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Abstract

Increased energy usage in urban areas, combined with high peaks of electricity demand due to the
integration of more variable energy sources like photovoltaic arrays, poses significant challenges to the
modern power grid. The increased availability of distributed energy resources in residential buildings can
be leveraged by smart controllers to facilitate demand response and flatten the energy demand curve.
Reinforcement Learning (RL) emerges as a promising solution for continuous control problems in this
context. In contrast to traditional rule-based controllers, RL approaches show superior performance
in addressing demand response challenges. This research provides a detailed benchmarking study of
state-of-the-art RL algorithms in environments of increasing complexity, characterised by a growing
number of buildings in a district. Our findings indicate that, in contrast to earlier research, the DDPG
algorithm outperforms other benchmarked algorithms across all district sizes. Additionally, this study
reveals that a single-agent approach outperforms a multi-agent approach in smaller districts and performs
comparably in larger districts. Although performance curves during training show better results for
independent agents, their test-time performance is similar to the single-agent approach, suggesting that
independent agents may overgeneralise on the training data. Overall, this research highlights the significant
potential of RL in addressing the complexities of demand response in urban energy systems.
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1 Introduction

The increase of electricity consumption and high peaks of electricity usage in urban areas, coupled with
rising electricity prices, underscore the need for smart energy control systems. The modern power grid faces
significant challenges due to the rising demand for electricity and the integration of more variable energy
sources (Sinsel et al., 2020) (Rangu et al., 2020). One promising approach to address these challenges is
the deployment of systems that leverage distributed energy resources such as batteries, thermal storage,
photovoltaic panels, electric vehicles, heat pumps, and water heaters (Akorede et al., 2010) to optimise
energy usage. By integrating these technologies, we can develop grid-interactive efficient buildings that
dynamically respond to grid conditions. This integration supports the creation of systems that can adjust
their energy consumption in response to grid signals, thereby enhancing overall grid stability.

To illustrate the issue of the high peaks mentioned, consider the adoption of renewable energy sources,
particularly solar panels, which introduces significant fluctuations into urban power grid energy demands.
During sunny periods, communities with widespread solar panel use experience a steep decline in the de-
mand for fossil-fuelled power. However, as the sun sets and solar generation decreases, there is a rapid surge
in the demand for fossil-fuelled electricity to fill the gap. A similar pattern is observed with the rise of elec-
tric vehicles, which cause a major energy demand spike during charging periods, particularly in the evening.

This abrupt shift in energy demand, known as the “duck curve”, poses a serious threat to power grid
stability (Neukomm et al., 2019). Periods of high electricity demand in cities and districts drive up
prices and overall power distribution costs, and can even result in blackouts. This phenomenon highlights
the critical need for effective demand response strategies and energy storage solutions to maintain grid
resiliency and balance renewable energy supply with fluctuating demand. These strategies aim to flatten
and reduce the overall electrical demand curve.

Demand Response (DR) involves adjusting electricity usage in response to grid signals or market condi-
tions, crucial for balancing supply and demand as renewable energy sources like solar and wind expand.
One of the key challenges is aligning electricity demand with fluctuating renewable energy generation
while maximising renewable energy usage (Gils, 2014). Energy storage systems (ESS) such as batteries
and smart HVAC systems help mitigate generation-demand discrepancies (Tan et al., 2013). Efficient
scheduling, leveraging ESS and HVAC as storage solutions, aids in flattening the energy demand curve by
avoiding peak-hour power draws (Vazquez-Canteli et al., 2012). DR strategies include shifting non-essential
electricity use to off-peak times, reducing consumption during high-demand periods, and temporarily
shifting loads to alternative or stored energy sources. These measures not only enhance grid stability by
mitigating the duck curve effect but also yield cost savings and environmental benefits through reduced
reliance on fossil fuels during peak demand, promoting a more sustainable urban energy infrastructure.

Traditional building control methods used to address problems such as DR include heuristic strategies de-
veloped by domain experts (Nagy et al., 2023) such as Rule-Based Control (RBC). However, these control
schemes may not be optimal as they are static and do not adapt to specific building conditions. Adaptive
control strategies, such as model predictive control (MPC), have also been introduced to overcome these
limitations. MPC uses a model to forecast the impact of future inputs on building dynamics using a
predefined accurate physical model of the system. The need for such models in MPC makes the DR
response problem addressed in this work particularly challenging, as every commercial building is unique
and necessitates expert knowledge to develop precise building models (Nagy et al., 2023). Moreover,
employing MPC can be computationally expensive due to the need to solve optimisation problems online
(Cao et al., 2020).

Reinforcement Learning (RL) emerges as a promising approach for addressing the complexities of DR due
to its ability to learn optimal control strategies in dynamic and uncertain environments (François-Lavet
et al., 2016). Unlike traditional rule-based methods, RL algorithms can adapt and improve their decision-
making processes over time through interaction with the environment. This adaptability is crucial in DR
contexts where grid conditions, renewable energy generation, and consumer demand patterns can vary
unpredictably. In this unpredictable setting, RL agents learn from data generated by the environment
and can recognise patterns that might not be apparent to human experts. In recent years, RL has
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achieved significant milestones in solving complex decision-making problems, including surpassing human
performance in games like Atari (Mnih et al., 2013), Go (Silver et al., 2016) (Silver et al., 2017), and
StarCraft II (Vinyals et al., 2019), as well as mastering control tasks in robotics (Kalashnikov et al., 2018)
(Haarnoja et al., 2024) and other continuous control tasks such as controlling cooling systems (Luo et al.,
2022). In contrast to MPC, model-free RL methods learn by interacting with the environment without
the need of a model of the building dynamics. Another benefit of RL is that optimisation happens offline,
which eliminates the need of computationally expensive online optimisation used by methods such as MPC.

CityLearn (Vazquez-Canteli et al., 2012) enables simulation of districts with diverse loads, devices, and
energy storage, offering a standardised method for modelling urban energy systems. This project uses
CityLearn to benchmark RL algorithms for energy coordination and demand response. CityLearn serves as
a robust framework for comparing algorithms to reshape demand curves and optimise DR strategies, using
pre-simulated models for residential and commercial buildings. CityLearn is designed as a Gymnasium
environment (Towers et al., 2022), making it possible to implement RL algorithms to improve DR.

CityLearn is widely used for benchmarking RL algorithms, featuring an annual challenge where par-
ticipants compete to create the best algorithm for specified problems and datasets. These datasets are
also referenced in various other research papers (Dhamankar et al., 2020) (Pinto et al., 2022). However,
current research tends to focus on individual datasets, specialised methods and different optimisation
goals, often neglecting direct comparisons of different algorithms on the same datasets.

The CityLearn environment enables two approaches to address the DR problem: utilising a central agent
that controls all building energy systems or employing separate agents that control each building in
the district separately. While some literature compares single-agent methods with centralised agent
methods, these studies typically do not benchmark different algorithms against each other. Similarly,
existing research on the comparison of central agent methods with independent multi-agent methods
often examines only a single algorithm per approach.

Evidently, there is a notable gap in the literature concerning the benchmarking of RL methods across
DR scenarios of varying complexities. This work aims to fill this gap by conducting a comprehensive
benchmarking study of both single-agent and multi-agent RL approaches on DR problems of varying
complexity. By gradually increasing the size of the district, we compare the performance of these RL
approaches against a classic RBC baseline.

The main goal of this research is to address two primary research questions:

1. How do different Reinforcement Learning algorithms compare in solving Demand Response problems
of varying complexity in the CityLearn environment?

2. How do single-agent and multi-agent approaches compare in this context?

In contrast to findings in existing literature that indicate that independent agents approaches work better
than central agent approaches, this research indicates that when increasing the network size of the RL
agents to accommodate the increasing complexity of the problem, central agent methods outperform
independent multi-agent methods on smaller district sizes. Although the performance of the independent
agents on the training data indicates significantly better results, their evaluation on the test data shows
they perform comparably with central agent approaches across all evaluated KPIs for larger district
sizes. Furthermore, our findings suggest that in both single-agent and multi-agent approaches, the DDPG
algorithm consistently outperforms all benchmarked algorithms across all environment settings. The
source code and trained models from this project are available at GitHub 1.

In Section 2, we will discuss related research that explores different RL approaches within grid-interactive
buildings, focusing on optimisation objectives like DR. This includes comparisons between single-agent
and multi-agent strategies. In Section 3, we will discuss the foundational concepts of RL, essential for
understanding the methodologies used in this work. We will also frame the DR problem within the RL

1https://github.com/LennardSchaap/citylearn benchmark
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framework using CityLearn as the environment. In Section 4, we introduce the CityLearn environment,
the CityLearn challenges and detail the specific dataset utilised in this study. This dataset enables
comparisons of RL methods across various problem complexities, in contrast to the datasets introduced in
the CityLearn challenges. In Section 6, we introduce the RL algorithms that will be evaluated both in a
central agent setting and in an independent multi-agent setting. In Section 7, we present the main findings
of this study, highlighting the comparative performance of the benchmarked RL algorithms in central
agent and multi-agent settings, on different problem scales. In Section 9 we discuss the implications of
our findings and outline future research directions that can be pursued in this field.

2 Related Work

In this section, we review existing research on RL control in urban energy systems, focusing on the
challenges and proposed solutions. We highlight key studies that have used the CityLearn environment
and similar frameworks to develop different approaches for solving them, including RL. Additionally,
this overview examines different works comparing multi-agent with single-agent approaches. Finally, we
discuss how our study addresses an unresolved problem by benchmarking different RL algorithms in
increasingly complex environments.

2.1 Defining RL Control Challenges in Urban Energy Systems

Nweye et al. present a collection of nine challenges designed for RL control in grid-interactive buildings,
establishing a standardised environment for evaluating RL approaches (Nweye et al., 2022a). They
implement one of these challenges in CityLearn, using the dataset from the CityLearn Challenge 2021
(Nagy et al., 2021). They compare a Soft Actor-Critic algorithm with MARLISA (Vazquez-Canteli et al.,
2020), a multi-agent RL algorithm that was developed in parallel with CityLearn, using different offline
training periods based on a rule-based controller (RBC). They discover that extended offline training
using the fixed logs from an optimised RBC results in improved long-term performance, albeit with a
slower convergence.

2.2 Proposed Solutions

Chen et al. utilise the CityLearn environment with data from the CityLearn Challenge 2021, comprising
simulation data from 9 buildings across 4 seasons over a year (Nagy et al., 2021) (Chen et al., 2020).
Their approach uses sequence-to-sequence models for energy demand and solar generation forecasting,
integrating weather and building information. Gated Recurrent Units are used for solar generation
prediction. A central load aggregator, employing Natural Evolutionary Strategies, determines target loads
for load-shifting via HVAC systems. Their findings suggest that their approach scores 16.8% better than
the RBC baseline in terms of the average net electricity consumption, load factor, ramping, average daily
peak demand, and annual peak demand KPIs.

Yao et al. utilise a micro-grid environment similar to CityLearn called Power Grid World (Biagioni et al.,
2022) to connect multiple micro-grids with HVAC, PV, and ESS systems. They utilise the model-based
MuZero algorithm framework for optimisation. The reward structure of the scheduling model includes
components like discomfort reward, energy consumption reward, HVAC system reward, and system
reward. They demonstrate the applicability of the MuZero algorithm to microgrid scheduling problems,
but do not provide comparisons with other methods in their results (Schrittwieser et al., 2020).

Nweye et al. utilise the CityLearn 2022 dataset along with additional weather and carbon intensity
data. They employ an independent SAC agent named MERLIN, which initially uses the RBC policy
for action selection during exploration. The reward function aims to minimise both cost and carbon
emissions, encouraging net-zero energy consumption and penalising net export when the battery is not
fully charged. Their agent outperforms the baseline RBC by 15% in their experiments (Nweye et al., 2023c).

Kathirgamanathan et al. introduced a centralised SAC agent for the CityLearn environment using data
from the CityLearn Challenge 2021, achieving an average improvement of 3.3% over the RBC baseline
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(Kathirgamanathan et al., 2020). In their discussion, they highlight that the performance of the centralised
SAC agent has not been evaluated across problems of varying scales, suggesting this as a potential area
for future research.

2.3 Multi-Agent vs. Single-Agent Comparisons

Pinto et al. used a CityLearn environment with four buildings (a restaurant and three multi-family
homes) connected to the grid to compare multi-agent SAC versus single-agent SAC (Pinto et al., 2022).
They evaluated economic (cost), grid-interaction (peak demand, peak-to-average ratio, daily peak),
and flexibility (self-sufficiency) KPIs. Both architectures reduced costs, peak demand, and improved
self-sufficiency compared to the RBC baseline, with notable reductions in daily peak and PAR across
various climates. The multi-agent approach slightly outperformed the single-agent approach. They suggest
future work to compare these approaches on a larger number of buildings to better assess scalability and
performance.

Almilaify et al. address the problem mentioned by Kathirgamanathan et al. by examining the scalability
of an independent multi-agent SAC algorithm against a single-agent SAC algorithm by comparing them
on different neighbourhood sizes, scaling from 2 to 64 (Almilaify et al., 2023). They found that the
independent SAC agent performs better on every task while the central agent scored comparably with the
RBC agent. While this study compares the SAC algorithm on different problem scales and hypothesises
that the central agent approach does not scale well, it does not use this scalable problem setting as a
benchmark for comparing different RL control algorithms.

2.4 Contributions

In contrast to earlier works, this research demonstrates that central agent methods outperform independent
agent methods in smaller districts when the neural network size is increased. In larger problem sizes, the
performance of both approaches is similar. This study finds that using the same network sizes for both
central and independent agents introduces a challenge due to the central agents’ observation space scaling
with problem complexity. To mitigate this issue, we size the central agents’ network to match the combined
sizes of the independent agents’ networks for fair comparison of the two approaches. Additionally, this
study reveals that while the literature often favours SAC agents for CityLearn problems, our findings
demonstrate that DDPG agents outperform SAC agents across all problem settings.

3 Preliminaries

In this section, we introduce the formal concepts of Reinforcement Learning (RL) that are essential for
understanding the methods used in this work, which are detailed in Section 6. We frame the energy
demand response problem as an RL challenge, utilising CityLearn as the environment in which our RL
agent operates.

3.1 Reinforcement Learning

Reinforcement learning is a paradigm of machine learning that differs from fields such as supervised
learning or unsupervised learning in that it does not require a labelled dataset. Instead, RL assumes
an agent in an environment that interacts with the environment by taking actions a ∈ A. The agent
observes the outcome of its actions, transitioning to new states s ∈ S and taking subsequent actions, thus
accumulating data. The initial state of the environment is denoted s0, and the initial action taken by the
agent is denoted a0. In addition to transitioning to a new state, the agent receives a (positive or negative)
‘reward’, r, which indicates the desirability of the current state. The goal of the agent in the RL setting is
to select actions that maximise the cumulative reward, known as the return G. Figure 1 illustrates the
agent-environment loop in RL.
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Agent

Environment

Action (at)
State (st)

Reward (rt)

Figure 1: The agent-environment interaction loop in Reinforcement Learning. During
training, the agent explores the environment by selecting actions, transitioning to
new states that yield specific rewards. Post-training, the agent follows its learned
policy to select actions.

3.1.1 Markov Decision Process

We can formalise the CityLearn environment as a Markov Decision Process (MDP), on which we apply
RL for solving it. An MDP is a 6-tuple, ⟨S,A, T,R, γ,H⟩, where S is the set of all possible environment
states, A is the set of possible actions the agent can take, T : S ×A → P(S) is the transition function,
where P (s′|s, a) ∈ [0, 1] describes the probability of transitioning into state s′ after taking action a in
state s, R : S × A × S → R is the reward function, with rt = R(st, at, st+1), γ ∈ [0, 1] is the discount
factor, which represents the difference in importance between future rewards and present rewards. The
horizon H is the time span over which the agent interacts with the environment.

3.1.2 States and Actions

A state is the complete description of the environment. The observation (o) that the agent perceives is a
subset of this state. When the agent can observe the entire state, the environment is fully observable.
When the agent can only see a subset of the complete state, the environment is partially observable.

The environment can be either stochastic or deterministic. For example, in chess, each action (making a
move) results in a deterministic new board state. In backgammon, the state depends on the roll of the dice,
making the environment stochastic. The probability of ending up in a specific state in an environment
is denoted as P (s′|s, a) where s is the current state, s′ is the next state and a is the action taken. In a
deterministic environment, each action taken from a given state s always leads to the same next state s′,
resulting in a transition probability P (s′|s, a) = 1.

A series of actions taken by the agent in the environment up until a certain horizon H is called a trajectory.
The trajectory can be represented as τ = (s0, a0, s1, a1, . . . , sH−1, aH−1, sH), where si is the state at time
step i and ai is the action taken at time step i. The probability of a specific trajectory is given by:

Pr(τ) = Pr(s0)

H−1∏
i=0

P (si+1|si, ai) Pr(ai|si) (1)

where Pr(s0) is the probability of the initial state, P (si+1|si, ai) is the probability of transitioning to
state si+1 given the transition function T , state si and action ai. Pr(ai|si) is the probability of taking
action ai given state si.

3.1.3 Policies

The action the agent takes is determined by its policy, which can be stochastic or deterministic. A
deterministic policy is often denoted as µ, where at = µ(st) and a stochastic policy is denoted by π, where
at ∼ π(st). A stochastic policy is a function that maps states to probability distributions over actions,
from which actions can then be sampled. The action space is defined as A, which represents all possible
actions that the agent can take in the environment. It encompasses both discrete and continuous action
sets, depending on the nature of the task. In discrete action spaces, A is typically represented as a finite
set of actions. For continuous action spaces, A is often a subset of Rn, where n is the dimensionality of
the action space.
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3.1.4 State Value

The agent’s objective is to maximise its return, denoted as G(τ), over a trajectory τ . While some literature
may confusingly R to represent return, just as the reward function, we adopt G as the standard notation.
The return is often calculated as the discounted return up to the horizon, which includes the discount
factor:

G(τ) =

H∑
i=0

γiri (2)

The expected return that a certain policy achieves, starting from a certain state s ∈ S is called the
state-value V : S → R. Mathematically, it is defined as:

V π(s) = Eτ∼Pr(τ) [G(τ) | s0 = s] (3)

where V π(s) is the state-value function under policy π, Eτ∼Pr(τ) denotes the expected value given that
the agent follows policy π on trace τ .

3.1.5 State-action Value

The state-action value Qπ : S ×A → R, also known as the action-value function, quantifies the expected
return of taking an arbitrary action a ∈ A in a state s ∈ S and following policy π thereafter. It is defined
as:

Qπ(s, a) = Eτ∼Pr(τ) [G(τ) | s0 = s, a0 = a] (4)

where Qπ(s, a) represents the expected return when starting from state s, taking action a, and subsequently
following policy π. The state-action value is often abbreviated to Q(s, a) and is also called the Q-value.

3.1.6 The Bellman Equation

The Bellman equation is a fundamental equation in RL that recursively expresses the relationship between
the value of a state s and the values of successor states s′ (Bellman, 1966). For the state-value function,
the Bellman Equation shows the relationship between the value of the current state and the value of the
next states:

V π(s) = Ea∼π(s)

[
Es′∼P (·|s,a) [R(s, a, s′) + γV π(s′)]

]
(5)

Here, the state-value under policy π is expressed as the sum of the immediate reward and the discounted
value of the successor state s′. Because the successor state is stochastic, we take the expectation sampled
from the transition function P and the expectation over actions sampled from policy π in state s.

The Bellman equation for the action-value function Qπ(s, a) is given by the recursive relationship of the
successor state s′ and action a′:

Qπ(s, a) = Es′∼P (·|s,a)
[
R(s, a, s′) + γEa′∼π(s′)[Q

π(s′, a′)]
]

(6)

Here, the action-value under policy π is expressed as the sum of the immediate reward R(s, a, s′) and the
discounted action-value of the successor state s′, given action a′ which is sampled from policy π in the
expected successor state s′.

These recursive Bellman equations are used for RL algorithms to calculate (among others) value and policy
functions recursively. These form the basis for iterative RL methods such as value iteration and policy
iteration (Bellman, 1966), which in turn underpin more advanced value iteration techniques like Q-learning
(Watkins and Dayan, 1992) and deep Q-networks (DQN) (Mnih et al., 2015), as well as advanced policy
iteration techniques like REINFORCE (Williams, 1992) and Trust Region Policy Optimisation (TRPO)
(Schulman et al., 2015).
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3.1.7 Formal Definition of the RL Optimisation Problem

The RL optimisation problem aims to find an optimal policy π∗ that maximises the expected return,
defined as the cumulative reward received over time. This return, denoted as J(π), is the expected sum
of rewards obtained when following policy π:

J(π) = Eτ∼π

[ ∞∑
t=0

γtrt

]
(7)

The RL optimisation problem is formally defined as finding the policy π∗ that maximises J(π):

π∗ = argmax
π

J(π) (8)

3.1.8 Deep Reinforcement Learning

In Deep Reinforcement Learning (DRL), which we will just call RL in the context of this work, the
state-value function and/or policy function are computable functions which depends on a set of parameters.
In the deep RL settings, these parameters are the weight and biases of a neural network. A parameterised
policy is often denoted as πθ and a parameterised value estimator is denoted as Qϕ(s, a).

3.2 Formal Definition of the CityLearn Problem as an RL Problem

The CityLearn environment can be utilised in two different settings, the central agent and multi-agent
setting. We express the central agent CityLearn problem as a discrete-time finite-horizon MDP, outlined
in Section 3.1.1, where the transition function represents the dynamics of the CityLearn environment.
The objective is to learn an optimal policy π that maximises the expected return.

In the multi-agent setting, the CityLearn problem can be expressed as a multi-agent Markov game
(Littman, 1994), defined by (S,A, T,R, γ,H). Here, S denotes the state space, A represents the shared
action space. Each agent i has a local observation oi ⊆ s ∈ S. P (s′|s,A) indicates the transition probability
from state s to s′ given the joint action A = (a1, . . . , an) for all n agents, R(s,A) denotes the shared
reward function, and γ is the discount factor. Agents use policy πθi(ai|oi) to select an action ai based on
their local observation oi. The objective is to jointly optimise the discounted accumulated reward.

4 The CityLearn Environment

CityLearn is a Farama Foundation Gymnasium environment (Towers et al., 2022) designed to simulate a
district of buildings with varying loads, electrical devices, and energy storage systems. CityLearn supports
the implementation of various control strategies, such as rule-based systems, model-predictive systems,
and single- and multi-agent RL algorithms to facilitate DR by leveraging energy storage systems for
optimal charging and discharging cycles (Vazquez-Canteli et al., 2012) (Nweye et al., 2023a). Figure 2
illustrates the CityLearn environment. Each building in the environment may be equipped differently,
with varying heating, cooling, and energy demand needs.

One of the key advantages of CityLearn is that it is a self-contained simulator which operates using
pre-existing models. It can use input files sourced from energy simulators like EnergyPlus (Crawley et al.,
2000) or Modelica (Mattsson et al., 1998) models, as well as from real-world data. CityLearn incorporates
building energy models with hourly energy usage data and the energy output from PV arrays under
varying weather conditions.

CityLearn is extensively customisable. Depending on the chosen dataset, the number of buildings in a
district can be modified. Additionally, the available storage systems for each building can be adjusted,
along with the sizes of distributed energy resources (DERs) such as photovoltaic (PV) arrays and other
renewable energy sources. The availability and sizes of electrical storage systems (ESSs), thermal energy
storage tanks, and heat pump capacities can also be modified. This allows for the design of various
optimisation challenges, such as optimising for electricity price, carbon emissions, or load shaping of the
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Figure 2: Visual description of the CityLearn environment. Each building in the
district can be equipped with various kinds and sizes of energy storage systems and
PV arrays which can be controlled by an agent to facilitate DR to the power grid.
Blue and red indicate chilled and hot water storage, respectively. These storages
can be filled by heaters or coolers and used for thermal energy needs. Energy from
both the power grid and PV arrays can be utilised meet demand. Batteries can store
PV-generated energy. Effective scheduling of battery power usage and stored heat or
cooling can be applied for DR. Adapted from (Vazquez-Canteli et al., 2012).

grid electricity network. The framework supports both single-agent and multi-agent settings, providing a
single reward for the former and a list of rewards, one for each building/agent, for the latter. The reward
function in the CityLearn environment is customisable and can be adjusted to specific optimisation tasks.

4.1 Observations

CityLearn utilises datasets to define the simulation environment and provide observation values. These
datasets include time series data for observations not dependent on agent actions, such as outdoor humidity
and solar activity. Each building has a separate data file containing building-specific observations. Table 1
provides an example of the format of this data file.

Month Hour Day Type . . . Indoor Temp. [C] Indoor Humidity [%] Equip. Power [kWh] . . .
1 1 1 . . . 22.74 83.26 9.44 . . .
1 2 1 . . . 22.69 83.38 9.68 . . .
1 3 1 . . . 22.69 83.29 8.48 . . .
1 4 1 . . . 22.70 83.23 7.85 . . .
1 5 1 . . . 22.73 82.97 7.76 . . .

Table 1: Example excerpt of a dataset used by CityLearn showing observations per
hourly time step for a specific building. ‘Month’ and ‘hour’ denote the current time
step, ‘day type’ denotes the type of the current day (e.g., weekday or holiday). ‘Indoor
temp.’ and ‘humidity’ measure the temperature and humidity inside the building,
respectively. ‘Equipment power’ indicates the amount of electrical power used by
equipment during each time step.

The parameters “Month”, “Hour”, and “Day Type” denote the current date for building x, where “Day
Type” can be 1 to 7 to indicate the day of the week, or could be assigned the value 8 to indicate a holiday.
Additional data includes end-use loads, occupancy, solar generation, and time series data for indoor
environmental variables. These variables are typically derived from simulations using energy modelling
software, such as the EnergyPlus model (Crawley et al., 2000). The complete observation space details
can be found in Appendix A.1. Additional variables, such as outdoor weather variables time series, carbon
intensity rate time series and pricing data are also used in the simulation. These variables are shared
between all buildings.
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In the process of setting up a CityLearn environment, we have the option to omit certain observations
or to normalise them. Notably, in some related studies, only a limited subset of observations is used.
For example, Kathirgamanathan et al. (Kathirgamanathan et al., 2020) employed a small subset of
9 observations to train their SAC agent, while Nweye et al. (Nweye et al., 2023c) utilised a set of 14
observations for their MERLIN controller, which is based on independent SAC controllers that use
transfer learning to speed up training. The choice of observation set depends on the specific problem
being addressed in CityLearn. Researchers can experiment with different observation sets to evaluate
their impact on the learning process of RL algorithms.

4.2 Actions

Based on the data in our dataset, a building’s actions depend on the available devices. CityLearn includes
several predefined devices listed in Table 2.

Device Unit
Cooling storage kWh/kWh capacity
Heating storage kWh/kWh capacity
DHW storage kWh/kWh capacity
Electrical storage kWh/kWh capacity
Cooling device kW/kW nominal
Heating device kW/kW nominal

Table 2: Predefined devices that can be used in the CityLearn environment.

The continuous action range spans from −1.0 to 1.0, determining the percentage of a storage device’s
capacity to be either charged or discharged. For example, an action of −0.3 would attempt to discharge
30% of the battery’s maximum capacity. Note that during simulation, there exists a maximum charging
or discharging rate. For instance, if we have a fully charged battery (electrical storage) and input an
action of −1.0, the discharge will be constrained to the maximum discharge rate per hour, as specified in
the dataset.

4.3 Key Performance Indicators

CityLearn uses a set of Key Performance Indicators (KPIs) to evaluate the performance of an agent (Nagy
et al., 2021) (Intelligent Environments Lab & AIcrowd, 2023). Depending on the optimisation challenge at
hand, the KPIs to be optimised can be set for specific goals. The KPIs are calculated as a score between 0
and 1, proportional to the baseline score, which is the score achieved when the simulation is run without
any interference from a controller. A score below 1 indicates that the controller is effectively leveraging
its control systems. The KPIs used in this study are:

Ramping: Ramping is defined as the change in energy consumption between consecutive time steps:

r =

n−1∑
t=0

|Et − Et−1| (9)

where Et denotes the total neighbourhood net electricity consumption (in kWh) at time t. Minimising
this metric involves minimising the change in energy consumption between consecutive time frames.

1 - Load Factor: The load factor is defined as the average load (in kWh) divided by the peak load
in a specific time period. A high load factor means that electricity usage of a device remains relatively
constant. Minimising the 1 - load factor ensures a more even distribution of electricity consumption
throughout the day, thereby mitigating strain on electricity infrastructure during peak demand periods.
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l =


n
h∑

d=0

1−

(
d·h+h−1∑
t=d·h

Et

)
÷ h

max(Ed·h, . . . , Ed·h+h−1)

÷ n

h
(10)

Here, n denotes the total number of time steps during the simulation, while h represents the number
of hours per day, and d denotes the day index. The term n

h corresponds to the number of days in the
simulation, and d · h+ h− 1 signifies the end time step of a day. The numerator of the fraction calculates
the average usage, while the denominator calculates the peak load.

Average Daily Peak: The net daily peak demand is the total energy consumption (in kWh) at a specific
moment subtracted by the energy supplied from PV or energy storage systems. It represents the highest
energy draw from the grid at a specific point in the day. The average daily peak is calculated as the
average of each daily peak.

pd =

 n
h∑

d=0

max(Ed·h, . . . , Ed·h+h−1)

÷ n

h
(11)

Peak Demand: The maximum value of electricity demand (in kWh) reached at any time step.

pn = max(E0, . . . , En) (12)

Net Electricity Consumption: The total amount of electricity (in kWh) consumed.

E =

n∑
n=0

(E0, . . . , En) (13)

Carbon Emissions: Total amount of carbon emissions (in kg). To convert this to a score dependent on
the baseline, we calculate

G =

b−1∑
i=0

gicontrol ÷
b−1∑
i=0

gibaseline (14)

where the total number of buildings is indicated with b and g =
n−1∑
i=0

max(0, et ·Bt). Here n denotes the

total number of time steps, et denotes the energy consumption at time step t and Bt denotes the carbon
intensity or emission rate (in kgCO2e/kWh).

In addition to the mentioned KPIs, CityLearn includes various other KPIs that can be used to evaluate
the performance of agents in different problem settings. In our work focusing on the DR problem, we
evaluate our agents at test time based on the average score across all the aforementioned KPIs. Since
CityLearn is an environment that can be used to address different challenges apart from the DR problem,
these challenges can be evaluated with different KPIs (e.g., price cost for a pricing agent). Due to the
adaptability of CityLearn, researchers can define their own reward function tailored to the specific problem
at hand.

4.4 The CityLearn Challenge

Since the release of the CityLearn environment in 2020, the CityLearn Challenge (Vázquez-Canteli et al.,
2020) (Nagy et al., 2021) (Nweye et al., 2022b) (Intelligent Environments Lab & AIcrowd, 2023) is
hosted annually. Each challenge contains a different problem, with two of the challenges, namely the
2022 and 2023 editions hosted at NeurIPS. The CityLearn Challenge is a global competition that tasks
participants with creating AI controller agents for the energy management of a microgrid. Contestants of
each challenge are tasked with creating their own control agents along with their own custom reward
function.
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The CityLearn Challenge 2020

For the inaugural CityLearn Challenge in 2020, the dataset encompassed four sets of building data from
distinct climate zones. Each climate featured data from 9 buildings, some equipped with PV arrays while
others relied on obtaining energy from the grid. All buildings had access to a heat pump, electric water
heater, chilled water tank, and a DHW (Domestic Hot Water) storage tank. They could undertake two
actions: adjusting cooling storage and/or DHW storage. The objective was for agents to control these
storage elements on an hourly basis over a simulated period of 4 years. Evaluation was conducted across
various climate zones using pre-trained agents to assess agent resilience to changes in data. The evaluation
conditions for this challenge were peak demand Equation (12), average daily peak Equation (11), ramping
Equation (9), 1 - load factor Equation (10) and net electricity consumption Equation (13).

The winning solution had an average score of 0.879 across all evaluation metrics, giving an improvement
over the RBC baseline of approximately 12.1%. The second place used a centralised Soft Actor Critic RL
agent to achieve an average score of 0.967 (Kathirgamanathan et al., 2020). In other work, Chen et. al
use a combination of Evolutionary Algorithms and MPC to achieve an average score of 0.832 or 16.8%
(Chen et al., 2020).

The CityLearn Challenge 2021

For the second CityLearn challenge hosted in 2021, the dataset comprised 9 buildings with 4 years of
simulated data. Unlike the previous challenge, buildings were now equipped with electrical storage in
addition to DHW and chilled water storage, expanding the action space. The challenge was that the
control policy could only be learned from a single episode of 4 years of data. Additionally, a new evaluation
metric, carbon emissions, was introduced.

The evaluation conditions for this challenge were the same as those from the 2020 challenge Section 4.4
but also included carbon emissions Equation (14). The winners of the CityLearn Challenge 2021 used an
evolutionary algorithm (EA) to achieve an average score of 0.962 across all evaluation metrics. This score
was primarily influenced by the low ramping costs (Khattar and Jin, 2022).

The CityLearn Challenge 2022

For the third CityLearn challenge, the focus is only on efficiently using battery storage to flatten the
energy demand curve from buildings. The dataset is a digital replica of EPRI’s net-zero demonstrator in
Fontana, CA (Nweye et al., 2022b) which consisted of the real-life end-use data of 17 buildings during 1
year. These buildings were studied for grid integration in zero net energy communities under the California
Solar Initiative program, specifically examining buildings equipped with a PV array and a battery
(Narayanamurthy et al., 2016). The only two evaluation KPIs used were net electricity consumption
Equation (13) and carbon emissions Equation (14).

The winning solution employed an ensemble approach, combining gradient-boosted decision trees (GBDT)
and the linear least squares model for load and solar generation forecasting. These predictions were then
fed into a multi-agent Proximal Policy Optimisation (MAPPO) model. It achieved an average score of
0.728 across four metrics: emission cost (0.808), price cost (0.639), and grid cost (0.783) (Intelligent
Environments Lab & AIcrowd, 2022). Furthermore, the PPO algorithm from Stable-Baselines3 achieved
a score of 0.954 (Forbu, 2022).

The CityLearn Challenge 2023

The challenge utilises the dataset “End-Use Load Profiles for the U.S. Building Stock” for simulating
6 buildings during the course of 1 year. Initially, agents could only control 3 out of the 6 buildings.
The objective was to assess whether the policies developed for these buildings could be generalised to
control all 6 buildings for online evaluation. The challenge was structured to ensure that the agents’
policies could adapt to unseen variations in building thermal dynamics and energy usage. Each building
is equipped with a heat pump, electric heater, DHW storage, battery, and PV systems. The controllable
devices include the cooling device, battery charge, and DHW storage. Unlike the 2022 challenge, the
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PV systems in this scenario are sized for only 20% of the annual load, making zero-net energy unattainable.

The CityLearn Challenge 2023 uses a weighted score to evaluate agents based the same KPIs as the
2021 challenge, but also introduced additional KPIs such as all-time peak, 1 - thermal resilience and
normalised unserved energy. At the time of writing, the CityLearn Challenge 2023 is still ongoing.

Summary

Four CityLearn challenges have been conducted to date, each presenting both real-life and simulated
datasets. The challenges introduced different numbers of buildings, actions, simulation lengths and
evaluation criteria as discussed in this section and are summarised in Table 3. Except for the 2021
challenge, for which the best agent used an EA, the most promising agents utilised RL techniques.

Challenge Buildings Actions Simulation Length
2020 9 2 4 years
2021 9 3 4 years
2022 17 1 1 year
2023 6 3 1 year

Table 3: Summary of the past CityLearn Challenges. Each challenge featured varying
district sizes, action spaces, and simulation lengths.

All of these challenges come with their own unique provided datasets. In this study, we aim to benchmark
RL techniques of varying complexity. The dataset used for the CityLearn Challenge 2023 was created
using synthetic building data. Building upon this, Nweye et al. (Nweye et al., 2023b) released a dataset
containing the end-use data of 100 buildings in three different climate zones. In this study, we will utilise
this dataset to compare single-agent RL approaches to multi-agent RL approaches on simulations of
varying complexity, achieved by scaling the number of buildings in each problem. Unlike the datasets used
in the CityLearn challenges, each of which contains a relatively small number of controllable buildings (as
indicated in Table 3), the dataset used in this study contains considerably more buildings to test the
scaling ability of different approaches. We will use the five KPIs introduced in Section 4.3 to measure the
performance of the benchmarked agents. We will introduce the dataset used for this study in Section 5.1.
The environment settings that will be used in this research will be detailed in Section 5.2.

5 Problem setting and dataset selection

In this research, we utilise a dataset similar to those introduced by the CityLearn challenges, which
are specifically tailored to work with a Farama Foundation Gymnasium environment for benchmarking
RL building control algorithms. Leveraging EnergyPlus physics-based simulation models, synthetic
representations of buildings were created to emulate diverse real-world scenarios. These simulations
incorporated factors such as diverse building types, sizes, occupancy patterns, and equipment configurations
to make sure the dataset resembles real-world situations. Each time step in the dataset comprises one
hour of simulated data.

5.1 Dataset

Unlike the datasets from the CityLearn challenges, which typically simulate a smaller number of buildings
as discussed in Section 4.4, this dataset contains simulations for 100 buildings across three distinct climate
zones (Nweye et al., 2023b). This expanded dataset enables us to benchmark RL algorithms on a larger
scale, ranging from a hamlet of 5 buildings an entire district comprising 100 buildings. It also enables us to
set the amount of actions, from only using the battery as controllable action or choosing both the battery
and DHW storages as controllable actions. Since the scalability of centralised RL methods to such a large
number of buildings, given their huge combined observation space, remains unclear (Kathirgamanathan
et al., 2020), this dataset can be utilised to gain insights into this aspect.
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Building Data

While the building data is synthetic. The end-use load profiles are based on the End Use Load Profiles
for the U.S. Building Stock database by the National Renewable Energy Lab (NREL) (Wilson et al.,
2022) (Wilson, 2017). They collect data from real-life sources utilities, smart bodes and publicly available
data to generate 900.000 energy models for different buildings from residential buildings to commercial
buildings. The data from this database was then used to generate a synthetic neighbourhood consisting
of 100 residential buildings (Nweye et al., 2023b).

Each building comes with its own synthetically generated daily load and temperature profiles. Figure 3
shows an example of the load profiles of 3 buildings of our dataset. The building is identified by its specific
building identifier which is shown on top of each figure.
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Figure 3: Example of the daily load profiles of 3 buildings in the dataset, illustrating
the unpredictable changes in demand patterns of specific buildings over a year.

The figures are generated by aggregating daily load data from each building, summing up energy con-
sumption at each hour of the day from our dataset. The equipment electric power load represents the
electricity consumed by electrical appliances within the building per day. The DHW Heating (Domestic
Hot Water) load accounts for the energy used to heat water. The cooling load represents the energy
consumed by air conditioning systems. The heating load represents the energy used by heating systems
such as furnaces, boilers, or heat pumps.

The dataset also includes indoor temperature data. An example of the indoor temperatures for 3 buildings
in our dataset is shown in Figure 4. The temperature graphs are created by aggregating the hourly
indoor temperature data for each day. The figure shows the minimum, average, and maximum indoor
temperatures for each day.
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Figure 4: Example of the daily temperature profiles of 3 buildings in the dataset,
showcasing the varying temperature patterns across different buildings.
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Weather Data

The weather data comprises real-life meteorological year data from AMY (Wilson et al., 2022) and TMY3
data (Wilcox and Marion, 2008), covering the 2018 calendar year. This data is sourced from weather
stations identified in the EULP database for three distinct climate zones: Almaeda Co., CA (marine
climate), Travis Co., TX (hot-humid climate), and Chittenden Co., VT (cold climate). The average
temperatures for each month in the Travix Co., TX climate zone are illustrated in Figure 5.

Figure 5: Monthly average daily temperature data for the Travix Co., TX climate
zone, highlighting the difference in temperatures during the year.

Carbon Intensity Data

The carbon intensity data was derived from the Electric Reliability Council of Texas (ERCOT) grid fuel
mix, representing the proportion of renewable energy generation to the total energy generated at specific
time steps.

The average carbon intensity (g/kWh) of a region at any time is given by:

Carbon Intensityavg =

∑
(Ei × CEFi)∑

Ei

where Ei represents the electricity generated (in MWh) by source i, and CEFi denotes its carbon emission
factor (g/kWh) (Maji et al., 2022).

Pricing Data

Electricity prices for each step of the dataset are sourced from the NREL database (Wilson, 2017). They
include the current electricity pricing (in $/kWh), as well as predictions for electricity pricing at 6-hour,
12-hour, and 23-hour intervals.

5.2 Benchmarking Environments

In this research, we aim to compare a set of state-of-the art RL algorithms on the continuous CityLearn
demand response problem introducing scenarios with increasing dimensionality. To comprehend strengths
and weaknesses of single-agent vs. multi-agent approaches, we will examine three scenarios. In the first
scenario, we consider only 5 buildings. In the second scenario, we scale up to 10 buildings, in the third
scenario, we expand to 50 buildings. This setup is chosen so RL algorithms can be compared to each
other on different problem scales.

We will utilise the dataset elaborated in Section 5.1 to simulate the environment for the various scenarios
outlined in Section 6. Figure 6 shows an overview of the systems and interactions between the buildings
contained in the dataset and the grid in the multi-agent scenario. According to the end-use load and
energy State of Charge (SoC) the agent can plan to charge or discharge an energy storing device.
In a single-agent RL scenario, a central agent oversees the energy management of all buildings in
the neighbourhood, including controlling both the battery and DHW (Domestic Hot Water) storage,
determining the amount of energy to store or release at each time step. In a multi-agent setting, each
building has its own control agent which controls the battery and DHW storage for that building. A
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Figure 6: Interaction of the control agent with the CityLearn environment in a
multi-agent scenario. Each agent has access to its own dataset and can control the
battery and DHW energy storages to facilitate DR. Adapted from (Nweye et al.,
2023a).

simulation in our environment takes 1464 time steps, or 61 days, covering June and July of the training
data described in Section 5.1.

Actions

The action space for the scenario where the agent controls both energy storages is two-dimensional,
ranging from -1.0 to 1.0. Both actions determine the percentage of the maximum storage to be charged
or discharged.

Observations

The agent’s observation space consists of various components providing information about the environment.
Table 4 summaries these components.

Observation Description

District-level temporal data
- Day of the week
- Hour of the day

Weather observations

- Dry-bulb temperature
- Direct solar irradiance
- Six-hour forecast for temperature and solar irradiance
- Twelve-hour forecast for temperature and solar irradiance

Building-specific states

- Solar generation
- Battery state of charge (SoC)
- Domestic hot water (DHW) storage state of charge (SoC)
- Plug loads
- Net loads
- Net electricity consumption

Table 4: Observation space for our benchmarking environment. Agents use district
level temporal data, weather observations and building-specific states to navigate the
simulation.

These observations are preprocessed using cyclical transformation, one-hot encoding, and min-max
normalisation to facilitate the learning process. Appendix A.1 shows a detailed table with the complete
CityLearn observation space, which observations are shared or building-specific and which observations
are used by the RL agents in this study.
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Reward Function

The reward function aims to minimise net electricity consumption E at each time step while encouraging
net-zero energy usage. This means the agent strives to maximise its use of self-generated PV energy and
minimise reliance on energy from the grid. The penalty term p dynamically adjusts based on the state of
charge (SoC) of the battery and DHW storage, as outlined in Equation (16). This reward function is
included with the dataset as the default.

r = −p · |E| (15)

p = 2 + |E| · (SoCBattery + SoCDHW storage) (16)

When the agent exports surplus energy to the grid (i.e., E < 0), it is penalised less if the energy
storages (battery and DHW storage) are charged to capacity. This encourages the agent to maximise
self-consumption of generated energy rather than exporting it. Conversely, if the agent imports energy from
the grid (i.e., E > 0) and the energy storages are near capacity, a penalty is imposed. This discourages
unnecessary grid energy usage when storage capacities are sufficient.

Evaluation

After training the RL agents on the training dataset, we evaluate the performances of the agents on a
test set covering one month of training data from August. At the end of the test simulation, we evaluate
the agents based on 5 KPIs, namely net electricity consumption Equation (13), average daily peak
Equation (11), ramping Equation (9), peak demand Equation (12) and 1 - load factor Equation (10).

6 Methods

In this section, we will introduce the benchmarked RL algorithms used in both central agent and individual
multi-agent settings. Additionally, we will discuss a central training, decentralised execution (CTDE)
method that has shown promise in other multi-agent settings. For each setting, we will benchmark
state-of-the-art RL methods for continuous control problems like CityLearn. First, we will explain the
classes of RL algorithms in Section 6.1, Section 6.2 and Section 6.3 necessary to understand the algorithms
used in this work. Next, we will describe the benchmarked algorithms and their comparative differences
in Section 6.4. Following this, we will outline the experimental setup in Section 6.5. Finally, in Section 7,
we will discuss the performance of the described benchmarked RL methods and compare them against
each other and the RBC baseline across the three settings of increasing complexity.

RL algorithms can be divided into three classes. The first class consists of value-based methods, where
an agent learns a value function Qϕ(s, a) that estimates the expected return of being in a particular
state and taking a particular action. The second class comprises policy-based methods, which directly
learn a policy πθ without estimating the value function. The third class of RL algorithms encompasses
actor-critic methods, which combine elements of both value-based and policy-based approaches. In these
methods, an agent learns a policy πθ using an estimated value function.

As laid out in Section 4, the CityLearn environment supports both single-agent and multi-agent settings.
In the single-agent setting, one agent is presented with the complete observation space of all global
district level observations and building-level observations. It then returns a list of actions for each building.
In the multi-agent setting, each building is controlled by its own agent. The environment gives the
building-specific observations and district level observations to each agent, which returns an action per
controllable device, as described in Section 4.2.

Intuitively, the single-agent approach should perform better on this task, as it has a complete description
of the system in the combined observations of all buildings and it should be able to learn a policy that
ensures coordination between the building energy demand profiles to smooth district-level energy demand
peaks. The multi-agent approach could be more practical in a real-world setting since the single-agent
approach requires connecting the controller to all buildings, which presents a significant bottleneck. The
multi-agent approach allows each agent to operate independently from other agents, which should also
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scale better in scenarios with larger districts.

In CTDE methods, we train a set of agent by sharing information between them during training to learn
individual policies. During test time, only these trained policies are used to generate the actions of the
agent, which means we can implement this class of algorithms in a decentralised way in the real world.
CTDE methods are mostly applied using actor-critic methods which learn a centralised critic which takes
a global or joint observation as input (Lowe et al., 2017) (Rashid et al., 2020). This means we train a
shared value function during training, which serves as the value estimator for the policy function. During
deployment, only the policy function is used.

The most straightforward approach of implementing a multi-agent algorithm is decentralised learning,
where each agent optimises its own reward independently. In theory, agents are still able to learn from
the actions of other agents due to the global state, which is a function of all agents’ actions.

In short, we compare three classes of approaches: Central agent approaches, where agents are both
trained and executed in a centralised fashion (CTCE). Independent agent approaches, where agents
are trained independently and also executed independently (DEDE); and a hybrid approach, where
agents are trained centrally but executed independently (CTDE). In Section 6.4, we will introduce the
benchmarked algorithms that will be evaluated both in a central agent setting and in an independent
multi-agent setting. These algorithms represent state-of-the-art techniques in model-free RL for continuous
control. Additionally, in Section 7.4, we will present the benchmarked state-of-the-art CTDE method for
comparison.

6.1 Value-based Methods

Value-based reinforcement learning algorithms aim to learn the value function associated with each
state-action pair. The value function, denoted as Q(s, a), estimates the expected return the agent can
achieve by taking a specific action a in a given state s and following a specific policy thereafter. Well-known
value based algorithms are Q-learning (Watkins and Dayan, 1992) and Deep Q-Networks (DQN) (Mnih
et al., 2015), which iteratively update the value function based on observed experiences.

In discrete environments, finding the action that maximises the estimated value function often involves
selecting the action with the highest value among a finite set of possible actions. This can be represented
as: a∗ = argmaxa∈A Q(s, a).

In continuous environments like CityLearn, where the action space is continuous, traditional value-based
methods might face challenges. The number of possible values for the computation of argmax becomes
infinite in this case. One solution to this problem would be to discretise the action space into bins,
transforming the continuous action space into a discrete one. By doing so, the problem becomes learnable
to traditional value-based algorithms, but we will lose freedom of movement by doing this. The more bins
we choose, the more freedom of movement or action we get, but the higher the computational demand.

6.2 Policy-based Methods

Policy-based methods directly learn continuous or stochastic policies without estimating the value function.
Instead of learning a value function Q(s, a), policy-based methods optimise the policy πθ(a|s) directly
by adjusting the parameters θ in the direction of the performance gradient ∇θJ(πθ) to maximise the
expected return.

The foundation of policy-based algorithms lies in the policy gradient theorem which states that policy
iteration with arbitrary differentiable function approximation is convergent to a locally optimal policy
(Sutton et al., 1999):

∇θJ(πθ) = Es∼ρπ,a∼πθ
[∇θ log πθ(a|s)Qπ(s, a)] (17)

One common policy-gradient approach is Williams’s episodic REINFORCE algorithm (Williams, 1992),
which uses the policy gradient theorem to update the policy parameters. The update rule for REINFORCE
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is given by: θ ← θ + α∇θ log πθ(a|s)Ĝ where α is the learning rate, and Ĝ is an estimation of Qπ(s, a).
One way of estimating this value suggested by William is using a sample return rγt . This approach allows
for direct optimisation of the policy without estimating a value function and thus without calculating
argmax, making it suitable for continuous action spaces.

6.3 Actor-Critic Methods

Actor-critic methods combine value-based and policy-based approaches into one. With classical policy-
based methods such as REINFORCE, trajectories are generated using random actions to estimate the
action-value function Qπ(s, a), which causes high variance in the policy gradient estimates which causes
learning to go slowly (Sutton and Barto, 2018).

Actor-critic methods address this by using a value function (the critic) to guide the policy update (the
actor). The critic evaluates the action taken by the actor by estimating the value function Q(s, a) or the
advantage function A(s, a). The actor updates the policy parameters θ using the gradients provided by
the critic. If the value function estimation is sufficiently good, this reduces the variance of the gradient
estimates and leads to more stable and efficient learning. However, a potential downside is that if the
value function learned by the critic is inaccurate, the policy is optimised based on incorrect evaluations.
This can lead to sub-optimal performance or even divergence. In practice, actor-critic methods outperform
policy-based and value-based methods on several popular benchmarks (Konda and Tsitsiklis, 1999). This
is why all of our chosen benchmarked algorithms are actor-critic methods.

6.4 Benchmarked Algorithms

The algorithms we will benchmark are Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al.,
2015), Twin Delayed Deep Deterministic Policy Gradient (TD3) (Fujimoto et al., 2018), Proximal Policy
Optimisation (PPO) (Schulman et al., 2017) and Soft Actor-Critic (SAC) (Haarnoja et al., 2018). We
will run these on every problem setting of increasing difficulty in both a central agent setting and an
independent multi-agent setting. Additionally, we will compare these approaches to the multi-agent PPO
(MAPPO) (Yu et al., 2022) algorithm, which is used in a CTDE setting.

6.4.1 Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient (DDPG) is an actor-critic reinforcement learning algorithm that
directly learns a deterministic policy using an estimated state-value function (Lillicrap et al., 2015).
It builds upon the Deterministic Policy Gradient (DPG) algorithm (Silver et al., 2014), extending its
capabilities to handle deterministic action spaces to deep RL. The ‘deep’ aspect of deep RL refers to use
of deep neural networks (DNNs) to estimate both policy and state-value functions. DDPG employs a
DNN as the actor to approximate the deterministic policy function and update policy parameters via the
DPG theorem, while a separate DNN (the critic), estimates the state-value function. Typical actor-critic
methods model a stochastic policy as a probability distribution over actions, while DDPG focuses on
learning a deterministic policy that maps states directly to specific actions.

DDPG utilises experience replay and target networks to enhance stability during training. Experience
replay entails storing transitions (st, at, rt, st+1) in a replay buffer (D) and randomly sampling mini-
batches for training. This approach breaks the correlation between consecutive updates and enhances
data efficiency. Target networks, which are delayed copies of the actor and critic networks updated less
frequently, provide stable target values for the critic network. This causes the value estimation to diverge
less, increasing training time due to the slower updating networks, but greatly increases training stability.

DDPG is designed to handle continuous action spaces. In these spaces, directly computing maxa Q
∗(s, a)

is infeasible due to the infinity of possible actions in a continuous action space. Instead, we use the policy
µθ(s) to directly output a single action instead of a probability distribution over actions, approximating
maxa Q(s, a) ≈ Q(s, µθ(s)). The actor is updated by following the gradient of the expected return with
respect to its parameters:
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∇θJ ≈ Es∼D[∇θQ(s, µθ(s))] (18)

The critic network estimates the Q-value of a state-action pair (s, a). It is trained to minimise the mean
squared Bellman error (MSBE), which measures the discrepancy between the predicted Q-value and the
target Q-value, indicating how closely Qϕ satisfies the Bellman equation.

L(ϕ) = E(s,a,r,s′)∼D

[
(Qϕ(s, a)− y)

2
]

(19)

where the target y is given by:

y = r + γQϕ(s
′, µθ(s

′)) (20)

The critic updates its parameters ϕ by minimising this loss. Since states are sampled from the experience
replay buffer, DDPG is considered an off-policy algorithm, meaning that it learns from states that were
generated by a different policy than the one that is being optimised.

6.4.2 Twin Delayed Deep Deterministic Policy Gradient

Twin Delayed Deep Deterministic Policy Gradient (TD3) is an extension of DDPG that aims to further
improve training stability and performance (Fujimoto et al., 2018). One of the key enhancements in
TD3 is the introduction of twin critics, which are two separate Q-value estimators. This setup is similar
to the trick used in the double Q-learning algorithm, which helps mitigate overestimation bias in the
Q-value estimates (Van Hasselt et al., 2016). TD3 uses the two critics’ outputs and uses the smaller of
the two Q-values to form the targets in the loss functions during training to provide more robust Q-value
estimates, reducing the likelihood of overestimation.

y = r + γmin(Qϕ1(s
′, µθ(s

′)), Qϕ2(s
′, µθ(s

′))) (21)

Similar to DDPG, TD3 also employs target networks and experience replay to enhance training stability.
However, TD3 introduces a technique called target policy smoothing to stabilise training further. Target
policy smoothing adds noise to the target actions during training, which helps prevent overfitting to
Q-values. The target action a′ is defined as:

a′(s′) = µθtarget(s
′) + ϵ (22)

where ϵ ∼ clip(N (0, σ),−c, c) is clipped noise sampled from a normal distribution with mean 0 and
standard deviation σ, and clipped to the range [−c, c]. The target value y then becomes:

y = r + γmin(Qϕ1
(s′, a′(s′)), Qϕ2

(s′, a′(s′))) (23)

6.4.3 Soft Actor-Critic

Soft Actor-Critic (SAC) is an off-policy actor-critic algorithm that incorporates the maximum entropy
framework to improve exploration and stability during training (Haarnoja et al., 2018). SAC aims to
maximise both the expected return and the entropy of the policy, promoting more stochastic policies
that facilitate exploration. It was designed to handle continuous action spaces and aims to improve
exploration and robustness of the learning process. The key idea in SAC is to augment the standard
maximum reward objective with an entropy term, encouraging the agent to maximise rewards while
acting as randomly as possible. Unlike DDPG, which outputs a single deterministic action, the SAC policy
outputs a probability distribution P and the entropy of this distribution H measures the randomness of
the action selection (Equation (24)). SAC shares a couple of tricks used in the TD3 algorithm, which was
developed concurrently. Both algorithms use the MSBE error to learn the state-action values. SAC also
uses target networks and the clipped double Q trick.

H(P ) = Ex∼P [− logP (x)] (24)

In the context of maximum entropy, the agent receives an additional reward that correlates with the
policy’s entropy during that specific time step. This transforms the RL problem into:
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π∗ = argmax
π

Eτ∼π

[ ∞∑
t=0

γt(rt + αH(π(·|st))

]
(25)

where α denotes the trade-off parameter between rewards and entropy. Due to the inherent exploration in
the stochastic policy, SAC can explore in an on-policy way without sacrificing exploration, unlike DDPG
where actions are deterministic. At test time, the stochasticity of the policy is removed, and the mean
action is used instead of a sample from the distribution.

6.4.4 Proximal Policy Optimisation

Proximal Policy Optimization (PPO) is a policy gradient method designed to ensure more stable learning
(Schulman et al., 2017). In traditional policy gradient methods, updating the gradient with the loss of the
policy can leads to destructively large policy updates (Schulman et al., 2017). To address this issue and
make learning more stable, Schulman et al. proposed Proximal Policy Optimization. PPO constrains the
size of the policy update by introducing a clipped surrogate objective, which prevents large policy changes.
This clipping ensures that the new policy stays close to the old policy, preventing policy oscillations and
improving stability. The surrogate objective function is given by:

LCLIP (θ) = Êt

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
(26)

where θ denotes the parameters of the policy network, and rt(θ) is the probability ratio between the new
policy and the old policy, defined as:

rt(θ) =
πθ(at|st)
πθold(at|st)

(27)

Here, πθ(at|st) represents the probability of taking action at given state st under the new policy
parameterised by θ, and πθold(at|st) represents the probability under the old policy. Ât is an estimate of
the advantage function at time step t, which measures how good the action at is compared to the average
action at state st. ϵ is a hyperparameter that controls the extent of the clipping. The clip function is
applied to ensure that the probability ratio rt(θ) is within a certain range, defined as [1− ϵ, 1 + ϵ]. The
clipped surrogate objective encourages the policy update to stay close to the previous policy, preventing
large changes that could lead to instability.

6.4.5 Multi-agent PPO

Multi-agent Proximal Policy Optimisation (MAPPO) is an adaptation of the traditional PPO algorithm
designed for multi-agent environments (Yu et al., 2022). Instead of modifying the algorithm, the authors
implement PPO in a multi-agent setting by utilising a shared value function Vϕ(s), which considers the
observations of all agents. MAPPO introduces centralised training and decentralised execution (CTDE)
for the PPO algorithm, enabling each agent to learn its own policy while sharing their value networks with
other agents during training. This approach facilitates agents in learning coordination and cooperation
strategies while preserving scalability and efficiency. Consequently, multi-agent PPO does not have
restrictions at test time because the shared critic is not utilised; only the policy network, which was
trained with the shared critic, is used.

6.5 Experimental Setup

In this section, we will include the full spectrum of different environments used, with different problem
dimensionalities. We will use CityLearn version 1.8.0 and the environments detailed in Section 5.2 with a
varying number of buildings (5, 10 and 50). In each of these problem settings, we will compare the central
agent methods (CTCE) described in Section 6 against each other and the RBC baseline. Additionally,
we compare independent agent methods (DTDE) under the same problem conditions. We will compare
the best performing single-agent method with the best performing independent multi-agent method.
Furthermore, we will compare the performance of both central and independent agent approaches against
the dependent multi-agent (CTDE) algorithm MAPPO, described in Section 7.4.
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6.5.1 Hyperparameters and network architectures

We will use the Stable Baselines3 library as the code base for our agents (Raffin et al., 2021). Each
experiment will use the hyperparameters and network architectures detailed in Appendix A.2. The default
hyperparameters in the Stable Baselines 3 library are chosen for their ability to generalise well across
various environments (Raffin et al., 2021), while the network architectures are based on those described
in the original papers that proposed each algorithm. The standard PPO network architecture features an
actor and a critic network, each with two hidden layers of 64 neurons. The standard SAC and DDPG
architectures comprise an actor and a critic network, both with two hidden layers of 256 neurons each.
The TD3 architecture includes an actor and a critic network with two hidden layers of 400 neurons each,
as well as target networks with two hidden layers of 300 neurons each.

6.5.2 Network Parameters

To accommodate the increased size of the observation space in larger problem dimensions, we expanded
the neural networks of the central agents to three hidden layers with 1024 neurons each, compared to the
standard sizes detailed in Appendix A.2. This configuration was determined through experimentation
with various network sizes on the 50-building problem. This also keeps the benchmarking fair between the
independent and central agents, as the combined number of parameters for the independent agents also
scale with the problem size. Larger network sizes beyond this point did not yield better performance. Note
that this change was only made for the central agents in the 50-building scenario. Theoretically, increasing
network size could lead to overfitting, as more parameters could enable the network to memorise sequences
rather than generalise. However, empirical results suggest that even with significantly larger networks,
this is not observed (Zhang et al., 2021). The smaller network sizes for both the independent and central
agents in the smaller district sizes could potentially lead to underfitting. We will delve into this topic
further in Section 8.

6.5.3 Training Methodology

Each agent is trained until the loss plateaus and the reward curve stabilises. Notably, for central agent
methods, we observe that performance improvement slows significantly after approximately 300 training
episodes (439200 time steps), prompting us to stop training at this point. In contrast, independent agent
methods tend to converge much faster, usually within 40 training episodes (58560 time steps). Each
experiment was run using one seed, due to the high computational costs of the experiments.

To make the learning curves of central agents clearer, we smooth them using a running average calculated
over 10 training episodes. For independent algorithms, we group individual training curves using their
mean values, and we show the standard error of this grouping in the training graphs.

6.5.4 Train-test Split

We run each environment for 1464 time steps, or 61 days, covering June and July of the training data
described in Section 5.1. We then test the agent’s performances on the test set covering one month of
training data from August. The selection of this training data is the same as that recommended by the
authors of the environment (Nweye et al., 2023b). At test time, we will compare all algorithms against
each other according to the first five KPI scores elaborated in Section 4.3.

6.5.5 Computational Resources

The central agent experiments were run on a local machine with a NVIDIA GeForce GTX 1660S GPU.
The independent agent experiments were run on the ALICE high-performance computing (HPC) cluster
provided by Leiden University with a Intel Xeon Gold 6126 2.6GHz 12-Core, using a many parallel
processes as there are agents.

6.5.6 Baseline

All agents are compared to the RBC baseline. The RBC is provided with CityLearn version 1.8.0, and its
policy is designed to manage the storage systems as follows: discharge 2.0% of its maximum capacity
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every hour between 7:00 AM and 3:00 PM, discharge 4.4% between 4:00 PM and 6:00 PM, discharge 2.4%
between 7:00 PM and 10:00 PM, charge 3.4% between 11:00 PM and midnight, and charge 5.532% at
every other hour. It seems that the RBC was originally designed using a different dataset, which caused
its schedule to be misaligned with the actual day and night times in the Texas dataset. To correct this,
we shifted the RBC’s output by 15 hours so that its policy aligns properly with the day and night cycles
in the Texas dataset.

7 Results

In this section, we present the results of our benchmarking study and evaluate the performance of central
agent, independent multi-agent, and dependent multi-agent approaches. We begin with the results of the
central agent approaches in Section 7.1, followed by the independent agent approaches in Section 7.3 and
finally compare the performances of central agents and independent agents in Section 7.3. In Section 8,
we will provide an in-depth discussion of the most significant results of this study.

7.1 Central Agent

For the central agent setting, we benchmarked four algorithms against the RBC baseline in our envi-
ronment across three different district sizes. The agents’ performance curves during training for these
experiments are depicted in Figure 7.

(a) District with 5 buildings (b) District with 10 buildings (c) District with 50 buildings

Figure 7: Performance curves for the benchmarked algorithms. All algorithms were
trained until learning plateaus. For the 5- and 50 building settings, this was around
300 episodes. In the 10 building setting, the PPO algorithm stops improving after
400 time steps.

In the 5 building setting, the DDPG algorithm seem to perform best with a score of 0.73 averaged over
all measured KPIs (explained in Section 4.3) during test time, as shown in Figure 8 and Table 5. Notably,
all algorithms surpassed the RBC baseline in this scenario.

In the 10-building scenario, both DDPG and TD3 achieved similar scores. However, in the 50-building
scenario, the PPO agent failed to solve the environment. The TD3 agent also cannot learn a policy that
gets it below the 1 score evaluation, indicating a similar performance of a building with no battery or
DHW heating, which can be seen as a local minimum solution to the problem. Only the DDPG agent
successfully tackled this scenario, albeit with a lower score compared to the other settings.

In the 10-building scenario, both DDPG and TD3 score similarly to each other. In the 50-building scenario,
the PPO agent is no longer able to solve the environment. Only the DDPG agent is able to solve this
scenario outperforming the RBC, albeit with a lower score than the other two scenarios.
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(a) District with 5 buildings (b) District with 10 buildings (c) District with 50 buildings

Figure 8: Neighbourhood-level KPI summary for the 5, 10 and 50 building CityLearn
problems using the DDPG agent (which is the best performing agent in all environ-
ments) in the testing environment.

The snapshot of electricity consumption profiles by the DDPG agent on the 10 building problem reveals
the trained policy achieves significantly lower average daily peaks compared to the consumption profile
without storage (Figure 9). This reduction was consistent across all buildings, as indicated by the battery
SoC averages shown in green.

Figure 9: Snapshot of the electricity consumption and battery SoC of the DDPG
agent on the 10-building CityLearn problem. The green band represents the aggre-
gated data from all buildings in the environment, indicating that the agent learns
to individually control different buildings. The black line shows the electricity con-
sumption when efficiently utilising energy storage devices, controlled by the DDPG
agent. This demonstrates the agent’s ability to flatten the overall energy demand
curve, showcasing its effectiveness in demand response.

Training the central agents reveals that all algorithms are able to learn and decrease the 5 KPIs by a
significant amount. While the reward function focuses on decreasing the net electricity consumption of
the district, the policy also reduces ramping, peak demand, and the average daily peak. However, the
1-load factor does not seem to be significantly affected during training. The performance curves for those
KPIs can be found in Figure 10. In the 5-building setting of the CityLearn problem, TD3 and DDPG
outperformed the PPO and SAC algorithms.
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(a) 1 - load factor score during training for the DDPG agent.
(b) Average daily peak score during training for the DDPG
agent.

(c) Peak demand score during training for the DDPG agent. (d) Ramping score during training for the DDPG agent.

Figure 10: KPI scores during training for the DDPG agent. It is evident that while
the training objective is reducing electricity consumption, the trained policy also
lowers average daily peak, peak demand and ramping KPIs.

The distribution of electricity KPI per building is visualised in Figure 11, illustrating the variability in
performance across different buildings within each scenario. Note that the baseline score is averaged, but
in reality, it varies for each building due to their different load profiles.

(a) District with 5 buildings (b) District with 10 buildings (c) District with 50 buildings

Figure 11: KPI distribution plot for the electricity consumption of every building in
each scenario for the best performing central DDPG agent. Clearly, not every building
is able to achieves the same score. This variation can be attributed to different load
profiles, which allow some buildings to benefit more from energy storage devices. In
the 50-building scenario, visualised in Figure 11c, it is evident that the central agent
is unable to improve electricity consumption for four buildings, and for one building,
the performance is worse than when not using energy storage.

The snapshot of the electricity consumption and battery SoC of the DDPG agent on the 50-building
problem, depicted in Figure 12, shows that the agent clearly learns different policies for different buildings.
The wider area of the plot signifies the different policies for different buildings. There is a clear pattern for
the aggregated data of the 50 buildings which is not simply repeated each time, but seems to be tailored
to the future consumption, as shown by closer charging and discharging times of the battery from August
4 to 5.
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Figure 12: Snapshot of the electricity consumption profile for the DDPG agent
on a segment of the test set spanning from August 1 to August 6. The dotted line
represents pre-simulated energy consumption without access to storage systems, while
the green band illustrates the aggregated charging and discharging behaviour of
different agents. The black line showcases the electricity consumption of the DDPG
agent when employing its trained policy to control the battery.

In conclusion, the central agent approach demonstrates effectiveness across all problem settings. However,
the 50-building scenario reveals areas for improvement, as shown in Figure 11c, where sub optimal
policies for some buildings indicate that the policy might be overgeneralising across buildings with more
distinct load profiles. However, more research is needed to confirm this claim. Overall, the DDPG agent
consistently outperforms other agents and the RBC baseline by a significant margin in all settings.

7.2 Independent multi-agent

For the independent agent scenario, we trained identical agents using the same hyperparameters and
network topologies. The training curves for the independent agents are averaged, and the standard deviation
is indicated by the shaded region. Intuitively, the size of the district should affect grid performance of the
independent agents. Our results, illustrated in Figure 13, show that this intuition is not reflected by the
results, as the independent agents perform similarly across all environment settings. Notably, TD3, SAC,
and DDPG perform similarly, with SAC demonstrating the best training performance, achieved after just
6 episodes of training in the 10-building scenario.

(a) District with 5 buildings (b) District with 10 buildings (c) District with 50 buildings

Figure 13: Performance curves for the benchmarked independent agent approaches.
All algorithms were trained until learning performance stops improving. This seems
to be at around 6-7 episodes for the DDPG, SAC and TD3 algorithms, and around
40 episodes for the PPO algorithm.

Figure 14 displays the test performance summary for independent agents across all benchmarking
environments. The decentralised training approach results in similar performance across different problem
settings.
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(a) District with 5 buildings (b) District with 10 buildings (c) District with 50 buildings

Figure 14: Neighbourhood-level KPI summary for the 5, 10 and 50 building
CityLearn problems using independent DDPG agents in the testing environment.

Figure 15 illustrates the distribution of electricity consumption KPI scores among individual DDPG agents.
Notably, it is evident that not all agents surpass the performance of the RBC baseline. Additionally, the
KPI distributions of the single-agent and the independent agents appear relatively similar. This similarity
arises because the buildings have different demand profiles, making it inherently harder to optimise net
electricity consumption for some buildings compared to others.

(a) District with 5 buildings (b) District with 10 buildings (c) District with 50 buildings

Figure 15: KPI distribution plot for the electricity consumption of every building
in each scenario for the independent DDPG agents. It is clear that in contrast to
the central agent, the independent agents manage to find a decent policy for each
building.

In Section 7.3, we compare the outcomes of training central agents with those of training multiple
individual agents. In Section 7.4, we will discuss the results of the benchmarked CTDE method.

7.3 Central Agent vs. Independent Agents

In this section, we compare the performance of central agent algorithms with independent agent algorithms
across various environment settings. In Section 7.1, we demonstrated that DDPG performs best among
central agent scenarios in all three environments, although its performance dips slightly in the 50-building
scenario (Figure 7). Conversely, Section 7.2 examines results for independent agent approaches, where
independent DDPG consistently outperforms other agents across all environments. Of particular interest is
whether the central agent method maintains superiority over individual agent methods in larger districts,
which will be explored further in this section.

Figure 16 depicts the training curves of both central agent methods and independent agents in a unified
plot. To facilitate comparison despite differing training durations as discussed in Section 7.1 and Sec-
tion 7.2, we aligned the x-axis as training progress (%) by aggregating the training data of the central
agents. The figure demonstrates that in this scenario, both central and independent DDPG agents exhibit
the best performance, followed by the independent SAC agent and both central and independent TD3
agents.

In Table 5, the KPI scores at test time after training are presented. The test scores correlate with the
training curves, indicating that the models do not overfit on the training data. In addition, the table
shows that RL methods significantly outperform the RBC baseline.
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Figure 16: Comparison of central agent and independent agent approaches in the
5-building environment. Among the benchmarked algorithms, central agent DDPG
(cDDPG) and independent agent DDPG (iDDPG) demonstrate superior performance,
with TD3 approaches following closely. The choice of RL method appears to have
more influence on the performance than the decision between central or independent
agent approaches.

Figure 17 shows the training performance of all benchmarked methods on the 50 building scenario. In this
setting, the independent agents, specifically iDDPG and iTD3 show the most promise. However, during
test time, the cDDPG agent performs similarly to the iDDPG agent across all evaluation KPI scores (0.76
versus 0.74). Additionally, as depicted in Figure 14c, both cDDPG and iDDPG agents both score 0.70 for
the electricity consumption KPI. This seems to indicate that the independent agents slightly overfit on
the training data.

Figure 17: Comparison of central agent and independent agent approaches in the
50-building environment. In this setting, the individual agent approaches seem to
outperform the central agent approaches. Independent TD3 and DDPG score the
best, followed by independent SAC and central agent DDPG.
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Table 5 shows the complete averaged KPI scores at test time for all benchmarked algorithms. In the
smaller district sizes, the central DDPG agent outperforms all other agents and the RBC baseline. In the
larger district, the independent DDPG agent scores the best across all KPIs. However, the performance is
very similar of that of the central DDPG agent.

Table 5: Averaged KPI scores for each algorithm on every district size. For smaller
district sizes, central agent DDPG outperforms all other algorithms. For a larger
district, the independent DDPG agents slightly outperform the central DDPG agent.
The other independent methods do not score as high, this is mainly due to high
ramping costs.

Algorithms
District size
5 10 50

iDDPG 0.78 0.78 0.74
iTD3 0.79 0.77 0.91
iSAC 0.81 0.75 0.92
iPPO 0.84 0.82 0.95

cDDPG 0.73 0.71 0.76
cTD3 0.78 0.80 1.02
cSAC 0.73 0.84 0.79
cPPO 0.82 0.84 1.01
RBC 0.92 0.91 0.90

While the results suggest that the independent agent approach might be preferable for larger district sizes,
Figure 18 illustrates that the central agent achieves better scores on the electricity consumption KPI
during testing. Although the independent agent approach manages to reduce electricity consumption by
a larger amount for a small number of buildings, on average, it appears that the central agent optimises
building policies more effectively. There are a few outliers where performance is comparable to not using
energy storage at all, and one case where performance is significantly worse than that. The training
curve indicates that further improvements can still be made with the central agent approach, whereas the
performance curves for individual agents plateau early, as depicted in Figure 13.

Figure 18: Violin plot illustrating the comparison of the distribution of the electricity
consumption KPI scores for the central agent and the independent agent. The central
agent seems to achieve more consistent and optimised results across the district,
except from a few outliers.
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7.4 CTDE Agent

In this research, we implemented the MAPPO algorithm introduced in Section 7.4 as the benchmarked
CTDE controller. Training the MAPPO algorithm on our dataset over 1M time steps with five buildings
reveals that the model does not perform better than the baseline of doing nothing. This may be due to
the large observation space for the value function, which considers a concatenation of all the building
observations. Figure 19 shows the performance of the MAPPO agent during 1M time steps. Further
research is needed to find the correct hyperparameters that enable the MAPPO agent to learn this task.

Figure 19: Performance curve of the MAPPO algorithm on the easiest 5 building
task. The agent is not able to learn a policy that is better than the baseline of doing
no DR.

8 Discussion

This research has brought several important results to light. The first surprising finding is that the
DDPG agents outperform the other agents across all settings. We discussed all methods in Section 6,
first introducing DDPG, which was proposed in 2015. Next we introduced TD3 and SAC, both released
concurrently in 2018, which were proposed as improvements on the DDPG algorithm. Both methods were
benchmarked against DDPG, outperforming it on several popular MuJoCo environment benchmarks
(Fujimoto et al., 2018) (Haarnoja et al., 2018). These excellent results might explain why, in earlier studies,
the SAC algorithm is predominantly chosen to solve problems in the CityLearn environment, as indicated
in Section 2. This research suggests that the DDPG algorithm could be better suited for addressing
these kinds of problems. Understanding this result requires exploring why the DDPG algorithm might be
particularly well-suited for addressing these specific challenges.

The benchmark environments used for SAC and TD3 in their original papers differ significantly from
CityLearn. The MuJoCo environment features settings settings with sparse rewards. In contrast, the
dynamics of the CityLearn simulation exhibits low stochasticity and provides a dense reward signal at
each time step, potentially aiding DDPG in learning the problem more effectively.

TD3 employs the clipped double Q-learning technique along with delayed policy updates (Section 6.4.2)
aimed to mitigate overestimation bias, leading to conservative network updates. However, in environments
like CityLearn with dense rewards and determinism, overestimation bias might be less of an issue. These
conservative network updates could be actually detrimental for learning in the CityLearn environment. If
overestimation is not an issue, DDPG should learn a good policy more quickly.

SAC also uses target networks and the clipped double Q trick, but also utilises a stochastic policy using
the maximum entropy framework, which encourages more exploration by the agent (Section 6.4.3). This
exploration strategy may lead the agent to exploit high-reward strategies less frequently. A more greedy
strategy could actually be advantageous for learning a policy in this particular environment.

The difference of the methods is especially evident in the 50-building scenario, where only the DDPG agent
manages to learn a good policy whereas the performance curves during training for other agents appear
to plateau. Further research is needed to confirm this observation, as SAC and TD3 algorithms may
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require more time to converge to a good policy due to their conservative updates and higher exploration.
Given sufficient time, SAC and TD3 might eventually be able to solve the environment. Achieving this
might also require hyperparameter tuning.

Finally, an important result of this research is the discovery that the central agent approach is more
effective than earlier research (discussed in Section 2) suggests. The independent DDPG agent slightly
outperformed the central DDPG agent only in the large district size scenario. However, as mentioned
in Section 7.3, the testing results seem to indicate that the independent agents slightly overfit on the
training data, whereas the training curve of the central agent (Figure 14c) indicates that there might still
be additional performance gains achievable with an even longer training schedule. Additionally, Figure 18
highlights there is room left for improvement in the central agent approach.

8.1 Limitations

In the results of our experiments, it is evident that while the reward function optimises net energy usage,
the other KPIs, except for the 1 - load factor, are also optimised concurrently. This reward function,
introduced by Nweye et al., is one of the default reward functions in the CityLearn environment (Vázquez-
Canteli et al., 2019) and was used in their showcase of this environment in (Nweye et al., 2023b). In this
work, this behaviour was already indicated, prompting us to choose for this reward function. However,
further customisation of this reward function is encouraged in the CityLearn challenges Section 4.4 and
could increase the performance of RL agents across all KPIs even more. An interesting approach could be
to design a reward function that optimises all KPIs together.

All benchmarked algorithms were trained using simulation data from June and July, with testing con-
ducted using simulated data from August, all within the summer season as detailed in Section 5.2. As
shown in Figure 5, temperatures during these months are relatively consistent, suggesting that optimal
DHW control strategies might also be similar. Further research could involve training the agent on weeks
spanning the entire year with unevenly numbered weeks for training and evenly numbered weeks for
testing. Using the trained agents in this study to control a building throughout the entire year might result
in poorer performance, especially during winter months when conditions differ significantly. Increasing
the amount of training data could improve the performance of RL agents. However, controlling a building
throughout the entire year presents a greater challenge due to varying conditions and load profiles.
Therefore, developing a more complex strategy capable of adapting to these changes may require more
training time than learning a policy that performs well only in the summer.

In Appendix A.2, we discussed the neural network architectures of each benchmarked algorithm. For this
research, we retained the default network architectures from the Stable Baselines3 code base, which are
based on the original proposals of these algorithms. However, using differently sized network architectures
could lead to unfair comparisons among the algorithms. While PPO uses a 2x64 architecture, SAC,
DDPG, and TD3 employ relatively larger architectures. This might have caused the PPO agent to
underfit the data. Scaling up the network architecture proved successful for the DDPG agent in solving
the larger 50-building environment, but did not change the performance of the other agents significantly.
In Section 6.5.2, we noted that overfitting due to a large network size is rarely an issue. Further research
is needed to verify whether the smaller network size of the agents causes them to underfit the data due to
limited capacity.

8.2 Future work

As indicated by this study, DDPG outperformed the PPO agent. Therefore, a promising direction for
future research would be to evaluate the performance of a MADDPG agent (Lowe et al., 2017). MADDPG
extends the DDPG algorithm within the CTDE framework, employing a shared centralised critic network
alongside individual policy networks for the agents.

Further research is required to train central agent approaches on large-scale districts. As suggested in
Section 8, as the distribution comparison of the individual building net electricity consumption KPIs
depicted in Figure 18 shows, more gains could be achieved using the central agent approach. This work
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would entail research on the trained policy of the outliers of the distribution, and trying to mitigate this
issue.

Although we experimented with a larger neural network architecture, conducting a thorough hyperpa-
rameter search is needed for effectively comparing the algorithms on the larger scale setting. Adjusting
various hyperparameters could potentially enable the TD3 and SAC agents to successfully address the
problem.

More research can be done comparing central agents against individual agents using an in-depth hyperpa-
rameter optimisation search for both methods. Since the central agent method showed significant benefits
from the larger network architecture, this modification should be explored for both individual and central
agents. However, implementing this for individual agents would require considerably more computational
resources that scale with the district size.

The selected dataset includes data for simulating up to 100 buildings. However, due to computational
complexity, districts with 100 buildings were not included in this study. It would be interesting to
investigate whether the central agent approach remains effective in such scenarios and whether scaling up
the neural network size even more is necessary.

The benchmarked CTDE method (Section 7.4) was not showcased well in this research, not converging to
a good policy. Earlier research has shown that the MAPPO agent, in combination with forecasting models
was able to achieve the highest score on the 2022 CityLearn challenge Section 4.4. Further research could
investigate performance improvements for the MAPPO algorithm through hyperparameter optimisation.

Reflecting on the findings of this study, the most promising research direction would be to reproduce the
results with a simulation that includes more extensive training data spanning multiple years. Additionally,
conducting a thorough hyperparameter search for all benchmarked algorithms and optimising neural
network architectures for all methods are necessary to ensure a fair comparison. Furthermore, expanding
the research to simulate environments with 100 buildings would provide a more comprehensive evaluation
of the scalability of different methods. While RL seems to be a promising approach for solving DR
problems in simulation, it still needs to be tested thoroughly in real-world environments.

9 Conclusion

To conclude, the primary finding of this research suggests that DDPG may offer significant advantages
over the commonly used SAC agent in related works (as discussed in Section 2.3) for solving demand
response problems in the CityLearn environment. This is a surprising result, given that SAC and TD3 were
originally proposed as improvements over DDPG and have shown better performance in other benchmark
environments. The success of DDPG in this context may be attributed to the dense reward signals
and low stochasticity of the CityLearn environment, which favour the learning characteristics of DDPG.
Compared to the traditionally used RBC for demand response problems, RL approaches demonstrate
significant performance improvements over this baseline, thereby confirming RL as a promising approach
for addressing this challenge.

Furthermore, the findings of this study indicate that central agent approaches are potentially be better
suited for solving the demand response problem in CityLearn, likely because they can leverage the
complete observation space of the environment. This advantage holds especially true in smaller district
sizes, while in larger districts they perform comparably to independent agents when evaluated on the
KPIs. During training, the performance of the independent agents appears superior, but this discrepancy
may indicate an overgeneralising of the independent agents on the training data.

Our results suggest that central agent approaches show potential for further improvement. However, in
practical applications, independent approaches might be preferred due to their potential for decentralised
execution, eliminating the need to connect all buildings to a central processing unit. Choosing between
central and independent agents should depend on the size of real-world districts: central agents may be
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more beneficial for smaller districts, while independent agents may be preferable for larger districts due
to easier deployment and comparable performance.

Looking forward, CTDE methods offer a promising approach by combining the benefits of centralised
training with decentralised execution using individual policy networks. A promising research venue would
be to compare the performance of a MADDPG agent implemented within the CTDE framework against
its central and independent agent counterparts.

In summary, this study underscores the potential of RL approaches in demand response strategies within
urban energy management. Specifically, we point out the DDPG algorithm as the most promising choice for
further research and highlight the strengths and weaknesses of central and independent agent approaches.
Future studies should focus on extending the application of the DDPG algorithm to similar continuous
energy management challenges and the implementation of RL agents in real-world environments.
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A Appendix

A.1 Complete CityLearn Observation Space

Table 6 shows the complete observation space for CityLearn v1.8.0, which was used in this research.
Central agents methods use the observations that are indicated as ’active’ and observations that are the
same for every building in the district are called ’shared’ and only appear once in the observation of a
central agent.

Table 6: Overview of observation parameters in CityLearn v1.8.0, detailing active
variables utilised by RL agents and shared observations across buildings.

Observation Active Shared in Central Agent
Month No Yes
Hour Yes Yes
Day Type Yes Yes
Daylight Savings Status No Yes
Indoor Temperature (C) No No
Average Unmet Cooling Setpoint Difference (C) No No
Indoor Relative Humidity (%) No No
Equipment Electric Power (kWh) Yes No
DHW Heating (kWh) Yes No
Cooling Load (kWh) No No
Heating Load (kWh) No No
Solar Generation (W/kW) Yes No
Outdoor Drybulb Temperature (C) Yes Yes
Outdoor Relative Humidity (%) No Yes
Diffuse Solar Radiation (W/m2) No Yes
Direct Solar Radiation (W/m2) Yes Yes
6h Outdoor Drybulb Temperature (C) Yes Yes
12h Outdoor Drybulb Temperature (C) Yes Yes
24h Outdoor Drybulb Temperature (C) No Yes
6h Outdoor Relative Humidity (%) No Yes
12h Outdoor Relative Humidity (%) No Yes
24h Outdoor Relative Humidity (%) No Yes
6h Diffuse Solar Radiation (W/m2) No Yes
12h Diffuse Solar Radiation (W/m2) No Yes
24h Diffuse Solar Radiation (W/m2) No Yes
6h Direct Solar Radiation (W/m2) Yes Yes
12h Direct Solar Radiation (W/m2) Yes Yes
24h Direct Solar Radiation (W/m2) No Yes
Carbon Intensity No Yes
Non-shiftable Load Yes No
Cooling Storage SoC No No
Heating Storage SoC No No
DHW Storage SoC Yes No
Electrical Storage SoC Yes No
Net Electricity Consumption Yes No
Electricity Pricing No No
Electricity Pricing Predicted 6h No No
Electricity Pricing Predicted 12h No No
Electricity Pricing Predicted 24h No No
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A.2 Hyperparameters

Table 7, Table 8, Table 9 and Table 10 show the hyperparameter configurations of the benchmarked
algorithms together with their default network architectures.

Table 7: Hyperparameters for Proximal Policy Optimization (PPO)

Hyperparameter Default Value
learning rate 3× 10−4

n steps 2048
batch size 64
gamma 0.99
gae lambda 0.95
clip range 0.2
clip range vf None
normalize advantage True
ent coef 0.0
vf coef 0.5
max grad norm 0.5
use sde False
target kl None
policy net arch 2 x 64
value net arch 2 x 64

Table 8: Hyperparameters for Soft Actor-Critic (SAC)

Hyperparameter Default Value
learning rate 3× 10−4

buffer size 1,000,000
learning starts 100
batch size 256
tau 0.005
gamma 0.99
policy net arch 2 x 256
value net arch 2 x 256

Table 9: Hyperparameters for Twin Delayed DDPG (TD3)

Hyperparameter Default Value
learning rate 1× 10−3

buffer size 1,000,000
learning starts 100
batch size 256
tau 0.005
gamma 0.99
policy delay 2
target policy noise 0.2
target noise clip 0.5
policy net arch 2 x 400
target policy net arch 2 x 300
value net arch 2 x 400
target value net arch 2 x 300
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Table 10: Hyperparameters for Deep Deterministic Policy Gradient (DDPG)

Hyperparameter Default Value
learning rate 1× 10−3

buffer size 1,000,000
learning starts 100
batch size 256
tau 0.005
gamma 0.99
policy delay 1
target noise clip 0.0
target policy noise 0.1
policy net arch 2 x 256
value net arch 2 x 256
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