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Abstract

The structure of expressive speech shares a lot of similarities with music. With the performance
of recent neural network-based speech synthesis architectures, it is interesting to investigate if
such architectures generalize, and can be used to generate expressive music. Here, we investigate
if existing text-to-speech based on encoder-decoders can be used convert a musical score to an
expressive violin performance, in a process named ”Partiture to Performance (PTP)”. Tacotron
2 and WaveGlow are used as PTP model and vocoder respectively, two architectures intended
for text-to-speech synthesis purposes. In addition, the PTXT grammar is proposed, which
allows for a detailed and concise textual representation of sheet music. Results show that the
model can output music with expressive features, although the expressiveness is more limited
than seen in the ground truth. Nevertheless, the audio is more accurate to human recording
than a reference generated using a digital soundfont, where each note is recorded in isolation
and stitched together. Due to this, combined with the limitations regarding dataset size and
use of early-stage architectures, it is concluded to be possible to generalize encoder-decoder
text-to-speech architectures and use them for PTP.
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1 Introduction

The artificial generation of expressive audio is a highly complex task. Several key features of the
source audio signal must be captured to perform accurate synthesis using machine learning. For
instance, speech can vary greatly depending on the person talking, the emotion they are trying to
convey and in what context they are being recorded. On a smaller level, this can be quantified by
features such as intonation, timbre and pitch variation, among numerous others [Kin03]. These
features can be defined on varying scales; from short-term features that capture moment-to-moment
variations in the audio signal, to long-term features that encapsulate broader context. Accurately
representing these diverse characteristics poses a substantial challenge for speech synthesis systems.

Despite this, recent years have seen significant improvements in the performance of neural networks
regarding speech synthesis tasks. Modern text-to-speech systems allow for generating natural-
sounding voices with remarkable fidelity. Most of these systems use an encoder-decoder architecture,
which has proven highly effective for converting text to a voice [TQSL21].

Similar to speech, music contains several key features that define its expressiveness as well. For
example, by introducing variations in tempo, dynamics and playing style, a performer can alter how
notes are played to add emotion to their interpretation of a piece. Here, the scale of impact will vary
from individual notes to sequences of multiple measures. In the same way, numerous other types
of audio can be modelled with attention to their unique features and scales of expressiveness. [KC90]

Given the similarities between speech and music, the question arises whether the architectures for
text-to-speech synthesis tasks generalize to tasks such as generating expressive sequences of music.
This thesis aims to investigate this question, by training a model to convert a piece of sheet music
to expressive audio, through a process coined ”Partiture to Performance (PTP)”. This is done
using an existing speech synthesis encoder-decoder architecture. To accomplish this, the custom
”Partiture-TXT (PTXT)” notation is proposed here as a textual representation of sheet music,
providing concise and detailed input for the encoder. To properly use PTXT, several adjustments
need to be made to the encoder, particularly regarding the text normalization used for speech
synthesis and the encoding of text during preprocessing. The PTP model is trained on a dataset
consisting of classical violin music. A vocoder needs to be trained from scratch for this as well,
as one trained on speech does not produce intelligible audio when doing inference with violin
music. To evaluate the expressiveness of the model, its output is compared to human recordings,
as well as digital representations. Our results show that the PTP process is successful, indicat-
ing that encoder-decoder TTS architectures can generalize to other tasks including music generation.

To provide a clear background, Section 2 will discuss the musical theory used in this thesis. Addi-
tionally, Section 3 will show related research done in this field, which has inspired and supported
this study. Section 4 highlights the process of training the desired model, by showcasing the used
architecture, dataset preprocessing and training setup, and discussing the grammar specifically
constructed for this task. The results of the model output are documented in Section 5. Section 6
discusses the limitations of the research, and provides a final evaluation of the viability of general
expressive audio generation. The thesis is concluded in Section 7.
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2 Musical notation background

A musical sequence can be split into measures, delineated by a measure bar. Each measure has an
associated time signature and tempo. The time signature indicates how many beats are in each
measure and how long a beat is in terms of note duration. For instance, a 3/4 time signature means
there are three beats per measure, with each beat having the length of a quarter (1/4) note. The
tempo is typically defined as beats per minute (BPM) and specifies how fast the music is played.
A measure is constructed using notes, that signify what the performer should play at which time.
Each note consists of three main elements:

1. A relative pitch, signifying the relative frequency of the note. Standard musical notation
denotes pitch using 7 letters: A-G. Additionally, accidentals can be added to these letters
that increase or decrease the pitch by half a step. In total, the combination of letters and
accidentals allows for 12 different notes.

2. An octave number, that indicates the frequency domain of the pitch. An octave is defined as
the set of notes from one pitch to the next of the same name. If the octave number of a pitch
is incremented by 1, its frequency doubles. Often, the word pitch is used to encompass both
the octave number and the relative pitch of a note. For the remainder of this thesis, the use
of the word will refer to this definition, unless mentioned otherwise.

3. The duration, which represents the length of time a note is held. Note duration is a dyadic
rational proportional to the time signature, meaning it can be written as a fraction whose
denominator is a power of two. Examples include whole notes, half notes, quarter notes, and
so forth. Notes can contain one or more dots, which add half of the original note length to its
duration. For instance, a quarter note with two dots can be seen as a note with a length of
1/4 + 1/8 + 1/16 = 7/16. Additionally, two notes of similar pitch can be played as one note
if they are connected using a tie. In this case, the second note is not played separately but
instead adds its duration to the initial note.

Notes can have various annotations that alter their playing style. Notable to this thesis is staccato,
which indicates a note should be held for only a short time, often introducing a moment of silence
before the next note is played. Similarly, notes can be played legato, where notes are held until the
transition to the next note, giving a more connected feel.

In music theory, playing multiple notes simultaneously is defined as a chord. Alternatively, chords
can also be played as an arpeggio, where the notes are played quickly in ascending or descending
order. Times where no notes are played are classified as a rest. The duration of the rest depends on
the consecutive time no note is played, and follows the same duration metric as notes.

Finally, measures can be repeated when repeat brackets are added to measure bars. When the piece
reaches the closing repeat bracket for the first time, the piece will repeat all measures starting
from the opening repeat bracket, or from the first measure if no starting bracket was specified.
Additionally, it is possible to have different final measures for each repeat, by using first and second
ending brackets, which indicate alternative endings for the repeated section.
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3 Related Work

The systems used for modern neural network-based speech synthesis tasks require a pair of deep
learning models. An acoustic model predicts an intermediate output from phoneme and acous-
tic prompts, and a vocoder converts this output to a waveform representing human-like speech
[TQSL21]. Wang et al. were pioneers of this technique, when they demonstrated the Tacotron
architecture in 2017 [WSRS+17]. The paper describes a sequence-to-sequence acoustic model that
converts text to a spectrogram. Then, the Griffin-Lim algorithm [GL84] is used as a non-neural
vocoder to reconstruct a waveform. The next year, the architecture would be improved and published
as Tacotron 2 [SPW+18], using an encoder-decoder system as the acoustic model and switching
to a neural network-based vocoder approach. Since then, the paired model approach for neural
network-based speech synthesis has been improved, with newer models such as TransformerTTS
[LLL+19] showing higher performance than Tacotron 2, and FastSpeech [RRT+19] providing signif-
icantly faster inference.

Regarding expressive music generation, early research was mostly focused on using statistics to
construct musical sequences. Context models were used for this, which utilize a frequency database
of musical sequences to compute the most likely continuation. This is shown by SONG/3, a model
proposed by Conklin and Witten in 2003 [CW03]. With recent breakthroughs through neural
approaches, these systems were significantly improved. Notable examples include Music Transformer
[HVU+18], a model that significantly improved on capturing long-term dependencies in music, and
MuseNet [PSR20], capable of generating coherent and more expressive music than its predecessors.
Compared to these, the PTP model shows slightly lower performance in expressiveness, in favour
of being built on a generalized architecture.

One of the first studies to contemplate the idea of using text-to-speech synthesis models for other
purposes was published in 2016. Here, Oord et al. proposed WaveNet [ODZ+16], a text-to-speech
synthesis model capable of generating speech directly from linguistic features. In the same paper,
they also showed the model had viability in converting text to expressive music, showing examples
of the generation of synthesized piano pieces. The idea was further explored in 2022, when Dong et
al. [DZBKM22] showed how a deep learning model can be trained to convert sheet music to audio,
using recent developments in the speech synthesis field. The paper proposed an encoder-decoder
system with a mel-spectrogram as an intermediate output, with an architecture similar to what is
seen in modern text-to-speech (TTS) systems. Additionally, it highlights how music conversion
introduces issues with aligning notes to audio, due to the variation in possible note length. A
separate model is required to convert the sheet music to its aligned counterpart.
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4 Methodology

4.1 Audio prediction system

As mentioned in Section 3, traditional neural network-based approaches for converting text to
speech are often composed of two major components. First, a model processes the input text
and predicts some intermediate output. Often, this intermediate output is a low-level feature
representation of the final audio output. Common examples include spectrograms [DZBKM22],
audio codecs [WC+23] or other acoustic feature representations such as mel-frequency cepstral
coefficients [ATKR20]. In the case of speech synthesis, audio samples are provided as additional
input, so that the model can adapt the output to resemble the voice of the speaker. The output
of the first model is then forwarded to a vocoder, which converts the intermediate output to a
waveform, transforming it into actual audio.

By splitting the process into two separate tasks, each model can focus on performing a lower-level
prediction task. This increases fidelity significantly compared to a system where one model predicts
the audio directly from the input. Note that splitting the process into more than two parts would
start decreasing performance again, as each added prediction task will add small inaccuracies to
the output that add up over time. Therefore, the best practice is to split the high-level system into
as few low-level tasks as possible[TQSL21].

4.1.1 Intermediate output: Mel spectrogram

As an intermediate output, the system will generate a mel-spectrogram. This is a low-level repre-
sentation of the target audio that is efficiently computable. In addition, it emphasizes highlighting
features that are important in human auditory perception, such as pitch, timbre and intonation
[DM80].

To create a spectrogram from audio, sampled audio data is converted from the time domain to the
frequency domain using a Short-Time Fourier Transform (STFT)[AR77]. Audio is segmented into
overlapping windows, with the hop length determining the amount of overlap. Each window x(t) is
first multiplied by a window function w(t), to minimize spectral leakage. The modified windows
xw(t) are then converted to the frequency domain using a Discrete Fourier Transform (DFT), with
N as the filter length:

xw(t) = x(t) ∗ w(t) (1)

X(f) =
N−1∑
t=0

xw(t) ∗ exp(−i2πft) (2)

Note that this transform is not reversible, as the windowing process loses the phase information of
the signal [AR77]. Therefore, we require a vocoder to convert a spectrogram back to a waveform, by
predicting the lost phase information. After the DFT is calculated, the spectrogram is constructed
by combining each of the transformed windows.
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After the STFT, a mel-spectrogram can be generated by transforming the frequency axis of the
traditional spectrogram from the Hertz scale to the Mel scale. This scale distances different pitches
akin to how humans perceive the auditory distance of those pitches. More specifically, to convert a
frequency fh from the Hertz scale to a frequency fm in the Mel scale, the following formula can be
used [DM80]:

fm = 2595 ∗ log10(1 +
fh
700

) (3)

The logarithmic relation means that lower frequencies will be distanced further from each other
in the Mel scale than the Hertz scale, and higher frequencies will be closer together. The most
important acoustic details are apparent at lower frequencies, so emphasising these more is important.
In speech, higher frequencies are often the result of noise, so losing accuracy there is not problematic.
By emphasizing the acoustic elements important for humans, the system will be able to focus on
improving accuracy in those parts, thereby generating more pleasing audio.

4.1.2 Acoustic model: Tacotron 2

The acoustic model used for the first part of the PTP process is trained on the Tacotron 2 text-
to-speech synthesis architecture [SPW+18]. This is an encoder-decoder system with an attention
layer, capable of converting input text to a mel-spectrogram representing the predicted speech.

The encoder layer of the system creates a sequence of hidden features from the input text. The
character sequence obtained from the input text is converted to an embedding, to represent its
syntactic information on a better level for further processing. The embedding is used as input for
the first of three consecutive convolutional layers, each taking the output of the previous layer
as input. The main function of this stack is to model the context of the input over a longer time
frame. The output of the final convolutional layer is used by a single bi-directional LSTM layer,
that generates the hidden feature sequence [SPW+18].

The attention layer creates a context vector from a weighted sum of the encoder outputs. This is
done by using location-sensitive attention [CBS+15], which reduces the likelihood of the model
repeating any sub-sequences. This behaviour needs to be avoided, as speech never repeats any
characters or phonemes from previous parts of the sequence. Thus, the model should not look back
at previous characters as much, whilst keeping the greater context relevant. This holds for music as
well, as a performance follows sheet music similarly to how speech follows text. The context vector
is forwarded to the decoder and is updated each time step using the output of previous decoder
time steps [SPW+18].

The decoder layer consists of three main parts, with each time step of the decoder depending on the
output of the previous time step. The first is dependent on the output of the attention layer. First,
a pre-net of two fully connected feedforward layers processes the input, to aid in learning attention
by acting as an information bottleneck. Combined with the output from the attention layer, two
one-directional LSTM layers predict a representation of the current frame of the mel-spectrogram.
By projecting this representation using a linear transform, the actual mel-spectrogram frame is
generated. Finally, this frame is passed to a post-net consisting of 5 convolutional layers, predicting
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minor additions to the frame to improve its overall fidelity. The next decoder time step uses the
output of the linear transform, without the post-net additions, as these minor details are unwanted
information for future frame prediction [SPW+18].

A diagram of the full Tacotron 2 architecture is shown in Figure 1a. To properly show the
viability of generalizing this model to other types of audio, PTP training was done with the same
hyperparameters used for the creation of an accurate speech prediction model [SPW+18]. This
configuration can be found in Appendix A.

4.1.3 Vocoder: WaveGlow

After the full mel-spectrogram of the character sequence is predicted, it is forwarded to a vocoder
to be converted to a waveform. For this thesis, a vocoder was trained on the WaveGlow architecture.
The main idea of WaveGlow is to create a model of the audio distribution corresponding to the
generated mel-spectrogram, by taking samples from a Gaussian distribution and transforming them
to samples of the desired one using the model [PVC18].

Each forward pass through the network during inference is done using vectors of 8 audio samples,
an operation depicted by the authors as squeezing. To map this set of vectors to the desired audio
distribution, a series of invertible transformations defined as a flow are used. Each flow consists of
a convolutional layer followed by an affine coupling layer. This process must be invertible, as the
process for inference is the reverse of the training process, where samples are instead taken from
the desired audio distribution and are mapped to a Gaussian.

The affine coupling layer splits the input into two parts. One half is put through a transformation
conditioned on the mel-spectrogram. The transformed channel is then used to scale the other half
of the input. By doing this, the model can learn a transformation that depends on the structure of
the first half of the input, which helps the model learn more complex dependencies in the data. As
channels in one half can not modify each other, a convolutional layer is added before the affine
coupling layer to mix information between channels. This process is repeated a total of 12 times
and generates an accurate representation of the audio given the initial mel-spectrogram. The full
architecture is shown in Figure 1b. As with Tacotron 2, the configuration of the vocoder has been
kept the same for the PTP process, to properly show the generalizability of the entire system. The
configuration can be found in Appendix A.
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(a) Tacotron 2 architecture (b) Waveglow architecture

Figure 1: Full architecture of the text-to-speech synthesis system, consisting of Tacotron 2 as the
acoustic model and WaveGlow as the vocoder.

4.2 Data preprocessing

To provide proper input to the system, the musical score needs to be converted to text, so that it
can be processed by Tacotron 2. The sheet music used for this is stored digitally in MusicXML
(MXL) files, that contain detailed information about each note in a piece. A parser was created to
read MXL file data using Music21 and convert it to a character sequence. This sequence follows
a custom syntax, to make the input clear and concise for the model. In addition, several other
preprocessing tasks have to be taken into account.

4.2.1 PTXT notation

The ”Partiture-TXT” (PTXT) format was created to convert all meaningful information of a piece
to a text format as detailed as possible, in such a way that the input remains as simple as possible
for encoder-decoder processing. Generally, this includes using a minimal number of characters to
document a musical sequence and ensuring as many characters as possible have a unique definition,
to avoid any unnecessary confusion for the model. PTXT follows the general structure of musical
notation, making slight changes to reduce ambiguity.

PTXT can be read like a sequence of linguistic sentences. Similarly to a musical sequence, a PTXT
sequence can be split into measures that are delineated by a closing square bracket, signifying the
end of each ”sentence”. Each measure starts by signifying its BPM, using decimal digits. Elements,
those being notes, chords and rests, are then noted by the order in which they appear in the sheet
music. An element can be seen as a word in the sentence. It consists of a relative pitch, octave
number and duration characters, Multiple elements are separated by a blank space. Chords are
structured as a combination of notes, separated by a comma.
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To reduce the number of characters used for relative pitch notation, PTXT avoids a system using
accidentals. Instead, as there are 12 total relative pitches within an octave, the format uses the
capital letters A-L to represent each unique relative pitch in order of frequency. The traditional
notation with accidentals is then translated to this single-character system. The translation system
can be seen in Appendix B. Note that multiple unique relative pitches in the traditional system
can get translated to the same character in the PTXT notation. For instance, an E-flat (E&) and
D-sharp (D#) would both be translated to a G, and an F-double-sharp (F##), A-double-flat
(A&&) and G would all be translated to a K. Thus, this translation loses some musical information.
However, this is not a problem for an encoder-decoder model, as all equivalent notes should produce
the same sound. Therefore, they can be represented by the same character.

The octave number is a single digit, ranging from 1 to 9. These represent the octave ranges of a
piano with 88 keys. Thus, the range starts at an A, as A1 is the lowest note on a piano. The octave
number should typically never require double digits, as the octave reach on most instruments does
not reach past 8. For violins, the lowest practical note is G3 (J3 in PTXT), and the highest one is
E7 (H7 in PTXT). Theoretically, the number of characters could be reduced by omitting the octave
number and instead labelling all pitches with a unique character, as there are a discrete number of
practical pitches. However, the decision was made to include the octave number in PTXT, as the
combination of pitch and octave allows for establishing connections between different pitches. The
idea behind this was to potentially make it easier for the model to learn the relations of different
pitches, which should help it convert an unseen combination with higher accuracy. The effect of
this trade-off has not been tested further here. As a positive side-effect, it makes the PTXT format
a lot more readable for humans as well.

Duration is handled through a dictionary, which maps note lengths to a single character. The-
oretically, an infinite number of note lengths exist, as it is always possible to halve the length
of the current note. However, in practice, the lowest note is a 256th note, as past this point
notation becomes unclear and playing speed is impractical. Therefore, PTXT translates notes
up to 256ths. The translation of duration-to-character can be seen in Appendix B. A dot is
represented as a > character. In the event of ties, the character for the second note is printed
directly after the first one. The characters used for duration are handled in such a way that the
next element in the sequence starts playing after the duration of the first character is finished.
To illustrate, consider the sequence ”C4qhe D4h E4e”. As the first duration character of the C4
corresponds to a quarter note, the D4 will be played a quarter note after the C4, while the C4
continues playing. Half a note later, the E4 starts playing, while the C4 is still held and the D4 stops.
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Figure 2: Example musical sequence. The PTXT equivalent of this sequence is “114 B4q>,F4q>,I4q>
D4eq,H4eh,K4eh D4q ] 114 D4q>,H4q>,K4q> F4eq,I4eq,A5eq D5s B5s A5e”. Each chord can
be seen as a word, with corresponding notes delineated by a comma and chords separated with a
space.

Figure 2 shows an example of how the PTXT notation can be used to convert sheet music to text.
Note that the time signature is not given in a PTXT sequence, as the cumulative duration of all
elements in a measure is sufficient information to determine its corresponding time signature. The
full PTXT notation can be written as a grammar in Extended Backus-Naur form, as seen in Listing 1.

Listing 1: PTXT grammar in Extended Backus-Naur Form.

sequence = measure , {"]", measure} ;

measure = number , " ", chord , {" ", chord} ;

chord = note , {",", note} ;

note = pitch , number , duration ;

pitch = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" |

"K" ;

number = digit , {digit} ;

digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;

duration = length , dots , {length , dots} ;

length = "w" | "h" | "q" | "e" | "s" | "t" | "x" ;

dots = {">"} ;

4.2.2 PTXT parser

The PTXT parser was made to convert MXL sheet music data to the PTXT notation, using
Music21. Both the MXL and PTXT formats store the elements of a musical score in order of
occurence. Therefore, the parser is mostly able to read the elements in an MXL file and convert
them sequentially to PTXT notation.

To determine the time when a note is played, as well as determine the duration of notes and rests,
the PTXT parser uses a time step value as an index. The total number of time steps are determined
by the smallest note duration played in the full piece. For instance, if the shortest played note is an
eighth, a quarter note will have a length of two time steps. However, if a sixteenth exists somewhere
in the piece, the quarter note has a length of four time steps.

The MXL format handles repeats by storing the time step of repetition brackets, similarly to the
way it would appear in sheet music. To make repeats more comprehensible for an encoder-decoder
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model with an attention layer, PTXT does not provide designated repetition characters. Instead,
the parser stores the sequence starting from the most recent opening bracket, or from the start if
no opening bracket has been encountered yet. When a closing bracket is found, the stored sequence
gets appended to the current sequence. This essentially unfolds the repeated sections inline within
the sequence, allowing the attention layer to be less complex as it does not have to take possible
repetition of a sequence explicitly into account. Adaptations of this technique are used to unfold
repetitions with multiple endings and nested repetitions as well.

For musical scores with multiple parts, there exists a possibility of different parts playing a note
with the same pitch on the same time step. When this occurs, the MXL file will store the same note
twice, essentially storing a chord with two identical notes. As such a chord would sound similar to
a single note, the parser combines all instances of identical notes on a given time step into one.
This avoids introducing unnecessary complexity for the model.

4.2.3 Final preprocessing

In language, numerous words can be written in an alternative way, to either compress the text or
make it more structurally comprehensive. When converting this text to speech, these alternative
methods do not produce different audio from their original. For instance, converting the character
”4” to speech should produce the same audio as the conversion of the expanded string ”four”. Other
examples of speech equivalency include abbreviations (”jr.” is equivalent to ”junior”), capitalization
(”Apple” is equivalent to ”apple”) and whitespaces (a space is equivalent to two spaces, a tab or
a line break). To improve the accuracy of a speech synthesis model, text is often cleaned to only
include one of each speech equivalency. In the case of Tacotron 2, the cleaning of input text includes
converting all characters to lowercase, collapsing all whitespace to a single space and expanding
numbers and abbreviations.

For traditional language, text cleaning improves the accuracy of an audio synthesis model signifi-
cantly. However, applying the cleaning methods of Tacotron 2 to the PTXT notation has a notable
adverse effect. The expansion of numbers and conversion to lowercase results in characters losing
their unique meaning. As an example, the note ”F5e” would be converted to ”ffivee”. In this new
system, there is no clear delineation between pitch, duration and octave. Furthermore, the use
of characters becomes ambiguous. Consequently, generating accurate audio from this sequence
becomes much more difficult for a synthesis model. As the conversion from MXL to PTXT is
consistent and PTXT aims to provide text in the most unambiguous and convenient form for AI
prediction, additional cleaning of the input is not necessary.

As a final preprocessing step, the sequence of characters gets converted to a sequence of integers,
before being forwarded to the model. Each character has a corresponding unique ID that is mapped
through a dictionary. As the unique characters in PTXT is vastly different than the characters in
normal text, the IDs for each symbol have to be redefined for PTP. The dictionary is generated
based on all possible characters in PTXT, with ID’s starting at 1 and counting up for each unique
symbol. This process ensures the model receives a numerical representation of the text, which is
necessary for performing mathematical operations on the text during model inference.
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4.3 Text-Audio Alignment

The dataset solely contains sheet music and performances of full pieces and movements of violin
music. To create practical training data from this, the sheet music must be split into sections of a
few measures. However, doing this introduces the challenge of properly aligning the audio with the
corresponding section in the score, to create accurate labels for training. The start and end times of
each note have to be calculated so that the audio can be aligned sequentially. For the Bach Violin
dataset, accurate note alignments have been estimated for all pieces using the method explained
below [WC+23].

To get a general idea of the timings of each note, the MXL data of the sheet music can be utilized.
With the combined information of the BPM and time signature, the expected length of each
measure can be accurately calculated. As this is equivalent to the expected time of a whole note,
the individual duration of each note can be calculated trivially, as each note is defined as a given
fraction of a whole note. Then, the start time of a given note can be calculated by the sum of the
previous notes, and the end time equates to the sum of the start time and its duration. Doing this
chronologically for all notes in the sheet music results in a sequence of expected start and end
times, corresponding to when a new note should be played.

The next step of the alignment process involves creating a digital audio representation of the
sheet music. This is done by generating audio directly from the score, using a synthesizer with a
digital violin sound font. In such a sound font, each pitch is mapped to a violin recording of that
pitch, played in isolation. Audio conversion then becomes trivial, as one can simply sequence the
appropriate audio samples according to the notes specified in the sheet music. This audio serves
as a reference point for the timing of each note and is devoid of dynamics, articulation, tempo
variations or other expressive elements. Because of this, the timings of each note are an accurate
representation of the timings in the previously converted note sequence.

To perform a more accurate analysis of the relation between the digital reference audio signal and the
expressive recording, both are converted to a spectrogram. For this audio signal processing task, it is
preferred to calculate spectrograms using a constant Q transform, instead of the Short-Time Fourier
transform used for creating mel-spectrograms. As previously mentioned in Section 2, transposing a
pitch up an octave is equivalent to doubling its frequency. As each octave has 12 discrete pitches,
the frequency difference between each pitch is exactly a factor of 12

√
2. Therefore, transposing n

pitches upwards displaces the frequency f by the following margin:

∆f =
12
√
2
n
= 2

n
12 (4)

n = 12 ∗ log2(∆f) (5)

Because of the logarithmic relation between frequency and pitch, higher pitches are more distant
from each other in terms of frequency than lower pitches. However, as the Short-Time Fourier
transform has a fixed resolution due to a consistent filter length, this results in varying frequency res-
olution between pitches. Specifically, the resolution diminishes as the difference from the centre pitch
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increases. A Constant Q Transform counteracts this, by using a logarithmic resolution depending
on pitch to maintain a constant frequency resolution [Bro91]. Therefore, the resulting spectrogram
has a much more accurate frequency representation than a Short-Time Fourier Transform would
give, which aids in finding the exact timings of each played note in the audio.

With the Constant Q spectrograms of both the expressive audio and the digital reference, both
sequences can be compared to each other. By calculating the similarity between each time step, a
cost matrix can be constructed. This matrix represents the alignment cost between the correspond-
ing time steps of the two spectrograms, with similar time steps costing less. A warping path can
then be constructed, equivalent to the path with the lowest cost. The difference from this to the
diagonal shows how to lengthen or shorten one of the spectrograms, such that both spectrograms
align as accurately as possible throughout the whole piece.[Sen08]

As the note timings in the reference correspond to the previously converted note sequence, the
found warping path can be applied to this sequence. This creates a new sequence, closely matching
the timings of all played notes in the expressive audio. Finally, the sequence is split into parts with
a length equal to the number of notes in the corresponding split text files. The starting time of the
first note and ending time of the last note provide the respective domain in the full recording where
the notes in the split files are played. Thus, splitting the recording at these times gives accurate
audio labels for the split text files.
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4.4 Experiment setup

4.4.1 Dataset

To train a system to be able to convert a musical score to audio, a dataset is required consisting of
instrumental recordings and the sheet music each recording follows. However, as of writing, there
are minimal extensive datasets of this kind available. This was noticed as well in 2022 by Dong et
al. [DZBKM22], who collected approximately 6.5 hours of recordings of Bach violin sonatas with
accompanying scores, to train the Deep Performer model proposed in the same paper. This ”Bach
Violin” dataset is the choice for training Tacotron 2 as well, as it is currently one of the most
extensive open-source datasets available with recordings and corresponding scores. In addition, the
dataset also provides the alignment files for all pairs in the dataset, generated using the method
described in Section 4.3 [DZBKM22].

Note that training the vocoder solely requires audio labels, as the spectrograms used as input
can be generated from the audio directly using an STFT. Thus, the number of available training
datasets is significantly increased, allowing the vocoder to be theoretically trained on possibly more
extensive data. However, most datasets with more than 6.5 hours of instrumental music are piano
recordings. Should the vocoder be trained on this data, inference with spectrograms of violin music
yields significantly less accurate results than a model trained on the Bach Violin dataset. Therefore,
the same dataset will be used to train both models.

4.4.2 System Training

The Tacotron 2 audio synthesis model and the WaveGlow vocoder are both trained separately
from scratch using the configurations shown in Table 4a and Table 4b, with training data provided
by the Bach Violin dataset. The Tacotron 2 model was trained to estimate a mel-spectrogram
from PTXT input, and WaveGlow was trained to generate audio from a mel-spectrogram. Models
were trained until convergence, defined as the point where the validation loss does not significantly
change over the course of five consecutive epochs. After a fixed number of iterations, a checkpoint
of the model is created. The validation loss is calculated on these checkpoints. Both models use an
Adam optimizer [KB17], with batch size and learning rate varying between the models. The model
evaluations were done on a section of the Bach Violin dataset that was held back during training.

The training hyperparameters for both models are shown in Table 4d. The training data was split
into sections of three measures for both Tacotron 2 and WaveGlow. Due to issues with working
memory, Tacotron 2 could not be trained with a higher batch size than 2. Alternatively, the model
would have to be trained with sections of a single measure to increase the batch size. However,
splitting the audio like this loses crucial expressive information on the transition between measures
and the construction of musical phrases by the performer. Thus, training the model on multiple
measures with a lower batch size was decided to be preferred over training on a single measure
with a higher batch size.
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4.4.3 Model evaluation

To measure the performance of Tacotron 2, the model output will be compared to the ground
truth spectrograms using mean squared error. Converting both spectrograms to matrices, the mean
squared error E can be computed by averaging the accuracy of each pixel in the matrix, with N
as the number of pixels and Struth and Sout the spectral matrices of the ground truth and model
output respectively:

E =
1

N

N∑
i=1

(Struth[i]− Sout[i])
2 (6)

For this, both spectrograms need to be of equal length. Therefore, the error is calculated using
a zero-padding appended to the end of the shortest of the two spectrograms. The final Tacotron
2 model will be compared to a similar model trained with linguistic cleaning, to show the ef-
fect on accuracy. Inference is done on a sequence of three measures to validate that the model
implements expressive musical phrasing similar to the training data. Both models will be com-
pared to both the ground truth, as well as digitally synthesized audio of the same score as a baseline.

The WaveGlow model audio output will be evaluated by a subjective listening test. Inference on the
model will be done using spectrograms directly generated from the audio labels, and spectrograms
generated from Tacotron 2, using the text corresponding to the audio labels as input. The former
is done as a baseline, to test whether any apparent artefacts in the audio signal are caused by
Tacotron 2 or WaveGlow. The listening test has solely been performed by the author of this thesis.
Therefore, due to the minimal sample size, no remarks will be made on the human-like quality of
the audio, often measured with a mean opinion score. Instead, the results will mainly focus on how
the audio translates notes in the text input to actual pitch and duration, as well as the general
intelligibility of the music.
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5 Results

The acoustic model was trained on Tacotron 2 for 121,000 iterations, with the validation loss
being computed every 1000 iterations. To show the effects of linguistic cleaning, another acoustic
model was trained for 56,000 iterations on normalized text input. The vocoder was trained on the
WaveGlow architecture for 220,000 iterations and evaluated every 2000 iterations. The learning
curves of these models can be seen in Appendix D. Audio examples can be found in the repository
attached to this thesis, linked in Appendix C. A table is provided here that categorizes samples
according to which of the remarks made below they demonstrate most.

5.1 Audio output

In general, the audio produced by the system does a good job of converting the notes in the input
text to violin music. The pitches of each note are accurate, and notes are played for as long as they
are expected to in the given tempo. In particular, instead of sounding like each note is recorded
in isolation and then stitched together, the recording sounds more realistic and continuous. The
transitions between notes are smooth, and there exists a natural flow to the music similar to live
violin playing. With chords, multiple notes are properly played at the same time and rests correctly
create a section of silence in the recording.

A notable difference from the target audio is that the model always chooses to play the input
sequence fully legato, meaning transitions between notes are connected and contain no intervening
silence. The performers of the target audio often switch to playing with slight staccato, where
notes are played for less long and a short silence exists between two notes. This distinction was
not explicitly specified during training, and holding a note for slightly longer within its duration
window will not penalize the model significantly. Therefore, constantly playing legato is a consistent
method of obtaining a decently similar result to the target audio.

Additionally, audio from the model often contains some amount of echoing. On the one hand,
this increases its realism, as notes generated from a digital synthesizer often sound pre-recorded.
However, the echo is not similar to the training data, instead being more muffled. This results in
overall less pleasant audio. By converting the target audio to a mel-spectrogram directly and doing
inference on the WaveGlow model with it, the echo persists. Thus, this is caused by the general
translation from the mel-spectrogram to audio and is not a residue from Tacotron 2 attempting to
predict the spectrogram.
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(a) No normalization (b) Normalization

Figure 3: Alignment plots of Tacotron 2, for input sequence ”90 D4e,H4e,A4e,A5e A4s C4s A4e
A5e ] D4e,H4e,A4e,H5e D5e C3e,L4e,F5e C4e ] A3e,A4e,D5e I4e K4e,E5e H4e”

5.2 Text normalization

Comparing the performance of Tacotron 2 with the variant trained using linguistic cleaning on
the PTXT input, the effect of properly structured input text becomes immediately apparent. The
alignment plots of both models on the same input sequence are shown in Figure 3. The alignment
plots visualise the area where the attention layer is focused on each decoder time step. Compared
to the model with normalized text, not changing the PTXT format results in the attention layer
focusing significantly more effectively. In the cleaned model, attention is much more spread out each
time step, often switching focus to a completely different encoder time step seemingly randomly.
As individual notes can often be processed and played sequentially, the model should only slightly
emphasize the recent past to keep track of note duration, and only look further in the past when
chords appear in the sequence.

This effect is reflected in the audio generated by both models. The cleaned model struggles to
generate music in line with the prompted sequence. Often, the first note will be accurate in pitch,
but its duration will be significantly off. After a short while, the model loses meaningful focus
and either repeats the current note forever, or stops playing entirely. In addition, the audio is
noticeably more muffled than the model without text normalization. Looking at the accuracy of
both models regarding the generation of mel-spectrograms, the discrepancies become significantly
more apparent. Figure 6 shows the generated mel-spectrograms of both models for an equal input
sequence, compared to the ground truth mel-spectrogram. The accuracy of these predictions is
shown in Table 1, with a 95% confidence interval. The model without text normalization appears as
a version of the ground truth with much less noise, mimicking aspects such as pitch and duration
highly accurately. In contrast, the normalized spectrogram is only able to hold a single note for
a long time, but this note often has a completely different pitch and duration compared to the
ground truth.
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Acoustic model Ground Truth MSE Digital MSE
Digital sound font 6.09± 0.15 -

Tacotron 2 4.23± 0.18 3.30± 0.23
Tacotron 2 with text normalization 50.57± 1.46 48.13± 1.83

Table 1: MSE loss with 95% confidence interval of both Tacotron 2 spectrogram outputs, compared
to the ground truth and spectrograms generated through the use of a digital soundfont.

5.3 Expressiveness

Compared to audio generated using a synthesizer with a digital sound font, the model output
sounds notably more like a live recording. This is mostly due to the fact that the transition
between notes happens more smoothly, instead of sounding like isolated notes stitched together.
In addition, the audio contains several small techniques that make it sound more expressive. For
instance, the duration of a note can deviate slightly from the actual length to increase its realism,
mimicking the subtle timing variations a human performer might introduce. Notes are played
slightly longer in places where it increases tension, or cut short when a section benefits from being
played slightly faster. The output audio contains parts where dynamics are notably varied. This
usually happens abruptly for long sections, similar to terrace dynamics in human performances.
Finally, chords are sometimes played as an arpeggio, one note after each other instead of at the
same time, without being explicitly prompted to do this. All these things help distance the model
from digital synthesizers and increase expressiveness.

The accuracy of the model reflects these observations. Looking at Table 1, Tacotron 2 is more
accurate to the ground truth than the digital sound font. As the objective features of played
notes are equivalent for all models, most of the difference comes from the implementation of
expressive variation. Nevertheless, the output still has more resemblance to a digital sound font
than to a human recording. All expressive features are applied on a minimal level, significantly
less than most professional performers would implement in their playing. Therefore, the generated
mel-spectrograms remain similar to their digital counterparts.

17



6 Discussion

6.1 Model Limitations

The function to convert a spectrogram to the Mel-scale is logarithmic, meaning higher frequencies
will lose resolution in favour for lower frequencies. This is useful for speech synthesis, as important
frequencies in voices are mostly located on the lower end of the frequency spectrum. However,
violins use significantly higher frequencies, which may result in a loss of accuracy when using these
spectrograms for violin music generation. Using a different scale for the spectrogram might result
in better performance compared to using a mel-spectrogram.

Another important remark to make is that both Tacotron 2 and WaveGlow were trained on a
relatively small dataset, for a relatively short time and small batch size. To be able to generate
spectrograms close to human quality, Tacotron 2 was trained on a dataset containing approxi-
mately 25 hours of audio from a single speaker. In addition, training was done for approximately
300,000 iterations [SPW+18]. Similarly, WaveGlow was trained for 580,000 iterations on the LJ
Speech dataset, containing approximately 24 hours of short audio clips from a single speaker. In
contrast, the model shown in this thesis was trained on much less data, as well as being record-
ings of the same pieces from different performers. The limited data also resulted in the training
curve converging significantly faster. With a more extensive dataset, the fidelity of the model
would notably increase. However, as of now, no larger violin music datasets are available for training.

In addition, the architectures used in this thesis are not the current state-of-the-art. Tacotron 2
was released in 2017 [SPW+18], and WaveGlow in 2018 [PVC18]. Since then, numerous models
have been published that have achieved a higher performance. For instance, FastSpeech [RRT+19]
and Transformer TTS [LLL+19] have both achieved a higher Mean-Opinion Score (MOS) than
Tacotron 2. These have been shown to provide more expressiveness in their mel-spectrograms, with
better length control and the ability to add breaks to improve prosody. Similarly, models such as
Hifi-GAN [KKB20] can exceed the quality of audio generated by WaveGlow.

Finally, the PTXT notation could be expanded to contain more data about the notes being played.
For instance, information on dynamics was not included in this version of the notation. Furthermore,
a note could include whether it is meant to be played staccato, legato or otherwise. Expanding
this idea further, additional documentation from the sheet music could be added as well. Adding
more elements to the notation makes the text more informative, at the cost of introducing more
characters for the model to process. In other words, providing extra information in the PTXT
notation might make the model output more expressive audio. However, this audio could be less
accurate, due to the sequence length increasing. Furthermore, this might cause an adverse effect,
where the model receives too much information about how to play a note and struggles to add any
creative expressiveness of its own.
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6.2 Generalizability of TTS architecture

Despite its limitations, the trained model demonstrates the feasibility of generating natural-sounding
violin music using an architecture specifically made for speech synthesis. Objective note features,
such as pitch and duration, are translated with high accuracy, as can be seen from the similarity to
the digital audio. Furthermore, the model shows signs of expressiveness, although more held back
than often heard in human-recorded music. The observation of increased noise in the audio can
be attributed to the conversion from a mel-spectrogram done by WaveGlow. As the spectrogram
prediction step is responsible for generating the general features and expressiveness of the output,
this noise does not limit the overall evaluation of the model’s capabilities.

However, it is important to note that an existing model cannot simply be adapted to generate other
types of audio. To be able to generate violin music for this thesis, a new PTXT grammar had to be
defined, which the target input had to be properly represented in and converted to. As seen from
the linguistic cleaning example, each grammar has separate normalization criteria, which had to be
taken into account as well to generate proper audio. The original model was trained using a dataset
of English language, and would not convert a different grammar to anything meaningful. Therefore,
the PTXT grammar then had to be used to train a model using the Tacotron 2 architecture
from scratch, to generate mel-spectrograms of violin music. However, violin music and speech
have vastly different mel-spectrogram representations, and so, a vocoder trained in speech can not
accurately generate audio from it. Consequently, WaveGlow had to be retrained from scratch as well.

Nevertheless, doing all this does generate the wanted audio from the architecture. Moreover, these
steps can be seen as a general method for creating other sounds as well, as the architecture is likely
to be adaptable to various types of audio. This only requires the audio to be convertible to an
informative textual representation, as well as having an existing dataset to train on. As seen in
this thesis, such a dataset does not have to be incredibly large; a few hours is sufficient to train
a functional proof-of-concept model. This implies it is likely possible to train models for other
applications as well, such as for prompted generation of natural ambience, animal sounds or white
noise, among numerous others. All of these share a similarity with speech as music does: an audio
frame of this type can be broken up into smaller components, each detailing the most fundamental
parts of the sound. In essence, this similarity is what is required to convert the audio to a detailed
textual representation, which can be learned by a speech synthesis model to generate expressive
sequences.

This generalization is not limited to Tacotron 2 and WaveGlow. As mentioned in Section 6.1,
numerous other architectures have been created that allow for more accurate text-to-speech synthesis.
Despite these architectures being different in some cases, the processing of text to predict audio
frames is done using similar methods. In addition, some of these architectures use a different
intermediate output than a mel-spectrogram. An example of this is VALL-E [WC+23], which
computes a matrix of audio codecs as intermediate output. Nevertheless, the type of output the
audio prediction model generates is not relevant, as long as a vocoder exists to translate that type
of output to audio. Given the fundamental similarities between music and speech, it is likely the
same model creation steps work for most other architectures as well. With this, it becomes possible
to utilize the strengths of different systems to process general audio similarly to how speech is
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produced. For instance, the VALL-E model excels in speech synthesis, being able to imitate the
voice of a speaker accurately with approximately 3 seconds of audio samples [WC+23]. This could
be applied to music as well, where a model can predict the interpretation a performer would give
for a certain musical piece. Similarly, FastSpeech was designed as a speech synthesis model that
significantly speeds up inference compared to Tacotron 2 [RRT+19], which can also be used for
other types of audio.
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7 Conclusion

This thesis has aimed to demonstrate the viability of generalizing speech synthesis models for
generating expressive music. This has been accomplished by training a model on the Tacotron 2
encoder-decoder architecture to create mel-spectrograms from violin sheet music and training a
vocoder on the WaveGlow architecture to convert these mel-spectrograms to a waveform.

To provide input to Tacotron 2, sheet music was converted to a textual representation by introducing
the PTXT notation. This grammar encompasses all objective information about each note, chord
and rest in the piece in as little characters as possible, to help the model convert essential features
properly. The full system was trained on the Bach violin dataset, using dynamic time warping to
obtain accurate audio labels corresponding to the text splits.

Findings showcase the model is capable of converting all essential features of notes accurately to
audio and can add some slight expressiveness to it as well, such as variations in tempo or dynamics.
A comparison of the generated mel-spectrograms with both the ground truth and a spectrogram
generated with a digital sound font shows the model output is closer to digital audio than human
recording. Nevertheless, it is also significantly more expressive than its digital counterpart. Com-
bined with the fact that other types of audio show similarities with music and speech regarding
their features, it is thereby concluded that the generalization of speech synthesis models to other
expressive audio types is not only viable but also promising for future applications.

7.1 Further research

Given the possibility of applying the described methods to other text-to-speech architectures, the
question arises which one provides the best performance for generating other types of audio. Future
research can study this, by training models on other architectures and for varying audio types, to
attempt to figure out which one is most plausible for high-accuracy general audio synthesis, or
looking into what architectures perform the best for each audio type separately.

As the listening test was only conducted by the author of this thesis, the sample size was too
minimal to compute any accurate metrics on more subjective aspects of the audio output, such
as relative sound quality or similarity to human recordings. Looking forward, similar studies can
investigate how well a model trained on a speech synthesis architecture compares in these aspects to
a model from an architecture specifically made for its type. This can be done by, for example, calcu-
lating the mean opinion score of each model based on the results of an outsourced survey [WSRS+17].

Additionally, Tacotron 2 was built solely for speech generation, and each component is therefore
vital for that process specifically. Each part fulfils a separate role to generate speech with the most
fidelity possible. When looking at music generation, the importance of each component will likely
shift. For instance, the attention mechanism, which aligns input text with output audio in a speech
model, might play a more important role in music, to handle its inherent rhythmic and harmonic
structures. Future research could expand on this, such as by comparing the performances of both
speech and music models in an ablation study. This shows how music and speech are related, and
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what parts of the model are most vital for both applications.

Looking forward, further research on this topic might eventually culminate in the construction of a
model that can convert text to any type of audio with high accuracy and expressiveness. Such an
advancement would not only enhance the entirety of the speech synthesis field but the audio signal
processing field as a whole. In the future, these enhancements can lead to numerous applications
in various fields, such as interactive media, virtual reality and assistive or medical technologies.
As research progresses, exploring the adaptability and scalability of different architectures for
diverse audio types will be crucial for realizing these transformative applications, and help push
the boundaries of audio signal processing in both technical and creative domains.
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A Configuration details

Hyperparameter Value
Sequence embedding size 512

Encoder kernel size 5
Encoder convolutional layers 3
Encoder embedding size 512
Decoder RNN layer size 1024

Pre-net layer size 256
Decoder gate threshold 0.5

Decoder dropout 0.1
Attention dropout 0.1

Attention RNN layer size 1024
Attention filters 32

Attention kernel size 31
Post-net embedding size 512

Postnet kernel size 5
Postnet convolutional layers 5

(a) Configuration of Tacotron 2 audio synthesis
model

Hyperparameter Value
Mel channels 80

Flows 12
Samples per passthrough 8

Affine coupling transform layers 8
Affine coupling transform channels 256
Affine coupling transform kernel size 3

(b) Configuration of WaveGlow vocoder model

Hyperparameter Value
Audio channels 1 (Mono)

Amplitude maximum 32768
Sampling rate 22050

STFT filter length 1024
STFT hop length 256

STFT window length 1024
Mel bands 80

Frequency minimum (Hz) 0
Frequency maximum (Hz) 8000

Measures per label 3

(c) Audio Preprocessing configuration

Hyperparameter Tacotron 2 WaveGlow
Batch size 2 8

Learning rate 10−3 10−4

Iterations per checkpoint 1000 2000
Precision Single Single

Gradient clipping threshold 1.0 -
Weight decay 10−6 -

(d) Training hyperparameters

Figure 4: Configurations and hyperparameters of Tacotron 2 and WaveGlow models.
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B PTXT translation scheme

Musical notation PTXT
A, G##, B&& A

A#, B& B
B, A##, C& C
C, B#, D&& D

C#, D& E
D, C##, E&& F

D#, E& G
E, D##, F& H
F, E#, G&& I

F#, G& J
G, F##, A&& K

G#, A& L

(a) Pitch conversion

Note type PTXT
Whole w
Half h

Quarter q
Eighth e
16th s
32nd t
64th x
128th o
256th p

(b) Duration conversion

Table 2: Translation scheme of the PTXT notation. Sharps are represented as #, and flats as &.

C Repository

Accompanying this thesis is a repository that implements the discussed PTXT parser and provides
additional scripts that aid preprocessing and inference. Additionally, it contains examples of the
final model output. The repository can be accessed at https://github.com/Stannie04/ptp. Table
3 contains direct links to samples in the repository showcasing some of the discussed features in
Section 5.

Description Link
Demonstration of objective features (pitch, tempo) https://github.com/Stannie04/ptp/tree/main/examples/objective

Demonstration of expressiveness (dynamics/tempo variation, arpeggios) https://github.com/Stannie04/ptp/tree/main/examples/expressiveness

Inaccuracies caused by using an speech text normalization on PTXT https://github.com/Stannie04/ptp/tree/main/examples/bad_normalization

Echo generated directly from the ground truth https://github.com/Stannie04/ptp/tree/main/examples/direct_audio

Table 3: Links to sample references on audio results.
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D Training results

(a) Tacotron 2

(b) Tacotron 2 with linguistic cleaning on PTXT

(c) WaveGlow

Figure 5: Learning curves of trained models, as provided by Tensorboard.
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(a) Ground truth

(b) Digital sound font

(c) Tacotron 2

(d) Tacotron 2 with linguistic cleaning on PTXT

Figure 6: Mel-spectrograms of the ground truth, both Tacotron 2 models and a representation
using a digital sound font, by stitching together notes recorded in isolation. All spectrograms
were generated using the input ”90 D4e,H4e,A4e,A5e A4s C4s A4e A5e ] D4e,H4e,A4e,H5e D5e
C3e,L4e,F5e C4e ] A3e,A4e,D5e I4e K4e,E5e H4e”
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