function returns.

Struct Lifetime Struct can be comprehended as its equivalence in C/C++ [12]. If there is a
reference as a member of the struct, both the struct and reference should be annotated with a
lifetime parameter. The usage of struct lifetime is as shown in Listing 5. Let’s also inspect deep
into this struct definition. The member window vec ref is a reference to a vector outside of
the struct. The lifetime annotation is declared following the struct name. The Rust compiler
enforces the rule that what the member references to does not go out of scope ahead of the
struct itself, as this is to prevent dangling references. By attaching ’a to the struct and the
reference member, the struct object can be destructed at the earliest if either the struct object
itself goes out of scope or the data that the member references goes out of scope. Thus the
dangling reference problem can be prevented.
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1 pub struct Window<'a> {

2 pub window_vec_ref: &'a Vec<f64>,

3 }

4 let vector = vec![0i32; 3];

5 let window = Window { window_vec_ptr: &vector };

Listing 5: Rust struct lifetime

In summary, ownership is a distinguishable feature that makes Rust memory safe and stands
out from many other mainstream languages. It is a set of rules enforced by compiler checks:

• A value has only one owner at a time.

• When the owner goes out of scope, the value will be dropped (RAII).

Other programming languages, either achieve the same with garbage collection, such as Java,
and Go, or shift the responsibility to programmers such as C/C++.

2.2.6 Unsafe Rust

The unsafe feature allows programmers to perform risky operations. There are unsafe opera-
tions in C/C++, e.g. dereferencing a dangling raw pointer, which is a common error resulting
in program crashes. Rust ensures memory safety at compile time by disallowing unsafe memory
operations. However, programmers can perform operations that bypass the compiler’s usual
safety checks by using the keyword unsafe [67]. An example of dereferencing a raw pointer
may look like Listing 6. There are more unsafe operations in this thesis. For brevity, these
operations will be introduced on the spot where they first appear.

1 let arr = [10, 20, 30]; // initialize an array

2 let ptr = arr.as_ptr(); // raw pointer to the first element of arr

3

4 unsafe {

5 // add offset of 2 to raw pointer and dereference it

6 println!("arr[2] = {}", *ptr.add(2));

7 }

Listing 6: Rust unsafe example, operating on a raw pointer.

The dereference has to be wrapped within unsafe block, otherwise the compiler would recog-
nize and report it as an error. Using unsafe operations allows for greater flexibility and control,
albeit at the risk of compromising safety. Besides, from a perspective of design, unsafe trans-
fers the responsibility for ensuring safety from the compiler to the developer. Therefore, by
moving the unsafe code into a library, programmers who use the library do not have to be
concerned about the unsafe code.
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Foreign Function Interface (FFI) [20] is a mechanism that allows functions from one pro-
gramming language to be called from another. In this project, Rust uses the FFI to invoke
MPI functions from C. The bindgen [58] library generates Rust bindings to the C-based MPI
library, enabling Rust to use MPI. However, since these bindings originate from C, they retain
C-style characteristics, such as using C’s numeric types and declaring raw pointers. Functions
also require raw pointers as arguments, which Rust does not consider safe. Consequently, when
using the FFI, these interactions must be enclosed within an unsafe block to bypass Rust’s
safety checks. Our major goal is to wrap the FFI-generated code into a library so that the
programmer will not interact with it directly.

2.3 Remote Direct Memory Access

First raised in 1993 by Hewlett-Packard engineers [4], RDMA has shown great potential to
build fast networked systems. Its idea is relatively simple: with RDMA, the memory of a
process can be accessed remotely without the involvement of processors, thereby significantly
improving the latency and throughput. It was then adopted by MVAPICH [66, 38], another im-
plementation of MPI. Now RDMA has been an important networking technology in distributed
computing. There has been a plethora of research building new systems with RDMA [34].

To program with RDMA, one can use the InfiniBand verb library [33], which is very low level,
and hardware support is needed. The communication framework Unified Communication X
(UCX) [52] can provide a higher level abstraction over the verbs, thereby providing MPI high-
performance networking capability [61]. HPC application developers usually do not need to
program with the verbs directly, with MPI, the RDMA network can be utilized.

Conceptually, the communication method in RDMA is similar to what is in MPI [61]. As afore-
mentioned, when transmitting messages, MPI provides send recv or one-sided access, which
exists in RDMA as well. In RDMA, the sender can issue a SEND request without knowing the
memory address of the destination process. The receiver needs to issue a RECEIVE request
to handle the reception of the incoming data. Besides, the sender can issue a WRITE request
if knowing the destination memory address, hence no involvement of the receiver is required.
Similarly, the receiver can issue a READ request to fetch data from a remote process if the
memory address of the data source has been known. These semantics match what was dis-
cussed previously in MPI.

Sometimes, the acronyms RMA and RDMA can be confusing due to their similarity—they
differ by only one letter. Although related, these are distinct concepts [25]. RDMA stands
for Remote Direct Memory Access, a network technology that enables direct memory ac-
cess, bypassing the operating system’s kernel and avoiding data copying during transfers, thus
significantly improving network throughput. RDMA is typically implemented with specialized
network adapters, such as those from Mellanox, now part of Nvidia [48], and uses dedicated
network standards like InfiniBand. In contrast, RMA, which stands for Remote Memory Access,
is a programming model and a subset of MPI. It was first introduced in MPI-2.0 and updated
in MPI-3.0 for better exploitation of RDMA networks.
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1 // Common operations omitted,

2 // i.e. header file inclusion, main function, MPI initialization

3 double *data;

4 MPI_Win win;

5 MPI_Win_allocate(ARRAY_SIZE * sizeof(double), sizeof(double),

6 MPI_INFO_NULL, MPI_COMM_WORLD, &data, &win);

7 if (rank == 0) {

8 for (int i = 0; i < ARRAY_SIZE; i++)

9 array[i] = i * 1.0;

10 }

11 MPI_Win_fence(0, win);

12 if (rank == 0) {

13 MPI_Put(array, ARRAY_SIZE, MPI_DOUBLE, 1, 0, ARRAY_SIZE,

14 MPI_DOUBLE, win);

15 }

16 // Alternatively, rank 1 gets the data from rank 0

17 // if (rank == 1) {

18 // MPI_Get(array, ARRAY_SIZE, MPI_DOUBLE, 0, 0, ARRAY_SIZE,

19 // MPI_DOUBLE, win);

20 // }

21 MPI_Win_fence(0, win);

22 MPI_Win_free(&win);

23 MPI_Finalize();

24 return 0;

25 }

Listing 7: Sample RMA program in C
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3 Related Work

There has been previous work bringing Rust into the HPC world.

As mentioned previously, MPI functions are exported to Rust through the bindgen-generated
mpi-sys [43] library. While this library allows developers to write MPI applications in Rust, the
use of FFI necessitates that every MPI method invocation be wrapped in an unsafe block.
This requirement essentially negates Rust’s built-in safety features. Moreover, coding with
mpi-sys resembles writing procedural and low-level C-style code, causing Rust to lose not only
its safety features but also the benefits of its modern language features. For example, Listing 8
illustrates calling MPI Win allocate.

1 let mut window_base: *mut f64 = ptr::null_mut();

2 let mut window_handle: MPI_Win = ptr::null_mut();

3

4 unsafe {

5 ffi::MPI_Win_allocate(

6 (vector_size * size_of::<f64>()) as MPI_Aint,

7 size_of::<f64>() as c_int,

8 RSMPI_INFO_NULL,

9 world.as_communicator().as_raw(),

10 &mut window_base as *mut *mut _ as *mut c_void,

11 &mut window_handle

12 );

13 }

Listing 8: Allocating a window with mpi-sys

Listing 8 resembles the C code, recalls its usage in C from Listing 7, both undergo the same
process: declare two mutable pointers, one for the pointer to the window, the other for the
window object. Then call the method. Particularly for Rust, the variables must be initialized,
therefore null pointers are used. Furthermore, the pointers have to be cast into mutable void
pointers, as there is no void type in Rust. This is neither safe nor as flexible as C because vari-
able initialization is mandatory in Rust. Our work is to eliminate these programming difficulties.

Based on mpi-sys, rsmpi [55] brings major components of MPI into the Rust world. Common
MPI operations such as environment, and send recv have been supported so that the user can
program in a Rust idiomatic way instead of C-like Rust code as above. If the basic send recv
program in Listing 1 is written in rsmpi, this results in the code shown in Listing 9:
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1 use mpi::traits::*;

2

3 fn main() {

4 // Initialize MPI environment

5 let universe = mpi::initialize().unwrap();

6 // Obtain the world communicator

7 let world = universe.world();

8 // Obtain the rank of the current process

9 let rank = world.rank();

10

11 // Initialize the array to pass around

12 let mut data = [0.0; 10usize];

13 if rank == 0 {

14 for i in 0..10 {

15 data[i] = i as f64 * 1.0;

16 }

17 // Send the array to rank 1

18 world.process_at_rank(1).send_with_tag(&data, 0);

19 } else if rank == 1 {

20 // Receive the array from rank 0

21 world.process_at_rank(0).receive_into_with_tag(&mut data, 0);

22 for i in 0..10 {

23 println!("data[{}] = {}", i, data[i]);

24 }

25 }

26 }

Listing 9: Sample send recv in rsmpi

However, RMA is not included in rsmpi. Besides, rsmpi bridges the gap between C and Rust
by leveraging the type system of Rust extensively. Traits are defined for converting Rust types
and their equivalence in C. Our project has borrowed these traits to convert Rust types into
C and extended rsmpi to include RMA.

There is more previous work regarding Rust, MPI and RDMA.

Tronge and Pritchard [65] re-implemented the intra-node communication module of Open MPI
and have achieved the result that Rust is close to C in terms of performance and better safety.
The work is motivated by the intrinsic safety and handy features of Rust, by re-writing the
components of MPI in Rust, not only did the software improve in safety, but also accelerated
the development speed by testing and enhanced maintainability. The benchmark has shown a
marginal disparity in bandwidth and latency. Meanwhile, our work is on top of MPI, focusing
on the RMA part. It also shows closeness in performance and better software development
experience.

Blesel et al. [3] have implemented a prototype message passing library with Rust to enhance
correctness checks at compile time and elevate usability. By leveraging the Rust compiler, the
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type safety problems of MPI and memory safety issues of communications are addressed with
generics and ownership of Rust. The performance evaluation has shown that their implementa-
tion has an acceptable disadvantage compared to MPI, but it could be attributed to abundant
development and optimizations of MPI compared to their library. Another key finding is that
the safety and usability feature of Rust has greatly improved their work experience. While
our work also focuses on the safety and usability of Rust in HPC, the difference is that they
have developed a proof-of-concept software that parallels MPI. Our work is to bring the RMA
module of MPI to the Rust world.

Gerstenberger et al. [21] have developed an RMA implementation for the MPI-3.0 specification
in C. Their work was driven by the insufficient utilization of the RDMA network of existing
libraries. The specification and implementation of RMA methods were discussed. As the per-
formance evaluation, the latency, throughput and scalability were shown to be at an advantage
over existing libraries. In contrast, our study focuses on the usability of RMA by introducing
it to Rust, while the former provides an RMA implementation, emphasizing its performance.

Levy et al. [32] shared their experience building an embedded OS in Rust. During their work,
they came across conflicts between the language features and the intrinsic properties of embed-
ded system programming. For example, resources in OS are shared, and there is possibly more
than one mutable reference to the resource needed simultaneously, which is not prohibited by
the ownership rules. They proposed workarounds that either lost maintainability or memory
inefficient. Another solution is sacrificing safety guarantee by using unsafe. In general, their
work also demystified that the impact of language can be isolated in system design. Language
can be crucial in the overall design. During our development work, we had a similar experience.
Part of our work requires mutable borrowing of two rows of matrix which is a 2D vector, and
this is not allowed by the ownership rules. We must workaround by using either unsafe or split
the matrix into multiple smaller ones, and create mutable references thereby. Consequently,
programming became more complicated. In summary, the ownership is a double-edged sword.
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4 Design and Implementation

In this section, we present how we leveraged Rust language features and the rsmpi library to
bring RMA to the Rust world. Our design guideline is exposing concise, readable, organized
and Rust idiomatic interfaces to the user.

4.1 Window Definition

As introduced previously, a window object binds a memory region to a group of processes. The
memory region can be allocated manually by the programmer through calling MPI’s memory
allocation function like MPI Alloc mem or ordinary memory allocation methods, such as an
array or vector initialization. Once allocated, a memory region is exposed to the group of
processes via MPI Win Create so that other processes can access it. Another way to do this is
to let MPI allocate memory and expose by MPI Win allocate. The latter way is more RDMA
friendly [26], as the memory allocation is done via MPI, which can be optimized for RDMA
networks.

To reflect the different ways of allocating and exposing memory regions, we decided to im-
plement two types of windows: CreatedWindow and AllocatedWindow, in the form of Rust
structs. Here is their definition:

1 pub struct CreatedWindow<'a, T> where T: Equivalence {

2 pub window_vec_ptr: &'a mut Vec<T>,

3 pub window_handle: MPI_Win

4 }

5 pub struct AllocatedWindow<T> where T: Equivalence {

6 pub window_vec: ManuallyDrop<Vec<T>>,

7 pub window_handle: MPI_Win

8 }

The CreatedWindow reflects what MPI Win create does: the member window vec is a refer-
ence to a vector created outside of its encompassing struct. This reflects that MPI Win create

accepts pre-allocated memory. Recall ’a stands for lifetime specifier in Rust, meaning the life-
time of the reference is bound to the vector created separately. The mut modifier indicates
that by using this reference, the underlying vector object can be modified. Vec<T> is the type
specifier for a generic vector. We have chosen to represent a memory region with a vector, as
it is the most frequently used data structure in most scenarios. Additionally, the vector has a
consecutive memory region underneath, which reflects the layout of the memory of a window.
Last but not least, the trait bound Equivalence is used here. We would like to borrow its
functionality to convert Rust types to their equivalence in C.

The other member of the struct is the window handle. It is what MPI Win create and
MPI Win allocate return. It is a pointer to the window object, through which operations on
the window can be performed.
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As for AllocatedWindow, it also has member window vec, but this time it is a generic vector
wrapped within ManuallyDrop [37]. Having a vector within ManuallyDrop will prevent the
compiler from calling the destructor to the vector by default, which is part of the RAII rule of
a variable as previously introduced. However, MPI win free will be called at the end of the
program, which frees up the window. Hence to avoid double freeing, we use ManuallyDrop to
only let MPI free up the memory region. Furthermore, in contrast to CreatedWindow, having
the vector object within the struct instead of a reference to an external vector also reflects the
essence of MPI Win allocate, that MPI directly allocates memory.

4.1.1 Window Initialization

Listing 10 shows the implementation of creating a window. It accepts a reference to a vector
as the argument, again implying the window is created upon an existing vector. The &self is
the syntax of associated functions of Rust, meaning the method takes a reference to the struct
that the method associates to. For create window, the associated struct is the MPI commu-
nicator. The communicator struct has been pre-defined in the rsmpi library. As Rust emulates
object-oriented programming, we put this function as the associate function of Communicator
to better express the idea that the window is created on each process within the communicator.

1 pub fn create_window<'a, T>(&self, vec_ptr: &'a mut Vec<T>)

2 -> CreatedWindow<'a, T> where T: Equivalence {

3 let mut win = CreatedWindow {

4 window_vec_ptr: vec_ptr,

5 window_handle: ptr::null_mut()

6 };

7 unsafe {

8 ffi::MPI_Win_create(

9 win.window_vec_ptr.as_mut_ptr() as *mut std::ffi::c_void,

10 (vec_ptr.len() * size_of::<T>()) as MPI_Aint,

11 size_of::<T>() as std::ffi::c_int,

12 RSMPI_INFO_NULL,

13 self.as_raw(),

14 &mut win.window_handle

15 );

16 }

17 return win;

18 }

Listing 10: Implementation of window creation

For easy comparison, Listing 11 shows the original function signature in C [45], it can be easily
found that the parameter list is simplified into a vector reference.
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1 int MPI_Win_create(

2 void *base,

3 MPI_Aint size,

4 int disp_unit,

5 MPI_Info info,

6 MPI_Comm comm,

7 MPI_Win *win

8 );

Listing 11: Function signature of creating a window in C

For AllocatedWindow, in Listing 12, the size of the window is the only parameter required.
Calling MPI Win allocate will return the pointer to the base address of the allocated mem-
ory. With this pointer, a vector can be constructed by Vec::from raw parts [69]. Similar to
create window, the struct is returned for external use.

1 pub fn allocate_window<T>(&self, size: usize)

2 -> AllocatedWindow<T> where T: Equivalence {

3 let mut window_base: *mut T = ptr::null_mut();

4 let mut window_handle: MPI_Win = ptr::null_mut();

5 unsafe {

6 ffi::MPI_Win_allocate(

7 (size * size_of::<T>()) as MPI_Aint,

8 size_of::<T>() as std::ffi::c_int,

9 RSMPI_INFO_NULL,

10 self.as_raw(),

11 &mut window_base as *mut *mut _ as *mut std::ffi::c_void,

12 &mut window_handle

13 );

14 let win = AllocatedWindow {

15 window_vector: ManuallyDrop::new(

16 Vec::from_raw_parts(window_base, size, size)

17 ),

18 window_handle: window_handle

19 };

20 return win;

21 }

22 }

Listing 12: Implementation of window allocation

Same as previously, Listing 13 shows the signature of the original C function. It could be
found that the interface has been greatly shortened and the size becomes the only parameter
required.
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1 int MPI_Win_allocate(

2 MPI_Aint size,

3 int disp_unit,

4 MPI_Info info,

5 MPI_Comm comm,

6 void *baseptr,

7 MPI_Win *win

8 );

Listing 13: Function signature of allocating a window in C

4.1.2 Window Destruction

As aforementioned, Rust adheres to RAII rules. Simply by implementing the Drop [19] trait, the
object destructor can be defined. Listing 14 shows the implementation of dropping AllocatedWindow.
For CreatedWindow, it is mostly identical, except for having a lifetime attached. When the
window object goes out of scope, the drop method will be called, and therefore recycle the
allocated memory. Recall we have used ManuallyDrop to construct the vector for the win-
dow, without ManuallyDrop, the memory will be double freed by vector destructor and drop.
Furthermore, freeing with MPI win free adheres to MPI programming general practices, as
the window is initialized by MPI. Hence, we have pinned down letting MPI free the memory
instead of the vector destructor.

1 impl<T> Drop for AllocatedWindow<T> where T: Equivalence {

2 fn drop(&mut self) {

3 unsafe {

4 ffi::MPI_Win_free(&mut self.window_handle);

5 }

6 }

7 }

Listing 14: Implementing Drop trait for AllocatedWindow

4.2 Communication Calls

Besides window initialization and destruction, communication calls are the next major part.
These calls are window-type agnostic, i.e. they can be invoked regardless of created or allocated.
For better code organization, we have designed a trait to include these methods and let
two types of Windows implement this trait. Listing 15 presents a snippet of the trait for
demonstration:
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1 pub trait Communication <T> {

2 fn put_from_vector(&self, origin: &Vec<T>, target_rank: usize);

3 fn get_from_vector(&self, origin: &mut Vec<T>, target_rank: usize);

4 fn put(&self,

5 origin: &Vec<T>, origin_disp: usize, origin_count: usize,

6 target_rank: usize, target_disp: usize, target_count: usize

7 );

8 fn get(&mut self,

9 origin: &mut Vec<T>, origin_disp: usize, origin_count: usize,

10 target_rank: usize, target_disp: usize, target_count: usize

11 );

12 }

Listing 15: Trait for Communication Call

For easy comparison, Listing 16 presents the original function signature in C [45]:

1 int MPI_Put(

2 const void *origin_addr, int origin_count,

3 MPI_Datatype origin_datatype, int target_rank,

4 MPI_Aint target_disp, int target_count,

5 MPI_Datatype target_datatype, MPI_Win win

6 );

7 int MPI_Get(

8 void *origin_addr, int origin_count,

9 MPI_Datatype origin_datatype, int target_rank,

10 MPI_Aint target_disp, int target_count,

11 MPI_Datatype target_datatype, MPI_Win win

12 );

Listing 16: Equivalent in C

In our trait, put from vector and get from vector are the custom methods for pragmatic
use in common scenarios, put and get are the ones resembling their original signature. We
propose the put from vector and get from vector as a convenient way of transmitting
a vector to other ranks, which is a common action in communications. Without this, the
programmer has to invoke MPI Put method which has a lengthy and obscure parameter list.
Besides, it could be found the pointer origin addr from C has become the generic vector
origin in Rust. Although a pointer can be created upon a vector, we have opted to leave the
vector reference type in the interface. The reason is that pointer is a fundamental concept in
C, powerful but can be dangerous. Using reference is Rust idiomatic, therefore we have shifted
the conversion from the user to our implementation. In addition, compared to the original
interface, there is a new argument origin disp. We propose this argument since the original
one requires passing in a pointer. In C++ the pointer can point to an address other than the
start of the vector, but the reference must point to the start. We have decided to propose
the origin displacement and shift the work of creating a pointer from a reference along with
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the pointer arithmetic to our library. Furthermore, the datatype is explicitly passed in as an
argument in C. We can doubtlessly leverage Rust generics and predefined types in rsmpi to
make it Rust idiomatic, as we had in window initialization.

For the implementation detail, to improve code reuse, we defined a function common put as
shown in Listing 17 private to the library. It explicitly requires a raw pointer instead of a
reference as the trait above. Hence the trait methods can be implemented as Listing 18.

1 fn common_put<T>(

2 origin: *const T, origin_count: usize,

3 target_rank: usize, target_disp: usize, target_count: usize,

4 window: ffi::MPI_Win

5 ) where T: Equivalence {

6 unsafe {

7 ffi::MPI_Put(

8 origin as *const c_void,

9 origin_count as c_int,

10 // Since T has trait bound Equivalence defined in rsmpi,

11 // it can use equivalent_datatype().as_raw() to convert to C type

12 T::equivalent_datatype().as_raw(),

13 target_rank as c_int,

14 target_disp as MPI_Aint,

15 target_count as c_int,

16 T::equivalent_datatype().as_raw(),

17 window

18 );

19 }

20 }

Listing 17: Implementation of common put

1 fn put_from_vector(&mut self, origin: &Vec<T>, target_rank: usize) {

2 common_put(

3 origin.as_ptr(), origin.len(),

4 target_rank, 0, origin.len(),

5 self.window_handle

6 );

7 }

Listing 18: Implementation of put from vector

For the put method, it could be found in Listing 19 that the origin vector is converted to a
pointer with the as ptr method, and forwarded origin disp with add method. This is the
code to move the pointer forward that was mentioned previously. Since add is unsafe, it must
be wrapped within unsafe. After that, common put can be invoked.
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1 fn put(

2 &self,

3 origin: &Vec<T>, origin_disp: usize, origin_count: usize,

4 target_rank: usize, target_disp: usize, target_count: usize

5 ) {

6 // call add to move pointer forward, unsafe

7 let origin_addr = unsafe { origin.as_ptr().add(origin_disp) };

8 common_put(

9 origin_addr, origin_count,

10 target_rank, target_disp, target_count,

11 self.window_handle

12 );

13 }

Listing 19: Implementation of put

4.3 Synchronization Call

Same as a communication call, a synchronization call is window type agnostic - hence we
define its trait as shown in Listing 20, whereas Listing 21 shows the original function signature
in C.

1 pub trait Synchronization {

2 fn fence(&self);

3 // group: a group of processes

4 fn post(&self, group: &UserGroup);

5 fn start(&self, group: &UserGroup);

6 fn complete(&self);

7 fn wait(&self);

8 fn exclusive_lock(&self, rank: Rank);

9 fn shared_lock(&self, rank: Rank);

10 fn unlock(&self, rank: Rank);

11 }

Listing 20: Trait for Synchronization Call
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1 int MPI_Win_fence(int assert, MPI_Win win);

2 // assert argument: accepts different pre-defined values

3 // this argument is to instruct MPI to do different optimizations

4 // 0 is the simplest value to make the function work

5 int MPI_Win_post(MPI_Group group, int assert, MPI_Win win);

6 int MPI_Win_start(MPI_Group group, int assert, MPI_Win win);

7 int MPI_Win_complete(MPI_Win win);

8 int MPI_Win_wait(MPI_Win win);

9 int MPI_Win_lock(int lock_type, int rank, int assert, MPI_Win win);

10 int MPI_Win_unlock(int rank, MPI_Win win);

Listing 21: Synchronization calls in C

The function signature of the synchronization call is simpler, and so is our trait. The param-
eters become their equivalent in Rust. The window becomes the &self, again implying the
methods are invoked on the window object. The assert arguments are currently hard coded
as 0 in our implementation, as it is the simplest value to let the method work. As for the
scope of the work, we have restrained to 0. Moreover, for the original MPI Win lock, the
lock type argument accepts two values: one is shared lock, the other is exclusive lock.
Out of readability, we have shifted the types of locks into function names. The lock method
now becomes two separate methods: exclusive lock and shared lock. Listing 22 presents
the implementation of exclusive lock for demonstration.

1 fn exclusive_lock(&self, rank: Rank) {

2 unsafe {

3 ffi::MPI_Win_lock(

4 // lock type

5 ffi::MPI_LOCK_EXCLUSIVE as c_int,

6 // target rank

7 rank as c_int,

8 // assert

9 0,

10 // window object

11 self.window_handle

12 );

13 }

14 }

Listing 22: Implementation of exclusive lock

Now with our library, a simple RMA program that transmits a double vector as Listing 23 can
be rewritten into Listing 23
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1 // Import and enclosing main function omitted

2 let universe = mpi::initialize().unwrap();

3 let world = universe.world();

4 let rank = world.rank();

5

6 let mut window_base: *mut f64 = ptr::null_mut();

7 let mut window_handle: MPI_Win = ptr::null_mut();

8

9 unsafe {

10 ffi::MPI_Win_allocate(

11 (vector_size * size_of::<f64>()) as MPI_Aint,

12 size_of::<f64>() as c_int,

13 RSMPI_INFO_NULL,

14 world.as_communicator().as_raw(),

15 &mut window_base as *mut *mut _ as *mut c_void,

16 &mut window_handle

17 );

18 }

19 let mut window_vector = ManuallyDrop::new(

20 unsafe {

21 Vec::from_raw_parts(window_base, vector_size, vector_size)

22 }

23 );

24 unsafe {

25 ffi::MPI_Win_fence(0, window_handle);

26 }

27 if rank == 0 {

28 unsafe {

29 ffi::MPI_Put(

30 window_base as *mut c_void,

31 window_vector.len() as c_int,

32 f64::equivalent_datatype().as_raw(),

33 1,

34 0,

35 window_vector.len() as c_int,

36 f64::equivalent_datatype().as_raw(),

37 window_handle

38 );

39 }

40 }

41 unsafe {

42 ffi::MPI_Win_fence(0, window_handle);

43 }

44 unsafe {

45 ffi::MPI_Win_free(&mut window_handle);

46 }

Listing 23: Transmitting a double array with mpi-sys
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1 // Imports and enclosing main function omitted

2 let universe = mpi::initialize().unwrap();

3 let world = universe.world();

4 let rank = world.rank();

5

6 let mut win: AllocatedWindow<f64> = world.allocate_window(vector_size);

7

8 win.fence();

9 if rank == 0 {

10 win.put_from_vector(&win.window_vec, 1);

11 }

12 win.fence();

Listing 24: Transmitting a double array with our library

In summary, our design aims to ease the burden of programming with RMA which is low-level
and unsafe. We extract the common use case, wrap the low-level library, and expose a simpler
interface to the user. Users can program with high-level Rust constructs, such as vector and
Rust types, rather than handling the pointer to vector, or casting Rust types into C types, as
these efforts have been shifted to the library. Furthermore, we introduced a destructor to our
library, which is an important property of RAII and thereby frees up the window automatically.
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5 Evaluation

In this section, we conducted a series of experiments, including micro benchmarks, application
level performance and programmability to evaluate the library.

Unless explicitly stated, the experiments were performed on the Distributed ASCI Supercom-
puter DAS-6 [2] at the Leiden University site, where each node has a 24-core AMD EPYC-2
(Rome) 7402P CPU, 128 GB memory, interconnected by 100 Gbit/s InfiniBand which sup-
ports RDMA network. The network supports two modes: using InfiniBand (IB) directly and
IP-over-InfiniBand [30] (IPoIB) which transmits IP packets on top of InfiniBand. In addition,
the programs were compiled with the highest optimization option: -O3 for C and --release

for Rust. The MPI version is Open MPI 4.1.1, which implements the MPI-3.1 standard, with
ucx version 1.11.2. GCC version 9.4.0, cargo version 1.74.0, rsmpi 0.5. For plots, the error bar
is neglected for slight standard deviations.

5.1 Micro Benchmarks

We first run micro-benchmarks to evaluate the latency of communication. The programs are
One-to-One Ping Pong and One-to-Many Ping Pong.

5.1.1 One-to-One Ping Pong

We first performed a ping-pong latency test with two nodes to test out the latency. The ex-
periments were performed against the growing size of a vector of f64 type, which is equivalent
to double in C. The vector size increases by a power of 2 for optimal cache utilisation. The
metric is the Round Trip Time (RTT) of a vector. The maximum size can reach 230 as limited
by MPI itself. During each run of different sizes, the vector was allocated before Ping-Pong
begins and destroyed when the program exits. The round trip was repeated 12 times, and the
times with minimum or maximum results were removed before doing statistical analysis. We
also conducted benchmarks on two different network settings to provide more insight into the
performance: using InfiniBand directly and IPoIB. The program is written in five versions: send
recv and RMA in C, for Rust, it is mpi-sys (the unsafe C-like library by FFI), our RMA library,
and send recv in rsmpi.
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(a) Ping-Pong direct IB

(b) Ping-Pong IP over IB

Figure 2: Ping-Pong latency test on InfiniBand (axes in log scale)

As shown in Figure 2, for directly using InfiniBand, send recv has marginal lower latency than
the three variants of RMA, while the results for the RMAs are overlapped. For IPoIB, send recv
has slightly lower latency at a small vector size, then overlaps with RMAs at a larger vector
size. We believe this is due to the sophisticated communication method since the early MPI
version, send recv has been highly optimized, while RMA was first introduced in MPI-2.0, and
renovated in MPI-3.0 [21]. However, the Rust versions are the same as C for the RMA itself.
This demonstrates that Rust RMA preserves the performance of C.

Besides testing on InfiniBand, we also conducted a test on DAS-6 at the VU Amsterdam site,
which employs RDMA over Converged Ethernet (RoCE) [54] as the network.

31



(a) Ping-Pong direct RoCE

(b) Ping-Pong IP over RoCE

Figure 3: Ping-Pong latency test on RoCE (axis in log scale)

From Figure 3 can also be found that with RoCE, the latency pattern stays the same as with
InfiniBand. This demonstrates that the library is portable in terms of performance.

To provide further insights into the performance at small sizes, we present the latency data of a
double array with only one element in Table 1, i.e. x = 0 in the graphs above. The table shows
that send recv achieves the best latency regardless of language. For the RMA versions, Rust
has preserved the same latency as C. This trend is the same across the four network settings,
proving that our library performs as well as its C equivalent. However, the key performance
factor is the method.

C RMA mpi-sys RMA Rust RMA Rust sendrecv C sendrecv
Direct InfiniBand 16.5469 16.5165 16.6580 3.3772 3.2281
IPoIB 8.6179 9.0889 9.1757 3.209 3.1412
Direct RoCE 22.2126 20.0955 23.8849 4.3002 4.3689
IP over RoCE 12.5936 13.8471 12.9895 4.3993 4.2769

Table 1: Latency transmitting a double array of size 1 (microseconds)

Moreover, we have conducted a comprehensive test against different network settings to find an
optimal one to use the library. Figure 4 exhibits that the optimal network is IPoIB, meanwhile,
IP over RoCE is only slightly slower than the former at a small vector size and merged at larger
sizes. It may seem counterintuitive that both direct network settings are defeated by IPoIB.
Indeed, this is strongly related to the implementation detail of MPI. Open MPI itself is built
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upon lower-level network libraries, such as ucx, and Infiniband verbs. Their proper usage of
networks may be vital to the real performance of MPI [23, 14].

Figure 4: Ping Pong InfiniBand vs RoCE (axes in log-scales)

5.1.2 One-to-Many Ping Pong

One-to-Many Ping Pong is one process that sends a message to multiple processes, and all
these processes send the message back to the source process. Since there are no collective
methods in RMA, the source process sends messages one by one within a loop. RTT is used
as the metric. The previous benchmark has shown negligible performance distinction between
different RMA flavours. This experiment only focuses on the comparison between C RMA and
Rust RMA using our library to provide further performance insights.
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(a) 1-to-many Ping Pong direct InfiniBand

(b) 1-to-many Ping Pong IP Over InfiniBand

Figure 5: 1 to many Ping Pong by node number
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(a) 1-to-many Ping Pong direct InfiniBand

(b) 1-to-many Ping Pong IP Over InfiniBand

Figure 6: 1 to many Ping Pong by vector size (axis in log scale)

From both latency tests in Figure 5 and 6, it could be found that the library has achieved
identical latency as C, regardless of the network setting. For simple programs such as Ping
Pong, Rust has achieved the same performance as C.

5.2 Application

In this part, we have implemented the Successive Over-Relaxation (SOR) [42], an iterative
method of solving linear equations. A pseudo-code of which is shown in Algorithm 1:
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Algorithm 1 Synchronous SOR

1: Initialize MPI environment (size, rank, etc.)
2: Decompose matrix into processes by calculating row number with rank
3: Allocate local submatrix as 2D vector for each process
4: Initialize matrix values
5: while condition do
6: Send one row to rank − 1
7: Send another row to rank + 1
8: Perform computation on the local submatrix
9: end while

10: Terminate MPI environment

The implementations are synchronous, within which for each process, the computation pro-
cess takes place after communication completes. Unless stated, the fence was used as the
synchronization method for RMA, and Put as the communication call. Three different imple-
mentations have been written, they are: 1. C RMA; 2. Rust RMA with mpi-sys; 3. rsmpi send
recv. Additionally, due to the ownership rule of Rust, when using our library, it is not allowed
to open up two windows on two rows from the same 2D vector respectively. As shown in
Figure 7, it looks like it is only two rows of the matrix were borrowed. Indeed, it is the matrix
itself that was borrowed. For the workaround solution, we must either: 1. for each process,
split its local matrix into parts so that the windows can be initialized on the parts. Therefore
we named it ”Split”; 2. Use a 1D vector, and indexing as if a 2D vector by conversion, so
that only one mutable borrow is needed. The window is initialized using the whole vector. As
the matrix can be huge, we named it as ”Big Window”. For Split, we have implemented two
versions: one using fence as the simplest way of synchronization, and the other is (un)lock
for fine-grained synchronization. Moreover, due to the implementation detail of Split, several
conditional branches are frequently used during the computation process. To evaluate the im-
pact of if branches on the program, based on the (un)lock Split, we have another version
with if branches eliminated, which does not affect the result. And we name this ”Rust lock no
if”.

Figure 7: Double mutable borrow fails

For each square matrix size, the program is repeated 12 times. The minimum and maximum
results were excluded. The number of nodes to run the program is 8. Each element in the
matrix is f64 in Rust and double in C.
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(a) SOR direct InfiniBand

(b) SOR IPoIB

Figure 8: SOR performance on growing matrix size (axis in log scale)

Given Figure 8, it is worth noting that, the max matrix size that can be reached is 218. The
program will either throw insufficient memory or exceed the time limit to run a job in the
cluster which is 15 minutes. Moreover, most significantly, the advantage of RMA compared to
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Figure 9: % of slowdown from C to Rust, IPoIB

send recv has shown: given 15 15-minute jobs running time limit, for both network settings, the
max matrix size that can be completed for send recv is 214. Contrarily, all RMAs have reached
larger size and completed 12 repetitions. We believe this is due to the additional memory copies
of send recv having resulted in considerable overhead, even though only two rows from the
matrix participate in the communication. The C RMA is slightly faster than the Rust RMAs
given a matrix size larger than 28. However, C RMA could not proceed over 216 due to the
process being killed by the Linux OOM Killer. As for the different RMA variants, there is no
significant performance disparity, especially with IPoIB. Similar to Ping Pong latency tests,
running directly on InfiniBand, RMAs are slower than send recv given the small matrix size,
especially since the locks are noticeably slower. Furthermore, we present the percentage by
which Rust is slower than its C counterpart in Figure 9. The matrix sizes that C RMA lacks
are excluded. For Rust Split Lock, since it is a suboptimal implementation, its slowdown is
more significant than other variants. For Rust Big Window Fence, its minimum slowdown is
negative meaning it is even faster. Moreover, its mean and max are noticeably smaller than
other comparisons. It can be observed from Figure 8b that Rust Big Window is initially faster
than C RMA Fence. We believe this can be attributed to addressing a 1D vector being faster
than a 2D vector for small matrix sizes, as the former presents the matrix with a 1D vector.
For other variants, they exhibit acceptable slowdown. The median and max are capped by
30% and 50% respectively. In summary, it can be concluded that our library has achieved a
variable performance discrepancy to C. The optimal implementation can be even faster, but
the opposite of sub-optimal.

Besides testing the time, we have conducted evaluations regarding scalability. For each pro-
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gram, the number of nodes starts from 2 to 16, and strides by 2. The matrix size is identical:
214 across all experiments. The program that all variants are compared against is a sequential
implementation in C.

From Figure 10, it could be found that results by the two network settings look similar, ex-
cept send recv, mpi-sys, Rust split fence and split no lock are closer in IPoIB. This again
demonstrates that IPoIB is better for running RMA programs. C RMA has achieved the best
scalability among these lines, while Rust Split Lock has the worst. For the Rust RMAs with
fence, Big Window showed more ideal speed up than other versions. These behaviours can
be attributed to the synchronization as the major factor. In the Big Window implementation,
there is only one window, therefore a matching pair of fence invocation is sufficient. On the
contrary, other RMAs have two windows, which requires two pairs of fence to be called. More-
over, the more nodes, the larger the synchronization overhead. As for Split Lock, since locking
does not guarantee the local matrix of each process has been updated before computation
starts, a barrier after communication calls becomes necessary, which brings extra overhead
besides the locks. Additionally, the ”no-if” implementation of Rust split lock achieved better
scalability than if-s, which has exhibited that excessive conditional branches also slow down
the program. In addition, Table 2 shows the ratio of speed up from sequential to 16 nodes. It
matches Figure 10 well. Last but not least, the programming language being used can have
impacts. Due to their design differences, what is feasible in C may not be available in Rust.
The workarounds bring overheads. This part will be discussed further in detail in the Discussion
section.

C RMA Fence C RMA Lock mpi-sys Rust sendrecv
Direct IB 13.71 14.14 10.78 10.82
IPoIB 14.14 14.21 10.96 10.81

Rust Big Window Rust Split Rust Split Lock Rust lock no if
Direct IB 11.21 9.903 8.784 9.739
IPoIB 12.11 10.98 9.479 10.77

Table 2: Speed up ratio sequential to 16 nodes
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(a) Speed up with direct InfiniBand

(b) Speed up with IPoIB

Figure 10: SOR speed up

40



5.3 Programmability

We have evaluated the programmability of the library. The metrics used are intuitive: the
number of lines of code and unsafe blocks, as well as readability.

Recall initializing a window of double with MPI Win allocate from mpi-sys as shown in
Listing 25:

1 let mut window_base: *mut f64 = ptr::null_mut();

2 let mut window_handle: MPI_Win = ptr::null_mut();

3

4 unsafe {

5 ffi::MPI_Win_allocate(

6 (vector_size * size_of::<f64>()) as MPI_Aint,

7 size_of::<f64>() as c_int,

8 RSMPI_INFO_NULL,

9 world.as_communicator().as_raw(),

10 &mut window_base as *mut *mut _ as *mut c_void,

11 &mut window_handle

12 );

13 }

Listing 25: Allocating a window with mpi-sys

With our library, this can be simplified as Listing 26:

1 let window: AllocatedWindow<f64> = world.allocate_window(size);

Listing 26: Allocating a window with Rust RMA library

Recall calling MPI Put to write contents to remote process in Listing 27:

With our library: this can be easily done with the following in Listing 28:

1 window.fence();

2 window.put_from_vector(&mut source_vec, target_rank);

3 window.fence();

Listing 28: Put with RMA Rust library

We also take the total lines of code for each program into account. It was counted roughly: to
keep the readability of code, we preserve the empty lines between logical blocks, e.g. initializing
variables, and doing computation, where code aims for the same purpose clusters. New lines
exist at a lengthy argument list of method invocation, e.g. MPI Put.
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1 unsafe {

2 MPI_Win_fence(0, window);

3 MPI_Put(

4 source_vec.as_mut_ptr() as *mut c_void,

5 source_vec.len() as c_int,

6 RSMPI_DOUBLE,

7 target_rank,

8 0,

9 source_vec.len() as c_int,

10 RSMPI_DOUBLE,

11 window

12 );

13 MPI_Win_fence(0, window);

14 }

Listing 27: Put with mpi-sys

C RMA Fence C RMA Lock mpi-sys Fence Rust sendrecv C sendrecv
201 203 210 153 142
Rust Big Window fence Rust Split Fence Rust Split Lock Rust lock no if
171 181 178 215

Table 3: Lines of code of each program

From Listing 25 vs 26 and 27 vs 28, it can be told that the lines of code are significantly
reduced. Besides, the complex details of RMA methods, which consist of several arguments
and the esoteric conversion of types from Rust to C, such as line 10 in Listing 25, are encap-
sulated and hence eliminated for the user. It is further demonstrated in Table 3 that total lines
of code are reduced with our library while readability is preserved. Moreover, Unsafe block
is also eradicated at the user’s code. In addition, the code becomes more readable, adhering
to object-oriented style: the RMA method is invoked via the window object, and the window
allocation method is invoked with world. The semantics also map to their original form: a
window is initialized with a communicator, and the methods are invoked by passing the window
object.
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6 Discussion

In this section, we present the experience and thoughts about the work. We give the benefits
and drawbacks of Rust and our library, which can be useful for future programmer’s reference:

Here are some concrete benefits of Rust:

• Installation and configuring Rust is straightforward. The installation can be easily done
by following the instructions from the official website. And the process is mostly just
by one line of command or an installation package. In contrast, for configuring C++,
depending on specific needs, different compilers of C++ might be chosen, which in turn
their prerequisite action needed.

• Cargo is a very powerful tool. It contains almost everything for the full life cycle of
development. From initializing a new template project, building and running, testing
and releasing, dependency management, and code linting, all can be done easily with
a single command. During our work, we did not come across any tooling issues. Surely
our project has simple dependencies, but to introduce our customized dependency, a
line of simple config in Cargo.toml also does the work. This has greatly sped up the
development efficiency, allowing us to focus on the problem itself.

• Rich Language Features. Needless to mention the ownership rules that greatly contribute
to program safety, Rust also supports object-oriented programming, which has been
utilized in our work. Besides, it has many modern language features: different kinds of
looping, a powerful type system, and a vector type that supports initialization in various
ways, etc. For example, we constructed vectors with from raw parts method.

We also give our thoughts regarding the drawbacks of Rust and our library:

• Ownership can be limiting. As previously mentioned in Figure 7, we had to use workaround
solutions to pass the borrow check, as a result, indexing became more complicated and
lowered memory efficiency.

In addition to the 2D vector, in Figure 11, line 140 is trying to call get method to write
to its window with data from its successor rank. The destination of the get method
is the vector huge window.window vec. The invocation requires creating a mutable
reference to huge window, although we are referring to the window vec within. Besides,
an immutable reference to huge window also must be created and used, because get

method is invoked on it, recalling the first parameter of get is &self. However, the
compiler has recognized this and raised an error. It turns out the get method cannot
be used for writing to the window which invokes the get method. The error message
shows that mutable borrow happens between the creation and use of immutable borrow,
which is not allowed by the ownership rules. Although using get to write to the calling
process’s window is not a standard use but not discouraged by MPI reference [40], Get
method is intended to write to the memory region that is not in the window. Through
our practical use, writing to Windows also works. Considering this, as a workaround, we
encourage users to use unsafe directly. In summary, ownership is a trade-off - better
safety but less flexibility.
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Figure 11: Immutable borrows when mutable borrow exists

• Safety is bounded in the context of MPI. The safety of Rust only takes effect in the
context of a single process. However, within MPI, the concurrent issues, such as syn-
chronization, should still need to be addressed manually by the programmer.

• Rust programming style contradicts MPI. It is common in MPI to declare a variable
first, then pass it into an MPI method and have values assigned. However, accessing an
uninitialized variable is not allowed in Rust. The workaround can be declaring a mutable
variable, and assigning it random values first. For a safe programming practice, the
mutable variable should be avoided as much as possible. This is what the rsmpi and
our library have contributed to.

• Performance is heavily influenced by program design. By ”program design”, it means the
implementation detail due to language features. For Split SOR, due to complicated in-
dexing, we implemented two versions: one with multiple conditional branches to read the
expected row, and the other eliminated conditional branches by explicitly setting the row
number. The former is relatively easier to implement, while the latter is more complex.
As a result, the latter outperforms. The conditional branch is the superficial difference
that resulted from the ownership rules. This showed that programming language can
impact implementation details, which in turn influence the performance.

Last but not least, we present our lesson learned during the process of learning Rust and
designing the interface:

• Learn the “hard” parts of Rust first Designing the interface is a comprehensive process.
Our library contains these elements of Rust: borrowing, lifetime, trait, unsafe, pointer,
reference, struct, and generics. Therefore it is necessary to understand these essential
concepts first to design a generally applicable interface.

• Exploit the Rust type system We as programmers from mainstream languages like C++
and Java, it is likely to write Rust code with an old mindset. Rust borrows ideas from
functional languages with a powerful type system such as Haskell, SML [28]. Therefore
compared to the elements that Rust is famous for, such as the borrow checker, its
type system is also worth a deep dive. In RMA, the fence method requires to be
paired, unlock can only be invoked given lock has been called, etc. In our thesis,
these constraints are currently addressed during runtime. However, with the Typestate
pattern [6], these can be shifted to compile-time checks. To implement the Typestate
pattern, intermediate familiarity with the type system is necessary. It makes use of the
phantom type [56], a powerful type that only participates in compilation but not in
runtime. To conclude, the type system is also a crucial element of Rust, by leveraging
which a more robust and versatile API can be designed.
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7 Conclusion and Future Work

We have implemented a prototype binding to bring the unsafe and C-like RMA interface from
mpi-sys into the Rust world. We have leveraged the open-source project rsmpi for common
MPI operations. Based on the MPI specification, we have designed the Rust interface of the
RMA operations in the form of Rust traits. The three core components in RMA: window ini-
tialization, communication and synchronization calls, have been partially supported, so that
programmers can write RMA programs without touching unsafe blocks. For window initializa-
tion, two kinds of windows were supported: created and allocated. For communication calls,
besides having methods adhere to the original one from the specification, several methods
with simplified parameters are designated to address the common use case such as passing
a whole vector. For these interfaces, Rust generics have been used, and the conversion from
the generic type to the MPI datatype is achieved by leveraging the rsmpi library. As a result,
with our binding, programmers can write RMA code in the Rust idiomatic way, thereby greatly
improving the code safety, maintainability and readability.

We also have conducted a series of benchmarks to show our library has a marginal performance
cost. The Ping-Pong latency test has demonstrated that with our library, a C-equivalent la-
tency can be achieved even under different network settings. Furthermore, we also implemented
different versions of SOR and benchmarked them in different network settings. It shows that
language and implementation strategies can make a noticeable impact on performance. The
implementation strategies use different synchronization methods and data layouts. As a result,
C and lock synchronization achieved the best performance, while Rust versions are acceptably
slower.

During the work, we also gained Rust’s development acquaintance. The overall experience is
positive, except the ownership rules can be hindering. The workaround regarding the ownership
also complicated the program slightly. But generally speaking, adopting Rust is recommended.
Particularly in HPC, where performance is critical, Rust has strived for a balance between
performance and development experience. The language feature and tooling have made a con-
structive impact on our work. In conclusion, the answer to our research question is: RMA can
be well integrated into Rust, hence enabling programmers to use RMA safely and elegantly in
Rust. The C-like performance can be preserved, but depends on program design. Furthermore,
to the sub-problems:

1. Currently to program with RMA in Rust, the programmer has to write C-like unsafe
code. Our library helps mitigate this issue by hiding unsafe blocks in the library.

2. The interface can be designed in an object-oriented way, using trait and generic in Rust.
Besides, it should not only attempt to resemble the original interface in C but also new
methods for common use cases.

3. Our evaluation has shown that Rust has achieved variable loss compared to its equiva-
lence in C. A small program like Ping-Pong has a neglectable loss but an intermediate
program like SOR can depend on program details.

The future work could be the complementary set of the library to the whole RMA. For window
initialization, the current library only covers creation and allocation. Other types of windows,
such as one allowing dynamic memory attachment, can be the next. Methods used for querying
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window attributes can be included as well. The accumulate functions [40] and request-based
can be implemented for communication calls. For synchronization calls, they are relatively
simpler. The current implementation has hard-coded all assert arguments as 0, as it is the
default one to work. It can be extended to allow passing arguments other than 0 so that
the methods can be fully fledged. Last but not least, all the work is based on a fork of the
open-source project rsmpi, we have contacted the source maintainers to seek their ideas. As
hinted in the response, the Typestate pattern [6] can be incorporated to enhance compile-time
checks, such as guaranteeing fence must be paired, thus further improving the safety of the
interface.
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