
Master Computer Science

Polarity Marking Dutch Parse Trees

Name: Lars Ruigrok
Student ID: 2292998

Date: Draft 30/06/2024

Specialisation: Computer Science

1st supervisor: Gijs Wijnholds
2nd supervisor: Akrati Saxena

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Abstract

Monotonicity reasoning allows humans and computers alike to efÏciently draw inferences
from natural language statements. For example, in the sentence “Not all ducks quack”, we
can replace “ducks” with the more generic term “birds” to get a valid inference “Not all
birds quack”; similarly, we may replace “quack” with a more specific phrase: “Not all ducks
quack loudly”. Whether we can substitute a more specific or more generic phrase depend on
the polarity of the position. In this example, “ducks” occurs with positive polarity ↑, while
“quack” occurs with negative polarity ↓:

“Not↑ all↓ ducks↑ quack↓”.
Based on Chen & Gao’s Udep2Mono [CG21], we built a system to automatically mark polarity
in Dutch sentences using Alpino dependency structures. Alpino is a syntactic annotation
scheme and parser specifically tailored to Dutch, as opposed to Universal Dependencies which
make some compromises for cross-linguistic consistency.

Contents
1 Introduction 1

1.1 Thesis Overview . 2

2 Background and Related Work 2
2.1 Monotonicity . 3
2.2 Parsing . 8
2.3 Polarity Marking . 12

3 Implementation 12
3.1 Parsing and Binarization . 13
3.2 Polarization . 14

4 Results 19
4.1 Parsing Errors . 20
4.2 Labelling Disagreement . 21
4.3 Udep2Mono Failing to Generalize to Dutch . 21
4.4 Udep2Mono Features Not Implemented in Alpino2Mono 23

5 Comparison of Alpino and Universal Dependencies for Polarity Marking 24

6 Discussion 25

7 Conclusions and Further Research 26

References 29

1 Introduction
There is a lot of excitement around Large Language Models (LLMs) as of late. These neural
networks trained on self-supervised tasks with huge piles of data can perform a wide range of
natural language tasks (zero-shot or after some finetuning). But while their performance on nat-
ural language reasoning tasks appears impressive, these results often do not generalize between
benchmarks [TC19]. Commonly-used benchmarks often inflate the results of the kind of systems
they were designed to evaluate, because they ignore aspects of human reasoning not covered by
those systems [Ber02].

One area where the dominant transformer models still struggle is in Monotonicity Reasoning,
particularly when downward entailing (negative polarity) contexts are involved [YMB+19a, Wij23].

For example, you and BERT1 will likely have no problem recognising the following as a valid
inference:

“Some ducks quack” ⟹ “Some birds quack”
However, while you would recognise the following with similar ease, BERT performs significantly
worse on cases like this2:

“All birds quack” ⟹ “All ducks quack”

In the first example, “ducks” occurred with positive polarity, so replacing it with a more general
term “birds” yields a valid inference. In the second, “birds” occurs with negative polarity, such
that instead replacing it with a more specific term yields a valid inference.

Part of the problem is that positive polarity is more common. Data augmentation may help here
[YMB+19b]. But adding more examples with negative polarity can actually reduce accuracy on
positive polarity statements, indicating the real problem is that neural models do not ‘understand’
monotonicity reasoning [YMB+19a] 3.

Symbolic systems like MonaLog do understand monotonicity, but don’t handle syntactic variation
well. MonaLog on its own does not have particularly impressive accuracy. But it can moderately
improve on BERT performance in a hybrid sytem, which uses MonaLog when it gives a definite
prediction, but defers to BERT when it is unsure. MonaLog can also improve BERT by generating
additional training data [HCR+20].

NeuralLog [CGM21] is a more advanced hybridization of BERT with a monotonicity reasoning
component. It automatically searches for a sequence of neural or symbolic inference steps from the
premise to the conclusion.

1BERT here referring to a suitably fine-tuned variant of Devlin et al.’s transformer model [DCLT19]
2this particular case is completely fabricated for illustratory purposes, but based on table 9, cells ‘Up Lexical,

-HELP’ and ‘Down Lexical, -Help’ of Yanaka et al. [YMB+19a]
3at least in 2019. A recent (May 2024) preprint [LNT+23] suggests GPT-4 single-shot outperforms fine-tuned

BERT with data augmentation on the Monotonicity Entailment Dataset and comes close to human average accuracy.
Since this preprint has not been reviewed and we know little about the internals of GPT-4, I’d take that with a
pinch of salt. It’s possible MED was part of GPT-4’s training data, for example. Results on other NLI datasets
were less impressive, and the authors conclude “Logical reasoning remains challenging for ChatGPT and GPT-4,
especially on out-of-distribution and natural language inference datasets”.

1

Both generating additional negative polarity training data and hybrid systems benefit from an ac-
curate polarity marking component. MonaLog uses CCG2Mono [HM18], which was also employed
in creating the MED [YMB+19a] dataset, while NeuralLog uses Udep2Mono [CG21], the current
state-of-the-art in polarity marking.

Though Udep2Mono uses the multilingual Universal Dependencies [NdG+16] with a language-
neutral transformation [RTC+16] to represent natural language statements, it is English-specific.
Our goal is to bring the state-of-the-art in polarity marking to Dutch, by

1. Translating Udep2Mono to Dutch UD.

2. Building an alternative system using Alpino dependencies.

Alpino dependencies [TNH02] provide a slightly more sophisticated annotation than Universal
Dependencies specifically tailored to Dutch. We want to see if this can be leveraged to improve
polarity marking accuracy.

1.1 Thesis Overview
Section 2 lists some prior work on polarity marking and other related work. Section 2.1 makes
the notion of polarity ↓↑ more precise by introducing the concept of monotonicity. Section 2.2
compares different syntactic parsing paradigms used in this and prior work. Section 2.3 shows
how such a parse is marked with polarities. A more concrete description of our implementation
is given in Section 3. In Section 4, we measure accuracy of our system on a translation of the
small test set used by Chen&Gao [CG21] and originally from Hu&Moss [HM20]. In Section 5
we see whether Alpino’s features actually provide a polarity-marking advantage over Universal
Dependencies. Section 7 concludes.

2 Background and Related Work
Given some natural language statement, we want to find polarity marks for each phrase, e.g. “All↑
ducks↓ quack↑”. These marks indicate whether a phrase can be replaced by a more general (in
case of positive polarity ↑) or more specific (in case of negative polarity ↓) phrase to yield a valid
inference.

This presupposes a number of things, which the following sections aim to explain. First, in section
2.1 we formalise what it means to be ‘more specific’ or ‘more general’. In section 2.2 we look at
various ways to think about what constitutes a phrase and how these phrases are composed to
form a sentence. Finally section 2.3 describes how polarity is actually computed.

Some early work on natural language polarity marking includes Van Benthem [VB86] and Sanchez-
Valencia’s external monotonicity marking algorithm for Lambek Grammars [San91].

A number of alternative algorithms and extensions to different grammars have since been proposed.
Sanchez-Valencia’s algorithm consists of two passes: external monotonicity marking and polarity
marking. Dowty [Dow94] proposes a single-pass approach, marking polarities as the parse tree is
constructed. Dowty’s approach introduces a lot of additional syntactic categories. Van Eijck’s al-
gorithm [van07] instead annotates categories with polarity mappings, which determine the polarity

2

of arguments from the polarity of the function. This requires two passes again: a bottom-up pass
adding the mappings and a top-down pass computing polarity. Lavalle-Martinez et al [LMV+18]
show Van Benthem, Sanchez-Valencia, Dowty and Van Eijck’s algorithms are equivalent.

Hu&Moss extend Van Benthem’s polarity marking algorithm to CCG and produce a practical
software implementation [HM18].

Accuracy of parsers for categorial grammars had been falling behind dependency parsers, prompt-
ing Chen&Gao [CG21] to develop their system for polarity marking Universal Dependencies. They
adapt the obliqueness hierarchy of Reddy et al. [RTC+16] to transform UD trees into binary trees
more suitable for polarity marking.

Not all natural language reasoning is monotonicity reasoning. MacCartney and Manning [MM14]
extend the monotonicity calculus to a projectivity calculus, enabling reasoning about not only
inclusion but also exclusion relations. They also implement an algorithm for marking projectivity
into Stanford CoreNLP [MM08].

Nairn et al. [NCK06] investigate the relations between main and complement clauses. They do not
focus on monotonicity, but arrive at a compatible notion of polarity.

2.1 Monotonicity
To clarify the concepts of polarity and monotonicity, I would recommend Icard III and Moss’
Recent Progress on Monotonicity [IIM14].4 I will briefly summarise their account below.

A function 𝑓∶ 𝑋 → 𝑌 is monotone increasing if whenever 𝑎 ⊑ 𝑏, also 𝑓(𝑎) ⊑ 𝑓(𝑏). If instead𝑓(𝑎) ⊒ 𝑓(𝑏), 𝑓 is monotone decreasing. Here ⊑ is some (partial) ordering on the domain 𝑋 or
codomain 𝑌. For example, for functions on real numbers ℝ we may take the standard ≤ ordering
for both domain and codomain. Then 𝑓(𝑥) = 𝑥+1 is monotone increasing, 𝑔(𝑥) = −𝑥 is monotone
decreasing, but ℎ(𝑥) = 𝑥2 is non-monotone.

Composing functions of identical monotonicities produces a monotone increasing function, while
opposite monotonicities produce a monotone decreasing function. So for example, 𝑘(𝑥) = 𝑔(𝑓(𝑥)) =−(𝑥 + 1) is monotone decreasing. Composing with a non-monotone function always results in a
non-monotone function.

Expressions which are the argument of a monotone increasing (/decreasing) function have positive
(/negative) polarity. Thus 𝑎 has negative polarity in −(𝑎 + 1) = 𝑔(𝑓(𝑎)). We mark this with a ↓
symbol after the expression: −(𝑎↓ + 1). Likewise with ↑ for positive polarity and = for neither.

Knowing the polarity of an expression allows us to draw some simple inferences by substituting𝑥↑ expressions with 𝑥′ ⊒ 𝑥 or 𝑥↓ with 𝑥′ ⊑ 𝑥: If −(𝑎↓ + 1) < 6, and we know 𝑎 < 𝑏, it follows
that −(𝑏 + 1) < 6.

When moving on to linguistic uses we will also want to order more complex expressions. We
define the ordering on booleans F ⊑ T, such that ⊑ is implication. Functions 𝑋 → 𝑌 are ordered
pointwise: 𝑓 ⊑ 𝑔 ⟺ ∀𝑥 ∈ 𝑋∶ 𝑓(𝑥) ⊑ 𝑔(𝑥). Sets are identified by their membership function

4their notation is somewhat different from ours, which follows Chen&Gao and Hu&Moss. Where they use 𝑥+
and 𝑥− to denote polarities, we use 𝑥↑ and 𝑥↓, and additionally 𝑥= to mark nonpolarity.

3

𝑈 → {T, F}, so their ordering is the subset relation ⊆:𝐴 ⊑ 𝐵 ⟺ ∀𝑥 ∈ 𝑈∶ (𝑥 ∈ 𝐴) ⊑ (𝑥 ∈ 𝐵) ⟺ ∀𝑥∶ ((𝑥 ∈ 𝐴) ⟹ (𝑥 ∈ 𝐵)) ⟺ 𝐴 ⊆ 𝐵.
Since sets are functions, they also have monotonicity. A set 𝐴 ⊆ 𝑈 is upward monotone iff 𝑎 ∈𝐴 ⟺ ∀𝑎′ ⊑ 𝑎∶ 𝑎′ ∈ 𝐴, and similarly for downward monotone.

To extend these concepts to natural language we need to define the semantics of linguistic expres-
sions and their orderings ⊑. Below is just an outline of one way to do that.

Example Natural Language semantics for Monotonicity Reasoning Here we present a
semantics which serves as a guideline for the implementation described in section 3. We use set
notation to make the orderings more obvious, but we could equally well have used lambda notation
to emphasize monotonicities: {𝑒 ∈ 𝐸 ∣ 𝑝(𝑒)} ≅ 𝜆𝑒(𝐸𝑒 ∧ 𝑝𝑒)
Assume some model which defines denotations of tokens (⟦“word”⟧) in terms of entities 𝐸, booleans{T, F} and functions thereof. We will write (dep 𝑑 ℎ) for a binary dependency relation with label5
dep between dependent 𝑑 and head ℎ.

Statements are either T or F.

Nouns denote sets of entities:⟦“green turtles”⟧ = {𝑒 ∈ 𝐸 ∣ 𝑖𝑠𝐺𝑟𝑒𝑒𝑛(𝑒) ∧ 𝑖𝑠𝑇 𝑢𝑟𝑡𝑙𝑒(𝑒)}
Verb phrases also denote sets of entities, those with which they would form a true statement:⟦“swim”⟧ = {𝑒 ∈ 𝐸 ∣ 𝑠𝑤𝑖𝑚𝑠(𝑒)}
Verbs may take additional arguments to form a verb phrase:⟦“eat”⟧“turtles eat crustaceans” = {(𝑒, 𝑜) ∈ 𝐸 × 𝐸 ∣ 𝑒𝑎𝑡𝑠(𝑒, 𝑜)}
But since objects are often optional, a single verb word can thus have different types depending
on use: ⟦“eat”⟧“turtles eat” = {𝑒 ∈ 𝐸 ∣ ∃𝑜∶ 𝑒𝑎𝑡𝑠(𝑒, 𝑜)}
Determiners denote a relationship between predicate and subject:⟦“Some”⟧(𝐴, 𝐵) = |𝐴 ∩ 𝐵| ≥ 1
How these combine to form more complex phrases is mediated by dependency relations.

The det relation combines a noun with a determiner to create a noun phrase, which is a set of sets
of entities:

det⟦“Some”⟧⟦“turtles”⟧ = {𝐵 ⊆ 𝐸 ∣ ⟦“Some”⟧(⟦“turtles”⟧, 𝐵)} = {𝐵 ⊆ 𝐸 ∣ |𝑖𝑠𝑇 𝑢𝑟𝑡𝑙𝑒 ∩ 𝐵| ≥ 1}
5Labels used are from Universal Dependencies [NdG+16], as described in section 2.2. See

universaldependencies.org/u/dep/ for the full list.

4

universaldependencies.org/u/dep/

Noun phrases form a clause when combined with a predicate by a subj relation:

nsubj⟦“Some turtles”⟧⟦“swim”⟧ = (⟦“swim”⟧ ∈ ⟦“Some turtles”⟧)
The polarity of predicate and subject in these simple cases is determined by the determiner as
listed in Table 1.

Noun phrases are also used as objects or other arguments of verb phrases:

obj⟦“crustaceans”⟧⟦“eat”⟧ = {𝑒 ∣ 𝑒, 𝑜 ∈ 𝐸 × ⟦“crustaceans”⟧ ∩ ⟦“eat”⟧}
As with subj, obj, iobj and obl are monotone increasing in the noun phrase.

Proper nouns, pronouns and bare plurals are also noun phrases. Let ⟦“John”⟧𝑒 ∈ 𝐸 be the in-
dividual denoted by “John”. Then the corresponding proper noun is ⟦“John”⟧np = {𝐵 ⊆ 𝐸 ∣⟦“John”⟧𝑒 ∈ 𝐵} [Pet08b]. Proper nouns are thus monotone increasing. Bare plurals are more com-
plicated, but Peters [Pet08b] gives the following approximation, under which bare plurals are also
monotone increasing: ⟦“turtles”⟧np = {𝐵 ∣ ∅ ≠ ⟦“turtles”⟧ ⊆ 𝐵}
Most pronouns are upward monotone, but “nothing” and variants like “nobody”, “nowhere” etc.
are downward monotone: ⟦“nothing”⟧ = {𝐵 ⊆ 𝐸 ∣ |𝐵| ≤ 0}
Most adjectives are intersective and thus monotone increasing, i.e.

amod⟦“green”⟧⟦“turtles”⟧ = 𝑖𝑠𝐺𝑟𝑒𝑒𝑛 ∩ 𝑖𝑠𝑇 𝑢𝑟𝑡𝑙𝑒
However, to be able to model non-intersective adjectives like “former”, “fake”, and superlatives,
we model all modifiers as functions 𝑋 → 𝑋:⟦“green”⟧(𝑥) = 𝑖𝑠𝐺𝑟𝑒𝑒𝑛 ∩ 𝑥

amod 𝑑 ℎ = 𝑑(ℎ)
Intersective adjectives are still ordered by their defining property: ⟦“green”⟧ ⊑ ⟦“colored”⟧
The most obvious example of a downward-monotone modifier is negation “not”:⟦“not”⟧(𝑥vp) = 𝑥𝐶

advmod⟦“not”⟧⟦“swim”⟧ = 𝑠𝑤𝑖𝑚𝑠𝐶 = {𝑒 ∈ 𝐸 ∣ ¬𝑠𝑤𝑖𝑚𝑠(𝑒)}
as well as more specialised forms of negation like “never”, “nowhere”, etc. The denotation above
is just a special case, negation can apply to any type with final result type 𝔹 = {T, F}, including
Statements: ⟦“not”⟧(𝑥𝔹) = ¬𝑥
Nouns: ⟦“not”⟧(𝑋𝐸→𝔹) = 𝜆𝑒∶ ¬𝑋(𝑒) = 𝑋𝐶
Noun modifiers: ⟦“not”⟧(𝑓(𝐸→𝔹)→(𝐸→𝔹)) = 𝜆𝑋𝜆𝑒∶ ¬𝑓(𝑋)(𝑒) = 𝜆𝑋∶ 𝑓(𝑋)𝐶

In any case, negation is downward monotone.

5

Conjunctions (in the broad sense including not only “and” but also “or”, “but”, etc.) are monotone
increasing in both conjuncts.

conj(cc⟦“and”⟧⟦“turtles”⟧)⟦“seals”⟧ = ⟦“turtles”⟧ ∪ ⟦“seals”⟧
In case of higher-order conjuncts, if both conjuncts have the same monotonicity the conjunction
also has that monotonicity. For example, in “everybody or nobody leaves”, the monotonicities of
“everybody” and “nobody” are opposite, so the conjunction is non-monotone and the polarisation
should be “everybody↑ or↑ nobody↑ leaves=”.

Conditional expressions of the form “If X [then] Y” are monotone decreasing in 𝑋 and increasing
in 𝑌. [Mos12] The binary dependency representation of such expressions uses the advcl adverbial
clause relation:

advcl(mark⟦“if”⟧𝑋)𝑌 = (𝑋 ⟹ 𝑌)
We assume the basic interpretation of numerals used as quantifiers is ‘at most’, but context changes
the meaning of bare numerals to ‘at least’ or ‘exactly’. This strange arrangement does not make
much linguistic sense [Spe13], but it allows us to order numerals according to their natural ordering≤: ⟦“5”⟧(𝐴, 𝐵) = |𝐴 ∩ 𝐵| ≤ 5 (1)⟦“6”⟧(𝐴, 𝐵) = |𝐴 ∩ 𝐵| ≤ 6 (2)∀𝐴, 𝐵∶ ⟦“5”⟧(𝐴, 𝐵) ⊑ ⟦“6”⟧(𝐴, 𝐵) (3)

Modifiers ‘at least’, ‘at most’, ‘exactly’, etc. turn numerals into the quantifiers listed in Table 1.
More about how our system infers the intended reading of bare numerals in implementation section
3.2.

We have been assuming all phrases are to be interpreted in the same model. However, once we
introduce subclauses this simplification will not hold. For example, in the sentence “Ed believes
that the earth is flat”, we might feel justified in replacing the phrase “the earth” in “the↑ earth=
is↑ flat↑” with the more general “some planet”: “The earth is flat” ⊑ “some planet is flat.”. This
would certainly be a valid inference in our common world (even if the premise is false), but it may
not hold in the world of the subclause: Ed might not believe the earth is a planet. If our intention
is to draw inferences by applying substitutions from a single knowledge base of real-world facts,
we should in general consider verbs to be non-monotone in clausal arguments.

Some constructions do allow inference in subclauses, however. Implicatives carry entailments about
their subclauses [NCK06]. For example, the sentence “Ed forgot to lock the door” implies Ed did
not lock the door. Implications depend on the polarity of the implicative construction: in a negative
context “Ed did not forget to lock the door”, our example yields the opposite implication, Ed did
lock the door. For some implicatives, implications are only available in a positive or negative
context: “Ed was forced to lock the door” implies he did, but “Ed was not forced to lock the door”
does not imply whether he did or did not. Nairn et al [NCK06] recognise 6 implication signatures,
based on the availability and direction of entailments in positive and negative polarity contexts.
Table 2 shows the signatures, with the monotonicies specified by MacCartney&Manning [MM14].

6

class mono example (en) example (nl) interpretation
existential ↑↑ some A B sommige A B |𝐴 ∩ 𝐵| ≥ 1

↑↑ at least 𝑛 A B ten minste 𝑛 A B |𝐴 ∩ 𝐵| ≥ 𝑛
universal ↓↑ all A B alle A B |𝐴 − 𝐵| ≤ 0
non-existential ↓↓ no A B geen [enkele] A B |𝐴 ∩ 𝐵| ≤ 0

↓↓ at most 𝑛 A B hooguit 𝑛 A B |𝐴 ∩ 𝐵| ≤ 𝑛
non-universal ↑↓ not all A B niet alle A B |𝐴 − 𝐵| ≥ 0
exact == exactly 𝑛 A B exact 𝑛 A B |𝐴 ∩ 𝐵| = 𝑛
relative =↑ most A B [de] meeste A B |𝐴 ∩ 𝐵| > |𝐴 − 𝐵|
relative =↓ few A B weinig A B |𝐴 ∩ 𝐵| < 𝑝|𝐴 − 𝐵|
definite =↑ the A B de A B |𝐴 ∩ 𝐵| = |𝐴|

Table 1: Monotonicities of various kinds of determiners [Pet08a]. ↑ indicates monotone increasing,
↓ decreasing and = non-monotone. First monotonicity applies to subject, second to predicate.

example Entailment
in ↑ context

Entailment
in ↓ context monotonicity

manage to ↑ ↓ ↑
forget to ↓ ↑ ↓
force to ↑ = ↑
refuse to ↓ = ↓

attempt to = ↓ ↑
hesitate to = ↑ ↓

Table 2: Implicative signatures reproduced from Nairn et al [NCK06, Fig. 1] with monotonicities
from MacCartney&Manning [MM14, §6]. For the monotonicity column, ↑ indicates the verb is
monotone increasing in its clausal argument, ↓ monotone decreasing, and = non-monotone.

7

Another place where we need to be mindful of our model is when dealing with comparatives.
Comparatives like “more/less than”, “heavier/lighter than”, “taller/shorter than”, etc. are upward
monotone in one argument and downward monotone in the other. However, they are not monotone
with respect to the ordering on phrases we defined previously, but their own orderings.

“(Some football)↓ is ligher than (any standard basketball)↑”

Under our phrase ordering, ⟦“Some football”⟧ ⊒ ⟦“Some lead-filled football”⟧. However, under the
‘weight’ ordering ⟦“Some football”⟧ ⋣ ⟦“Some lead-filled football”⟧. Treating comparative polarity
marks the same as other polarity marks would thus lead to invalid inferences:

“Some lead-filled football is ligher than any basketball.”

Since we only have one set of polarity marks, the easiest solution would be to replace all comparative
marks with =:

“Some= football= is ligher than any= standard= basketball=”

However, we’d be missing out on some useful inferences.

“Any↓ football is ligher than a↑ basketball” ⊑ “Some football is ligher than a basket-
ball”
“5↓ footballs are ligher than 5↑ basketballs” ⊑ “4 footballs are ligher than 6 basket-
balls”

For scalar comparatives, marks on numeral quantifiers remain valid.

The comparatives “more/less” compare the size of their arguments. Since 𝐴 ⊆ 𝐵 ⟹ |𝐴| ≤ |𝐵|,
we can treat the “more/less” polarity marks as phrase polarity marks without allowing invalid
inferences.

I have omitted many details, and there are other ways to formalise this, but the common conclusion
is that upward polarity ↑ allows replacing with hypernyms (more generic words) or removing
adjectives, downward polarity ↓ allows replacing with hyponyms (more specific words) or adding
adjectives.

2.2 Parsing
Most of the polarity marking algorithms mentioned in Section 2 are based on a form of Categorial
Grammar. In Categorial Grammars, words form sentences by means of function application. Such
grammars are easily mapped to a function application based semantic model, which is ideal for
monotonicity and polarity computation. Figure 1 shows an example of CCG, the CG variant used
by Hu&Moss [HM18].

Categorial Grammars are closely related to Constituency Grammars. These similarly create a
hierarchy of constituents, but are not typed and may allow more or less child nodes. Figure 2
shows an example of the kind of phrase structures used by MacCartney & Manning’s NatLog
[MM08]. Mapping this to a semantic model is more difÏcult, requiring complex pattern matching
to recognise important constructions. We know in the example “bak” is related to “vandaag” and
“een appeltaart”, but we know very little about the nature of these relations.

8

s

np

ik

s\np(s\np)/np((s\np)/np)\((s\np)/np)
vandaag

(s\np)/np

bak

np

np/n

een

n

appeltaart

Figure 1: CCG tree for the sentence “Ik bak vandaag een appeltaart” (“I bake today an apple-pie”).
Inner nodes show constituent types. s and np are primitive types for clauses (sentences) and noun
phrases, respectively. CCG is directional: (𝑌 /𝑋) is the type of a function which takes an argument
of type 𝑋 on the right to produce a constituent of type 𝑌, (𝑌 \𝑋) instead takes a 𝑋 on the left.
(Note some grammars write 𝑋\𝑌 instead of 𝑌 \𝑋)

s

np

ik

vp

bak np

vandaag

np

een appeltaart

Figure 2: Constituency (Phrase-Structure) tree for the sentence “Ik bak vandaag een appeltaart”
(“I bake today an apple-pie”), using Penn Treebank tags: sentence s, noun phrase np, verb phrase
vp.

9

https://surdeanu.cs.arizona.edu/mihai/teaching/ista555-fall13/readings/PennTreebankConstituents.html

Dependency Grammars usually forego the phrasal constituents, focusing only on directed links
between head and dependent words. Figure 3 shows an example of Universal Dependencies (UD), a
multi-lingual dependency representation aimed at Natural Language Understanding tasks [NdG+16].

det

nsubj advmod obj
bak

ik vandaag appeltaart

een

Figure 3: Universal Dependency tree for the sentence “Ik bak vandaag een appeltaart” (“I bake
today an apple-pie”). Arrows point from head to dependent. The UD relation labels include some
information about the type of the dependent: nsubj stands for ‘Nominal Subject’, distinguishing
it from a clausal subject. See https://universaldependencies.org/u/dep/ for other relation
labels.

The labelled dependencies give us enough information to derive semantic logical forms, as shown by
Reddy et al [RTC+16]. Half-way between UD and Reddy’s logical forms are binarized dependency
trees. In Reddy et al.’s approach [RTC+16], dependency trees are first transformed into binary
trees by turning the edge labels into nodes and rotating them up such that all original lexical
nodes become leaves. When a lexical node has multiple children, we choose which to rotate first
based on the hierarchy shown in Table 4: relation labels higher in the list are placed higher in the
binarized tree. Figure 7 shows an example. The process of binarizing dependency trees is described
in more detail in Section 3.1. Each node (both lexical and relation labels) is associated with a
semantic value. In Reddy et al.’s work, these are tailored to the structure of Freebase. Because we
are only interested in polarity marking, we can use a slightly simpler representation, as in section
2.1. To get the value of a tree, the root node is applied to the value of its two child trees:𝑑𝑒𝑡⟦“een”⟧⟦“appeltaart”⟧=(𝜆𝑑𝜆ℎ∶ 𝑑(ℎ)) {(𝐴, 𝐵) ∈ 2𝐸 × 2𝐸 ∣ |𝐴 ∩ 𝐵| ≥ 1} {𝑒 ∈ 𝑖𝑠𝑃 𝑖𝑒 ∣ 𝑓𝑖𝑙𝑙𝑖𝑛𝑔(𝑒, ⟦“appel”⟧)}={𝐵 ⊆ 𝐸 ∣ |{𝑒 ∈ 𝑖𝑠𝑃 𝑖𝑒 ∣ 𝑓𝑖𝑙𝑙𝑖𝑛𝑔(𝑒, ⟦“appel”⟧)} ∩ 𝐵| ≥ 1}
Udep2Mono and our system do not explicitly perform this last step, but operate directly on the
binarized trees. We also don’t need to fully specify the value of each node, just its monotonicity
signature.

We will also consider Alpino dependencies [vdBBMvN02] and their binarizations, which provide a
slightly more sophisticated6 representation for Dutch. See Figure 4. Not shown in Figure 4 is that
unlike UD Alpino dependency structures are not always trees. This allows resolving some elided
elements and referring back to arguments of the parent clause in controlled subclauses, as in Figure
10.

6Can be automatically converted to UD, see Bouma & Van Noord [Bv17]

10

https://universaldependencies.org/u/dep/

hd det

hd su mod obj1
smain

bak ik vandaag np

appeltaart een

Figure 4: Alpino parse tree for the sentence “Ik bak vandaag een appeltaart” (“I bake today an
apple-pie”). smain is the category label for the main clause. Despite the presence of phrasal nodes
this is still a dependency structure: Every phrasal node has one head child, the other child nodes
are dependents of this head. This is shown more clearly in Fig. 5. The use of phrasal categories
(along with POS-tags, not shown here) allows the same expressivity as UD with a smaller tagset:
there’s only one subject relation su, for example. See nederbooms.ccl.kuleuven.be/php/common/
TreebankFreqsLASSY.html for other relation labels and phrasal categories. And see Bouma & Van
Noord [Bv17] for correspondence to UD tags.

det

su mod obj1
bak

ik vandaag appeltaart

een

Figure 5: Alpino parse tree as in Fig. 4, but with phrasal nodes replaced by their head nodes.
This example has the same structure as the UD parse in Fig. 3, just with different labels. This
won’t always be the case: UD prefers ‘content words’ as heads, while Alpino takes markers like
“te” (“to”) or auxiliaries like “is” as heads of their domain.

11

http://nederbooms.ccl.kuleuven.be/php/common/TreebankFreqsLASSY.html#table4
http://nederbooms.ccl.kuleuven.be/php/common/TreebankFreqsLASSY.html#table4

2.3 Polarity Marking
At this point, we have a structured representation of the composition of a statement, and each
word/token is (implicitly or explicitly) associated with a monotonicity signature.

Now there are a few ways to proceed. If you are Hai Hu or Larry Moss, you first compute monotonic-
ities of all inner nodes. Then you mark the root of your CCG parse tree ↑, look up the appropriate
polarity computation based on the CCG rule used to derive the current node, compute polarity of
child nodes and repeat for the child nodes until all nodes are marked [HM18].(𝑥 𝑚→ 𝑦)𝑑 𝑥𝑚∘𝑑𝑦𝑑 >
Figure 6: Polarization rule for CCG application rule used by Hu&Moss [HM18]. 𝑥 𝑚→ 𝑦 is the
type of a function from 𝑥 to 𝑦 with monotonicity 𝑚. 𝑥𝑑 is an expression with polarity 𝑑. The
composition operator ∘ can be applied to two monotonicities or a monotonicity and polarity. It’s
isomorphic to multiplication under {↓↦ −1, ↑↦ +1, =↦ 0}.

If however you are Zeming Chen or Qiyue Gao, you will go about it slightly differently. Again
you start at the root, you check how the current node was derived, but instead of a CCG rule
you find a dependency relation. Again you will look up the associated polarity computation rule.
But instead of just setting initial polarities and letting recursion do the rest, you pass the parent’s
polarity mark on to the function child, and initialize the argument child with ↑, as if it were an
independent tree. You recursively polarize the child trees, and only then do you determine the
monotonicity of the function child. If it turns out it is downward monotone, you flip the polarity
markings of the argument child tree; if it was non-monotone, you set them all to =. One problem
you might have noticed is that monotonicity information is not propagated up the tree. Instead
some rules, such as for determiners, will directly change their parent tree’s polarity. [CG21]

The next section provides some more details on Chen & Gao’s algorithm and the problems we
encountered when translating it to Dutch, as well as where their approach differs from that of our
alternative Alpino-based system.

3 Implementation
We first translated Chen&Gao’s Udep2Mono implementation to Dutch. We used the IWCS2021
version, available on github at github.com/eric11eca/Udep2Mono/blob/06cc712/udep2mono/
Udep2Mono.ipynb7. Some rules needed adjustments because of assumptions specific to the English
UD parse produced by Stanza, but for the most part rules could be transferred without functional
changes. The main effort was in translating the various word lists 8.

7Note the implementation in the notebook is not quite the same as the Python modules, which score a good 10
percentage points lower token accuracy on the test described in section 4. We wasted a lot of time initially working
from the IWCS2021 version, then trying the latest version, then going back to v0.2, before realising we needed the
notebook.

8See git.liacs.nl/monotonicity-marking-from-parse-trees/Udep2Mono for source code.

12

https://github.com/eric11eca/Udep2Mono/blob/06cc712009549a04ae5b4a09e3f8bd5adc128b31/udep2mono/Udep2Mono.ipynb
https://github.com/eric11eca/Udep2Mono/blob/06cc712009549a04ae5b4a09e3f8bd5adc128b31/udep2mono/Udep2Mono.ipynb
https://git.liacs.nl/monotonicity-marking-from-parse-trees/Udep2Mono/-/tree/nb

Next we reconstructed the algorithm for Alpino dependencies 9. We ended up following Udep2Mono’s
design quite closely, precluding some potential improvements. For example, Udep2Mono occasion-
ally modifies the current node’s parent tree, which makes properly implementing noun phrase
conjunctions difÏcult.

3.1 Parsing and Binarization
For Universal Dependencies parsing we use Stanza [QZZ+20]. We have to use the older Stanza
version 1.2 because Chen & Gao’s pretrained models are not compatible with newer versions. For
Dutch we used Stanza 1.2’s default models, which are trained on the automatically converted
Alpino treebank.

We wrote a simple Python client to connect to an Alpino server [vdBBMvN02].

Before we can start polarizing, we need to decide in which order to process the dependency re-
lations. Given a sentence like “Ik bak vandaag een appeltaart”, Alpino will produce a tree as in
figure 4. Following Chen&Gao we convert this into a binary tree (Fig. 7): parent-child nodes be-
come siblings with their relation label on the parent node, in case of multiple children they are
processed based on the position of their relations in the binarization hierarchy shown in Table 4.
The algorithm for binarizing an Alpino tree is almost the same as Chen&Gao’s algorithm for UD:
compare Algorithm 2 and 1. Instead of using the parent node as rightmost child we take the child
with lowest priority, which will be hd if present.

Algorithm 1 Binarization algorithm for Universal Dependencies
function Binarize(Dependency Tree 𝜏)𝐶 ← Sort𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦(Children(𝜏))

if |𝐶| = 0 then return Leaf(Token(𝜏))𝑏 ← Leaf(Token(𝜏))
for 𝑖 ← 1, |𝐶| do𝑏 ← Node(Relation(𝐶𝑖, 𝜏), Binarize(𝐶𝑖), 𝑏)
return 𝑏

Algorithm 2 Binarization algorithm for Alpino dependencies
function Binarize(Dependency Tree 𝜏)𝐶 ← Sort𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦(Children(𝜏))

if |𝐶| = 0 then return Leaf(Token(𝜏))𝑏 ← Binarize(𝐶1) ▷ head node
for 𝑖 ← 2, |𝐶| do𝑏 ← Node(Relation(𝐶𝑖, 𝜏), Binarize(𝐶𝑖), 𝑏)
return 𝑏

9See git.liacs.nl/monotonicity-marking-from-parse-trees/alp2mono for source code.

13

https://github.com/UniversalDependencies/UD_Dutch-Alpino
https://github.com/UniversalDependencies/UD_Dutch-Alpino
https://git.liacs.nl/monotonicity-marking-from-parse-trees/alp2mono

su

ik mod

vandaag obj1

det

een appeltaart

bak

Figure 7: Binarized parse tree.

3.2 Polarization
Once we have our binary tree, we polarize it from the leaves up. Nodes are initially marked ↑,
but at each internal node we apply some rules to determine whether its children should have the
polarities of their nodes flipped, set to = or otherwise modified.

Modifiers Negation modifiers like “niet” or “nooit” flip polarity marks of their sibling trees:

vandaag↑
mod

niet vandaag↓

“niet vandaag” (“not today”)

UD includes a feature Polarity=Neg to identify negation modifiers, but Chen&Gao’s models rely
on an old version of Stanza which does not use this, so we have to maintain our own word list.

Determiners Determiners take two arguments: a noun and a predicate. Since Chen&Gao’s
algorithm provides no mechanism to pass the partially-applied function up the tree, we have to
deviate from the usual top-down tree traversal and modify the parent node.

eend↑ su

??? kwaakt↑

su

det

geen-enkele eend↓

kwaakt↓

“Geen-enkele eend kwaakt” (“No duck quacks”)

Monotonicities of various kinds of determiners are shown in table 1.

14

The UD features PronType and Definite can be used to differentiate between the determiner
classes, but Chen&Gao’s models rely on an old version of Stanza which does not use this for most
determiners, so we have to maintain our own word lists.

Since rules are only applied at the internal nodes, negative pronouns and other single-token noun
phrases can’t use the parent modification strategy. The subj rules need to check for such phrases.

niemand↑ su

??? bewoog↑

su

niemand↑ bewoog↓

“niemand bewoog” (“Nobody moved”)

Udep2Mono deals with common multi-word determiners by replacing them with single words before
parsing. For example, “geen enkele” (“not any”) is replaced by “enkele”. The det rule then checks
the replaced text to determine the determiner’s monotonicities. Numeral modifiers like “at least”,
“at most”, “exactly” are also replaced with determiners, as in Fig. 8.

In Alpino2Mono, we leverage Alpino’s determiner phrases. Some additional constructions are con-
verted to determiner phrases for a more uniform analysis, as in Fig. 9. The hd of the detp de-
termines the base monotonicity, which is then modified by any number of modifiers or additional
determiners. This allows it to handle more complex determiners than Udep2Mono’s approach, like
“niet minder dan 5” (“not less than 5”).

amod

nmod

nsubj

slapen

honden

vijf

minstens
(a) Stanza parse

det nmod

nsubj

slapen

honden

sommige
(minstens) vijf

(b) Udep2Mono augmented parse

Figure 8: UD parse tree and Udep2Mono augmented tree for “Minstens vijf honden slapen” (“At-
least five dogs sleep”)

Superlatives Superlatives (“tallest”, “smallest”, etc.) are non-monotone.

15

mod det hd

su hd
smain

np

minstens vijf honden

slapen

(a) Alpino parse tree

mod hd

det hd

su hd
smain

np

detp

minstens vijf

honden

slapen

(b) Augmented Alpino parse tree

Figure 9: (Augmented) Alpino parse for “Minstens vijf honden slapen” (“At-least five dogs sleep”).
The similar phrase “Meer dan vier honden slapen” would get parsed with a detp, so we convert
cases like this to that form.

ontwikkelingen↑
mod

laatste ontwikkelingen=

“[de] laatste ontwikkelingen” (“[the] latest developments”)]

They are identified by the UD feature Degree=Sup or the Alpino feature graad=sup.

Conjunctions UD prefers content words as heads, so one of the conjuncts is the head of the
conjunction. The coordinator is attached as a dependent of the other conjunct.

Alpino instead takes the coordinator as head. This gives equal treatment of the conjuncts, but
does mean that in some edge cases the conjunction has no head: “zijn er verder nog vragen,
opmerkingen?” [vSB24, 596].

Since our system does not implement unification of conjunct monotonicities yet, this difference
does not have much effect.

Conditionals In English conditional expressions can be easily identified by the presence of words
like “if” and “whenever”. In Dutch, however, “als” (“if”) has multiple functions, and we need some
heuristic to tell them apart. For example, compare

“Als het regent komt hij altijd op het verkeerde moment” (“Whenever it rains, he
arrives at the wrong time”)
“Als regen komt hij altijd op het verkeerde moment” (“Like rain, he always arrives at
the wrong time)

In both cases Stanza parses “als” as mark of “regen(t)” which is advcl of the root. I have chosen
quite an unfortunate example, because the heuristic we use assumes in the second example “regen”

16

would get dependency relation advmod, as it is not a clause, allowing us to disambiguate the uses
of “als”. With alpino, we look at the syntactic category of “als (het) regen(t)”: in the first case it
is a verbal category smain, indicating a conditional expression, whereas in the second case it is
the nominal category np, indicating no conditional expression.

Implicatives For Alpino2Mono, we follow MacCartney’s interpretation [Mac09, §6.3.4] of Nairn
et al.’s implicatives inventory [NCK06]. It is likely we missed some common implicatives, as
we translated https://web.stanford.edu/group/csli_faust/Lexical_Resources/Polarity-
Lexicon-of-Verbs/simple-implicatives/ to Dutch rather than composing our own list. Phrasal
implicatives [Kar12] are not implemented.

su

ik obj1↑

det↑

enkele↑ lampen↑

doof↑

su

ik vc

body

obj1↓

det↓

enkele↓ lampen↓

doven↓

te

vergat

“ik vergat enkele lampen te doven” (“I forgot to turn-off some lights”)

Udep2Mono uses a different list of implicatives, which we translated for the Dutch version. Udep2Mono
only checks the head verb (for example, it does not differentiate between “forget to” and “forget
that”, while Nairn et al don’t consider the latter an implicative.). The word list also includes some
questionable choices, leading to polarizations like the following:

“I↑ desinfect↑ a↓ wound↓” ⊑ “I desinfect a burn wound”

Ellipsis Though Alpino dependencies are able to represent elided elements as in Figure 10, the
Alpino parser is unable to recognise this in most cases, leading to poor quality parse trees as
in Figure 11. Here the parser was unable to establish the relation between “jij” and “je paraplu”
because of the elision of “vergat te pakken”, and has fallen back on the uninformative dp (Discourse
Part) relation.

Basic UD does not represent elided elements. In case of predicate elision, (if there are no cop or
aux) the most core argument is moved into the predicate’s position, and all other arguments are
attached to it as orphans. Figure 12b shows an example. While it is possible to reconstruct the
elided relations in some cases, Udep2Mono does not attempt to do this, because the old Stanza
models it works with often don’t correctly parse sentences with ellipsis anyway. See for example
Fig. 12a, where contrary to UD guidelines a predicate has two objs, and a nsubj is not attached
to a predicate.

17

https://web.stanford.edu/group/csli_faust/Lexical_Resources/Polarity-Lexicon-of-Verbs/simple-implicatives/
https://web.stanford.edu/group/csli_faust/Lexical_Resources/Polarity-Lexicon-of-Verbs/simple-implicatives/

det hd

su obj1 hd

cmp body

su hd vc

det hd

su obj1 hd

cmpbody

hd su vc

cnj crd cnj

conj

smain

1:Ik 2:vergat ti

3:te inf

1 np

mijn jas

4:pakken

en smain

2 5:Jij ti

3 inf

5 np

je paraplu

4

Figure 10: Ideal Alpino parse tree for “Ik vergat mijn jas te pakken en jij je paraplu” (“I forgot to
get my jacket and you your umbrella”). Numbers without nodes represent connections to a node
with that number.

det hd

obj1 hd

cmpbody

su hd vc

det hd

dp dp

cnj crd cnj

conj

smain

Ik vergat ti

te inf

np

mijn jas

pakken

en du

jij np

je paraplu

su

Figure 11: Actual Alpino parse tree for “Ik vergat mijn jas te pakken en jij je paraplu” (“I forgot
to get my jacket and you your umbrella”)

18

nmod:poss cc nsubj nmod:poss

obj mark obj

nsubjxcomp
vergat

ik pakken

jas

mijn

te paraplu

en jij je

(a) Stanza 1.2 (incorrect)

nmod:poss

obj mark

nmod:poss

cc orphan

nsubj xcomp conj

vergat

ik pakken

jas

mijn

te

jij

en paraplu

je

(b) Stanza 1.6

Figure 12: UD parse trees for “Ik vergat mijn jas te pakken en jij je paraplu” (“I forgot to get my
jacket and you your umbrella”)

Bare numerals In the absence of numeral operators, the safest option is to mark numerals =:

“I↑ want↑ 4= apples↑”

But sometimes the intended reading is “at least” or “at most” rather than exact:

“I↑ bought↑ 4↓ apples↑” ⊑ “I bought 3 apples”

The current implementation recognises this for objects of a handful of verbs.

Comparatives Udep2Mono recognises a number of scalar comparatives, but only correctly po-
larizes the standard of comparison (“12 tennis balls”), not the entity being compared (“two stan-
dard footballs”):

Expected: “two↑ standard footballs are↑ heavier↑ than↑ 12↓ tennis balls”
Udep2Mono: “two= standard= footballs= are↑ heavier↑ than↑ 12↓ tennis= balls=”

Alpino2Mono is currently limited to the special case “more/less than”:

“Minder↑ honden↓ dan↑ katten↑ zitten=”

4 Results
Table 3 shows accuracy on the small evaluation dataset used by Chen & Gao and originally from Hu
& Moss [HM20]. This dataset was hand-crafted to cover various quantifiers in combination with
conditionals and conjunctions. It does not specifically cover other interesting polarity-affecting
phenomena like implicatives.

We translated the 56 test sentences included in the Udep2Mono repository to Dutch, preferring
dependency structure preserving translations but choosing more natural translations where appro-
priate 10. It turns out these are slightly different from the ones used for the results reported in

10The translations can be found at git.liacs.nl/monotonicity-marking-from-parse-trees/Udep2Mono/-/

19

https://git.liacs.nl/monotonicity-marking-from-parse-trees/Udep2Mono/-/blob/nb/data/gold-nl/gold-nl.label.txt?ref_type=heads
https://git.liacs.nl/monotonicity-marking-from-parse-trees/Udep2Mono/-/blob/nb/data/gold-nl/gold-nl.label.txt?ref_type=heads

lang system token-level
all-tokens

sentence-level
all-tokens

token-level
key-tokens

sentence-level
key-tokens

NL Alpino2Mono 85.6 58.9 83.8 62.5
NL Udep2Mono 87.9 55.4 86.9 62.5
EN Udep2Mono 96.5 87.5 96.5 89.2
EN CCG2Mono 76.0 44.6 78.2 50.0

Table 3: Accuracy on 56 (translated) gold-label test sentences used in Chen&Gao’s paper. Key-
token accuracy considers only marks on nouns, numbers, verbs, adjectives, and determiners. For
English, this corresponds to the Penn POS tags CD, DT, JJ, NN, NNS, RB, RBR, RBS, VB,
VBD, VBG, VBN, VBP, and VBZ. For Dutch the UD POS tags ADJ, ADV, DET, NOUN, NUM,
and VERB. Results of Udep2Mono are taken from Chen&Gao’s paper [CG21] and verified using
the provided source code at https://github.com/eric11eca/Udep2Mono. Results of CCG2Mono
are taken from Hu&Moss’ second CCG2Mono paper [HM20].

Chen & Gao’s paper [CG21], but the differences are small enough that the translations could be
the same.

The direct translation of Udep2Mono from English to Dutch UD results in a substantial decrease
in accuracy (Though still outperforming the pre-Udep2Mono state of the art). Unfortunately, our
alternative Alpino-based polarity marker does not do much better. In the next sections we will
look at the sources of the various polarity marking errors in detail.

4.1 Parsing Errors
The polarization system relies on correct dependency parses from Stanza or Alpino.

Because the English models are not compatible with newer versions, we used Stanza version 1.2
for both languages. In retrospect it would have been better to use a different version for Dutch, as
many of the parsing errors we observed do not occur with newer Stanza versions; see Fig. 15 for
an example.

The Alpino parser is of course also not perfect. While a bad Stanza parse usually means a single
node gets the wrong dependency label, a bad Alpino parse often results in many nodes with
uninformative dp (discourse part) labels or not attached to the tree at all. Figure 16 shows an
example.

For Dutch UD, 5 sentences were polarized incorrectly due to parsing errors, accounting for up to11

7.1 percentage points of sentence level accuracy and 2 points of token level accuracy.

With the Alpino parser, only 3 sentences were parsed incorrectly, but the parsing errors were more
severe, accounting for up to 2.6 points of token accuracy but only 5.4 points sentence accuracy.

blob/nb/data/gold-nl/gold-nl.label.txt. These are based on data/gold/gold.label.txt in the Udep2Mono
repository. The labels used in Chen&Gao’s paper are in the attachment to https://aclanthology.org/
2021.iwcs-1.12/.

11‘up to’, because this assumes the sentences would be polarized correctly had they been parsed correctly.

20

https://git.liacs.nl/monotonicity-marking-from-parse-trees/Udep2Mono/-/blob/nb/data/gold-nl/gold-nl.label.txt?ref_type=heads
https://git.liacs.nl/monotonicity-marking-from-parse-trees/Udep2Mono/-/blob/nb/data/gold-nl/gold-nl.label.txt?ref_type=heads
https://git.liacs.nl/monotonicity-marking-from-parse-trees/alp2mono/-/tree/a291fa51f6fb97c9f2b0ac197dca13acaeea6453
https://git.liacs.nl/monotonicity-marking-from-parse-trees/Udep2Mono/-/tree/a9e13e9872f0c01021cd89791a77823c8999f1cb
https://github.com/eric11eca/Udep2Mono
https://git.liacs.nl/monotonicity-marking-from-parse-trees/Udep2Mono/-/blob/nb/data/gold-nl/gold-nl.label.txt?ref_type=heads
https://git.liacs.nl/monotonicity-marking-from-parse-trees/Udep2Mono/-/blob/nb/data/gold-nl/gold-nl.label.txt?ref_type=heads
https://git.liacs.nl/monotonicity-marking-from-parse-trees/Udep2Mono/-/blob/nb/data/gold-nl/gold-nl.label.txt?ref_type=heads
https://git.liacs.nl/monotonicity-marking-from-parse-trees/Udep2Mono/-/blob/nb/data/gold-nl/gold-nl.label.txt?ref_type=heads
https://git.liacs.nl/monotonicity-marking-from-parse-trees/Udep2Mono/-/blob/nb/data/gold-nl/gold-nl.label.txt?ref_type=heads
https://git.liacs.nl/monotonicity-marking-from-parse-trees/Udep2Mono/-/blob/nb/data/gold-nl/gold-nl.label.txt?ref_type=heads
https://git.liacs.nl/monotonicity-marking-from-parse-trees/Udep2Mono/-/blob/nb/data/gold-nl/gold-nl.label.txt?ref_type=heads
https://git.liacs.nl/monotonicity-marking-from-parse-trees/Udep2Mono/-/blob/nb/data/gold-nl/gold-nl.label.txt?ref_type=heads
https://git.liacs.nl/monotonicity-marking-from-parse-trees/Udep2Mono/-/blob/nb/data/gold-nl/gold-nl.label.txt?ref_type=heads
https://git.liacs.nl/monotonicity-marking-from-parse-trees/Udep2Mono/-/blob/nb/data/gold-nl/gold-nl.label.txt?ref_type=heads
https://git.liacs.nl/monotonicity-marking-from-parse-trees/Udep2Mono/-/blob/nb/data/gold-nl/gold-nl.label.txt?ref_type=heads
https://git.liacs.nl/monotonicity-marking-from-parse-trees/Udep2Mono/-/blob/nb/data/gold-nl/gold-nl.label.txt?ref_type=heads
https://git.liacs.nl/monotonicity-marking-from-parse-trees/Udep2Mono/-/blob/nb/data/gold-nl/gold-nl.label.txt?ref_type=heads
https://git.liacs.nl/monotonicity-marking-from-parse-trees/Udep2Mono/-/blob/nb/data/gold-nl/gold-nl.label.txt?ref_type=heads
https://git.liacs.nl/monotonicity-marking-from-parse-trees/Udep2Mono/-/blob/nb/data/gold-nl/gold-nl.label.txt?ref_type=heads
https://git.liacs.nl/monotonicity-marking-from-parse-trees/Udep2Mono/-/blob/nb/data/gold-nl/gold-nl.label.txt?ref_type=heads
https://git.liacs.nl/monotonicity-marking-from-parse-trees/Udep2Mono/-/blob/nb/data/gold-nl/gold-nl.label.txt?ref_type=heads
https://git.liacs.nl/monotonicity-marking-from-parse-trees/Udep2Mono/-/blob/nb/data/gold-nl/gold-nl.label.txt?ref_type=heads
https://git.liacs.nl/monotonicity-marking-from-parse-trees/Udep2Mono/-/blob/nb/data/gold-nl/gold-nl.label.txt?ref_type=heads
https://git.liacs.nl/monotonicity-marking-from-parse-trees/Udep2Mono/-/blob/nb/data/gold-nl/gold-nl.label.txt?ref_type=heads
https://git.liacs.nl/monotonicity-marking-from-parse-trees/Udep2Mono/-/blob/nb/data/gold-nl/gold-nl.label.txt?ref_type=heads
https://github.com/eric11eca/Udep2Mono/blob/master/data/gold/gold.label.txt
https://github.com/eric11eca/Udep2Mono/blob/master/data/gold/gold.label.txt
https://github.com/eric11eca/Udep2Mono/blob/master/data/gold/gold.label.txt
https://aclanthology.org/2021.iwcs-1.12/
https://aclanthology.org/2021.iwcs-1.12/

While the English UD parse sometimes deviates from UD guidelines, Chen & Gao’s implementation
works around these various deviations. While effective, it undermines the multilingual ability of
UD and prevents upgrading to better parsers.

4.2 Labelling Disagreement
We disagree with a few of the labels in the English test set, but have nonetheless preserved these
in the Dutch translation.

Intended reading of bare numerals

“Five↑ dogs= see= at= least= six= cats=”
“Vijf↑ honden= zien= minstens= zes= katten=”

It is not obvious to me why anything beyond “dogs” should be marked =, as it seems upward
inference is possible: “Five dogs= see↑ at-least-six↑ cats↑” ⟹ “Five dogs observe some mammals”
Hu&Moss chose the “Exactly five” reading, whereas to me the “At least five” reading seems more
natural.

“At least” operator in negative context

“No↑ dentist↓ who↓ recommends↓ that↓ their↓ patients↓ brush↓ their↓ teeth↓ at↓ least↓
four↓ times↓ a↓ day↓ gave↓ five↓ patients↓ a↓ toothbrush↓”
“Geen↑ enkele↓ tandarts↓ die↓ aanbeveelt↓ dat↓ haar↓ patiënten↓ hun↓ tanden↓ ten↓
minste↓ vier↓ keer↓ per↓ dag↓ poetsen↓ gaf↓ vijf↓ patiënten↓ een↓ tandenborstel↓”

It seems reasonable to me that “four” in “at least four times a day” should be marked ↑ rather than
↓. This is how it is labelled in a similar sentence: “Three= out↓ of↓ five= dentists↑ recommend↑
that↑ their↑ patients↑ brush↑ their↑ teeth↑ at↑ least↑ four↓ times↑ a↑ day↑” The current label
would allow inferring “No dentist who recommends that their patients brush their teeth at least
three times a day gave five patients a toothbrush” which does not seem to follow from the premise.

Multi-word quantifiers

“Some↑ but↑ not↑ all↑ students↑ cheated↑ in↑ this↑ class=”
“Sommige↑ maar↑ niet↑ alle↑ studenten↑ speelden↑ vals↑ in↑ deze↑ les=”

multi-word quantifiers should be internally polarized, as in this other label: “Not↑ every↓ stu-
dent↑ likes↓ semantics↓”. Hu&Moss’ CCG2Mono collapses multi-word quantifiers into single tokens
“some-but-not-all”, so this how the original labels were formatted. Chen&Gao presumably missed
this one when expanding the quantifiers again and did not notice because their system happened
to make the same mistake.

4.3 Udep2Mono Failing to Generalize to Dutch
Verb sense The verbs “like” and “love” occur quite often in the test sentences. Udep2Mono calls
these ‘exactly-implicatives’, as they suggest an ‘Exactly’ reading for bare numerals in their scope
(both subject and object). The Dutch translation of both verbs would be “houden van”.

21

“Three= dogs= love↑ four= cats=”
“Drie= honden= houden↑ van↑ vier= katten=”

Udep2Mono does not check case markers when determining verb properties, and ‘houden’ on its
own is not an ‘exactly-implicative’, so it does not correctly polarize the Dutch translation above.

Alpino provides a convenient attribute sense which contains the verb stem with any associated
auxiliaries and case markers, but in UD we can still just look at the dependents of any (i)obj and
obl dependents to find case markers, it’s just not something we implemented (yet).

Duration case marker English uses a duration case marker “for”, as in “A↑ dog↑ [..] was↑
sick↑ for↑ three↓ days↓”. In Dutch such a marker is usually omitted: “Een↑ hond↑ [..] was↑ drie↓
dagen↓ ziek↑”. This makes it difÏcult to distinguish durations from other nominal modifiers, like
“Een hond [..] was drie keer ziek”, as both have identical dependency structures.

Parser-specific assumptions about binarized structure Udep2Mono sometimes has too
much faith in its binarization process. In the following example,

“Few↑ math↓ students↓ love↓ any↓ subject↓ in↓ linguistics↓”
“Weinig↑ wiskunde↓ studenten↓ houden↓ van↓ enig↓ onderwerp↓ in↓ de↓ taalkunde=”

In the Dutch UD parse “wiskunde” is considered a nominal modifier of “studenten”, whereas in
the English parse “math students” is considered a compound. Both interpretations seem valid, but
Udep2Mono fails on the first.

“Weinig↑ wiskunde↓ studenten↓ houden↓ van↓ enig↓ onderwerp↓ in↓ de↓ taalkunde=”

This happens because in the binarized tree the nmod gets placed between the det and its predicate,
so when the det rule negates its parent, it actually just negates “wiskunde”.

Reliance on non-UD behaviour I noted previously that Udep2Mono sometimes expects de-
pendency trees which do not follow UD guidelines. For example, with the following sentences:

“More↑ dogs↑ than↑ cats↓ sit=”
“Meer↑ honden↑ dan↑ katten↓ zitten=”

For the English version Chen&Gao’s models produce the parse shown in Fig. 13a. Contrary to UD
guidelines, It takes “dogs” as the root rather than the verb “sit”, which it attaches as a single-token
relative clause. Stanza’s default Dutch models produce the parse in Fig. 13b, which does conform
to the guidelines.

I don’t know whether these odd parses are an intentional feature of Chen&Gao’s custom models
or just a strange idiosyncrasy they have worked around.

Unanticipated parsing variations

“If↑ you↓ are↓ addicted↓ to↓ cigarettes↓, you↑ can↑ smoke↑ two↓ a↑ day↑”
“Als↑ je↓ verslaafd↓ bent↓ aan↓ sigaretten↓, kun↑ je↑ er↑ twee↓ per↑ dag↑ roken↑”

22

https://universaldependencies.org/u/dep/compound
https://universaldependencies.org/workgroups/comparatives.html
https://universaldependencies.org/workgroups/comparatives.html

case

amod nmod acl:relcl

dogs

fewer cats

than

sit

(a) Dependency parse of “Fewer dogs than cats
sit” with Chen&Gao’s models

mark

amod nmod

nsubj
zitten

honden

minder katten

dan
(b) Dependency parse of “Minder honden dan
katten zitten” with Stanza v1.2 Dutch models

In the Dutch parse of the above, “er twee per dag” is considered an oblique argument rather
than an object, evading Udep2Mono’s mechanism for changing the interpretation of bare numerals
under verbs like “smoke” to at-least.

4.4 Udep2Mono Features Not Implemented in Alpino2Mono
In our effort to re-implement Udep2Mono’s features in a more robust way, without relying on
brittle heuristics, many features did not get implemented at all.

Bare plurals Udep2Mono correctly polarizes the following, while Alpino2Mono marks it all ↑:

“Cats↓ who↓ like↓ squirrels↓ hate↑ dogs↑”
“Katten↓ die↓ houden↓ van↓ eekhoorns↓ haten↑ honden↑”

Udep2Mono succeeds because it negates relative clauses (“katten die houden van eekhoorns”) if
they are the first tokens of the sentence. This is an interesting heuristic for the “All” reading of
bare plurals, but it is insufÏcient or incorrect in cases such as the following:

“Cats are mammals”
“Cats who like squirrels are uncommon”

Of course, it’s easy criticizing others’ work, but we did not come up with an alternative all-
encompassing bare plural strategy either.

Bare numerals in clausal complements Udep2Mono has a list of ‘willing verbs’, which cause
numerals and determiners in their scope to equalize their arguments (only the noun in case of
numerals and both noun and predicate in case of other determiners). This allows it to correctly
polarize the following, while Alpino2Mono fails:

Label: “Er↑ is↑ een↑ hond↑ in↑ het↑ huis=, die↑ drie= koekjes= wil↑ eten↑”
Alpino2Mono: “Er↑ is↑ een↑ hond↑ in↑ het↑ huis= , die↑ drie= koekjes↑ wil↑ eten↑”

We do have a somewhat related ‘numeric base assumption’ system for bare numerals, but that
only looks at the closest verb head, “eten” in this case, not the entire stack (“is”, “wil”, “eten”).

23

“All but 𝑛”

English: “All↑ but↑ five= dogs= died=”
Dutch Label: “Alle↑ honden= op↑ vijf= na↑ stierven=”
Alpino2Mono: “Alle↑ honden↓ op↓ vijf= na↓ stierven↑”

“All but five” forms a single quantifier, but in both UD and Alpino dependencies, the “but five”
is considered a modifier of the noun phrase “All dogs”, rather than of the determiner “All”.
Udep2Mono includes some dedicated logic just to deal with this special case. Alpino2Mono does
not, in the expectation that at some point we would overhaul how we deal with higher-order func-
tions so we can elegantly implement this for all kinds of modifiers. (Of course, that just means it
will never get done.)

Implemenation oversight

English: “John↑ is↑ dancing↑ without↑ clothes↓”
Dutch Label: “John↑ danst↑ zonder↑ kleding↓”
Alpino2Mono: “John↑ danst↑ zonder↑ kleding↑”

“A without B” is downward monotone in B, but we did not think to implement it as such.

Conjunction coordinator polarity

English: “Ursula↑ refused↑ to↑ sing↓ or↑ dance↓”
Dutch Label: “Ursula↑ weigerde↑ te↑ zingen↓ of↑ dansen↓”
Alpino2Mono: “Ursula↑ weigerde↑ te↓ zingen↓ of↓ dansen↓”

Alpino2Mono just negates the entire subclause, while Udep2Mono correctly distributes across “or”.

5 Comparison of Alpino and Universal Dependencies for
Polarity Marking

We wanted to see whether Alpino dependencies offered an advantage over UD for polarity marking
Dutch; No such advantage has been demonstrated.

Phrasal nodes Phrasal nodes are convenient to work with, but don’t seem to provide any useful
information which could not be extracted from UD annotations.

Co-indexed nodes for relative clauses The ability to refer back to nodes in the parent clause
seems useful. However, in actuality cases where it provides an advantage over UD are rare. If the
outer node is not the subject of the relative clause, it will not have any effect on polarity (in our
semantic model). If it is subject of both clauses, in the current implementation predicate polarity
flips due to the outer node will also be applied in the relative clause, so no special treatment
is needed here either. If the node is not subject of the outer clause but is subject of the inner
clause, the coindexing could be useful (Fig. 14a). However, in most such situations Stanza’s Dutch
UD parser would annotate the relative clause as xcomp (Fig. 14b), which strongly suggests that

24

the object of the outer clause is the subject of the inner clause, covering most common cases. I
specifically specified the Dutch UD parser here, because in English UD parses the node would
simply only be attached as subject of the inner clause (Fig. 14c), which already results in correct
polarization (again, in our current model where objects have no effect on polarity).

hd

su hd obj1 vc
smain

ik hoor haar inf

zingen
su

(a) Alpino

nsubj
xcomp

obj
hoor

ik zingen haar
(b) Stanza Dutch UD

nsubj

nsubj ccomp
hear

I sing

her
(c) Stanza English UD

Figure 14: Parses for “Ik hoor haar zingen” (“I hear her sing”).

Perhaps coindexing has some use in factive constructions, but we did not have time to implement
those.

Co-indexed nodes for questions Alpino also uses co-indexing for referring back to question
heads (who/what/where/etc.) as arguments of the question body. UD just skips this extra layer
and only has body annotations. Question sentences can be easily recognised by the presence of
a question mark, in nested clauses I don’t think there’s any benefit to treating question heads
different from pronouns.

6 Discussion
We built a functioning polarity marking system for Dutch (two in fact), but performance is not
on par with English yet. Even in this state, it may be of some use in natural language inference or
data augmentation. CCG2Mono, for example, was used in creating the MED dataset while having
worse accuracy on the dataset described in section 4. 12

A few things are holding our system back: Parser accuracy tends to be lower for Dutch than
English. Our semantic model makes many simplifying assumptions, and various features of the
implementation are not backed by theory. Given the limited evaluation data, assessing the robust-
ness of such ad-hoc features is difÏcult. But there’s also more work to be done implementing such
features, like support for factives, better rules for bare numerals and bare plurals, non-intersective
adjectives, proportional quantifiers, scalar comparatives, etc:

Factives Earlier we saw implicatives allow inference in subclauses. Factives similarly allow in-
ference in subclauses, but unlike implicative constructions they are not affected by the polarity of
their context. An example will make this difference more clear.

12Though it is important to recognise the difference in sources of error. CCG2Mono is theoretically sound, errors
come from bad parses or simplifying assumptions in the model. We also suffer the same problems, but in addition
there are a lot of odd heuristic rules which need to be carefully balanced to cover as many relevant situations as
possible while minimising false positives.

25

”Forget to” is an implicative. ”I Forget to close the door” implies I did not close the door; ”I did
not forget to close the door” implies I did. It effectively acts as a monotone decreasing operator
on subclauses.

”Forget that” is a factive. ”I forgot that the door was closed” implies the door was closed; ”I did not
forget that the door was closed” also implies the door was closed. This polarity-ignoring behaviour
does not fit neatly into the single-pass polarity-flipping strategy of Udep2Mono.

Bare Numerals As mentioned in section 3.2, we use some simple heuristics to determine whether
numeral quantifiers without modifiers are treated as “at least” or “exactly”. While a complete
disambiguation of bare numerals might be out of reach, the current heuristics are rather ad-hoc,
and it might be beneficial to replace them with a more theoretically grounded system. [Spe13].

Bare Plurals Another point of ambiguity are plurals without quantifiers. As we saw in 4.4,
Udep2Mono’s heuristic for disambiguating between the universal and existential readings of bare
plurals is seriously flawed. Again, we should strive for a more robust system backed by theory.
[Car77]

Non-Intersective Adjectives We assume all adjectives are intersective and therefore upward
monotone, but this obviously does not hold for adjectives like “fake”, “former”.

Proportional Quantifiers The fraction operator / is downward monotone in its right argument,
but implementing this for all its possible natural language renditions – “one in three”, “one out of
five”, “two thirds”, etc. – requires some care to avoid false positives.

Scalar Comparatives As mentioned in section 3.2, scalar comparatives like “two footballs are
heavier than 12 tennis balls” are not (properly) implemented. The difÏcult part is determining the
scope of the entity being compared.

7 Conclusions and Further Research
We translated Chen & Gao’s polarity marking system Udep2Mono to Dutch and built an alter-
native system based on Alpino dependencies rather than Universal Dependencies. Unfortunately,
we did not manage to leverage Alpino features to improve on the accuracy of the UD system. A
number of improvements are yet to be made; if these can lead to a sufÏcient increase in accuracy,
also beyond the small evaluation dataset used here, an obvious next step would be integrating the
system in a natural language inference system like MonaLog [HCR+20].

References
[Ber02] R. A. Bernardi. Reasoning with Polarity in Categorial Type Logic, October 2002.

[Bv17] Gosse Bouma and Gertjan van Noord. Increasing Return on Annotation Invest-
ment: The Automatic Construction of a Universal Dependency Treebank for Dutch.

26

https://dspace.library.uu.nl/handle/1874/614
https://aclanthology.org/W17-0403
https://aclanthology.org/W17-0403

In Marie-Catherine de Marneffe, Joakim Nivre, and Sebastian Schuster, editors,
Proceedings of the NoDaLiDa 2017 Workshop on Universal Dependencies (UDW
2017), pages 19–26, Gothenburg, Sweden, May 2017. Association for Computa-
tional Linguistics.

[Car77] Greg N. Carlson. A Unified Analysis of the English Bare Plural. Linguistics and
Philosophy, 1(3):413–456, 1977.

[CG21] Zeming Chen and Qiyue Gao. Monotonicity Marking from Universal Dependency
Trees. In Proceedings of the 14th International Conference on Computational Se-
mantics (IWCS), pages 121–131, Groningen, The Netherlands (online), June 2021.
Association for Computational Linguistics.

[CGM21] Zeming Chen, Qiyue Gao, and Lawrence S. Moss. NeuralLog: Natural Language
Inference with Joint Neural and Logical Reasoning. In Proceedings of *SEM 2021:
The Tenth Joint Conference on Lexical and Computational Semantics, pages 78–88,
Online, August 2021. Association for Computational Linguistics.

[DCLT19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding, May
2019.

[Dow94] David Dowty. The Role of Negative Polarity and Concord Marking in Natural
Language Reasoning. Semantics and Linguistic Theory, 4:114, November 1994.

[HCR+20] Hai Hu, Qi Chen, Kyle Richardson, Atreyee Mukherjee, Lawrence Moss, and San-
dra Kübler. MonaLog: A Lightweight System for Natural Language Inference
Based on Monotonicity. Proceedings of the Society for Computation in Linguistics,
3(1):319–329, January 2020.

[HM18] Hai Hu and Larry Moss. Polarity Computations in Flexible Categorial Gram-
mar. In Proceedings of the Seventh Joint Conference on Lexical and Computational
Semantics, pages 124–129, New Orleans, Louisiana, June 2018. Association for
Computational Linguistics.

[HM20] Hai Hu and Larry Moss. An Automatic Monotonicity Annotation Tool Based on
CCG Trees. In Second Tsinghua Interdisciplinary Workshop on Logic, Language,
and Meaning: Monotonicity in Logic and Language, 2020.

[IIM14] Thomas F. Icard III and Lawrence S. Moss. Recent Progress on Monotonicity.
Linguistic Issues in Language Technology, 9, 2014.

[Kar12] Lauri Karttunen. Simple and Phrasal Implicatives. In Eneko Agirre, Johan Bos,
Mona Diab, Suresh Manandhar, Yuval Marton, and Deniz Yuret, editors, *SEM
2012: The First Joint Conference on Lexical and Computational Semantics – Vol-
ume 1: Proceedings of the Main Conference and the Shared Task, and Volume 2:
Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval
2012), pages 124–131, Montréal, Canada, July 2012. Association for Computational
Linguistics.

27

https://www.jstor.org.ezproxy.leidenuniv.nl:2048/stable/25000971
https://aclanthology.org/2021.iwcs-1.12
https://aclanthology.org/2021.iwcs-1.12
https://doi.org/10.18653/v1/2021.starsem-1.7
https://doi.org/10.18653/v1/2021.starsem-1.7
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.3765/salt.v4i0.2461
https://doi.org/10.3765/salt.v4i0.2461
https://doi.org/10.7275/te06-g113
https://doi.org/10.7275/te06-g113
https://doi.org/10.18653/v1/S18-2015
https://doi.org/10.18653/v1/S18-2015
https://huhailinguist.github.io/projects/tsinghua_wkshp_2020.pdf
https://huhailinguist.github.io/projects/tsinghua_wkshp_2020.pdf
https://aclanthology.org/2014.lilt-9.7
https://aclanthology.org/S12-1020

[LMV+18] José-de-Jesús Lavalle-Martínez, Manuel Montes-y-Gómez, Luis Villaseñor-Pineda,
Héctor Jiménez-Salazar, and Ismael-Everardo Bárcenas-Patiño. Equivalences
Among Polarity Algorithms. Studia Logica, 106(2):371–395, April 2018.

[LNT+23] Hanmeng Liu, Ruoxi Ning, Zhiyang Teng, Jian Liu, Qiji Zhou, and Yue Zhang.
Evaluating the Logical Reasoning Ability of ChatGPT and GPT-4, May 2023.

[Mac09] Bill MacCartney. Natural Language Inference. PhD thesis, Stanford, 2009.

[MM08] Bill MacCartney and Christopher D. Manning. Modeling Semantic Containment
and Exclusion in Natural Language Inference. In Donia Scott and Hans Uszkoreit,
editors, Proceedings of the 22nd International Conference on Computational Lin-
guistics (Coling 2008), pages 521–528, Manchester, UK, August 2008. Coling 2008
Organizing Committee.

[MM14] Bill MacCartney and Christopher D. Manning. Natural Logic and Natural Lan-
guage Inference. In Harry Bunt, Johan Bos, and Stephen Pulman, editors, Com-
puting Meaning, volume 47, pages 129–147. Springer Netherlands, Dordrecht, 2014.

[Mos12] Lawrence S. Moss. The Soundness of Internalized Polarity Marking. Studia Logica,
100(4):683–704, August 2012.

[NCK06] Rowan Nairn, Cleo Condoravdi, and Lauri Karttunen. Computing relative polarity
for textual inference. In Johan Bos and Alexander Koller, editors, Proceedings of the
Fifth International Workshop on Inference in Computational Semantics (ICoS-5),
2006.

[NdG+16] Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg, Jan Ha-
jič, Christopher D. Manning, Ryan McDonald, Slav Petrov, Sampo Pyysalo, Natalia
Silveira, Reut Tsarfaty, and Daniel Zeman. Universal Dependencies v1: A Multi-
lingual Treebank Collection. In Proceedings of the Tenth International Conference
on Language Resources and Evaluation (LREC’16), pages 1659–1666, Portorož,
Slovenia, May 2016. European Language Resources Association (ELRA).

[Pet08a] Stanley Peters. Monotone Quantifiers. In Stanley Peters and Dag Westerståhl,
editors, Quantifiers in Language and Logic, page 0. Oxford University Press, May
2008.

[Pet08b] Stanley Peters. Type 〈1〉 Quantifiers of Natural and Logical Languages. In Stanley
Peters and Dag Westerståhl, editors, Quantifiers in Language and Logic, page 0.
Oxford University Press, May 2008.

[QZZ+20] Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and Christopher D. Man-
ning. Stanza: A Python Natural Language Processing Toolkit for Many Human
Languages, April 2020.

[RTC+16] Siva Reddy, Oscar Täckström, Michael Collins, Tom Kwiatkowski, Dipanjan Das,
Mark Steedman, and Mirella Lapata. Transforming Dependency Structures to Log-
ical Forms for Semantic Parsing. Transactions of the Association for Computational
Linguistics, 4:127–140, April 2016.

28

https://doi.org/10.1007/s11225-017-9743-y
https://doi.org/10.1007/s11225-017-9743-y
https://doi.org/10.48550/arXiv.2304.03439
https://www.semanticscholar.org/paper/Natural-language-inference-MacCartney/074ff9defa5f59739294e432d21e90dd56195a14
https://aclanthology.org/C08-1066
https://aclanthology.org/C08-1066
https://doi.org/10.1007/978-94-007-7284-7_8
https://doi.org/10.1007/978-94-007-7284-7_8
https://doi.org/10.1007/s11225-012-9429-4
https://aclanthology.org/W06-3907
https://aclanthology.org/W06-3907
https://aclanthology.org/L16-1262
https://aclanthology.org/L16-1262
https://doi.org/10.1093/acprof:oso/9780199291267.003.0006
https://doi.org/10.1093/acprof:oso/9780199291267.003.0004
https://doi.org/10.48550/arXiv.2003.07082
https://doi.org/10.48550/arXiv.2003.07082
https://doi.org/10.1162/tacl_a_00088
https://doi.org/10.1162/tacl_a_00088

[San91] Victor Sanchez. Studies on Natural Logic and Categorial Grammar | Institute for
Logic, Language and Computation. PhD thesis, Amsterdam, 1991.

[Spe13] Benjamin Spector. Bare Numerals and Scalar Implicatures. Language and Linguis-
tics Compass, 7(5):273–294, 2013.

[TC19] Aarne Talman and Stergios Chatzikyriakidis. Testing the Generalization Power of
Neural Network Models across NLI Benchmarks. In Tal Linzen, Grzegorz Chru-
pała, Yonatan Belinkov, and Dieuwke Hupkes, editors, Proceedings of the 2019
ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for
NLP, pages 85–94, Florence, Italy, August 2019. Association for Computational
Linguistics.

[TNH02] Mariët Theune, Anton Nijholt, and Hendri Hondorp. Computational Linguistics
in the Netherlands 2001: Selected Papers from the Twelfth CLIN Meeting. BRILL,
January 2002.

[van07] Jan van Eijck. Natural Logic for Natural Language. In Balder D. ten Cate and
Henk W. Zeevat, editors, Logic, Language, and Computation, pages 216–230, Berlin,
Heidelberg, 2007. Springer.

[VB86] Johan Van Benthem. Essays in Logical Semantics, volume 29 of Studies in Lin-
guistics and Philosophy. Springer Netherlands, Dordrecht, 1986.

[vdBBMvN02] Leonoor van der Beek, Gosse Bouma, Rob Malouf, and Gertjan van Noord. The
Alpino Dependency Treebank. In Computational Linguistics in the Netherlands
2001, pages 8–22. Brill, January 2002.

[vSB24] Gertjan van Noord, Ineke Schuurman, and Gosse Bouma. Lassy syntactic annota-
tion manual, April 2024.

[Wij23] Gijs Wijnholds. Assessing Monotonicity Reasoning in Dutch through Natural Lan-
guage Inference. In Findings of the Association for Computational Linguistics:
EACL 2023, pages 1494–1500, Dubrovnik, Croatia, May 2023. Association for Com-
putational Linguistics.

[YMB+19a] Hitomi Yanaka, Koji Mineshima, Daisuke Bekki, Kentaro Inui, Satoshi Sekine,
Lasha Abzianidze, and Johan Bos. Can Neural Networks Understand Monotonicity
Reasoning? In Tal Linzen, Grzegorz Chrupała, Yonatan Belinkov, and Dieuwke
Hupkes, editors, Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages 31–40, Florence, Italy, August
2019. Association for Computational Linguistics.

[YMB+19b] Hitomi Yanaka, Koji Mineshima, Daisuke Bekki, Kentaro Inui, Satoshi Sekine,
Lasha Abzianidze, and Johan Bos. HELP: A Dataset for Identifying Shortcom-
ings of Neural Models in Monotonicity Reasoning. In Rada Mihalcea, Ekaterina
Shutova, Lun-Wei Ku, Kilian Evang, and Soujanya Poria, editors, Proceedings of the
Eighth Joint Conference on Lexical and Computational Semantics (*SEM 2019),
pages 250–255, Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics.

29

https://www.illc.uva.nl/Research/Publications/Dissertations/HDS/publication/5012/Studies-on-Natural-Logic-and-Categorial-Grammar
https://www.illc.uva.nl/Research/Publications/Dissertations/HDS/publication/5012/Studies-on-Natural-Logic-and-Categorial-Grammar
https://doi.org/10.1111/lnc3.12018
https://doi.org/10.18653/v1/W19-4810
https://doi.org/10.18653/v1/W19-4810
https://doi.org/10.1163/9789004334038
https://doi.org/10.1163/9789004334038
https://doi.org/10.1007/978-3-540-75144-1_16
https://doi.org/10.1007/978-94-009-4540-1
https://doi.org/10.1163/9789004334038_003
https://doi.org/10.1163/9789004334038_003
https://www.let.rug.nl/vannoord/Lassy/sa-man_lassy.pdf
https://www.let.rug.nl/vannoord/Lassy/sa-man_lassy.pdf
https://doi.org/10.18653/v1/2023.findings-eacl.110
https://doi.org/10.18653/v1/2023.findings-eacl.110
https://doi.org/10.18653/v1/W19-4804
https://doi.org/10.18653/v1/W19-4804
https://doi.org/10.18653/v1/S19-1027
https://doi.org/10.18653/v1/S19-1027

CP-mod
se
pobj1
su
sup
pc
obcomp
det
mod
predc
predm
me
ld
vc
obj1
obj2
app
cnj
svp
mwp
dp
sat
tag
body
crd
cmp
whd
rhd
hdf
hd
dlink
nucl
top

Table 4: Binarization hierarchy. Children with relation labels higher in the list are placed higher
in the binarized tree.

30

fixed

det amod

det nmod
hond

een koekjes

at

2

bedorven

(a) In Stanza 1.2 “at 2” (“ate 2”) is erroneously
considered a fixed expression, because “at” is
not recognised as the past tense of “eten” by
the POS-tagger

det nummod amod

nsubj obj
at

hond

een

koekjes

twee bedorven
(b) Stanza 1.6 correctly parses the sentence.

Figure 15: UD parses for “Een hond at twee bedorven koekjes” (“A dog ate two rotten biscuits”)
with different versions of default Stanza models.

det hd hd obj1

dp dp dp

– – – – – –
top

, op hoogstens na , du

np

Alle katten

twee sv1

eten chocolade

Figure 16: Failed Alpino parse of the sentence “Alle katten, op hoogstens twee na, eten chocolade”
(usually top is not shown, as it only has one non-punctuation child)

31

	Introduction
	Thesis Overview

	Background and Related Work
	Monotonicity
	Parsing
	Polarity Marking

	Implementation
	Parsing and Binarization
	Polarization

	Results
	Parsing Errors
	Labelling Disagreement
	Udep2Mono Failing to Generalize to Dutch
	Udep2Mono Features Not Implemented in Alpino2Mono

	Comparison of Alpino and Universal Dependencies for Polarity Marking
	Discussion
	Conclusions and Further Research
	References

