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Abstract

The Boolean Satisfiability problem (SAT) is a prominent NP-hard problem with important
practical applications. Many high-performance SAT solvers exist, but none of them dominates
the others across the board; therefore, selecting the best algorithm on a per-instance basis can
bring significant improvements in solving efficiency. Existing algorithm selection methods
for SAT rely on hand-crafted features, but in many applications, deep-learning techniques
have been demonstrated to be able to work well on raw input. Inspired by this, we aim to use
a graph neural network (GNN) to improve algorithm selection for SAT. We first use graph
neural networks for features-free algorithm selection. We apply neural architecture search on
a rich configuration space and build our algorithm selector based on the resulting architecture.
Our feature-free approach outperforms the previously known method and performs similarly
to the best feature-based baselines. This demonstrates that graph neural networks can learn
meaningful features of SAT instances for effective use in per-instance algorithm selection. In
the second part of this thesis, we explore the usage of graph neural networks with hand-crafted
features. We use a neural network that takes graph representation and hand-crafted features.
We also show a method to extract the features from the graph neural network and use them
with a well-known algorithm selection method. We show that our extracted features can
improve the performance of the algorithm selection.
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Chapter 1

Introduction

The Boolean Satisfiability problem (SAT) is a well-known problem that attracts substantial research
attention. The importance of this problem has two prominent reasons. First, it is the first problem that was
proven to be NP-Complete (Cook, 1971), bringing theoretical interest to it. Moreover, other problems,
such as planning, hardware verification, and software verification, can be expressed as SAT. Therefore, SAT
is a good starting point for solving important real-world problems and researching theoretical computer
science.

Given the importance of SAT, various solvers were developed. These include tree-search-based solvers,
local-search solvers, and more. As SAT is an NP-complete problem, there is no known polynomial time
solver for it. SAT solvers use heuristics to find a solution.

It was found that there is performance complementarity for SAT solvers, i.e., no solver dominates
over all instances. This property can be exploited by using algorithm selection, an idea first introduced
by Rice (1976). In the framework, the goal is to select the best algorithm for a problem instance using
the characteristics of a problem instance. Choosing the right solver for each instance can reduce the total
running time and the number of timeouts. The state-of-the-art methods for algorithm selection utilise
hand-crafted features of the SAT formula as input for a machine-learning model to select the best solver.

Using a deep learning approach that takes raw input to perform the prediction can outperform learning
a model based on the hand-crafted features with a machine learning model.A popular example is pattern
recognition tasks in computer vision. AlexNet (Krizhevsky et al., 2012) outperformed the hand-crafted
features by a large margin on the ILSVRC-2012 challenge (Russakovsky et al., 2015). Following
AlexNet, the state-of-the-art methods for image classification are based on deep learning, with advances in
architectures and training procedures that further improve the performance.

Following the success of deep learning to process images, Loreggia et al. (2016) generated image
representation of Boolean formulas using text-to-image transformation. Then, a convolutional neural
network was used to predict the best solver for each instance. Their method, however, did not outperform
the algorithm selection method that use hand-crafted features. A possible reason for this is that images are
not permutation invariant. Therefore, the same formula with a different variable order will have a different
image representation and a different prediction.

The performance of deep learning on image-based tasks inspired the usage of deep learning for other
inputs, such as graphs. Graphs are a useful representation for some problems as they can represent
relationships between different objects without the need to define their order (i.e. graphs are permutations
invariant). A common application of graph neural networks is within chemistry, where molecules are
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CHAPTER 1. INTRODUCTION 6

represented as graphs.
SAT formulas can be represented as graphs as both are permutation invariant. This property has

been used to extract features of SAT formulas. For example, (Xu et al., 2008) calculated the degree of
a variables graph, where every variable has a node in the graph and an edge connects two variables that
appear in the same clause. Ansótegui et al. (2019) extracted structural information about the formula using
graph representation.

In recent years, graph neural networks were also applied in the context of the Boolean satisfiability
problem. The first occurrence was a features-free prediction of the satisfiability of a formula from the
graph representation (Selsam et al., 2018). Then, various other approaches were developed, including
improvements of existing solvers (Selsam and Bjørner, 2019; Wang et al., 2021), searching for a satisfying
assignment (Kurin et al., 2020) and more.

In this thesis, our aim is to improve the algorithm selection for SAT using graph neural networks. We
first try a features-free approach to predict the best solver given an instance, using a graph representation
of the formula. We then extract features of the formula found by the trained neural network. We combine
those features with the known hand-crafted features and examine whether our new features can improve
over the existing ones on various algorithm selection tasks. We find that features-free approaches can
reach comparable results to existing algorithm selection methods.

Our contributions are as follows:

• We introduce a features-free approach to algorithm selection for SAT using a graph neural network.

• We introduce a method to extract features from a SAT formula using graph neural networks.

• We generate a new scenario of industrial-like SAT instances created by the Community Attachment
(Giráldez-Cru and Levy, 2016) instance generator. We also compute the running times of various
solvers on them, as well as hand-crafted features.

• We create algorithm selection scenarios based on special instance distributions from Configurable
SAT Solver Challenge (CSSC). We then evaluate our methods on those scenarios.

In the following chapters, we describe the background of SAT, graph neural networks and algorithm
selection. In Chapter 3, we describe the related work in the field. In Chapter 4, we describe our method
for features-free algorithm selection using graph neural networks. In Chapter 5, we show the usage of the
features extracted using graph neural networks to improve the existing hand-crafted features. Finally, in
Chapter 6, we conclude our work and discuss future work.



Chapter 2

Background

In this chapter, we describe the background of the Boolean satisfiability problem and graph neural networks.
In Section 2.1 we start by describing the SAT problem, CNF encoding, usage, and solvers. Following
the fundamentals of SAT, we present the graph representations of it in Section 2.2 and the hand-crafted
features Section 2.3. In Section 2.4 we define the algorithm selection for SAT. Finally, in Section 2.5, we
describe graph neural networks and show various types of graph neural networks.

2.1 Boolean satisfiability problem
In the Boolean satisfiability problem (Karp, 1972; Franco and Martin, 2021), also known as SAT, given a
Boolean formula, we are interested to know if there is an assignment for all variables which satisfies the
formula.

Example 2.1.1. An example of a Boolean formula is:

(x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3)

This formula is satisfiable since the assignment x1 = False, x2 = False, x3 = False satisfies the formula.

2.1.1 CNF encoding
While a Boolean formula can have any form (e.g., no special structure of the variables and clauses),
encoding them in conjunctive normal form (CNF) (Prestwich, 2021; Davis and Putnam, 1960) is common.
In CNF, the formula is a conjunction of clauses, and each clause is a disjunction of literals:

∧m
j=1(∨

nj

i=1lij) (2.1)

where lij is a literal, which is either a variable or its negation, the number of variables is n, and the number
of clauses is m. Every formula can be converted to CNF. Because of these features and the readability of
the CNF, it is the most common encoding read by SAT solvers.

The DIMACS CNF format (Johnson and Trick, 1996) is commonly used as an input for the SAT
solvers. This is a file format that contains the CNF formula. This format is widely used by the annual SAT
competitions (Balyo et al., 2022) and other available benchmarks, such as SATLIB (Hoos and Stützle,
2000). In this format, the first line describes the number of variables and the number of clauses. The
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CHAPTER 2. BACKGROUND 8

following lines describe the clauses, where each is a sequence of integers, and the last integer is 0. The
integers represent the literals, where the absolute value of the integer is the variable number, and the sign
represents the negation.

Example 2.1.2. For the Boolean formula in Example 2.1.1, the DIMACS CNF form is:

p cnf 3 3
1 2 -3 0
-1 2 3 0
1 -2 3 0

Special cases of the CNF form are the k-CNF representations. In those representations, every clause
has exactly k literals. Converting any Boolean formula to 3-CNF form is possible (Sipser, 2012).

2.1.2 Complexity
A formula with n variables has 2n possible assignments. SAT formulas can have thousands and millions
of variables, so a simple, brute-force approach that checks all possible assignments is impossible due
to the high running time required. If the formula can be converted to 2-CNF form (so that every clause
contains two literals), then the problem is solvable in a polynomial time (Krom, 1967). However, in other
cases, the SAT problem is known as an NP-Complete problem (Cook, 1971), so no known polynomial
time algorithm can solve it. Due to the simplicity of the SAT problem, it is used as a base for many other
problems. The 3-SAT problem is used to prove that many other problems are NP-Complete (Karp, 1972).
Those problems include the node cover problem (a minimal subset of nodes in a graph that cover all
edges), and the clique problem (a subset of nodes in a graph that are all connected to each other).

2.1.3 SAT in real life
In addition to the theoretical interest of researching efficient solutions for the SAT problem, there are
many practical applications of it. The most important industrial application is in the hardware verification
field (Clarke et al., 2001; Biere et al., 2021) where hardware models, formulated as finite-state machines,
are verified on properties such as illegal states that can lead to a system crash. SAT solvers can also
be used for other fields, such as software verification, planning, cryptography and more (Franco and
Martin, 2021). Although, in the last decades, machine learning gathered much attention from the public
and researchers, SAT solvers have influenced and allowed this success by improving the quality of the
hardware and software machine learning relies on (Fichte et al., 2023).

2.1.4 SAT solvers
SAT solvers can be classified into two main groups: complete and incomplete algorithms. Complete
algorithms always return an answer, although they can take a long time to do so. On the other hand,
incomplete solvers do not guarantee a solution but can be faster in some cases compared to complete
methods.
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The most common type of complete SAT solvers is based on the DPLL algorithm (Davis et al., 1962;
Darwiche and Pipatsrisawat, 2021). The DPLL algorithm is a backtracking algorithm that attempts to find
a satisfying assignment for the formula. The algorithm begins with an empty assignment and then tries to
assign values to variables. If the assignment is not satisfying, it backtracks and attempts different values
for the same variable. If all values have been tried, it backtracks to the previous variable and tries different
values for it. If all values have been tried for all variables, the algorithm concludes that the formula is
unsatisfiable. If the algorithm reaches an assignment that satisfies the formula, it returns that the formula
is satisfiable.

A well-known improvement to the DPLL algorithm is the Conflict-Driven-Clause-Learning (CDCL)
algorithm (Marques Silva and Sakallah, 1997). The CDCL algorithm is an enhancement of the DPLL
algorithm that utilizes conflict analysis to find a satisfying assignment. The CDCL algorithm is the most
commonly used algorithm in SAT solvers today. The conflict analysis is also referred to as the branching
heuristic. The branching heuristic is a function that selects the next variable to assign a value to. The most
common branching heuristic is the VSIDS (Moskewicz et al., 2001) heuristic, which assigns a score to
each variable and then selects the one with the highest score. The scores are updated after each conflict,
with scores for conflicting variables increasing and scores for other variables decreasing. Modern SAT
solvers use the CDCL algorithm with various branching heuristics and conflict analysis improvements.

Incomplete algorithms are typically based on local search algorithms, such as WalkSAT (Selman et al.,
1993). This algorithm greedily flips the truth values of variables to increase the number of satisfiable
clauses. It focuses the search by selecting variables from unsatisfied clauses. However, it may become
trapped in a local optimum and may not find a solution even if one exists.

2.1.5 Pre-processing
Pre-processing of the SAT formula is an essential part of the SAT-solving process (Biere et al., 2021). It is
a set of techniques that are applied to the formula before it is given to the SAT solver. Using preprocessing
techniques, it is possible to simplify the formula quickly, which can speed up the search done by the SAT
solver. While there are many techniques for preprocessing, the first technique that greatly improved the
performance was introduced by the SATELITE preprocessor (Eén and Biere, 2005). The technique is
called bounded variable elimination (BVE) and is performed for each variable by adding all the resolvents
(clauses that can be inferred from the clauses that contain the variable and its negation) to the formula,
and then we remove all the original clauses. Doing this process repeatedly can increase the size of the
formula exponentially. Therefore, the technique is employed only for variables that do not increase the
number of clauses. In addition to this technique, many other techniques are being used to pre-process to
get a smaller, easier-to-solve formula such as unit propagation (Davis and Putnam, 1960) and subsumption
(Zhang, 2005).

2.1.6 Performance measure
The performance of SAT solvers is measured by their running time. The total running time is usually
computed as Penalized Average Running Time (PAR), where a constant k is used to penalise timeouts by
a factor of k:

PARk(I, A) =
1

|I|
·
∑
i∈I

rk(i, A) (2.2)
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rk(i, A) =

{
ti ti < T

T · k otherwise,
(2.3)

Where I is the set of instances, and ti is the running time of the solver on instance i if the running time is
less than the time limit, otherwise, it is k times the time limit. Common k values are 2, such as used by the
SAT competitions (Froleyks et al., 2021) or the Sparkle SAT challenge 2018 (Luo and Hoos, 2018), and
PAR10, which was used by the OASC (Lindauer et al., 2017) and the ICON challenge (Kotthoff et al.,
2017).

2.2 Graph representation of SAT formula
There are many ways to express an SAT formula as a graph. Some of the SATZilla features are based on
a graph representation. The most basic representation is the Literal-Clause Graph (LCG), where every
literal clause has a node, and an edge connects every clause with the literals that it contains. A downside
of this graph is its size, as we represent each variable by two nodes. Also, this means that each variable
has two representations (one for each literal). A literal clause graph can be seen in Figure 2.1. A more
compact form of this graph is the Variable-Clause Graph (VCG), which has a node for each variable and
an edge between a variable and a clause if the clause contains the variable. It is possible to include the
polarity of the variable in each clause by adding a value for each edge, depending on the polarity. An
example for a literal clause graph can be seen in Figure 2.2. An even more compact representation is the
Variables Graph (VG), which contains only variables and an edge between two variables if they appear in
the same clause. The value of each edge is 1 if they both appear in the same polarity. Otherwise, it is -1.
This graph is the most compact but contains no information about the clauses. An example of the variables
graph can be seen in Figure 2.3.

x1 x2 x3¬x1 ¬x2 ¬x3

c1 c2

Figure 2.1: Literal-clause graph (LCG) for the formula (x1 ∨ x2) ∧ (¬x2 ∨ x3). The graph contains six
literals (representing three variables) and two clauses. The literal nodes are coloured turquoise, and the
clause nodes are coloured green. x1 and x2 are connected to the node c1. x2 and ¬x3 are connected to the
node c2, x2 in a positive form and x3 in a negative form. Two literals of the same variables are connected
with a dashed edge.
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x1 x2 x3

c1 c2

1
1

-1
1

Figure 2.2: Variables-clause graph (VCG) for the formula (x1 ∨ x2) ∧ (¬x2 ∨ x3). The graph contains
three variables and two clauses. The variable nodes are coloured green, and the clause nodes are coloured
turquoise. x1 and x2 are connected to the node c1 in a positive form. x2 and x3 are connected to the node
c2, x2 in a positive form and x3 in a negative form.

x1 x2 x3
1 -1

Figure 2.3: Variables graph (VG) for the formula (x1 ∨ x2) ∧ (¬x2 ∨ x3). The graph contains only the
three variables. x1 and x2 are connected with a positive weight as they appear in the first clause without
negation. x2 and x3 are connected with a negative weight as they appear in the second clause, one with a
negation and not the other.

2.3 Hand-crafted features of SAT
Features of the SAT problem have been studied for a long time. The features can be used for algorithm
selection (Xu et al., 2008), running time prediction (Hutter et al., 2014b) and also speed up algorithm
configuration (Hutter et al., 2011). Moreover, various papers showed that it is possible to predict whether
an SAT instance is satisfiable or not based on those features (Xu et al., 2012a).

The first feature we describe is the SATZilla features, which are the most commonly used features for
SAT. Those features contain a few feature groups:

• Problem Size Features: These features describe the basic characteristics of the formula, such as
the number of clauses and variables before and after pre-processing and the ratio of variables and
clauses.

• Variable-Clause Graph Based Features: The Variable-Clause Graph (VCG) is a graph representing
the SAT formula with a node for each variable and clause and a link between every variable’s node
and the clauses it is part of. The features are calculated by extracting the degree statistics of the
variables and clause nodes.

• Variable Graph Based Features: The Variable Graph (VG) contains a node for each variable and
a link between two variables if they appear in the same clause. The features contain the degree
statistics of the VG. It also contains the diameter of the graph, which is the longest and shortest path
between every node and every other node in the graph.

• Clause Graph features: The Clause Graph (CG) contains a vertex for each clause and a link between
two clauses if they share a variable. The features contain the degree statistics of the CG. For this
graph, the weighted clustering coefficient is also calculated.



CHAPTER 2. BACKGROUND 12

• Balance Features The balance features contain statistics on the positive and negative literals in each
clause, positive and negative occurrences of each variable and fractions of unary, binary and trinary
clauses.

• Proximity to Horn formula A clause with at most one positive literal is known as a Horn clause. A
formula: that has only Horn clauses the Horn formula. Horn formulae are an important subclass of
SAT formulae, as those are based on logic programming. The statistics that are used as features are
the fraction of Horn clauses and the number of occurrences in a Horn clause of each variable.

• DPLL Probing features: As explained in Section 2.1.4, DPLL is a common algorithm to solve the
SAT problem. The extracted features are based on running the DPLL algorithm on many depths
and measuring the number of unit propagations. Also, using the DPLL algorithm, it is possible to
estimate the size of the search space, which is another feature.

• Linear Programming (LP): Those features are based on solving an integer linear programming (ILP)
relaxed version of the formula. Given a formula that contains variables xi and clauses Cj , the ILP is
defined as follows:

v(xi) = xi (2.4)

v(¬xi) = 1− xi (2.5)

v(Cj) =
∑
l∈Cj

v(l) (2.6)

The goal is to maximize the following objective function:

n∑
j=1

v(Cj) (2.7)

Under the following constraints:
∀Ci :

∑
l∈Ci

v(l) ≥ 1 (2.8)

∀xi : 0 ≤ v(xi) ≤ 1 (2.9)

Where xi is a variable, Cj is a clause and v is the value of a vairable or a clause. In other words, if
we give each variable a value between 0 and 1, the goal is to maximize the total value of all clauses
under the constraint that each clause should have a positive value. Then, the extracted features
are the objective function value, the fraction of the variables set to zero or one and the variable
integer slack statistics. It should be noted, however, that these features might take a long time to be
computed.

• Local Search Based: SAPS and GSAT are local-search SAT solvers. The features are extracted by
running them many times until a local optimum cannot be escaped after some steps. Then, statistics
about those runs are extracted, such as the minimum fraction of UNSAT clauses in a run, the number
of steps to the best local minimum in each run, the average improvement per local-search step,
the fraction of improvements due to the first local minimum and the coefficient of variation of the
number of unsatisfied clauses in each local minimum.



CHAPTER 2. BACKGROUND 13

• Clause Learning: Those features are gathered by running ZCHAFF RAND, a DPLL-based SAT
solver. The features are based on running it for two seconds and extracting the number and length of
learned clauses.

• Survey Propagation: Features that are based on the variables’ bias. The positive bias is the fraction
of a solution of the formula where the variable appears positively. The negative bias is defined
similarly. The survey is the bias of all variables. The features are based on estimations of the survey,
and then computing the statistics of the confidence. The confidence is defined as

conf = max(
Ptrue(i)

Pfalse(i)
,
Pfalse(i)

Ptrue(i)
) (2.10)

Where Ptrue(i) is the probability that variable i is true, Pfalse(i) is the probability that variable i is
false and conf is the confidence. Similarly, there are statistics about the probability of the variable
being unconstrained. Those probabilities are extracted using VARSAT (Hsu et al., 2008).

• Timing Features: describe the running times of each feature extraction phase above.

In total, there are 138 features. Some features are fast to calculate, like the problem size features. However,
sometimes, the time required to calculate all features is high (more than 60 seconds).

2.4 Algorithm Selection
It has been observed that no single algorithm dominates all others on all problem instances for many
high-performance computing applications, including solving NP-Hard problems. This is also known as
the performance complementarity of algorithms (Leyton-Brown et al., 2003; Luo and Hoos, 2018). This
property can be exploited by choosing the best algorithm for each instance and creating a meta-solver that
can utilise the strengths of all solvers.

The algorithm selection problem was introduced approximately 50 years ago by Rice (1976). However,
only in the last two decades has it achieved better performance than the single best solver (Kerschke
et al., 2018). It first gained attention within the SAT community with the introduction of SATZilla (Xu
et al., 2008), which won numerous medals in the SAT competitions since 2007. Subsequently, many other
methods for algorithm selection were developed for SAT and other problems, including machine learning
problems.

In this thesis, we use the term algorithm selection for offline algorithm selection. This means an
offline training part of the algorithm selection framework is used for unseen instances. The other type of
algorithm selection is online algorithm selection, which is learning to select algorithms while solving new
instances. We also perform the algorithm selection on a per-instance basis, where we select an algorithm
for each instance separately.

Formally, per-instance algorithm selection (Rice, 1976) aims to find, for instance, set I and a set of
algorithms A, an algorithm selector S : I → A. S should optimise the performance with respect to a
performance metric m : A× I → R.

The algorithm selection framework has two parts. First, we train the algorithm selector, as shown in
Figure 2.4. We start from a set of problem instances and algorithms. We then extract features from the
instances and measure the running times of the algorithms. We then use them to train a model (or a set of
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Problem Instances

Features Extractor

Algorithms Running Times

Machine Learning Algorithm

Figure 2.4: Training scheme of algorithm selection. We use a features extractor to get the features of the
training instances as well as the running times of the algorithms on the training instances. Then, we train a
machine learning algorithm to perform algorithm selection.

Problem Instance Features Extractor Select an Algorithm

Run instance on the
selected algorithm

Figure 2.5: Inference of algorithm selection. We extract the features of the instance, select an algorithm
using the model trained in Figure 2.4, and run the instance on the selected algorithm.

models) that predicts the best algorithm for each instance. The second part is using the trained model on
new instances, as seen in Figure 2.5. At this stage, we extract features from the new instances and use
the trained model to select the best algorithm for each instance and run it. Various ways to extend this
framework have been proposed in the last few years. For example, Pulatov et al. (2022) showed that it is
possible to extend this framework by adding algorithm features.

An approach that is related and commonly used together with algorithm selection is scheduling. In
scheduling, instead of selecting a single algorithm to run, we select multiple algorithms to run and assign
them order and execution time. While this approach can have several advantages over algorithm selection,
as we do not rely on a single algorithm to solve the instance, it has a major drawback as it can never
achieve the performance of the best algorithm. The latest algorithm selection methods combine both
approaches by using a short pre-solving schedule followed by an algorithm that is being selected.

2.4.1 Performance metrics
There are many ways to measure the performance of algorithm selection (Amadini et al., 2023). Most
of them rely on the definition of the Single Best Solver (SBS), which is the fastest solver on the training
instances. The Virtual Best Solver (VBS), also known as the Oracle, represents the optimal meta solver
that chooses the solver that works best for each instance.

While evaluating the performance of algorithm selection methods based on the running time is possible,
it is missing the relation to the VBS. In this thesis, we will focus on measuring the performance using the
closed gap metric, which is computed as follows:

CG =
mSBS(I)−mS(I)

mSBS(I)−mV BS(I)
(2.11)
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Where mA(I) is the performance of the solver A on instance set I and CG is the closed gap. Due to
performance complementarity, the SBS and VBS are different; therefore, mSBS(I)−mV BS(I) ≥ 0. For
SAT, the evaluation metric is PARk. Using the closed gap metric, a score of 0 means that the algorithm
selection is as good as the SBS, and a score of 1 means that the algorithm selection is as good as the VBS.
Therefore, the maximum score is 1, and a negative score means the algorithm selection approach is worse
than the single best solver. In practice, the score should be between 0 and 1; the higher the score, the better
the algorithm selection.

2.4.2 Benchmarks and competitions
In algorithm selection, a scenario is a set of instances, algorithms and features. A scenario can also have
feature costs, which indicate the running time required to extract the features. A scenario also contains a
10-fold cross-validation split of the instances to allow the comparison between different approaches. A
commonly used collection of algorithm scenarios is the ASLib (Bischl et al., 2016) library, which contains
many algorithm selection scenarios from various fields (SAT, QBF, MIP, Machine Learning, etc.). Those
scenarios are in a unified format that is easy to use for new algorithm selection approaches. The format
contains the features’ computation time, feature values, and algorithm running times. This library was
developed as part of the Configuration and Selection of Algorithms (COSEAL) organisation.

The Inductive Constraint Programming (ICON) Challenge on Algorithm Selection (Kotthoff et al.,
2017) and the Open Algorithm Selection Challenge (OASC) (Lindauer et al., 2017) were both competitions
between various algorithm selectors on various benchmarks from ASLib. Both competitions calculated the
performance of the algorithm selector based on the PAR10 metric, where they included feature computation
time. They also allowed a pre-solving schedule.

2.5 Graph neural networks
Graph neural networks (Bronstein et al., 2021) are a type of neural network used to process graphs. An
undirected graph is defined as:

G = (V,E) (2.12)

V = {1, 2, · · ·n} (2.13)

E = {{i, j} | i, j ∈ V } (2.14)

where V is the set of nodes, n is the number of nodes. E is the set of edges, and the edge {i, j} connects
nodes i and j.

The input for graph neural networks is a graph representation of a problem. Every node is represented
with a vector of features. For node i, its features vector is hi. It is also possible to have edge features. For
edge {i, j}, its features vector is ei,j . The graph neural network is composed of a few message-passing
layers, which propagate messages between the nodes and edges. The output can be per node (i.e., node
classification), per edge (i.e., edge classification), or the whole graph (i.e., graph classification). For whole
graph prediction, an aggregation mechanism is required to aggregate all the representations of the nodes
and edges into a single vector that represents the whole graph.

The scheme of a graph neural network is a message-passing scheme, which can be seen in Figure 2.6.
In this scheme, the network iteratively passes messages between the nodes over the edges. The messages
are aggregated in the nodes, and then the node representations are updated based on the aggregated
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Figure 2.6: The scheme of a graph neural network. The network iteratively passes messages between the
nodes and the edges. (a) Each message passing iteration starts from the representation for each node. In
this diagram, we compute the representation of node 1. Each edge has a sender node (where the edge
starts from) and a receiver node (where the edge ends). (b) The messages are computed using the sender
and (optionally) the receiver nodes’ representations. (c) The messages are aggregated to compute the new
representation for each node.

messages. This process is then done for several layers, and then the final representation of the nodes, and,
optionally the edges, is used for the prediction.

There are many message-passing layers, such as:

• GCN (Kipf and Welling, 2017) performs symmetric normalization over the neighbourhood node’s
features. This layer generalizes the convolutional layer used in computer vision to graph-structured
data. The convolutional layer is defined as:

hl+1
i = Act(L(

1√
degi

√
degj

∑
j∈Ni

ej,ih
l
j)) (2.15)

Where hl
i is the representation of node i in the lth message passing iteration. ej,i is the edge features

between node j and i, degi is the degree of node i, Act is an activation function and L is a linear
layer. The input to the linear layer is the symmetric average of the sum of the neighbourhood nodes’
features, weighted using the edges features.

• GraphConv (Morris et al., 2019) is a simple graph neural network operator that similarly to the GCN
layer calculates the sum of the adjacent nodes’ features. However, the GraphConv layer also adds
the node’s features to the sum. The GraphConv layer is defined as:

hl+1
i = Act(L1(h

l
i) + L2(

∑
j∈Ni

ej,ih
l
j)) (2.16)

Where hl
i is the representation of the node i in the lth message passing iteration. ej,i is the edge

between node j. L1 and L2 are linear layers, Act is an activation function.
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• GAT (Veličković et al., 2018) – The attention mechanism computes a weight for each data point
(usually by using a neural network), thus increasing the weight of some data points. This layer
utilises an attention mechanism to aggregate the neighbourhood node’s features.

hl+1
i = concatKk=1(Act(

∑
j∈Ni

αk
ijLk(h

l
j))) (2.17)

αk
ik =

exp(α̂k
ijeij)∑

j′∈N(i) exp(α̂k
ij′eij)

(2.18)

α̂k
ij = Act(Lk(h

l
i),Lk(h

l
j)) (2.19)

Where hl
i is the representation of node i in the lth message passing iteration αk

ij is the attention
coefficient. Act is an activation function and L is a linear layer, and concat is a concatenation
operation.

• GIN (Xu et al., 2018) is a layer based on the Weisfeiler-Lehman Isomorphism Test (WL). This test
checks whether two graphs are isomorphic (have the same structure). While it might classify two
different graphs as isomorphic, it is considered an efficient solution approximation. The test is done
by iteratively aggregating neighbouring nodes’ representations. The WL test inspires the GIN layer.
It specialises in learning graph structures. The layer is defined as follows:

hl+1
i = Act(L1((1 + ϵ)hl

i +
∑

j∈N(i)

hl
j)) (2.20)

Where hl
i is the representation of node i in the lth message passing iteration, and Act is an activation

function and L is a linear layer. The input to the L is the sum of the neighbourhood node’s features
and the node’s features. The node’s feature is scaled by (1 + ϵ), where ϵ is a learnable parameter.

• GraphSAGE (Hamilton et al., 2017) is similar to the GCN layer. While GCN uses the neighbouring
nodes’ representations to compute the new representation, this layer also uses the updated node’s
representation. It also uses the normal mean of the messages instead of the symmetric mean. The
layer is defined as follows:

hl+1
i = Act(L(concat(hl

i,

∑
j∈Ni

hl
j

|N(i)|
))) (2.21)

Where hl
i is the representation of node i in the lth message passing iteration. Act is an activation

function and L is a linear layer. The input to the L is the concatenation of the node’s feature and the
mean of the neighbourhood node’s features.



Chapter 3

Related Work

Several works have studied the problem of selecting the best algorithm for a given problem instance. In
Section 3.1, we present details of the algorithm selection task, commonly used approaches to solve it,
and the different techniques to characterise the problem instances. In Section 3.2, we show features-free
methods that do not require any feature extraction; finally, in Section 3.3, we present the most recent
works that use graph neural networks in the context of the Boolean satisfiability problem.

3.1 Features-based algorithm selection
There are various approaches to implementing the algorithm selection framework:

• SATZilla 2008 (Xu et al., 2008) uses Ridge Regression to estimate the algorithms’ running time.
Then, the best algorithm is chosen based on the estimated running times. To further improve the
performance, SATZilla uses a short pre-solving schedule that can solve most easy instances, and
before the computation of the features, it estimates how much time it will take, using some basic
features. It uses the backup solver if the estimated time is too long (or the actual feature extraction
takes too long). Otherwise, it computes the features and chooses the best algorithm.

• 3S (also known as ASAPv1) (Kadioglu et al., 2011) uses an improved k nearest neighbours classifier
(kNN). First, they use a weighted kNN, where the weight of each neighbour is the inverse of the
distance. Second, they cluster the training instances. Then, given a test instance, they determine the
value of k (the number of neighbours to use) based on the closest cluster. Finally, they use various
mixed integer programming (MIP) based scheduling to create a pre-solving schedule based on the
neighbour instances solvers’ running times. For example, when using weighted kNN, they create a
schedule based on the k closest instances, the solvers’ (known) running times.

• SATZilla 2012 (Xu et al., 2012b) improved the previous success of SATZilla 2008 by using a more
advanced machine learning algorithm, Random Forest, and also by using more features. They also
used pairwise classification instead of regression. This way, each random forest classifier “votes”
for the best algorithm out of two. The algorithm with the most votes is chosen.

• CSHC (Malitsky et al., 2013) starts by clustering the training instances. The clustering starts with
one cluster containing all instances and then iteratively splitting clusters, such as the instances within
the clusters maximally agreeing on the best solver for them. Also, two clusters can be merged in

18
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case it reduces the cross-validation error. Given a new instance, it is assigned to the cluster to which
it is the most similar.

• SNNAP (Collautti et al., 2013) combines running time prediction with the nearest neighbour
approach by first using the random forest to predict the running time of each SAT solver on the
new instance, and then using the predicted running times to choose the best solver using kNN, the
features of each instance are the running times of the solvers.

• AutoFolio (Lindauer et al., 2015) combines many methods together. From features preprocessing
methods, via the machine learning algorithm (SVM, Random Forest, kNN and more) to how the
algorithm is chosen (pairwise classification, regression, etc.). To select the best method, AutoFolio
uses the SMAC library. Version 2 of AutoFolio, which is implemented in Python 3, has decreased
search space size by removing some machine learning algorithms and other options from the search
space. Also, pairwise regression was added. Another major change is using SMAC3 (Lindauer
et al., 2022) instead of SMAC2 (Hutter et al., 2011).

• ASAP (Gonard et al., 2017) uses black-box optimization (CMA-ES) to minimise the total running
time of both the pre-solving schedule and the selector performance. First, a budget is identified for
the pre-schedule by using the knee detection heuristic. Then, a random forest regression is built to
predict the running time of each solver. The pre-solving schedule is optimised to work well with
the trained performance model (i.e. optimise the performance of the whole selector). Finally, the
performance model is re-trained using the information gathered from the pre-schedule (i.e., whether
each solver solved the instance within the assigned time budget).

• AS - ASL (Malone et al., 2017) uses the success of AutoML frameworks, more specifically,
AutoSklearn. These frameworks get a classification or regression task and produce a machine-
learning model automatically by using multiple machine-learning algorithms, hyperparameters and
clustering approaches. This way, it saves time and human effort and has good performance. The
AS-ASL approach uses these advantages to create an AutoML-based algorithm selection approach
using multi-class classification.

• Pairwise regression (Kerschke et al., 2018) predicts the difference between the running times of two
algorithms on a given instance. Then, each solver’s sum of the differences is calculated, and the
solver with the highest sum is chosen.

• SUNNY (Liu et al., 2022) uses a similar nearest neighbours approach like 3S by selecting k instances
that are closest to the new instance. It then creates a schedule based on the number of instances
solved by each solver, ordering them by the average running time.

3.2 Features free algorithm selection
Previously, features-free algorithm selection for SAT was explored by Loreggia et al. (2016) by using
a convolutional neural network. In order to transform the formula into an image, the authors used the
DIMACS CNF file and transformed it into a black-and-white image using the ASCII values of each
character. This results in N pixels. To reach a square shape, they reshaped the vector to a matrix with size√
N ×

√
N and rescaled the square to 128× 128. For prediction, the authors used a binary classification
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of the solvers based on whether the solver could solve the instance given the time limit. The proposed
method performed better than the SBS method, but significantly worse than hand-crafted features.

Graves-CPA (Leeson and Dwyer, 2022) uses a graph neural network to perform algorithm selection of
software verifiers. The graph representation of is based on the abstract syntax tree (AST) of the problem.
Graves utilises a few graph attention message passing layers, followed by a jumping knowledge layer
that concatenates the outputs of all the layers. Then, there is an attention mechanism to aggregate the
representations of all the nodes, followed by an MLP to perform the prediction. Graves-CPA was applied
only to software verification problems.

Seiler et al. (2020) used image representation of travelling salesperson problem to perform algorithm
selection. The image representation was obtained by using point clouds, minimum spanning trees and
k-nearest neighbour graphs. The authors used a convolutional neural network to predict the best solver.
However, the results of the method were not better than the hand-crafted features.

3.3 Graph neural networks for SAT
In the last few years, a few attempts have been made to solve the Boolean satisfiability problem using deep
learning. Those papers use a graph representation of the Boolean formula and a graph neural network to
either predict satisfiability or enhance existing CDCL or local search solvers.

3.3.1 Predicting satisfiability
Predicting the satisfiability of a Boolean formula has been explored in the past. Using the SATZilla
features, it is possible to predict the satisfiability of a formula. Using graph neural networks, some methods
tried to remove the need for hand-crafted features. For example, NeuroSAT (Selsam et al., 2018) used a
literal-clause graph representation of the formula and a graph neural network to predict the satisfiability of
the formula. They showed that the network could learn to predict the satisfiability of the formula with
an accuracy of 85% on random formulas, and out of the formulas that were predicted as satisfiable, they
could decode a satisfying assignment in 70% of the cases. A major drawback of their method is that it was
trained and tested on very small formulas with up to 40 variables (SAT competition formulas can have
millions of variables). Interestingly, the neural network that was trained to predict satisfiability can also to
find a satisfying assignment in the majority of the cases that the formula was satisfiable. Other papers
(Han, 2020; Li and Si, 2022) proposed more advanced architectures and various changes to the training
scheme to improve performance. However, all of these methods could only solve small formulas (less
than 100 variables) and have generalisation problems to out-of-distribution formulas.

3.3.2 Heuristics
In addition to predicting the satisfiability of the formula, another type of graph neural network can predict
a heuristic to enhance existing DPLL solvers. These solvers choose the next assignment to check based on
various heuristics, as explained in Section 2.1.4.

First, NeuroCore (Selsam and Bjørner, 2019) used a similar architecture to NeuroSAT, with MLPs
instead of LSTMs to replace the activity score (heuristic) of Glucose and MiniSAT. It performs online
inference of the graph neural network model combined with the status of the search process to calculate
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the heuristic. This resulted in an increase in the number of solved formulas by 10% and a decrease in the
number of timeouts by 20%.

Later, NeuroComb (Wang et al., 2021) was proposed with a different architecture to compute heuristic
values of important clauses and variables. NeuroComb computes the static values before the solving
process. It then alternates between using the heuristics of CDCL solvers (referred to as dynamic values as
they change throughout the search process) and the computed static values to choose the next assignment
to explore.

The NeuroComb architecture comprises a few dense blocks, each containing a few message-passing
layers. In each block, the output of each message passing layer is concatenated with its input to allow a
better flow of information through the graph. This idea is similar to the jumping knowledge that is used in
the graph neural network.

The message passing layers layer used in NeuroComb is defined as:

hl+1
i = MLP1(concat(hl

i,meanj∈N(i)MLP2(h
l
jeij))) (3.1)

where hl
i is the hidden state of node i in layer l, N(i) is the set of neighbours of node i, eij is the edge

between nodes i and j, and MLP1 and MLP2 are MLPs. This layer is similar to GCN, with a few changes.
First, it computes the messages using an MLP on the neighbour nodes’ representation, then it computes
the mean of all the messages and concatenates it with the node’s representation. Finally, an MLP is applied
(and optionally, an activation function). This layer calculates the mean of the messages of the neighbouring
nodes, concatenating with the receiver node’s representation. Based on this, the new representation is
calculated.
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Features-free algorithm selection

In this chapter, we explore the usage of graph neural networks for features-free algorithm selection. In
Section 4.1 we describe the dataset we used to train the graph neural network and describe the neural
architecture search we performed to get a good performing architecture. In Section 4.2 we show the results
of the neural architecture search and compare it to the SATZilla features.

4.1 Methodology

4.1.1 Scenario generation
Preliminary experiments indicated that using graph neural networks with various graph representations of
SAT formulas from the 2011 and 2020 SAT competitions often exceeds the memory limit of the GPU,
which can mainly be attributed to the formula size. While it is possible to process larger graphs using
sampling methods (Hamilton et al., 2017), it remains outside the scope of this thesis. In addition, the
number of available formulas per SAT scenario is usually less than 1000.

We generate a larger set of new, smaller formulas that fit into the GPU memory. To generate a new
dataset of SAT formulas small enough for the GPU memory yet hard enough to be solved by the solvers,
we use the Community Attachment industrial-like SAT formula generator. This generator generates
formulas using the modularity of the graph of the variables. A highly modular graph is a graph that
has a community structure, i.e., most of the variables are in clauses with other variables from the same
community. This means there is a partition of the nodes to communities (groups of nodes), where most
edges connect nodes from the same community. The modularity of the graph is measured using Q, which
means the fraction of edges connecting nodes in the same community with respect to a random graph with
the same number of nodes and degrees.

We used the Community Attachment SAT generator to create 3000 3-SAT formulas. Next, we split
the instances into three sets: training, validation, and testing sets containing 2100, 450 and 450 instances,
respectively. Each formula was generated by sampling a random configuration of hyperparameters from
the ranges described in Table 4.1.

After generating the formulas, we ran seven SAT solvers on them among the best performing of past
SAT competitions:

• MiniSAT (Eén and Sörensson, 2004) is a simple CDCL solver that is purposed for easy understanding
and extension. It uses the VSIDS heuristic

22
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Table 4.1: Hyperparameters of the Community Attachment SAT generator. The hyperparameters are
sampled uniformly for each instance.

Hyperparameter Range

# of variables [800, 1600]
Clause-to-variable ratio [4.1, 4.3]
Modularity [0.5, 0.9]
# of communities [30, 50]

• CryptoMiniSAT (Soos et al., 2009) is a MiniSAT base solver that is optimized to solve cryptographic
problems. The optimization includes a special XOR clause handling common in cryptographic
scenarios.

• Spear (Babic and Hutter, 2007) is a highly configurable DPLL-based SAT solver. Its heuristic is
based on the Boolean constraint propagation (BCP) with B-cubing.

• glucose (Audemard and Simon, 2009) is based on MiniSAT with the Literal Block Distance (LBD)
heuristic.

• SparrowToRiss (Balint and Manthey, 2014) starts by running the local-search solver Sparrow (Balint
et al., 2011) for a limited time (the default value is 150 seconds), followed by the CDCL solver Riss
(Manthey, 2010).

• Kissat (Biere et al., 2020) is the current state-of-the-art SAT solver that won 2020, 2021 and 2022
SAT competitions. Kissat is a reimplementation of CaDiCal, a CDCL-based solver that interleaves
between two queues, one based on the VSIDS heuristic and the other based on a smoother version of
this heuristic. Moreover, CaDiCal includes occasional local searches. Kissat is a reimplementation
of CaDiCal, with more efficient data structures and algorithms.

We used AClib (Hutter et al., 2014a) to run the solvers, with the addition of Kissat, which AClib does
not contain. The timeout for each solver is 5000 seconds. We ran the solvers using a compute cluster, and
each solver ran on one CPU core. The cluster has 34 nodes, and each node has two Intel(R) Xeon(R) CPU
E5-2683 v4 2.1GHz with 16 cores each and 94 GB of memory.

Features computation

After creating the dataset of the SAT formulas and gathering the running times of the solvers, we computed
the features of the formulas. We used the SATZilla 2012 features and the code provided by Xu et al.
(2012b). The features are described in Section 2.3.

4.1.2 Neural architecture search
We perform a neural architecture search (NAS) to find a graph neural network architecture suitable for
the task of performing algorithm selection of SAT solvers. We create a search space containing the input
graph, the neural network architecture and the prediction type.
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Input graph

We use either a variables clause graph or a variables graph for the input graph. A detailed description of
the graphs can be found in Section 3.3. In addition, there is an option to add a connecting node to the
variable clause graph – an additional node that has a connection to all the nodes representing a clause.
This common node can be used to improve the graph’s connectivity, thus allowing information to pass
more easily through the graph, as it reduces the maximal distance between nodes to 4 (e.g., two variable
nodes that do not have a common clause). It requires only a few message-passing layers for a message
from one node to arrive in all other nodes. The graph can represent the raw formula or the formula after
SATELITE preprocessing (Eén and Biere, 2005). As most SAT solvers use a preprocessor before the
actual solving, this can allow us to extract more relevant features. A similar step was done by SATZilla
(Xu et al., 2008) during the features computation stage. We also allow the option to not use the edge
features, as in preliminary experiments, we found that, in some cases, it can result in better performance.

Neural network architecture

The first hyperparameter of the graph neural network is the hidden size of the message-passing layers,
which is preserved throughout the whole architecture. The neural network architecture comprises several
blocks (between 1 and 10 blocks). All the blocks have the same number of message-passing layers
(between 1 and 5). At the end of each block, there can be a jumping knowledge layer (Xu et al., 2018). If
there is a jumping knowledge layer, then there is a pooling layer – another message-passing layer that
takes the concatenated features from the jumping knowledge layer and processes it to the original hidden
layer size. This block type is inspired by NeuroComb (Wang et al., 2021) and Graves (Leeson and Dwyer,
2022). The jumping knowledge layer can help the neural network learn more complex graph structures,
as it creates a new representation that contains the graph representation from various ranges. This can
improve the structure learning of the graph.

The message passing layer can be either GCN (Kipf and Welling, 2017), SAGE (Hamilton et al., 2017),
GraphConv (Veličković et al., 2018), GIN (Xu et al., 2018), NeuroComb-like Wang et al. (2021) or GAT
(Veličković et al., 2018). The search space includes GIN, which can learn graph structures better than
other message-passing layers (Xu et al., 2018). The search space also includes the NeuroComb-like layer,
a special layer invented for a variables-clause graph representation of SAT formulas.

After the main graph processing stage (the message-passing blocks), there is an option to add a jumping
knowledge layer that aggregates all the outputs from all the blocks. Moreover, each message passing layer
can be surrounded by a skip connection, similar to the skip connection that was used by Li et al. (2021).
While the jumping knowledge layer concatenates the outputs of two (or more) layers, which is similar
to the DenseNet architecture (Huang et al., 2017), the skip connection adds them, like in ResNet (He
et al., 2016). Before each message passing layer, there is an activation function which can be one of the
following: ReLU (Nair and Hinton, 2010), LeakyReLU (Maas et al., 2013), ELU (Clevert et al., 2015),
GELU (Hendrycks and Gimpel, 2016), CELU (Barron, 2017). There is also an option to include layer
normalization before each message passing layer. Finally, the number of layers in the MLP can be selected
between 1 and 5.

Aggregation

As algorithm selection is a graph classification task, we must aggregate all the node representations into a
single prediction. To do that, we have a few options:
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Table 4.2: Hyperparameters of the graph neural network architecture

Hyperparameter Values

Hidden Layer Size [16, 256]
Message Passing Layer {GCN, SAGE, GraphConv, GAT, GIN, NeuroComb}
Activation Function {ReLU, LeakyReLU, ELU, GELU, CELU}
#Blocks [1, 10]
#Message Passing Layers per Block [1, 5]
Skip Connection after Message Passing {True, False}
Jumping Knowledge in Each Block {True, False}
Final Jumping Knowledge {True, False}
#MLP Layers [1, 5]

• Mean: the mean of all the node representations.

• Max: the maximum of all the node representations.

• Sum: the sum of all the node representations.

• Attention: using attention mechanism to aggregate the node representations.

• Softmax: uses the softmax function to perform the aggregation, similar to the aggregation operator
used by Li et al. (2021).

• Common Node: if a variables clause graph with a connecting node is used, we can take this node’s
representation as the graph representation.

• Per Node Prediction: using MLP on each node separately to get the prediction and then aggregating
the results using mean aggregation.

• Memory-Based Pooling (Khasahmadi et al., 2019): a memory-based pool is an attention-based
layer that learns to coarsen the graph based on soft cluster assignments from different heads of the
attention module. We use between 1 to 5 layers, with 5 to 100 attention heads per layer and between
4 and 512 clusters per layer (except the final layer, which has one cluster). There is also an option to
add an activation between the memory-based pooling layers.

Prediction type

Inspired by AutoFolio (Lindauer et al., 2015), we allow the search process to select between a few
prediction types:

• Solving probability: each solver has a binary output, 1 if it can solve the instance, 0 otherwise. The
selected solver is the solver with the highest probability of solving the instance. The prediction type
was used before by Loreggia et al. (2016).

• Multi-class classification: this prediction type treats algorithm selection as a simple multi-class
classification problem, where the output classes are the solvers, and the correct label is the solver
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with the lowest running time. This prediction type can be weighted, where the weight is the standard
deviation of the running time of the solvers. This prediction type was used before by Lindauer et al.
(2015).

• Pairwise classification: in a pairwise classification problem, each pair of solvers has an output, and
the correct label is the pair of solvers with the lowest running time. This prediction type was used
before by Lindauer et al. (2015).

• Running time regression: this prediction type treats each solver independently by predicting the log
running time of each solver similarly to SATZilla 2007 (Xu et al., 2008). Then, the selected solver
is the solver with the lowest predicted running time.

Each prediction type can use instance weights, which gives higher importance to instances with higher
standard deviations between the running times of the solvers.

Training Procedure

We also search for the optimal training procedure. We choose between the AdamW (Loshchilov and
Hutter, 2018) or RAdam (Lindauer et al., 2019) optimisers, their learning rate and weight decay. We use a
batch size of 4, with gradient accumulation. The reason for this batch size is to balance between the size
of the neural network that can be trained on the GPU and the training speed (bigger batches allow faster
training). The number of batches per gradient step is also a hyperparameter and can be between 1 to 64
(so the number of training examples per gradient step is between 4 and 256). There is also an option to set
dropout (Srivastava et al., 2014) after each message-passing layer. We perform model selection based on
the running time of the trained selectors on the validation set and take the model with the lowest value.

Search process

We employed SMAC3 (Lindauer et al., 2022) version 2.0, utilising the multi-fidelity facade to find
good-performing architecture within our search space. This multi-fidelity facade is similar to the BOHB
algorithm (Falkner et al., 2018). BOHB employs varying budgets (in terms of the number of epochs)
for each training process to reduce computational costs. It also generates new configurations through
Bayesian optimisation, implemented as random forests in the SMAC framework.

We run SMAC with four parallel processes, each training a different configuration on a separate GPU.
Each configuration was trained three times with different random seeds. During each run, the network was
trained for a variable number of epochs, ranging from 10 to 100, depending on the budget allocated by
SMAC. For each configuration, we calculate the average running times of the models trained using the
three random seeds. The goal is to minimise the average running time.

To prevent computationally expensive configurations, we constrained each configuration to train for a
maximum of one hour, irrespective of the assigned budget. We run SMAC for six days, conducting three
independent runs. For each of the three architectures found, we train them for 100 epochs and select the
one with the lowest average running time on the validation set, as the final model found by the NAS.

The entire NAS process was repeated three times, optimising for three different metrics: PAR1, PAR2,
and PAR10.
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4.2 Results
In this section, we describe the results of the experiments for features-free algorithm selection. We start
by showing the neural network architectures found (Section 4.2.1), then in Section 4.2.2 we show the
importance of the hyperparameters during the neural architecture search process. Finally, in Section 4.2.3
we compare our graph neural network to other algorithm selection methods on three performance metrics.

4.2.1 Neural architecture search
The architectures found in the neural architecture search processes are described in Table 4.3. We can
see that all architectures use the compact variables graph that allows more efficient message propagation
through the graph. Moreover, PAR1 uses the formulas with preprocessing while the others do not. This
can indicate that the preprocessing changes the structure of the formula in a way that is more important for
timeouts. We can also see that all architectures are relatively shallow, with less than 10 message-passing
layers. The found architectures also use dropout with low learning rate, which can indicate that the data is
noisy and the network needs to be regularized. The noise is due to the high variance of the solvers running
times.

Table 4.3: Hyperparameter values for the architecture found by the NAS processes.

Hyperparameter PAR1 PAR2 PAR10

Graph Type Variable Graph Variable Graph Variable Graph
SATELITE Preprocessing True False False
Edge Weights False True True

Hidden Layer Size 48 96 128
Message Passing Layer NeuroComb GraphConv GraphConv
Activation Function GELU GELU LeakyReLU
#Blocks 2 1 1
#Message Passing Layers per Block 5 5 3
Jumping Knowledge in Each Block True True False
Final Jumping Knowledge True True True
Skip Connection False False True
Layer Normalization True False False
Dropout 0.111 0.414 0.456
Aggregation Memory Pooling Per Node Prediction Memory Pooling
#Memory Pooling Layers 3 N A 4
#Attention Heads per Layer [30, 20, 75] N A [30, 30, 30, 35]
#Clusters per Layer [92, 132, 444] N A [40, 56, 8, 48]
#MLP Layers 2 3 3

Prediction Type Pairwise Class. Pairwise Class. Solve Proba.

Optimiser RAdam RAdam RAdam
Learning Rate 21e−3 161e−4 15e−4

Weight Decay 0.014 1.72e−5 1.18e−5

Outer Batch Size 28 39 52
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4.2.2 Hyperparameters importances
To evaluate the importance of the many components used during the neural architecture search process, we
used DeepCAVE (Sass et al., 2022), a tool to visualise and analyse AutoML processes. Specifically, we
used DeepCAVE to visualise the importance of the different components of the neural architecture search
process. We use the local hyperparameter importance metric (LPI) (Biedenkapp et al., 2019) to quantify
the importance. The results are presented in Figures 4.1, 4.2, 4.3. We can see that when optimising
for a different objective, other hyperparameters are more important, although some hyperparameters are
important for all objectives, like the number of blocks, graph type and the type of message passing layer.
We can also see the edge weights are important for PAR1 but not for PAR2 and PAR10.
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Figure 4.1: Local hyperparameter importance for the PAR1 metric. Edge weights are the most important
hyperparameter, followed by the number of blocks, the type of message passing layer and the graph type.
The rest of the hyperparameters are less important.
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Figure 4.2: Local hyperparameter importance for the PAR2 metric. Graph type is the most important
hyperparameter, followed by the edge weights, number of blocks and the type of message-passing layer.
The rest of the hyperparameters are less important.



CHAPTER 4. FEATURES-FREE ALGORITHM SELECTION 29

Mess
ag

e-P
ass

ing
 Lay

er

# B
loc

ks

Pred
ict

ion
 Typ

e

Weig
ht 

Deca
y

Mem
Poo

l A
cti

va
tio

n

Lear
nin

g R
ate

Hidd
en

 Size

Agg
reg

ati
on

# G
NN Lay

ers
 pe

r B
loc

k

Skip
 C

on
ne

cti
on

Edg
e W

eig
hts

0

0.1

0.2

0.3

0.4

Im
po

rta
nc

e

Figure 4.3: Local hyperparameter importance for the PAR10 metric. The type of message-passing layer is
the most important hyperparameter. It is followed by the number of blocks and prediction type. The rest
of the hyperparameters are less important.

4.2.3 Comparison to other methods
We compare our graph neural network approach with the features-free method proposed by Loreggia
et al. (2016). We re-implement this method using Pytorch, and used the RAdam optimizer instead of
SGD with momentum, as RAdam (Lindauer et al., 2019) is a modern optimizer that outperforms SGD
on various benchmarks. We tune the learning rate of the optimizer by running it on a grid of learning
rates: [1 − 10]e−[2−6]. We also compare our method to AutoFolio (Lindauer et al., 2015) that uses the
SATZilla hand-crafted features. We run each method using 13 different random seeds on the generated
scenario. We run each method for PAR1, PAR2, and PAR10 metrics. We calculated statistical significance
and established a ranking using the Autorank library (Herbold, 2020). The statistical significance is
calculated between the closed gap metrics of the methods over the different random seeds.

In Figure 4.4a, we can see the closed gap measured using the PAR1 metric over 13 random seeds.
GNN is our method, CNF2IMG is the features-free convolutional neural network of (Loreggia et al., 2016).
We can see that AutoFolio has the highest closed gap values, followed by GNN. CNF2IMG has the worst
performance, with all values below both AutoFolio and GNN. Figure 4.4b shows each method’s number of
solved instances. We can see that GNN has the lowest number of solved instances, followed by CNF2IMG
and then AutoFolio. Both GNN and CNF2IMG have the same highest value of solved instances, although
AutoFolio has a higher median and lowest value. This suggests that our graph neural network method
is strong on instances with low running times, but is worse than AutoFolio in reducing timeouts. This
finding is confirmed by Figure 4.4c, where we can see a scatter plot of the mean running time of each
instance. GNN is superior in instances with lower running time. However, when the instance running time
is bigger than 10 seconds, it is worse than AutoFolio. In Figure 4.4d we can see a scatter plot of the mean
running times of the instances using GNN and CNF2IMG. We can see for most instances, GNN is better.

We checked the statistical significance of the closed gap using AutoRank with a significance of 0.05.
The Friedman test found that the performance differences of the methods are statistically significant.
The Nemenyi test then found that there is no statistical significance between AutoFolio and GNN, and
those two methods are significantly better than CNF2IMG. The rankings and significance can be seen in
Figure 4.4e.
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Figure 4.4: Results of PAR1 experiments. (a) Closed gap of the methods. (b) Number of solved instances.
(c) Scatter plot of the mean running times of GNN and AutoFolio. (d) Scatter plot of the mean running
times of GNN and CNF2IMG. (e) Critical Difference diagram of the rankings of the three methods based
on PAR1 scores.

In Figure 4.5 we can see the results for the PAR2 metric. GNN has the highest median value and is
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the only method that has only positive closed gap values (i.e. always better than the single best solver).
AutoFolio’s maximal value is the highest. CNF2IMG performs the worst. Figure 4.5b shows the number of
solved instances per method. AutoFolio has the highest mean and maximal values. GNN and CNF2IMG
has the same median, although GNN sometimes can solve more instances. This suggests that similarly
to PAR1, the graph neural network has better running times on instances that do not have time out. In
Figure 4.5c we can see a scatter plot of the mean running times of the instances when using both GNN
and AutoFolio. We can see that our graph neural network is better on all instances with short running time,
while AutoFolio is better in reducing timeouts. Figure 4.5d shows the mean running times of GNN and
CNF2IMG. We can see that GNN is better on most instances.

We checked the statistical significance of the closed gap using AutoRank with a significance of 0.05.
The Friedman test found that the performance differences of the methods are statistically significant.
The Nemenyi test then found that there is no statistical significance between AutoFolio and GNN, and
those two methods are significantly better than CNF2IMG. The rankings and significance can be seen in
Figure 4.5e.
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Figure 4.5: Results of PAR2 experiments. (a) Closed gap of the methods. (b) Number of solved instances.
(c) Scatter plot of the mean running times of GNN and AutoFolio. (d) Scatter plot of the mean running
times of GNN and CNF2IMG. (e) Critical Difference diagram of the rankings of the three methods based
on PAR2 scores.

The closed gap results for PAR10 are shown in Figure 4.6a, where we can see that AutoFolio has the
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highest median value while our graph neural network has the worst median performance, with worse
performance than the single best solver. Figure 4.6b shows that AutoFolio has the highest number of
solved instances among all methods, while GNN has the worst. In Figure 4.6c we can see that similarly to
other PAR scores, GNN is better than AutoFolio on instances with short running times. On PAR10 the
penalty for timeouts is the highest, hence the worse performance of GNN. In Figure 4.6d we can see that
on many instances, CNF2IMG is better than GNN, contrary to the previous experiments.

The Friedman test found no statistical significance between the performance differences of the methods
for PAR10.
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Figure 4.6: Results of PAR10 experiments. (a) Closed gap of the methods. (b) Number of solved instances.
(c) Scatter plot of the mean running times of GNN and AutoFolio. (d) Scatter plot of the mean running
times of GNN and CNF2IMG.

Overall, we can see that the graph neural network has strong performance in reducing the running
times of instances with relatively short running times, while it is unable to significantly reduce timeouts.
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This is why on PAR1 and PAR2 it is better than CNF2IMG, and close to AutoFolio, while on PAR10 it is
the worst method.



Chapter 5

Combining graph neural networks with
hand-crafted features

Following the features-free algorithm selection, we check whether using both the SATZilla features, and
the features extracted using a graph neural network can improve the performance of algorithm selection
methods. In this chapter, we start with a neural network approach that uses both hand-crafted features
and a graph neural network. Then, we extract the features from the graph neural network to use with
AutoFolio.

35
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Figure 5.1: (a) Overview of the architecture for combined prediction. Both SATZilla features and the
graph are processed, and the extracted features are then combined for prediction. (b) Overview of the
downsampling MLP. The graph neural network extracts features that are then downsampled using MLP.

5.1 Combined neural network
Our first method is a neural network that uses both the SATZilla features and the graph representation. We
combine the SATZilla features with the graph neural network by processing the SATZilla features using
two layers of MLP with 16 features in each layer, similar to the architecture used by Eggensperger et al.
(2018). We then append the graph-neural-network features (i.e., the features after the message-passing part
of the network), with the processed SATZilla features and use an MLP for the prediction. An overview of
the architecture can be seen in Figure 5.1a. We run neural architecture search similarly to Chapter 4 to
find an architecture for this purpose. We run the neural architecture search on the generated scenario with
three repetitions per PAR score. We run it for PAR1, PAR2, PAR10.

5.1.1 Neural architecture search results
The architectures found in the neural architecture search processes can be seen in Table 5.1. We can see
that all architectures use the compact variables graph that allows more efficient message propagation
through the graph. Moreover, PAR1 uses the formulas with preprocessing while the others do not, this can
indicate that the preprocessing changes the structure of the formula in a way that is more important for
timeouts. We can also see that all architectures are relatively shallow with less than 10 message-passing
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layers. The found architectures also use dropout with low learning rate, which can indicate that the data is
noisy and the network needs to be regularized. The noise is due to the high variance of the solvers running
times.

Table 5.1: Hyperparameter values for the architecture found by the NAS processes.

Hyperparameter PAR1 PAR2 PAR10

Graph Type Variable Graph Variable Graph Variable Graph
SATELITE Preprocessing True True True
Edge Weights False True False

Hidden Layer Size 112 48 208
Message Passing Layer GraphSAGE GraphSAGE GraphSAGE
Acitvation Function GELU ELU ReLU
#Blocks 10 8 3
#Message Passing Layers per Block 5 3 2
Jumping Knowledge in Each Block False True True
Final Jumping Knowledge True True False
Skip Connection True False True
Layer Normalization True True True
Dropout 0.367 0.078 0.476
Aggregation Attention pooling Per Node Prediction Memory Pooling
#Memory Pooling Layers N A N A 4
#Attention Heads per Layer N A N A [65, 30, 50, 50]
#Clusters per Layer N A N A [500, 96, 100, 4]
#MLP Layers 2 4 2

Prediction Type Pairwise Class. Pairwise Class. Pairwise Class.

Optimiser AdamW AdamW AdamW
Learning Rate 7.68e−5 3.14e−4 2.02e−05

Weight Decay 1.41e−5 1.13e−5 5.22e−4

Outer Batch Size 53 27 22

5.1.2 Hyperparameters importances
We calculate the important hyperparameters in the neural architecture search using DeepCAVE (Sass et al.,
2022). We measure the importance using the Local Hyperparameter Importance metric (LPI) (Biedenkapp
et al., 2019). In Figure 5.2 we can see the important hyperparameters for PAR1, where using the common
node has the greatest impact on the performance, followed by layer normalisation, the type of message
passing layer and the hidden layer size. Figure 5.3 shows the importance of the hyperparameters for PAR2.
We can see that similarly to PAR1, the common node is the most important feature, followed by layer
normalisation. However, for this PAR value, layer normalisation has higher importance. The third most
important hyperparameter is the type of message-passing layer. For PAR10, we can see the important
hyperparameters in Figure 5.4. Similarly, the common node is the most important hyperparameter and
layer normalisation is the second most important. The hidden layers size and the message passing layer
type are the third and fourth most important hyperparameters.
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Figure 5.2: Local hyperparameter importance for the PAR1 metric. Common node is the most important
hyperparameter.
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Figure 5.3: Local hyperparameter importance for the PAR2 metric. Common node is the most important
hyperparameter, followed by layer normalisation.
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Figure 5.4: Common node is the most important hyperparameter. Common node is the most important
hyperparameter, followed by layer normalisation.
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5.2 AutoFolio with graph neural network features
We also check whether the features extracted by the graph neural network can improve the performance
of AutoFolio with the SATZilla features for algorithm selection. To check that, we use the features-free
neural network architectures found by the neural architecture search, as described in Section 4.2.1. We
train the neural network using 13 random seeds and take the best model, measured by the total running
time on the validation set. To get the features from a model, we remove the MLP (by replacing it with the
identity function), and use the model’s output for each instance as the extracted features.

In preliminary experiments, we found that using the features from the graph neural network together
with the SATZilla features in AutoFolio results in significantly worse performance than using only the
SATZilla features for algorithm selection on the scenario we generated in Section 4.1.1. A possible reason
is that the dimension of the graph neural network features is high. For example, the number of graph
neural network features for PAR1 is 96 features, while there are 138 SATZilla features. The additional
features can harm the performance of the Random Forest used in AutoFolio, as it decreases the rate of
samples to features. Then, distinguishing between the important and unimportant features is harder.

Instead of using the features extracted by the graph neural network directly, we use the output of the
MLP before the final prediction. We tested different MLPs with different numbers of features. Our goal is
to process the features using the MLP to reduce the dimension of the extracted features. An overview of
the feature extraction can be seen in Figure 5.1b. We used the following MLPs for PAR1 and PAR2:

• [2 layer] 96 → 48 → 21

• [3 layer] 96 → 48 → 24 → 21

• [4 layer] 96 → 48 → 24 → 16 → 21

• [5 layer] 96 → 48 → 24 → 16 → 8 → 21

• [6 layer] 96 → 48 → 24 → 16 → 8 → 4 → 21

• [6 layer] 96 → 48 → 24 → 16 → 8 → 4 → 2 → 21

for PAR10, we used the following MLPs:

• [2 layer] 128 → 64 → 21

• [3 layer] 128 → 64 → 48 → 21

• [4 layer] 128 → 64 → 48 → 24 → 21

• [5 layer] 128 → 64 → 48 → 24 → 16 → 21

• [6 layer] 128 → 64 → 48 → 24 → 16 → 8 → 21

• [7 layer] 128 → 64 → 48 → 24 → 16 → 8 → 4 → 21

• [8 layer] 128 → 64 → 48 → 24 → 16 → 8 → 4 → 2 → 21
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Figure 5.5: Running times of the different MLPs tested for PAR1. The 4-layer architecture has the lowest
running time.

In this list, every number represents an MLP layer with the indicated number of neurons. The leftmost
number is the first layer after the message passing part, and the rightmost is the output layer. The different
MLPs tested for PAR10 are because of the different output shapes of the message-passing part. The
output shape of the message passing part is determined by the hidden size of the network and the jumping
knowledge layer before the MLP. We train from scratch every architecture for 13 different random seeds on
the generated scenario. The result of the MLPs experiments can be found in Figure 5.5. The architecture
with the lowest running time for PAR1 is the 4-layer architecture, which ends with 16 features before
the predictions. For PAR2 the results can be seen in Figure 5.6. The 2-layers architecture has the lowest
running time. For PAR10 the results can be seen in Figure 5.7. The 2-layers architecture has the lowest
running time. It should be noted that the better results of the architectures with fewer layers are because
they have fewer parameters, making the training process faster.

We end with three architectures, one for every PAR score. We can then extract for every instance three
graph neural network feature sets, for PAR1, PAR2 and PAR10. Following the feature extraction, we create
three feature sets for each PAR score:

• Graph neural network features of a specific PAR score.

• SATZilla and graph neural network features of a specific PAR score.

• SATZilla and graph neural network features of all PAR score (i.e., all available features).

Those feature sets can be used with any features-based algorithm selection method. Similarly to Chapter 4,
we use AutoFolio.
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Figure 5.6: Running times of the different MLPs tested for PAR2. The 2-layers architecture has the lowest
running time.
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Figure 5.7: Running times of the different MLPs tested for PAR10. The 2-layers architecture has the lowest
running time.
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Table 5.2: Description of the SAT competition ASLib scenarios used in the experiments.

Scenario Number of Instances Number of Features Number of Solvers

SAT11-HAND 296 115 15
SAT11-RAND 600 115 9
SAT11-INDU 300 115 18
SAT18 353 54 37
SAT20 400 108 67

5.3 Experimental setup
In this chapter, we introduced a combined neural network that uses both the SATZilla features and a graph
neural network. We also introduced new feature sets that utilise features extracted from graph neural
networks. Those features sets can be used with AutoFolio. We first evaluate all methods on the generated
scenario with 13 different random seeds. We also compare to the features-free graph neural networks and
AutoFolio with the SATZilla features.

We then evaluate AutoFolio with the different feature sets on SAT scenarios from ASlib and the
Configurable SAT Solver Challenge (CSSC) (Hutter et al., 2017). Those scenarios are used to compare
the performance of SAT solvers and algorithm selectors. However, due to the size of the instances they
contain, we cannot train the graph neural network and the combined neural network on them. Extracting
the features from the pre-trained network (on the generated scenario) is possible for most formulas. To
extract the graph neural network features, we use a single A100 GPU with 80 GB of vRAM. In the case of
out-of-memory, we set the graph neural network features of the instance as missing features. We set the
graph neural network features costs as the inference time of the instance.

We run AutoFolio with a time limit of 48 hours, as used in (Lindauer et al., 2015), on various scenarios,
as described in the following subsections. We run AutoFolio on a cluster. The cluster has 34 nodes, and
each node has two Intel® Xeon® CPU E5-2683 v4 2.1GHz with 16 cores each. Each node also has 94GB
of memory. Each CSSC scenario was assigned 5 GB of memory and one core, and each SAT competition
scenario was assigned 10 GB of memory and one core, as 5 GB resulted in an out-of-memory error in
some cases for those scenarios.

5.3.1 ASlib and CSSC Scenarios
In this section, we describe the ASlib and CSSC scenarios we use. An overview of the ASlib scenarios we
used is given in Table 5.2.

The Configurable SAT Solve Challenge (CSSC) 2013 contains a few instance categories (also called
benchmarks), each from a different type of instance, such as only hardware verification instances or only
software verification instances. This is closer to real-life usage of SAT solvers, where we want to use the
SAT solvers on instances in a very specific category. The SAT solvers participating in the competition
were configured using automated algorithm configuration methods such as SMAC separately for each
benchmark to get a well-performing configuration for each instance distribution. We use the instances
and running time of the CSSC 2013 to create new scenarios in ASlib format. An overview of the ASlib
scenarios we used is given in Table 5.3.
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Table 5.3: Description of the CSSC ASLib scenarios used in the experiments.

Scenario Category Number of Instances Number of Features Number of Solvers

K3 Random 550 80 10
BMC08 Industrial 1109 80 10
IBM Industrial 684 126 10

Table 5.4: Overview of the different features sets.

PAR Name SATZilla GNN PAR1 GNN PAR2 GNN PAR10

1

AutoFolio SATZilla X
AutoFolio GNN X
AutoFolio Both X X
AutoFolio All X X X X

2

AutoFolio SATZilla X
AutoFolio GNN X
AutoFolio Both X X
AutoFolio All X X X X

10

AutoFolio SATZilla X
AutoFolio GNN X
AutoFolio Both X X
AutoFolio All X X X X

5.4 Results
In this section, we show the results of our experiments with graph neural networks and the SATZilla
features. We show the results on the generated dataset in Section 5.4.1, and the results on the ASlib and
CSSC scenarios in Section 5.4.2.

5.4.1 Comparison of methods on the generated scenario
In this subsection, we compare the methods on the generated scenario. We compare AutoFolio with
the SATZilla features (AutoFolio SATZilla), AutoFolio with SATZilla features and graph neural neural
network features for the specific PAR score (AutoFolio Both), AutoFolio with all available feature sets,
including SATZilla features and the three graph neural network features sets (AutoFolio All), AutoFolio
only with the graph neural network features for the specific PAR score (GNN) and the neural network that
uses both graph neural network and the SATZilla features (Combined NN). An overview of the feature
sets can be seen in Table 5.4.

Results for PAR1

Figure 5.8a shows the closed gap of the various methods on the generated scenario for PAR1. We can
see that all methods have positive closed gap values. The method with the highest median closed gap is
the Combined NN, followed by AutoFolio Both. This shows that for PAR1, the GNN and the SATZilla
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Figure 5.8: Results of PAR1 experiments. (a) Closed gap of the methods. (b) Number of instances solved.

features can provide the best results. AutoFolio All has worse performance, which can be attributed to the
larger configuration space. We can also see that GNN performs better than AutoFolio GNN, which means
that using the graph neural network features in an end-to-end way leads to better performance.

In Figure 5.8b we can see the number of solved instances for PAR1. We can see that the Combined NN
has the best performance and is the only method to reach the number of solved instances as the virtual best
solver. It should be noted, however, that the methods are optimised for PAR1, which means that timeouts
are not penalised. Figure 5.9 shows scatter plots of the mean running times of each instance. We can see
that the methods based on AutoFolio have similar patterns, with most points around the diagonal. When
comparing the Combined NN to AutoFolio with the SATZilla features, we can see that the neural network
is superior on instances with short running times but works worse on the other instances.

We check the statistical significance of the closed gap values using AutoRank with a significance
level of 0.05. The ANOVA test found statistical significance between the performance differences of the
methods. The posthoc Tukey HSD test found no significance between AutoFolio All, AutoFolio Both,
AutoFolio SATZilla, AutoFolio SATZilla, AutoFolio Both, AutoFolio SATZilla and Combined. The other
methods are significantly different from each other.
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Figure 5.9: Scatter plots of the mean running time of the methods. optimised for PAR1

Results for PAR2

We can see the closed gap value for PAR2 in Figure 5.10a. For this PAR score, AutoFolio, with all the
available features, has the highest median PAR score, while AutoFolio Both has a lower median score,
but a higher maximal closed gap. AutoFolio All also has a higher median score than AutoFolio SATZilla.
The combined neural network has a higher median closed gap value than the graph neural network alone.
Moreover, the combined neural network has a higher median closed gap to AutoFolio with only the
SATZilla features. The GNN performs better than the graph neural network features with AutoFolio.

In Figure 5.10b we can see the number of solved instances for PAR2. We can see that AutoFolio Both
and All have the highest number of solved instances. The combined neural network has the same number
of solved instances as AutoFolio SATZilla, which is better than using the graph neural network alone.
Using the graph neural network features with AutoFolio has a higher median number of solved instances.

The mean running time of each instance for PAR2 can be seen in Figure 5.11. We can see that for
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Figure 5.10: Results of PAR2 experiments. (a) Closed gap of the methods. (b) Number of instances solved.

the three methods that are based on AutoFolio, the instances’ running times are around the diagonal.
For AutoFolio Both and AutoFolio All, many instances are below the diagonal, which means that the
methods are faster than using only the SATZilla features. For AutoFolio GNN, the instances are close
to the diagonal with no clear pattern. The instances with short running times for the combined NN are
below the diagonal, similar to the feature-free algorithm selection. For instances with higher running
times, AutoFolio SATZilla is better.

We check the statistical significance of the closed gap values using AutoRank with a significance
level of 0.05. The ANOVA test found statistical significance between the performance differences of the
methods. The posthoc Tukey HSD test found no significance between AutoFolio All, AutoFolio Both,
AutoFolio SATZilla, and Combined NN. Also, there is no significance between GNN, AutoFolio Both,
AutoFolio SATZilla, and Combined NN. The other methods are significantly different from each other.

Results for PAR10

We can see the closed gap value for PAR10 in Figure 5.12a. For this PAR score, no method achieves
only positive closed gap values. GNN is the worst method, but using the graph neural network features
with AutoFolio results in better performance that is comparable to other methods. The combined neural
network has the best median performance, while AutoFolio Both has the highest maximal closed gap.
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Figure 5.11: Scatter plots of the mean running time of the methods, optimised for PAR2.

The number of solved instances per method can be seen in Figure 5.12b. AutoFolio SATZilla,
AutoFolio All, AutoFolio GNN and the combined NN have the highest median number of solved instances,
while the GNN alone has the lowest.

The mean running time of each instance for PAR10 can be seen in Figure 5.13. Similarly to other
PAR scores, using the graph neural network features results in better performance for instances with short
running times, while for instances with longer running times. The Combined neural network performs
better than AutoFolio, with only the SATZilla features in most instances.

We check the statistical significance of the closed gap values using AutoRank with a significance
level of 0.05. The Friedman test found statistical significance between the performance differences
of the methods. The post hoc Nemenyi test found no significance between GNN, AutoFolio Both,
Autofolio SATZilla, AutoFolio GNN, and AutoFolio All. Also, there is no significance between AutoFolio
Both, Autofolio SATZilla, AutoFolio GNN, AutoFolio All, and Combined NN. The other methods are
significantly different from each other.
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Figure 5.12: Results of PAR10 experiments. (a) Closed gap of the methods. (b) Number of instances
solved.

5.4.2 ASlib and CSSC scenarios
In this section, we compare the methods on the ASlib and CSSC scenarios containing instances from SAT
competitions and challenges. We compare AutoFolio with the SATZilla features (AutoFolio SATZilla),
AutoFolio with SATZilla features and graph neural network features for the specific PAR score (AutoFolio
Both), AutoFolio with all available feature sets, including SATZilla features and the three graph neural
network features sets (AutoFolio All) and AutoFolio only with the graph neural network features for the
specific PAR score (AutoFolio GNN). For each PAR score, we run AutoFolio twice, with and without
taking into account the feature costs in the calculation of the total running time of the selector. We do this
as the feature extraction using graph neural networks can take a long time, even using a GPU (more than
60 seconds). For the generated scenario, the feature extraction is brief (less than a second).

Results for PAR1 with features costs

In Table 5.5 we can see the performance of AutoFolio with the four feature sets. The runs are optimised
for PAR1 taking into account the features extraction time. We can see that the graph neural network
features alone are worse than the other feature groups that use the SATZilla features. However, in the IBM
scenario, the graph neural network features provide the best results. On the other scenarios, it provides
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Figure 5.13: Scatter plots of the mean running time of the methods, optimised for PAR10.

mostly positive closed gap values (i.e. better than the single best solver). In three scenarios, using the
graph neural network features with the SATZilla features provides the best results. Using all available
features, including the three groups of graph neural network features, provides the best results on four
scenarios. This shows that the graph neural network features are transferable between different scenarios,
and in some cases, can complement the SATZilla features.

Using AutoRank, the Friedman test found statistical significance between the performance differences
of the methods. The post hoc Nemenyi test found no significance between GNN, Both, SATzilla, and All.

Figure 5.14 and Figure 5.15 shows scatter plots of the running times of AutoFolio using the different
features sets, compared to the SATZilla features. In those figures, we show the scatter plots for SAT11-
HAND and CSSC-BMC08. Scatter plots for all scenarios are available in Appendix B. We can see that for
SAT11-RAND, the graph neural network features alone are better on instances with short running times,
while the SATZilla features are better on instances with longer running times and in reducing timeouts.
Using both the SATZilla features and all available features also provides better results on instances with
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Scenario AutoFolio SATzilla AutoFolio GNN AutoFolio Both AutoFolio All

SAT11-HAND 0.73 0.67 0.76 0.72
SAT11-RAND 0.93 0.69 0.93 0.93
SAT11-INDU 0.43 -0.08 0.4 0.38
SAT18-EXP 0.58 0.24 0.64 0.65
SAT20-MAIN 0.23 0.09 0.23 0.29
CSSC-BMC08 0.33 0.01 0.4 0.37
CSSC-IBM 0.82 0.84 0.82 0.83
CSSC-K3 0.73 0.68 0.71 0.73

Table 5.5: Closed gap values of AutoFolio on various algorithm selection scenarios for PAR1 (with feature
costs). SATZilla represents only using the SATZilla features, GNN represents using only the graph neural
network features, Both represent when using the SATZilla features and the graph neural network features
for PAR1, All represents when using the SATZilla features and the graph neural network features for all
PAR scores (i.e. all available features). Bold denotes the maximal value for the scenario.
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Figure 5.14: Scatter plots of the running times of SATZilla, GNN, Both and all features on the SAT11-
HAND scenario (with feature costs), optimised for PAR1.

short running times. There is no clear pattern for the other instances. For BMC08, the instances are
scattered around the diagonal line, which means that the running times of AutoFolio using the different
feature sets are similar. The graph neural network features alone have more instances with higher running
times than the SATZilla features.

Results for PAR1 without features costs

We can see the closed gap values optimised for PAR1 without features costs in Table 5.6. We can see
that the graph neural network features alone have positive closed gap values in all scenarios, while when
taking the features extraction time into account in the SAT11-INDU there is a negative closed gap. This
can happen due to high feature extraction time relative to the time required to solve the instances. We
can also see that in most scenarios, using the graph neural network features (either all of them or the ones
optimised for PAR1) with the SATZilla features can result in better performance.
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Figure 5.15: Scatter plots of the running times of SATZilla, GNN, Both and all features on the CSSC-
BMC08 scenario (with feature costs), optimised for PAR1.

Scenario AutoFolio SATzilla AutoFolio GNN AutoFolio Both AutoFolio All

SAT11-HAND 0.76 0.66 0.73 0.78
SAT11-RAND 0.94 0.68 0.92 0.94
SAT11-INDU 0.39 0.09 0.48 0.26
SAT18-EXP 0.61 0.2 0.65 0.6
SAT20-MAIN 0.34 0.06 0.27 0.28
CSSC-BMC08 0.56 0.05 0.52 0.47
CSSC-IBM 0.91 0.78 0.92 0.93
CSSC-K3 0.74 0.73 0.76 0.78

Table 5.6: Closed gap values of AutoFolio on various algorithm selection scenarios for PAR1 (without
feature costs). SATZilla represents only using the SATZilla features, GNN represents using only the graph
neural network features, Both represent when using the SATZilla features and the graph neural network
features for PAR1, All represents when using the SATZilla features and the graph neural network features
for all PAR scores (i.e. all available features). Bold denotes the maximal value for the scenario.

Using AutoRank, the Friedman test found statistical significance between the performance differences
of the methods. The post hoc Nemenyi test found no significance between Both, SATzilla, and All.

In Figure 5.16, we can see a scatter plot of the running times of the instances when using the four
different instance sets on the SAT11-HAND scenario. There is no clear pattern of the points in the scatter
plots. When comparing GNN and SATZilla, the points are more sparse, while in the other plots, the points
are more concentrated around the diagonal line. This means that the running times of the methods are
similar, as shown in the closed gap results. Figure 5.17 we can see scatter plots of the running times of the
instances on the BMC08 scenario. Scatter plots for all scenarios are available in Appendix B.

Using AutoRank, the Friedman test found statistical significance between the performance differences
of the methods. The post hoc Nemenyi test found no significance between Both, SATzilla, and Multi.
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Figure 5.16: Scatter plots of the running times of SATZilla, GNN, Both and all features on the SAT11-
HAND scenario (without feature costs), optimised for PAR1.
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Figure 5.17: Scatter plots of the running times of SATZilla, GNN, Both and all features on the CSSC-
BMC08 scenario (without feature costs), optimised for PAR1.

Results for PAR2 with features costs

We can see the closed gaps of the four feature sets optimised of PAR2 when using features costs in
Table 5.7. GNN has positive closed gap values in six out of eight scenarios. Using the graph neural
network features with AutoFolio results in better performance in three scenarios. Using all available
features results in better performance in two scenarios.

Using AutoRank, the Friedman test found statistical significance between the performance differences
of the methods. The post hoc Nemenyi test found no significance between GNN and All and the groups
All, Both, and SATzilla.

In Figure 5.18, we can see a scatter plot of the running times of the instances when using the four
different instance sets on the SAT11-HAND scenario. The points are scattered around with no clear
pattern. When comparing Both and All to SATZilla, the points are closer to the diagonal compared to GNN.
Figure 5.19 we can see scatter plots of the running times of the instances on the BMC08 scenario. We
can see that using only the graph neural network features results in worse performance over the SATZilla
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Scenario AutoFolio SATzilla AutoFolio GNN AutoFolio Both AutoFolio All

SAT11-HAND 0.76 0.66 0.71 0.75
SAT11-RAND 0.95 0.76 0.94 0.95
SAT11-INDU 0.44 -0.05 0.33 0.4
SAT18-EXP 0.57 0.13 0.6 0.61
SAT20-MAIN 0.24 -0.03 0.24 0.2
CSSC-BMC08 0.33 0.14 0.36 0.32
CSSC-IBM 0.85 0.86 0.88 0.85
CSSC-K3 0.75 0.48 0.7 0.57

Table 5.7: Closed gap values of AutoFolio on various algorithm selection scenarios for PAR2 (with feature
costs). SATZilla represents only using the SATZilla features, GNN represents using only the graph neural
network features, Both represent when using the SATZilla features and the graph neural network features
for PAR2, All represents when using the SATZilla features and the graph neural network features for all
PAR scores (i.e. all available features). Bold denotes the maximal value for the scenario.
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Figure 5.18: Scatter plots of the running times of SATZilla, GNN, Both and all features on the SAT11-
HAND scenario (with feature costs), optimised for PAR2.

features for most instances. When comparing using both SATZilla features and graph neural network
features, and all available feature sets, the points are around the diagonal line with no clear pattern. Scatter
plots for all scenarios are available in Appendix B.

Results for PAR2 without features costs

Table 5.8 shows the closed gap values optimised for PAR2 without features costs. We can see that the
graph neural network features alone have positive closed gap values in all but one scenario. Using the
graph neural network features with the SATZilla features results in the best performance in six out of eight
scenarios. Using all available features results in the best performance in three scenarios. The better-closed
gap values of the methods that use the graph neural network features when not using the features costs can
suggest that extracting those features takes a relatively long time.

Using AutoRank, the Friedman test found statistical significance between the performance differences
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Figure 5.19: Scatter plots of the running times of SATZilla, GNN, Both and all features on the CSSC-
BMC08 scenario (with feature costs), optimised for PAR2.

Scenario AutoFolio SATzilla AutoFolio GNN AutoFolio Both AutoFolio All

SAT11-HAND 0.74 0.68 0.81 0.75
SAT11-RAND 0.95 0.72 0.95 0.95
SAT11-INDU 0.34 -0.04 0.41 0.39
SAT18-EXP 0.58 0.19 0.59 0.59
SAT20-MAIN 0.27 0.06 0.29 0.31
CSSC-BMC08 0.57 0.15 0.54 0.44
CSSC-IBM 0.95 0.87 0.95 0.9
CSSC-K3 0.69 0.46 0.77 0.67

Table 5.8: Closed gap values of AutoFolio on various algorithm selection scenarios for PAR2. SATZilla
represents only using the SATZilla features, GNN represents using only the graph neural network features,
Both represent when using the SATZilla features and the graph neural network features for PAR2, All
represents when using the SATZilla features and the graph neural network features for all PAR scores (i.e.
all available features). Bold denotes the maximal value for the scenario.

of the methods. The post hoc Nemenyi test found no significance between GNN and SATzilla and the
groups SATzilla, Multi, and Both.

We can see scatter plots of the running times of AutoFolio with the four feature sets on the SAT11-
HAND scenario in Figure 5.20. When comparing the SATZilla features and the graph neural network
features, we can see that the points are scattered around, with more points in the upper part of the graph,
suggesting better performance for the SATZilla features set. For the other two groups, there is no clear
pattern. For the BMC08 scenario, the scatter plots can be seen in Figure 5.21. When comparing GNN and
SATZilla, for most instances, SATZIlla is better. When comparing SATZilla with All and Both, the points
are close to the diagonal.
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Figure 5.20: Scatter plots of the running times of SATZilla, GNN, Both and all features on the SAT11-
HAND scenario (without feature costs), optimised for PAR2.
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Figure 5.21: Scatter plots of the running times of SATZilla, GNN, Both and all features on the CSSC-
BMC08 scenario (without feature costs), optimised for PAR2.

Results for PAR10 with features costs

We can see the closed gap values of AutoFolio with the various feature sets when optimised for PAR10

with features costs in Table 5.9. We can see that the graph neural network features alone have positive
closed gap values in six out of eight scenarios. It also has the best performance in the IBM scenario. The
SATZilla features set is the best on most scenarios, while on three scenarios, using a combination of the
SATZilla with graph neural network features results in better performance.

Using AutoRank, the Friedman test found statistical significance between the performance differences
of the methods. The post hoc Nemenyi test found no significance between GNN, Both, and All and
between Both, All, and SATzilla.

In Figure 5.22, we can see a scatter plot of the running times of the instances when using the four
different instance sets on the SAT11-HAND scenario. We can see that using the GNN features results in
better performance for instances with shorter running times but worse performance for the other instances.
For the other feature sets, the instances are around the diagonal. For the BMC08 scenario, the scatter
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Scenario AutoFolio SATzilla AutoFolio GNN AutoFolio Both AutoFolio All

SAT11-HAND 0.75 0.7 0.68 0.74
SAT11-RAND 0.94 0.79 0.94 0.95
SAT11-INDU 0.34 -0.02 0.41 0.37
SAT18-EXP 0.61 0.25 0.56 0.6
SAT20-MAIN 0.28 0.07 0.23 0.26
CSSC-BMC08 0.14 -0.09 0.05 0.25
CSSC-IBM 0.95 0.95 0.82 0.93
CSSC-K3 0.47 0.13 0.1 0.46

Table 5.9: Closed gap values of AutoFolio on various algorithm selection scenarios for PAR10 (with
feature costs). SATZilla represents only using the SATZilla features, GNN represents using only the graph
neural network features, Both represent when using the SATZilla features and the graph neural network
features for PAR10, All represents when using the SATZilla features and the graph neural network features
for all PAR scores (i.e. all available features). Bold denotes the maximal value for the scenario.
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Figure 5.22: Scatter plots of the running times of SATZilla, GNN, Both and all features on the SAT11-
HAND scenario (with feature costs), optimised for PAR10.

plots can be seen in Figure 5.23. We can see that all three methods that use the GNN features have better
performance on instances with shorter running times. we can also see many instances that have timeout
when using only the GNN features but are solved when using the SATZilla features.

Results for PAR10 without features costs

The closed gap values of the four feature sets optimised for PAR10 without features costs can be seen in
Table 5.10. We can see that the graph neural network features alone have positive closed gap values in all
scenarios except CSSC-K3. Using the graph neural network features with the SATZilla features results in
better performance on more than half of the scenarios. This is similar to other PAR scores, when not using
the features extraction time results in better closed gap values for the features sets when using the graph
neural network features.

Using AutoRank the Friedman test found statistical significance between the performance differences
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Figure 5.23: Scatter plots of the running times of SATZilla, GNN, Both and all features on the CSSC-
BMC08 scenario (with feature costs), optimised for PAR10.

Scenario AutoFolio SATzilla AutoFolio GNN AutoFolio Both AutoFolio All

SAT11-HAND 0.77 0.69 0.77 0.76
SAT11-RAND 0.94 0.77 0.94 0.94
SAT11-INDU 0.47 0.08 0.42 0.24
SAT18-EXP 0.63 0.27 0.52 0.6
SAT20-MAIN 0.16 0.05 0.15 0.32
CSSC-BMC08 0.15 0.04 0.25 0.26
CSSC-IBM 0.94 0.93 0.94 0.97
CSSC-K3 0.22 -0.56 0.18 0.86

Table 5.10: Closed gap values of AutoFolio on various algorithm selection scenarios for PAR10. SATZilla
represents only using the SATZilla features, GNN represents using only the graph neural network features,
Both represent when using the SATZilla features and the graph neural network features for PAR10, All
represents when using the SATZilla features and the graph neural network features for all PAR scores (i.e.
all available features). Bold denotes the maximal value for the scenario.

of the methods. The post hoc Nemenyi test found no significance between Both, SATzilla, and All.
In Figure 5.22, we can see scatter plots of the running times of the instances when using the four

different instance sets on the SAT11-HAND scenario. The pattern is similar to other PAR scores, where the
points are scattered around. Using only GNN features results in more timeouts. For the BMC08 scenario,
the scatter plots can be seen in Figure 5.23. Using only the GNN methods results in more instances with
higher running times. For the other two groups, the points are scattered around the diagonal line.
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Figure 5.24: Scatter plots of the running times of SATZilla, GNN, Both and all features on the SAT11-
HAND scenario (without feature costs), optimised for PAR10.
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Figure 5.25: Scatter plots of the running times of SATZilla, GNN, Both and all features on the CSSC-
BMC08 scenario (without feature costs), optimised for PAR10.



Chapter 6

Discussion, conclusions and future work

In this final chapter, we start in Section 6.1 by discussing the work performed in this thesis, including a
reflection and the limitations. We then describe future work and conclude the thesis in Section 6.2.

6.1 Discussion and reflection
This thesis starts with features-free algorithm selection. In the early stage of the work, we found that most
existing algorithm selection scenarios include formulas that do not fit into GPU memory. We, therefore,
generated a new scenario. We generated the scenario using a well-known industrial-like SAT instance
generator. However, many formulas we generated have a very short running time on all solvers (less than
a second) or ended as an unsolvable instance. A better way to generate the scenario would be to remove
all the unsolvable formulas or have a very short running time. This can allow us to have more “interesting”
instances, as the unsolvable instances are not interesting for algorithm selection. In addition, more solvers
could be used to generate the scenario.

The main limitation of our proposed features-free approach is the size of the graph and, consequently,
the size of the instances we can handle. We can overcome this limitation by using graph sampling
approaches such as GraphSAGE (Hamilton et al., 2017). Another method to overcome this limitation is to
use a cutting-edge GPU with higher memory capacity.

We then used a graph neural network to extract features from the SAT formulas. Using neural
architecture search, we found a good graph neural network architecture for the algorithm selection. Our
search space was limited to reduce the computational resources required, as a larger search space requires
more evaluations to find a good-performing architecture. For example, we did not fully search for an MLP
architecture. We did this due to resource limitations. It is possible that a better architecture exists in the
search space that we did not explore.

The running times of the SAT solvers can have high variance. This makes the data noisy, and as
observed, high regularisation was used during the training (i.e. dropout, large batch size). A possible way
to overcome it is to use multiple runs of the same algorithm with different random seeds and use those
different runs in the predictions. Neural networks have been shown previously to be able to learn such
distribution of SAT solvers’ running time (Eggensperger et al., 2018).

Finally, we used the graph neural network features to complement the SATZilla features. We found
that the graph neural network features can improve the performance of the algorithm selection, but that
the high extraction time required to get the graph neural network features is not worth it. We believe it
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is possible to reduce the extraction time by optimising the inference of the graph neural network (Jeong
et al., 2022).

We also extracted the features using a modified graph neural network. We performed the modification
manually after the neural architecture search. We could change the neural architecture search to search for
a graph neural network with a bottleneck to extract fewer features. We could also perform a multi-objective
neural architecture search to optimise the accuracy and the number of extracted features.

6.2 Conclusions and furture work
Algorithm selection of SAT solvers is an important problem. In this thesis, we looked into using graph-
neural networks for algorithm selection in SAT. We started by performing features-free algorithm selection
and reached comparable results to features-based algorithm selection. We found that our method out-
performs the other features-free method. We believe that this is because our method uses a graph
representation of the SAT formula, which is a more natural representation as it is permutations invariant to
permutations of the variables and the clauses.

Following features-free algorithm selection, we looked into combining the graph neural network with
existing hand-crafted features to improve algorithm selection. We explored both a neural network that uses
the graph representation and hand-crafted features. We also extracted the features from the graph neural
network and used them together with the hand-crafted features in a known algorithm selection framework.
We found that the graph neural network features can improve the performance of the algorithm selection.
However, the high extraction time required to get the graph neural network features makes it not worth
it for now. It is possible to reduce the extraction time by optimising the inference of the graph neural
network (Jeong et al., 2022). This can make it more practical to use the graph neural network features.

We further showed that the graph neural network features are meaningful in scenarios that the graph
neural network was not trained on. This shows that our learned features are transferable to other instance
distributions, which can imply that the graph neural network captures information about the general
structure of SAT formulas. In future work, it is possible to explore training on other scenarios that contain
large formulas to possibly improve the performance of the algorithm selection

Although our combined neural network did not significantly outperform the state-of-the-art algorithm
selection method, we believe it is possible to improve the performance by using multi-modal learning
techniques (Gat et al., 2020). This is because the graph neural network has more parameters than the
MLP used to process the SATZilla features. This makes the training unbalanced and biased towards the
SATZilla features, which are easier to learn from.

Our algorithm selection framework was exclusively utilized for SAT. Nevertheless, we believe using
the frameworks for other NP-Hard problems, such as the travelling-salesperson problem (TSP) and mixed
integer programming (MIP), is possible.

We observed that the neural networks can reach a closed gap similar to AutoFolio on PAR1 and
PAR2. However, for PAR10 the performance is worse. This can be attributed to the features that the graph
neural network extracts, which might be less informative about timeouts, as the combined neural network
performed very well on this metric. In future work, it is possible to explore different message-passing
layers that will capture different features.

To conclude, we believe that graph neural networks are a promising direction for algorithm selection of
SAT solvers. We introduced the first features-free algorithm selection method that can reach comparable
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results to the well-studied features-based algorithm selection approaches. Additionally, it was demonstrated
that the graph neural network features can enhance the performance of the state-of-the-art algorithm
selection method.
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Appendix A

AutoGluon for Algorithm Selection

In addition to experiments with AutoFolio, a state-of-the-art method for algorithm selection, we try to
use AutoGluon for algorithm selection. AutoGluon (Erickson et al., 2020) is an AutoML system that can
preprocess the input data, select machine learning algorithms to use, and create set of them. It can often
achieve better results than other machine learning models. AutoGluon uses various machine learning
algorithms, such as XGBoost, random forest, neural networks, and more, in combination with ensembling
and various preprocessing approaches. However, AutoGluon is used for general machine learning (i.e.
classification or regression tasks) while our goal is to perform algorithm selection. For algorithm selection,
multi-class classification is often not the best prediction type (Liu et al., 2022). Inspired by SATZilla 2012
(Xu et al., 2012b), we use AutoGluon to perform pairwise classification. We use one AutoGluon model
per pair of solvers and take the solver that gets the most “votes”. We also set the samples’ weights to be
the running times’ standard deviation.

We run AutoGluon on AutoFolio on the features extracted from the network optimised for PAR1. We
extract the features using 24 Intel Xeon Gold 6126 2.6GHz CPU cores and 300 GB of RAM. The closed
gap results are presented in Figure A.1. We can see that AutoGluon has the least variance across the
different random seeds. On PAR2 it is the best method. It should be noted that AutoGluon does not have
features groups selection, so it cannot remove expensive features groups.
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Figure A.1: Closed gap values of AutoGluon and AutoFolio. (a) PAR1 (b) PAR2 (c) PAR10.



Appendix B

Full Scatter Plots

In this appendix, we show the scatter plots comparing the running times of the instances on the various
AutoFolio variants, as described in Chapter 5.
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Figure B.1: Scatter plots of the running times of SATZilla, GNN, Both and all features on the SAT11-
HAND scenario (with feature costs), optimised for PAR1.
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Figure B.2: Scatter plots of the running times of SATZilla, GNN, Both and all features on the SAT11-
RAND scenario (with feature costs), optimised for PAR1.
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Figure B.3: Scatter plots of the running times of SATZilla, GNN, Both and all features on the SAT11-
INDU scenario (with feature costs), optimised for PAR1.
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Figure B.4: Scatter plots of the running times of SATZilla, GNN, Both and all features on the SAT18-EXP
scenario (with feature costs), optimised for PAR1.
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Figure B.5: Scatter plots of the running times of SATZilla, GNN, Both and all features on the SAT20-
MAIN scenario (with feature costs), optimised for PAR1.
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Figure B.6: Scatter plots of the running times of SATZilla, GNN, Both and all features on the CSSC-
BMC08 scenario (with feature costs), optimised for PAR1.
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Figure B.7: Scatter plots of the running times of SATZilla, GNN, Both and all features on the CSSC-IBM
scenario (with feature costs), optimised for PAR1.
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Figure B.8: Scatter plots of the running times of SATZilla, GNN, Both and all features on the CSSC-K3
scenario (with feature costs), optimised for PAR1.
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Figure B.9: Scatter plots of the running times of SATZilla, GNN, Both and all features on the SAT11-
HAND scenario (without feature costs), optimised for PAR1.
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Figure B.10: Scatter plots of the running times of SATZilla, GNN, Both and all features on the SAT11-
RAND scenario (without feature costs), optimised for PAR1.
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Figure B.11: Scatter plots of the running times of SATZilla, GNN, Both and all features on the SAT11-
INDU scenario (without feature costs), optimised for PAR1.
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Figure B.12: Scatter plots of the running times of SATZilla, GNN, Both and all features on the SAT18-EXP
scenario (without feature costs), optimised for PAR1.
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Figure B.13: Scatter plots of the running times of SATZilla, GNN, Both and all features on the SAT20-
MAIN scenario (without feature costs), optimised for PAR1.
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Figure B.14: Scatter plots of the running times of SATZilla, GNN, Both and all features on the CSSC-
BMC08 scenario (without feature costs), optimised for PAR1.
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Figure B.15: Scatter plots of the running times of SATZilla, GNN, Both and all features on the CSSC-IBM
scenario (without feature costs), optimised for PAR1.
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Figure B.16: Scatter plots of the running times of SATZilla, GNN, Both and all features on the CSSC-K3
scenario (without feature costs), optimised for PAR1.
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Figure B.17: Scatter plots of the running times of SATZilla, GNN, Both and all features on the SAT11-
HAND scenario (with feature costs), optimised for PAR2.
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Figure B.18: Scatter plots of the running times of SATZilla, GNN, Both and all features on the SAT11-
RAND scenario (with feature costs), optimised for PAR2.
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Figure B.19: Scatter plots of the running times of SATZilla, GNN, Both and all features on the SAT11-
INDU scenario (with feature costs), optimised for PAR2.
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Figure B.20: Scatter plots of the running times of SATZilla, GNN, Both and all features on the SAT18-EXP
scenario (with feature costs), optimised for PAR2.
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Figure B.21: Scatter plots of the running times of SATZilla, GNN, Both and all features on the SAT20-
MAIN scenario (with feature costs), optimised for PAR2.
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Figure B.22: Scatter plots of the running times of SATZilla, GNN, Both and all features on the CSSC-
BMC08 scenario (with feature costs), optimised for PAR2.
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Figure B.23: Scatter plots of the running times of SATZilla, GNN, Both and all features on the CSSC-IBM
scenario (with feature costs), optimised for PAR2.
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Figure B.24: Scatter plots of the running times of SATZilla, GNN, Both and all features on the CSSC-K3
scenario (with feature costs), optimised for PAR2.
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Figure B.25: Scatter plots of the running times of SATZilla, GNN, Both and all features on the SAT11-
HAND scenario (without feature costs), optimised for PAR2.
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Figure B.26: Scatter plots of the running times of SATZilla, GNN, Both and all features on the SAT11-
RAND scenario (without feature costs), optimised for PAR2.
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Figure B.27: Scatter plots of the running times of SATZilla, GNN, Both and all features on the SAT11-
INDU scenario (without feature costs), optimised for PAR2.
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Figure B.28: Scatter plots of the running times of SATZilla, GNN, Both and all features on the SAT18-EXP
scenario (without feature costs), optimised for PAR2.
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Figure B.29: Scatter plots of the running times of SATZilla, GNN, Both and all features on the SAT20-
MAIN scenario (without feature costs), optimised for PAR2.
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Figure B.30: Scatter plots of the running times of SATZilla, GNN, Both and all features on the CSSC-
BMC08 scenario (without feature costs), optimised for PAR2.
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Figure B.31: Scatter plots of the running times of SATZilla, GNN, Both and all features on the CSSC-IBM
scenario (without feature costs), optimised for PAR2.
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Figure B.32: Scatter plots of the running times of SATZilla, GNN, Both and all features on the CSSC-K3
scenario (without feature costs), optimised for PAR2.
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Figure B.33: Scatter plots of the running times of SATZilla, GNN, Both and all features on the SAT11-
HAND scenario (with feature costs), optimised for PAR10.
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Figure B.34: Scatter plots of the running times of SATZilla, GNN, Both and all features on the SAT11-
RAND scenario (with feature costs), optimised for PAR10.
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Figure B.35: Scatter plots of the running times of SATZilla, GNN, Both and all features on the SAT11-
INDU scenario (with feature costs), optimised for PAR10.
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Figure B.36: Scatter plots of the running times of SATZilla, GNN, Both and all features on the SAT18-EXP
scenario (with feature costs), optimised for PAR10.
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Figure B.37: Scatter plots of the running times of SATZilla, GNN, Both and all features on the SAT20-
MAIN scenario (with feature costs), optimised for PAR10.
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Figure B.38: Scatter plots of the running times of SATZilla, GNN, Both and all features on the CSSC-
BMC08 scenario (with feature costs), optimised for PAR10.
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Figure B.39: Scatter plots of the running times of SATZilla, GNN, Both and all features on the CSSC-IBM
scenario (with feature costs), optimised for PAR10.
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Figure B.40: Scatter plots of the running times of SATZilla, GNN, Both and all features on the CSSC-K3
scenario (with feature costs), optimised for PAR10.
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Figure B.41: Scatter plots of the running times of SATZilla, GNN, Both and all features on the SAT11-
HAND scenario (without feature costs), optimised for PAR10.
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Figure B.42: Scatter plots of the running times of SATZilla, GNN, Both and all features on the SAT11-
RAND scenario (without feature costs), optimised for PAR10.
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Figure B.43: Scatter plots of the running times of SATZilla, GNN, Both and all features on the SAT11-
INDU scenario (without feature costs), optimised for PAR10.
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Figure B.44: Scatter plots of the running times of SATZilla, GNN, Both and all features on the SAT18-EXP
scenario (without feature costs), optimised for PAR10.

0.001 0.01 0.1 1 10 100 1000 5000
0.001

0.01

0.1

1

10

100

1000

5000

SATZilla in sec.

G
N

N
 in

 se
c.

(a)

0.001 0.01 0.1 1 10 100 1000 5000
0.001

0.01

0.1

1

10

100

1000

5000

SATZilla in sec.

B
ot

h 
in

 se
c.

(b)

0.001 0.01 0.1 1 10 100 1000 5000
0.001

0.01

0.1

1

10

100

1000

5000

SATZilla in sec.

A
LL

 in
 se

c.

(c)

Figure B.45: Scatter plots of the running times of SATZilla, GNN, Both and all features on the SAT20-
MAIN scenario (without feature costs), optimised for PAR10.
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Figure B.46: Scatter plots of the running times of SATZilla, GNN, Both and all features on the CSSC-
BMC08 scenario (without feature costs), optimised for PAR10.
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Figure B.47: Scatter plots of the running times of SATZilla, GNN, Both and all features on the CSSC-IBM
scenario (without feature costs), optimised for PAR10.
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Figure B.48: Scatter plots of the running times of SATZilla, GNN, Both and all features on the CSSC-K3
scenario (without feature costs), optimised for PAR10.


	Contents
	Introduction 
	Background 
	Boolean satisfiability problem 
	CNF encoding
	Complexity
	SAT in real life
	SAT solvers 
	Pre-processing
	Performance measure

	Graph representation of SAT formula 
	Hand-crafted features of SAT 
	Algorithm Selection 
	Performance metrics
	Benchmarks and competitions

	Graph neural networks 

	Related Work 
	Features-based algorithm selection 
	Features free algorithm selection 
	Graph neural networks for SAT 
	Predicting satisfiability
	Heuristics


	Features-free algorithm selection 
	Methodology 
	Scenario generation 
	Neural architecture search

	Results 
	Neural architecture search 
	Hyperparameters importances 
	Comparison to other methods 


	Combining graph neural networks with hand-crafted features
	Combined neural network
	Neural architecture search results 
	Hyperparameters importances 

	AutoFolio with graph neural network features
	Experimental setup
	ASlib and CSSC Scenarios

	Results
	Comparison of methods on the generated scenario 
	ASlib and CSSC scenarios


	Discussion, conclusions and future work 
	Discussion and reflection 
	Conclusions and furture work 

	Bibliography
	AutoGluon for Algorithm Selection
	Full Scatter Plots 

