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Abstract
Interpolating sparse and dense retrieval models has been shown to be an im-
provement for document retrieval tasks compared to using them alone. In
previous work, the interpolation coefficients for queries in the entire dataset
took the same value, but experiments showed that the optimal coefficients were
different for each query, and greater improvements were obtained when each
query was interpolated using its own optimal coefficients. How to determine the
optimal coefficient for each query, therefore, remains a problem to be decided.

In this thesis, we aim to devise a pipeline to improve retrieval performance
by training a predictor to estimate a linear interpolation coefficient for each
query. We use a cross-encoder with a head of a transformers-based deep lan-
guage model to predict the coefficients. Our approach involves considering
different input formats, such as individual queries, concatenating queries with
passages from ranked result lists, and query expansions. In addition, we inves-
tigate the impact of interpolating different sparse and dense retrieval models
and different depths of evaluation metrics.
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Chapter 1

Introduction

Information retrieval (IR) is the process of finding and retrieving relevant in-

formation from a collection of unstructured or structured data sources such as

text documents, images, videos, or databases. Information retrieval is mainly

concerned with finding documents related to the query. The relevance measure-

ment between query and document is the core issue of information retrieval,

focusing on the accuracy of retrieval results. A common way is to estimate the

relevance score of each document for a given query and then sort according to

this, usually taking the top 1000 (Craswell et al., 2023) 10. (2022) as the final

ranking lists.

Traditional sparse retrieval models estimate relevance based on overlapping

words in queries and documents, on which the weights are modeled and the

scores of the different weights are combined to obtain the relevance score. For

example, BM25 (Robertson and Zaragoza, 2009) obtains a relevance score by

combining word frequency, document length, and inverse document frequency.

Another category of models are the dense retrieval models (Karpukhin et al.,

2020), which map the input text (query and document) to an independent

dense representation (semantic representation vectors) and calculate the spa-

tial similarity between them using an approximate nearest neighbor algorithm

for efficient retrieval. Examples of popular dense retrieval models are ANCE

(Xiong et al., 2020), TCT-ColBERT-V2 (Lin et al., 2021), DistilBERT KD
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(Hofstätter et al., 2021), and SBERT (Reimers and Gurevych, 2019). Each

of these model types aims to capture different aspects of relevance. Dense re-

trieval models are made for matching similarities between queries at a semantic

level, rather than word-based matching, such as BM25.

Although the dense retrieval models have shown to be very effective for

document retrieval, a decision needs to be made as to whether the scores out-

put from dense retrieval models need to be integrated with those from sparse

retrieval models (as shown in equation 1.1, where α is referred to the weighted

interpolation coefficient), as sparse retrieval models may capture some exact

term matching information that is ignored by dense retrieval models. BERT

re-ranker is referred to as an approach using BERT to re-rank top-k passages

retrieved by bag-of-words retrievers such as BM25. Lin et al. (2021) claim

that it is unnecessary to interpolate exact terms matching scores (BM25) and

BERT scores because BERT has already captured all useful relevant signals of

BM25. But other studies report that interpolating the sparse and other novel

BERT-based dense retrievers results could increase the retrieval performance

because they capture different relevance signals (Askari et al., 2023; Lin and

Ma, 2021; Lin et al., 2021, 2020). Wang et al. (2021) investigate combining

relevance signals from sparse retrievers with those from dense retrievers via lin-

ear interpolation and showed that the interpolation results in higher retrieval

performance.

s(p) = αssparse(p) + (1− α)sdense(p) (1.1)

They reported that when the interpolation coefficient α = 0.3, the interpola-

tion of ANCE and BM25 achieved higher nDCG@10 scores on MS MARCO

dataset than only using ANCE or BM25 models. However, for each query, the

linear interpolation coefficient that reaches the highest nDCG@10 is not always

0.3. A higher nDCG@10 is achieved when each query has its own optimal α

value, which is called the oracle value (Wang et al., 2021). But there is not a

good way to estimate it. Hence, there is still a great possibility of improvement

between the best value and the oracle value. Additionally, as we will show in

our result section, different test sets on the same collection do not necessarily
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Chapter 1. Introduction

have the same optimized interpolation coefficient.

In this thesis, we provide a thorough investigation of whether a pipeline can

be devised to improve retrieval performance by obtaining a linear interpola-

tion coefficient corresponding to each query. We perform different experimental

methodologies to estimate the interpolation coefficient in the combination of

sparse and dense retrieval models. Our estimator is based on BERT Devlin

et al. (2019) and DistilRoBERTa-base (Sanh et al., 2019) as widely-used pre-

trained language models with high contextualization power. We propose to use

a large pre-trained transformers-based deep language model as a cross-encoder

which performs full attention over the input pair, to predict the corresponding

coefficients for each query. The next question is what information to use as

input to the pre-trained language model. The simplest is to use the query

directly as input, with the optimal linear interpolation coefficient correspond-

ing to each query as the label to train the model. For a more sophisticated

approach, we can combine information from the query and ranked result lists

as input. There is a very brutal approach: directly concatenating the input

query and the top-k retrieved documents from the ranked result lists of sparse

and dense retrieval models. Another approach to combine information from

queries and ranking lists is from the pipeline of the pseudo-relevance feedback

RM3 (Abduljaleel et al., 2004; Lv and Zhai, 2010). In this process, the RM3

relevance model is used to combine the queries and document information from

ranking lists obtained in the first round of retrieval, which is also called query

expansion.

The same approach can also be used to combine queries and information

from documents in the sparse and dense retrieval ranking lists. I used the

above methods to combine each query with the information from sparse and

dense retrieval ranking lists separately. The extended queries are created by

combining the original queries and the information from sparse and dense re-

trieval ranking lists respectively. Next, I use the two extended queries of the

same query to predict the linear interpolation coefficients. Now that we have a

set of predefined sentence pairs that have been scored, we train a cross-encoder
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(Reimers and Gurevych, 2019) to predict the linear interpolation coefficients

for these sentence pairs.

The research questions that we address in this paper are:

• RQ1: How to effectively estimate the interpolation coefficient in hy-

brid ranking with sparse and dense retrieval models? We use large pre-

trained language models to predict the interpolation coefficient α for each

query. For the inputs to the model, several different approaches have been

proposed: query alone, concatenating query with top-k documents, and

query expansion.

• RQ2: How do the results of interpolation coefficient estimation vary for

different evaluation metrics?

• RQ3: How do the results of interpolation coefficient estimation vary

across different sparse and dense retrieval models?

My research thesis is divided into six chapters. In Chapter 2, I provide the

background information. In Chapter 3, the experimental methodology used in

the thesis is presented in detail. In Chapter 4, I show all the experiments and

results and analysis of them. The discussion is presented in Chapter 5. And

the conclusion is given in Chapter 6.
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Chapter 2

Background

This chapter covers the theoretical foundations of information-retrieval-related

knowledge and related work on the interpolation of sparse and dense retrieval

models. Section 2.1 and 2.2 introduce the basics of sparse and dense retrieval

and the sparse and dense retrieval models used in chapter 4. Section 2.3 in-

troduces some work on the interpolation of sparse and dense retrieval models.

In section 2.4, we provide background on the query expansion method which

we use to reformulate the query by adding the information from the retrieved

ranked lists. In section 2.5, we demonstrate the basic concept of the cross-

encoder.

2.1 Sparse and Dense Retrieval

In terms of the type of representation and indexing method retrieval models can

be divided into two categories (Fan et al., 2022): Sparse Retrieval: improves re-

trieval efficiency by obtaining sparse document representations based on words

and building inverted indexes. Dense Retrieval: do retrieval by mapping the

input text (query and document) to independent dense representations. The

following is the introduction of dense and sparse retrieval respectively.

• Typical sparse models include TF-IDF and BM25 (Robertson and Zaragoza,

2009), which can efficiently match keywords through inverted indexes.

Such methods can be viewed as representing questions and paragraphs
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Sparse and Dense Retrieval Models Used

as high-dimensional, sparse vectors. The sparse vector representation

works well for literal matching, but not for semantic matching.

• Dense Retrieval (Zhao et al., 2022) directly changes the original retrieval

mode, maps queries, and documents into semantic space, and then uses

the ANN algorithm for retrieval. Generally, the two-tower encoding

method is used to encode the query and the document separately to

obtain independent expressions of the two, so that the queries can be

indexed “on-the-fly“ (Zhuang and Zuccon, 2021). Examples of popular

dense retrieval models are ANCE (Xiong et al., 2020), TCT-ColBERT-V2

(Lin et al., 2021), DistilBERT KD (Hofstätter et al., 2021), and SBERT

(Reimers and Gurevych, 2019), which are all used in the following exper-

iments.

2.2 Sparse and Dense Retrieval Models Used

Before performing linear interpolation of sparse and sense retrieval, the first

round of retrieval is performed using the sparse and sense retrieval models

respectively to obtain the ranking lists of top 1000 passages.

2.2.1 BM25

BM25 is the most dominant algorithm for computing query-to-document simi-

larity scores in information indexing. BM stands for Best Match and 25 refers

to the 25th iteration of the algorithm (Robertson and Zaragoza, 2009).

BM25 has the same main components as TF-IDF, the BM25 formula con-

sists of three main components:

• Relevance between each word qi in the query and the document d

• Relevance of each word qi in the query to the query (only used if the

query is too long)

• The weight of each word
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Chapter 2. Background

The general formula for BM25:

Score(Q,D) =
n∑
i

WiR(qi, d) (2.1)

Score(Q,D) =

n∑
i

WiR(qi, d) (2.2)

where Q is a query, qi is the word in the query, and d is a search document.

The design of BM25 is based on an important finding: the relationship between

word frequency and relevance is non-linear, i.e. the relevance score of each

word to a document does not exceed a specific threshold, and its impact does

not increase linearly once the number of occurrences of the word reaches a

threshold that would be related to the document itself. Thus, when portraying

word-document similarity, BM25 is designed in such a way that:

S(qi, d) =
(k1 + 1)tftd
K + tftd

(2.3)

K = k1(1− b+ b ∗ Ld

Lave
) (2.4)

where tftd is the word frequency of word t in a document d, Ld is the length

of document d, Lave is the average length of all documents, and the variable

k1 is a positive parameter used to normalize the range of word frequencies in

the article; when k1 = 0, it is a binary model and a larger value corresponds to

the use of more primitive word frequency information. b is another adjustable

parameter (0 < b < 1), which determines the range of information content

using the document length: when b = 1, the document length is fully used to

weigh the words, and when b = 0, the document length is not used.

When the query is very long, we also need to carve out the weight between

the words and the query. For short queries, this item is not necessary.

S(qi, Q) =
(k3 + 1)tftq
k3 + tftq

(2.5)
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Sparse and Dense Retrieval Models Used

where tftq indicates the word frequency of word t in the query, and k3 is an

adjustable positive parameter to correct for the range of word frequencies in

the query. The final formula for BM25 is:

RSVd =
∑
t∈q

[log
N

dft
] · (k1 + 1)tftd

k1((1− b) + b× ( Ld
Lave

)) + tftd
· (k3 + 1)tftq

k3 + tftq
(2.6)

BM25 often fails to retrieve documents on the top of the ranking list but has

a high recall value.

2.2.2 ANCE

ANCE is a very effective dense retrieval model. To solve the problem of not

providing much information because of the excessive use of simple negative

examples (random or in-batch negative sampling), an Approximate nearest

neighbor Negative Contrastive Estimation (ANCE) is proposed, i.e. a KNN-

like method to find the nearest negative classes that contribute most to con-

trastive learning. Specifically, a RoBERTa-base pre-trained model is used to

initialize the dual tower model. Then a warm-up is first done with BM25 (hard

negative case sampling with BM25), after which the index is updated by an

asynchronous method, using the checkpoint of the model being trained for hard

negative case sampling. (Xiong et al., 2020)

When building the algorithm, it is important to consider how to align

the data distribution during training and testing, i.e. how we learn it asyn-

chronously. ANCE uses the standard DR model and loss function:

f(q, d) = BERT -Siamese(q, d) (2.7)

l(q, d+, D−) = NLL(q, d+, D−) (2.8)

The only difference is the negative sample during training:

D− = D−
ANCE = ANNf(q,d)\D+ (2.9)
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Chapter 2. Background

Figure 2.1: ANCE Asynchronous Training. (Xiong et al., 2020)

The ANN searches out the index using the learned representation model f(),

which makes the inference the same at the time of inference as at the time of

training, eliminating the difference in data distribution between these. Because

the training process is random, encoder f will be updated at every step. To

update the negative samples of ANCE the following two steps are needed:

• inference: update the representation of all documents with the new en-

coder

• index: use the updated representation to reconstruct the ANN index

So ANCE only refactors the ANN index after every k checkpoints.

2.2.3 SBERT

BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019) have achieved

state-of-the-art performance on the Semantic Textual Semilarity (STS) bench-

mark (Cer et al., 2017), using a cross-encoder structure: two sentences are

spliced and fed into the model, and a transformer network with self-attention

is used to obtain the final prediction. However, they both require two sentences

to be fed into the network at the same time, which leads to a huge compu-

tational overhead. Sentence-BERT (SBERT) (Reimers and Gurevych, 2019)

is proposed to address the huge time overhead of BERT semantic similarity

and the fact that its sentence representations are not suitable for unsupervised
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Sparse and Dense Retrieval Models Used

tasks such as clustering, sentence similarity calculation, etc. Sentence-BERT

(SBERT) is a dual network based on pre-trained BERTs that can obtain se-

mantically meaningful chapter vectors. Sentence-BERT uses a forensic dual

network structure to obtain a vector representation of sentence pairs and then

pre-trains the similarity model. The network structure generates semantically

meaningful embedding vectors Vq Vd of query and document separately, and

the embedding vectors Vq and Vd are closer if they are semantically similar. So

that they can be used for similarity calculations (cosine similarity, Manhattan

distance, Euclidean distance), and then ranked and retrieved according to the

similarity scores obtained. Since it is no longer necessary to put each pair of

query and document into the model for computation, but rather the query

and document embedding vectors (the vector of documents that can even be

indexed in advance) are generated separately, the retrieval efficiency is greatly

improved.

SBERT adds a Pooling operation to the output of BERT/RoBERTa, calcu-

lating the average of all Token output vectors as the whole sentence vector. In

order to be able to fine-tune BERT/RoBERTa, Siamese and Triplet Network

(Schroff et al., 2015) were used to update the parameters to achieve a more

semantically informative generated sentence vector.

2.2.4 TCT-ColBERTv2

Tightly-Coupled Teacher ColBERT(TCT-ColBERTv2) (Lin et al., 2021) is an

improved version of the ColBERT (Khattab and Zaharia, 2020) model. Col-

BERT introduces a late-interaction architecture that uses BERT to encode

query and document separately, followed by fine-grained modeling of the two

correlations using lightweight and efficient modules. By delaying the query-

document interaction, ColBERT is able to gain both the encoding power of

BERT and the ability to compute the document representation in advance,

which speeds up the processing of online queries. The ”late interaction” is also

a dual tower architecture, encoding query and document separately, and then

taking the encoded vector representation and using some computational func-
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Chapter 2. Background

Figure 2.2: SBERT architecture. (Reimers and Gurevych, 2019)

tion (e.g. MaxSim) to compute the interaction between query and document

separately, depicting token similarity.

The key innovation of TCT-ColBERT is the use of an in-batch knowledge

distillation with a tightly-coupled teacher-student architecture in the training

process. The teacher model is a larger, more powerful version of the student

model, and it is used to generate targets for the student model during training.

By using targets, the student model is able to learn from the more informative

signals provided by the teacher model, resulting in better retrieval performance.

In the in-batch distillation process, it only exploits all possible query–passage

triplets within a minibatch instead of all combinations, which is also called

tight coupling.

2.2.5 DistilBERT KD

The most effective BERT-based (Devlin et al., 2019) neural ranking models

are called BERTCAT . Both query and document are fed into the pre-trained

model, and interaction computing is conducted at each layer of the entire
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Sparse and Dense Retrieval Models Used

Figure 2.3: Illustration of the differences between pairwise knowledge distillation
and in-batch knowledge distillation. (Lin et al., 2021)

neural network through the attention mechanism. DistilBERT KD is a type

of knowledge distillation model (Hofstätter et al., 2021). The student model

is taught by the state-of-the-art full interaction BERTCAT model by using

cross-architecture knowledge distillation and leads to improved effectiveness.

Instead of optimizing the raw scores, the margin between a pair of relevant

and non-relevant passages with a Margin-MSE loss is used, and this method

outperforms a simple pointwise MSE loss:

L(Q,P+, P−) = MSE(Ms(Q,P+)−Ms(Q,P−),

Mt(Q,P+)−Mt(Q,P−))
(2.10)

where Q is queries, P+ is relevant passages, P− is non-relevant passages, Mt

is teacher model and Ms is student model.
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Chapter 2. Background

Figure 2.4: The knowledge distillation training process of DistilBERT KD.
(Hofstätter et al., 2021)

2.3 Interpolation of Sparse and Dense Retrieval Mod-

els

Using the sparse and dense retrieval models, each passage is given a score to

indicate its relevance to the query. The ranking lists are obtained by sorting

the passages according to their scores. An implementation of interpolating

sparse and dense retrievers is linear interpolation, as shown in equation 2.11:

s(p) = αssparse(p) + (1− α)sdense(p) (2.11)

where ssparse(p) is the normalize sparse retrieval score of passage p, sdense(p)

is the normalize dense retrieval score of passage p and the parameter α is the

linear interpolation coefficient. α controls the relevance weight of sparse and

dense retrieval scores. Wang et al. (2021) further thoroughly investigated the

importance of interpolating dense retrieval and BM25 scores. They depict the

MRR@10 and nDCG@10 interpolation results between different dense retriev-

ers and BM25 onMS MARCO dev (Bajaj et al., 2016), TREC 19 (Craswell

et al., 2020) and TREC 20 (Craswell et al., 2021) dataset. In MS MARCO

dev dataset, each query corresponds on average to only one relevant passage.

And TREC 19 and TREC 20 use deep judgment pools and graded relevance
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labels (relevance label = level 3,2,1,0). It is clear that the highest effectiveness

is not obtained when using dense retrievers or BM25 alone, but rather the

higher effect is obtained after interpolating dense retrievers and BM25. For

example, the best MRR@10 value is obtained at α = 0.3 when interpolating

RepBERT and BM25 instead of using each of them alone. When considering

the other cases as well, they find that the best results are not always obtained

at α = 0.3. For example, the best nDCG@10 value is obtained at α = 0.3 when

interpolating ANCE and BM25. Then, they discuss the interpolation results

on deep evaluation metrics. They find that the improvement of interpolating

dense retrieval and BM25 scores is much more significant on deep evaluation

metrics (evaluation metrics for considering more top passages in ranked lists

like nDCG@1000, MAP) than on shallow evaluation metrics (evaluation met-

rics for considering fewer top passages in ranked lists like nDCG@10). They

point out that dense retrievers are very effective at encoding passages with

strong relevance signals(relevance label = level 3) and do a better job at this

than BM25. However, when it comes to modeling weaker relevance signals, it

is instead the BM25 that performs better. Interpolating them can be a good

way to make up for their weaknesses. They also discuss the oracle values. More

significant gain is obtained when the most efficient interpolation coefficient α

corresponding to each query is used to obtain the retrieval result.

Li et al. (2022) investigate the interpolation of dense and sparse retrieval

results in the context of Vector-pseudo-relevant feedback (VPRF). VPRF (Li

et al., 2022) includes two round dense retrievals. VPRF method gets the top

retrieved passages’ dense vectors in the first round retrieval and then uses

these vectors to enhance the original query’s dense representation. And these

enhanced query’s dense representations are used for the second round retrieval.

It is clear that both rounds of retrieval can be interpolated with sparse retrieval.

They explored three cases: interpolation in the first round only, interpolation

in the second round only, and interpolation in both rounds. Two sparse retriev-

ers (uniCOIL (Lin and Ma, 2021) and BM25 (Robertson and Zaragoza, 2009))

and three dense retrievers (ANCE (Xiong et al., 2020), TCT-ColBERT-V2 (Lin

et al., 2021), and DistilBERT KD (Hofstätter et al., 2021)) are considered to

be used for interpolation. In cases of interpolation with BM25, conducting in-
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Chapter 2. Background

terpolation in both rounds of retrievals achieves the highest effectiveness most

of the time and across all three dense retrievers and TREC 19, TREC 20

datasets. In cases of interpolation with uniCOIL, conducting interpolation in

both rounds of retrievals also show high results in most of the time. Further-

more, only interpolating with uniCOIL in the second round of retrieval shows

high effectiveness, not BM25. Then they further investigate the difference

in performance between learned sparse retriever: uniCOIL and unsupervised

sparse retriever: BM25. Interpolation with BM25 tends to have relatively high

recall while interpolation with BM25 uniCOIL tends to have higher nDCG@10

and MAP.

2.4 Query Expansion

Query expansion is a process in information retrieval that involves selecting

and adding terms to a query aiming at minimizing query-document mismatches

and improving retrieval performance (Vechtomova and Wang, 2006). One of

the most common methods is to use the RM3 relevance models for query ex-

pansion. This is often used between the first and second retrieval steps of

pseudo-relevance feedback (Abduljaleel et al., 2004; Lv and Zhai, 2010). In

the field of information retrieval, relevant feedback is to make use of the initial

results returned for a given query, and whether these results are relevant to

the new query or not. Pseudo-relevant feedback provides an automatic local

analysis method. This approach starts by finding an initial result from the

most relevant documents through a general retrieval and then assumes that

the top k ranked documents are relevant.

It combines query and relevant information of top k documents obtained

in the first retrieval step. The RM3 relevance model first retrieves a set of top-

ranked documents based on the original query. It then estimates a new query

model by combining the original query with the language model probabilities

of the top-ranked documents. The new query model is then used to retrieve a

final set of documents. So we can use the same method for query expansion

purposes.
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2.4.1 RM3 Relevance Model

In the absence of feedback information, the MLE method is often used to

estimate the query language models:

p(ω | Q) =
c(ω,Q)

|Q|
(2.12)

where c(ω,Q) is the occurences of word ω in the query Q, and |Q| is the total

number of words in the query Q. In order to take the feedback information

into account (assume the top k retrieve documents in the first stage retrieval

are all relevant), we have to estimate more accurate query language models.

There are some effective methods for query model estimation based on pseudo-

feedback techniques. The formula of the first estimation method of relevance

model (RM1) (Lavrenko and Croft, 2001) is:

p1(ω | Q) ∝
∑
θD∈Θ

p(ω | θD)p(θD)
m∏
i=1

p(qi | θD) (2.13)

where Θ represents the set of smoothed document models in the pseudo feed-

back collection(top k documents) and Q represents the set of all queries. The

RM1 relevance model p1(ω | Q) can be interpolated with the original query lan-

guage model p(ω | Q) to further improve the performance (Lv and Zhai, 2009).

And the interpolated relevance model is called the RM3 relevance model:

RM3 : p(ω | θ′Q) = (1− α)p(ω | θQ) + αp1(ω | θQ) (2.14)

2.5 Cross-Encoder

Cross-Encoder is a paradigm of scoring pairs of sentences that perform full self-

attention over the pair. This model is usually built based on a Transformer-

based language model (such as BERT or RoBERTa). The cross-encoder con-

catenates two sentences together with the separator [SEP ] and feeds them into

a language model. Equation 2.15 shows the cross-encoder input formulation.

The [CLS] token is placed at the beginning of the first sentence and the rep-
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Chapter 2. Background

Figure 2.5: Cross-Encoder architecture (Zhao et al., 2022)

resentation vector C obtained by the Transformer-based language model can

be used for subsequent tasks. The [SEP ] token is used to separate two input

sentences, e.g. input sentences A and B. The [SEP ] flag is added between

sentences A and B.

[CLS] SentenceA [SEP ] SentenceB (2.15)

Equation 2.16 shows the first output of the transformer which is the embedding

vector of the interactions between the sentences pair:

ySentenceA,SentenceB = first(T (SentenceA, SentenceB)) (2.16)

At the top of the language model, there is a classification or relevance scoring

head that is trained to predict a target score as shown in equation 2.17, where

W is the classification or relevance scoring layer.

score(SentenceA, SentenceB) = ySentenceA,SentenceBW (2.17)

However, cross-encoders need to compute a new encoding for each pair of input

sentences, which results in high computational overhead in cases with massive

pairs of sentences.
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Chapter 3

Methodology

Although Wang et al. (2021)’s work demonstrates that interpolating sparse

and dense retrievers yields improvement compared to using them alone, the

improvement is larger when each query has its own interpolation coefficient

(α). The retrieval result obtained when the α value used in the interpolation is

the ideal α value for each query is what we call the oracle value. There is still

a significant gap between the oracle values and global coefficient values. So we

wanted to devise a process to train a model that could predict the optimal α

of queries, thus enabling a further improvement in retrieval efficiency. In this

thesis, I choose BM25 (Robertson and Zaragoza, 2009) as the sparse retrieval

model and ANCE (Xiong et al., 2020), SBERT (Reimers and Gurevych, 2019),

TCT-ColBERTv2 (Lin et al., 2021), DistilBERT KD (Hofstätter et al., 2021)

as the dense retrieval models. In the process of using them for retrieval, they

are used as encoders to encode passages and queries respectively, and then

post-interactively compute queries and passages for ranking passages. If I

change the queries set several times while the passages set remains the same,

only performing the “on-the-fly“ query encoding is necessary, which can greatly

reduce the amount of GPU computation. To generate these retrievers’ results

to be used for interpolation, I use the implementation provided by Pyserini

(Lin et al., 2021), which already has some pre-built index of some benchmark

datasets. The linear interpolation coefficient is defined as α. The ranking list

is defined as L. Ldense, Lsparse represent ranking lists obtained by dense and
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Figure 3.1: MS MARCO dev: The optimal alpha distribution for each query
obtained according to the nDCG@10 value.

sparse retrieval models, and L1:k represents top k passages retrieved in the

ranking list.

First, we obtain the optimal α for each query. Then, we utilize it as the

label to estimate α in two different methods: query-based coefficient estimation

and reformulation-based coefficient estimation.

3.1 Obtaining optimal α for each query

As shown in Figure 3.1, the best α value is different for each query. By us-

ing the next method, we can calculate the optimal interpolation coefficient for

each query. As shown in Figure 3.2, for a query, the dense and sparse retriever

return two ranking lists Ldense Lsparseseparately which contain retrieved pas-

sages and their corresponding relevance scores (normally containing the top

1000 rankings). The sparse and dense ranking lists are then linearly inter-

polated according to equation 3.1. In this way, each passage is given a new

fused relevance score and re-sort them from highest to lowest to obtain a new

ranking list (also containing the top 1000 rankings). α takes eleven values from

[0.0, 0.1, 0.2......0.9, 1.0] respectively. The fused ranking lists are evaluated us-

ing evaluation metrics (such as nDCG@10), and the alpha value corresponding
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Figure 3.2: The process of obtaining optimal α for each query

to the fused ranking with the best retrieval effect is selected as the optimal α.

s(q, p) = αssparse(q, p) + (1− α)sdense(q, p) (3.1)

3.2 Query-based Coefficient Estimation

First I consider trying to use only the information in the query to predict its

corresponding optimal α value. As shown in Figure 3.3, a query is first fed

into the BERT-like language model, after which a score is obtained through

the linear layer. The optimal α values obtained previously are used as labels to

fine-tune the neural network model so that it can predict the α of the queries.
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Figure 3.3: The pipeline of using one query.

3.3 Reformulation-based Coefficient Estimation

3.3.1 Adding Information of Ranking List to Query

In this thesis, we propose two ways to combine the query with the information

in its corresponding ranking list:

Concatenating Query and L1:k Documents

The first is a brutal approach: directly concatenating the input query and the

L1:k retrieved documents from ranking lists.

new query = query + passage1 + passage2 + ......+ passagek (3.2)

The drawback of this approach is that the common language models nowadays

have input limits, e.g. BERT has a maximum of 510 tokens, and when the

length of the passages is too long, the amount of information that can be

added becomes very limited.
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Query Expansion

The second approach is to use the query expansion method for combining.

First, assume that the L1:k passages in the ranking list are all relevant (feedback

documents). Then using the RM3 relevance model returns k terms to be added

after the query.

query
RM3−→ query + term1 + term2 + ......+ termk (3.3)

This method uses fewer terms but combines more information than the first

method. To conduct the query expansion, I use the RM3 method provided by

PyTerrier (Macdonald and Tonellotto, 2020).

3.3.2 Training Cross-Encoder

Since the cross-encoder requires a set of predefined sentence pairs to be scored

as input, I choose a query combined with sparse and dense retrieval ranking lists

respectively as input. As shown in Figure 3.4, two sentences are concatenated

using a special token [SEP ] to separate them, which is then put into the

BERT-like model. Finally, a score is output after a linear layer. The optimal

alpha value can be used as a label during the training process, and the final

trained model is expected to predict the alpha corresponding to each query,

thus improving the retrieval performance.
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Figure 3.4: Structure of cross-encoder
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Chapter 4

Experiments and Results

In this chapter, we first present the passage sets and query sets used in the

experiments. Afterward, we show the results of three experiments that attempt

to predict alpha values. Finally, we do more comprehensive experiments on

more dense retrieval models and evaluation metrics and discuss the results.

4.1 Datasets

4.1.1 Passages Set

MS MARCO Passages Dataset: MS MARCO (MicroSoft MAchine

Reading COmprehension) Bajaj et al. (2016) is a large-scale dataset focused

on machine reading comprehension which consists of over 8.8 million web page

passages. It is used on a large scale for benchmarking work on many informa-

tion retrieval tasks. Figure 4.1 shows the length distribution of the passages

in MS MARCO Passages Dataset, the majority of the articles are spread

over a length of around 50 tokens.

4.1.2 Queries Set

• MS MARCO dev, which consists more than 6000 of queries. The

queries in this set have, on average, only one passage that is relevant to

them.
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Figure 4.1: The length distribution of passages set.

• TREC 19, TREC 20: TREC 2019,2020 Deep Learning Passage Re-

trieval Tasks (Craswell et al., 2020, 2021) use the same passages set as

MS MARCO dev, but with only 43 and 54 queries,respectively. Unlike

MS MARCO dev, each query in TREC 19, 20 has multiple related

passages and deep relevance scoring labels (relevance label: 3,2,1,0).

In the following experiments, MS MARCO queries set is used to train the

predictors, and TREC 19,20 queries sets are used to test the models that

have already been trained. We utilize Pyserini1 for the implementation of

these models.

4.2 The Linear Interpolation Coefficients of Queries

The best nDCG@10 is obtained for the MS MARCO Passage dev query

set when the linear interpolation coefficient α = 0.3. But is this also the

same case for other datasets? When the same linear interpolation operation

is conducted on the TREC Deep Learning Track passage retrieval task

2019 (Craswell et al., 2020) (TREC 19), TREC Deep Learning Track

passage retrieval task 2020 (Craswell et al., 2021) (TREC 20) datasets

1https://github.com/castorini/pyserini
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(a) TREC 19 (b) TREC 20

Figure 4.2: TREC 19: Interpolation nDCG@10 result of BM25 and ANCE.

and the result are shown in the Figure 4.2. The figures indicate that for TREC

19, TREC 20 the best nDCG@10 results are obtained when α = 0.4, 0.1, and

these are not the same as the MS MARCO dev dataset, which is in line with

the prior results by Wang et al. (2021).

This is because the best α value is different for each query, as shown in

Figure 4.3. The vast majority of queries have optimal alpha values of 0 (i.e.,

only using the ranked list provided by ANCE), and 1 (i.e., only using the

ranked list provided by BM25), but there are some queries that do not have

optimal α values of 0 and 1. It is clear from Figure 4.3 that the queries with

optimal α = 1 are the most numerous, but Figure 4.4 shows that the results

are much better with α = 0 than with α = 1. This is because the BM25 model

tends not to rank at the top, in other words, the NDCG@10 of BM25 retrieval

results tends to be worse, which results in these queries with an optimal α

value of 1 contributing very little to the improvement of the overall retrieval

result evaluation metric. Therefore it is not feasible to apply the same α value

to all queries.

Instead of taking the same α value for all queries in the linear interpolation

process, the value obtained by linear interpolation using the optimal α value for

each query is called the oracle value. In other words, the oracle value represents

the interpolation coefficient with which the highest effectiveness (in terms of

nDCG, or MAP) is achieved for an individual query. As it is shown in Figure
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Figure 4.3: MS MARCO dev: The optimal alpha distribution for each query
obtained according to the nDCG@10 value.

4.5, the red line represents the result achieved with the oracle nDCG@10 values

for each individual query, and the blue line represents the results achieved with

varying interpolation coefficients from 0 to 1 (same interpolation coefficient

across all queries). As the gap between the two results shows, there is still

a great possibility of improvement between the best effectiveness that can be

achieved by the same interpolation coefficient (i.e., the blue curve) and the

effectiveness achieved with the oracle values of the queries (i.e., the line in

red). This is also the purpose of this report: whether a pipeline can be devised

to find the optimal α value for each query to further improve the retrieval

effectiveness.

To address this question, in the following, we investigate the approaches

introduced in Section 3.

4.3 Only Using Query Alone As Input to Predict α

In this section, we consider whether it is possible to train a predictor which

could estimate the interpolation coefficient α of a query, by only using the

query itself.

To this aim, first, we use the BERT base model and only take a query
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Figure 4.4: MS MARCO dev: Interpolation NDCG@10 result of BM25 and
ANCE.

as input, as shown in Figure 3.3. The dataset used for training is the MS

MARCO passages and the dev query set. 70% of the queries are used as the

training set, 15% of the queries are used as the validation set, and 15% of the

queries TREC 19, 20 are used as the test set. They are all randomly divided

according to the corresponding α value, which means they all have the same α

values distribution as the whole dataset.

Two sets of experiments are conducted in this regard and the results are

shown in Figure 4.6. In the first experiment, all the training data are used

(green line). In the second experiment, all the queries with nDCG@10=0 are

removed from the training data (yellow line). As it is shown in Figure 4.6,

removing the queries with nDCG@10=0 improves the result. Although it still

does not exceed the best nDCG value when α = 0.2 (nDCG@10=0.415), it

is better than using BM25 and ANCE alone (0.2471 and 0.395 respectively).

4.1 shows the prediction results of none nDCG@10=0 queries in training set

on the dev test set, TREC 19 and TREC 20. They all do not exceed the

nDCG value when α = 0.2. To further investigate the prediction results, the

distribution of predicted interpolation coefficients for different queries is shown

in Figure 4.7. We can see that most of the predicted values are around 0.24.

Besides, Figure 4.8 shows the distribution of the ground truth interpolation
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Figure 4.5: MS MARCO dev: The blue line represents the interpolation
nDCG@10 result of BM25 and ANCE. The red line represents the oracle value.

α = 0.2 best nDCG@10 oracle nDCG@10 None nDCG@10=0

MS MARCO dev 0.4150 0.4150 0.5029 0.4091

TREC 19 0.6787 0.6897(alpha=0.4) 0.7475 0.6782

TREC 20 0.6564 0.6595(alpha=0.1) 0.7348 0.6544

Table 4.1: Query alone: The results of none nDCG@10=0 queries in training set

coefficients of the same queries, i.e., oracle values corresponding to the queries

shown in Figure 4.7. Comparing the two distributions, we could infer that this

method doesn’t succeed in predicting the optimal α value.

4.4 Concatenating Query and Documents

The second approach that we study is to employ the top-k documents retrieved

by each individual ranker to construct a ranker-specific reformulation of the

query. As explained in Section 3 (Eq. 3.2), the ranker-specific reformulated

queries from sparse and dense retrieval models are used as the input to the co-

efficient predictor. Since the average length of passages is 56 and the maximum

input length of BERT is 512 tokens, the k in Eq. 3.2 is set to 5, and therefore,
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Figure 4.6: Results for the dense retriever ANCE and BM25 on the test set for
varying values of interpolation parameters α (blue line). In the red line, we display
the oracle value on the test set. The green line is the prediction results of the test
set when using all queries in the training set to train the predictor. The green line is
the prediction results of the test set when using queries without nDCG@10 = 0 in the
train set to train the model.

the given query q and the top-5 passages of the BM25 and ANCE ranked lists

are concatenated. The resulting concatenated query and passages are then

given as the input of the cross-encoder to predict the interpolation coefficient

for query q the sparse and dense retrieval models (See Figure 3.4). When the

input is too long it will be automatically cut off at 512 tokens. The predictor

is trained using the MS MARCO dev dataset, and the validation set is also

part of the MS MARCO dataset. The Trec 19 and Trec 20 datasets are also

used as test sets to test the trained models. Figure 4.9 shows the interpolation

results of the TREC 19 and TREC 20 dataset, the best nDCG@10 values are

obtained when α = 0.4 and α = 0.1, which are different with MS MARCO

dev. The distribution of α labels in the training set is very biased, with most

of them being 0 and 1, so three cases are considered:

• removing all queries with α = 0, 1 in the training set

• keeping all queries with α = 0, 1 in the training set

• sampling a part of the queries with α = 0, 1 in the training set, the final
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Figure 4.7: Query alone: Prediction results (α) distribution.

α 0.2 0.1 0.4 0.3 0 1 0.5 0.6 0.7 0.8 0.9

Proportion 0.136 0.131 0.128 0.119 0.118 0.118 0.106 0.060 0.043 0.027 0.015

Table 4.2: The ratio of each α value of the sample training data

ratio of each alpha is shown in the table 4.2

The result is shown in the table 4.3. α = 0.2 is the optimal α value of validation

set. Training sets with different distributions will lead to different training

results, and I have looked further into the prediction distributions. Figure

A.1 shows the distribution of prediction results for different test sets under

different conditions. In the case of removing all the queries with α=0, 1, all

the prediction results are very concentrated and distributed around 0.22. In the

case of keeping all the queries with α=0, 1, all the prediction results are very

concentrated and distributed around 0.4. Things change a lot when sampling

a part of the queries. Although the nDCG@10 result at this time is not the

best, the distribution of predicted values becomes less concentrated.
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Figure 4.8: Distribution of oracle interpolation coefficients.

α = 0.2 best nDCG@10 oracle nDCG@10 None α=0,1 all α=0,1 balance α

MS MARCO dev 0.4150 0.4150 0.5029 0.3968 0.4002 0.3981

TREC 19 0.6787 0.6897(alpha=0.4) 0.7475 0.6940 0.6768 0.6913

TREC 20 0.6564 0.6595(alpha=0.1) 0.7348 0.6466 0.6579 0.6484

Table 4.3: cross encoder: The results of alpha=0, 1 in different proportions

(a) (b)

Figure 4.9: Results for the dense retriever ANCE and BM25 on TREC 19 (Figure
4.9a) and TREC 20 (Figure 4.9b) for varying values of interpolation parameters α
(blue line). In the red line, I display the oracle value.
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α = 0.2 best nDCG@10 oracle nDCG@10 10 tokens 20 tokens 30 tokens

MS MARCO dev 0.4150 0.4150 0.5029 0.3921 0.3919 0.3887

TREC 19 0.6787 0.6897(alpha=0.4) 0.7475 0.6964 0.6953 0.6920

TREC 20 0.6564 0.6595(alpha=0.1) 0.7348 0.6556 0.6569 0.6515

Table 4.4: The result of the query expansion: 10, 20, and 30 tokens are expanded
after the original query.

4.5 Query Expansion

In this part of the experiments, we use the RM3 relevance model to expand the

queries as the input of the cross-encoder to predict the interpolation coefficient

for query q and only consider the case of sampling a part of the queries with

relatively balanced α. Distilroberta-base (Sanh et al., 2019) is used as the head

of the cross-encoder. The expanded form of the query is shown in the equation

3.3. The number of feedback passages is set at 10 and the number of feedback

terms k in equation 3.3 is set to 10,20,30. The input data form is:

[CLS]expanded queryANCE [SEP ]expanded queryBM25 (4.1)

The results are shown in table 4.4. Compared with the result of concatenating

queries and documents, the result of query expansion is slightly better but the

computing resources required become less. As the number of added tokens

increases, the results of nDCG@10 become slightly worse. For the TREC 19

dataset, the predicted result (nDCG@10=0.6964) is a little better than when

α=2 (nDCG@10=0.6787). Figure A.1 shows the distribution of prediction

results for different test sets by adding a different number of tokens. We can

see that increasing the number of tokens has little effect on the distribution of

prediction results.
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4.6 Deep Evaluation Metric

Previous experiments have considered nDCG@10 as the evaluation metric,

which is a shallow evaluation. As shown in the section 4.5, by combining the

original query with information from BM25 and the ANCE retrieval results us-

ing query expansion, the nDCG@10 prediction results obtained by feeding the

newly generated query pairs into the cross-coder have gained some improve-

ment, compared to using the same alpha globally. In the following experiment,

we use the same experimental procedure of cross-encoder but with two deep

evaluation metrics: MAP and nDCG@1000.

4.6.1 MAP

As shown in Figure 4.10, The optimal α value of MS MARCO dev test

set becomes 0.2, and the optimal α value of Trec 19, Trec 20 query sets

becomes 0.5, which are different from the results of nDCG@10. Also, the

linear interpolation of BM25 and ANCE retrieval provides a somewhat greater

improvement in the deep evaluation metric than the shallow evaluation metric.

The reason why the interpolation result of the MS MARCO dev set is not

affected by the shallow or deep evaluation is that the queries in this set on

average associate to only one relevant passage.

The experiment uses 70% of the MS MARCO dev query set to train the

cross-encoder and 15% of the MS MARCO dev query set as the validation

set. The test sets are the remaining 15%MS MARCO dev query set, TREC

19 query set, and TREC 20 query set. The number of expanded terms k in

equation 3.3 is set to 10. The result is shown in table 4.5. For TREC 19 and

Trec 20, the prediction results are better than both the best MAP value and

MAP value of α = 0.2 (the optimal alpha from the validation set). Besides,

compared with the results of nDCG@10 (only get improvement on TREC 19),

the trained model has a better performance.
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α = 0.2 best map oracle map our method

MS MARCO dev 0.3511 0.3511(alpha=0.2) 0.4378 0.3320

TREC 19 0.4241 0.4879(alpha=0.5) 0.5246 0.4903

TREC 20 0.4266 0.4590(alpha=0.5) 0.5181 0.4615

Table 4.5: The results of MAP evaluation metric.

(a) (b) (c)

Figure 4.10: MAP results for the dense retriever ANCE and BM25 on (4.10a)MS
MARCO dev test set, (4.10b)Trec 19, and (4.10c)Trec 20 for varying values of
interpolation parameters α (blue line). In the red line, I display the oracle value.

4.6.2 nDCG@1000

Next, we consider using nDCG@1000 as the evaluation metric. Like the case of

MAP, the optimal alpha values (labels) for queries become somewhat different

when using nDCG@1000 compared to using nDCG@10 as an evaluation metric.

As shown in Figure 4.11a, the nDCG@1000 results of the MS MARCO

dev query set are very similar to the nDCG@10 results, and the best nDCG@1000

value is obtained when α=0.2. But the nDCG@1000 results of the TREC 19

and TREC 20 datasets are quite different from the nDCG@10 results. As

shown in the Figure 4.11b, 4.11c, for the TREC 19 dataset, the best α value

changes from 0.4 to 0.5, and for theTREC 20 dataset, the best α value changes

from 0.1 to 0.4. This is similar to the results of previous MAP experiments.

The experiment uses 70% of the MS MARCO dev query set to train the

cross-encoder and 15% of the MS MARCO dev query set as the validation
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(a) (b) (c)

Figure 4.11: nDCG@1000 results for the dense retriever ANCE and BM25 on
(4.11a)MS MARCO dev test set, (4.11b)Trec 19, and (4.11c)Trec 20 for varying
values of interpolation parameters α (blue line). In the red line, I display the oracle
value.

set. The test sets are the remaining 15%MS MARCO dev query set, TREC

19 query set, and TREC 20 query set. The number of expanded terms k from

each of the BM25 and ANCE ranking lists in equation 3.3 is set to 10. The

result is shown in table 4.6. The prediction result of both TREC 19 is a little

better than the best nDCG@1000 and nDCG@1000 of alpha=0.2 (the optimal

alpha of the validation set). The prediction result of TREC 20 is only a little

better than the nDCG@1000 of α = 0.2 (the optimal alpha of the validation

set).

alpha = 0.2 best nDCG@1000 oracle nDCG@1000 our method

MS MARCO dev 0.4810 0.4810(alpha=0.2) 0.5447 0.4608

TREC 19 0.6914 0.7176(alpha=0.5) 0.7409 0.7182

TREC 20 0.6857 0.6983(alpha=0.4) 0.7336 0.6959

Table 4.6: The results of nDCG@1000 evaluation metric.

36



Chapter 4. Experiments and Results

4.7 More Dense Retrieval Models And Evaluation

Metrics

It is clear from the results of the experiments in table 4.5 and 4.6 that dif-

ferent depths of evaluation metrics can have a significant impact on the final

results. Therefore, in this part of the experiments, we conduct more com-

prehensive experiments to explore the effects of interpolation with different

dense retrieval models and different depths of evaluation metrics on the re-

sults. Three other dense retrieval models (SBERT, TCT-ColBERTv2, Distil-

BERT KD) in addition to ANCE are used for linear interpolation with BM25

and nDCG@10,100,100, MAP are taken into account for the following experi-

ments.

At first, we compare the results of our method with the cases that α = 0.5

(dense and sparse linear interpolation weights are equal) and α from the vali-

dation set on four different dense retrieval models, and the results are shown

in table 4.7 4.8 A.1 A.2. Paired samples statistical significance t-tests are

conducted between our method and the case α from the validation set and

significant differences are marked as bold. In the cases of MAP, nDCG@100,

and nDCG@1000 as evaluation metrics, our method outperforms the results of

the α from the validation set. However, in the case of nDCG@10, our method

performed relatively poorly. Therefore, it demonstrates the stronger perfor-

mance of our method on the deeper evaluation metrics than on the shallow

evaluation metrics.

Then, we compare the results of our method with the retrieval results of

BM25 and dense retrieval models respectively, and the results are shown in ta-

ble 4.7 4.8 A.1 A.2. Paired samples statistical significance t-tests are conducted

between our method and BM25 and dense retrieval results and significant dif-

ferences are marked with † and ‡. In the case of all MAP, nDCG@100, and

nDCG@1000, our method significantly outperforms the results of BM25 and

dense retrieval in all combinations of linear interpolation. However, the re-

sults at nDCG@10 are not as good, especially for the linear interpolation of

BM25 and TCT-ColBERTv2, our method is even worse than the results of

TCT-ColBERTv2 alone retrieval on the TREC 20 query set.
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dense BM25 results dense retrieval results α=0.5 α from validation our method

TREC19 TREC20 TREC19 TREC20 TREC19 TREC20 TREC19 TREC20 TREC19 TREC20

ANCE 0.3768 0.3472 0.3611 0.3919 0.4880 04590 0.4241(0.2) 0.4266(0.2) 0.4903†‡ 0.4615†‡

TCTv2 0.3768 0.3472 0.4452 0.4514 0.5224 0.4921 0.4933(0.2) 0.4869(0.2) 0.5285†‡ 0.4944†‡

KD 0.3768 0.3472 0.3759 0.3909 0.5701 0.4888 0.4635(0.3) 0.4603(0.3) 0.5053†‡ 0.4799†‡

SBERT 0.3768 0.3472 0.4097 0.3990 04971 0.4534 0.4595(0.2) 0.4342(0.2) 0.5050†‡ 0.4597†‡

Table 4.7: The MAP results of BM25, dense retrieval models, and all interpolation
runs of all sparse and dense retrieval models combinations. In parentheses is the α
value corresponding to the evaluating metric value. Statistical significance tests are
conducted between our method and α from the validation set, significant differences
are marked as bold (p < 0.05). Statistical significance tests are also conducted between
our method and BM25, dense retrieval models, significant differences are marked with
† and ‡ (p < 0.05).

4.8 Other Validation Experiments

In this section, we conducted two verification experiments. Since in previous

experiments, we have been using the validation set to obtain the best settings

for the model parameters, in the first experiment we aim to verify the effect of

early stop on the results. In the second experiment, we aim to verify whether

a larger training set would have a better impact.

4.8.1 Early Stop

The model parameter settings obtained at the 10, 20,30, 40, and 50 epochs

of the training process are selected and compared with those selected from

the validation set. In this part of the experiment, we use the interpolated

combination of BM25 and ANCE and query expansion method. Figure 4.12

shows the change in the prediction results distribution as the training epochs

increase. The optimal model selected from the validation set is between 10 and

20 epochs. Table 4.9 shows the MAP results of TREC 19 and TREC 20

corresponding to different epochs. For TREC19, the validation set selects the
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dense BM25 results dense retrieval results α=0.5 α from validation our method

TREC19 TREC20 TREC19 TREC20 TREC19 TREC20 TREC19 TREC20 TREC19 TREC20

ANCE 0.4973 0.4876 0.6452 0.6458 0.6862 0.6370 0.6787(0.2) 0.6564(0.2) 0.6964†‡ 0.6556†

TCTv2 0.4973 0.4876 0.6867 0.6950 0.6934 0.6672 0.7142(0.2) 0.71(0.2) 0.7117† 0.6782

KD 0.4973 0.4876 0.6994 0.6447 0.7135 0.6788 0.7225(0.3) 0.6987(0.3) 0.7300† 0.7074†‡

SBERT 0.4973 0.4876 0.6930 0.6344 0.6888 0.6242 0.7073(0.3) 0.6401(0.3) 0.7014† 0.6441†

Table 4.8: The nDCG@10 results of BM25, dense retrieval models, and all interpo-
lation runs of all sparse and dense retrieval models combinations. In parentheses is the
α value corresponding to the evaluating metric value. Statistical significance tests are
conducted between our method and α from the validation set, significant differences
are marked as bold (p < 0.05). Statistical significance tests are also conducted between
our method and BM25, dense retrieval models, significant differences are marked with
† and ‡ (p < 0.05).

10 epochs 15 epochs 20 epochs 30 epochs 40 epochs 50 epochs validation

TREC19 0.4844 0.4842 0.4882 0.4600 0.4468 0.4399 0.4903

TREC20 0.4619 0.4572 0.4622 0.4491 0.4283 0.4426 0.4615

Table 4.9: MAP results of different epochs.

best model. And for TREC 20, the best result is obtained at 20 epochs, but

the difference between them is small. In general, although the validation set is

also based on sparse relevance judgments, the optimal model settings can still

be relatively selected.

4.8.2 Large Training Set

In this section, we use a part of MS MARCO training query set to train

the predictor. The query set contains 50,000 queries, and after removing part

of the queries with α=0, 1 to make it not biased, the final number of queries

used in training is about 30,000 (previously it is about 3,000 queries).

Results using large and small training sets are shown in Table 4.10. There is
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best same α

for all queries

α = 0.5 α from validation set small training set large training set

TREC19 0.4880(0.5) 0.4880(0.5) 0.4520(0.3) 0.4903 0.4840

TREC20 0.4590(0.5) 0.4590(0.5) 0.4448(0.3) 0.4615 0.4653

Table 4.10: The MAP results of BM25+ANCE linear interpolation.

little difference in the training results using different sizes of data sets, which

may be because the queries in both theMS MARCO dev andMS MARCO

training set on average associate to only one relevant passage.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.12: The distribution of prediction results of the test set (15% of MS
MARCO dev): 4.12a, 4.12b, 4.12c, 4.12d, 4.12e are the results of 10, 20, 30, 40, 50
epochs training respectively(without validation set). 4.12f is the prediction result of
the model selected by the validation set.
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Discussion

Linear interpolation of sparse and dense retrieval can improve retrieval per-

formance. By performing BM25 and ANCE linear interpolation separately for

each query I find that the optimal linear interpolation coefficients α are not

always the same for each query, which led to us not being able to use the same

α for a collection of queries. I devised some experiments to explore a pipeline

that would predict the linear interpolation coefficients relatively successfully.

5.1 RQ1: How to effectively estimate the interpo-

lation coefficient in hybrid ranking with sparse

and dense retrieval models?

First, I used only queries as input to the model to predict the α. The results

show a complete failure to predict the α, which is expected. Then I try to

directly concatenate the query and the top 5 documents retrieved from the

ranked list of the sparse and dense search models as input to the cross-encoder

to predict the α. The trained model doesn’t result in better prediction perfor-

mance, but through further exploration of the training data labels, I find that

reducing the percentage of α = 0, 1 to no bias could appropriately improve

the training results. The reason why the direct concatenating of documents

and queries does not work well is probably that the length of the document
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being concatenated is much longer than the length of the query, which causes

more attention to be focused on the passages rather than the concatenated

sentences of the query and passages. Then, I try to use the queries expanded

by the RM3 relevance model (add ten tokens after each query) as input to the

cross-encoder. The prediction results of the trained model on the TREC 19

and TREC 20 show a very significant improvement.

5.2 RQ2: How do the results of interpolation co-

efficient estimation vary for different evaluation

metrics?

As the evaluation metrics used in the previous experiments are all nDCG@10

which is a kind of shallow evaluation metric, I next consider using deep eval-

uation metrics: MAP and nDCG@1000. I find that each query has different

optimal α under different evaluation metrics, and the results of the models

trained using them are different. The results are somewhat better when using

the deeper evaluation metrics than nDCG@10 (the predictions are better than

the case of the α from the validation set on the TREC 19 TREC 20 set).

5.3 RQ3: How do the results of interpolation coeffi-

cient estimation vary across different sparse and

dense retrieval models?

More dense retrieval models (ANCE, TCT-ColBERTv2, DistilBERT KD, SBERT)

and evaluation metrics (MAP, nDCG@10, 100, 1000) are considered. Compar-

ing the prediction results of the trained model with the case of the α from

the validation set, some improvement is also obtained, which shows that our

method is effective not only on the ANCE model. Similarly, linear interpola-

tions with models other than ANCE also perform better in the deep evaluation

metrics. Comparing the predictions of our method with the BM25 and dense

retrieval results respectively, our method is better than both of them (except in
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the case of the linear interpolation with TCT-ColBERTv2, which is probably

because its own retrieval performance is already very good, which leads to that

there are no great possibilities for improvement), especially in the case of the

deep evaluation metrics. I then considered whether setting a fixed number of

early stop steps instead of using a validation set would give an improvement,

and it turns out that using a validation set still worked better. At last, I use

a larger training set to train the model and the results are similar to those of

the smaller training set.

5.4 Limitation and Future Work

A major limitation of our method is that the queries in the training set have

on average only one relevant passage, but the queries in the TREC 19 and

TREC 20 test sets have much deeper relevance judgments pools. This is the

reason why there is little difference in the results using a larger training set. In

future research, using queries with more relevant passages to train the models

is also worth being considered. Another limitation is that there are not enough

GPU resources, all experiments use the same set of passages and only the set

of queries is constantly being changed. In the later study, it can be verified

whether our method has the same improvement on other datasets.
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Conclusion

In conclusion, the study has shown that linear interpolation of sparse and dense

retrieval can improve retrieval performance. The optimal linear interpolation

coefficients α are not always the same for each query, and predicting them

using only queries or directly concatenating queries and documents proved

to be unsuccessful. However, using queries expanded by the RM3 relevance

model as input to the cross-encoder significantly improved prediction results,

especially when using deep evaluation metrics like MAP and nDCG@1000.

The method was found to be effective not only on the ANCE model but also

on other dense retrieval models, and it outperformed both BM25 and dense

retrieval results in most cases, especially in deep evaluation metrics. However,

the study’s limitations include the lack of relevant passages in the training

set queries and the need for more GPU resources for further experimentation.

Future research can explore using queries with more relevant passages to train

the models and verify the method’s improvement on other datasets.

45



Appendix A

dense BM25 results dense retrieval results α=0.5 α from validation our method

TREC19 TREC20 TREC19 TREC20 TREC19 TREC20 TREC19 TREC20 TREC19 TREC20

ANCE 0.4981 0.4914 0.5540 0.5679 0.6333 0.6173 0.5895(0.2) 0.5933(0.2) 0.6347†‡ 0.6188†‡

TCTv2 0.4981 0.4914 0.6129 0.6200 0.6545 0.6447 0.6429(0.2) 0.6442(0.2) 0.6631†‡ 0.6569†‡

KD 0.4981 0.4914 0.5765 0.5728 0.6516 0.6494 0.6475(0.4) 0.6456(0.4) 0.6515†‡ 0.6481†‡

SBERT 0.4981 0.4914 0.5985 0.5734 0.6382 0.6080 0.6207(0.2) 0.5967(0.2) 0.6493†‡ 0.6184†‡

Table A.1: The NDCG@100 results of BM25, dense retrieval models, and all inter-
polation runs of all sparse and dense retrieval models combinations. In parentheses
is the α value corresponding to the evaluating metric value. Statistical significance
tests are conducted between our method and α from the validation set, significant
differences are marked as bold (p < 0.05). Statistical significance tests are also con-
ducted between our method and BM25, dense retrieval models, significant differences
are marked with † and ‡ (p < 0.05).
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dense BM25 results dense retrieval results α=0.5 α from validation our method

TREC19 TREC20 TREC19 TREC20 TREC19 TREC20 TREC19 TREC20 TREC19 TREC20

ANCE 0.6001 0.5874 0.6165 0.6337 0.7171 0.6966 0.6914(0.2) 0.6857(0.2) 0.7180†‡ 0.69834†‡

TCTv2 0.6001 0.5874 0.6929 0.6906 0.7392 0.7240 0.7355(0.2) 0.7297(0.2) 0.7451†‡ 0.7328†‡

KD 0.6001 0.5874 0.6421 0.6405 0.7316 0.7243 0.7316(0.4) 0.7254(0.4) 0.7329†‡ 0.7257†‡

SBERT 0.6001 0.5874 0.6687 0.6421 0.7254 0.6947 0.7194(0.2) 0.6933(0.2) 0.7323†‡ 0.6994†‡

Table A.2: The NDCG@1000 results of BM25, dense retrieval models, and all in-
terpolation runs of all sparse and dense retrieval models combinations. In parentheses
is the α value corresponding to the evaluating metric value. Statistical significance
tests are conducted between our method and α from the validation set, significant
differences are marked as bold (p < 0.05). Statistical significance tests are also con-
ducted between our method and BM25, dense retrieval models, significant differences
are marked with † and ‡ (p < 0.05).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.1: The distribution of prediction results of the test set: the first column
is MS MARCO dev, the second column is TREC 19, and the third column is TREC
20. The results in the first row are the case that the training set containing all α=0,1
queries. The results in the second row are the case that the training set does not
contain alpha=0, 1. The results in the third row are the case that the training set
with alpha=0, 1 query with the balanced distribution.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.2: The distribution of prediction results of the test set: the first column
is MS MARCO dev, the second column is TREC 19, and the third column is
TREC 20. The model in the first row uses queries extended by 10 tokens. The
model in the second row uses queries extended by 20 tokens. The model in the third
row uses queries extended by 30 tokens.
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and Allan Hanbury. Improving efficient neural ranking models with cross-
architecture knowledge distillation, 2021.
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