

Master Computer Science

Overfitting in Combined Algorithm

Selection and Hyperparameter

Optimization

Name: Sietse Schröder

Student ID: s3374351

Date: 20/08/2024

Specialization: Bioinformatics

1st supervisor: Jan van Rijn

2nd supervisor: Mitra Baratchi

Abstract

Hyperparameter optimization (HPO) is crucial in designing effective machine
learning algorithms that generalize well over unseen data. The fitness of a hyper-
parameter configuration is typically assessed through holdout or cross-validation
evaluation. However, the evaluation of numerous hyperparameter configurations
introduces the risk of identifying a configuration that is overly tailored to the
validation procedure, resulting in poor generalization performance. This effect
can be magnified by advanced HPO methods, such as Bayesian optimization,
that actively incorporate evaluations in their mechanism to suggest new hyper-
parameter configurations, possibly leading to what is referred to as adaptive
overfitting. We provide one of the first large-scale investigations of overfitting
to the validation procedure in the context of the Combined Algorithm Selection
and Hyperparameter optimization (CASH) problem, on 48 classification and 16
regression tasks, using random search, Bayesian optimization, and BO-THO,
an algorithm we introduce that reduces overfitting to the validation procedure
in HPO by 12% but comes at the expense of 0.3% generalization performance
of the ultimately selected hyperparameter configuration averaged over all clas-
sification tasks. We show the significant presence of adaptive overfitting in
Bayesian optimization on 41 of the 48 classification tasks, where the number of
classes was not found to alleviate this effect, contrary to theoretical indications
in earlier work. Finally, we show the surprising resilience of most regression
tasks to this type of overfitting. Complementary, we assess the aptitude of
10-fold cross-validation as a popular benchmark evaluation procedure, showing
significant adaptive overfitting leading to overinflated results when compared to
evaluations on a genuinely unseen test set.

2

Contents

1 Introduction 5

2 Problem Statement 9
2.1 CASH . 9
2.2 Meta-overfitting . 10

3 Background 12
3.1 Adaptive data analysis . 12
3.2 Hyperparameter optimization . 13

4 Related Work 15
4.1 Summary . 17

5 Methodology 18
5.1 Random search . 18
5.2 Bayesian optimization . 18

5.2.1 Surrogate model . 19
5.2.2 Acquisition function . 19
5.2.3 Sequential model-based algorithm configuration 20

5.3 Thresholdout . 20
5.4 Bayesian optimization with thresholdout 22
5.5 Resampling and evaluation . 24

6 Experimental Setup 26
6.1 Datasets . 26

6.1.1 Classification . 26
6.1.2 Regression . 27

6.2 Search space . 27
6.3 Experiments . 28

6.3.1 Large-scale holdout . 29
6.3.2 Holdout with varying validation sizes 29
6.3.3 10CV . 30
6.3.4 Repetitions . 31

6.4 Statistical analysis . 31

3

CONTENTS 4

7 Results 33
7.1 Large-scale holdout results . 33

7.1.1 Results on the Adult dataset 34
7.1.2 All binary classification results 37
7.1.3 Multiclass classification 37
7.1.4 Regression . 38
7.1.5 Summary of different tasks 39
7.1.6 Evaluation of RS, BO, and BO-THO 39

7.2 Varying validation sizes . 41
7.3 10CV . 42
7.4 Limitations . 44

8 Conclusion & Future Work 45

A Search spaces 54
A.1 List of classifiers . 54
A.2 List of regressors . 54
A.3 Classifier hyperparameters . 56
A.4 Regressor hyperparameters . 57
A.5 Encoder choices & hyperparameters 57
A.6 Imputer choices & hyperparameters 58
A.7 Feature selector choices & hyperparameters 58
A.8 Scaler choices & hyperparameters 58
A.9 Dimensionality reduction choices & hyperparameters 59

B Datasets 60
B.1 Classification datasets . 60
B.2 Regression datasets . 62
B.3 Datasets for 10CV and altering validation sizes 62

C Software packages and versions 63

Chapter 1

Introduction

Designing a supervised machine learning workflow involves selecting various
components such as data preprocessors, feature selection methods, and algo-
rithms. Each component comes with its own set of hyperparameters, leading
to an immensely large space of possible workflow configurations. The problem
of simultaneously optimizing the selection of components and their respective
hyperparameters is known as the combined algorithm selection and hyperpa-
rameter optimization problem (CASH) [61]. In this context, the workflow can
be represented using a single set of hyperparameters, with the choice of com-
ponents being captured in hyperparameters itself. This set of hyperparameters
describing a workflow is referred to as a hyperparameter configuration. Hyper-
parameter optimization (HPO) seeks to automate the selection of these config-
urations to optimize the workflow’s generalization to the true data distribution.
This automation not only reduces manual effort but also empowers non-experts
to create complex machine learning workflows, making the process more acces-
sible and reproducible [22].

Numerous HPO methodologies have been developed [5], ranging from basic ap-
proaches such as random search (RS), which involves the random selection and
evaluation of hyperparameter configurations, to advanced techniques such as
Bayesian optimization (BO). Bayesian optimization, employed in widely-used
HPO tools such as auto-sklearn [23], is broadly regarded as a leading method
for HPO [48, 61, 62].

A central component of any HPO system is the evaluation of its suggested
configurations on the learning problem. Evaluating a hyperparameter config-
uration usually involves using data partitions, such as k-fold cross-validation
or a holdout (validation) set, to estimate the model’s performance on unseen
data [5]. These partitions are generally predetermined to ensure fair comparison
when assessing multiple configurations. However, in real-world learning prob-
lems, data scarcity often limits their size.

5

CHAPTER 1. INTRODUCTION 6

Evaluation on a limited validation set or cross-validation procedure can be un-
stable [51, 65] and may provide biased performance measures for some hyperpa-
rameter configurations compared to the performance on the true distribution.
A small validation set can result in high variance among model evaluations,
causing the maximum difference between the performance estimation of a con-
figuration on the validation set and on the true distribution to increase [33].
When performance estimations using the validation procedure provide an overly
optimistic measure for a configuration compared to the performance on the true
distribution, we refer to this phenomenon as meta-overfitting. Note that this
type of overfitting differs from the traditional overfitting in machine learning,
where a model becomes overly tailored to the training data, leading to poor
generalization on unseen data.

When many configurations are evaluated, a fraction can be expected to exhibit
a significant amount of overfitting. This effect is visualized in Figure 1.1, dis-
playing the difference in validation and true distribution performance of 25 000
configurations produced by random search on a binary classification problem.
Although the majority of the validation estimations of configurations are reflec-
tive of the performances on the true distribution (around the x = 0 line), as
HPO seeks to maximize validation performance and thus selects the hyperpa-
rameter configuration with the highest validation estimation, a highly overfitted
configuration has a relatively high probability of ultimately being selected by
the HPO mechanism. This effect has been observed empirically in model selec-
tion [8] and in Bayesian optimization for tuning the hyperparameters support
vector machines [42], but overall remains a relatively under-explored and open
problem in HPO [22]. Theoretically, any HPO approach utilizing multiple hy-
perparameter configuration evaluations is susceptible to this type of overfitting.
The main metric associated with this effect is the meta-overfitting error (MOE)
[1], which denotes the difference between the empirical performance measured
on a validation set and the expected performance on the true data distribution,
often approximated using a large, independent, and unobserved test set.

An additional source of overfitting is theorized to arise from not only repeat-
edly assessing the validation loss and selecting the configurations with the best
validation performance but also actively exploiting the information gained by
previous evaluations to propose solutions specifically tailored to the holdout set.
The phenomenon where a fixed test set is reused while incorporating previous
evaluations in the suggestion of new suggestions was first addressed by Dwork
et al. [13], and is known as adaptive data analysis. When this effect causes the
reported results to be overinflated, it is referred to as adaptive overfitting. There
are large similarities between the reuse of a fixed test set in adaptive data anal-
ysis and the sequential use of the validation procedure in modern HPO. Many
approaches, such as Bayesian optimization and evolutionary strategies [25], in-
corporate past evaluations to propose improved hyperparameter configurations.
Understanding to what extent modern HPO methods exhibit (adaptive) overfit-
ting and determining whether mitigation strategies identified by adaptive data

CHAPTER 1. INTRODUCTION 7

Figure 1.1: Histogram of the MOE of 25 000 evaluated configurations produced
by random search, using a holdout set of 500 instances and a test set of ap-
proximately 40 000 instances on a binary classification task. Configurations on
the right side are more overfitted and have on average higher validation perfor-
mance, which makes them more likely to be selected by an HPO procedure.

analysis can be applied to enhance the generalizability of HPO solutions are
important aspects of addressing overfitting in HPO.

This work will empirically examine overfitting resulting from HPO in a CASH
problem across a variety of classification and regression tasks, answering to what
extent overfitting occurs in HPO approaches for the CASH problem and whether
mitigation methods such as 10-fold cross-validation or thresholdout [12] can al-
leviate this effect. Specifically, the following contributions are presented:

1. Systematic analysis of overfitting in modern HPO: We investigate
overfitting in a modern HPO setting, utilizing a large search space of preproces-
sors, feature selectors, algorithms, and their hyperparameters. Our analysis will
address inherent overfitting from selecting the best hyperparameter configura-
tion observed so far and adaptive overfitting resulting from sampling specifically
around good-performing configurations.

2. Demonstrating the practical impact of overfitting: We demonstrate
that adaptive overfitting can be problematic in practical AutoML scenarios and
benchmarking practices, particularly when data is scarce. We investigate the
impact of overfitting with different validation sizes, to evaluate the extent to
which overfitting can occur in real-world problems.

CHAPTER 1. INTRODUCTION 8

3. Evaluation of mitigation methods: We assess various mitigation meth-
ods to address overfitting in HPO, including 10-fold internal cross-validation.
Furthermore, we introduce BO-THO, an algorithm based on Bayesian optimiza-
tion while integrating thresholdout [12], an algorithm designed in adaptive data
analysis to prevent adaptively overfitting a fixed holdout set, that to the best
of our knowledge has not been studied in combination with HPO before.

Through these contributions, this thesis aims to enhance the understanding of
adaptive overfitting in the context of HPO and investigate the effect of practical
strategies to improve the generalizability of HPO outcomes. The remainder of
this thesis will be organized as follows. Chapter 2 will formalize overfitting in
the HPO context. Chapter 3 will provide a thorough overview of the fields of
adaptive data analysis and (Bayesian) hyperparameter optimization. Chapter
4 will discuss related work investigating specifically the analysis and mitigation
of overfitting in HPO. Chapter 5 will describe the methodology, specifically the
algorithms used. Chapter 6 outlines the experiments designed, the results of
which will be discussed in Chapter 7. The conclusions and directions for future
work are provided in Chapter 8.

Chapter 2

Problem Statement

This chapter introduces the concepts and definitions used in this work. Mainly,
we formalize the objective of HPO and build a framework towards studying
overfitting in this context, resulting in MOEavg and MOEsel, the two main
metrics associated with the results presented in Chapter 7, which are presented
in Equation 2.4 and Equation 2.5 respectively.

A supervised machine learning problem is approached by designing a learn-
ing algorithm A that defines how to leverage the available data Dtrain to obtain
a model that achieves maximum performance when presented with previously
unobserved data from the same problem domain, generally referred to as the
test set Dtest. Importantly, Dtest should only be observed once to estimate the
final generalization performance. We formalize the generalization loss of model
A trained on Dtrain and evaluated on Dtest as L(A,Dtrain,Dtest), minimizing
which is equivalent to maximizing the generalization performance.

2.1 CASH

A wide range of learning algorithms exist, and the majority of these algorithms
are highly configurable with hyperparameters specific to them. We indicate the
space of available learning algorithms as A and the hyperparameter space used
to configure the algorithms as Λ, where a set of hyperparameters λ ∈ Λ config-
ures a learning algorithm A ∈ A, resulting in Aλ. Simultaneously selecting an
algorithm and optimizing its hyperparameters is known as the CASH problem
[61].

Now, we want to carefully select and configureAλ to minimize L(Aλ,Dtrain,Dtest).
However, since we are only allowed to access Dtest to determine the performance
of the final algorithm and hyperparameter configuration, an independent val-
idation procedure is required to assess the performance of individual configu-
rations in the search process. In this work, we employ two primary methods

9

CHAPTER 2. PROBLEM STATEMENT 10

to evaluate the performance of a configuration, the holdout method and k-fold
cross-validation. With the holdout method, a subset of Dtrain is designated as
the validation set Dval, which is inaccessible to the algorithm during training,
providing an estimate of the generalization performance of the algorithm. Al-
ternatively, k-fold cross-validation divides Dtrain into k distinct subsets, where
each subset serves as the validation set once, while the remaining k− 1 subsets
are used for training.

When using the holdout method as the validation procedure, the CASH prob-
lem can be formalized as follows:

A∗, λ∗ ∈ argmin
A∈A,λ∈Λ

L(Aλ,Dtrain,Dval) (2.1)

Alternatively, the k-fold cross-validation procedure can be employed within the
CASH formulation. In this context, Dm

train refers to data partition in fold m
with size k−1

k used for training, while Dm
val denotes the validation set of that

fold.

A∗, λ∗ ∈ argmin
A∈A,λ∈Λ

1

k

k∑
m=1

L(Aλ,Dm
train,Dm

val) (2.2)

As elaborated on in Chapter 1, the algorithm selection can itself be captured
in hyperparameters. Therefore, the CASH problem can be expressed in a single
set of hyperparameters, allowing HPO methods to approach tackling a CASH
problem.

2.2 Meta-overfitting

This work mainly investigates the disparity between the performance of a config-
uration measured with the internal validation procedure of the HPO mechanism
and the generalization performance on the truly unseen test set Dtest. This dif-
ference is referred to as the meta-overfitting error (MOE) and is defined as:

MOE (Aλ,Dtrain,Dval,Dtest) := L(Aλ,Dtrain,Dtest)− L(Aλ,Dtrain,Dval)
(2.3)

In the context of this work, we define an iteration as a sequential step of the

CHAPTER 2. PROBLEM STATEMENT 11

HPO procedure in which one configuration is proposed and evaluated. We define
a repetition as the execution of one complete HPO procedure. In this frame-
work, a repetition consists therefore of many sequential iterations. We measure
the aggregated MOE in an HPO algorithm using two metrics, the average MOE
(MOEavg) and the selected MOE (MOE sel). We store every configuration pro-
posed during every iteration and repetition in C, where Ci,j is the configuration
proposed in iteration i during repetition j.

Using this framework, the average MOE for one iteration i is defined as the
averaged MOE of all configurations proposed in that iteration over all n repeti-
tions, formalized as:

MOEavg(C,Dtrain,Dval,Dtest, i) :=
1

n

n∑
j=1

MOE (ACi,j
,Dtrain,Dval,Dtest)

(2.4)

Whereas the selected MOE of iteration i is the best configuration observed
so far at iteration i within one repetition. This corresponds to the configuration
that would have been selected if the repetition of HPO had been stopped at
that iteration. The selected MOE is formalized as:

MOE sel(C,Dtrain,Dval,Dtest, i) :=
1

n

n∑
j=1

MOE (Aλ∗ ,Dtrain,Dval,Dtest) (2.5)

Where:
λ∗ ∈ argmin

λ∈C1...i,j

L(Aλ,Dtrain,Dval) (2.6)

Chapter 3

Background

This chapter reviews the essential background for understanding overfitting in
hyperparameter optimization. Firstly, it explores the field of adaptive data
analysis, which, while not primarily focused on HPO, offers valuable insights
into overfitting due to sequential access to validation data. This phenomenon
bears similarities to overfitting in HPO and can provide a deeper understanding
of the issue. Secondly, the chapter addresses the general problem of HPO and
introduces the specific approach adopted in this thesis.

3.1 Adaptive data analysis

Assessing the performance of supervised machine learning algorithms requires
estimating the generalization of the model on a previously unseen data set, such
as a holdout or cross-validation procedure. The error resulting from this proce-
dure is then considered an approximation of the performance of the model on
the true underlying distribution. Performing such an assessment requires a fully
independent and separate holdout set sampled from the same data distribution.
For the results derived from this holdout set to be statistically valid, it can be
used only once [13]. However, in practice data is often scarce, and holdout sets
are often reused [11, 20, 66]. Practical examples of holdout set reuse include
machine learning competitions and popular benchmarks like the MNIST dataset
[37]. This reuse can lead to adaptive overfitting, where models become overly
tailored to the specific characteristics of the holdout set rather than generalizing
to the overall data distribution.

Adapting analyses, modeling choices, or hypotheses to the intermediate results
on the holdout set can produce overly optimistic performance or significance
measures when compared to the results on the true distribution. This effect is a
form of overfitting, sometimes referred to as adaptive overfitting, where models
can become excessively tailored to the specific characteristics of the holdout or
cross-validation procedure because of modeling choices based on holdout per-

12

CHAPTER 3. BACKGROUND 13

formance, rather than generalizing to the overall distribution [51]. The field of
adaptive data analysis, initiated by Dwork et al. [13], attempts to identify and
mitigate the corruption of the reliability of the holdout results in the adaptive
setting. The main metric associated with this field is the meta-overfitting error
(MOE)[1], which denotes the difference between the holdout or cross-validation
error and the expected error on the true distribution.

In the non-adaptive setting, an experimenter fully designs t models indepen-
dently without consulting the holdout set, after which all of them are evaluated
at once. Standard statistics show that the MOE of any of these models is ex-
pected to be in the order of O(1/

√
N), where N is the size of the holdout set.

Concentration bounds then show that the maximum MOE observed when eval-
uating t models is expected to be in the order of O(

√
log(t)/N). However, when

an experimenter is allowed to design a model at iteration t after the evaluation
of the first t− 1 models on the holdout set, it has been shown that the MOE of
this model can have a lower bound of Ω(

√
t/N) [13], a very pessimistic view on

the validity of holdout results when the number of models designed adaptively
is approximating the size of the holdout set.

Several mitigations on these pessimistic bounds have been proposed by sub-
sequent work. It has been pointed out that realistic experimenters do not in-
corporate all previous results efficiently and do not attempt to adversarially
overfit the holdout set [66]. Furthermore, compared to binary classification,
multi-class classification problems have been theorized to suffer less from adap-
tive overfitting with a factor linear in the number of classes [19]. Dwork et al.
propose thresholdout [12], an algorithm inspired by differentiable privacy allow-
ing an analyst to evaluate an exponential number of models on the holdout set.
Thresholdout is extensively elaborated on in Chapter 5.

Despite theoretical concerns, empirical evidence for adaptive overfitting in the
machine learning community is limited. Studies on benchmark s like MNIST,
CIFAR-10, and ImageNet have found little evidence of significant adaptive over-
fitting [53, 54, 64], although it has been pointed out that the replication of
datasets required for these studies can suffer from bias itself [16]. Similarly, a
meta-analysis of Kaggle competitions found minimal evidence of adaptive over-
fitting among competitors [56].

3.2 Hyperparameter optimization

The selection of hyperparameters is a critical process that significantly influ-
ences the performance of a configurable algorithm [63]. Hyperparameters are
generally defined by a configuration space, also referred to as a search space.
This space denotes which hyperparameters are optimized and what their pos-
sible options or ranges of options are [22]. Hyperparameters can vary in type,
examples being the learning rate in a neural network (continuous), the number

CHAPTER 3. BACKGROUND 14

of trees in a random forest (discrete), or the choice of activation function in a
neural network (categorical).

HPO generally deploys an inner and outer evaluation loop. The inner loop
evaluates suggested sets of hyperparameters to some validation procedure, fine-
tuning the HPO algorithm, while the outer evaluates the final selected hyperpa-
rameters to assess generalization performance on unseen data, and is only used
once [5].

A modern superset of HPO problems is CASH [61]. The CASH objective is
to build the best pipeline of algorithm components, such as feature selectors,
preprocessors, and learners, each with its own hyperparameters that can be
optimized. In the CASH formulation, hyperparameters are often conditional
on others. For instance, a hyperparameter might be inactive when a learner is
selected that does not deploy that hyperparameter. Approaching learning tasks
as a CASH problem has been shown to yield state-of-the-art performance and
is now implemented in many popular AutoML packages, such as Auto-WEKA,
auto-sklearn, AutoGluon, and TPOT [17, 21, 35, 36]. Defining a learning task
as a CASH problem introduces a vast amount of possible combinations of com-
ponents and hyperparameters, producing an incredibly complex search space.
This complexity possibly affects the potential of overfitting in a CASH approach,
the effect studied in this work.

Chapter 4

Related Work

Estimating the generalization performance of models has been a subject of ex-
tensive research in statistics and machine learning for decades. This chapter
explores the early work on variable selection (deciding which variables to in-
clude in an analysis based on a holdout set) and model selection, as well as the
recent advancements aimed at comprehending and mitigating overfitting within
the context of HPO.

The realization that machine learning evaluation methods can be biased when
many evaluations are performed is not novel. Freedman’s paradox [24] shows
that when many randomly sampled variables are available and selected based
on their correlation with the target, statistically significant regression results
predicting the target can be reported, while these variables would have no pre-
dictive value over the target in an unseen test set. Similarly, in 1997, it was
argued that always selecting the hypothesis with the lowest CV error out of
many evaluated hypotheses can lead to biased results and poor generalization
performance [47].

Following this work, it was shown that the evaluation of different variable se-
lection algorithms based on cross-validation is unreliable due to overfitting the
CV procedure [55]. These effects were empirically demonstrated in an effort to
determine the overfitting of manual model selection and hyperparameter tuning
[8].

The evidence that evaluating many models and hyperparameters can lead to
decreasing generalization performance suggests that specially HPO could be
susceptible to overfitting since it algorithmically proposes and evaluates numer-
ous configurations. However, overfitting in HPO is not regularly investigated in
literature and remains largely unexplored. This section will summarize the work
on overfitting in HPO, and the many uncertainties that still exist and require
further research.

15

CHAPTER 4. RELATED WORK 16

Nguyen et al. [48] show that BO can converge to sharp performance peaks,
observed on the validation procedure, instead of stable regions, resulting in
decreasing generalization, and propose an alternative acquisition function fa-
voring regions in the search space where small variations lead to small changes
in performance, over more unstable regions. Their approach shows an improved
generalization of the final HPCs found when tuning an SVM on two datasets,
both encapsulating around 200 observations, using both the holdout and cross-
validation methods. Although their work shows the danger of overfitting in
HPO and the possibility of finding viable mitigations, the empirical evaluations
are too limited to be representative of a modern HPO problem.

Lévesque [42] provides a more rigorous evaluation of overfitting in BO for HPO,
showing that overfitting significantly occurs when tuning an SVM using BO
with a Gaussian process surrogate function. His method was evaluated on 118
datasets, using 20 repetitions per dataset, providing a basis for overfitting in
BHPO. Interestingly, it was found that resampling the validation split (either
the holdout split or the entire cross-validation procedure) after each evalua-
tion increased the stability and overall performance of HPO, suggesting that
overfitting was actively decreasing the generalization performance of HPO. The
effect of resampling and its theoretical implications for the HPO loss surface
were recently further investigated [46], finding strong evidence of the overfit of
HPO algorithms, both for RS and BO implementations. Not surprisingly, over-
fitting occurred more strongly when using the holdout method compared to CV.

Fabris & Freitas [18] provide an analysis of the overfit of the auto-sklearn tool
[23]. However, a substantial portion of this work is dedicated to understanding
the general concept of overfitting in machine learning, where overly complex
models are fitted to noise in the training data, producing poor generalization
scores on the validation set. Nonetheless, this work presents a rare evaluation
of overfitting in a CASH problem on real-world datasets, showing large differ-
ences between the validation and test performances on some datasets, although
these effects were not significant across datasets, and based on one repetition
of auto-sklearn for each dataset, which limits the results considering the highly
stochastic nature of HPO. Additionally, auto-sklearn utilizes ensemble methods,
which are known to increase stability and generalization [10].

Finally, Makarova et al. [43] introduce an intuitive termination (early stop-
ping) criterion for BHPO that can mitigate overfitting by stopping the process
when further improvements are unlikely. This method relies on estimating the
simple regret bound [44] and uses cross-validation variance to refine termina-
tion decisions. Empirical results demonstrate its robustness and effectiveness in
maintaining test performance while reducing overfitting.

CHAPTER 4. RELATED WORK 17

4.1 Summary

Although various methods have been proposed to improve Bayesian hyperpa-
rameter optimization by mitigating significant overfitting, the underlying causes
and conditions leading to this issue remain largely unexplored, particularly in
the context of large-scale modern CASH approaches. To our knowledge, the
only investigation into overfitting within a CASH framework is the study by
Fabris & Freitas [18], which is specifically aimed at analyzing the auto-sklearn
tool [23], and is constrained to 18 classification problems with a single repetition
for each dataset. In contrast, this work addresses 48 classification problems and
16 regression tasks, while repeating each experiment 100 times, while isolat-
ing Bayesian optimization as an HPO method, where auto-sklearn introduces
additional techniques such as ensembling.

Chapter 5

Methodology

In this chapter, we present the methodology underlying the experiments in this
work, which are then described in Chapter 6. Specifically, we explicate the de-
tails of the three HPO algorithms utilized to approach the CASH problem on a
wide range of datasets. In Section 5.1 we elaborate on random search, Section 5.2
describes Bayesian optimization applied to HPO, and Section 5.3 explains and
formalizes thresholdout [12], the algorithm originating from adaptive data anal-
ysis which was introduced in Chapter 3. Subsequently, we introduce Bayesian
optimization with thresholdout (BO-THO), an integration of the thresholdout
algorithm within a Bayesian optimization approach for HPO. Finally, we elab-
orate in Section 5.5 on the different validation procedures used throughout this
work.

5.1 Random search

Random search [3] is included as a baseline, specifically to investigate non-
adaptive overfitting, since by definition random search is unaware of previously
evaluated results in future configuration suggestions. Random search indepen-
dently samples and evaluates a configuration each iteration.

5.2 Bayesian optimization

Bayesian optimization is an efficient approach for black-box optimization prob-
lems, especially when the evaluation of the objective function is computation-
ally expensive. This technique has become increasingly popular for hyperpa-
rameter optimization (HPO) [5, 29], where training and evaluating the learner
can require substantial computational resources. Bayesian optimization fits a
surrogate model to the previously evaluated configurations and estimates the
expected performance and uncertainty of new configurations. This approach
balances the trade-off between exploring regions in the search space with high
uncertainty, which have likely not been evaluated yet, and exploiting regions

18

CHAPTER 5. METHODOLOGY 19

that are known to perform well [2]. After proposing a new configuration, the
validation procedure is employed to provide an estimation of the performance
of the configuration, after which the surrogate model is refitted on the updated
archive of previous function evaluations. At the end of the optimization, typ-
ically the configuration with the highest performance estimation is selected,
although different selection procedures have been proposed [31, 50, 57].

5.2.1 Surrogate model

The surrogate model approximates the true objective relationship between hy-
perparameter configurations and their performance estimation using the valida-
tion procedure and is iteratively refined as more evaluations of configurations
are added to the Bayesian optimization archive. For each proposed configura-
tion, the surrogate model predicts its performance, along with an uncertainty
estimate regarding its prediction. Several surrogate models have been proposed,
with Gaussian processes [52] and random forests [29] being popular choices.

A Gaussian process inherently models uncertainty, making it particularly suit-
able for many applications of Bayesian optimization. However, Gaussian pro-
cesses have been shown to work well primarily with continuous input spaces
[39]. Since many hyperparameters in HPO search spaces are not continuous
[26]—but rather discrete (e.g., number of trees in a random forest), categorical
(e.g., activation function in a neural network), or conditional (e.g., hyperparam-
eters that are only active if the selected model deploys them)—random forests
often outperform Gaussian processes in complex search spaces [15, 39]. Addi-
tionally, random forests are much cheaper to evaluate, as Gaussian processes
scale cubically with the number of evaluations in the archive [30]. However, the
uncertainty measure in random forests is often computed using the standard
deviation of the predictions of individual trees, which is not a direct uncertainty
measure and might behave sub-optimally [5].

5.2.2 Acquisition function

The acquisition function guides the search process in Bayesian optimization by
suggesting the next point to evaluate based on the surrogate model’s predic-
tions. It quantifies the trade-off between exploration (sampling in regions of
high uncertainty) and exploitation (sampling in regions of expected high per-
formance). Many acquisition functions have been proposed, of which one of the
most popular is expected improvement [32, 59], which is shown in Equation 5.1.
Equation 5.1 is largely adapted from [59].

EI(x; {xn, yn}, λ) = σ(x; {xn, yn}, λ) (γ(x)Φ(γ(x)) +N (γ(x); 0, 1)) (5.1)

where:

• σ(x; {xn, yn}, λ) is the predictive standard deviation of the Gaussian pro-
cess at point x.

CHAPTER 5. METHODOLOGY 20

• γ(x) is the standardized improvement, defined as:

γ(x) =
f(xbest)− µ(x; {xn, yn}, λ)

σ(x; {xn, yn}, λ)
(5.2)

• µ(x; {xn, yn}, λ) is the predictive mean of the Gaussian process at point
x.

• f(xbest) is the best observed value so far.

• Φ(·) is the cumulative distribution function of the standard normal distri-
bution.

• N (·; 0, 1) is the probability density function of the standard normal dis-
tribution.

5.2.3 Sequential model-based algorithm configuration

Sequential model-based algorithm configuration (SMAC) [29, 40] is an imple-
mentation of Bayesian optimization for HPO using a random forest surrogate
model. SMAC is employed in many popular HPO tools, such as auto-sklearn
[23] and AutoWEKA [35, 61].

The functionality of Bayesian optimization in this work is implemented using
SMAC3 [40]. SMAC3 is a recently implemented Python package designed for
various hyperparameter optimization tasks, known for its sample efficiency and
robustness. In this study, SMAC3 was initialized by combining a random for-
est surrogate model and an expected improvement acquisition function, where
the use of a random forest as the surrogate model helps in handling complex,
high-dimensional configuration spaces, as are typically encountered in a CASH
problem. In every iteration, the computed validation loss, either on the hold-
out set or using the cross-validation procedure, is used internally to update the
surrogate model.

5.3 Thresholdout

Thresholdout [12] was designed to mitigate overfitting when reusing a holdout
set adaptively, to allow the evaluation of multiple hypotheses without compro-
mising the statistical validity of the results. In this context, a hypothesis refers
to any operation that requires querying an independent set of data for evalua-
tion and can be produced algorithmically or by a human analyst. Extrapolating
to hyperparameter optimization, a hypothesis would refer to a configuration to
be evaluated.

Thresholdout provides a performance estimate on the holdout set, introduc-
ing noise to ensure the subsequent, adaptively chosen hypotheses do not overfit

CHAPTER 5. METHODOLOGY 21

the holdout set. When the empirical difference between the train loss and hold-
out loss is below some threshold, thresholdout provides the unchanged train
loss to the observer. Note that this can be done infinitely without risking adap-
tively overfitting the holdout set since usage of the training data is unrestricted.
When the solution is overfitted to the train set to an extent that exceeds the
threshold, a generalization performance estimate is required to evaluate the hy-
pothesis. In this case, thresholdout adds noise to the holdout performance, the
result of which is then accessible to the observer. When thresholdout is utilized
to preserve the statistical validity of the holdout results, an overfitting budget
is decremented when the threshold is exceeded, refusing further holdout eval-
uations when exhausted. In the context of HPO however, we are interested in
reducing or preventing adaptive overfitting and improving generalization rather
than ensuring our results are statistically valid, which is why the budget was
omitted from thresholdout in this work.

The noise within the thresholdout algorithm is sampled from the Laplacian
distribution (a symmetrical exponential distribution) in the full version of the
author’s work [12], motivated by its successful use within the field of differen-
tiable privacy [14]. However, in a short version of the work where thresholdout
is presented, the authors propose sampling from the Gaussian distribution [11].
In this work, the Laplacian distribution is used for the noise injection within
thresholdout.

Algorithm 1 contains the pseudo-code for a thresholdout in the general context.
The validation set Dval represents any holdout set that is adaptively reused.
Note that this differs from our requirements for a test set, which can only be
accessed once. Algorithm 1 is configurable with the threshold T and noise rate
ρ, introducing a trade-off between the amount of information released about the
holdout set and the resistance against adaptive overfitting, where an unsuitably
low noise rate allows adaptive overfitting, while a very high noise rate would
give too little information about the generalization of the hypothesis. The ini-
tialization of the noise rate and threshold in this work is further elaborated on
in Section 5.4.

CHAPTER 5. METHODOLOGY 22

Algorithm 1: Thresholdout

Input: Training set Dtrain, holdout set Dval, threshold T , noise rate ρ,
loss L

1 Sample γ ∼ Laplace(2 · ρ);

2 T̂ ← T + γ;

3 foreach hypothesis ϕ do

4 Sample η ∼ Laplace(4 · ρ);

5 if |LDval
(ϕ)− LDtrain

(ϕ)| > T̂ + η then

6 Sample ξ ∼ Laplace(ρ);

7 Sample γ ∼ Laplace(2 · ρ);

8 T̂ ← T + γ;

9 Output LDval
(ϕ) + ξ;

10 else
11 Output LDtrain(ϕ);

5.4 Bayesian optimization with thresholdout

To investigate the potentially mitigating effect of methods proposed in adaptive
data analysis on adaptive overfitting, thresholdout, as introduced by Dwork et
al. [12] and described in Section 5.3 is applied to the internal Bayesian opti-
mization procedure, henceforth referred to as BO-THO.

BO-THO works similarly to the general Bayesian optimization for HPO but
internally keeps two archives storing configurations and their evaluations, Htrue

and Htho. Htrue stores the actual evaluations of configurations on the validation
procedure, and is used to select the final configuration after all iterations have
been completed. In contrast, Htho is used to fit the surrogate function and is
updated each iteration with the reported evaluation by thresholdout. Using this
algorithmic design, in theory, BO-THO selects the configuration with the small-
est validation loss similar to regular Bayesian optimization, but is prevented
from sampling actively around highly overfitted solutions by thresholdout.

BO-THO is formalized in Algorithm 2. In lines 1 & 2 the Laplacian noise
used within thresholdout is sampled. Lines 3 & 4 initialize the two archives ex-
plained earlier in this chapter. Line 5 defines the number of iterations performed
in BO-THO, which is an experimental setting. Then, in line 6 the surrogate
model of Bayesian optimization is fitted on all previous configurations and their
evaluations produced by the thresholdout mechanism, stored in Hthot−1

. In
this formulation, Hthot−1

is the set of every configuration and its performance

CHAPTER 5. METHODOLOGY 23

estimation from thresholdout up until iteration t. The predictive mean µ and
predictive standard deviation σ from the surrogate model of the Bayesian opti-
mization procedure, the acquisition function described in Section 5.2.2 is built
in line 7. In line 8, the configuration with the highest expected improvement
is selected and proposed, which is used in line 9 to initialize a learning algo-
rithm. Line 10 uses the available training data to train this algorithm. Lines 11
& 12 sample Laplacian noise for the internal use of thresholdout and compute
whether the difference in train and validation loss exceeds the threshold. If this
is the case, lines 13-16 are aimed at sampling the required noise and adding
the configuration and its noisy evaluation to the archive. If the difference did
not exceed the threshold, in line 18 the loss computed on the training set is
added to the archive. In any case, line 19 adds the empirical validation loss to
the true archive, which is not accessible to the BO-THO algorithm before all
iterations are completed. Finally, the algorithm outputs the configuration in
the true archive with the highest validation performance.

BO-THO is configurable with the noise rate hyperparameter, which controls
for the amount of information provided about the validation set when overfit-
ting is found. In line with the experiments performed by Dwork et al. [12], the
noise rate was divided by the square root of the validation size, since a larger
validation set is theoretically less prone to overfitting and therefore allows for
less noisy evaluations. The threshold was set to double the noise rate, also di-
vided by the square root of the validation set size. We attempted several noise
rates between 0.00625 and 1.0, where the range between 0.25 and 0.5 visually
seemed to balance information and overfitting best. For all future experiments,
we selected a noise rate of 0.25.

CHAPTER 5. METHODOLOGY 24

Algorithm 2: BO-THO

Input: Search space Λ, Training set Dtrain, holdout set Dval, threshold
T , noise rate ρ, loss L, iterations N

1 Sample γ ∼ Laplace(2 · ρ);

2 T̂ ← T + γ;

3 Htrue0 ← ∅ // Initialize true archive ;

4 Htho0 ← ∅ // Initialize thresholdout archive ;

5 for t = 0 to N do

6 Fit surrogate model µ(x), σ(x) on Hthot−1
;

7 Define acquisition function a(x) from µ(x) and σ(x);

8 Propose new configuration with λt ← argmax
λ∈Λ

a(λ);

9 Initialize new algorithm Aλt
with configuration λt;

10 Fit model Aλt on Dtrain;

11 Sample η ∼ Laplace(4 · ρ);

12 if |L(Aλt
,Dtrain,Dval)− L(Aλt

,Dtrain,Dtrain)| > T̂ + η then

13 Sample ξ ∼ Laplace(ρ);

14 Sample γ ∼ Laplace(2 · ρ);

15 T̂ ← T + γ;

16 Hthot ← Hthot−1
∪ (λt, L(Aλt

,Dtrain,Dval) + ξ);

17 else

18 Hthot ← Hthot−1
∪ (λt, L(Aλt

,Dtrain,Dtrain));

19 Htruet ← Htruet−1
∪ (λt, L(Aλt

,Dtrain,Dval));

Output: λ∗ ∈ argmin
λ∈Htrue

L(Aλ,Dtrain,Dval)

5.5 Resampling and evaluation

As mentioned in earlier chapters, the evaluation of a machine learning algorithm
aims to provide a reliable approximation of the generalization performance of
that algorithm on unseen data. Although many methods have been proposed,
the two most popular remain the holdout and cross-validation methods [4]. The
holdout method sets aside a portion of data for validation purposes before the
model selection procedure, which is used as validation data in every evaluation
during the selection process. Alternatively, the k-fold cross-validation procedure
repeats the training and validation procedure k times independently, where each
of these uses a fixed, different fold with size 1/k of the available data as valida-

CHAPTER 5. METHODOLOGY 25

tion. The final evaluation of that pipeline is then averaged over the k validation
folds. While the holdout method is simple and cheap to evaluate, it is often
unstable and provides unreliable estimations of generalization performance, as
mentioned in Chapter 4. The holdout method mitigates this effect partially by
leveraging all data as validation data throughout the procedure, at the cost of
training the pipeline k times instead of once for the holdout method. This can
be prohibitive in many practical applications of HPO, especially when k is large.

Our experimental procedure leverages both the holdout and cross-validation
methods. Unless explicitly mentioned otherwise, in the case of the holdout
method, 1/3 of the available data is used for validation and 2/3 for training pur-
poses, mirroring the default setting of auto-sklearn [21]. When cross-validation
is applied, we use 10 fixed folds, in line with the standard evaluation procedure
for popular AutoML benchmarks [27, 28].

The reported metrics in this work are accuracy for classification tasks, and
root mean squared error (RMSE) for regression tasks.

Chapter 6

Experimental Setup

In this chapter, we present the range of real-world tasks and experiments used
to assess the effects of overfitting in a modern CASH context. To broaden
the impact of our conclusions, binary classification, multi-class classification,
and regression were considered extensively. Since the results of HPO can differ
massively across separate repetitions of the algorithms, the results of every
experiment are averaged over 100 repetitions. The delivered code implementing
the experiments can be examined in this repository.

6.1 Datasets

A representative range of datasets associated with popular benchmarks in HPO
was selected for this work. In total, for both regression and classification tasks,
64 datasets were included, resulting in 29 binary classification tasks, 19 multi-
class classification tasks, and 16 regression tasks.

6.1.1 Classification

For the classification datasets, the OpenML-CC18 Curated Classification bench-
mark [6] was utilized, including every dataset with at most 50 features. High-
dimensional datasets were thus excluded due to limitations in computational
resources. This resulted in 29 datasets for binary classification and 19 datasets
for multi-class classification. The division of the number of classes in the result-
ing 48 datasets is visualized in Figure 6.1. A complete overview of the included
datasets in this work and some of their characteristics can be examined in Ap-
pendix B.

26

https://github.com/sietseschroder/ThesisOverfittingCASH

CHAPTER 6. EXPERIMENTAL SETUP 27

Figure 6.1: Number of classes in classification tasks used for experiments.

6.1.2 Regression

The regression tasks from the AutoML benchmark were included [27]. Sim-
ilarly to the selection of the classification tasks, datasets with more than 50
features were excluded, resulting in 16 datasets. Appendix B.2 provides a com-
plete overview of these datasets. Note that two datasets were omitted due to
compatibility issues.

6.2 Search space

The search spaces utilized throughout the experiments described in this section
follow the CASH formulation, as explained in Section 3.2. Two search spaces
were defined, for regression and classification, and were designed to resemble
each other as closely as possible, to allow for fair comparison. Both search
spaces include the same preprocessing components with roughly the same as-
sociated hyperparameters. If appropriate, for each classifier the corresponding
regressor was included in the search space. For example, a decision tree classifier
and a decision tree regressor are included in respectively the classification and
regression search spaces.

Both search spaces encase six top-level categorical hyperparameters correspond-
ing to machine learning pipeline components, which are displayed in Table 6.1
in order of appearance in the pipeline. Only the base model and imputer are
always included. For the other components, one of the categories indicates the
absence of this preprocessor. Accumulating the total pipeline possibilities, not

CHAPTER 6. EXPERIMENTAL SETUP 28

regarding hyperparameters of individual components, results in 4 896 possible
classification pipelines and 4 320 regression pipelines, highlighting the complex-
ity of the CASH problem. For multiclass classification, two base classifiers
(Lasso and ElasticNet) were excluded due to compatibility issues with this type
of problem, resulting in 4 320 possible pipelines.

As expected, each possible component of the pipeline, such as a specific base
classifier, is controlled by one or several hyperparameters as well. An extensive
overview of hyperparameters and their associated ranges used in this work is
given in Appendix A. To increase compatibility across pipelines and a wide range
of datasets, several combinations of hyperparameter choices were forbidden, such
as the absence of a scaler in combination with a multi-layered perceptron as the
base model, which often raises an error.

All pipeline components are implemented using the Python scikit-learn library
[49]. The implementation of the configuration space relies heavily on the Python
ConfigSpace library [41]. For an overview of all software packages and versions
used, the reader is referred to Appendix C.

Hyperparameter # choices
encoder 2

missing values imputer 3
feature selector 4

scaler 8
dimensionality reducer 3

base classifier 17
base regressor 15

Table 6.1: High-level functional pipeline components and the number of possible
values.

6.3 Experiments

The empirical contribution of this work addresses three lines of experimenta-
tion. A large-scale experiment (Section 6.3.1) using the holdout method as the
validation procedure is performed over 64 datasets, including classification and
regression problems. Furthermore, different validation set sizes are compared to
broaden the applicability of the results over datasets of varying sizes (Section
6.3.2). Finally, 10-fold cross-validation is investigated as a mitigation method
of overfitting (Section 6.3.3). The results of these experiments are respectively
discussed in Section 7.1, Section 7.2, and Section 7.3 respectively.

CHAPTER 6. EXPERIMENTAL SETUP 29

6.3.1 Large-scale holdout

The large-scale holdout experiment is conducted on a comprehensive set of 64
datasets, encompassing both classification and regression tasks. This experi-
ment aims to investigate the following high-level research question:

To what extent does overfitting occur in HPO approaches for the CASH problem
when utilizing the holdout method for validation?

Additionally, the study addresses the following subquestions:

• Does Bayesian optimization exhibit adaptive overfitting?

• Can thresholdout mitigate adaptive overfitting when integrated within Bayesian
optimization?

• Does overfitting occur less in multiclass classification and regression tasks
compared to binary classification?

Although the modeling decision on how to divide the available data into train,
validation, and test sets is not trivial and often to be determined by the mod-
eler, we believe a 2/1 ratio between Dtrain and Dval is representative for mod-
ern machine learning tasks, which is also the default setting in auto-sklearn
[21]. Furthermore, our experimental setup requires a test set of sufficient size.
Therefore, in the large-scale holdout experiment, we utilize the following sam-
pling procedure for dividing the available data in (Dtrain, Dval, and Dtest):

• Datasets larger than 3 000 instances are split in (1 000, 500, remainder).

• Datasets smaller than 3 000 instances are split using (40%, 20%, 40%).

Arguably, the selection of effectively 1 500 instances per dataset can be consid-
ered relatively small. However, the median dataset size of the OpenML-CC18
[6] is approximately 1 800, indicating our experimental setup is a realistic rep-
resentation of real-world tasks.

Note that due to computational limitations, the maximum number of test in-
stances was limited at 100 000. In the case of datasets with more than 101 500
instances, the remainder was discarded. Every repetition of every experiment
randomly shuffled the entire dataset before sampling these splits, to ensure va-
lidity of the averaged results.

6.3.2 Holdout with varying validation sizes

To investigate the effect of varying validation set sizes on adaptive overfitting,
an experiment was conducted using four datasets for binary classification from
the OpenML-CC18 benchmark [6]. These datasets were chosen for their large
instance counts, allowing for validation sets up to 10 000 instances, while still
providing a sufficiently large test set to reliably approximate the performance

CHAPTER 6. EXPERIMENTAL SETUP 30

on the true distribution. This experiment aims to answer the following research
question:

How does the size of the validation set influence the extent of overfitting in
HPO approaches for the CASH problem, and does this effect differ between ran-
dom search, Bayesian optimization, and BO-THO?

Answering this question provides insight regarding overfitting in HPO approaches
to CASH for datasets of varying sizes. In this experiment, every repetition in-
volved re-sampling the test set to ensure 11 000 instances were available for
training and validation. The training set size was fixed at 1 000 instances, while
validation set sizes were varied, with 100, 200, 500, 1 000, 2 000, 5 000, and
10 000 instances being used. Any remaining instances after sampling were dis-
carded for that run. Each repetition consisted of seven runs for random search,
Bayesian optimization, and BO-THO algorithms, using a fixed test set and re-
sampled training and validation sets of the specified sizes.

6.3.3 10CV

Due to the tenfold increase in the number of times a configured pipeline is fit-
ted and evaluated, the 10CV experiments were restricted to a selection of 4
datasets, which can be examined in Appendix B.3. This experimental setup
aims to answer the following research question:

Does 10-fold cross-validation mitigate overfitting in HPO approaches for the
CASH problem compared to the holdout method?

Answering this question will also explicitly show insight into the suitability
of 10CV as a benchmark evaluation metric, showing the expected amount of
overfitting for a configuration produced by HPO and evaluated using 10CV.

The data splitting practices are replicated from the holdout experiment, elabo-
rated on in Section 6.3.1, using either 60% of available data for datasets smaller
than 3 000 instances, and 1 500 instances otherwise. Every repetition of an ex-
periment, the available instances for training and validation were resampled.

The validation loss of the 10CV procedure is averaged over the validation splits
of the 10 folds, and equivalently to the holdout experiment described in Section
6.3.1 can be exploited by the CASH algorithms to suggest new configurations.
However, assessing the generalization performance of a configuration on the un-
seen test set in the 10CV procedure requires some thought, since essentially
we obtain 10 trained pipelines. Several methods exist, such as using the fitted
pipeline of one of the folds, averaging the predictions of all 10 fitted models
on the test set, or retraining the same configuration on all available data. In

CHAPTER 6. EXPERIMENTAL SETUP 31

the experiments in this work, the fitted model in each fold predicts both the
validation and test set, and the final test performance is estimated by aver-
aging the predictions of the 10 fitted pipelines, identical to the computation
of the cross-validation score. Selecting the fitted pipeline from one fold might
provide a biased estimation, retraining the configuration was computationally
undesirable, and averaging the predictions of the fitted cross-validation pipelines
is a form of ensembling, arguably benefiting from the often positive effects of
ensembling on performance, leading to unfair comparison with the validation
estimates, which are not the result of ensembling several models.

6.3.4 Repetitions

Every experiment on one dataset is repeated 100 times using different random
seeds. Every repetition consists of 250 iterations of random search, Bayesian
optimization, and BO-THO. At each iteration, the pipeline is trained and eval-
uated on both the validation and unseen test set. The validation scores, either
calculated using holdout or 10-fold CV, are in the case of Bayesian optimization
and BO-THO used internally to propose new configurations. The test scores
are stored at each iteration but remain unobserved for the algorithms.

Every dataset therefore includes training and evaluating a machine pipeline
75,000 times. Including the 10CV experiments described in Section 6.3.3 and
experiments with altering validation sizes, roughly 10 million pipelines were
trained and evaluated in our experiments. On 20 Intel(R) Xeon(R) CPU @
2.20GHz with 2 cores, the full experiments ran in roughly 13 days.

6.4 Statistical analysis

Throughout the discussion of the results produced by the experiments described
in this chapter, several statistical tests will be conducted to support the analy-
ses. This section will briefly introduce and motivate the use of these tests.

As motivated in earlier chapters, adaptive overfitting occurs when repeatedly
using a validation procedure causes results to be overinflated compared to the
performance measured on the true distribution. In the context of HPO, this
entails suggesting progressively more overfitted configurations when more eval-
uations have been completed since more information about the validation pro-
cedure is incorporated in the suggestion of new configurations. This indicates
the existence of a relationship between the number of iterations and the aver-
age amount of the configuration is overfitted in that iteration. We statistically
investigate this effect using Spearman’s rank-order correlation [60], which is a
non-parametric test and therefore can assess the relationship between variables
that are not normally distributed. Since the variable containing the iterations
is uniformly distributed, a non-parametric test is most appropriate. A higher
coefficient indicates a stronger relationship between the iteration in which a

CHAPTER 6. EXPERIMENTAL SETUP 32

configuration is proposed and its MOE. The p-value from Spearman’s correla-
tion test is consulted to determine the significance of the effect, where the null
hypothesis states no significant relation between the variables exists.

To compare the selected MOE of the three algorithms after 250 iterations, we
use a test of equal variances (ANOVA) [45]. For this test to be appropriate,
all groups have to be normally distributed and homogeneity of the variances of
the groups is assumed. We test the normality of each of the groups individu-
ally using Shapiro’s test [58], where the null hypothesis is that the sample is
normally distributed. We test the homogeneity of variances using Levene’s test
[38], where the null hypothesis is that the variances of the groups are equal.

Chapter 7

Results

In this chapter, we will thoroughly elaborate on the results of the methods and
experiments introduced in Chapter 5 and Chapter 6 respectively, attempting to
answer the research questions stated in Section 6.3, with the first three sections
in this chapter corresponding to the three experimental subsections in Section
6.3. Throughout this chapter, overfitting will be addressed in two primary ways,
as formally defined in Chapter 2:

1. Average MOE: the average MOE of all configurations suggested in itera-
tion i, across all repetitions. Formalized in Equation 2.4.

2. Selected MOE: the MOE of the best configuration observed so far at itera-
tion i measured on the validation procedure, averaged over all repetitions.
Formalized in Equation 2.5.

We build this chapter by extensively reporting and visualizing the results using
the adult dataset, which consists of 15 features, 48 842 instances, and a binary
classification task to predict if the salary of a person is over 50 000 dollars a year
[34]. We then extrapolate these results to all datasets relevant to the analysis
and report the full results in tabular format. The remainder of this chapter is
organized as follows. Section 7.1 presents the large-scale holdout experiments,
including classification and regression tasks, and is therefore the majority of
this chapter. Section 7.2 and Section 7.3 present the experiments with varying
validation sizes and 10-fold cross-validation respectively. Finally, the limitations
of this work are discussed in Section 7.4.

7.1 Large-scale holdout results

In this section, we investigate to what extent overfitting occurs in HPO ap-
proaches for the CASH problem when utilizing the holdout method for valida-
tion. Since binary classification, multiclass classification, and regression tasks
are considered in combination with random search, Bayesian optimization, and

33

CHAPTER 7. RESULTS 34

BO-THO, this section will encompass the majority of this chapter.

7.1.1 Results on the Adult dataset

Figure 7.1 shows the holdout and test evaluations of all configurations produced
by random search, Bayesian optimization, and BO-THO against the y = x line,
providing a comparison with the situation in which no overfitting is observed.
Unsurprisingly, the results show that all algorithms are susceptible to overfitting,
as indicated by the deviation from the y = x line for the configurations with the
highest validation evaluations, which are isolated and magnified in Figure 7.2.
Logically, for random search, this effect is not driven by the iteration in which
the configuration was suggested, in contrast to Bayesian optimization, which
seems to be sampling more around overfitted regions in later iterations.

Figure 7.1: Test and validation accuracy scores of all configurations produced
by the different HPO algorithms on the adult dataset. The color indicates in
what iteration they were suggested.

Figure 7.2: Test and validation accuracy scores of highest performing configu-
rations produced by the different HPO algorithms on the adult dataset. The
color indicates in what iteration they were suggested.

To investigate this effect on the adult dataset further, we consider the results
in Figure 7.3a which visually shows a linear relationship between the iteration
in which a configuration is proposed by Bayesian optimization and its average

CHAPTER 7. RESULTS 35

MOE. Assessing Spearman’s correlation coefficient [60], as motivated in Section
6.4, resulted in a coefficient of 0.179 (p = 0.000), providing strong evidence
against the null hypothesis, showing that a relation exists between the iteration
in which a configuration is proposed and its MOE. This indicates that Bayesian
optimization is adaptively overfitting a validation set with 500 instances from
the adult dataset. As should be expected, no significant relationship between
iteration and MOE was found for random search. In the case of BO-THO, a sig-
nificant relationship was found (p = 0.000) with a coefficient of 0.029, showing
much more resilience against adaptive overfitting when compared to Bayesian
optimization. This answers two of our research questions, showing that Bayesian
optimization exhibits adaptive overfitting and that adopting thresholdout within
the Bayesian optimization mechanism partially mitigates this effect.

Projecting these results to the practical HPO space, the selected MOE was
considered, which is shown for random search, Bayesian optimization, and BO-
THO in Figure 7.3b. These results show that for the binary classification task in
the adult dataset, the selected configuration found by random search, Bayesian
optimization, and BO-THO after 250 iterations has a MOE of 0.014, 0.022, and
0.018 respectively.

(a) Average MOE (b) Selected MOE

Figure 7.3: The average MOE (a) and selected MOE (b) observed at each
iteration by RS, BO, and BO-THO on the adult dataset, averaged over 100
repetitions.

In order to statistically compare the selected configurations by random search
and Bayesian optimization after 250 iterations, we conducted a series of tests
to confirm the assumptions required for an ANOVA test [45], as motivated in
Section 6.4. We confirmed the normality of all three groups using Shapiro’s test
[58], resulting in random search, Bayesian optimization, and BO-THO reporting
significance levels of p = 0.733, p = 0.453, and p = 0.216 respectively, not
rejecting the null hypothesis that the sample is normally distributed for any of
the algorithms. Furthermore, Levene’s test (p = 0.642) does not reject the null
hypothesis that the variances of the groups are significantly different, validating

CHAPTER 7. RESULTS 36

the use of an ANOVA test for comparison. The ANOVA results revealed a
statistically significant difference in the MOE of the selected configurations of
random search, Bayesian optimization, and BO-THO after 250 iterations on the
adult dataset (p = 0.001), indicating that the results presented in Figure 7.3 are
significantly different between the algorithms.

Figure 7.4: Average development of observed validation and test performances
of RS, BO, and BO-THO for 250 iterations on the adult dataset.

Additionally, we examine the average progression of three metrics across all rep-
etitions: the best validation performance observed (val), the test performance of
the corresponding configuration (selected test), and the best test performance
observed (best test). The latter represents the potential performance if the
best configuration on the test set is selected. Figure 7.4 illustrates this pro-
gression, averaged over 100 repetitions, consistent with the previously reported
results. Notably, the substantial gap between the best-observed generalization
performance and the selected generalization performance highlights the need
for more sophisticated evaluation procedures than the naive holdout procedure.
Important to mention is the size of the test set (47 342 instances), which un-
usually large size provides stable and reliable performance estimations, making
it unlikely a configuration performing very well on the test set was sampled by
chance. Interestingly, the performance of the selected configurations after 250
iterations deviates relatively little between the algorithms, although Bayesian
optimization outperforms random search and BO-THO on this dataset. Cu-
riously, the increase on the test set seems hardly present after 100 iterations
for all algorithms, while the performance of the configuration scoring best on
the validation procedure keeps increasing, especially for Bayesian optimization,
indicating that much of the optimization after a certain number of iterations

CHAPTER 7. RESULTS 37

does not yield actual improvement, but rather is only overfitting the validation
procedure more.

7.1.2 All binary classification results

In this section, we summarize the results of all binary classification datasets.
Table 7.1 shows the results using the holdout method described in 6.3.1. The
values are sorted based on the coefficient of Spearman’s correlation test on the
average MOE per iteration for Bayesian optimization. The p-value and signifi-
cance of each correlation are shown. The significance was determined using the
conservative Bonferroni correction [7] to correct for testing multiple hypotheses,
setting the p-value threshold to 1.9e-38, resulting in 25 significant linear rela-
tionships out of 29 datasets, indicating that adaptive overfitting by Bayesian
optimization is widely spread across binary classification tasks. Furthermore,
we can observe that overfitting can be expected more for tasks with lower em-
pirical performance of the best classifier, which is not unexpected, considering
less room for improvement exists in case the best classifier shows high accuracy
on the task.

ID Val size RS score RS MOE BO score BO MOE BO-THO score BO-THO MOE Correlation p-value Significant
23381 100 0.585 0.095 0.593 0.098 0.586 0.094 0.241 0.0 Yes
23517 500 0.505 0.058 0.506 0.062 0.505 0.057 0.232 8.29e-302 Yes
1510 114 0.956 0.030 0.958 0.030 0.959 0.027 0.215 1.38e-259 Yes
1480 116 0.692 0.079 0.697 0.085 0.693 0.083 0.216 5.03e-261 Yes
31 200 0.729 0.046 0.731 0.055 0.727 0.050 0.206 3.24e-238 Yes
1494 211 0.848 0.030 0.848 0.042 0.842 0.041 0.198 2.55e-219 Yes
6332 108 0.725 0.066 0.729 0.083 0.722 0.078 0.193 2.41e-209 Yes
37 153 0.752 0.047 0.755 0.048 0.748 0.053 0.192 1.25e-206 Yes
29 138 0.858 0.037 0.860 0.045 0.858 0.038 0.181 1.44e-183 Yes

40994 108 0.932 0.033 0.933 0.038 0.930 0.035 0.181 1.33e-183 Yes
1464 149 0.772 0.038 0.772 0.043 0.770 0.039 0.180 4.69e-181 Yes
1590 500 0.841 0.014 0.842 0.022 0.839 0.018 0.179 1.75e-178 Yes
1461 500 0.892 0.015 0.894 0.018 0.891 0.016 0.179 1.37e-181 Yes
1049 291 0.897 0.025 0.898 0.028 0.897 0.026 0.178 8.85e-177 Yes
1063 104 0.822 0.053 0.823 0.057 0.823 0.052 0.177 1.64e-174 Yes
38 500 0.979 0.004 0.979 0.008 0.978 0.007 0.177 1.64e-174 Yes
15 140 0.961 0.019 0.959 0.022 0.959 0.020 0.174 3.44e-169 Yes
1053 500 0.808 0.017 0.809 0.020 0.807 0.019 0.157 8.11e-138 Yes
1067 422 0.853 0.019 0.854 0.023 0.852 0.022 0.145 2.62e-117 Yes
1489 500 0.846 0.012 0.849 0.024 0.848 0.019 0.143 4.69e-115 Yes
4534 500 0.937 0.010 0.937 0.016 0.935 0.013 0.139 8.26e-109 Yes
1068 222 0.929 0.015 0.929 0.019 0.930 0.015 0.134 8.49e-100 Yes
1050 312 0.892 0.020 0.892 0.023 0.892 0.020 0.124 4.52e-86 Yes
151 500 0.792 0.012 0.797 0.022 0.791 0.018 0.119 4.65e-79 Yes

40701 500 0.932 0.006 0.937 0.012 0.932 0.010 0.104 1.50e-60 Yes
3 500 0.982 0.003 0.984 0.007 0.983 0.005 0.080 1.88e-36 No

40983 500 0.980 0.005 0.980 0.007 0.979 0.006 0.076 1.34e-33 No
1462 274 0.997 0.003 0.997 0.003 0.997 0.003 0.054 8.14e-18 No
50 191 0.981 0.004 0.983 0.006 0.981 0.009 0.019 0.003 No

Table 7.1: Results after 250 iterations on all binary classification tasks, averaged
over 100 repetitions using the holdout method. The score for each method is
the accuracy of the final selected configuration.

7.1.3 Multiclass classification

This section reports the results of the holdout experiment on multiclass classi-
fication tasks. Specifically, an attempt is made to identify to what extent we
can expect adaptive overfitting on multiclass classification and regression tasks
compared to binary classification tasks. This comparison has been a region of
interest and was theoretically approached in adaptive data analysis [19], and

CHAPTER 7. RESULTS 38

was phrased as a research question in Section 6.3.1, but to our knowledge has
not been investigated empirically. As described in Section 6.4, we consider the
coefficient of Spearman’s correlation between the iteration in which a configu-
ration is proposed and its MOE to be an indication of the amount of adaptive
overfitting, allowing for comparison between tasks, where comparison based on
accuracy or even RMSE for regression tasks would not be appropriate.

Since we consider 19 multiclass tasks, the Bonferroni correction shows a sig-
nificance threshold of 1.9e-25. This indicates a significant linear correlation
between the number of iterations and the average MOE of Bayesian optimiza-
tion in 16 datasets, indicating that Bayesian optimization is in fact adaptively
overfitting to the multiclass task as well. Furthermore, we do not find a lin-
ear connection between the number of classes and Spearman’s coefficient, or
the MOE of the selected configuration by Bayesian optimization. Therefore,
although we are limited in our comparison, we do not find evidence that less
adaptive overfitting occurs in classification tasks when the number of classes
increases. Considering random search and BO-THO, we observe similar results
as in binary classification, both being outperformed by Bayesian optimization,
but less prone to overfitting.

ID Classes Val size RS score RS MOE BO score BO MOE BO-THO score BO-THO MOE Coefficient p-value Significant
469 6 159 0.194 0.074 0.196 0.083 0.190 0.080 0.280 0.000 Yes
23 3 294 0.531 0.044 0.535 0.053 0.533 0.045 0.212 1.90e-253 Yes
188 5 147 0.622 0.046 0.621 0.072 0.625 0.049 0.198 1.46e-219 Yes
22 10 400 0.807 0.021 0.811 0.030 0.807 0.023 0.185 1.75e-191 Yes
54 4 169 0.781 0.032 0.786 0.043 0.780 0.036 0.158 3.32e-140 Yes

40984 7 462 0.915 0.011 0.918 0.021 0.918 0.014 0.135 1.87e-101 Yes
40499 11 500 0.991 0.004 0.992 0.006 0.991 0.006 0.128 1.40e-91 Yes
182 6 500 0.878 0.011 0.882 0.021 0.879 0.016 0.112 4.83e-71 Yes
4538 5 500 0.807 0.018 0.812 0.026 0.807 0.021 0.111 2.11e-70 Yes
18 10 400 0.731 0.015 0.731 0.022 0.724 0.022 0.096 1.25e-47 Yes
307 11 198 0.871 0.014 0.889 0.033 0.876 0.026 0.093 5.11e-49 Yes

40668 3 500 0.747 0.007 0.749 0.024 0.743 0.015 0.089 1.17e-45 Yes
40982 7 388 0.740 0.014 0.750 0.031 0.741 0.024 0.088 1.57e-44 Yes
11 3 125 0.932 0.014 0.939 0.024 0.931 0.017 0.082 2.14e-31 Yes

41027 3 500 0.785 0.007 0.786 0.022 0.785 0.016 0.081 3.11e-37 Yes
32 10 500 0.969 0.006 0.974 0.010 0.971 0.009 0.079 7.36e-36 Yes
6 26 500 0.795 0.005 0.813 0.019 0.810 0.016 0.051 4.49e-16 No

40975 4 345 0.959 0.003 0.962 0.013 0.959 0.010 0.043 6.39e-012 No
1497 4 500 0.986 0.003 0.988 0.006 0.988 0.005 0.027 2.15e-05 No

Table 7.2: Results after 250 iterations on all multiclass classification tasks,
averaged over 100 repetitions using the holdout method.

7.1.4 Regression

The results of the experiments on the regression tasks are displayed in Table
7.3. The scoring metric used in the regression tasks, RMSE, differs between
datasets and is therefore hard to interpret. Similarly as the analysis for other
tasks, we apply a Bonferroni correction to the significance threshold for the
Spearman’s correlation test, resulting in a threshold of 1.5e-22 for 16 regression
tasks. Surprisingly, we find only 3 datasets display a significant linear relation-
ship between the number of iterations and the MOE of the average configuration
of Bayesian optimization, providing evidence for the conclusion that Bayesian
optimization does not adaptively overfit most regression tasks. This is in sharp
contrast with the classification tasks examined, where a significant relationship

CHAPTER 7. RESULTS 39

was found, even with a highly conservative correction on the significance.

ID Val size RS score RS MOE BO score BO MOE BO-THO score BO-THO MOE Coefficient p-value Significant
201 500 -4.182 0.294 -4.001 0.708 -3.934 0.620 0.145 7.8e-11 No

41540 500 -2951.925 49.887 -2923.218 90.469 -2921.574 80.786 0.088 1.11e-33 Yes
287 500 -0.543 0.009 -0.539 0.014 -0.544 0.012 0.087 7.62e-45 Yes

42726 500 -1.538 0.048 -1.526 0.063 -1.527 0.056 0.063 2.57e-20 No
531 101 -2.654 0.120 -2.673 0.235 -2.685 0.227 0.057 1.53e-24 Yes

42727 500 -0.118 0.002 -0.118 0.002 -0.118 0.002 0.048 1.64e-14 No
541 231 -7.616 0.548 -7.263 0.814 -7.289 0.861 0.044 3.62e-11 No
546 115 -0.610 0.040 -0.609 0.043 -0.611 0.038 0.044 2.28e-08 No
507 500 -0.083 0.001 -0.082 0.002 -0.084 0.001 0.044 6.74e-16 No

42729 500 -0.792 0.015 -0.776 0.0332 -0.785 0.023 0.040 9.00e-15 No
574 500 -19100.138 -144.101 -18615.466 132.063 -18540.787 162.249 0.033 8.859e-08 No

42225 500 -489.276 9.172 -455.198 18.517 -463.538 18.456 0.033 2.15e-06 No
550 435 -0.142 0.001 -0.142 0.002 -0.141 0.001 0.021 7.45e-05 No

41021 246 -16.898 0.169 -16.934 0.316 -16.916 0.278 0.017 0.001 No
42728 500 -11.378 0.150 -11.371 0.174 -11.373 0.174 0.004 0.507 No
42688 500 -0.720 0.030 -0.702 0.037 -0.697 0.035 -0.137 3.22e-102 No

Table 7.3: Results after 250 iterations on all regression tasks, averaged over 100
repetitions using the holdout method.

7.1.5 Summary of different tasks

Concluding the holdout experiments on three different tasks, binary classifica-
tion, multiclass classification, and regression, our results do not provide evidence
to distinguish between classification tasks. Therefore, we can not conclude that
multiclass classification datasets are less sensitive to adaptive overfitting. How-
ever, we found that the relationship between the number of iterations and the
average MOE of suggested configurations for regression tasks does not present
itself, suggesting that regression tasks are largely immune to adaptive overfit-
ting.

7.1.6 Evaluation of RS, BO, and BO-THO

Finally, we assess the relative performance of random search, Bayesian opti-
mization, and BO-THO used throughout this thesis in a competitive setting.
To compare performance across tasks, we use average ranking [9], a common
measure of comparison between tasks with different metrics and complexities.
Average ranking provides a rank for each task for every algorithm and averages
these ranks across datasets. Figure 7.5 shows the average ranking across all bi-
nary classification tasks (Figure 7.5a), all multiclass classification tasks (Figure
7.5b), and all regression tasks (Figure 7.5c). Additionally, Figure 7.6 provides
the ranking overall of 64 tasks.

CHAPTER 7. RESULTS 40

(a) Average ranking on all
binary tasks.

(b) Average ranking on all
multiclass tasks.

(c) Average ranking on all
regression tasks.

Figure 7.5: Average rankings of random search, Bayesian optimization, and
BO-THO using accuracy for classification and RMSE for regression, computed
on all binary classification tasks (a), all multiclass classification tasks (b), and
all regression tasks (c).

Investigating the results in Figure 7.5 and Figure 7.6, we observe the superiority
of Bayesian optimization, which is consistent with results from the literature.
BO-THO is outperformed by Bayesian optimization in all three tasks, and is in
terms of performance equal to random search, specifically with more iterations.
These results show that thresholdout, although preventing adaptive overfitting
effectively, does not increase the performance of Bayesian optimization. How-
ever, the simplicity of thresholdout, and its ability to limit adaptive overfitting
while sampling from higher-performing regions compared to random search,
perhaps allows the existence of a more sophisticated algorithm sampling from
highly generalized areas, a direction that future research could explore.

Figure 7.6: Average ranking of random search, Bayesian optimization, and BO-
THO across tasks.

CHAPTER 7. RESULTS 41

7.2 Varying validation sizes

Although data scarcity often limits the available data for the validation proce-
dure, investigating validation sets of varying sizes increases the transferability
of the results in this work to datasets of different sizes. In Chapter 3, we men-
tioned the expected square root relationship between the validation set size and
the expected maximum (non-adaptive) MOE of any configuration. This section
discusses the empirical results of altering the validation set size while keeping
the train and test set sizes constant. As described in detail in Chapter 5, this
experiment was conducted using 4 datasets for binary classification.

We investigate the performance of all three algorithms in the general HPO
application, plotting the test scores of the selected models after 250 iterations,
as shown in Figure 7.7a. These results demonstrate the benefits of rigorous
configuration evaluation. We found that better-performing configurations on
the fixed test set were selected as the validation size increased. This indicates
that a larger validation size allows for a more accurate assessment of model
performance, leading to improved configuration selection.

An interesting observation can be made regarding the MOE with varying valida-
tion set sizes. As shown in Figure 7.7b, we compare the selected MOE after 250
iterations for random search and the additional MOE introduced by Bayesian
optimization. The selected MOE by random search decreases clearly as the
validation size increases, in line with the expectations in the field. However,
the additional MOE introduced by Bayesian optimization decreases at a slower
rate, making up for a larger fraction of the total MOE as the validation set
size increases, as indicated by the blue line in Figure 7.7b. This arguably sug-
gests that adaptive overfitting is less mitigated by increasing validation set sizes,
which might be an intriguing angle for future research.

CHAPTER 7. RESULTS 42

(a) Test performance of selected configura-
tions after 250 iterations for different vali-
dation set sizes, for the RS, BO, and BO-
THO algorithms.

(b) MOE of selected configurations after
250 iterations. Line denotes the fraction
of total overfit that is contributed to adap-
tive overfitting.

Figure 7.7: Performance and causes of overfitting when considering validation
sets of different sizes.

7.3 10CV

The instability and potential of overfitting of the holdout method are widely
recognized, as discussed in earlier chapters. Cross-validation is the de facto
method to provide more stable and reliable model evaluation. In this section,
10CV will be investigated in the context of overfitting in HPO, assessing the
mitigation effect of 10CV on overfitting compared to the holdout method, and
the impact of using 10CV as an inner evaluation method on the overall per-
formance of random search, Bayesian optimization, and BO-THO. This section
will additionally discuss the widespread use of 10CV as benchmark practice, and
the expected overfitting of complex pipelines evaluated using this procedure.

The results of the comparison between the overfitting effects of the holdout
method and the 10CV method are displayed in Figure 7.8. In the average case
(Figure 7.8a, Bayesian optimization evaluated with 10CV appears to sample
from less overfitted configurations, although the difference is relatively small.
The Spearman’s correlation coefficients for the adult dataset are 0.142 and 0.179
for Bayesian optimization with 10CV and Bayesian optimization with holdout,
respectively, with both tests reporting significant results (both p = 0.000). This
indicates a statistically significant but minor reduction in overfitting when using
10CV compared to the holdout method. These results suggest that leveraging
10CV instead of the holdout method can partially mitigate adaptive overfitting.
However, the effects are small and may not justify the tenfold increase in com-
putational costs in many practical scenarios.

Figure 7.8b shows the MOE of the selected configuration at each iteration and
is therefore of more practical interest. 10CV has a stabilizing effect, reducing

CHAPTER 7. RESULTS 43

the average MOE of the best configuration found using the holdout evaluation.
Especially in the absence of adapting the procedure to previous evaluations,
the MOE resulting from random search suggests a relatively strong foundation
for 10CV for robust model evaluation. However, although the average MOE of
Bayesian optimization is reduced, it is perhaps not as resilient as often thought.
Our conclusions are limited to the binary classification task on a dataset with
1 500 instances and 15 features, but considering the median instance count of
approximately 1 800 in the OpenML-CC18 dataset, these tasks are arguably rep-
resentative. Following these results, benchmarking practices on similar binary
classification tasks for Bayesian optimization with a similar number of itera-
tions can expect to be overfitted between 0.010 and 0.015, which is in many
practical scenarios a large margin. Concluding the research question stated in
Section 6.3.3, 10CV mitigates overfitting, but should still be treated carefully
as benchmark practice.

(a) Average MOE (b) Selected MOE

Figure 7.8: Average MOE (a) selected MOE (b) for algorithms evaluated with
holdout and 10CV.

Table 7.4 shows the 10CV and holdout results on the 4 datasets selected in
Chapter 5, indicating that 10CV is successful in reducing overfitting in all 4
datasets between 40% and 45% and improving generalization performance of
the final selected configuration in 3 of the 4 datasets.

ID Holdout 10CV

RS score RS MOE BO score BO MOE Coefficient p-value RS score RS MOE BO score BO MOE Coefficient p-value

151 0.792 0.012 0.797 0.022 0.118 4.65e-79 0.803 0.004 0.805 0.012 0.062 8.30e-33
1461 0.892 0.015 0.894 0.018 0.179 1.37e-181 0.878 0.006 0.878 0.010 0.134 6.11e-113
1590 0.841 0.014 0.842 0.022 0.179 1.75e-178 0.847 0.006 0.848 0.013 0.142 4.17e-112
23517 0.505 0.058 0.506 0.062 0.232 8.29e-302 0.507 0.033 0.508 0.037 0.327 0.000

Table 7.4: All 10CV results and corresponding holdout results.

CHAPTER 7. RESULTS 44

7.4 Limitations

Despite these contributions, the work has certain limitations. Due to compu-
tational constraints, our cross-validation and validation size experiments were
limited to four datasets, where the 10CV experiments took roughly 9 days per
dataset on one machine with two cores to compute for all repetitions. Also,
the fixed nature of the sizes of the training and validation sets in the majority
of the experiments limits the portion of the problem space covered. The same
argument can be made for excluding additional scoring metrics besides accuracy
and RMSE. Finally, the simplicity of the thresholdout algorithm, which was the
earliest published approach to mitigating adaptive overfitting on a holdout set,
prompts the question of whether more sophisticated algorithms can actively
cause Bayesian optimization to sample from high-performing and generalized
regions, for example by adapting the noise rate based on the specific problem.

Chapter 8

Conclusion & Future Work

Throughout this thesis, we have delved into the phenomenon of overfitting in
hyperparameter optimization. Two types of overfitting were examined; over-
fitting from evaluating many configurations, therefore selecting configurations
that evaluate highly on the validation procedure by chance, and adaptive over-
fitting, where information from evaluated configurations is actively incorporated
into the mechanism for proposing new configurations. Our approach involved
comparing random search, Bayesian optimization, and BO-THO, which was
introduced in this work. Concluding this work, our analyses provided the fol-
lowing contributions:

Systematic analysis of overfitting in modern HPO
To the best of our knowledge, this thesis presents one of the first large-scale
assessments of overfitting in a CASH scenario, a method central to many pop-
ular HPO packages. Our analysis spanned a wide array of real-world datasets,
including binary classification, multiclass classification, and regression tasks,
providing comprehensive insights that have not been extensively explored in
prior research. We introduce a simple metric to measure and compare adaptive
overfitting across tasks, demonstrating that adaptive overfitting significantly af-
fects CASH on the majority of classification tasks. Notably, it was found that
regression tasks are minimally susceptible to overfitting, both by chance and
adaptively. Surprisingly, no evidence was found for the theoretical hypothesis
from adaptive data analysis [19] that multiclass classification problems are less
susceptible to adaptive overfitting compared to binary classification tasks.

Demonstrating the practical impact of overfitting
We further demonstrated that (adaptive) overfitting can pose challenges in prac-
tical HPO scenarios, especially when data is scarce. Our experiments revealed
that even widely accepted benchmark practices, such as 10CV, can be prone to
adaptive overfitting. Notably, 10CV exhibited significant adaptive overfitting
across all four datasets examined, which raises concerns about its suitability
as an evaluation practice in HPO benchmarking. Furthermore, we observed

45

CHAPTER 8. CONCLUSION & FUTURE WORK 46

increasing the validation size successfully limits practical overfitting from evalu-
ating many configurations, suggesting large datasets are less susceptible to this
effect. However, adaptive overfitting in Bayesian optimization was shown to be
much more resilient to this effect, providing an interesting direction for future
research.

Evaluation of mitigation methods
Finally, we designed and evaluated mitigation methods for overfitting in HPO.
We found 10CV to be successful in reducing overfitting when compared to the
holdout method with 40% to 45% while increasing generalization performance
in 3 out of 4 examined datasets, at the cost of a 10-fold increase in computa-
tional resources required. Furthermore, we introduced BO-THO, an integration
of thresholdout [12] in Bayesian optimization for HPO, which successfully limits
adaptive overfitting, but overall achieves less generalization performance com-
pared to the regular implementation of Bayesian optimization.

Future work
In this work, we observe relatively limited generalization improvement for so-
phisticated methods compared to random search, while a lot of performance
gains are reported on the validation procedure, specifically for small to medium
datasets. Additionally, we observe that significantly higher-performing configu-
rations on the test set exist, but are not selected. The most interesting direction
for future research regarding this is the distinction between making progress in
HPO by scoring even higher in less computational time on the validation pro-
cedure, often leading to increases in generalization as well, and altering the
search process to allow optimizing for generalization performance rather than
overfitting the validation set. The success observed in reshuffling the valida-
tion procedure every evaluation [42, 46] indicates the potential value of the
latter, while little research has been directed at this. Multiple directions could
be promising, including further investigating techniques developed in adaptive
data analysis. Furthermore, the existence of more generalized configurations
shows that post-selection procedures potentially could increase generalization
performance, specifically while incorporating the knowledge that modern HPO
methods exhibit adaptive overfitting.

A different direction aimed at directing the search process to more general-
ized solutions could be meta-learning, where previous results on many datasets
can provide value in subsequent HPO approaches, identifying the risk of overfit-
ting and adjusting the search procedure accordingly, for example by designing
an acquisition function incorporating some measure of overfitting risk in the
proposal of new configurations.

Finally, a thorough continuation of assessing overfitting in modern HPO is re-
quired, especially regarding the advancements in ensemble methods. Curiosity
arises regarding whether the widespread success of ensemble methods partially
comes from its mitigating effect on (adaptive) overfitting.

Bibliography

[1] Sanjeev Arora and Yi Zhang. Rip van Winkle’s razor: A simple estimate
of overfit to test data. Computing Research Repository, abs/2102.13189,
2021.

[2] George De Ath, Richard M. Everson, Alma As-Aad Rahat, and Jonathan E.
Fieldsend. Greed is good: Exploration and exploitation trade-offs in
Bayesian optimisation. ACM Transactions on Evolutionary Learning and
Optimization, 1(1):1:1–1:22, 2021.

[3] James Bergstra and Yoshua Bengio. Random search for hyper-parameter
optimization. Journal of Machine Learning Research, 13:281–305, 2012.

[4] Srikanth Bethu, B. Sankara Babu, K. Madhavi, and P. Gopala Krishna.
Algorithm selection and model evaluation in application design using ma-
chine learning. In Machine Learning for Networking - Second IFIP TC 6
International Conference, MLN 2019, Paris, France, December 3-5, 2019,
Revised Selected Papers, volume 12081 of Lecture Notes in Computer Sci-
ence, pages 175–195. Springer, 2019.

[5] Bernd Bischl, Martin Binder, Michel Lang, Tobias Pielok, Jakob Richter,
Stefan Coors, Janek Thomas, Theresa Ullmann, Marc Becker, Anne-Laure
Boulesteix, Difan Deng, and Marius Lindauer. Hyperparameter optimiza-
tion: Foundations, algorithms, best practices, and open challenges. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 13(2),
2023.

[6] Bernd Bischl, Giuseppe Casalicchio, Matthias Feurer, Pieter Gijsbers,
Frank Hutter, Michel Lang, Rafael Gomes Mantovani, Jan N. van Rijn,
and Joaquin Vanschoren. OpenML benchmarking suites. In Proceedings of
the Neural Information Processing Systems Track on Datasets and Bench-
marks 1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual,
2021.

[7] Carlo Bonferroni. Teoria statistica delle classi e calcolo delle probabilita.
Pubblicazioni del R istituto superiore di scienze economiche e commericiali
di firenze, 8:3–62, 1936.

47

BIBLIOGRAPHY 48

[8] Gavin C. Cawley and Nicola L. C. Talbot. On over-fitting in model selec-
tion and subsequent selection bias in performance evaluation. Journal of
Machine Learning Research, 11:2079–2107, 2010.

[9] Janez Demsar. Statistical comparisons of classifiers over multiple data sets.
Journal of Machine Learning Research, 7:1–30, 2006.

[10] Thomas G. Dietterich. Ensemble methods in machine learning. In Multi-
ple Classifier Systems, First International Workshop, MCS 2000, Cagliari,
Italy, June 21-23, 2000, Proceedings, volume 1857 of Lecture Notes in Com-
puter Science, pages 1–15. Springer, 2000.

[11] Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer
Reingold, and Aaron Roth. Generalization in adaptive data analysis and
holdout reuse. In Advances in Neural Information Processing Systems
28: Annual Conference on Neural Information Processing Systems 2015,
NeurIPS 2015, December 7-12, 2015, Montreal, Quebec, Canada, pages
2350–2358, 2015.

[12] Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer
Reingold, and Aaron Roth. The reusable holdout: Preserving validity in
adaptive data analysis. Science, 349(6248):636–638, 2015.

[13] Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer
Reingold, and Aaron Leon Roth. Preserving statistical validity in adaptive
data analysis. In Proceedings of the Forty-Seventh Annual ACM on Sym-
posium on Theory of Computing, STOC 2015, Portland, OR, USA, June
14-17, 2015, pages 117–126. ACM, 2015.

[14] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. Cal-
ibrating noise to sensitivity in private data analysis. In Theory of Cryptog-
raphy, Third Theory of Cryptography Conference, TCC 2006, New York,
NY, USA, March 4-7, 2006, Proceedings, volume 3876 of Lecture Notes in
Computer Science, pages 265–284. Springer, 2006.

[15] Katharina Eggensperger, Matthias Feurer, Frank Hutter, James Bergstra,
Jasper Snoek, Holger H. Hoos, and Kevin Leyton-Brown. Towards an em-
pirical foundation for assessing Bayesian optimization of hyperparameters.
In NIPS workshop on Bayesian Optimization in Theory and Practice, vol-
ume 10, 2013.

[16] Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Jacob
Steinhardt, and Aleksander Madry. Identifying statistical bias in dataset
replication. In Proceedings of the 37th International Conference on Ma-
chine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119
of Proceedings of Machine Learning Research, pages 2922–2932. PMLR,
2020.

BIBLIOGRAPHY 49

[17] Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Lar-
roy, Mu Li, and Alexander J. Smola. Autogluon-tabular: Robust and
accurate AutoML for structured data. Computing Research Repository,
abs/2003.06505, 2020.

[18] Fabio Fabris and Alex Alves Freitas. Analysing the overfit of the auto-
sklearn automated machine learning tool. In Machine Learning, Optimiza-
tion, and Data Science - 5th International Conference, LOD 2019, Siena,
Italy, September 10-13, 2019, Proceedings, volume 11943 of Lecture Notes
in Computer Science, pages 508–520. Springer, 2019.

[19] Vitaly Feldman, Roy Frostig, and Moritz Hardt. The advantages of multiple
classes for reducing overfitting from test set reuse. In Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, 9-15 June
2019, Long Beach, California, USA, volume 97 of Proceedings of Machine
Learning Research, pages 1892–1900. PMLR, 2019.

[20] Jean Feng, Gene Pennello, Nicholas Petrick, Berkman Sahiner, Romain Pir-
racchio, and Alexej Gossmann. Sequential algorithmic modification with
test data reuse. In Uncertainty in Artificial Intelligence, Proceedings of
the Thirty-Eighth Conference on Uncertainty in Artificial Intelligence, UAI
2022, 1-5 August 2022, Eindhoven, The Netherlands, volume 180 of Pro-
ceedings of Machine Learning Research, pages 674–684. PMLR, 2022.

[21] Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lin-
dauer, and Frank Hutter. Auto-sklearn 2.0: Hands-free AutoML via meta-
learning. Journal of Machine Learning Research, 23:261:1–261:61, 2022.

[22] Matthias Feurer and Frank Hutter. Hyperparameter optimization. In Au-
tomated Machine Learning - Methods, Systems, Challenges, The Springer
Series on Challenges in Machine Learning, pages 3–33. Springer, 2019.

[23] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias Sprin-
genberg, Manuel Blum, and Frank Hutter. Efficient and robust automated
machine learning. In Advances in Neural Information Processing Systems
28: Annual Conference on Neural Information Processing Systems 2015,
December 7-12, 2015, Montreal, Quebec, Canada, pages 2962–2970, 2015.

[24] David A. Freedman. A note on screening regression equations. The Amer-
ican Statistician, 37(2):152–155, 1983.

[25] Frauke Friedrichs and Christian Igel. Evolutionary tuning of multiple SVM
parameters. Neurocomputing, 64:107–117, 2005.

[26] Eduardo C. Garrido-Merchán and Daniel Hernández-Lobato. Dealing
with categorical and integer-valued variables in Bayesian optimization with
Gaussian processes. Neurocomputing, 380:20–35, 2020.

BIBLIOGRAPHY 50

[27] Pieter Gijsbers, Marcos L. P. Bueno, Stefan Coors, Erin LeDell, Sébastien
Poirier, Janek Thomas, Bernd Bischl, and Joaquin Vanschoren. AMLB:
An AutoML benchmark. Computing Research Repository, abs/2207.12560,
2022.

[28] Pieter Gijsbers, Erin LeDell, Janek Thomas, Sébastien Poirier, Bernd Bis-
chl, and Joaquin Vanschoren. An open source AutoML benchmark. Com-
puting Research Repository, abs/1907.00909, 2019.

[29] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-
based optimization for general algorithm configuration. In Learning and
Intelligent Optimization - 5th International Conference, LION 5, Rome,
Italy, January 17-21, 2011. Selected Papers, volume 6683 of Lecture Notes
in Computer Science, pages 507–523. Springer, 2011.

[30] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren, editors. Automated
Machine Learning - Methods, Systems, Challenges. The Springer Series on
Challenges in Machine Learning. Springer, 2019.

[31] Hamed Jalali, Inneke Van Nieuwenhuyse, and Victor Picheny. Comparison
of kriging-based algorithms for simulation optimization with heterogeneous
noise. European Journal of Operational Research, 261(1):279–301, 2017.

[32] Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global
optimization of expensive black-box functions. Journal of Global Optimiza-
tion, 13(4):455–492, 1998.

[33] Ron Kohavi. A study of cross-validation and bootstrap for accuracy esti-
mation and model selection. In Proceedings of the Fourteenth International
Joint Conference on Artificial Intelligence, IJCAI 95, Montréal Québec,
Canada, August 20-25 1995, 2 Volumes, pages 1137–1145. Morgan Kauf-
mann, 1995.

[34] Ron Kohavi. Scaling up the accuracy of naive-bayes classifiers: A decision-
tree hybrid. In Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining (KDD-96), Portland, Oregon, USA,
pages 202–207. AAAI Press, 1996.

[35] Lars Kotthoff, Chris Thornton, Holger H. Hoos, Frank Hutter, and Kevin
Leyton-Brown. Auto-weka 2.0: Automatic model selection and hyperpa-
rameter optimization in WEKA. Journal of Machine Learning Research,
18:25:1–25:5, 2017.

[36] Trang T. Le, Weixuan Fu, and Jason H. Moore. Scaling tree-based auto-
mated machine learning to biomedical big data with a feature set selector.
Bioinformatics, 36(1):250–256, 2020.

[37] Yann LeCun and Corinna Cortes. The MNIST database of handwritten
digits, 2005.

BIBLIOGRAPHY 51

[38] Howard Levene. Robust tests for equality of variances. Contributions to
probability and statistics, pages 278–292, 1960.

[39] Julien-Charles Lévesque, Audrey Durand, Christian Gagné, and Robert
Sabourin. Bayesian optimization for conditional hyperparameter spaces.
In 2017 International Joint Conference on Neural Networks, IJCNN 2017,
Anchorage, AK, USA, May 14-19, 2017, pages 286–293. IEEE, 2017.

[40] Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André
Biedenkapp, Difan Deng, Carolin Benjamins, Tim Ruhkopf, René Sass,
and Frank Hutter. SMAC3: A versatile Bayesian optimization package
for hyperparameter optimization. Journal of Machine Learning Research,
23:54:1–54:9, 2022.

[41] Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André
Biedenkapp, Joshua Marben, Philipp Müller, and Frank Hutter. BOAH: A
tool suite for multi-fidelity Bayesian optimization & analysis of hyperpa-
rameters. Computing Research Repository, abs/1908.06756, 2019.

[42] Julien-Charles Lévesque. Bayesian hyperparameter optimization: Overfit-
ting, ensembles and conditional spaces. PhD thesis, Université Laval, 2018.

[43] Anastasia Makarova, Huibin Shen, Valerio Perrone, Aaron Klein, Jean Bap-
tiste Faddoul, Andreas Krause, Matthias W. Seeger, and Cédric Archam-
beau. Overfitting in Bayesian optimization: An empirical study and early-
stopping solution. Computing Research Repository, abs/2104.08166, 2021.

[44] Mark McLeod, Stephen J. Roberts, and Michael A. Osborne. Optimiza-
tion, fast and slow: Optimally switching between local and Bayesian opti-
mization. In Proceedings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15,
2018, volume 80 of Proceedings of Machine Learning Research, pages 3440–
3449. PMLR, 2018.

[45] Douglas C Montgomery. Design and analysis of experiments. John Wiley
& sons, 2017.

[46] Thomas Nagler, Lennart Schneider, Bernd Bischl, and Matthias Feurer.
Reshuffling resampling splits can improve generalization of hyperparameter
optimization. Computing Research Repository, abs/2405.15393, 2024.

[47] Andrew Y. Ng. Preventing ”overfitting” of cross-validation data. In Dou-
glas H. Fisher, editor, Proceedings of the Fourteenth International Confer-
ence on Machine Learning (ICML 1997), Nashville, Tennessee, USA, July
8-12, 1997, pages 245–253. Morgan Kaufmann, 1997.

[48] Thanh Dai Nguyen, Sunil Gupta, Santu Rana, and Svetha Venkatesh. Sta-
ble Bayesian optimization. In Advances in Knowledge Discovery and Data
Mining - 21st Pacific-Asia Conference, PAKDD 2017, Jeju, South Korea,

BIBLIOGRAPHY 52

May 23-26, 2017, Proceedings, Part II, volume 10235 of Lecture Notes in
Computer Science, pages 578–591, 2017.

[49] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer,
Ron Weiss, Vincent Dubourg, Jake VanderPlas, Alexandre Passos, David
Cournapeau, Matthieu Brucher, Matthieu Perrot, and Edouard Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Re-
search, 12:2825–2830, 2011.

[50] Victor Picheny, Tobias Wagner, and David Ginsbourger. A benchmark of
kriging-based infill criteria for noisy optimization. Structural and multidis-
ciplinary optimization, 48:607–626, 2013.

[51] R. Bharat Rao and Glenn Fung. On the dangers of cross-validation. An
experimental evaluation. In Proceedings of the SIAM International Con-
ference on Data Mining, SDM 2008, April 24-26, 2008, Atlanta, Georgia,
USA, pages 588–596. SIAM, 2008.

[52] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian pro-
cesses for machine learning. Adaptive computation and machine learning.
MIT Press, 2006.

[53] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar.
Do CIFAR-10 classifiers generalize to CIFAR-10? Computing Research
Repository, abs/1806.00451, 2018.

[54] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar.
Do ImageNet classifiers generalize to ImageNet? In Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, 9-15 June
2019, Long Beach, California, USA, volume 97 of Proceedings of Machine
Learning Research, pages 5389–5400. PMLR, 2019.

[55] Juha Reunanen. Overfitting in making comparisons between variable selec-
tion methods. Journal of Machine Learning Research, 3:1371–1382, 2003.

[56] Rebecca Roelofs, Vaishaal Shankar, Benjamin Recht, Sara Fridovich-Keil,
Moritz Hardt, John Miller, and Ludwig Schmidt. A meta-analysis of over-
fitting in machine learning. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages
9175–9185, 2019.

[57] Warren R. Scott, Peter I. Frazier, and Warren B. Powell. The correlated
knowledge gradient for simulation optimization of continuous parameters
using Gaussian process regression. SIAM J. Optim., 21(3):996–1026, 2011.

[58] Samuel S. Shapiro and Martin B. Wilk. An analysis of variance test for
normality (complete samples). Biometrika, 52(3-4):591–611, 1965.

BIBLIOGRAPHY 53

[59] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical Bayesian
optimization of machine learning algorithms. In Advances in Neural Infor-
mation Processing Systems 25: 26th Annual Conference on Neural Infor-
mation Processing Systems 2012. Proceedings of a meeting held December
3-6, 2012, Lake Tahoe, Nevada, United States, pages 2960–2968, 2012.

[60] Charles Spearman. The proof and measurement of association between two
things. The American Journal of Psychology, 100(3/4):441–471, 1987.

[61] Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown.
Auto-weka: Combined selection and hyperparameter optimization of clas-
sification algorithms. In The 19th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD 2013, Chicago, IL, USA,
August 11-14, 2013, pages 847–855. ACM, 2013.

[62] Ryan Turner, David Eriksson, Michael McCourt, Juha Kiili, Eero Laakso-
nen, Zhen Xu, and Isabelle Guyon. Bayesian optimization is superior to
random search for machine learning hyperparameter tuning: Analysis of
the black-box optimization challenge 2020. In NeurIPS 2020 Competition
and Demonstration Track, 6-12 December 2020, Virtual Event / Vancou-
ver, BC, Canada, volume 133 of Proceedings of Machine Learning Research,
pages 3–26. PMLR, 2020.

[63] Jan N. van Rijn and Frank Hutter. Hyperparameter importance across
datasets. In Proceedings of the 24th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining, KDD 2018, London, UK,
August 19-23, 2018, pages 2367–2376. ACM, 2018.

[64] Chhavi Yadav and Léon Bottou. Cold case: The lost MNIST digits. In Ad-
vances in Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada, pages 13443–13452, 2019.

[65] Xiang Zhou, Yixin Nie, Hao Tan, and Mohit Bansal. The curse of per-
formance instability in analysis datasets: Consequences, source, and sug-
gestions. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2020, Online, November 16-20,
2020, pages 8215–8228. Association for Computational Linguistics, 2020.

[66] Tijana Zrnic and Moritz Hardt. Natural analysts in adaptive data analysis.
In Proceedings of the 36th International Conference on Machine Learning,
ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of
Proceedings of Machine Learning Research, pages 7703–7711. PMLR, 2019.

Appendix A

Search spaces

This appendix describes the full search space utilized throughout the exper-
iments. Every classifier, regressor, or pipeline component was implemented
using the scikit-learn library [49]. This section is divided in the list of uti-
lized classifiers A.1, the list of utilized regressors A.2, the hyperparameters used
to configure the classifiers A.3, the hyperparameters used to configure the re-
gressors A.4, the encoders used A.5, the imputers and their hyperparameters
A.6, the feature selectors and their hyperparameters A.7, the scalers and their
hyperparameters A.8, and finally the dimensionality reducers and their hyper-
parameters A.9.

A.1 List of classifiers

The included classifiers for the search spaces in the experiments described in
this thesis are shown in Table A.1.

A.2 List of regressors

All regressors are implemented using the scikit-learn implementation [49]. Table
A.2 shows all included regressors.

54

APPENDIX A. SEARCH SPACES 55

Classifier Multiclass
RandomForestClassifier Yes
AdaBoostClassifier Yes
DecisionTreeClassifier Yes
GradientBoostingClassifier Yes
BaggingClassifier Yes
ExtraTreeClassifier Yes
ExtraTreesClassifier Yes
LogisticRegression Yes
SGDClassifier Yes
PassiveAggressiveClassifier Yes
RidgeClassifier Yes
Lasso No
ElasticNet No
GaussianNB Yes
MLPClassifier Yes
KNeighborsClassifier Yes
LinearDiscriminantAnalysis Yes

Table A.1: All classifiers used for binary classification tasks. The Multiclass
column indicates if classifiers were included in search space for multiclass clas-
sification tasks.

Regressor
RandomForestRegressor
AdaBoostRegressor
DecisionTreeRegressor
GradientBoostingRegressor
BaggingRegressor
ExtraTreeRegressor
ExtraTreesRegressor
SGDRegressor
PassiveAggressiveRegressor
Ridge
Lasso
ElasticNet
MLPRegressor
KNeighborsRegressor
ARDRegression

Table A.2: List of Regressors included in search space for regression tasks.

APPENDIX A. SEARCH SPACES 56

A.3 Classifier hyperparameters

Hyperparameter Active if model selected Type Valid Range/Choices Sampled from log scale
n estimators RandomForestClassifier discrete 10-200 No
max depth RandomForestClassifier discrete 1-25 No
rf min samples split RandomForestClassifier discrete 2-20 No
rf min samples leaf RandomForestClassifier discrete 1-20 No
rf criterion RandomForestClassifier categorical gini, entropy No
rf bootstrap RandomForestClassifier categorical True, False No
lr C LogisticRegression continuous 0.0001-50 Yes
lr solver LogisticRegression categorical newton-cg, liblinear, lbfgs, saga, sag, newton-cholesky No
mlp hidden layer size MLPClassifier discrete 10-1000 No
mlp activation MLPClassifier categorical identity, logistic, tanh, relu No
mlp solver MLPClassifier categorical lbfgs, sgd, adam No
mlp lr init MLPClassifier continuous 0.0001-1.0 Yes
mlp max iter MLPClassifier discrete 10-1000 No
mlp early stop MLPClassifier categorical True, False No
mlp alpha MLPClassifier continuous 0.00001-1.0 Yes
gb loss GradientBoostingClassifier categorical log loss, exponential No
gb n estimators GradientBoostingClassifier discrete 10-200 No
gb learning rate GradientBoostingClassifier continuous 0.001-1.0 Yes
gb max depth GradientBoostingClassifier discrete 1-15 No
gb subsample GradientBoostingClassifier continuous 0.05-1.0 No
gb min samples split GradientBoostingClassifier discrete 2-20 No
gb min samples leaf GradientBoostingClassifier discrete 1-20 No
ab n estimators AdaBoostClassifier discrete 10-250 No
ab learning rate AdaBoostClassifier continuous 0.001-2.0 Yes
dt max depth DecisionTreeClassifier discrete 1-25 No
dt min samples split DecisionTreeClassifier discrete 2-20 No
dt min samples leaf DecisionTreeClassifier discrete 1-20 No
bagging n estimators BaggingClassifier discrete 10-50 No
bagging max samples BaggingClassifier continuous 0.01-1.0 No
bagging max features BaggingClassifier continuous 0.01-1.0 No
bagging bootstrap BaggingClassifier categorical True, False No
et max depth ExtraTreeClassifier discrete 1-150 No
et criterion ExtraTreeClassifier categorical gini, entropy No
et splitter ExtraTreeClassifier categorical random, best No
et min samples split ExtraTreeClassifier discrete 2-20 No
et min samples leaf ExtraTreeClassifier discrete 1-20 No
pac C PassiveAggressiveClassifier continuous 0.01-10.0 Yes
pac max iter PassiveAggressiveClassifier discrete 1-3000 Yes
pac tol PassiveAggressiveClassifier continuous 0.0001-0.1 Yes
ridge alpha RidgeClassifier continuous 0.01-10.0 Yes
ridge solver RidgeClassifier categorical auto, svd, cholesky, lsqr, sag, saga No
lasso alpha Lasso continuous 0.0001-1.0 Yes
en alpha ElasticNet continuous 0.0001-1.0 Yes
en l1 ratio ElasticNet continuous 0.0-1.0 No
knc n neighbors KNeighborsClassifier discrete 1-100 No
knc weights KNeighborsClassifier categorical uniform, distance No
knc algorithm KNeighborsClassifier categorical ball tree, kd tree, auto No
knc leaf size KNeighborsClassifier discrete 10-50 No
knc p KNeighborsClassifier discrete 1-3 No
gnb var smoothing GaussianNB continuous 1e-12-1e-6 Yes
lda solver LinearDiscriminantAnalysis categorical svd, lsqr, eigen No
lda shrinkage LinearDiscriminantAnalysis continuous 0.0-1.0 No

sgd loss SGDClassifier categorical
huber, squared epsilon insensitive, squared error,

squared hinge, perceptron, hinge,
log loss, modified huber, epsilon insensitive

No

sgd penalty SGDClassifier categorical l2, l1, elasticnet No
sgd alpha SGDClassifier continuous 1e-6-1e-1 Yes
sgd learning rate SGDClassifier categorical constant, optimal, invscaling, adaptive No
sgd l1 ratio SGDClassifier continuous 0.0-1.0 No
sgd power t SGDClassifier continuous 0.0-50 No
sgd eta0 SGDClassifier continuous 1e-7-1e-2 Yes
ets n estimators ExtraTreesClassifier discrete 10-200 No
ets criterion ExtraTreesClassifier categorical gini, entropy No
ets max features ExtraTreesClassifier categorical sqrt, log2 No
ets min samples split ExtraTreesClassifier discrete 2-20 No
ets min samples leaf ExtraTreesClassifier discrete 1-20 No
ets min weight fraction leaf ExtraTreesClassifier continuous 0.0-0.5 No
ets max leaf nodes ExtraTreesClassifier discrete 10-1000 No
ets min impurity decrease ExtraTreesClassifier continuous 0.0-0.5 No
ets bootstrap ExtraTreesClassifier categorical True, False No

Table A.3: All classifier hyperparameters, their type, valid ranges or choices,
and by what classifier choice they are active.

APPENDIX A. SEARCH SPACES 57

A.4 Regressor hyperparameters

Hyperparameter Active if model selected Type Valid Range/Choices Sampled from log scale
ridge alpha Ridge continuous 0.01-10.0 Yes
ridge solver Ridge categorical auto, svd, cholesky, lsqr, sag, saga No
lasso alpha Lasso continuous 0.0001-1.0 Yes
en alpha ElasticNet continuous 0.0001-1.0 Yes
en l1 ratio ElasticNet continuous 0.0-1.0 No
sgd loss SGDRegressor categorical huber, squared epsilon insensitive, squared error, epsilon insensitive No
sgd penalty SGDRegressor categorical l2, l1, elasticnet No
sgd alpha SGDRegressor continuous 1e-6-1e-1 Yes
sgd learning rate SGDRegressor categorical constant, optimal, invscaling, adaptive No
sgd l1 ratio SGDRegressor continuous 0.0-1.0 No
sgd power t SGDRegressor continuous 0.0-50 No
sgd eta0 SGDRegressor continuous 1e-7-1e-2 Yes
ard alpha 1 ARDRegression continuous 1e-6-1e-3 Yes
ard alpha 2 ARDRegression continuous 1e-6-1e-3 Yes
ard lambda 1 ARDRegression continuous 1e-6-1e-3 Yes
ard lambda 2 ARDRegression continuous 1e-6-1e-3 Yes
ard threshold lambda ARDRegression continuous 1e4-1e5 No
pac C PassiveAggressiveRegressor continuous 0.01-10.0 Yes
pac max iter PassiveAggressiveRegressor discrete 1-3000 Yes
pac tolerance PassiveAggressiveRegressor continuous 1e-4-1e-1 Yes
dt max depth DecisionTreeRegressor discrete 1-25 No
dt min samples split DecisionTreeRegressor discrete 2-20 No
dt min samples leaf DecisionTreeRegressor discrete 1-20 No
rf n estimators RandomForestRegressor discrete 10-200 No
rf max depth RandomForestRegressor discrete 1-25 No
rf min samples split RandomForestRegressor discrete 2-20 No
rf min samples leaf RandomForestRegressor discrete 1-20 No
rf criterion RandomForestRegressor categorical friedman mse, absolute error, poisson, squared error No
rf bootstrap RandomForestRegressor categorical True, False No
ada n estimators AdaBoostRegressor discrete 10-250 No
ada learning rate AdaBoostRegressor continuous 0.001-2.0 Yes
gb loss GradientBoostingRegressor categorical squared error, absolute error, huber, quantile No
gbr n estimators GradientBoostingRegressor discrete 10-200 No
gbr learning rate GradientBoostingRegressor continuous 0.001-1.0 Yes
gbr max depth GradientBoostingRegressor discrete 1-15 No
gb subsample GradientBoostingRegressor continuous 0.05-1.0 No
gbr min samples split GradientBoostingRegressor discrete 2-20 No
gbr min samples leaf GradientBoostingRegressor discrete 1-20 No
bagging n estimators BaggingRegressor discrete 10-50 No
bagging max samples BaggingRegressor continuous 0.01-1.0 No
bagging max features BaggingRegressor continuous 0.01-1.0 No
bagging bootstrap BaggingRegressor categorical True, False No
etr max depth ExtraTreeRegressor discrete 1-150 No
etr criterion ExtraTreeRegressor categorical squared error, poisson, absolute error, friedman mse No
etr min samples split ExtraTreeRegressor discrete 2-20 No
etr min samples leaf ExtraTreeRegressor discrete 1-20 No
etr splitter ExtraTreeRegressor categorical best, random No
knr n neighbors KNeighborsRegressor discrete 1-100 No
knr weights KNeighborsRegressor categorical uniform, distance No
knr algorithm KNeighborsRegressor categorical auto, ball tree, kd tree No
knr leaf size KNeighborsRegressor discrete 10-50 No
knr p KNeighborsRegressor discrete 1-3 No
mlp hidden layer size MLPRegressor discrete 10-1000 No
mlp activation MLPRegressor categorical identity, logistic, tanh, relu No
mlp solver MLPRegressor categorical lbfgs, sgd, adam No
mlp lr init MLPRegressor continuous 0.0001-1.0 Yes
mlp max iter MLPRegressor discrete 10-1000 No
mlp early stop MLPRegressor categorical True, False No
mlp alpha MLPRegressor continuous 1e-5-1.0 Yes
etrs n estimators ExtraTreesRegressor discrete 10-200 No
etrs criterion ExtraTreesRegressor categorical squared error, absolute error, poisson No
etrs max features ExtraTreesRegressor categorical sqrt, log2 No
etrs min samples split ExtraTreesRegressor discrete 2-20 No
etrs min samples leaf ExtraTreesRegressor discrete 1-20 No
etrs min weight fraction leaf ExtraTreesRegressor continuous 0.0-0.5 No
etrs max leaf nodes ExtraTreesRegressor discrete 10-1000 No
etrs min impurity decrease ExtraTreesRegressor continuous 0.0-0.5 No
etrs bootstrap ExtraTreesRegressor categorical True, False No

Table A.4: All regressor hyperparameters, their type, valid ranges or choices,
and by what classifier choice they are active.

A.5 Encoder choices & hyperparameters

The included encoders were the OrdinalEncoder and OneHotEncoder. Both
encoders are not configurable, and therefore do not have associated hyperpa-
rameters.

APPENDIX A. SEARCH SPACES 58

A.6 Imputer choices & hyperparameters

SimpleImputer, IterativeImputer, and KNNImputer were incorporated in the
search space. Not selecting any imputer is not permitted, due to the inability
of many base models to handle missing values. In case of categorical imputa-
tion for missing values in categorical variables, two strategies were deployed,
described by the cat imputer hyperparameter. All imputer hyperparameters
can be referenced to in Table A.5.

Hyperparameter Active if imputer selected Type Valid range/choices Sampled from log space
simple strategy SimpleImputer categorical {’mean’, ’median’, ’constant’} No
iterative max iter IterativeImputer discrete 10 to 100 No
iterative imputation order IterativeImputer categorical {’ascending’, ’descending’, ’roman’, ’arabic’} No
knn n neighbors KNNImputer discrete 1 to 10 No
knn weights KNNImputer categorical {’uniform’, ’distance’} No
cat imputer all categorical {’constant’, ’most frequent’} No

Table A.5: Imputer hyperparameters and their details.

A.7 Feature selector choices & hyperparameters

The allowed choices for feature selectors are set to VarianceThreshold, Selec-
tKBest, and SelectPercentile. Optionally, no feature selector can be used, not
changing the selection of features to be used in the pipeline. Table A.6 shows
the hyperparameters associated with the feature selectors.

Hyperparameter Active if selector selected Type Valid range/choices Sampled from log space
variance threshold VarianceThreshold continuous 0.0 to 0.05 No
k best SelectKBest discrete 3 to 50 No
score func SelectKBest categorical {’f’, ’mutual info’} No
percentile SelectPercentile discrete 10 to 100 No
score func per SelectPercentile categorical {’f’, ’mutual info’} No

Table A.6: Feature Selector hyperparameters and their details.

A.8 Scaler choices & hyperparameters

The available scalers, many of which are limitly configurable with hyperparame-
ters, are StandardScaler, MinMaxScaler, MaxAbsScaler, RobustScaler, Normal-
izer, QuantileTransformer, and PowerTransformer. Additionaly, not selecting
any scaler is an option. Note that for some classifiers and regressors, the pres-
ence of a scaler is required to be compatible with many datasets. In these cases,
forbidden clauses were utilized to prevent configurations with incompatible com-
binations to be sampled. Table A.7 shows the hyperparameters associated with
the scalers.

APPENDIX A. SEARCH SPACES 59

Hyperparameter Active if scaler selected Type Valid range/choices Sampled from log space
quantile transformer n quantiles QuantileTransformer discrete 10 to 1000 No
quantile transformer output distribution QuantileTransformer categorical {’uniform’, ’normal’} No

Table A.7: Scaler hyperparameters and their details

A.9 Dimensionality reduction choices & hyper-
parameters

Two dimensionality reducers were included in the search space, PCA and Fas-
tICA. Not selecting a dimensionality algorithm was an additional choice. Table
A.8 shows the hyperparameters associated with the dimensionality reducers.

Hyperparameter Active if reducer selected Type Valid range/choices Sampled from log space
num components PCA, FastICA discrete 5 to 50 No
pca whiten PCA categorical {True, False} No
fastica algorithm FastICA categorical {’parallel’, ’deflation’} No
fastica max iter FastICA discrete 50 to 100 No
fastica fun FastICA categorical {’logcosh’, ’exp’, ’cube’} No

Table A.8: Dimensionality reducer hyperparameters and their details

Appendix B

Datasets

This appendix contains additional information about the datasets used in this
thesis.

B.1 Classification datasets

As elaborated on in Chapter 5, 49 classification datasets were selected, 48 of
which from the OpenML-CC18 benchmark. These datasets and their specifica-
tions are listed in Table B.1.

60

APPENDIX B. DATASETS 61

ID Name Instances Features Classes
3 kr-vs-kp 3196 37 2
6 letter 20000 17 26
11 balance-scale 625 5 3
15 breast-w 699 10 2
18 mfeat-morphological 2000 7 10
22 mfeat-zernike 2000 48 10
23 cmc 1473 10 3
29 credit-approval 690 16 2
31 credit-g 1000 21 2
32 pendigits 10992 17 10
37 diabetes 768 9 2
50 tic-tac-toe 958 10 2
54 vehicle 846 19 4
151 electricity 45312 9 2
182 satimage 6430 37 6
188 eucalyptus 736 20 5
38 sick 3772 30 2
307 vowel 990 13 11
469 analcatdata dmft 797 5 6
1049 pc4 1458 38 2
1050 pc3 1563 38 2
1053 jm1 10885 22 2
1063 kc2 522 22 2
1067 kc1 2109 22 2
1068 pc1 1109 22 2
1590 adult 48842 15 2
1510 wdbc 569 31 2
1489 phoneme 5404 6 2
1494 qsar-biodeg 1055 42 2
1497 wall-robot-navigation 5456 25 4
1480 ilpd 583 11 2
1462 banknote-authentication 1372 5 2
1464 blood-transfusion-service-center 748 5 2
4534 PhishingWebsites 11055 31 2
6332 cylinder-bands 540 40 2
1461 bank-marketing 45211 17 2
4538 GesturePhaseSegmentationProcessed 9873 33 5
23381 dresses-sales 500 13 2
40499 texture 5500 41 11
40668 connect-4 67557 43 3
40982 steel-plates-fault 1941 28 7
40994 climate-model-simulation-crashes 540 21 2
40983 wilt 4839 6 2
40975 car 1728 7 4
40984 segment 2310 20 7
41027 jungle chess 2pcs raw endgame complete 44819 7 3
23517 numerai28.6 96320 22 2
40701 churn 5000 21 2

Table B.1: Classification datasets from OpenML used in experiments. Column
ID corresponds to the OpenML dataset ID.

APPENDIX B. DATASETS 62

B.2 Regression datasets

For the experiments in this thesis, 16 regression datasets were selected from the
AutoML regression benchmark [27]. These datasets are listed in Table A.2.

Dataset ID Name Instances Features
41021 Moneyball 1232 15
42225 diamonds 53940 10
42728 Airlines DepDelay 10M 10000000 10
550 quake 2178 4
546 sensory 576 12
541 socmob 1156 6
507 space ga 3107 7
287 wine quality 6497 12

41540 black friday 166821 10
42688 Brazilian houses 10692 13
42727 colleges 7063 48
42729 nyc-taxi-green-dec-2016 581835 19
42726 abalone 4177 9
201 pol 15000 49
531 boston 506 14
574 house 16H 22784 17

Table B.2: Specifications of OpenML regression datasets used in experiments.

B.3 Datasets for 10CV and altering validation
sizes

ID Name Instances Features Classes
151 electricity 45312 9 2
1590 adult 48842 15 2
1461 bank-marketing 45211 17 2
23517 numerai28.6 96320 22 2

Table B.3: Binary classification datasets used to investigate 10CV and altering
the validation size. All binary datasets with more than 20,000 sample were
selected from OpenML-CC18.

Appendix C

Software packages and
versions

The following software packages and versions were used in the implementation
of this work.

Package Version
Python 3.10.12
ConfigSpace 0.7.1
dask 2024.4.1
dask-expr 1.0.11
dask-jobqueue 0.8.5
numpy 1.26.4
openml 0.14.2
pandas 2.2.2
pyarrow 15.0.2
scikit-learn 1.4.2
scipy 1.13.0
smac 2.0.2

Table C.1: Software packages and versions used in the implementation of the
experiments in this thesis.

63

	Introduction
	Problem Statement
	CASH
	Meta-overfitting

	Background
	Adaptive data analysis
	Hyperparameter optimization

	Related Work
	Summary

	Methodology
	Random search
	Bayesian optimization
	Surrogate model
	Acquisition function
	Sequential model-based algorithm configuration

	Thresholdout
	Bayesian optimization with thresholdout
	Resampling and evaluation

	Experimental Setup
	Datasets
	Classification
	Regression

	Search space
	Experiments
	Large-scale holdout
	Holdout with varying validation sizes
	10CV
	Repetitions

	Statistical analysis

	Results
	Large-scale holdout results
	Results on the Adult dataset
	All binary classification results
	Multiclass classification
	Regression
	Summary of different tasks
	Evaluation of RS, BO, and BO-THO

	Varying validation sizes
	10CV
	Limitations

	Conclusion & Future Work
	Search spaces
	List of classifiers
	List of regressors
	Classifier hyperparameters
	Regressor hyperparameters
	Encoder choices & hyperparameters
	Imputer choices & hyperparameters
	Feature selector choices & hyperparameters
	Scaler choices & hyperparameters
	Dimensionality reduction choices & hyperparameters

	Datasets
	Classification datasets
	Regression datasets
	Datasets for 10CV and altering validation sizes

	Software packages and versions

