
Bachelor Computer Science

Privacy-preserving Explainable AI in the Active Security Model

Lars Selles

Supervisors:
Dr.ir. E. Makri & Sun Shuang

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl July 1, 2024

www.liacs.leidenuniv.nl


Abstract

In this thesis project, a newly created algorithm will be presented. This algorithm is based
on the earlier created XorSHAP algorithm [JV23]. The XorSHAP algorithm is a privacy-
preserving explainable AI model, which is secure in the passive security model. As the result of
this thesis project, the XorSHAP algorithm is transferred and adapted into the compatibility
of the active security protocol. In addition to this, another way of calculating the SHAP values
is presented.
The SHAP values can be calculated with an approximation, using the Monte Carlo algorithm
[LS06, SK14]. The values can also be calculated using an algorithm, which is directly based
on the structure of the formula of the SHAP value.
As a result of the thesis, it can be seen that the approximation of the Monte Carlo algorithm
is less computational expensive than the direct equation of these values.
It is also stated that the addition of the active security model has an impact on the memory
usage and execution time of the model, once the depth of the decision tree is altered. The
active security protocol requires significant more memory and execution time compared to the
passive security protocol.
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1 Introduction

Currently, there are a lot of developments regarding the usage of machine learning and artificial
intelligence models. These models are being trained to behave like human intelligence, performed by
machines [Abb21]. Due to developments, these models are becoming more and more intelligent and
difficult to understand and predict [TBS+21]. This is likely to result in models which are difficult
to predict and control. Especially in applications for fields like healthcare and finance, a model
needs to be reliable and cannot show any signs of racism or generalisation. This is important for
prevention of certain problems, for example a problem found in the year 2019. It became clear that
many black American citizens were discriminated by a biased AI model used in many American
hospitals. This resulted in worse healthcare for these people and could have immense consequences
for their well-being [Led19].

Because of such problems, it is important to improve the trustworthiness of AI. This can be
done by controlling how the models learn with potentially biased data and interpret the decisions
made. Developing a transparent AI system and increasing the trust of the user are also crucial
[GWS20]. The trustworthiness of AI can be improved by making use of different and new types
of models or adding features to the currently available models. This can be done by a relatively
new concept, explainable AI (XAI). The goal of XAI is to make the computation of the AI model
explainable, by allowing the user to trace back the steps of the AI. With the ability to retrace
the steps of AI, more information about the input can be retrieved. This constitutes a breach of
privacy, and highlights why supporting privacy-preserving XAI is important [JV23]. Especially, for
fields like healthcare, finance and criminality predictions. In these fields, the privacy-preserving is
needed to be able the use the algorithms and still respect the privacy of the inputting clients.
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Figure 1: Overview of the secure multiparty computation technique. In this figure, the parties P
are numbered 1,2,3,...,n. These clients are computing a joint function f , without revealing their
inputting values (x) to the other clients. [Boz21]

A method to preserve the privacy in explainable AI, is by using a technique called Secure Multi-Party
Computation (MPC) [Mak21]. The problem solved by this technique is the ability to perform
a computation on sensitive data without revealing this data to other parties and without jeop-
ardizing the correctness of the computation. In Figure 1, an overview of the usage and way of
computing from the MPC is given. It can be seen that only the result of the joint function will be
distributed without showing any secret details or information to the other parties in the computation.

The combination of these techniques shows the possibility to create an algorithm which is able to
behave as an AI model, but is explainable and preserves the privacy of the input parties. This
has already been done for simple computations and decision-making in decision tree models, the
XorSHAP algorithm [JV23].

However, the XorSHAP model can still be improved. As it is stated, the algorithm only sup-
ports the passive security protocol. In this research, the goal is to achieve a more extensive version
of the XorSHAP algorithm, with the support of more stringent active security. Accordingly, the
main research question of this research is: How can we extend the Privacy-Preserving Explainable
AI for Decision Tree Models to support active security?
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1.1 Thesis overview

In the following parts of this thesis, a research about privacy-preserving explainable AI with the
support of active security will be set up. First, more information about the preliminary knowledge
of these technologies will be given. Afterwards, the methodology for the creation and testing of the
algorithms will be shown and elaborated with the view on the experimental setup. Furthermore,
the results will be presented and discussed and concluded.
This research is completed as a “bachelor thesis” for the Leiden Institute of Advanced Computer
Science, with the support of supervisor Eleftheria Makri.

2 Preliminaries

2.1 Secure multiparty computation

Secure Multi-Party Computation (MPC) is a protocol where multiple parties will calculate the
output of a joint function where just the output is revealed, without revealing the input [Lin20].
Within the usage of this protocol the privacy of the input parties can be ensured, because the input
data will not be revealed during the calculation of the joint function.
In most of the cases, once the use of MPC protocols are implemented in the creation of new
algorithms or software, this application is developed inside the world of a framework with the
ability to support MPC. One of these frameworks is the MP-SPDZ framework.

2.2 MP-SPDZ

With the usage of the MP-SPDZ framework, the goal to apply MPC in the program can be achieved
[Kel20].
This framework has multiple possibilities and also the possibility to make use of a decision tree
model. This model includes a classifier and a trainer. With the classifier, the interaction between
the user (the program/algorithm) and the model and its structure can be made. The trainer is
used to build the structure of the model and train it with the use of training data.
MP-SPDZ implements MPC by making use of secret-shared values. Each data point of input
between different parties, for example the training data for the decision tree model, is converted to
a secret data structure. This structure is being used in all different functions and classes of the
framework. In this way the secrecy and privacy-preserving of the inputting parties is secured.

2.3 Decision trees

In the field of artificial intelligence and machine learning, there are many different representations
to achieve the goal of model. One of these models is the decision tree model.
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Figure 2: This figure shows a graphical representation of a binary decision tree model. In the bottom
level, the nodes are light-blue to represent the leaves in the model.

In Figure 2, a graphical representation of a binary decision tree model can be seen. The model
consists of a starting node, this is the starting point of every prediction in the model. Each node
represents a decision that needs to be made. When continuing the prediction in the model from the
start node in level 0, the decision to continue to node 1 or node 2 in level 1 is determined by an
attribute ID in the start node and a threshold value. The attribute ID represents the attribute
(feature) in the trained and input data, the value of this feature in the prediction data is compared
to the threshold value and when the feature value is lower than the threshold value, the continuation
of the prediction will continue to node 1 in level 1, and vice versa once the value of the feature is
higher than the threshold. This concludes of a node structure as described in 1.

node = level, NID,AID, threshold

depth = tree.height

level = [0, ..., depth− 2]

NID = [1, ..., 2level]

AID = [0, ...,#features]

threshold = R

(1)

This Equation 1 represents the structure of each node in the decision tree model, where level is an
integer value representing the level where the node is located. The depth is the number of levels in
the tree. The NID is the identification number of the node for that current level, these numbers
are visible in the nodes in Figure 2. AID represents the index of the feature in the sample for
which the model is predicting, so it is important to note that the order of features for the training
data and sample data has to be equal as the AID is an index value based on this order. Threshold
is the value which is used for comparison between the threshold value and the value of the feature
from the sample data SampleData[AID], which has the value of the AIDth value of the sample.
Furthermore, in Figure 2, light-blue nodes can be seen, these nodes represent the leaves of the
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decision tree. These leaves are built from the structure described in Equation 2.

node = level, NID, result

depth = tree.height

level = [0, ..., depth− 2]

NID = [1, ..., 2level]

result = 0, 1

(2)

In addition to the nodes, the leaves have another value, the result. This is the value of the result of
the prediction once the prediction has come to this leaf. For the tree model used in the MP-SPDZ,
the result can only be 0 or 1, so the prediction determines if the result of the prediction is either
‘yes’ or ‘no’.
These representations of the decision tree are based on the decision tree model used in the MP-SPDZ
model.

2.4 SHAP values

In order to make an artificial intelligence model explainable, a new technique is required. Therefore,
the SHAP and LIME values are common ways to achieve this goal. The Local Interpretable Model-
agnostic Explanations, LIME, is developed by Marco Ribeiro in 2016 [RSG16]. LIME approximates
the complex model locally with a simpler model and uses this approximation to understand and
explain the predictions of the complex model. This is done by comparing results from samples in
the dataset and slightly adapted samples to interpret the importance of a feature.
The SHapley Additive exPlanations values, SHAP, was first introduced in the cooperative game
theory [Sha53]. After this introduction, the SHAP values were more used for the explainability in
AI models and machine learning models [Mas21]. The SHAP value is obtained by iterating over all
subsets of features and comparing the results of the prediction.
These values represent the importance of a feature in the trained decision tree model. In this case,
we will make use of the SHAP values, because the LIME values are mainly optimised for usage
in regression models. For that reason, the SHAP values will perform better in the decision tree
model, as the SHAP values will perform well in every model. Furthermore, the LIME method is
more based on models that cannot be run in a local only environment.
The main idea behind the computation for SHAP values can be seen as follows; model x predicts
the likelihood of being a criminal for person p. If p has grown up in a rich neighbourhood, the
features in the data from person p about being raised in a poorer neighbourhood do not affect the
prediction of p. As the type of neighbourhood is part of the input data for x. This says the features
about being raised in a poorer neighbourhood would be less important than a feature about being
raised in a rich neighbourhood. In this case, the SHAP value of features about being raised in a
poorer neighbourhood are smaller than the feature for being raised in a rich neighbourhood. In this
way, the SHAP value(s) show the importance of a feature in a specific situation and explain how
the AI has come to the answer. This is one of the multiple techniques to apply explainability in AI
models [MPC23]. When we try to calculate this SHAP value, the following calculation can be used.

ϕi =
∑

S⊆F,{i}

|S|!(n− |S| − 1)!

n!

[
fS(xS∪{i})− fS(xS)

]
(3)
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In Equation 3, ϕi represents the SHAP value. The right part of the formula is computed inside
the sum of every possible subset of features in a sample with the deletion of feature i, so the
SHAP value is the sum of the computed value of every possible subset of features. The right part is
separated into the weight calculation and the difference calculation. In |S|!(n−|S|−1)!

n!
, the weight is

calculated. S represents the subset of features and |S| the length of this subset, n represents the
total length of the features in the sample. In the difference calculation part,

[
fS(xS∪{i})− fS(xS)

]
,

the difference between the value of the prediction with and without feature i is calculated. Here fS
represents the model and X the sample with features S.
The goal of the weight is to let computations with a large S have a greater part in the total
SHAP value. For example, 20 features are in S, if the addition of feature i makes a big difference
in the outcome of the prediction, it can be stated that feature i is more important than if the
same difference in outcome has been calculated when there are three features in S. The combi-
nation of these computations is called the marginal contribution for that subset and the deletion of i.

By making use of this equation, the SHAP value in an AI or machine learning model can be
obtained. It is worth noting that the computational complexity of the algorithm’s calculation for
the SHAP values using this concrete equation, is quite high. Once the number of features grows,
the computational time and power needed are growing exponentially. This way of calculating SHAP
values is with the KernelSHAP calculation, [VLM22], and so the computational complexity can
be stated in the minimum of O(T2D+M). Here is T the number of trees in the model. In most of
the benchmarking and testing configurations this is set to 1. D represents the depth of the tree
and M the number of features in the training data and in the samples used to predict using the
model. This shows a high computational complexity, which could result in computational expensive
models once multiple and complex trees are used, with high depths and many features [JV23].

2.4.1 SHAP values in decision trees

To be able to calculate the SHAP values (following Equation 3) in decision tree models the
computational complexity stated in the previous section should be taken in mind. When the
explainable part needs to be applied in real world examples, such as healthcare data, the explainable
part should not be limiting the amount of features, trees and/or depth in the trees, as this will
limit the performance of the model. This calls for another method to calculate or to approximate
the SHAP value.
A frequently used way to achieve this, is by making use of the Monte Carlo algorithm [LS06]. As
this algorithm has many usages in the field of game theory, an example in a game is the most
appropriate. This algorithm can be explained using the following example: a player is playing a
game of checkers against a ‘computer’-player. The computer player uses the Monte Carlo algorithm
for each step it takes. This is done by taking the current board and playing m random games of
checkers, where both the computer and the player take for each turn a random set. The computer
calculates for which first step, the number of winning instances is the highest. This is the way how
the Monte Carlo algorithm is used in this game of checkers. In this example, m represents the
Monte Carlo length, this is the number of random games that will be played in the algorithm.
When applying this algorithm to the approximation of SHAP values, m is the number of random
samples that will be taken for the dataset and predicted on the model. For each run of the Monte
Carlo approach, the steps are described in Listing 1. Here, the predict proba() function returns
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the probability of a correct prediction. This is obtained by dividing the number of samples from
the training dataset that have resulted in that specific leaf in the model and the total number of
samples in the training data. In this way, the SHAP value is approximated by making use of the
Monte Carlo algorithm [SK14]. The rough computational complexity of this structure is O(m),
this is a lot lower than the computational complexity of the full calculation of the SHAP value (in
Equation 3).

1 j = 15 # fea t u r e to c a l c u l a t e SHAP va lue
2 m = 1000
3 t o t a l ma r g i n a l c o n t r i b u t i o n s = 0
4
5 for i in range (m) :
6 sample = X. get random ( )
7 p r e d i c t i o n w i t h j = model . p r ed i c t p roba ( sample )
8 sample [ j ] = random value ( )
9 p r e d i c t i o n w i t h ou t j = model . p r ed i c t p roba ( sample )
10 t o t a l ma r g i n a l c o n t r i b u t i o n s += ( p r e d i c t i o n w i t h j − p r ed i c t i o n w i t h ou t j )
11
12 return ( t o t a l ma r g i n a l c o n t r i b u t i o n s / m)

Listing 1: Structure for the approximation of SHAP values using the idea of Monte Carlo algorithms
[Ste22].

It is important to note that, in Listing 1 and further shown implementations a special way of
deleting features is required. Once a feature is deleted from the sample data array, the length of the
array does not comply with the training data of the decision tree model. In this case, the model
could not be predicted on when calculating the SHAP values. For that reason, the deleted value is
replaced with a random value. This random value will have no relation to the other data in the
sample, for which it can be seen as a deleted value, because it makes no sense according to the
original data. That is why this way of deleting is used [Mol24].

2.5 Active & Passive security

In the field of MPC, there are two different approaches for the security configurations. These are
passive and active security protocols.
In the field of passive security, the MPC protocol will assume that all parties will follow the protocol
correctly. However, some parties will try to learn information by analyzing the incoming information.
This configuration is honest-but-curious, but not malicious. Except, it can be dangerous for the
safety and preserving the privacy of the other parties as one or multiple parties can try to gain
information that should be securely saved and not shared when following the protocol strictly.
In active security configurations, parties may try to learn additional information and may also
deviate from the protocol in arbitrary ways. The active secure model needs to ensure correctness
and privacy, even if some parties act malicious. This is the reason why this model is also called
Malicious Security.
In short, the active security model is more secure and preserves the privacy for the inputting parties
more.
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2.6 XorSHAP

In previous work, the combination of Explainable Artificial Intelligence in a privacy-preserving
environment has already been researched. This has been done via the Manticore framework, to
achieve the privacy-preserving MPC configurations[CDG+21]. The Manticore framework is an
environment where programs can be compiled to ensure the usage of the MPC techniques. The
configuration, in the previous work, used the XORBoost technology inside the MPC environment,
which causes the algorithm to be called XorSHAP [JV23]. XORBoost is an optimizing technique,
used for reducing the number of oblivious permutation evaluations, as well as the quicksort and
real number arithmetic algorithms in especially the Manticore framework [DDG+21]. In this thesis
research, most parts will be based on the configurations of the algorithm presented in the previous
work [JV23]. However, the passive security will be expanded to also support active security. This is
the main reason why the Manticore framework would not be sufficient in this case, as the Manticore
framework has no ability to support the active security protocols.

3 Methodology & experimental setup

3.1 Use of MPC in Python

To be able to make use of MPC models and their security measures, an environment with the
support of MPC has to be used. Regarding the previous related work [JV23], the comparison
between the passive security and a active security measure is wanted. In this research, the Manticore
framework is used [CDG+21]. However, this framework does not have the support of active security.
Therefore, the XorSHAP algorithm will be recreated in the MP-SPDZ framework, as this framework
has the ability to apply passive as well as active security measures [Kel20].
To be sure that the decision tree model also uses these MPC configurations, the MP-SPDZ framework
has a decision tree classifier class and a trainer included.

3.2 Decision Tree model in MP-SPDZ

As stated before, the decision tree model of the MP-SPDZ framework is used to create the explainable
and privacy-preserving decision tree. To start, the framework has to be defined in the use of active
and passive security. As the most developments in a MPC framework make the choice of passive or
active security beforehand, the framework had to be adapted. In this way, the value stating if the
framework needs to work with active security is stored in an instance of the class program, this
instance is a part of the compilation process of the MP-SPDZ framework.
To start, the decision tree model is built and trained with the data. This is done by the using the
structure described in Listing 2.

1 from Compiler . d e c i s i o n t r e e import Tr e eC l a s s i f i e r
2 from s k l e a rn . mode l s e l e c t i on import t r a i n t e s t s p l i t
3
4 # Load data from da ta s e t
5 X, y = load data ( )
6 X train , X test , y t ra in , y t e s t = t r a i n t e s t s p l i t (X, y , random state=0)
7
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8 # Convert data to secure format
9 X tra in = s f i x . i n pu t t e n s o r v i a (0 , X tra in )
10 X tes t = s f i x . i n pu t t e n s o r v i a (0 , X tes t )
11 y t r a i n = s i n t . i n pu t t e n s o r v i a (0 , y t r a i n )
12 y t e s t = s i n t . i n pu t t e n s o r v i a (0 , y t e s t )
13
14 # Setup MPC s e t t i n g f o r t h i s program
15 s f i x . s e t p r e c i s i o n f r om a r g s ( program )
16
17 # Bui ld ing de c i s i on t r e e model
18 model = T r e eC l a s s i f i e r (max depth=10, n threads=2)
19 model . f i t ( X train , y t r a i n )
20
21 # Optiona l to p r i n t the output o f the model , the t r e e . I t shows i f the c r ea t i on has

succeeded
22 model . output ( )

Listing 2: Creating and training a decision tree model inside the MP-SPDZ framework.

By making use of this configuration, the correct use of the MPC protocol is ensured. Until this
point, the privacy-preserving decision tree model is built. In the next sections, the way to apply
the addition of explainability is explained in the way it is done in this research.

3.2.1 SHAP value calculations

The calculation/approximation of the SHAP values is done in two different ways. It is done via the
original formula of the SHAP values (Equation 3) and via the Monte Carlo approximation to the
SHAP values (Listings 1).
As described in the previous part, to be able to compute the outcome of the original formula of
the SHAP value, a prediction with and without feature j has to be done for every possible subset
of features. Here is j the feature, wherefore we want to calculate the feature importance (SHAP
value). To get a complete overview of the behaviour of the model, this calculation has to be done
for every feature in the sample and training data, and could also be done for multiple samples.

1 import i t e r t o o l s
2
3 n f e a t u r e s = len ( data [ 0 ] )
4 shap ar r = [ 0 ] ∗ n f e a t u r e s # Array o f l e n g t h n f e a t u r e s i n i t i a l i z e d wi th 0 ’ s to

save the SHAP va lue s
5
6 for i in range ( len ( data ) ) :
7 for j in range (0 , n f e a t u r e s ) :
8 f e a t u r e a r r a y = l i s t ( range (0 , n f e a t u r e s ) )
9 del f e a t u r e a r r a y [ j ]
10 t o t a l s h ap va l u e = 0
11 for num in range ( len ( f e a t u r e a r r a y )+1) :
12 for subset in l i s t ( i t e r t o o l s . combinat ions ( f e a tu r e a r r ay , num) ) :
13 for element in subset :
14 i f element != j :
15 data [ i ] [ e lement ] = random . rand int (−1000 ,1000)
16 p r e d i c t w i t h j = t r e e . p r ed i c t ( data ) [ i ]
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17 data [ i ] [ j ] = random . random ( )
18 p r e d i c t w i t h ou t j = t r e e . p r ed i c t ( data ) [ i ]
19 con t r i bu t i on = s f i d a t a . new ( p r e d i c t w i t h j − p r ed i c t w i t h ou t j )
20 weight = ( f a c t o r i a l (num) ∗ f a c t o r i a l ( n f e a t u r e s − num − 1) ) /

f a c t o r i a l ( n f e a t u r e s )
21 shap va lue = weight ∗ con t r i bu t i on
22 t o t a l s h ap va l u e += shap va lue
23
24 # Rese t t ing the va l u e s in data
25 for element in range ( n f e a t u r e s ) :
26 data [ i ] [ e lement ] = data samples [ i ] [ e lement ]
27 shap ar r [ j ] += to t a l s h ap va l u e
28
29 for i in range ( len ( shap ar r ) ) :
30 shap ar r [ i ] = shap ar r [ i ] / len ( data )
31 p r i n t l n ( ” j : %s = %s” , i , shap ar r [ i ] . r e v e a l ( ) )

Listing 3: Calculating the SHAP values following the Equation 3.

In Listing 3, the calculation of all SHAP values is shown. This algorithm also uses all the samples
in the data array and takes the average of the values. This is done to give a best representation of
the truthfulness in the SHAP values. In lines 1 to 4, the different arrays and variables are initialized.
Afterwards, the first for-loop starts in line 6. This loops takes all the different samples in the
data array. The next loop takes numbers from 0 to the amount of features in this sample. This j
represents the feature wherefore the SHAP value is being calculated. In the feature array, number
from 0 to the amount of features are stored. And the number of the feature j is deleted, as this
feature will not be a part of the different subsets. In line 11 & 12, a next loop is started. This loop
goes through every different subset of features, the first loop determines the length of the subset
and the second loop iterates over every possible subset. In line 13 till 15, the features not in the
subset will be eliminated. As the model requires a sample array as input for the prediction from
the same format as the training data, the deleted features will be set to a random value. In this
way, the truthfulness of this value becomes very low, so it can be seen as ‘deleted’.
Afterwards, in the loop which iterates over every subset, the result of the prediction with the feature
j and without the feature j is calculated and the difference is measured in the contribution variable.
This represents the

[
fS(xS∪{i})− fS(xS)

]
part of the equation. The calculated weight represents

the |S|!(n−|S|−1)!
n!

part of the equation. In this way, this algorithm corresponds with the Equation 3.
The following part of the algorithm, restores the values changed in the data array and stores the
values found. The last section shows the results of the algorithm to the user. It is important to note
that the SHAP value is stored inside an secured data structure, so it has to be revealed to the user.
This is only for showing the explain-ability data and for testing. The SHAP value is securely saved
by the contribution, this is saved inside a secure data-structure during the calculation process.

3.2.2 SHAP value approximations

The approximation of the SHAP value is done by the Monte Carlo algorithm, shown in Listing 1.
This is slightly adapted, to ensure that the SHAP value of every feature is calculated.
To be able to execute this algorithm, the MP-SPDZ framework has to be adapted. The predict proba()
function is not a standard function implemented in the framework, so this has to be implemented
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as following.
The output of the function is determined by Equation 4. Here #PredictLeaf

represents the amount of
samples of the training data has ended in the same leaf as current sample does. In the equation
#Total tells the total amount of samples in the training data, so the result of this function represents
the probability that the result of the prediction is right, as this fraction is higher, more training
data had this ‘answer’ so more proof that this leaf is right.

predictproba(sample) =
#PredictLeaf

#Total

(4)

To implement this predict proba() function, the ‘fit’ function to train the model has to be adapted.
This function now has to make an extra value to each leaf. The number of samples that have ended
inside this leaf. This is done after the training, because when the model is still being fitted to the
training data, nodes and leaves can still shift and for that reason the decision is made to calculate
the #PredictLeaf

after the data fitting, so after the fitting and calculations the data can be obtained
from the model.

3.3 Experiments

With these algorithms, many tests can be done. First, the difference between different datasets can
be tested. As these algorithms have the ability to be explainable and privacy-preserving, they will
most likely be used in fields like healthcare and finance. Therefore, there will be an alteration in
the number of features and the size of the training dataset.
Furthermore, the performance in computational time and SHAP values will be challenged between
the two algorithms.
Most importantly, the difference between the active and passive security models will be tested. To
activate the active security protocol or the passive security protocol in the MP-SPDZ framework, the
selection between different protocols has to be made before compiling and executing the program.
Also, the value active of instance program has to be set to 1 or 0, depending on the active or
passive usage.
In the results, the execution time and memory usage will be tested. The execution time is a
result from the execution of the program inside the MP-SPDZ framework, this framework shows
the execution time as a benchmarking result after the execution. The memory usage is also a
benchmarking result from the MP-SPDZ framework.
In addition to this, the communication costs of the MPC technology used will also be shown.

4 Results

In this thesis, the newly created adapted version of the XorSHAP algorithm is presented. This
algorithm has the ability to make use of the active security model. It also has the ability to make
use of the equation and the Monte Carlo method for the calculation of the SHAP values.
In the following section, the performance of the algorithms will be tested over different sections and
different parameters will be variated. For these tests and benchmarking results, the used processor
is an AMD Ryzen 9 7950X3D, the RAM memory are 2×16Gb of DDR5-6000. The tests are done
on Windows 11, with an installation of WSL2 and the usage of Ubuntu 22.04.
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In every testing section, the difference between the performance of active and passive security will
be tested.
In the following section, the terms equation algorithm and Monte Carlo algorithm will be used. It
is worth noting that the equation method/algorithm referees to the Equation 3 and the Listing 3,
The Monte Carlo algorithm/method reference to the method show in Listing 1.
To improve the view on the relations of the data, most of the times, graphs are used. The data
of these graphs can be found in Appendix A. For some of the graphs, the data is represented as
logarithmic representations, this is done to improve readability.
It is important to note that for all the tests performed, the MP-SPDZ framework is configured
with the usage of two parties.

4.1 Performance of the decision tree

In this section, the performance of the creation of the decision tree model inside the MP-SPDZ
framework will be tested. This means that the SHAP values are not calculated in the following
comparisons and tests. In the first test, the variation will be in the number of features of the
training dataset, afterwards the size of the training dataset is altered. As last, the depth of the
decision tree is altered. The effects are compared in the active and passive security configuration.
For the different tests, the execution time and the memory usage in MB is measured, a MB is seen
as 10242 bytes.
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4.1.1 Number of features

In this first test, the number of features is altered. The number of features is the number of columns
in the training dataset.

Figure 3: This figure shows the difference in execution time for the creation of the decision tree
model in the active and passive security model.

In Figure 3, the effect of the usage of the active and passive security protocol can be seen. In both
protocols, the amount of time needed to create the decision tree grows along with the number
of features used. It can also be seen that the active security model requires a longer execution
time than the passive security model. This can be explained by the structure of these protocols.
While the passive security protocol expects that the each party in the model will not try to gain
information about the other parties, the computations can be performed faster. Because, the model
has not to be aware of the party’s behaviour. The active security protocol however, is aware of the
fact that many parties may try to gain information and is stopping them from this action. This
takes more computational power, as seen in Figure 3.
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Figure 4: This figure shows the difference in memory usage in the active security protocol and the
passive security protocol. It is important to note that the graph uses a logarithmic values on the
vertical axis. This is done to improve the readability of the graph, as the difference between the
active and passive security model is high.

In Figure 4, the memory usage of the creation for the decision tree model can be seen, when altering
over the number of features. It can be seen that the strength of the linear growth for the active
and passive security model is the same. However, it can be seen that the active security protocol
requires more memory than the passive security model. The reason for this effect can be seen as
the same as stated with Figure 3.

4.1.2 Size of training set

In this section, the number of samples in the training dataset is altered. This number has an effect
on the training of the decision tree model. As the amount of data for training the model grows, it
is expected that the model requires more execution time and memory usage.
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Figure 5: This figure shows the difference in execution time for the active and passive security
protocol. In this graph the number of samples (size) in the training dataset is altered.

In Figure 5, the difference in execution time for both security models can be seen. It shows that the
active security model requires more execution time than the passive security model in general. It
can also be seen that for 30 samples and more, the active security model significantly increases in
execution time, compared to the passive security model. This can be explained by the fact that an
increase in the number of features will also increase the change of a party trying to gain information,
as more data is used. This is the reason for the significant increase of execution time.

Figure 6: This figure shows the difference in memory usage in the active security protocol and the
passive security protocol. It is important to note that the graph uses a logarithmic values on the
vertical axis. This is done to improve the readability of the graph, as the difference between the
active and passive security model is high.
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In Figure 6, the amount of memory usage for both security models can be seen. As in Figure 4,
the logarithmic representation is used. In this graph, it can again be seen that the active security
model requires more memory usage than the passive security model. The effect, once the number of
features exceeds the value of 30, the memory usage of the active security protocol grows significantly
faster than the passive security model. This effect is also seen in the execution time, shown in
Figure 5.

4.1.3 Depth of the tree

In this section, the depth of the decision tree is altered. The depth of the tree is the number of
levels in the tree, once the depth of the tree rises, it is expected that the creation and training
of the tree requires more computational power. This will result in a longer execution time and a
higher memory usage.

Figure 7: This figure shows the difference in execution time for the active and passive security
protocol. In this graph, the depth of the tree is altered.

In Figure 7, the execution time of both security models while altering the depth of the decision
tree can be seen. It is expected that, if the depth of the tree grows, the execution time needed to
create the tree grows accordingly. This effect can be seen in the graph. Another effect which can be
obtained from the graph, is the fact that the execution time of the active security model grows
significant faster than the execution time of the passive security model. This effect can also be seen
in the previous section. It is presumable that this effect is caused by the same reason.
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Figure 8: This figure shows the difference in memory usage in the active security protocol and the
passive security protocol. It is important to note that the graph uses a logarithmic values on the
vertical axis. This is done to improve the readability of the graph, as the difference between the
active and passive security model is high.

Figure 8, the memory usage of the passive and active security model can be seen. As in the previous
generated graphs, this graph also shows a logarithmic representation of the values. It can be stated
from the graph, that there is only a slight increase in growth of the memory usage in the active
security model once the depth grows, compared to the passive security model.

4.2 Full integrated model

In this section, the effects of the full integration will be shown. In this full integration, the calculation
of the SHAP values and the creation of the decision tree model are combined. This ensures the
privacy-preserving and explainable decision tree. In the first section, the Equation method and
the Monte Carlo method are compared. Afterwards, the effect of the active and passive security
protocols are tested in this full integrated model.

4.2.1 Equation and Monte Carlo method

In section, the comparison between the usage of the Equation and the Monte Carlo method is
made.
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Figure 9: This graph shows the execution time of the Equation algorithm and the Monte Carlo
algorithm to calculate the SHAP values in combination with the creation of the decision tree model.
These calculations are done in the active security protocol.
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In Figure 9, the execution times of the calculation for both methods to calculate the SHAP values
are given. It can been seen that the Monte Carlo configuration shows a linear relation to the number
of features according to the execution time. The equation method however, shows an exponential
graph. According to the expected computational complexity of the equation, O(T2D+M), the
behaviour in the graph is as expected. Since the number of trees (T ) is 1 and the depth (D) is
constant, the function of the graph would be 2M and this behaviour is indeed shown in the graph.
The computational complexity of the Monte Carlo algorithm is expected to be O(M), so the
execution time should be linear with the amount of features in the model. This effect can also be
seen in the figure.

Figure 10: This graph shows the memory usage for both methods for the calculation of the SHAP
values.

To compare these methods even further, there can be looked at the difference in memory usage of
the SHAP calculation functions. This is shown in Figure 10. The same relation of the methods is
represented in the memory usage. However, these relations are not quite well visible as shown in
Figure 9. The most likely reason for this, is that the memory usage is also used by many other
influencing parties, so the memory usage is not always a direct representative of the computational
requirements of an algorithm.
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4.2.2 Active and passive security

In this section, the performance of the active security and the passive security protocol are compared.

To start, the usage of the active and passive security protocol is tested in the Monte Carlo
method.

Figure 11: This graph shows the effect of the use of the active security model in combination with
the Monte Carlo method. There is a variation between 2 and 4 features.

In Figure 11, the effect of the active security model can be seen. The results are as expected, due
to the previous results. It can be stated that the active security model requires more execution
time to calculate the explainable and privacy-preserving decision tree model, and once the number
of features is higher, this difference grows.
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Figure 12: This graph shows the effect of the use of the active security model in combination with
the Monte Carlo method. The memory usage of the model is shown.

Figure 12, shows the difference of the memory usage for the active and passive security model
in the Monte Carlo method. As in Figure 11, the active security model is computationally more
expensive and once the amount of features are higher, the memory usage grows accordingly.

To compare these results with the equation method, the same tests are performed again and
the results are shown in the following Figures 13, 14.

Figure 13: This graph shows the effect of the use of the active security model in combination with
the equation method.
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Figure 14: This graph shows the effect of the use of the active security model in combination with
the equation method. The memory usage of the model is shown.

In these graphs (shown in Figures 13, 14), the same result as the Monte Carlo method can be
obtained. In addition to this, it can be seen that by the usage of the equation method, the difference
between the active and passive security method are more significant, especially when compared
using the execution time. This is a result of a phenomenon already seen in Figure 9, once the
number of features becomes higher, the equation method becomes more computationally expensive.

4.3 Communication costs

The communication costs for the execution of the program inside the MPC framework depend
mostly on the message complexity. In this implementation the message complexity refers to the
size and number of messages between the parties. This means that, the message complexity will be
higher once more complex data is used and once another protocol is used. With the knowledge about
the difference between the active and passive security model, described in Section 2, it is expected
that the active security model will show a higher communication cost. The communication costs are
measured in MB, as the transferred data represents the communication cost, this amount of data is
measured in MB. The communication costs shown in this section is the total of communication
costs for both parties.
The following tests are done by the usage of the Monte Carlo method and two parties in the
configuration.
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Figure 15: This figure shows the difference in communication costs for the active and passive
security model. For this execution the Monte Carlo method is used. Variation is performed with
the number of features. It is important to note that the graph uses a logarithmic values on the
vertical axis. This is done to improve the readability of the graph, as the difference between the
active and passive security model is high.

The expected results can be seen in Figure 15. In this figure, the variation is done over the number
of features. Once the number of features is higher, the message complexity also rises. This results
in the rise of the communication costs, this effect can be seen in Figure 15.
Another effect can be seen in this graph, the relation between the communication costs and the
number of features for the passive and active security model are linear. However, once the execution
in the active security model rises above 4 features, the difference in communication costs between
both security models is higher. This difference is the result of a more complex decision tree. Once
the number of features becomes higher, the number of computations that have to be done in order
to train the decision tree and perform calculations with the tree grow alongside with the number of
features. It is expected that a computation in the passive security model requires a smaller message
between the parties than the active security model. For this reason, the memory complexity grows
faster in the active security model, in comparison to the passive security model, once the number
of features grows. This is the same effect as seen in Figure 15. The same effect can also be seen in
Figure 3.

4.4 Performance of SHAP values

As the measurement of explainability used in this thesis, which is the usage of SHAP values, the
performance of them is important. That is why, in this section, the results of the two methods will
be compared and shown.
First, the equation method. By making use of the MP-SPDZ framework, the decision tree model is
limited in prediction in only 0 and 1. This makes it more difficult to calculate the SHAP values
using the equation method. The cause of this is the final part of Equation 3, where the prediction
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of the sample with the value of the feature and without the value of the feature are being compared.
Once these predictions meets the same result, the value of this comparison is equal to 0 and this
results into the fact that the final outcome for the calculation for that subset is 0. However, if a
model has many features, it is likely that the deletion of one feature might often give the same
result in the prediction. Due to the fact that many features also result in a great amount of subsets
of these features, once a difference is found, the difference will likely not be significant as the other
values will take over. This gives a problem with the direct equation method for the calculation of
the SHAP values. However, the results are a representation of the reality, as the deletion of a feature
will not result in a change of result of the prediction. This means that the equation method will
show the correct answer, but will not always give the values wherefore the maximal explainability
can be observed. The solution for this problem is the usage of the Monte Carlo algorithm. Yet, it
should be noted, that this algorithm is an approximation and the equation method will still give
the correct answer to the calculation of the SHAP value.
For this reason, first the comparison between the obtained SHAP values will be given. Here, the
comparison is show for samples with 4 features. This shows the difference in SHAP values.

Figure 16: This figure shows the difference in SHAP values for both calculation methods. The
training dataset with 4 features is used, with a tree depth of 3.

Figure 16 shows the difference in SHAP values that are calculated. It can be seen that the value of
the SHAP values is very low. This means that there is not one specific feature which making a
big difference in the prediction of the dataset. However, a big difference in feature importance can
be seen in feature 1, where the equation method find the most importance, but the Monte Carlo
method sees feature 3 as most important.
To research the well behaving of the SHAP value calculation, a new dataset is created. In this
dataset, feature 1 is made important, as if the value of the first feature meets the threshold > 50
the outcome of the target in the training data will always be 1. The outcome of this test can be seen
in Figure 17. As expected, it shows that both methods find the first feature important, the other
features do not have any importance. There is a small difference between the equation method and
the Monte Carlo method, this can be explained by the fact that the Monte Carlo method uses a
approximation and the equation show the result of the direct formula of the SHAP value.
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Figure 17: This figure shows the difference in SHAP values for both calculation methods. The
training dataset with 4 features is used, with a tree depth of 3. The dataset is manipulated so the
target of the dataset is always 1, if the first feature has a value > 50.

In general, it can be seen that the results of the SHAP values do give the same result. This means
that the approximation of the Monte Carlo method can also be used to give an overview of the
importance for each feature and so give the possibility to explain the results of the algorithm.

5 Conclusion

In this thesis, the newly created version of the privacy-preserving explainable AI with the ability
to make use of active security protocols, is presented. It is also shown that the calculation of the
SHAP values, for expanding the AI with explainability, can be done in two different ways. This can
be done via the presented Monte Carlo algorithm or via the equation method, where the Monte
Carlo method is based on the structure of a Monte Carlo algorithm and the equation method is
based on the direct formula (Equation 3) of the SHAP value.
By taking a look at the differences between the these models, it can be stated that the Monte Carlo
method is less computationally expensive than the equation method, but the equation method will
always show the abstract calculated SHAP value. The Monte Carlo method is an approximation
of the SHAP value. In most cases the Monte Carlo method will succeed in the goal to create
explainability of the decision tree model.
The main goal of this thesis was to expand the privacy-preserving explainable AI with the support
of the active security protocols. This goal is accomplished by the adapted usage of the MP-SPDZ
framework.
In addition to this, the usage of the passive and the active security protocols is compared. In this
comparison it can be seen that the active security model is computationally more expansive, as
the model requires in all situations more memory and more execution time for privacy-preserving
explainable decision tree model.
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Appendix

A Tables

# Features Active security (s) Passive security (s)
2 18,3102 7,84887
3 30,7722 13,0038
4 31,5578 14,1868
5 44,7812 19,3899
6 45,7548 20,5879
7 57,9584 25,6204
8 59,02 26,7761
9 71,4457 31,9072
10 72,8659 32,7727
11 84,8236 37,9718
12 86,7424 38,5501
13 98,9428 44,1977
14 100,492 43,1532

Table 1: This table represents the data used for Figure 3.

Features Active security (MB) Passive security (MB)
2 1312.8 13.5564
3 1901.06 19.2817
4 2486.14 25.133
5 3079.08 31.128
6 3672.16 37.004
7 4256.59 42.8812
8 4844.01 48.5796
9 5436.5 54.4592
10 6025.89 60.1315
11 6613.66 65.6678
12 7199.78 71.0083
13 7788.93 76.446
14 8374.99 81.8245

Table 2: This table represents the data used for Figure 4
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#samples Active security (s) Passive security (s)
10 14,1729 7,43323
15 15,3171 8,23061
20 32,1876 13,7153
25 33,8425 14,7145
30 34,7102 15,2944
35 74,5399 26,2016
40 149,0798 26,8705

Table 3: This table represents the data used for Figure 5.

samples Active security (MB) Passive security (MB)
10 949.472 10.6251
15 994.027 13.1096
20 2486.14 25.0651
25 2542.11 27.8525
30 2586.52 30.5478
35 6189.16 56.1386
40 12378.32 59.0162

Table 4: This table represents the data used for Figure 6.
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Depth Active security (s) Passive security (s)
1 3,961 2,016
2 7,303 3,795
3 10,797 5,629
4 13,742 7,531
5 16,923 9,448
6 20,212 11,469
7 23,723 12,975
8 26,247 14,847
9 29,524 16,668
10 32,627 18,561
11 36,176 20,683
12 38,958 22,377
13 42,739 24,308
14 45,157 26,009
15 48,196 27,874
16 51,427 29,658
17 54,854 31,627
18 58,375 33,415
19 61,431 35,487
20 64,411 37,243

Table 5: This table represents the data used for Figure 7.
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Depth Active security (MB) Passive security (MB)
1 246.901 2.679
2 480.629 5.308
3 714.073 7.957
4 949.472 10.625
5 1187.510 13.286
6 1419.200 15.748
7 1653.170 18.376
8 1887.970 21.004
9 2121.350 23.632
10 2359.180 26.260
11 2591.150 29.011
12 2827.590 31.651
13 3061.130 34.292
14 3292.540 36.933
15 3530.120 39.574
16 3764.600 42.378
17 3996.070 45.029
18 4229.090 47.668
19 4462.540 50.228
20 4703.240 52.789

Table 6: This table represents the data used for Figure 8.

# Features Equation (s) Monte Carlo (s)
1 5,91146 36,082
2 17,8407 83,3213
3 49,1036 130,887
4 116,189 175,718
5 302,24 228,125
6 710,807 276,136

Table 7: This table represents the data used for Figure 9.

# Features Equation (MB) Monte Carlo (MB)
1 4,11885 23,9012
2 18,8378 63,7328
3 40,7783 88,897
4 81,728 114,228
5 189,065 147,932
6 417,964 178,94

Table 8: This table represents the data used for Figure 10.
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# Features Active security (s) Passive security (s)
2 98,1717 88,5848
4 208,763 176,184

Table 9: This table represents the data used for Figure 11.

# Features Active security (MB) Passive security (MB)
2 1325,38 63,7328
4 3184,21 114,228

Table 10: This table represents the data used for Figure 12.

# Features Active security (s) Passive security (s)
2 23,7074 18,0884
4 160,569 117,374

Table 11: This table represents the data used for Figure 13.

# Features Active security (MB) Passive security (MB)
2 659,505 18,8378
4 2632,25 81,728

Table 12: This table represents the data used for Figure 14.

# Features
Active security
(log base 10)

Passive security
(log base 10)

Active security
(MB)

Passive security
(MB)

2 3,423673 2,204828 2652,61 160,261
4 3,503002 2,458107 3184,21 287,149
6 4,096455 2,6433 12486,9 439,845
8 4,240437 2,740626 17395,5 550,334

Table 13: This table represents the data used for Figure 15.

Feature Equation Monte Carlo
1 3,97E-04 0
2 1,5E-04 2,1E-04
3 1,98E-04 0,00056458
4 0 1,5E-05

Table 14: This table represents the data used for Figure 16.
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Feature Equation Monte Carlo
1 0,000183 0,00048828
2 0 0
3 0 0
4 0 0

Table 15: This table represents the data used for Figure 17.

B Code

1 # Import ing l i b r a r i e s
2 from s k l e a rn . mode l s e l e c t i on import t r a i n t e s t s p l i t
3 from Compiler . d e c i s i o n t r e e import Tr e eC l a s s i f i e r
4 import pandas as pd
5 import random
6 import i t e r t o o l s
7
8 # Change the a c t i v e or pa s s i v e s e c u r i t y usage
9 program . a c t i v e = True # Act ive s e c u r i t y i s enab led
10
11 # Get t ing the data from the t e s t . csv f i l e
12 data = pd . r ead c sv ( ”data/ t e s t . csv ” )
13 # Get t ing the f i r s t 4 columns as sample data
14 X=data . va lue s [ : , 0 : 4 ]
15 # The l a s t comlumn conta ins the va lue o f the t a r g e t s
16 y=data . va lue s [ : , 4 ]
17 # Sp l i t t i n g the da t a s e t i n t o t r a i n i n g and t e s t i n g da t a s e t s
18 X train , X test , y t ra in , y t e s t = t r a i n t e s t s p l i t (X, y , random state=0)
19 # Convert data to secure format
20 X tra in = s f i x . i n pu t t e n s o r v i a (0 , X tra in )
21 X tes t = s f i x . i n pu t t e n s o r v i a (0 , X tes t )
22 y t r a i n = s i n t . i n pu t t e n s o r v i a (0 , y t r a i n )
23 y t e s t = s i n t . i n pu t t e n s o r v i a (0 , y t e s t )
24
25 # Se t t i n g the s e t t i n g s f o r the compi la t ion and execu t i on i n s i d e the framework
26 s f i x . s e t p r e c i s i o n f r om a r g s ( program )
27
28 # Creat ing the de c i s i on t r e e model
29 model = T r e eC l a s s i f i e r (max depth=3, n threads=2)
30 # Training and f i t t i n g the model wi th the t r a i n i n g samples
31 model . f i t ( X train , y t r a i n )
32
33 p r i n t l n ( ”STARTING SHAP CALCULATION: . . . ” )
34 # Function used to c a l c u l a t e the f a c t o r i a l o f the input
35 def f a c t o r i a l (num) :
36 r e s u l t = 1
37 for i in range (1 , num + 1) :
38 r e s u l t ∗= i
39 return r e s u l t
40
41 # Se t t i n g up the v a r i a b l e s used in the c a l c u l a t i o n func t i on
42 n f e a t u r e s = len ( X tra in [ 1 ] )
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43 shap ar r = [ 0 ] ∗ n f e a t u r e s
44 x copy = s i n t . new ( X tra in )
45
46 # Function to c r ea t e the SHAP va lue s us ing the Equation method
47 def ca lcu lateShapEquat ion ( l ength ) :
48 for i in range ( l ength ) :
49 for j in range (0 , len ( X tra in [ 0 ] ) ) : # Looping over the f e a t u r e s in the

sample
50 f e a t u r e a r r a y = l i s t ( range (0 , n f e a t u r e s ) ) # Generating a array o f the

s u b s e t s
51 del f e a t u r e a r r a y [ j ] # Making sure the f e a t u r e j chosen w i l l not be an

element in the su b s e t
52 t o t a l s h ap va l u e = 0
53 for num in range ( len ( f e a t u r e a r r a y )+1) : # Looping over the l e n g t h s o f

the s u b s e t s
54 for subset in l i s t ( i t e r t o o l s . combinat ions ( f e a tu r e a r r ay , num) ) : #

Looping over the s u b s e t s in the su b s e t array
55 for element in f e a t u r e a r r a y : # Looping over the e lements in

the f e a t u r e a r r a y and d e l e t i n g the f e a t u r e s which are not in
the su b s e t

56 i f element != j and not element in subset :
57 x copy [ i ] [ e lement ] = random . rand int (−1000 ,1000)
58 p r e d i c t w i t h j = model . p r ed i c t ( x copy ) [ i ] # Pred i c t i on wi th

f e a t u r e j
59 x copy [ i ] [ j ] = random . rand int (−1000 ,1000)
60 p r e d i c t w i t h ou t j = model . p r ed i c t ( x copy ) [ i ] # Pred i c t i on

wi thout f e a t u r e j
61 con t r i bu t i on = s f i x . new ( p r e d i c t w i t h j − p r ed i c t w i t h ou t j ) #

Ca l cu l a t i n g the c on t r i b u t i on in secure format
62 weight = ( f a c t o r i a l (num) ∗ f a c t o r i a l ( n f e a t u r e s − num − 1) ) /

f a c t o r i a l ( n f e a t u r e s ) # Ca l cu l a t i n g the we igh t
63 shap va lue = weight ∗ con t r i bu t i on # Ca l cu l a t i n g the SHAP va lue
64 t o t a l s h ap va l u e += shap va lue
65 for element in range ( n f e a t u r e s ) : # Rese t t ing the va l u e s

changed in the x copy array
66 x copy [ i ] [ e lement ] = X tra in [ i ] [ e lement ]
67 shap ar r [ j ] += to t a l s h ap va l u e
68
69 for i in range ( len ( shap ar r ) ) : # Prin t ing the r e s u l t s
70 shap ar r [ i ] = shap ar r [ i ] / l ength
71 p r i n t l n ( ”Feature %s has SHAP value %s” , i , shap ar r [ i ] . r e v e a l ( ) )
72
73 ca lcu lateShapEquat ion ( len ( X tra in [ 0 ] ) ) # Making sure the SHAP va lue s are be ing

c a l c u l a t e d over a l l the e lements in x t r a i n

Listing 4: This code is the Python code used for the execution of the algorithm by making use of
the equation method.
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1 # Import ing l i b r a r i e s
2 from s k l e a rn . mode l s e l e c t i on import t r a i n t e s t s p l i t
3 from Compiler . d e c i s i o n t r e e import Tr e eC l a s s i f i e r
4 import pandas as pd
5 import random
6
7 # Change the a c t i v e or pa s s i v e s e c u r i t y usage
8 program . a c t i v e = True # Act ive s e c u r i t y i s enab led
9
10 # Get t ing the data from the t e s t . csv f i l e
11 data = pd . r ead c sv ( ”data/ t e s t . csv ” )
12 # Get t ing the f i r s t 4 columns as sample data
13 X=data . va lue s [ : , 0 : 4 ]
14 # The l a s t comlumn conta ins the va lue o f the t a r g e t s
15 y=data . va lue s [ : , 4 ]
16 # Sp l i t t i n g the da t a s e t i n t o t r a i n i n g and t e s t i n g da t a s e t s
17 X train , X test , y t ra in , y t e s t = t r a i n t e s t s p l i t (X, y , random state=0)
18 # Convert data to secure format
19 X tra in = s f i x . i n pu t t e n s o r v i a (0 , X tra in )
20 X tes t = s f i x . i n pu t t e n s o r v i a (0 , X tes t )
21 y t r a i n = s i n t . i n pu t t e n s o r v i a (0 , y t r a i n )
22 y t e s t = s i n t . i n pu t t e n s o r v i a (0 , y t e s t )
23
24 # Se t t i n g the s e t t i n g s f o r the compi la t ion and execu t i on i n s i d e the framework
25 s f i x . s e t p r e c i s i o n f r om a r g s ( program )
26
27 # Creat ing the de c i s i on t r e e model
28 model = T r e eC l a s s i f i e r (max depth=3, n threads=2)
29 # Training and f i t t i n g the model wi th the t r a i n i n g samples
30 model . f i t ( X train , y t r a i n )
31
32 # The func t i on to ta lOfArr c a l c u l a t e s the sum of the va l u e s in the input array
33 def tota lOfArr ( a r r ) :
34 t o t a l = 0 .0
35 for obj in range ( len ( a r r ) ) :
36 t o t a l += arr [ obj ]
37 return t o t a l
38
39 p r i n t l n ( ”STARTING SHAP CALCULATION: . . . ” )
40
41 def ca lcu lateShapValue ( l ength ) :
42 shap ar r = s f i x . Array ( len ( X tra in [ 0 ] ) ) # Array to save the SHAP va lue s
43 for j in range ( len ( X tra in [ 0 ] ) ) : # Looping over the d i f f e r e n t f e a t u r e s
44 M = length # Se t t i n g monte ca r l o l e n g t h
45 marg ina l c on t r i bu t i on s = s f i x . Array (M) # Storage f o r the t o t a l s o f the

marginal c on t r i b u t i on s
46 x copy = s i n t . new ( X tra in ) # copy o f the x t r a i n array
47 for obj in range (M) : # Performing c a l c u l a t i o n f o r as long the as the Monte

Carlo l e n g t h
48 # Get t ing a random sample
49 i = random . rand int (0 , len ( x copy ) )
50 # Ca l cu l a t i n g the p r o b a b i l i t y o f the p r e d i c t i on wi th and wi thout the

f e a t u r e j
51 predWithJ = model . p r ed i c t p roba ( x copy ) [ i ]
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52 x copy [ i ] [ j ] = random . rand int (−10000 ,10000)
53 predWithoutJ = model . p r ed i c t p roba ( x copy ) [ i ]
54 # Ca lcu l a t e marginal c on t r i b u t i on
55 marg ina l c on t r i bu t i on = predWithJ − predWithoutJ
56 marg ina l c on t r i bu t i on s [ obj ] = marg ina l c on t r i bu t i on
57 # Rese t t ing the x copy v a r i a b l e
58 x copy [ i ] [ j ] = X tra in [ i ] [ j ]
59 shap ar r [ j ] = tota lOfArr ( marg ina l c on t r i bu t i on s . r e v e a l ( ) ) # Ca l cu l a t i n g the

SHAP va lue
60 for i in range ( len ( shap ar r ) ) : #Prin t ing the r e s u l t s o f the SHAP va lue

c a l c u l a t i o n
61 shap ar r [ i ] = shap ar r [ i ] / l ength
62 p r i n t l n ( ”Feature %s has SHAP value %s” , i , shap ar r [ i ] . r e v e a l ( ) )
63
64 ca lcu lateShapValue (1000) # Making sure the SHAP va lue s are be ing c a l c u l a t e d wi th

the Monte Carlo l e n g t h o f 1000

Listing 5: This code is the Python code used for the execution of the algorithm by making use of
the Monte Carlo method.
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