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Abstract

Deformable Image Registration (DIR) represents an open challenge in medical
imaging, especially when large deformations occur between two images. There
are numerous potential applications that could be unlocked given a reliable DIR
method, such as the accumulation of delivered dose distributions in radiation
therapy treatment planning. Existing methods frequently face a trade-off between
achieved accuracy and required runtime. This thesis attempts to address this issue
by creating a hybrid method that combines two existing methods: DL-MODIR,
a deep learning-based method, and MOREA, an evolutionary algorithm-based
method. The proposed method, as its former methods, uses a multi-objective
strategy to explore the balance of different objectives, which differ according to the
examined patient. By smartly initializing MOREA’s population with DL-MODIR
solutions for a warm start, the method benefits from both the fast inference times
of DL-MODIR and the realism of the biomechanical mesh model of MOREA.
The hybrid method is evaluated on two datasets: a synthetic problem involving
a shrinking sphere, and abdominal CT scans in which the bladder is full on the
source image and empty on the target image. Results indicate that the hybrid
method is quantitatively comparable to or significantly better than MOREA
exploiting the guidance objective, highlighting the potential of hybrid methods in
DIR.

Keywords: deformable image registration, deep learning, evolutionary algo-
rithms, radiation therapy planning, DL-MODIR, MOREA
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Chapter 1

Introduction

Computer vision has impacted medical imaging for decades [20], but with the ad-
vent of Deep Learning (DL), the range of opportunities has increased [60]. Their
uses include from improved diagnosis to more precise treatments. This thesis lever-
ages DL and Evoluationary Algorithms (EA) methods for enhancing cancer radia-
tion therapy in patients with cervical cancer.

1.1 Cervical cancer radiation therapy

Cancer was the second leading cause of death in 2020 with 9.9 million deaths [19]
and extensive research is being done for prevention [35] and improvement of cur-
rent treatments [40]. This thesis focuses on cervical cancer, a disease produced by
the abnormal growth of cells in the cervix, the region connecting the uterus with
the vagina. It is the third most common cancer in women globally, with 660,000
new cases and 350,000 deaths in 2022 [69], and more than 90% of these cases are
caused by infection with human papillomavirus [27] that can be spread by sexual
transmission.

According to the European Society of Gynaecological Oncology guidelines, the
treatment planning is based on "the comprehensive and precise knowledge of prog-
nostic and predictive factors for the oncological outcome, morbidity, and quality of
life" [16]. Hence, each patient receives a different treatment based on their condi-
tions, but a common treatment is Radiation Therapy (RT), consisting of controlled
ionizing radiation that induces damage to the DNA of cells. However, since this
radiation affects both healthy tissues and tumors, it is necessary to define an ac-
ceptable therapeutic ratio, which is defined as the probability of tumor control
compared to the probability of unacceptable toxicity. This ratio needs to be ad-
ministrated with a tolerance of less than 5% deviation [32], requiring precise ap-
plication of the radiation and keeping track of the delivered radiation dose at each
organ. RT can be applied in different forms, such as External Beam Radiation Ther-
apy (EBRT), where radiation is applied externally, or Brachytherapy (BT), which
applies radiation internally.

During RT planning the radiation that each organ needs to receive is defined be-
forehand, with a curative amount for tumoral regions while minimizing the dam-
age to healthy tissues. However, this planning contains uncertainties in dose pre-
scription, tissue tolerances, and the dose distribution delivered to the patient across
multiple fractions [63]. This latter is the one that we aim to combat in this thesis.
Uncertainty of the delivered dose distribution comes as a result of a change in the
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patient’s geometry over the course of treatment with deformation of the interior or-
gans. In cervical cancer, this deformation is even more pronounced as the bladder
and the rectum can be filled to different degrees, producing a deformation in their
surroundings [31]. Additionally, for BT an applicator is introduced as shown in
Figure 1.1 to deliver radiation internally, producing that the geometry in BT differs
from the ones in planing and EBRT. Thus, the RT plan and delivered dose distribu-
tion need to be transformed to the new geometry.

FIGURE 1.1: Brachytherapy is performed with an applicator that emits radiation from in-
tracavities. The introduction of the applicator produces a deformation of the uterus cavity
and its surroundings. Figure from [52].

Deformable Image Registration (DIR) is the process of modeling the deforma-
tion occurring between two images: a source, and a target image. This thesis fo-
cuses on EBRT planning, where the treatment is divided into different fractions
instead of providing the complete dose in a unique treatment, allowing healthy tis-
sues to recover between treatments [49]. However, during different fractions there
are temporal changes and deformations in certain organs, which can potentially re-
duce the accuracy and robustness of the previous RT plan. Hence, it is necessary to
simulate the transformation between the two images to adapt metadata such as the
dose administered to each organ to the new geometry, avoiding irradiating healthy
tissues and exceeding the therapeutic ratio.

This thesis focuses on DIR in abdominal Computed Tomography (CT) images
for its application in RT. Specifically, we predict the deformation occurring between
an image with a filled bladder emptied in the second image, which is a non-trivial
task since a large deformation occurs during this process, not only deforming the
organ but also its surroundings. This is done for planning purposes, as different
plans are made to handle different situations: one for an empty bladder, and one
for a full bladder. At each RT fraction, practitioners can choose which plan fits
best to the current situation. Later, the applied radiation therapy distribution at
each fraction can be transformed with DIR for monitoring. Different DIR methods
have been developed to solve this problem, dealing with a trade-off between accu-
racy and registration time. Accurate methods are generally more time-consuming,
making them less feasible for clinical practice.

This thesis aims to bridge this gap by using a hybrid method. A previous study
developed a hybrid with two DIR methods which shows promising results, outper-
forming each method independently in terms of accuracy and time [30]. The goal
is to further explore this strategy by combining DL and EA methods to bridge the
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gap between precision and more realistic results. While DL methods offer fast infer-
ence, they may produce less realistic deformations. In contrast, evolutionary meth-
ods can simulate body movements more accurately but are more time-consuming.
This thesis uses two existing methods in the literature, MOREA and DL-MODIR,
an EA method and a DL method respectively. By giving the fast inference results of
the DL method to the EA method for a warm start, we aim to have a hybrid method
with the precision of evolutionary methods that optimizes faster.

This thesis solves DIR from a multi-objective point of view. A small visual dif-
ference between the transformed source image and the target is not enough to de-
fine the quality of the deformation. Thus, large and unrealistic deformations can
produce results with good visual similarity. Instead, multiple objectives need to be
considered for the evaluation. This thesis uses three objectives at the same time:
the image intensity difference, the contours or segmentation match, and the defor-
mation magnitude. Consequently, instead of a unique solution, a set of solutions
is returned which explores different regions of the objective space where for each
given solution does not exist any other solutions that optimize a particular objec-
tive without degrading the others. In the end, multiple solutions are given to the
clinician, who must select the best solution depending on the patient.

The development of a hybrid method with a multi-objective strategy aims to
compute better and more realistic deformations to enhance DIR and have a positive
impact on patient outcomes.

1.2 Contributions

This thesis presents several contributions in the field of DIR. The core contributions
are:

• Develop and implement a hybrid method to bridge the gap of existing DIR
methods in the literature.

• Evaluate the effect of a warm start for the MOREA method.

• Evaluate DL-MODIR on a different setting with CT scans and a significant
deformation.

1.3 Research Questions

We have formulated three research questions that we aim to address to understand
how the hybrid method compares to DL-MODIR and MOREA:

• How does the introduced hybrid method quantitatively compare to the MOREA
method?

• Does the introduced hybrid method accelerate convergence to high-quality
solutions compared with the MOREA method?

• How do the introduced hybrid method solutions qualitatively compare to
solutions found by the DL-MODIR method and the MOREA method?
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1.4 Thesis structure

This thesis is structured as follows. First, in Chapter 2, we introduce DIR and the
existing methods in the literature. Chapter 3 describes the developed method and
some preliminary experiments. In Chapter 4, the results of the three experiments
are reported. Later, in Chapter 5 we discuss the limitations and future work of the
implemented hybrid method. Lastly, in Chapter 6 we conclude this thesis.
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Chapter 2

Background

In this chapter, we introduce the problem of Image Registration (IR), and, more
specifically, DIR. First, we describe the three main components that comprise a DIR
method. Second, we compare several single and multi-objective methods proposed
in the literature. Finally, we discuss hybrid methods existing in the literature that
combine multiple methods in a pipeline.

2.1 Image registration

IR consists of spatially aligning a set of images taken at different time points and
with potentially different image modalities (Figure 2.1). Although IR can be ap-
plied to sets of more than two images, in this thesis we focus solely on registering
a pair of images —a source image s (also known as the moving image) and a target
image t (also called the target image). The goal is to find a transformation u such
that s ◦ u ≈ t, i.e., transforming the source image to match the target image.

IR can be applied to medical images to enable a number of applications, in-
cluding multi-modality fusion [51] or surgical planning [21]. This thesis focuses on
registering medical images taken before and during cervical cancer RT. This is a
case where aligning two images separated in time could enable the transfer of spa-
tial metadata, such as delivered radiation dose distribution [14], from one image to
the other.

FIGURE 2.1: Rigid image registration of two images of a brain, a source MRI scan in
magenta and a target CT scan in green. Source: https://www.mathworks.com/help/
medical-imaging/ug/medical-image-registration.html

https://www.mathworks.com/help/medical-imaging/ug/medical-image-registration.html
https://www.mathworks.com/help/medical-imaging/ug/medical-image-registration.html


Chapter 2. Background 6

Rigid
transformation

Affine 
transformation

Deformable 
transformation

Translation

Rotation

Reflection

Shearing

Scaling
Deformation

DEFORMABLE IMAGE REGISTRATION

IMAGE REGISTRATION

FIGURE 2.2: Overview of the different types of transformations that can be found by IR
techniques.

As shown in Figure 2.2, simple IR techniques rely on rigid transformations such
as rotation, translation, and reflection, to align two images [45, 2]. Affine registra-
tion is a more sophisticated method, including scale factors and shears, which pro-
vides more degrees of freedom for the alignment. Nevertheless, affine registration
is incapable of dealing with local deformations [33].

2.2 Deformable image registration

Rigid and affine IR methods are not able to capture local deformations as their
transformations are constrained to be linear or affine on the entire image space.
DIR methods have been introduced for this purpose, allowing for dense, local, and
non-linear transformations. They consist of three main components: its transforma-
tion model, registration quality metrics, and optimization method [58]. We discuss
several strategies proposed in the literature for each of these components, below.

2.3 Transformation models

A transformation model is a representation of a DIR problem which defines the
variables that parameterize a transformation. There is a trade-off between com-
putational efficiency and the desired detail of the transformation, so deciding the
transformation model to use is a non-trivial decision. More fine-grained trans-
formation models are represented with a larger number of parameters, providing
more degrees of freedom but also increasing the model complexity and computa-
tional cost. Many different transformation models have been proposed in the lit-
erature [58]. In this thesis, however, we focus on three common models, described
below.
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2.3.1 Finite element model

A Finite Element Model (FEM) is a deformable mesh representing a transforma-
tion [72] (Figure 2.3a). While the mesh topology remains fixed, the vertices of the
mesh (also called nodes) can be moved, subject to folding constraints. Within this
model, biomechanical properties such as the elasticity of the modelled organs can
be considered. These relate to the physical characteristics of the imaged anatomical
structure, which can improve the realism of the model.

Implicitly, this model has a fixed mesh on the target image while the source
image mesh is deformed. Alternatively, both meshes, source and target, can be
moved at the same time, in a model known as the dual-dynamic [61]. This model
makes it possible to flexibly tackle large deformations and cope with the appear-
ance and disappearance of structures between one image and the other. MOREA
[4], for instance, uses a dual-dynamic model to capture large deformations with a
FEM-based transformation model. This enables two types of registration: unidi-
rectional and symmetric. In unidirectional registration, only one transformation is
considered, such that s ◦ u ≈ t. Alternatively, symmetric registration also consid-
ers a second transformation u′ such that t ◦ u′ ≈ s. This can make solutions more
physically viable, and resistant to image input order changes [58].

2.3.2 B-splines

The B-splines transformation model consists of a grid of control points that pa-
rameterize transformations defined by B-splines. A representation of B-splines is
shown in Figure 2.3b, where crosses represent the control points. B-splines are
based on Bézier curves, which are parametric curves modeled by a set of control
points. As a result, smoother deformations are generally obtained compared to
mesh FEM-based models due to the attenuation that the B-spline function applies
to the control point movements. Yet, it has been observed that this model suffers
when dealing with large and discontinuous deformations [4].

2.3.3 End-to-end

With the advent of DL, a transformation model has emerged which does not re-
quire a higher order parametrization of the problem. Instead, a displacement vec-
tor is encoded and optimized for each voxel coordinate (Figure 2.3c) generating a
Deformable Vector Field (DVF). This DVF contains a mapping of voxel coordinates
from one image to the other image. Specifically, an inverse DVF points from tar-
get voxel coordinates to source voxel coordinates. Hence, it can represent more
fine-grained deformations, but at the cost of an increased search space where many
more parameters need to be optimized. Due to the lack of an underlying explicit
physical model, it may be more difficult to derive realistic deformations with this
transformation model without an additional higher-level representation.

2.3.4 Other models

Further methods exist in the literature to represent transformation models. Demons
[62], one of the first successful DIR methods, is based on viscous-fluid equations
employing diffusion techniques from thermodynamics. Others are based on flows
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(A) FEM-based model. Two
meshes, the original (gray)
and the transformed (black).

(B) B-spline model represen-
tation where each cross repre-
sents a control point.

(C) DVF in end-to-end mod-
els. Points represents the ab-
sence of transformation.

FIGURE 2.3: Three transformation models proposed in the literature to parametrize the
DIR problem: FEM-based, B-splines, and end-to-end.

of diffeomorphisms, invertible DIR problem definitions where both, the function
and its inverse, are differentiable, resulting in smooth transformations [28]. A more
extensive classification of transformation models available in the literature is of-
fered by Sotiras et al. [58].

2.4 Registration quality metrics

Once a transformation model has been defined, it is necessary to be able to judge
the quality of a registration defined in this model. Registration quality metrics are
indicators that measure the quality of a registration. Multiple metrics exist in the
literature to define this quality from different angles.

We will use the following notation: Ω represents the set of voxels in each image,
where each voxel p ∈ Ω is a three-dimensional point p ∈ N3 representing its spatial
position, and |Ω| is the total count of voxels in the image. For a more compact
expression, we define the transformed source image s′ := s ◦ u, where u defines the
measured transformation. Therefore, the transformed source image at each point
p corresponds to the transformation u(p) applied to the source image, such that
s′ := s ◦ u(p).

2.4.1 Intensity-based metrics

Intensity-based similarity metrics focus on the difference in voxel intensity between
the target image t and the transformed source image s. These range from very
simple metrics, such as the mean squared difference, to more complex, such as
the normalized cross-correlation. While intensity metrics are useful to define how
similar is the transformed source image compared to the target image, they can fall
short in low contrast regions [71, 34].
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Mean squared difference

The mean squared difference metric averages the quadratic difference in voxel in-
tensity between the target image and transformed source image. Thus, large differ-
ences are highly penalized by computing the square of the difference. Finally, the
resulting value is averaged for all pixels Ω, ensuring that the metric is normalized
for different image sizes.

MSD =
1
|Ω| ∑

p∈Ω
(s′(p)− t(p))2 (2.1)

Normalized cross-correlation

The normalized cross-correlation metric computes the similarity of the intensity
values of two images. This makes it possible to assess how well two uncalibrated
images correspond [70] since it is capable of handling linear relationships between
intensity values in multi-modality applications, therefore being more robust than
the mean squared difference [6]. It is mathematically defined as follows:

NCC =
∑p∈Ω t(p) · s′(p)√

∑p∈Ω t(p)2 · ∑p∈Ω s′(p)2
(2.2)

Normalized cross-correlation values range in the interval [−1, 1]. Intuitively, a
value of 1 represents a perfect match between the images, −1 is an inverse match,
and no correlation is expressed as 0. There is an extension of this metric that
normalizes the score by subtracting the average of each image, called the zero-
normalized cross-correlation:

ZNCC =
∑p∈Ω(t(p)− t) · (s′(p)− s′)√

∑p∈Ω
(
t(p)− t

)2 · ∑p∈Ω (s′(p)− s′)2
(2.3)

where t = 1
|Ω| ∑p∈Ω t(p) and s′ = 1

|Ω| ∑p∈Ω s′(p) are the average of t and s′

respectively. As a result, this metric is even more robust, addressing intensity shifts
by subtracting the mean of each image.

2.4.2 Energy-based metrics

Relying solely on intensity values can result in seemingly equal but unrealistic
transformations caused by excessive local deformations that are not directly visible
in the transformed source image. It is therefore important to add a regularization
term that minimizes the exerted deformation. For this purpose, energy-based met-
rics are used to assess the plausibility of the transformation. In this thesis, we refer
to the magnitude objective the one that uses energy-based metrics.

Spatial gradient displacement

To measure the smoothness in the transformation, the spatial gradient displace-
ment computes displacement changes of neighboring voxels [7] as follows:
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∑
p∈Ω

∥∥∥∥∥
(

∂u(p)
∂x

,
∂u(p)

∂y
,

∂u(p)
∂z

)∥∥∥∥∥
2

(2.4)

where u(p) contains the displacement vector at point p, and the partial deriva-
tive is approximated as follows:

∂u(p)
∂x

≈ u(px + 1, py, pz)− u(px, py, pz) (2.5)

High values are associated with locally heterogeneous deformations, which can
be unrealistic and therefore of lower quality.

Bending energy

The bending energy [53] is another energy-based metric that ensures smoothness in
the transformation [59]. It is computed as the second-order derivative of the DVF
(u), estimated as follows:

1
|Ω| ∑

p∈Ω

[(
∂2u
∂x2

)2

+

(
∂2u
∂y2

)2

+

(
∂2u
∂z2

)2

+ 2
(

∂2u
∂xy

)2

+ 2
(

∂2u
∂xz

)2

+ 2
(

∂2u
∂yz

)2
]

(2.6)
The second derivative measures the amount of bending and curvatures that the

DVF contains. Therefore, this term is zero for affine transformations, penalizing
only non-affine transformations [66].

Hooke’s law energy

In FEM-based transformation models, the deformation magnitude is equivalent to
the amount of energy required to perform a transformation from the source mesh
to the target mesh. Hooke’s law states that the force needed to compress or ex-
pand a spring is equivalent to the product of the distance of displacement by a
constant characteristic from the spring. In a FEM-based model, edges are modelled
as springs and the constant value corresponds to the specific elasticity constant of
the tetrahedron (defined by the organ it models). The energy metric is computed
by considering all edges es and et belonging to the source and target image respec-
tively for each tetrahedron δ ∈ ∇. As defined in the dual-dynamic transformation
model of MOREA [4], a total of 10 edges per tetrahedron are used [3], together with
the tetrahedron elasticity constant cδ. The energy is computed as follows:

1
10|∇| ∑

δ∈∇

[
∑

(es,et)∈Eδ

cδ(||es|| − ||et||)2

]
(2.7)

2.4.3 Segmentation-based metrics

Another approach consists of segmenting Organ At Risk (OAR). Segmentation-
based metrics measure the overlapping region between the transformed source
and the target image occupied by an organ. Many organ segmentation methods
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are studied in the literature, ranging from automatic algorithms utilizing computer
vision algorithms [24], to manual segmentation, performed by experts. While man-
ual segmentation is time-consuming and requires expertise, it often yields more
accurate results [67], being considered as the gold standard. In contrast, solely re-
lying on automatic segmentation can introduce errors that may be accumulated in
the registration process, specially in the case where boundary information is not
visually distinguishable [67]. Thus, hybrid strategies, combining automated and
manual segmentation in a pipeline [48, 8], can lead to better accuracy.

Dice similarity

The dice similarity coefficient computes the proportion of shared regions between
two segmentations considering the total area that they occupy together.

DSC =
2|t ∩ s′|
|t|+ |s′| (2.8)

Higher dice similarity coefficient values are related to larger overlap between
both segmentations, hence indicating a better registration for that specific OAR.

Contour metrics

Segmentations can also be used to generate contours, defined by a set of points
that outline the segmented OAR. In a DIR problem, we consider two sets of points
Cs and Ct for both the source and target image, respectively. To measure the match
between the transformed source image set and the target image set, the distance be-
tween them is measured and minimized. MOREA [4], for instance, uses the Cham-
fer distance as a metric. This is the longest minimum distance between a point in
the transformed source image and any point in the target image.

Nonetheless, the presence of spatially distributed outliers or a larger number of
points in one of the sets, due to different-sized OAR in each image, are challenges
that contour-based metrics face [15].

2.4.4 Landmark-based metrics

Landmark points are anatomically relevant points corresponding to anatomical
structures defined in both images (source and target), intended to help the sys-
tem identify identical structures across both volumes. Their annotation can require
less human effort than OAR segmentation and serve as a guide for transformation.

Recently, automatic methods for landmark generation based on DL approaches
have been developed, offering a higher number of points albeit with less accuracy
[23, 26]. As concluded by Grewal et al., a larger number of less accurate landmarks
may prove more helpful than a lower amount in highly deformed regions, making
automatic methods a promising strategy to acquire landmarks.

Landmark metrics describe the distance between these labeled points between
the target and the transformed source image. The final quality value is the average
point-pair distance:

1
|Ω| ∑

p∈Ω
d(s′(p), t(p)) (2.9)
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A distance metric is necessary to qualify the difference between two points,
with the Euclidean distance being the most used.

2.5 Optimization methods

The definition of a transformation model together with registration quality metrics
constitute the definition of a DIR problem. The next step is to optimize the param-
eters of the transformation model to improve registration quality metrics. Many
optimization methods are proposed in the literature, but in this thesis we will fo-
cus on two of them: deep learning and evolutionary algorithms.

2.5.1 Deep learning

DL is a continuous optimization method in which variables are in the form of real
values. In this case, instead of adjusting the transformation model parameters for
each pair of images (source and target) as other methods do, a common represen-
tation for all pairs in a training dataset is learned. This allows replacing costly
optimization methods, performed individually for each sample, with a unique and
global function that encompasses all instances in a shared distribution, therefore
accelerating the process. After a function is learned in the training phase, new im-
ages are registered by evaluating the learned function. However, it is necessary a
large dataset and that new instances fall in the same data distribution as training
images.

There are two main DL approaches depending on the learning process:

• Supervised optimization: this approach requires labeled data. Apart from
the source and target images, a DVF is also needed. As the true DVF rarely is
available, artificial DVFs can be used for training [57].

• Unsupervised optimization: this approach does not require a DVF. Instead,
only the pair of images is needed by the model. To distinguish good from
poor deformations, the model measures one or various registration quality
metrics to evaluate the transformation. As a result, parameters are updated
in the direction where those metrics are optimized. VoxelMorph [7] is an
example of an unsupervised DL optimization method, which is also the basis
for the DL model used in this thesis.

2.5.2 Evolutionary algorithms

EA are heuristic methods based on the theory of evolution and natural selection for
optimization. They use mechanisms inspired by biological evolution, such as muta-
tion and recombination, to perform changes to a population of solutions. Only the
best solutions, evaluated based on a fitness function (equivalent to the loss function
in DL), are recombined in future generations. This method is found to converge
slowly but can avoid falling into local optima [13]. MOREA [4], one of the methods
used in this thesis, is based on EA to optimize a DIR problem.
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2.6 Single-objective deformable image registration

Most methods in the literature focus on single-objective DIR using a single opti-
mization objective for registration. Earlier DIR methods mainly focus on intensity-
based registrations aiming to minimize voxel intensity differences between the tar-
get and the transformed source image. In 1996, Demons emerges as a novel method
employing diffusion techniques from thermodynamics. Nevertheless, Demons,
like most of its successors, is constrained to a single objective. Two alternatives
are evaluated in the original paper [62], one for intensity metrics and another for
contour metrics, both of them evaluated independently. Some advancements are
later introduced by ANTs SyN, leveraging cross-correlation metrics between im-
ages for intensity matching using diffeomorphic transformation models [6]. These
mark progress in image-based registration by exploiting the guarantee of invert-
ibility of diffeomorphic transformation models.

However, relying solely on a single optimization objective is prone to overfit-
ting. Consequently, multiple registration quality metrics can be grouped in a single
optimization objective giving a weight to each metric according to its importance.
For instance, in the case of dealing with three registration quality metrics: intensity,
energy, and landmarks, three different values w1, w2, and w3 need to be defined
a priori. As a result, the optimization objective would be represented using linear
scalarization as follows:

L = w1Intensity + w2Energy + w3Landmark (2.10)

where wi ∈ R are real-valued weights, with i ∈ 1, ..., k, and k being the number
of registration quality metrics.

Methods such as ANACONDA [68] combine both intensity and contour-based
metrics, in a single objective using linear scalarization with weights defined a priori.
By considering more than one metric, these methods aim to achieve more accurate
registrations than relying on a single criterion.

The Elastix toolbox [36] utilizes B-spline transformation models combining
more than one registration quality metric using linear scalarization. However, it
suffers when dealing with large deformations compared to other methods [4].

Other methods introduced energy metrics, but this metric itself is insufficient
to guarantee realistic deformations. To address this challenge, energy functions
with biomechanical properties were introduced. These use energy-based metrics
as a regularization parameter to obtain more physically plausible solutions while
maintaining a good match between the target and transformed source image. In-
corporating this regularization step yields more authentic deformations compared
to relying solely on intensity or contour metrics [50]. Different methods have been
developed which use a FEM-based model and the elasticity of the tissues. This elas-
ticity can either be homogeneous, ensuring uniform deformation across all organs
[1], or specific, assigning different elasticities to individual organs [11].

MORFEUS [11] combines these biomechanical properties with contour-based
metrics to achieve better and more realistic deformations. This method integrates
three different commercial software: a FEM pre-processor, a finite element analysis
system, and a treatment planning system.



Chapter 2. Background 14

Nevertheless, in general, single-objective optimization using linear scalariza-
tion is complex and time-consuming. Finding an optimal combination of objective
weights is challenging. Manual and grid search methods have been evaluated, but
are slow and inaccurate. To address this challenge, more efficient methods have
been studied. For instance, iterative optimization methods [47] have been shown
to perform better than regular grid search.

2.7 Multi-objective deformable image registration

It has been shown that the optimal set of optimization objective weights may vary
depending on the pair of images being registered [47]. Different registrations can be
superior in one optimization objective but not in the others. In this case, we can use
multi-objective optimization to find a set of solutions that is Pareto-optimal with
respect to the objectives. In this section, we define the concept of Pareto dominance
and describe how it can be applied in the context of DIR.

2.7.1 Pareto front

In multi-objective optimization, more than one objective is simultaneously opti-
mized. Sometimes, optimizing one objective has a negative effect on another. This
is where multi-objective optimization takes place. Instead of having a unique solu-
tion, a Pareto front or set of non-dominated solutions is obtained [43].

Considering k objectives (k ≥ 2 in multi-objective optimization) that need to be
minimized minx∈X f1(x), f2(x), ..., fk(x), a solution is called to be non-dominated if
none of the objectives can be improved without degrading at least one of the other
objectives. In the case of two solutions x1, x2 ∈ X; x1 is said to Pareto dominate x2
—mathematically noted as x1 ⪰ x2 —if the following two conditions are met:

∀i ∈ {1, ..., k} fi(x1) ≤ fi(x2), and
∃i ∈ {1, ..., k} fi(x1) < fi(x2)

(2.11)

Therefore, the Pareto front is defined as the set of non-dominated solutions (Fig-
ure 2.4) and a solution is called Pareto optimal if no solution dominates it.

Various metrics have been proposed to evaluate and compare different Pareto
fronts. In this thesis we will use the hypervolume, a metric extensively used in
multi-objective optimization to indicate the quality of a Pareto front.

2.7.2 Hypervolume

The hypervolume of a Pareto front is the area –in a two-dimensional objective
space– that the approximated Pareto front covers with respect to a user-defined
reference point r that sets the limits (Figure 2.5) [12]. In a three-dimensional objec-
tive space, the hypervolume is a volume.
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FIGURE 2.4: Pareto front representation in a 2D objective space, where f1 and f2 are two
objectives that need to be minimized. Colored in gray is the region dominated by each
solution (top-right of the solution). Non-dominated solutions (yellow) form the Pareto
front that dominates the dominated solutions (blue).

FIGURE 2.5: Hypervolume of an approximated Pareto front with respect to two objectives
f1 and f2. A user-defined reference point sets the limits of the area that the approximated
Pareto front occupies.

When comparing two Pareto fronts, it is said that a Pareto front dominates an-
other when the former has a higher hypervolume than the latter. This can occur for
two reasons:

• A new solution dominates a previous non-dominated solution. In this case,
the hypervolume increases since the new solution encompasses the previous
non-dominated solution inside its hypervolume (Figure 2.6).
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• The Pareto front is more diverse and solutions are more spread in the objec-
tive space. Thus, a higher area is occupied by the diverse solutions (Figure
2.7).

(A) Original approximated
Pareto front.

(B) New non-dominated so-
lution increases the hypervol-
ume.

(C) New approximated Pareto
front after adding the new
non-dominated solution.

FIGURE 2.6: The hypervolume of an approximated Pareto front increases after adding a
new non-dominated solution that dominates a non-dominated solution from the original
Pareto front.

(A) Spread Pareto front over
the objective space.

(B) Compressed Pareto front
over the objective space.

(C) Hypervolume comparison
between the spread and the
compressed Pareto front.

FIGURE 2.7: Spread Pareto fronts have a higher hypervolume, as a larger area of the objec-
tive space is occupied.

2.7.3 Multi-objective methods

Multi-objective methods generate a set of non-dominated solutions from which
users need to select their desired solution for each specific case a posteriori [46].

Recently, various methods with Multi-Objective Deformable Image Registra-
tion (MODIR) have emerged to tackle this challenge, employing different optimiza-
tion methods. These include EA with mesh grids [4] or B-splines [5], and a method
using multi-objective DL [25].

This thesis is based on two of them: an evolutionary-based method, MOREA
[4] (Section 2.7.4), and a DL method, DL-MODIR (Section 2.7.5). Both are explained
in more detail in the following sections and, later on, compared (Section 2.8).
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2.7.4 MOREA

MOREA is a FEM-based transformation model optimized with an EA that outper-
forms state-of-the-art methods, such as Elastix and ANTs SyN, in 3 out of 4 evalu-
ated patients when registering large deformations [4].

As a multi-objective method, it uses three different registration quality metrics:
the mean squared difference for the intensity, the Chamfer distance for the con-
tours (also referred to as guidance), and Hooke’s law for the magnitude. MOREA
uses the Multi-Objective Real-Valued Gene-pool Optimal Mixing Evolutionary Al-
gorithm (MO-RV-GOMEA) [10], a multi-objective EA with model-based linkage
models, resulting more scalable than other popular methods such as NSGA-II [17]
and MAMaLGaM [9], specially when partial deformations, typical of Gray-Box Op-
timization, are possible.

MOREA subdivides the problem into smaller parts, each of which is a tetrahe-
dron, that together form a tetrahedral mesh. Each small part is a sub-function of
the problem (Figure 2.8c) used for partial evaluation, where only modified tetra-
hedra need to be re-evaluated (Figure 2.8d). Additionally, sub-functions allow to
define constraints, e.g. to avoid folds in the mesh. This occurs when one tetrahe-
dra’s volume changes its sign. To avoid this happening, larger folds yield to bigger
constraints.

(A) Mesh grid transfor-
mation model.

(B) Greedy set cover for
FOS linkage set genera-
tion.

(C) Definition of a sub-
function (red region) for
partial evaluation.

(D) Evaluated tetrahe-
dra after a FOS (red
nodes) is updated.

FIGURE 2.8: MOREA mesh representation, FOS linkage set generation and partial evalu-
ations with a tetrahedron being a sub-function. Updating one FOS linkage set causes the
neighboring tetrahedra to be re-evaluated.

The tetrahedral mesh shapes the FEM-based transformation model, where each
node defines a vertex of a tetrahedron represented in three dimensions: depth,
height, and width coordinates (x, y, z). Firstly, the nodes are randomly distributed
across the image, reserving a percentage of them to be placed on the contours of
the organs to capture their shape. Later, a surface is generated using a Marching
Cubes algorithm [41], and the tetrahedral mesh is rendered given the surface mesh
using TetGen [55]. Considering that the mesh of an image consists of Nn nodes, it
can be represented as an array:

{x1, y1, z1, x2, y2, z2, ..., xNn , yNn , zNn} (2.12)

with a length of Nn × 3 where xi, yi, zi ∈ R are the coordinates for each node i ∈
{1, ..., Nn}. However, since MOREA uses a dual-dynamic transformation model,
two meshes are needed, one for each image. Thus, the generated mesh is duplicated
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for the second image and later disrupted. The DIR solution can be expressed with
the following array:{

xs
1, ys

1, zs
1, ..., xs

Nn
, ys

Nn
, zs

Nn
, xt

1, yt
1, zt

1, ..., xt
Nn

, yt
Nn

, zt
Nn

}
(2.13)

with xs
i , ys

i , zs
i with i ∈ {1, ..., Nn} being the node coordinates for the source im-

age and xt
i , yt

i , zt
i with i ∈ {1, ..., Nn} the node coordinates for the target image.

Hence, a DIR solution contains 2 × Nn × 3 variables, one for each node coordinate
in each image. Some additional constraints are needed for each node coordinate to
ensure that they stay in the image space:

xi =


0, xi < 0;
xi, 0 ≤ xi ≤ depth;
depth, xi > depth;

(2.14)

yi =


0, yi < 0;
yi, 0 ≤ yi ≤ height;
height, yi > height;

(2.15)

zi =


0, zi < 0;
zi, 0 ≤ zi ≤ width;
width, zi > width;

(2.16)

The first step is the population initialization. MOREA is developed to guarantee
diversity in the initial population while ensuring no mesh folds that lead to infea-
sible solutions. A stochastic algorithm generates solutions without folds by using
attractors, radial basis functions that attract nodes to move stochastically towards
it, generating various solutions that come from the original generated mesh. This
method is executed through a multi-step process with incremental adjustments at
each stage, therefore avoiding mesh folds while guaranteeing diversity.

After initializing the population, the optimization process takes place. Each so-
lution from the population is mutated and recombined to generate new solutions.
Instead of completely modifying it, partial variations are done. This also allows
partial evaluations by re-evaluating only the affected sub-functions. MOREA gen-
erates sets of dependent variables called Family Of Subset (FOS) that contain de-
pendence relations, which are being jointly updated. For this problem, MOREA
takes an edge of the tetrahedron, connecting two nodes as a FOS. A greedy set
cover algorithm generates the FOS linkage set (Figure 2.8b), where every node is
part of a FOS.

However, when generating new solutions, folds can occur. A repair method is
needed to avoid discarding them, especially when they are promising (Figure 2.9).
Each node causing a fold is modified by sampling from a Gaussian distribution
around it. A total of 64 different solutions are sampled and re-evaluated for each
infeasible node. It is selected if a repaired solution is feasible and better than old
solutions. Otherwise, it is discarded. This process works similarly to natural selec-
tion, where the best solutions are kept and others discarded. As it is known that
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elitism helps to converge faster [37], MO-RV-GOMEA monitors an archive of non-
dominated solutions during the optimization process. Archived solutions are clus-
tered, with q equal-sized clusters, to divide the entire approximated Pareto front in
regions, updating all solutions belonging to the same cluster into a direction of the
objective space (see Figure 2.10).

(A) Initial solution with-
out folds.

(B) Solution update
causes folds.

(C) Negative area of one
tetrahedron.

(D) Fold repair method.

FIGURE 2.9: Representation of a mesh fold and how the repair method works in MOREA.
Folds cause a negative area of one tetrahedron, requiring a repair method that modifies the
node to get a feasible solution.

In this way, at each generation, each cluster optimizes its solution in one direc-
tion of the objective space, as shown in Figure 2.10, trying to maximize the hyper-
volume of the approximated Pareto front. Some additional mechanisms are used
for faster convergence. The Anticipated Mean Shift (AMS) allows each cluster to
move toward improvement. This direction is defined as the difference between the
cluster mean of the current generation and the previous generation (Figure 2.11).
Thus, momentum is exerted to ensure an increase in the hypervolume.

This momentum rate is regulated by the distribution multipliers, scaling the
variance of the Gaussian distribution in the mutation step. It may happen that
when going in the direction of the optimal point (or hypervolume maximization
in multi-objective problems), solutions start to collapse (Figure 2.12). Thus, many
steps are required to reach the optimal point. In this case, we aim to increase the
variance of the Gaussian distribution to converge faster to the optimum. On the
other hand, if solutions are around the optimal point, the model is prone to over-
shoot. Given this case, it is necessary to decrease the distribution multiplier, re-
ducing the variance of the Gaussian to collapse into the optimal point. MO-RV-
GOMEA considers both cases, tuning the distribution multiplier for faster conver-
gence.

In some cases, no improvement may occur for several consecutive generations.
In that case, a forced improvement moves solutions toward the current best so-
lution. A detailed description of this method can be found in the MOREA paper
[4], as well as in the MO-RV-GOMEA paper [10], containing a description of the
algorithm MOREA uses for optimization.

It is found that the energy metric restricts the deformation of solutions. This
is a challenge, specially when dealing with large deformations. So, despite the
diversity in the solutions is the main purpose of multi-objective approaches, in
large deformation problems there is no interest in solutions with low deformation
energy. To avoid considering them, an adaptive steering strategy is used every 100
generations to prevent the model from collapsing in small deformations. The front
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(A) Population of solutions
from RV-MO-GOMEA.

(B) Solutions clustering, each
cluster moves to a different di-
rection.

FIGURE 2.10: Clustering process, each cluster moves in a different direction from the ob-
jective space.

(A) Previous generation clus-
ters.

(B) New generation clusters. (C) AMS computation.

FIGURE 2.11: Overview of the Anticipated Mean Shift (AMS) process in MO-RV-GOMEA.
It guarantees moving in the direction of improvement of the cluster. Dashed ellipses rep-
resent previous generation clusters (being the mean the blue point) and the filled ellipses
represent the current generation cluster (being the mean represented with a star). The AMS
is the vector connecting the old generation mean with the new generation mean.

is steered into high-quality solutions in terms of guidance values, only preserving
best solutions. These include solutions between the best guidance value and 1.5
times this value. Thus, the model is able to give solutions with large deformations
while preserving the energy as a metric in a multi-objective approach.

2.7.5 Deep learning multi-objective deformable image registration

The other method this thesis builds on is the Deep Learning Multi-Objective De-
formable Image Registration (DL-MODIR) method [25] that has demonstrated to
be better able to explore the trade-off space between different objectives than grid
search methods. This method uses the normalized cross-correlation for the inten-
sity, Dice similarity for the segmentation and the spatial gradient displacement for
the magnitude.

In contrast to evolutionary methods, DL is faster at inference, where results can
be obtained within seconds at the expense of a previous training phase. Unsuper-
vised DL methods contain a deep convolutional neural network model that gets



Chapter 2. Background 21

(A) First generation of solution collapse. (B) Second generation of solution collapse.

(C) Third generation of solution collapse. (D) Solution overshoot.

FIGURE 2.12: Overview of two cases where the distribution multiplier needs to be adapted
to adjust the variance of the Gaussian. (a, b, c) Solution collapse. First (a), second (b), and
third (c) generation solutions going to the optimal point (red star). Solutions collapse over
generations, and the variance of the Gaussian needs to be increased to converge faster. (d)
Overshooting in the optimal solution. Generated solutions are spread around the optimal
solution. It is necessary to decrease the variance of the Gaussian to get closer to the optimal.

the source and target images as input and returns the DVF as output. The model is
trained to learn the parameters that minimize the loss function. Usually, this loss
function consists of a linear scalarization of registration quality metrics [7]. How-
ever, some studies [39, 42] have treated DL methods from a multi-objective point
of view that return an approximated Pareto front instead of a unique solution.

One strategy to optimize a multi-objective DIR problem with DL methods con-
sists of maximizing the hypervolume of the approximated Pareto front [44]. The
method used in this thesis uses a dynamic loss function based on hypervolume
maximization [18] for multi-objective optimization. Considering k objectives to be
optimized, each network tries to minimize a vector of losses:

L(θ, sn) = [L(θ, sn), ..., Lk(θ, sn)] (2.17)

with S = {s1, ..., sn, ..., s|S|} samples. Considering p networks, each network
i ∈ {1, ..., p} corresponds to a solution of the approximated Pareto front. The goal
is to optimize the model’s parameters Θ = {θ1, ..., θi, ..., θp} for each individual



Chapter 2. Background 22

FIGURE 2.13: Hypervolume maximization with a dynamic loss function. Figure from [18].

network i to minimize a loss function Li(θi, sn). Then, all losses for all networks
can be stacked in a matrix as follows:

L =


L1

1 L2
1 ... Lp

1
L1

2 L2
2 ... Lp

2
... ... ... ...
L1

k L2
k ... Lp

k

 (2.18)

Considering that L contains all loss functions for p models with k objectives, the
main goal is to maximize the hypervolume of the approximated Pareto front:

maximize
1
|S|

|S|

∑
n=1

HV(L(Θ, sn)) (2.19)

Therefore, a gradient ascent algorithm is applied to update Θ such that the hy-
pervolume is maximized. By the chain rule decomposition Equation 2.19, as de-
scribed in [18], can be converted to:

1
|S|

|S|

∑
n=1

∂HV(L(Θ, sn))

∂L(θi, sn)

∂L(θi, sn)

∂θi
∀i ∈ {1, ..., p} (2.20)

This equation can be further decomposed for each objective such that each so-
lution is optimized in a different direction in the objective space:

1
|S|

|S|

∑
n=1

k

∑
j=1

∂HV(L(Θ, sn))

∂Lj(θi, sn)

∂Lj(θi, sn)

∂θi
∀i ∈ {1, ..., p} (2.21)

where ∂HV(L(Θ,sn))
∂Lj(θi ,sn)

is the hypervolume (HV) gradient for a single objective and
∂Lj(θi ,sn)

∂θi
is the gradient used in gradient descent to optimize the model parameters

for a single objective. This means that the more the hypervolume increases, the big-

ger the gradient of the loss function ∂Lj(θi ,sn)
∂θi

is in the direction that reduces that loss
for objective j (Figure 2.13b). Therefore, this method minimizes the loss Lj(θi, sn)
and simultaneously maximizes the hypervolume.
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Existing work [18] goes further into this method by considering domination-
ranked fronts. A caveat of the described method is that strongly dominated solu-
tions (solutions in the interior of the approximated Pareto front) have zero gradient:

∂HV(L(Θ, sn))

∂Lj(θi, sn)
= 0 (2.22)

since any movement does not increase the hypervolume. To solve this problem,
the paper proposes to optimize different fronts in parallel, one for each rank (Figure
2.13c). Solutions in the Pareto front correspond to rank 0. To compute rank 1,
solutions from rank 0 are discarded, and the non-dominated solutions from the
remaining solutions are considered. This is done iteratively until the entire set of
solutions is covered. Finally, the dynamic loss is averaged over multiple samples
for more stable computation.

The DL-MODIR method used in this thesis is based on the VoxelMorph archi-
tecture [7] adapted for multi-objective training where, instead, p neural networks
are used and the dynamic loss function from Equation 2.21 is optimized.

The method proposed by Grewal et al. [25] uses a shared encoder for all the
networks and individual decoders (p in total) for each solution of the approximated
Pareto front (Figure 2.14).

FIGURE 2.14: Pipeline of DL-MODIR adopted in this thesis. Figure from [25]. DL-MODIR
uses the VoxelMorph deep neural network with p decoders. The resulting DVFs are used to
compute the transformed source image and segmentation, which are used to compute the
image similarity (intensity objective) and segmentation similarity (segmentation objective).
The smoothness (magnitude objective) is computed directly from the output DVF.
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2.8 Comparison between deep learning and evolutionary
algorithm optimization methods

When tackling DIR problems, it is crucial to understand the inherent trade-off be-
tween optimization quality and computational efficiency. While FEM-based meth-
ods offer highly realistic solutions, their reliance on EA demands considerable time
to optimize each sample, which can rise to several hours, depending on the scan
resolution and the size of the field of view. Consequently, these methods currently
remain impractical for some clinical settings despite showing promise in finding
realistic transformations.

In contrast, DL methods have significantly faster inference times and can return
a DVF within seconds in most cases. However, this speed comes at the expense
of realism, as each voxel deformation is computed independently, potentially re-
sulting in highly unrealistic transformations. Even with the inclusion of energy
metrics, DL methods can still fall short of realistic solutions. Moreover, unlike EA,
these methods require an extensive training. Table 2.1 shows the differences be-
tween both methods.

The independent deformation of each voxel in the DL method allows for finer-
grained deformations, compensating for the loss of information inherent in the
generation of mesh grids (containing fewer nodes than voxels). However, this in-
creased granularity often comes at the cost of realism, as finer deformations may
not accurately reflect the underlying anatomical structures, being more prone to
folds.

DL-MODIR [25] MOREA [4]
Transformation model End-to-end FEM
Solutions Multi-Objective Multi-Objective
Optimization method Deep Learning Evolutionary Algorithm
Training phase Yes No
Sample optimization Seconds Hours

TABLE 2.1: Comparison between both methods used in this thesis: a DL approach with an
end-to-end transformation model and an EA method with a FEM.

2.9 Hybrid methods

Multiple DIR methods have been proposed in the literature, and the most rele-
vant ones are described in this chapter. However, these methods must deal with a
trade-off between accuracy and speed. While some methods seem to perform more
fine-grained and accurate registration, they are extremely time-consuming, making
them less feasible for clinical practice. For this reason, hybrid methods have the po-
tential to be a solution. They exploit the benefits of each method and combine them
into a unique pipeline that balances the trade-off.

This has been previously attempted by Huo et al. [30] with a hybrid method
between an automatic thin plate splines-based and an improved Demons algo-
rithm that outperforms these methods treated individually. As posed by the paper,
Demons can accurately correct local differences, but it is time-consuming.
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The thin plate splines-based method is used as a first step to perform a prelim-
inary transformation, followed by Demons for a more fine-grained transformation
(Figure 2.15). The transformed source image obtained using the thin plate spline
method is given to Demons as input.

FIGURE 2.15: Flowchart of the proposed hybrid method with a splines-based method fol-
lowed by a Demons method for a more fine-grained registration. Image from the original
paper [30].

The results reveal a gap that can be filled in a promising way by combining
several methods in a hybrid. Experiments in five different datasets show that the
hybrid method outperforms each individually regarding accuracy and computa-
tional time, as displayed in Table 2.2. The evaluated accuracy is computed as the
mean squared intensity difference between the target and the transformed source
image.

However, the proposed method contains some limitations. It only works with
2D images and uses single-objective DIR. The thin plate splines-based method uses
a linear scalarization consisting of landmark distance difference and a regulariza-
tion term for the energy. Landmarks are automatically detected in a process that
can introduce errors in quality registration metrics. Demons, instead, uses the in-
tensity and energy in a single objective. Also, it is unclear how the deformation
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Problem Metric Demons B-spline Hybrid

lenag
MSD (·10−4) 3.746 3.862 2.419

Time (s) 1.815 3.7 0.621

rose
MSD (·10−4) 49 35 25

Time (s) 8.893 44.5 5.778

brainT1
MSD (·10−4) 0.217 0.755 0.62

Time (s) 2.267 11.647 1.301

sunflower
MSD (·10−4) 0.361 0.8 0.434

Time (s) 2.43 18.916 2.11

brainT2
MSD (·10−4) 0.194 0.651 0.114

Time (s) 1.833 6.45 1.002

TABLE 2.2: Results from the hybrid method paper [30] comparing the Mean Square Dif-
ference (MSD) and the execution time in seconds for the two methods individually and
the hybrid method. In bold is displayed the best model for each problem-metric pair. The
hybrid method outperforms both methods individually in every problem in terms of accu-
racy and time.

of both methods is combined into a single DVF. To the best of our knowledge,
this is the only work that exists combining fundamentally different DIR methods
into a hybrid. This thesis is dedicated to further analyzing the potential of hybrid
methods in the field of DIR by combining a MOREA and DL-MODIR in a hybrid
method.
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Chapter 3

Methods

This chapter explores the developed hybrid method, its main components, and
their interconnections. We begin by introducing the three components of the hy-
brid method. We then describe the developed approach and its application with
a synthetic dataset. We also demonstrate its behavior on a clinical dataset for cer-
vical cancer RT planning by performing sanity checks of the hybrid method on
this dataset. Finally, we present some preliminary experiments and list the chosen
hyperparameters.

3.1 Hybrid method

This thesis aims to develop a hybrid method that combines two existing meth-
ods, MOREA (Section 2.7.4) and DL-MODIR (Section 2.7.5). By leveraging the fast
output of DL-MODIR at inference to smartly initialize MOREA’s population for a
warm start, we enhance the efficiency and accuracy of the registration process. As
a FEM-based transformation model, MOREA can perform more realistic registra-
tions than DL-MODIR, making it less prone to folds linked to unrealistic deforma-
tions. The goal is for DL-MODIR to provide MOREA with sufficient information
to start the process with an advantage over the original MOREA version, ideally
outperforming both methods separately.

The hybrid method contains three components:

• DIR Problem. It stores the pre-processed data in an object for reading and
writing it easier between the different methods.

• DL-MODIR method. It contains the DL-MODIR method described in Section
2.7.5 with some adaptations.

• MOREA method. It contains the MOREA method described in Section 2.7.4
with some adaptations.

These three elements connect in a pipeline divided into two phases: training
and inference. Figure 3.1 displays how these three components are connected and
which steps occur in the training and inference phases. DL-MODIR updates its
neural network parameters during training, using 80% of the dataset problems.
This step is only necessary once, since the goal is for the learned parameters to gen-
eralize to unseen problems. The learned neural network is then used for inference
and evaluated on the remaining 20% of the dataset. Subsequently, DL-MODIR pre-
dicts the inverse DVF occurring in each DIR Problem and stores it to be used by
MOREA later for a warm start in the hybrid method.



Chapter 3. Methods 28

Pre-processing

DL MODIR Training

DL MODIR Inference

MOREA Optimization

Dataset

MOREA

DL 
MODIR

DIR 
Problem

Store DVFs

DIR

Training phase (x1)

Inference phase (xN)

1 1

2 3

2

34

5 6

FIGURE 3.1: The pipeline of the hybrid method shows the connection between the DIR
Problem, DL-MODIR, and MOREA. The process is divided into two phases: training and
inference. MOREA is utilized only for inference optimization while DL-MODIR works in
the two phases.

The following sections elaborate on the three main components, describing their
tasks and adaptations in the developed hybrid method. For simplicity, we call DVF
to the inverse DVF. All the DVFs represented and mentioned in the methods and
results chapters correspond to inverse DVFs.

3.1.1 DIR Problem

A DIR problem is an object that contains the necessary information for the registra-
tion. Every DIR Problem contains the following information:

• Source image: a three-dimensional array with the image volume.

• Target image: a three-dimensional array with the image volume to be
achieved by transforming the source image.

• List of objects: each object (organ) is a distinguished and segmented element
on the image. Each object contains:

– Source mask: a three-dimensional binary mask of the specific object in
the source image given by the user. It has the same shape as the source
image.

– Target mask: a three-dimensional binary mask of the specific object in
the target image given by the user. It has the same shape as the target
image.
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– Contour pairs: contours for each mask, source and target, automatically
computed for each given mask with a binary erosion operation.

– Distance map: distance between each image voxel and the closest con-
tour point for that object. It is measured automatically for the given
masks and computed contour pairs. MOREA uses it to calculate the
guidance objective.

• Landmarks: set of anatomically relevant points coupling equal landmarks in
each image. These points are given by the user.

Every DIR Problem object is readable by both methods, DL-MODIR and
MOREA. In this thesis, DL-MODIR is adapted explicitly for loading a DIR Problem
object and using it to train and evaluate the neural network. Figure 3.2 displays an
object diagram with the components of a DIR Problem object and their connection.

DIRObject

label: str

source_mask

target_mask

contour_pairs:
list[DIRObjectContour]

DIRObjectContour

image_domain

points: list

distance_map: array

DIRDomain

Source = 1

Target = 2

DIRObjectMask

image_domain

data: array

DIRProblem

problem_id: str

source_image

target_image

objects: list[DIRObject]

landmarks

source_dose_map

target_dose_map

DIRImage

image_domain

is_dose_map: bool

data: array
DIRLandmarks

landmark_pairs: list

landmark_labels: list[str]

FIGURE 3.2: Object diagram of a DIR Problem with the connection between its components
in an object-oriented programming design.

3.1.2 DL-MODIR

This component contains DL-MODIR with some adaptations to include it in the hy-
brid method and interact with MOREA. Compared to MOREA, some requirements
constrain the format of the given data. For instance, the input size must be fixed
with square slices (in-plane) of unrestricted depth. DL-MODIR handles the depth
variability by looking at a window of slices with a fixed size, manually defined as
the maximum depth dmax. Different slices are selected depending on the phase:

• Training: a random slice is selected, and the consecutive slices, with a length
dmax, are taken as the input. As a result, the neural network receives a random
fraction of the image. Hence, the generalization capabilities are enhanced by
selecting different fractions at different epochs.

• Inference: the entire image is evaluated in independent fractions of dmax con-
secutive slices. The final DVF is the result of connecting the partial DVFs and
averaging over the shared slices.

DL-MODIR, compared to MOREA, has two distinguished phases: training and
inference. During training, the deep neural network updates its parameters for the
fraction of the training dataset with a gradient descent algorithm using a dynamic
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loss function (Section 2.7.5). It simultaneously minimizes the loss for all objectives
–defined by the registration quality metrics–, and maximizes the hypervolume of
the approximated Pareto front. Training takes place once, aiming to learn a function
that, when evaluated on data out of the learned distribution, is able to generalize.
The learned neural network is stored and used for inference. A total of p DVFs are
generated for each given DIR Problem, one for each solution in the approximated
Pareto front.

3.1.3 MOREA

MOREA is the last method in the pipeline. It is responsible for enhancing DL-
MODIR, ideally improving their realism. MOREA works in a three-step process:
sweep generation, mesh creation, and optimization.

During sweep generation, the hyperparameters for the optimization run are
specified. These include the mesh generation strategy, initialization method, and
number of generations, among others. If a list of different values is given for one or
multiple hyperparameters, all combinations of hyperparameters –as grid search–
are evaluated. The sweep generator provides MOREA with the necessary informa-
tion to read and optimize the DIR problem.

Later, MOREA generates a mesh for each sweep by considering the defined
hyperparameters in the previous step. The mesh creation step is adapted to support
alternative node placement strategies. While the original method takes the entire
object to place nodes on its surface, the developed adaptation only places them
around a specific object of interest (or organ). In the case of the clinical dataset, it is
placed around the bladder. However, only a fraction rs of them are placed on the
surface of the defined object, and the rest are randomly placed around the image
using a Sobol sequence to ensure a more uniform distribution.

In the last step, optimization, MOREA reads the generated mesh grid and the
sweep configuration to generate the initial population for the optimization prob-
lem. With EAs, the model aims to converge into a larger set of more optimal solu-
tions that satisfy the three different objectives: magnitude, intensity, and guidance.
The most significant adaptation to developing the hybrid method is the smart pop-
ulation initialization in MOREA, which permits a warm start.

3.2 Developed solution: MOREA warm start

EAs need an initial population to start optimizing from. Although a random initial-
ization is often performed, we think the closer we start from the optimal solution
(or approximated Pareto front in multi-objective optimization), the faster the model
can converge.

3.2.1 Gaussian attractors initialization

The default population initialization performed by MOREA takes the generated
mesh and applies a fixed number of randomly placed radial-based attractors with
a weight sampled from a uniform distribution (between 0 and 1). These attrac-
tors move mesh nodes towards them. Each solution from the initial population has
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attractors with different locations and weights, ensuring diversity in the initial pop-
ulation. Mesh nodes are disrupted in multiple steps to ensure that the movement
is not entirely restricted when a DVF generates folds. In this case, only a partial
movement is done until the fold restricts the movement of the mesh node.

d

FIGURE 3.3: Gaussian attractors intensity. Distance d defines the attraction intensity Ia,
sampling from a Gaussian distribution where the intensity is in the cross of the Gaussian.
Hence, the attracting intensity decays with the distance.

As displayed in Figure 3.3, the distance d between the node and the attractor
defines the attracting intensity by sampling from a Gaussian distribution. This
distribution has a mean zero in the center of the attractor and a standard deviation
equivalent to the maximum distance space divided by 16. The maximum distance
space is computed as the image volume’s diagonal, equivalent to

√
3 when the

mesh node coordinates are normalized in the range [0, 1]. The attraction intensity
Ia results from computing the value d in the Gaussian distribution, and it is defined
as follows:

Ia =
1

σ
√

2π
e−

(x−µ)2

2σ2 (3.1)

where the mean is µ = 0, the standard deviation in the normalized space is
σ =

√
3, and x = d. Hence, mesh nodes closer to the attractor (lower x) move

more towards the attractor than further nodes, where the attraction intensity gets
attenuated with a Gaussian decay. The attractor weight wa acts as a multiplier for
the attraction intensity, with lower weights producing less attraction than higher
weights. Therefore, the magnitude of the attraction force Fa that a Gaussian attrac-
tor produces in a mesh node is defined as:

Fa = Ia · wa (3.2)

For each mesh node, the algorithm computes the attraction force all attractors
exert on it and divides it by the number of attractors.
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(A) Gaussian attractors. (B) Forces applied to a mesh
node by the attractors.

(C) Movement of the mesh
node.

FIGURE 3.4: MOREA initialization with Gaussian attractors. Attractors (red dots), with
different weights (red shadow), exert attraction forces to each mesh node with a Gaus-
sian distribution intensity. The resulting movement comes from summing all the attraction
forces that the attractors exert on the mesh node and normalizing by the number of attrac-
tors.

3.2.2 Warm start with DVF solutions

In the developed hybrid method, the population initialization based on the Gaus-
sian attractors performed by MOREA is changed to apply the DVFs from DL-
MODIR. MOREA leverages DL-MODIR solutions to perform a warm start with
its information. For every solution forming the initial population, a DVF from DL-
MODIR is applied to the mesh nodes of the source image. DL-MODIR gives p
solutions, each containing a DVF in a different location of the approximated Pareto
front. Considering that the initial population –with a population size Sp– needs
to be filled and Sp > p, the hybrid method must generate multiple solutions from
each DL-MODIR solution. For this reason, for each DL-MODIR solution, the DVF
is given in different intensities to fill the entire initial population. Hence, only p
solutions from Sp contain the complete DVFs from DL-MODIR; the rest are attenu-
ations of these p solutions.

In total, ⌊Sp/p⌋ intensities I are considered for each DL-MODIR solution. These
intensities range from [ 1

⌊Sp/p⌋ , 1] where I = 0 would mean no transformation, and
I = 1 means that the complete DVF from DL-MODIR is applied to the mesh grid.
Intermediate values scale each displacement vector of the DVF by their intensity.
For example, if I = 0.5, each displacement vector in the DVF is half the length of
the original.

Given a population size Sp = 600 and p = 15 solutions in DL-MODIR, there
are 40 solutions in MOREA for each DL-MODIR solution in the initial population.
Each solution has a different intensity, chosen from 40 equally spaced intensities
ranging from 0.025 to 1.

MOREA updates mesh nodes sequentially. As this is prone to folds, the mesh
node is updated in a multiple-step process, where Ns steps are done. For each step
ns ∈ {1, ..., Ns}, we update all mesh nodes with an intensity of DVF·I

Ns
in the direction

of the DVF considering the initial position of the mesh point. If we considered
the new location of the mesh point after each update step, the original mesh node
would not reach the location its DVF is pointing to and the DVF would change
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along the multi-step process, recomputing the interpolated DVF at each step new
location. The update order is done randomly at every step ns to avoid that some
areas of the image are more deformed than others.

(A) DVF surrounding the mesh node. (B) Computation of the distance to the
surrounding voxels.

(C) Resulting DVFn of the mesh node. (D) Movement of the mesh node.

FIGURE 3.5: Application of a DVF to a mesh grid, illustrating the process at a single mesh
node. The resulting node’s DVF (DVFn) is derived from its neighboring voxels’ interpola-
tion. The distance to the center of these surrounding voxels is used to compute a weighted
average, determining the final deformation applied to the mesh node.

A representation of how this method works is displayed in Figure 3.5. For a
mesh node, some displacement vectors surround it, each value corresponding to
the displacement at the center of each voxel. However, mesh nodes do not need
to be in the center of a voxel, requiring some interpolation to compute the DVF in
its position. In two dimensions, the four voxels surrounding the mesh node are
considered to define the final direction of the DVF. First, the distance between the
mesh node and the center of each voxel is computed; these distances d1, d2, d3, d4
are used to calculate a weighted average of the DVF. At the end, the resulting DVFn
for the mesh node in Figure 3.5 is computed as:

DVFn =
DVF1 · d1 + DVF2 · d2 + DVF3 · d3 + DVF4 · d4

4
(3.3)
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The figure simplifies the developed method to a two-dimensional representa-
tion, but the datasets contain three-dimensional volumes. Hence, the eight sur-
rounding pixels must be considered to compute the DVF interpolation instead of
four.

As MOREA has a dual-dynamic model, there is a mesh grid for the target image,
and the DVF is computed from the two mesh grids. The target mesh nodes in the
initial population of the developed hybrid method are disrupted with Gaussian
attractors.

3.2.3 Half-hybrid method

We developed an alternative method that combines the Gaussian attractor initial-
ization with the DVF initialization and we called it half-hybrid. This method aims
to have the potential of the DVF initialization by generating some solutions from
DL-MODIR DVFs while saving half of the initial population solutions for the Gaus-
sian attractors’ initialization. Since only half of the solutions are given for the DVF
initialization, less intensities are generated from each DL-MODIR solution. We ex-
pect the developed half-hybrid method always to be comparable to or better than
MOREA.

3.2.4 Sanity checks on the developed hybrid method

Some sanity checks are done to test the correct implementation and desired be-
havior of the developed hybrid method. These sanity checks are first evaluated
on a synthetic dataset with a toy problem, a shrinking sphere. Each dataset prob-
lem consists of a pair of images with size 64 × 80 × 80 (depth, height, and width),
where the source image contains a sphere with a radius between 20% and 40% of
the smallest image dimension (64). The center of the sphere is located in a random
position of the image, guaranteeing a minimum space from the sphere’s surface to
the edge of the image of 5%. The target image consists of a shrink of the source
sphere, with the same center coordinates but reducing its radius between 20% and
40% by sampling from a uniform distribution. The synthetic dataset consists of 200
problems with paired images; 80% of them form the training split, and the remain-
ing 20% the evaluation split. Figure 3.6 displays an example of a problem from the
synthetic dataset.

The first step consists of training DL-MODIR for this task. The neural network
is trained for 15,000 iterations. Since the synthetic dataset contains binary images,
only black and white voxels, the intensity objective is equivalent to the segmenta-
tion objective. For this reason, this problem is treated as bi-objective, only evaluat-
ing the intensity objective –with the normalized cross-correlation–, and the magni-
tude objective –with the spatial gradient loss–.

After training, DL-MODIR is expected to be able to generalize to unseen prob-
lems. This means that the model should be able to register images for spheres at
different positions and sizes. The visualization of the DVFs for the solutions of
DL-MODIR (Figure 3.7) permits a better understanding of how this method works.
Later, the resulting DVFs are applied to the mesh grid generated by MOREA.

To better understand DVFs, Figure 3.8 shows the transformed source image af-
ter applying the 15 solutions from DL-MODIR and compares it to the target image.
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(A) Source image. (B) Target image.

FIGURE 3.6: An instance of a source and a target image from the synthetic dataset. The
target image contains a smaller sphere than the source image, with its center in the same
coordinates.

Despite some solutions are able to achieve a transformed source image that accu-
rately matches the target image, in some cases the deformation is incomplete or
non-existent, suggesting that some explored regions of the approximated Pareto
do not perform a complete deformation.

To ensure the hybrid method initialization works as expected and that mesh
nodes move in the direction of the DVF at their positions, we visualize both the
original mesh grid and the disrupted mesh with the DVFs applied. Figure 3.9
shows the movement of the mesh nodes after applying all DVFs with I = 1. Blue
nodes represent the original mesh grid generated by MOREA, and red nodes are
the disrupted ones after applying the DVFs from DL-MODIR at initialization. Yel-
low arrows represent the displacement vector of the DVF in the position of the
original mesh nodes, where the arrow’s tip indicates the new position each mesh
node should reach. If the red point is halfway along the yellow arrow, constraints
such as folds are limiting its full movement. In Figure 3.9 all nodes move in the di-
rection of the DVF, indicating a correct implementation of the DVFs initialization,
and almost all nodes reach the tip of the arrow, pointing that almost no folds occur
when applying the DVFs.

Since MOREA uses a dual-dynamic model, the target mesh also needs to be dis-
rupted. To ensure variability in the population and due to the intrinsic properties
of the computation of the DVF from the mesh deformation, the Gaussian attrac-
tors’ initialization used in MOREA is applied to the target mesh. Figure 3.10 shows
the initialization of one solution with the different attractors. Gaussian attractors,
represented with yellow dots, exert an attraction force to the mesh grid. In the fig-
ure shown, the attractors of the five subsequent slices in front of and behind the
represented slice are displayed. The distance of the mesh node to the attractors
affects the attraction intensity exerted. In this image, apart from the 2-dimensional
attraction in the shown plane, the distance in the z-axis, perpendicular to the plane,
must also be considered for disrupting the mesh node. In Figure 3.10 most of the
nodes appear to move to the bottom of the image, as there are more attractors in
that region.

Once it is checked that DVFs with I = 1 work as expected, it is necessary to eval-
uate the application of different intensities and how the transformed source images
from the initial population look after applying the DVFs. DVF 2 from Figure 3.9 is
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FIGURE 3.7: DL-MODIR DVF solutions and target image in the synthetic dataset. Each so-
lution explores a different region of the objective space, hence different DVFs are obtained
for the same problem.
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DVF 0 DVF 1 DVF 2 DVF 3 DVF 4

DVF 5 DVF 6 DVF 7 DVF 8 DVF 9

DVF 10 DVF 11 DVF 12 DVF 13 DVF 14

FIGURE 3.8: Transformed source image with the 15 DVFs from DL-MODIR. In magenta
is represented the transformed source image and in green the target image. White voxels
represent an overlap between the transformed source and target images.

selected for analyzing the different intensities. Figure 3.11 displays the transformed
source image registered in the target image. The transformed source image com-
presses more when higher DVF intensities are applied. At I = 1, the transformed
source image is very close to the target image, but the limited granularity of the
mesh grid produces some imperfections in the boundaries of the sphere.

3.3 Cervical cancer radiation therapy planning

The synthetic dataset permits to test the developed hybrid method, but the main
goal of this thesis is to evaluate it in a real-case scenario, specifically to solve the
problem of cervical cancer RT planning.

3.3.1 Dataset

The hybrid method is trained and evaluated on a clinical dataset containing abdom-
inal CT scans of 75 patients with IDs ranging from 02 to 76. Each patient contains a
source and a target image, the source corresponding to a full bladder and the target
to an empty bladder with an image spacing of 3 mm. In addition to the pair of
images, the multiple organ segmentation and some landmarks for both images are
also included as metadata.

The dataset is split in two, 80% of the dataset used for training the DL-MODIR
neural network (patients 02 to 61) and the remaining 20% used for evaluating the
developed hybrid method. The results shown in this thesis correspond to the 20%
of patients used for evaluation (patients 62 to 76).
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FIGURE 3.9: Update of the source mesh grid with the DVFs from DL-MODIR in the syn-
thetic dataset. Blue points represent the original mesh grid, and red points represent the
mesh grid disrupted with the DVFs. Yellow arrows indicate the displacement vector at the
mesh node location, with the tip pointing the position the disrupted mesh node should
reach. If a disrupted mesh node does not reach the end of the tip, it means that constraints
are limiting the complete movement.
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FIGURE 3.10: Update of the target image mesh grid with the Gaussian attractors. Blue
points represent the original mesh grid, and red points represent the mesh grid disrupted
by the attraction forces. Yellow points represent the Gaussian attractors, with the size in-
dicating the weight of the attractor. Attractors with a margin of five slices are represented
but the z-axis distance does not affect the plotted size.

3.3.2 Data pre-processing

Images from the raw dataset are not aligned nor focused on the region of inter-
est, requiring some pre-processing to normalize data. Consequently, each patient
operates the following steps:

1. Bones rigid registration: both CT scans are taken at different times and con-
ditions. With rigid registration, both images are aligned, considering the
bones as a guide as they are the only static organs that do not change their
shape unless there is a fracture. The computed rigid registration is also ap-
plied to the segmentation masks and landmark coordinates.

2. Bladder cropping: this thesis focuses on cervical cancer images with a par-
ticular focus on the bladder and the deformation it exerts on the surrounding
organs when emptying. Images are cropped by taking the minimum and
maximum coordinates that the bladder occupy in the two images and adding
some padding to study the surroundings. The padding is set to 24 mm (8 vox-
els) in each side of every dimension. As occurred with the rigid registration,
cropping also changes the coordinates of the segmentations and landmarks,
which need to be normalized to the image’s new bounds.

3. Target in-plane size: since DL-MODIR is based on a neural network model,
the input must have fixed dimensions. However, each image contains
different-sized bladders, which lead to different-sized cropped images. A
margin is added, filling the remaining voxels in black to reach the neural net-
work in-plane size (width-height hyperplane) set at 96 × 96. The depth is set
to a minimum value defined as the maximum depth dmax, set at 48. If this
value is exceeded, the image is left with the same depth size, and DL-MODIR
computes its DVF in fragments, as mentioned in Section 3.1.2. On the other
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Intensity = 0.10 Intensity = 0.20 Intensity = 0.30 Intensity = 0.40 Intensity = 0.50

Intensity = 0.60 Intensity = 0.70 Intensity = 0.80 Intensity = 0.90 Intensity = 1.00

FIGURE 3.11: Transformed source image (magenta) and target image (green) after applying
a DL-MODIR DVF with different intensities, representing different solutions of the initial
population of the hybrid method.

hand, if the value is lower than dmax, it is also filled with a black margin un-
til reaching a depth of 48. Hence, every image has the same in-plane size
(96 × 96) and different depths with a minimum value of 48.

After pre-processing and storing the data for each patient, both methods can
directly optimize it.

3.3.3 Difference with the original MOREA

In some aspects, the MOREA method used in this thesis differs from the MOREA
presented in the original paper [4].

In the first instance, although MOREA does not need a specific size, the pre-
processed images with black margins are given for a fair comparison. Nonetheless,
MOREA only places the mesh grid in the image area, neglecting the black margins,
but takes them into account for computing the different registration quality metrics.
Additionally, to overcome GPU restrictions in DL-MODIR, the spacing of the image
is increased from 1.5mm to 3mm, resulting in a downsampled image with half
resolution compared to the images optimized in the original MOREA paper.

The last difference refers to the biomechanical properties of the organs. The
original MOREA considers heterogeneous elasticities, different for each organ, with
bones being more difficult to deform than soft organs such as the bladder or the
bowel. In the version of MOREA used in this work, all organs have the same elas-
ticity, so bones are as difficult to deform as other organs, resulting in more unreal-
istic deformations.

These reasons, which may initially make the presented results for MOREA seem
less favorable than the ones in the original paper [4], permits to adapt it for the hy-
brid method under the available GPU conditions and restrictions that DL-MODIR
poses when treating images.
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3.3.4 DL-MODIR training

First, to evaluate the hybrid method, it is necessary to train DL-MODIR on the
training split. As a multi-objective problem, three registration quality metrics are
evaluated, one for each objective. The intensity is measured with the normalized
cross-correlation loss, the magnitude with the spatial gradient loss, and the seg-
mentation with the dice similarity.

Figure 3.12 shows the loss evolution for each of the 15 solutions of the trained
DL-MODIR along 150,000 iterations. The intensity (NCCLoss) is left stable or de-
creases, but the magnitude (Spatial Gradient Loss 3D) starts at low values (close
to 0) and increases along iterations. Initially, the solutions show no deforma-
tion. However, as the model begins to learn from solutions with low segmentation
and intensity losses, the magnitude of deformation increases because significant
changes are necessary to improve these two objectives. For the segmentation, (Seg.
Similarity Loss) most solutions decrease its loss, meaning that the organs of the
transformed source mask match better with the target mask.
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FIGURE 3.12: DL-MODIR train losses for the 15 solutions in three objectives: intensity
measured with the NCCLoss, magnitude measured with the Spatial Gradient Loss 3D, and
segmentation measured with the Seg. Similarity Loss.

After training, the model is evaluated on a separate set of patients to study the
ability to generalize to unseen patients. An evaluation is performed every 3,000
iterations on the evaluation split, the same ones they are later evaluated with the
hybrid method. Looking at Figure 3.13 the validation losses show a similar ten-
dency and absolute values than the training losses indicating that the model is able
to generalize to unseen patients.

DVFs returned by DL-MODIR are displayed in Figure 3.14, where different de-
formations are performed to explore various regions of the objective space. Re-
markably, some DVFs (2, 4, 5, and 10) contain almost no deformation in one axis
where displacement vectors are pointing vertically, producing a flat DVF.

The transformed source contours using DL-MODIR DVFs are included in the
Appendix (Figure A.1), where some DVFs can deform the organ contours to match
closely the contours of the bladder and the bowel in the target image, including
some of the flat DVFs. This event suggests that a low distance between the trans-
formed source contours and the target contours can be achieved even with unreal-
istic deformations.
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FIGURE 3.13: DL-MODIR validation losses for the 15 solutions in three objectives: intensity
measured with the NCCLoss, magnitude measured with the Spatial Gradient Loss 3D, and
segmentation measured with the Seg. Similarity Loss.

3.3.5 Mesh of the initial population

To confirm that the developed method works equally well on the clinical dataset as
on the synthetic dataset, we also evaluate the movement of the nodes after initial-
ization with solutions that have I = 1, where the complete DVF from DL-MODIR
is applied. Figure 3.15 displays the nodes on the source mesh and their deforma-
tion after applying the DVFs. All nodes move in the direction of the DVF arrow;
however, some do not reach the tip of the arrow. This is the case where DL-MODIR
outputs a large deformation that yields folds, which is more present in this dataset
than in the synthetic one.
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FIGURE 3.14: DL-MODIR solutions in the clinical dataset with the target image on the
background. Each solution explores a different region of the objective space. Hence, differ-
ent DVFs are obtained for the same problem.
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FIGURE 3.15: Update of the source mesh grid with the DVFs from DL-MODIR in the clini-
cal dataset. Blue points represent the original mesh grid, and red points represent the mesh
grid disrupted with the DVFs. Yellow arrows indicate the displacement vector at the mesh
node location, indicating the position the disrupted mesh node should reach. If a disrupted
mesh node does not reach the end of the tip, it means that the mesh could not be updated
as desired due to constraints.
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3.4 Preliminary experiments

Various preliminary experiments are conducted, the results of which are essential
for selecting the best hyperparameters and justifying the implemented strategies in
some experiments.

3.4.1 Number of nodes

The hybrid method and MOREA are sensitive to hyperparameter tuning. One of
the most relevant hyperparameters is the number of mesh nodes. A preliminary
experiment to evaluate the optimal value is run in one of the evaluation patients
(patient 62). Increasing the number of nodes enhances the granularity of the prob-
lem and the susceptibility to constraints caused by folds.

Five different seeds for each evaluated number of nodes (100, 300, 400, 500, and
600) are run in this experiment. To see the effect of this hyperparameter, we simplify
the problem by studying the convergence of the exploitation of the guidance and
intensity objectives. Figure 3.16 displays the value for the best solution in each
objective, comparing the hybrid method with different numbers of mesh nodes.
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(A) Guidance convergence along generations.
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(B) Intensity convergence along generations.

FIGURE 3.16: Guidance and intensity exploitation along generations for different numbers
of nodes in the mesh generation for the developed hybrid method.

A higher number of mesh nodes permits better exploiting the guidance objec-
tive, however, no significant difference exists with values higher than 300. Looking
at the intensity objective, 300 is the number of nodes that best exploit this objective.
Nevertheless, considering both results, the strategy with 500 nodes seems optimal
for exploiting both objectives.

3.4.2 Percentile selection

The contours of the transformed source image with the different methods are eval-
uated to analyze the results that the different methods output. We aim to select a
percentile of the guidance objective for reproducibility that permits a fair compar-
ison between the different methods. Since the guidance objective is the one that
provides the most information on the quality of the solutions, we expect to select
solutions with a low guidance objective to visually compare the three methods.
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However, overfitting to the guidance (or segmentation) objective can be in detri-
ment of the other two objectives, so we evaluate how different the 90th, 95th, and
98th percentile are from the 100th percentile, referring to the solution with better
exploitation of the guidance objective.
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FIGURE 3.17: Evaluation of different percentile solutions (90th, 95th, 98th, and 100th) of
the guidance (or segmentation) objective in the approximated Pareto front for each method:
DL-MODIR, MOREA, and the hybrid method. The three methods show the target image
with the segmented organs with the contours of the transformed source masks.

Looking at Figure 3.17, no significant difference is noticeable between the 90th,
95th, 98th, and 100th percentiles. The sigmoid suffers the most significant differ-
ence in the segmentation contours, however, the 98th percentile seems worse in this
slice and plane, but it is compensated in other organs and slices. However, as there
is no significant visual difference between the four percentiles, the 90th percentile
is a good choice for comparing the three methods, providing reproducibility, and
not overfitting to the guidance objective only. Otherwise, navigating along the ap-
proximated Pareto front would be necessary to find the optimal solution on this
patient, and the comparison would be subjective depending on the choice.
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3.4.3 Half-hybrid method

The half-hybrid method proposed in Section 3.2.3 is an alternative to the original
hybrid method. This strategy is evaluated in one of the patients (patient 63) by
looking at the convergence plots of the exploitation of two objectives, guidance
and intensity. Figure 3.18 shows the results of this method compared to MOREA
and the hybrid method. The half-hybrid method does not exploit the guidance and
intensity objective better than the hybrid method. Thus, providing some solutions
generated with Gaussian attractors does not yield to better results in this patient.
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FIGURE 3.18: Half-hybrid method compared to the hybrid method and MOREA for ex-
ploiting the guidance and intensity objectives.

3.5 Experimental setup

This section delves into the experiments run in this thesis, the used hyperparame-
ters and hardware conditions.

3.5.1 Experiments description

Multi-objective problems are complex to analyze since a set of solutions is given in-
stead of a unique solution. Hence, looking at one of the solutions does not provide
a global perspective. For this reason, we start looking at the approximated Pareto
fronts of the three methods to understand how the given solutions perform on the
three objectives and how the objective space is explored.

After having an understanding of the exploration of the different objectives
with the Pareto fronts, we look at the convergence of exploiting the three objec-
tives, i.e., their best found value over the course of optimization. This permits to
analyze how each method exploits the objectives and its evolution over time. Ad-
ditionally, it allows to perform a statistical test of which methods have statistically
significant improvements in the exploitation of the objectives.

Finally, we look at one of the solutions to analyze it visually. The Pareto front or
the objectives convergence is less relevant in clinical practice. Instead, it is essen-
tial to look at how close the transformed masks are to the target masks, and, most
importantly, how the deformation is shaped. In this third experiment, we study
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both situations. The solution in the 90th percentile in the guidance solution is se-
lected according to the preliminary experiment in Section 3.4.2. Three patients are
analyzed, two with a significant improvement in the exploitation of the guidance
objective and one with no significant improvement, allowing to find a pattern of
where the hybrid method performs better than MOREA and, on the other hand, in
which cases there is no improvement.

3.5.2 Used hyperparameters

The hyperparameters of the three methods are given for reproducing the different
experiments. DL-MODIR is run with the following hyperparameters:

Hyperparameter Value Hyperparameter Value

In-plane size (height × width) 96 × 96 Number of segmentation classes 8
Maximum depth dmax 48 Number of solutions 15

Reference point [1, 1, 1] Batch size 1
Number of training iterations 150,000 Learning rate 0.0001

TABLE 3.1: Hyperparameters used in DL-MODIR.

The hybrid method and MOREA are run with the following hyperparameters:

Hyperparameter Value Hyperparameter Value

Number of init. steps Ns 80 Number of generations 500
Population size Sp 600 Number of clusters 10

Archive size 1,000 Initialization noise factor 1.0
Number of mesh nodes 500 Nodes placement strategy Surface

Organ surface of the mesh Bladder Ratio of nodes on surface rs 0.25

TABLE 3.2: Hyperparameters used in MOREA and the hybrid method.

The nodes placement strategy indicates that the mesh nodes are placed on the
surface of the indicated organ, which in this case is the bladder. The ratio of nodes
on the surface rs defines the percentage of the total number of mesh nodes placed
on the surface of the bladder. This value is set at a 25%. Additionally, MOREA is
adapted to place the nodes on the surface of the target image instead of the source
image, showing a better performance since an inverse DVF is applied, and the blad-
der is shrinking. Hence, mapping from the target image is more informative than
from the source image.

3.5.3 Hardware requirements

Experiments are run on the SHARK HPC cluster at the Leiden University Medical
Center. Each experiment is run on one CPU, and one GPU, and requires 30 GB of
memory for the run. The experiments used two different GPUs, an NVIDIA GPU
RTX A5000 with 24 GB of V-RAM, and an NVIDIA GPU RTX A6000 with 48 GB of
V-RAM.
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Chapter 4

Results

This chapter evaluates the performance of the developed hybrid method to answer
the research questions. We begin by assessing the Pareto fronts of the three different
methods: DL-MODIR, MOREA, and the hybrid method. We then delve into the
convergence of the hybrid method and MOREA for each objective. Finally, we
provide a qualitative comparison of the three methods, examining the transformed
contours and computed DVFs.

4.1 Analysis of the approximated Pareto front

As a multi-objective problem, our methods produce a set of solutions that form the
approximated Pareto front. Comparing the approximated Pareto fronts of the dif-
ferent methods is a fair way to understand how the set of solutions of one method
compares with another. We compare the hybrid method with MOREA, as both use
the same registration quality metrics. However, DL-MODIR uses a different set of
metrics, making a direct comparison with the other methods unfair. To guarantee
a fair comparison, it would be necessary to evaluate both methods using indepen-
dent registration quality metrics.

Patient 75 is chosen since it corresponds to the patient in the 50th percentile
for the evaluated patients in terms of statistically significant improvement for the
hybrid method compared to MOREA in the exploitation of the guidance objec-
tive. Figure 4.1 compares the approximated Pareto fronts of the hybrid method
and MOREA in two and three dimensions. In this patient, the approximated Pareto
front of the hybrid method exploits better the guidance objective since lower values
for that objective are achieved. However, there is less exploitation of the intensity
objective, whereas MOREA has solutions with lower intensity. For the magnitude
objective, the hybrid method has some solutions with a more extensive deforma-
tion corresponding to a lower guidance.

For a quantitative comparison, the hypervolume of the approximated Pareto
fronts of both methods –hybrid and MOREA– is computed and compared. Table
4.1 shows the p-values of a Mann-Whitney U-Test between the hybrid method and
MOREA for five runs. The mean increase or decrease in the hypervolume of the
hybrid method compared to MOREA is computed with a fixed reference point set
at [10, 10, 10] to provide some margin for the higher values. For this patient (patient
75), the hybrid method has a lower average hypervolume than MOREA but with-
out statistical significance. From the 15 evaluated patients, the hybrid method has
a statistically significant increase of the hypervolume in 5 cases and a statistically
significant decrease in 8 patients. In general, for the patients that have a statistically
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(A) 2D representation of the approximated Pareto fronts in the three planes of the objective space.
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(B) 3D representation of the approximated Pareto fronts.

FIGURE 4.1: Approximated Pareto fronts comparison for the hybrid method and MOREA
in 2D and 3D for patient 75.

significant increase, the percentage of increase is higher than the ones that have a
statistically significant decrease. However, since it depends on the patient, it cannot
be stated that the hybrid method produces approximated Pareto fronts with higher
hypervolumes or the opposite. Nonetheless, it is essential to note that this metric is
not relevant in clinical practice, where most clinicians do not understand this value
and care more about how the solutions look.

Figure 4.2 shows the approximated Pareto front of DL-MODIR in the same pa-
tient but in another objective space. These solutions are used to initialize the hy-
brid method and intrinsically affect the approximated Pareto front of the hybrid
method. Solutions from DL-MODIR are less uniformly spread over the objective
space, with most solutions concentrated around the same region. The solutions
seem clustered in the corner with high intensity and segmentation, and low magni-
tude, where small or no deformation occurs. This is the same problem encountered
in the original DL-MODIR paper [25].
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Patient p-value % vs MOREA

Patient 62 0.008 ↓ 0.026%
Patient 63 0.008 ↓ 0.015%
Patient 64 0.016 ↑ 0.096%
Patient 65 0.008 ↑ 0.191%
Patient 66 0.008 ↑ 0.117%
Patient 67 0.008 ↓ 0.013%
Patient 68 0.008 ↓ 0.023%
Patient 69 0.008 ↓ 0.019%
Patient 70 0.008 ↓ 0.034%
Patient 71 0.008 ↓ 0.017%
Patient 72 0.008 ↑ 0.552%
Patient 73 0.095 ↓ 0.037%
Patient 74 0.032 ↑ 0.053%
Patient 75 0.421 ↓ 0.007%
Patient 76 0.008 ↓ 0.026%

TABLE 4.1: Hypervolume comparison for five different seeds. p-values are computed from
a Mann-Whitney U-Test between the hybrid method and MOREA. The percentage com-
pares the increase (green) or decrease (red) of the mean of the hybrid method distribution
with the MOREA distribution. Bold values represent a statistically significant difference
(p-value < 0.05).
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FIGURE 4.2: Approximated Pareto front of DL-MODIR for patient 75.

4.2 Comparison of the objectives convergence

After visualizing the entire set of solutions, it is essential to study how each method
exploits each objective and converges. The solution of the approximated Pareto
front with the lowest value for each objective –exploitation of the objective– is used
for the convergence comparison. However, this is just a partial visualization of
the solutions provided by the different methods and does not outline how good
they are compared to others. The qualitative comparison at the end of this chapter
permits a better understanding of how both methods work by visually inspecting
their solutions.
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Despite working in a multi-objective problem, our convergence comparison fo-
cuses on the guidance objective since it gives the best qualitative indication of how
close the transformed source image approximates the target image. The intensity
registration quality metric used –the mean squared difference– is not robust enough
for uncalibrated images, for instance, when a contrast agent is used, as is the case
in some of the evaluated patients. The third objective, the magnitude, only rep-
resents the solution with the lowest deformation in the population, which is not
informative enough since we are interested in large deformation as we know that
the bladder compresses from the source image to the target image.
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FIGURE 4.3: Guidance convergence for the best solution in this objective along generations
and time for patient 75.

Five random seeds are run for each method and patient to overcome stochastic-
ity. The same patient as the previous experiments (patient 75) is used to compare
both methods. However, results on the rest of the patients exploiting the guidance
objective can be found in the Appendix (Figure B.1). Figure 4.3 displays the guid-
ance evolution along the number of generations and time. The guidance objective
of the hybrid method at the start is lower than that of MOREA. The initial popu-
lation, generated from DVFs given by DL-MODIR has a better exploitation of the
guidance than MOREA and stays lower throughout the 500 generations.

Additionally, the hybrid method is more stable in its results –lower standard
deviation over the runs–, giving less room to stochasticity for exploitation of the
guidance objective. Ultimately, both methods achieve a plateau, meaning that con-
vergence has been achieved and cannot better exploit the guidance objective. The
guidance over time shows that the hybrid method is faster than MOREA, and even
if the program is terminated early at any moment, the hybrid method will outper-
form MOREA in every case for this patient.

Figure 4.4a shows the convergence for exploiting the intensity objective, where
both methods converge similarly for this objective. On the other hand, the mag-
nitude objective exploitation in the hybrid method is always higher than MOREA.
This means that the solution with lower deformation of the hybrid method is al-
ways higher than the one in MOREA, which is not informative to evaluate the
quality of a set of solutions.

Table 4.2 shows the p-values of a Mann-Whitney U-Test on the best solution for
the guidance objective in the hybrid method and MOREA at three timesteps: 50,
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FIGURE 4.4: Intensity and magnitude convergence for the best solution of each objective
along generations for patient 75.

100, and 500 generations, the latter representing the end of an entire optimization.
This significance test does not assume normality in the distribution, being more
robust when the distribution of results is unknown, as it is the case. The hybrid
method shows a statistically significant decrease in the mean guidance objective
in 10 of the 15 patients after 50 iterations and 8 of the 15 validation patients at
the end of the optimization. Most patients have a significant improvement at the
beginning, leveraging information from the DL-MODIR DVFs. Nevertheless, in
one patient (patient 68), the statistical significance difference at the beginning is
later counterbalanced by MOREA at the end of the run (500 generations). These
results demonstrate that the hybrid method has a better or comparable exploitation
of the guidance objective at the beginning and the end of the optimization, with any
patient having a statistically significant increase at any evaluated generations.
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50 generations 100 generations 500 generations

Patient p-value % vs MOREA p-value % vs MOREA p-value % vs MOREA

Patient 62 0.016 ↓ 33.4% 0.008 ↓ 37.8% 0.016 ↓ 31.7%
Patient 63 0.222 ↑ 7.8% 0.421 ↑ 2.8% 0.548 ↑ 6.1%
Patient 64 0.008 ↓ 43.9% 0.008 ↓ 52.6% 0.008 ↓ 67.0%
Patient 65 0.008 ↓ 37.3% 0.008 ↓ 50.4% 0.008 ↓ 45.5%
Patient 66 0.008 ↓ 53.5% 0.008 ↓ 66.1% 0.008 ↓ 76.6%
Patient 67 0.151 ↓ 6.5% 0.310 ↓ 5.4% 0.056 ↓ 9.9%
Patient 68 0.008 ↓ 31.6% 0.008 ↓ 38.4% 0.222 ↓ 8.8%
Patient 69 0.151 ↓ 16.6% 0.095 ↓ 18.1% 0.151 ↓ 12.8%
Patient 70 0.056 ↓ 11.3% 0.095 ↓ 7.3% 1.000 ↓ 0.5%
Patient 71 0.690 ↓ 2.5% 0.016 ↓ 7.3% 0.151 ↓ 5.8%
Patient 72 0.008 ↓ 47.4% 0.008 ↓ 53.8% 0.008 ↓ 70.2%
Patient 73 0.095 ↓ 23.6% 0.222 ↓ 13.5% 0.690 ↑ 1.6%
Patient 74 0.008 ↓ 41.8% 0.008 ↓ 53.4% 0.008 ↓ 55.0%
Patient 75 0.008 ↓ 51.9% 0.008 ↓ 63.3% 0.008 ↓ 59.0%
Patient 76 0.016 ↓ 21.3% 0.008 ↓ 28.5% 0.008 ↓ 24.7%

TABLE 4.2: p-values of a Mann-Whitney U-Test between the hybrid method and MOREA,
and the percentage comparison of the mean of the hybrid method vs MOREA. Both metrics
are evaluated in the guidance objective after 50, 100, and 500 generations. Green means a
decrease in the hybrid mean compared to MOREA and red means an increase, being bold
when the increase or decrease is statistically significant.

4.3 Qualitative assessment of methods

Numbers provide only a partial understanding of the results and do not directly
translate to clinical practice. The main goal of this thesis is to provide a method that
works in real-world scenarios. Therefore, a qualitative comparison permits going
beyond and visualizing each method’s provided solutions. According to Section
3.4.2, we compare the 90th percentile solution in the guidance objective front for
each method: hybrid, MOREA, and DL-MODIR.

To better comprehend the problem, we visualize three patients, two with statis-
tically significant improvement exploiting guidance after 500 generations and one
with no statistically significant difference.

4.3.1 Study of median performance: a case study of patient 75

Patient 75 corresponds to the 50th percentile of the patients with statistically sig-
nificant improvement exploiting the guidance objective (Table 4.2), representing an
average case where the hybrid method outperforms MOREA in guidance exploita-
tion.

Figure 4.5 shows how the three methods compare regarding guidance for the
solution in the 90th percentile. The DL-MODIR contour matches with the segmen-
tation mask, while the hybrid method and MOREA struggle when this deformation
is considerable, such as in the bowel and the bladder. However, the hybrid method
can better capture this large deformation by getting closer to the final size of the
bladder. This large deformation incapability of MOREA can be due to the impos-
sibility of the mesh points moving further down due to the constraints this model
works with to avoid folds. Moving a region of MOREA in the same direction can be
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stopped due to folding constraints, especially when mesh nodes are not moving al-
together in the same direction. In the hybrid method, however, this is solved when
we apply the DVF at the initialization, and the whole organ moves down simulta-
neously in a multiple-step process to overcome constraints, permitting it to capture
this large deformation and, therefore, have a closer guidance. Other static organs,
such as the bones, are better registered since no deformation occurs between the
source and target image.

Source segmentation Target segmentation
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Hybrid
MOREA

Organs
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Bladder

Bones
Bowel

Rectum
Sigmoid

FIGURE 4.5: Sagittal plane of patient 75, showing the source and target images with seg-
mentation masks for each organ as provided by the radiologist. The target image includes
transformed organ contours from the three methods for the solution in the 90th percentile
of the guidance objective.

Another important fact is the cropping of the image during pre-processing.
Thus, some parts of the organ in the target image are out of the field of view in the
source image. For instance, the bowel occupies a larger space in the target image,
where some appearing parts are cut from the source image. It is essential to remark
that the target segmentation masks cannot be considered ground truth since results
may change depending on the radiologist [65], and overfitting them may lead to
wrong transformations.

Closer guidance does not necessarily always mean a better registration. We can
reach the same guidance results by performing different deformations. In clinical
practice, therefore, it is more important to know how this deformation takes place
than to focus solely on the transformed segmentation masks. Figure 4.6 shows the
DVFs for the three methods on the same patient and slices. The resulting DVF in
the hybrid method has longer arrows that yield larger deformations. As an inverse
DVF, the arrow’s tip points to the corresponding voxel in the source image for the
pixel located at the arrow’s origin. Since the bowel compresses the bladder down,
points in the bladder and the bowel are pointing up, corresponding these voxels to
the upper voxels in the source image. The third dimension, perpendicular to the
plane, is expressed in colors.
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The DL-MODIR DVF seems less natural as it contains drastic direction changes
in neighbor arrows. This occurs in the right of the bowel, where voxels in the bowel
point to the image’s top left and regions on the right of the bowel point to the top
right.
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FIGURE 4.6: Sagittal plane of patient 75, displaying the inverse DVFs for the three methods:
DL-MODIR, MOREA, and the hybrid method. Arrow colors indicate the direction of the
DVF in the third dimension.

Focusing on another anatomical plane, the coronal (Figure 4.7), the guidance
behaves similarly. In this case, however, the region of the bowel out of the field
of view is even more significant, so expanding a non-visible region is even more
complicated.
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FIGURE 4.7: Coronal plane of patient 75, showing the source and target images with seg-
mentation masks for each organ as provided by the radiologist. The target image includes
transformed segmentation contours from the three methods for the solution in the 90th
percentile of the guidance objective.

More conclusions can be extracted from the image by looking at the DVFs (Fig-
ure 4.8). The deformation of the bones, however, is better captured by DL-MODIR.
No deformation occurs in DL-MODIR since the model computes independently a
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displacement vector for each voxel. Another reason is that DL-MODIR gives more
importance to the intensity metric than MOREA and the hybrid method since it
optimizes by maximizing the hypervolume of the approximated Pareto front. On
the other hand, the hybrid method and MOREA show some deformation in bone
structures. This can be due to multiple reasons: the granularity of the problem
means that, depending on the position of the mesh nodes, some deformation oc-
curs in bone structures due to a deformation of the neighbor structures. In Figure
4.7, the bladder is very close to the bone, and a movement of a node in the bladder
is translated into a movement of the bone. The other reason is that MOREA and the
hybrid method differ from the original MOREA paper [4] in considering the biome-
chanical properties of the organs. Compared to the original MOREA, the current
method does not know the biomechanical properties of the organs, and deforming
a bone structure is as difficult as deforming the bladder, even though this is not the
case in reality.
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FIGURE 4.8: Coronal plane of patient 75, displaying the inverse DVFs for the three meth-
ods: DL-MODIR, MOREA, and the hybrid method. Arrow colors indicate the direction of
the DVF in the third dimension.

4.3.2 Optimal guidance exploitation: a case study of patient 66

To better understand when the hybrid method has a better exploitation of the guid-
ance objective, we visualize the results on the patient where the mean guidance
objective in the hybrid method decreased the most compared to MOREA after 500
generations, corresponding to patient 66, with a 76.6% decrease (Table 4.2). Figure
4.9 shows that the most significant difference occurs when the deformation is larger.
While the hybrid method can reach a bladder contour similar to the target segmen-
tation mask, MOREA cannot deform completely. Thus, the difference in guidance
exploitation seems higher for the patients where the bladder compression is more
extensive. In this patient, the same problem occurs with the field of view, where
most of the bowel present in the target segmentation does not appear in the source
segmentation.
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FIGURE 4.9: Sagittal plane of patient 66, showing the source and target images with seg-
mentation masks for each organ as provided by the radiologist. The target image includes
transformed segmentation contours from the three methods for the solution in the 90th
percentile of the guidance objective.

DVF results are similar to the previous patient. However, in this example, DL-
MODIR shows a bigger deformation of the top of the bladder, but the lower part
has minimal deformation. Hence, compression only occurs on top while the rest
of the bladder remains static. This is seems less anatomically realistic since we ex-
pect a more distributed compression across the entire organ. On the other hand,
MOREA shows a deformation more distributed across the entire bladder but can-
not reach the large deformation between the source and the target image. The hy-
brid method, since it uses solutions from DL-MODIR, shows a similar behavior to
DL-MODIR, with a larger deformation in the top of the bladder and less uniformly
spread across the entire organ.
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FIGURE 4.10: Sagittal plane of patient 66, displaying the inverse DVFs for the three meth-
ods: DL-MODIR, MOREA, and the hybrid method. Arrow colors indicate the direction of
the DVF in the third dimension.
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4.3.3 Analysis of non-significant improvement: a case study of patient
63

Finally, a patient with no statistically significant improvement is evaluated, pa-
tient 63, to understand in which cases the hybrid method performs similarly to
MOREA. Figure 4.11 shows the transformed source contours of each method in the
sagittal plane for this patient. In this case, DL-MODIR contours continue match-
ing perfectly the segmentation masks, while the other two methods overfit less on
the guidance objective. Focusing on the bladder, MOREA seems to better match
in some regions of the bladder, such as the bottom-right lobe, while the hybrid
method captures better the left lobe. However, in general terms, no significant dif-
ference is visible in their transformed segmentation mask, meaning that both meth-
ods perform similarly when the bladder deformation is smaller or nonexistent.
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FIGURE 4.11: Sagittal plane of patient 63, showing the source and target images with seg-
mentation masks for each organ as provided by the radiologist. The target image includes
transformed segmentation contours from the three methods for the solution in the 90th
percentile of the guidance objective.

Focusing on the DVFs (Figure 4.12), the hybrid method and MOREA look sim-
ilar, meaning that DL-MODIR has a similar solution to the one approached by
MOREA or that solutions with lower deformations, closer to the ones that MOREA
uses, survive in later generations.



Chapter 4. Results 60
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FIGURE 4.12: Sagittal plane of patient 63, displaying the inverse DVFs for the three meth-
ods: DL-MODIR, MOREA, and the hybrid method. Arrow colors indicate the direction of
the DVF in the third dimension.

4.4 Grouping patients

We can group patients into two groups by attending to the evaluated solutions
and looking at each patient solution individually in Appendix C. One group for
patients with large bladder deformation –the difference in the bladder size between
the source image and target image is visually significant– and a second group when
the difference is slight.

The large bladder deformation group includes patients 64, 65, 66, 72, 74, and
75. After 500 generations, all these patients show a statistically significant improve-
ment in guidance exploitation (Table 4.2), meaning that the hybrid method is better
in all cases where a large deformation occurs in the evaluated patients.

Conversely, the hybrid method’s effectiveness is less pronounced in the sec-
ond group of patients (62, 63, 67, 68, 69, 70, 71, 73, and 76). Only two patients,
62 and 76, show a statistically significant improvement in the guidance objective
for the hybrid method, however, they show the lowest mean decrease compared
to MOREA. The remaining patients do not show a statistically significant improve-
ment, suggesting that the hybrid method may be less effective when the bladder
deformation is small. In these cases, MOREA can achieve comparable results.
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Chapter 5

Discussion

This chapter discusses the reported results by answering to the research questions,
highlights the limitations of the developed hybrid method, and proposes various
avenues for future work to improve hybrid methods.

5.1 Approximated Pareto fronts comparison

For a quantitative comparison of the introduced hybrid method with MOREA, the
approximated Pareto fronts are analyzed. The experiments demonstrate that the set
of solutions from the hybrid method is uniformly spread across the entire objective
space, similar to MOREA. In contrast, DL-MODIR explores the objective space to a
lesser extent, with most solutions concentrated in the region of small deformation,
as reported in the original paper [25]. Despite the non-uniform spread nature of
DL-MODIR solutions, their use in the hybrid does not affect the distribution of
the approximated Pareto front of the hybrid method, which remains comparable
to MOREA. When evaluating the hypervolume, neither MOREA nor the hybrid
method consistently dominates the other, with results varying depending on the
patient.

DL-MODIR cannot be directly quantitatively compared with the other two
methods as they use different registration quality metrics to evaluate the objectives,
leaving an open door for future research.

5.2 Convergence comparison

Convergence plots focus on exploiting the different objectives, i.e., analyzing the
lowest solution in each objective and its evolution along generations. As a data se-
ries, temporary features can be extracted from it. For instance, Appendix B shows
the convergence of the guidance objective for all patients. After 500 generations,
all evaluated patients show convergence, reaching a plateau in exploiting the three
objectives. The application of DL-MODIR solutions in the hybrid method gives
MOREA an advantage by starting with an initial population that outperforms the
Gaussian attractors initialization. This highlights the impact of the warm start on
the performance of the initial population. But, most importantly, the warm start
permits exploiting the guidance to a bigger extent than MOREA, where the Gaus-
sian attractors initialization falls into a local optimum for the guidance objective.
Hence, the hybrid method is comparable to or better than MOREA exploiting the
guidance objective in the evaluated patients. All patients with large deformation
showed a statistically significant improvement in the guidance exploitation. On
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the other hand, the hybrid method only has statistically significant improvement
in two of the nine evaluated patients with small deformation, with comparable re-
sults in the rest.

In terms of intensity, the hybrid method does not outperform MOREA. How-
ever, this does not imply that the solutions are inferior. The intensity objective is
not sufficiently robust, as it relies on the mean squared difference for the evalua-
tion. DL-MODIR, for instance, is more robust in measuring this objective by using
the normalized cross-correlation, which can deal with uncalibrated images. This,
added to the fact that target images of the evaluated patients contain a contrast
agent, which produces a brighter bladder intensity compared to the source image,
results in a significant intensity difference between both images. Thus, they are la-
beled as poor solutions in the intensity objective despite correctly matching pixels
from the transformed source image into the target image. Evaluating MOREA and
the hybrid method on another intensity registration quality metric, such as the nor-
malized cross-correlation, could improve the results, offering a promising avenue
for future research.

While evaluating the solution with the lowest magnitude, the hybrid method
always starts with a higher value than MOREA. The study of the magnitude is not
needed as it is a trivial task. For instance, a solution that exploits the guidance
objective is a solution with the original mesh configuration. Therefore, no findings
can be deduced from this result apart from the fact that the lowest deformation
applied with the DVFs is always more aggressive than the lowest deformation with
Gaussian attractors.

The study of the convergence plots permits us to answer our research question
related to convergence acceleration. Looking at the results we cannot state that
the introduced hybrid method accelerates convergence since both methods reach
a plateau at a similar number of generations. However, we can say that the intro-
duced hybrid method exploits better the guidance objective in most patients, lead-
ing to solutions with a smaller distance between the transformed source contour
and the target contour.

5.3 Visual interpretation limitations

To answer the last research question, related to a qualitative comparison, we com-
pared the transformed source contours and the DVFs of the three methods. The
90th percentile of exploiting the guidance objective is selected for each studied
patient. Ideally, it would be necessary to iterate over the solutions to find the
optimal for each patient. In real-world scenarios, no fixed solution works for all
patients, and letting the user decide the best option permits tuning the solution
based on different contexts. However, this task is complex –as it requires anatomi-
cal knowledge– and time-consuming. For these reasons, we consider that choosing
a fixed solution of the approximated Pareto front is better for reproducibility, de-
spite solutions very close in the guidance objective can have significant differences
in the other two objectives, thus resulting in very different deformations.

It is important to note that in the goal of cervical cancer RT planning, where the
delivered dose distribution of each organ is aimed to be adapted from the source
to the target image, the contours provide partial information of the registration.
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However, the deformation of the organ’s interior and the inter-organ space is not
evaluated with such an objective. On the other hand, the magnitude and intensity
objectives can capture it. For instance, the intensity metric looks for the visual sim-
ilarity of the inter-organ regions, but the fact that images are uncalibrated hinders
DIR methods.

The expansions of small regions into more prominent organs in DL-MODIR, or
the particular interest of the methods to deform the contours of the organ without
paying attention to the interior of the organ, can have a negative impact in clini-
cal practice. This issue is especially challenging when the organ does not contain
texture and has a uniform intensity. However, the importance of the DVF in the
interior of the organ depends on the situation. In some cases, the delivered dose
is uniform across the entire organ, which does not affect the quality of the DVF in
the interior. However, when there is a sudden significant difference in the deliv-
ered dose on two close regions in the interior of the organ, the DVF can affect the
patient’s outcome. Additionally, the interior of some organs like the bladder or the
rectum can be filled with substances, producing a change in the voxels’ intensity
and not being necessary to predict the deformation of urine or feces as they are
dynamic elements.

In contrast, DL-MODIR over-adjusts its solutions to the contours, as shown in
Figure 4.5, where the transformed source contours distance with the target mask
is low. Considering that segmentation masks are subjective and depend on the
radiologist, solutions that have very good results for the guidance objective do not
relate to better deformations. MOREA and the hybrid method do not match as
closely to the contours of the organs, but when large deformation occurs, they are
not able to achieve full deformation.

Referring to the DVFs, the ones of MOREA and the hybrid method end to fol-
low the modeled object more closely, performing deformations throughout the en-
tire organ rather than just at the contours, as it happens with DL-MODIR. Some
solutions in DL-MODIR produce DVFs with a deformation close to zero in one
axis, resulting in a uniform distribution with arrows pointing in the same direc-
tion (Figure 3.14). When analyzing the reason for this occurrence, we found that
DL-MODIR in the original paper showed results with the same behavior. There-
fore, only two of the three dimensions deform, while at the same time is able to
reach optimal guidance values. Evaluating other papers that used VoxelMorph for
DIR, we did not find this behaviour in any of them [38, 29]. Hence, we think this
behavior can be due to the multi-objective landscape of DL-MODIR as not all so-
lutions show this pattern, but further research is needed. Another reason may be
the anatomical structure analyzed in this thesis and the original DL-MODIR pa-
per, where both methods study the abdominal region with focus on the bladder.
Yet, FEM-based models behave more similarly to the human body, moving struc-
tures jointly and not independently computing each DVF’s displacement vector as
DL-MODIR does. This is noticeable by looking at the interrelation between neigh-
bor displacement vectors where in MOREA and the hybrid method we see less
sudden changes in neighbor voxels and the deformation seems more smooth than
DL-MODIR.

Lastly, the DVF analysis is done from an inexperienced perspective. Under-
standing the complex movements in the human body and their realism requires
anatomical expertise, which could not be achieved in the period this thesis was
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developed. Alternatively, experts’ opinions in the field would be invaluable in per-
forming a deeper and more reliable analysis of the DVFs. Ideally, feedback from
multiple experts would be necessary to deal with the variability of different opin-
ions. At the same time, DVFs can be abstract and difficult to interpret in two dimen-
sions, hindering the comparison of different solutions. Landmarks, for instance, are
more interpretable since they connect relevant anatomical points from the source
image to the target image, but further research needs to be done in this field to
enhance DIR interpretability.

5.4 DL-MODIR adaptability

The original DL-MODIR paper was evaluated on a distinct problem with Magnetic
Resonance Imaging (MRI) scans instead of CT scans. This posed a challenge since
the pre-trained model was not useful for our clinical dataset, which also contains a
different input size. DL-MODIR successfully resolved DIR in CT scans as happened
in a previous study that already demonstrated the feasibility of VoxelMorph –the
neural network DL-MODIR is based on– on abdominopelvic CT scans [64].

Furthermore, the dataset DL-MODIR was trained for in the original paper, con-
tained small deformations contrasting with the large deformations occurring in
some of our patients. Despite these differences, DL-MODIR showed adaptability
to a different setting, performing large deformations on CT scans and resulting in
a promising method to be used in multiple settings.

5.5 MOREA differences

The solutions found by MOREA differ from those in the original paper [4], where
the transformed contours of the source bladder get closer to the target bladder de-
spite the large deformation occurring. This can be due to multiple reasons. First,
the version of MOREA used in this thesis does not consider the biomechanical
properties of the organs. Therefore, the bladder deformation in the original pa-
per can be less costly than in the used MOREA, but further analysis is necessary
to understand the impact of the results. Furthermore, the developed method does
not perform adaptive steering. Adaptive steering helps MOREA perform larger
deformations, where only solutions with the best guidance survive after several
generations. However, the use of adaptive steering comes with some drawbacks.
The threshold of surviving solutions needs to be manually tuned, increasing the
hyperparameter space and, thus, the complexity of the method. Additionally, they
introduce bias in the selected solutions, forcing large deformations and discarding
promising solutions. A more extensive analysis of the effect of adaptive steering
and the biomechanical properties of the organs is necessary to understand their
impact on MOREA and how the hybrid method compares to MOREA under these
conditions.
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5.6 Hardware limitations

Like its predecessors, the proposed method has some limitations that challenge its
application for clinical practice. For online registration, performed while the pa-
tient is static, this process needs to be done in real-time. For a better understanding
of the applicability of the developed hybrid method in this context, it is necessary
to study the optimized solutions after a short optimization with a few generations.
Convergence plots suggest that the biggest change is performed at the beginning,
with an exponential decay function behavior and minimal changes occurring af-
ter 100 iterations in most cases. Additionally, the statistical test performed on the
exploitation of the guidance objective indicates that the hybrid method also out-
performs MOREA at the first stages, after 50 and 100 generations. Thus, solutions
given after a short period can be used for this purpose. However, in cancer plan-
ning, offline RT is also possible. In this case, the re-planning is done hours or days
before the patient gets the treatment and real-time DIR is not necessary anymore,
allowing systems to perform a better DIR [22].

The optimization time is already accelerated by cropping images around the
bladder, requiring smaller meshes and reducing the granularity of the solutions.
Nevertheless, this comes at the cost of a restricted field of view, which significantly
affects DIR in large deformations. Hence, it is a challenge to deform an organ with
a small volume in the source image that expands into a more extensive volume in
the target image, where regions in the target image do not match with regions in the
field of view of the source image. Moreover, the resolution of the images is reduced
by half compared to the original version of MOREA, increasing the image spacing
from 1.5mm to 3mm. This can have a significant impact in clinical practice as RT
needs precision not to affect healthy organs, and downsampling reduces hardware
requirements at the cost of a less precise result.

5.7 Future work

Although the proposed method shows some improvements with respect to DL-
MODIR and MOREA, further research is needed. In this section, we describe some
avenues for future work.

• Evaluate on independent metrics. MOREA and DL-MODIR evaluate the
same objectives with different registration quality metrics. In this thesis, the
Pareto front of the hybrid method is only compared with MOREA since both
work with the same metrics, requiring a set of independent metrics for a
comparison with DL-MODIR. This would permit to quantitatively compare
DL and EA methods in DIR. Since each method aims to minimize a specific
registration quality metric, using one method’s metric to evaluate the other
method would be unfair, as each is optimized for different criteria.

• Evaluate on the original MOREA. The MOREA method used in this thesis
differs from the one in the original paper [4] in various aspects (Section 3.3.3)
such as the biomechanical properties or the adaptive steering. Evaluating
MOREA in the same conditions as the original paper permits a better study
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of the potential benefits of the developed hybrid method and its application
in clinical practice.

• Further initial population analysis. A more extensive analysis of the initial
population permits a better understanding of the impact DL-MODIR solu-
tions have in the hybrid method to better tune the initial population. The
functional ANOVA [56] can be a strategy to evaluate the importance of dif-
ferent DVFs similar to the evaluation of the importance of hyperparameters
in neural networks [54].

• Develop alternative initialization strategies. Due to time constraints, only
two strategies were developed for the implemented hybrid method, includ-
ing the application of the DL-MODIR DVFs with different intensities and the
half-hybrid, where half of the solutions contain the DL-MODIR DVFs and
the remaining half is initialized with the Gaussian attractors. Other initializa-
tion strategies can be evaluated, such as interpolating between different DL-
MODIR DVF solutions to explore other regions of the approximated Pareto
front and have more DVF diversity apart from tuning the intensity. Neverthe-
less, this would require a previous analysis of which solutions to interpolate
and what the resulting DVFs look like. Also, applying Gaussian attractors
on the DVFs can increase the diversity of the different DL-MODIR DVFs by
adding random perturbation.

• Further half-hybrid method analysis. Apart from studying other methods,
due to time constraints a very simple analysis is done, giving room for further
research. Only the exploitation of the guidance objective is tested to evaluate
it, providing a partial visualization of the method’s results without knowing
if solutions are more spread in the objective space or what the DVFs look like.
Further analysis is needed to understand the potential benefits of the half-
hybrid method since we expect that by including DL-MODIR DVFs and the
Gaussian attractors, the resulting method can be comparable or better than
the two methods independently.

• Investigate other hybridization strategies. This thesis opens the door to
combining two DIR methods into a hybrid to improve each of them indi-
vidually. We found a lack of research and solutions in the literature that use
hybrid methods in DIR. This thesis highlights the ability and promise of hy-
brid methods to bridge existing gaps between individual methods. Further
research combining other methods can improve existing DIR methods and
bring them closer to their feasibility in some clinical practice contexts. For
instance, Demons can be used to refine MOREA results as done by Huo et
al. [30]. Another possibility is to provide MOREA with a higher amount of
DVFs that the ones provided by DL-MODIR, which is restricted by the neural
network size.
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Chapter 6

Conclusion

This thesis proposes a hybrid method from an innovative synergy between EA-
based and DL-based methods for multi-objective DIR that shows promising re-
sults compared to their former methods. DL-based methods have the advantage
of a fast inference time, which can be leveraged by EA-based methods for a warm
start. In this thesis, solutions from DL-MODIR are included into the initial pop-
ulation of MOREA at different intensities to approach more optimal DIR. The de-
veloped hybrid method demonstrated superior results for patients with large de-
formations between the source and target images, where other methods fall short.
Specifically, MOREA cannot handle significant deformations effectively, while DL-
MODIR yields less realistic deformations.

An alternative method, based on a half-hybrid strategy that initializes the popu-
lation with solutions from DL-MODIR and Gaussian attractors, did not show better
results than the hybrid method when exploiting the guidance objective. However,
further research is needed to better understand how this method compares with
the hybrid method, as well as to investigate various strategies for combining the
two methods.

Despite the obstacles that the current method may face in live clinical practice
due to computing limits, further analysis in real-world scenarios is necessary. How-
ever, this thesis marks a significant advancement in creating DIR methods for RT
planning. Future research should focus on overcoming some of the limitations of
the current method by optimizing the hardware constraints, evaluating the original
MOREA version, and exploring additional hybridization strategies.

In summary, we are confident that a warm start using DL-based methods with
fast inference times can significantly benefit faster convergence and better perfor-
mance than EA-based methods alone in DIR. This thesis generates the foundations
for more advanced and clinically viable DIR methods, with the aim to contribute to
better patient outcomes in RT.
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Appendix A

Transformed source in DL-MODIR

Solutions from DL-MODIR are included in this appendix by transforming the
source contours with the provided DVFs. While some solutions get close contain
small differences in the contours, others have larger differences, providing a good
exploration of the objective space.
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FIGURE A.1: Organs contours of the transformed source masks with DL-MODIR solutions
in the clinical dataset.
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Appendix B

Convergence plots

Exploitation of the guidance convergence for all patients. Patients with statistical
significant difference in Table 4.2 show a bigger difference between the mean of
both methods, MOREA and the hybrid method.
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FIGURE B.1: Guidance convergence for the best solution along generations for all patients.
Red lines represent the evaluated generations in Table 4.2 at 50, 100 and 500 generations.
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Appendix C

Transformed source contours for
all patients

This appendix includes the image of the transformed source contours of the three
methods: DL-MODIR, MOREA, and the hybrid method, compared to the target
image for all the patients in the sagittal axis.
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FIGURE C.1: Guidance contour for the three methods DL-MODIR, MOREA, and the hy-
brid method in patient 62.
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FIGURE C.2: Guidance contour for the three methods DL-MODIR, MOREA, and the hy-
brid method in patient 63.
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FIGURE C.3: Guidance contour for the three methods DL-MODIR, MOREA, and the hy-
brid method in patient 64.
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FIGURE C.4: Guidance contour for the three methods DL-MODIR, MOREA, and the hy-
brid method in patient 65.
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FIGURE C.5: Guidance contour for the three methods DL-MODIR, MOREA, and the hy-
brid method in patient 66.
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FIGURE C.6: Guidance contour for the three methods DL-MODIR, MOREA, and the hy-
brid method in patient 67.
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FIGURE C.7: Guidance contour for the three methods DL-MODIR, MOREA, and the hy-
brid method in patient 68.
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FIGURE C.8: Guidance contour for the three methods DL-MODIR, MOREA, and the hy-
brid method in patient 69.
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FIGURE C.9: Guidance contour for the three methods DL-MODIR, MOREA, and the hy-
brid method in patient 70.
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FIGURE C.10: Guidance contour for the three methods DL-MODIR, MOREA, and the hy-
brid method in patient 71.
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FIGURE C.11: Guidance contour for the three methods DL-MODIR, MOREA, and the hy-
brid method in patient 72.
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FIGURE C.12: Guidance contour for the three methods DL-MODIR, MOREA, and the hy-
brid method in patient 73.
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FIGURE C.13: Guidance contour for the three methods DL-MODIR, MOREA, and the hy-
brid method in patient 74.
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FIGURE C.14: Guidance contour for the three methods DL-MODIR, MOREA, and the hy-
brid method in patient 75.
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FIGURE C.15: Guidance contour for the three methods DL-MODIR, MOREA, and the hy-
brid method in patient 76.
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