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Abstract

This thesis discusses the challenge of automated methane plume detection, focusing on
the “retrieval artifact” occurring during this process. By utilizing data from the TROPOMI
instrument on the Sentinel-5P satellite and using the Pearson Correlation Coefficients (PCC)
between sensor channels to train a decision tree classifier, the study investigates if it can de-
scribe spatiotemporal patterns between artifacts and plumes. The results describe how decision
trees can classify artifacts and plumes with reasonable accuracy, but that the approach suffers
from instability, especially with the limited data used. The findings suggest more exploration
is necessary in the field of artifacts occurring, and how the approach might be improved to
help better understand and solve artifacts.
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1 Introduction

As awareness of the impact of global warming grows, people of various organizations and nations are
actively seeking new strategies to mitigate, or even stagnate, the rise of global temperatures. With
carbon dioxide (CO2) being the largest contributor to climate warming [NAS23], it is one of the
potent greenhouse gases to consider when trying to reach that goal. When looking for short-term
impacts and considering that molecules of CO2 can persist for centuries, meaning that mitigating
emissions of CO2 has a very delayed effect on global warming, it is reasonable to also consider
other options. Methane (CH4) is another powerful greenhouse gas. CH4 being the second-largest
contributor to climate warming, and with a lifespan of about seven to twelve years in the atmosphere,
is a potent option to achieve this goal [NAS23]. Besides CH4 having a much shorter lifespan than
CO2, CH4 also has an 86 times stronger warming impact than CO2 per unit of mass over a period
of 20 years [Cli23].

Over the last 200 years, the atmospheric CH4 concentration has more than doubled, from roughly
800 parts per billion (p.p.b.) to an estimated 1932 p.p.b. measured in December 2023 [NAS23].
A reduction of CH4 emissions can already significantly diminish its impact on the greenhouse
effect within a decade [SMB+23]. One such way of achieving this is by finding sources of CH4

emission. Using satellites equipped with specific instruments, like spectrometers, these sources can
be identified. Especially finding so-called “super-emitters” has been a big focus. These super emitters
consist, among other things, of oil and gas facilities, coal mines, and landfills [SMB+23]. According
to the Dutch space research institute SRON [SRO23], we can significantly reduce the emissions
from super-emitters with relatively simple measures. Using the Dutch TROPOMI instrument, these
super-emitters can be automatically discovered. Using machine learning, together with these global
maps, Schuit et al. [SMB+23] have now developed an algorithm that detects the methane plumes
automatically. After getting a list of automatically detected methane plumes, these detected plumes
are checked to make sure the detections are really plumes. Using other satellites with a higher
resolution, persistent leaks are located. This information can be used by international and state
actors, to take measures to diminish the emissions [SRO23].

One problem coming with this new technology is that supposedly a plume is detected, which after
further investigation appears to be no real methane plume. These false plumes detected during
the automatic detection are so-called “retrieval artifacts”. Another way of referring to artifacts is
often done by calling them “false positives”. Other problems like clouds obscuring the view of the
satellite, or not being able to detect plumes above water are also present. However, for the scope of
this thesis, only solving artifacts will be discussed.

This bachelor thesis has been made at Leiden Institute of Advanced Computer Science (LIACS),
supervised by Julia Wąsala and Mitra Baratchi. The aim of this thesis is to find temporal patterns
that can be used to make it easier to distinguish real methane plumes from artifacts. Using spatial
information, potential ways to find these temporal patterns are explored and reviewed. This all has
been done with the guiding question:

“Considering all relevant retrieval parameters, is there a significant difference between the spa-
tiotemporal patterns when comparing real methane plumes with artifacts, taking correlations between
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methane concentrations and its supporting retrieval parameters for points of interest as a measure? ”.

To answer this question, the following steps were taken.

• The collection of a dataset containing spatial information about locations marked as having
frequent plumes, artifacts, or being empty, over a year.

• Filtering the data to ensure the quality of the data.

• Filtering of the data to sets of consecutive scenes retrieved from the dataset.

• Calculating the Pearson Correlation Coefficient (PCC) between the methane variable and
supporting variable for every scene.

• Training decision tree classifiers on the consecutive scenes with PCCs calculated in the
previous step.

• Validating the decision tree classifier by using 5x5 cross-validation, and taking the accuracy
and standard deviation.

• The average cross-validation and standard deviation are used to describe if a classifier, if not
overfitted, is reliable to use to describe spatiotemporal patterns within the data.

Section 2 discusses related works, like the automated plume detection discussed in Section 1, but
also other relevant topics regarding the automated detection of greenhouse gases and artifacts. It
also discusses a work related to the use of the Pearson Correlation Coefficient in image processing
and comparison. Section 3 discusses details about the data retrieval, contents, and preprocessing.
Section 5 discusses the experiments performed implementing the methods from Section 4. In Section
6 the results are discussed. Finally, in Section 7 a summary of conclusions and the thesis are given.
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2 Related Work

This section describes related works. The work discussed is directly linked to this thesis, by either
being the source of the problem, or an attempt to prevent or attenuate artifacts.
Automated methane detection: The source of artifacts comes from the automated detection of
methane plumes. Schuit et al. [SMB+23] describes a study to automatically detect anthropogenic
methane emissions by targeting super-emitters. These super-emitters are responsible for a large
fraction of the total global methane emissions. By utilizing data from TROPOMI, a monitoring
instrument on board the Sentinel-5P satellite, a two-step machine learning model was constructed.
This machine learning model combined a CNN for plume-like structure detection and a Support
Vector Classifier to distinguish real plumes from artifacts. The article describes that the machine
learning model is very accurate and consistent, but still has some occasional artifacts. The paper is
relevant to this research since the problem described in the paper is also explored in this research.
This research aims to follow up on the artifact occurrences and describe patterns that lead to
artifacts. The locations from which the data was collected for this research were also selected
by using the map of plumes and data of artifact locations from this paper. Sánchez-García et al.
[SGGnIL+22] describes how other satellites with much higher resolution can be used to detect
methane plumes and allow for the pinpointing accurate locations of methane emitters. It is also
mentioned that surface features with spectral signatures similar to methane plumes can complicate
the detection of methane plumes.
Artifact attenuation: A work on the attenuation of artifacts has already been published by Roger
et al. [RILG+23]. Artifact attenuation is the adjustment and filtering of certain data variables,
causing a diminished or preventive effect of artifact within automated methane plume detection.
This is a different method than Schuit et al. [SMB+23], which first filters out possible locations
by using a CNN, and then checks the output for plumes using an SVC. Roger et al. [RILG+23]
also describe the occurrence of retrieval artifacts when detecting methane plumes using data from
the EnMAP and PRISMA missions. A Matched-Filter method is used to attenuate and sometimes
practically remove retrieval artifacts. The method is tested on artifacts and actual plumes and shows
that the method used causes fewer artifacts to be visible, making detection easier and more accurate.
The method still allows for the detection of actual methane plumes. The difference between Roger
et al. [RILG+23] and this project, is the main aim of the research. Roger et al. aim to decrease the
effects of artifacts, while this research aims to find patterns within the data that can explain why
artifacts occur. This research also aims to provide insight into artifacts to help efforts to reduce or
prevent artifact occurrences in automated methane detection.
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3 Data

This section describes the data and data processing. This includes the origin, structure, and
processing of the data. Before using the data, it needs to be processed according to filters for
the image size, percentage of methane pixels, and consecutive sets. Also, the Pearson Correlation
Coefficient needs to be calculated. Finally, to potentially improve the decision tree classifier, two
extra variables are added to every data point in the dataframe. The process has been visualized in
Figure 3.

TROPOMI datasets

32x32 valid scenes

Consecutive sets

Datapoints with PCC

Final dataframe

filter for size
and methane pixels

consecutive sets
filter

calculate PCC
values per scene

adding extra
variables

Figure 1: visualization of the steps taken to process data into a dataframe containing the PCCs of
sets of consecutive scenes to train a decision tree classifier with.
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Attribute Description
Instrument Spectrometer TROPOMI
Mission Sentinel-5P
Data Level Level 2 data products
Product Version 1.5.0
Spatial Resolution 5.5x7.0 km2

Data Source Available for download through the Copernicus website
[Cop24]

Data destriping algorithm Destriped using the algorithm described by Hasenkamp
et al. [HLH+22]

Quality Control Filtered based on methods described by Schuit et al.
[SMB+23]

Figure 2: Metadata summary of the data used for the experiments performed in this research.

3.1 About the Data

To allow for a better understanding of the preprocessing and how the experiments are performed, a
description of the data is given in this subsection.

3.1.1 Data Origin

The data used for this thesis has been captured by a spectrometer on the Sentinel-5P satellite,
called TROPOMI [Age24], containing Level 2 data products and product version 1.5.0. The data
contains images with a 5.5x7.0 km2 spatial resolution. The data can also be downloaded through the
Copernicus website [Cop24]. In addition, the data has been destriped using the algorithm described
by Hasenkamp et al. [HLH+22]. The selection of plume, artifact, and empty locations was based on
the detection map shown by Schuit et al. [SMB+23]. To ensure the quality of the data, the data
retrieved has gone through a filtering process also described by Schuit et al. [SMB+23].

3.1.2 Data Structure

The data contains information about 30 different locations, 10 for each type of location (artifact
location, empty location, plume location). The data included daily captures, between 1 January
2021, to December 31, 2021. Every item in the dataset contained a dataset with various coordinates,
variables, and attributes. Table 1 shows the variables used in the dataset. Additional information
about the variables can be found in Appendix Table 3 and in the technical report written by
Arnoud et al. [APS+23].

From all shown variables, the “methane mixing ratio” variable is the reference variable. All other
variables are used as the correlate variables. For extra clarification on the meaning of the variables,
see Table 3 in the appendix.
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Variable

methane mixing ratio
QA value
surface pressure
aerosol optical thickness measured in the SWIR spectrum
aerosol optical thickness measured in the NIR spectrum
surface albedo measured in the SWIR spectrum
surface albedo measured in the NIR spectrum

Table 1: Attributes of the specified variables in the dataset. For a description of the attributes see
Appendix Table. 3

3.2 Preprocessing

This subsection discusses the preprocessing of the data, a required prerequisite of the experiments.

3.2.1 Data Filtering

To ensure the quality of the data, two main criteria were used to determine if a capture of a scene
was considered a valid source of data. These criteria are based on the same criteria employed as
discussed in Section 2.1 TROPOMI by Schuit et al. [SMB+23]. The first criterion the data was
filtered on was if the data consisted of at least a 32x32 pixel capture, also considered as at least
a 32x32 data array. If the scene has a smaller than 32x32 pixel capture, the scene is discarded.
Afterward, a check for the second criterion was done after going through the regridding process.
The second criterion was based on the ratio of valid pixels for the methane variable. If the ratio
of valid pixels was 20% or lower, the scene was also discarded. Reasons for missing pixels include
cloud cover, water, and discarded pixels due to quality measures. Only if a scene complied with
both criteria, the scene was considered for regridding and concatenation with other valid scenes for
that location.

3.2.2 Regridding

To be able to compare the different time captures of a location with each other, the images of
the scenes had to go through a process of realignment, also known as regridding. The regridding
of scenes involved creating a baseline grid. This baseline grid was constructed using the function
xe.util.cf_grid_2d from the library xesmf [Z+24]. The baseline grid required the extremes for
the available coordinates of every location, and the maximal amount of pixels for a location available
on both the longitude and latitude axis. It also required the average size for every pixel to be
described, by dividing the range of the longitudes and latitudes by the number of pixels on the
x- and y-axis. This implies that the baseline grid exists out of a data array with its size based on
the scenes with the highest longitude and latitude values. Therefore, every scene available for a
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location should fit within the grid based on their latitude and longitude values.

By using the Regridder from the function xe.Regridder from the xesmf library [Z+24], every scene
from a location was fit into the baseline grid. Because the scenes have all been regridded based on
the same baseline grid, it is possible to select the 32x32 grid around the center coordinates of the
picked location, covering the exact same area for every scene. To offer a better understanding of
the input and output of this process, an example of a regridded scene with some variables is shown
in Figure 3. This example contains a coastline, offering a great indication of how the image looks
after regridding. Figure 4 shows how all regridded images have the same x- and y-axis and view
data from the same perspective.
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Figure 3: Example showing the plotted original data (left) and product of the regridding process
(right) for a scene containing a coastline. The raw data for the scene has much more pixels than a
32x32 pixel area. The Regridder allows for focusing on a specific part of a raw scene and bases this
on a standardized grid, giving all processed scenes the same output grid.
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Figure 4: Plots for different times showing the product of the Regridder.

3.2.3 Sets of Consecutive Scenes

For the main experiments, sets of consecutive scenes were required. When exploring the data, it was
visible that sometimes plumes and artifacts were occurring for multiple consecutive days. Therefore,
consecutive sets of scenes are used to explore if it is possible to find spatiotemporal patterns in these
consecutive sets. Every set of consecutive scenes contains n scenes, with the set being one single
data point in the dataset used for the experiments. Two variants of consecutive sets were filtered
out of the data. The first variant is sets of three consecutive scenes, which have been captured
consecutively, meaning there were less than 24 hours between every capture within the set. The
second variant of sets is sets of two consecutive scenes, which have been captured consecutively.
For more clarification on what the set of scenes contains, a graph showing the structure of such
consecutive sets is shown in Figure 5.

The reason for using the sets of consecutive scenes is because this way some temporal characteristics
will be contained within every data point, while also having the spatial characteristics. The reason
only two or three consecutive scenes were considered, is because considering more than three
consecutive scenes would yield in a very small dataset of sets. Having too few data points would
mean it would not be possible to reliably train and test a classifier.

Before selecting the sets, the availability of regridded scenes per location was checked. After checking
the consistency of available scenes, and the total number of scenes available for a location, some
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Set of Consecutive Scenes . . .

Scene 1

Scene n

. . .

Support Var 1

Reference Var

Support Var n

. . .

Figure 5: Illustration of the structure of one set of consecutive scenes.
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Figure 6: (a) A plot of the methane variable of an “empty” location in Australia. (b) A plot of the
methane variable of a visible “plume” in Algeria. (c) A plot of the methane variable of a coastal
“artifact” in Australia. As seen in Figure (c), it looks like there is a plume along the coast. In reality,
this is not the case.

locations were dropped. The scenes within these sets were then manually labelled for further use.

3.2.4 Manual Labelling

As shown in Appendix section C.1, locations are referred to by an ID being an “artifact”, “empty”
or “plume”. This does not indicate that all collected data for that particular location complies with
that label. Therefore, after filtering out scenes to construct sets, the scenes had to be labelled.
Labeling was mainly done using the plots for the methane variables. For plumes, very clear patterns
were often visible in this data. For artifacts, mainly plots of the methane variable, northward wind
variable, and eastward wind variable were used to identify artifacts, as well as the knowledge of
artifacts always looking very similar. When unsure of being a plume or artifact, the scene was
discarded. To provide some insight on how the different labels may look like, an example is shown
in Figure 6.

After all scenes were labelled, the previously constructed sets were checked again. If a set consisted
out of more than one label, the set was discarded. After this check, there were 244 sets of 3 consecutive
scenes and 492 sets of 2 consecutive scenes. These sets are further used in the experiments. Before
the experiments can be performed, the correlation between the dependent variable and all the
support variables has to be performed. To do this, the data product of all preprocessing mentioned
before will be used. This results in a time series of correlations for every location.

3.2.5 Preparing Variables for Calculating Correlation

The reason for trying to find similarity between variables of one scene is to explore if there is a
distinct difference or pattern between certain sensor channels for plumes and artifacts, which allows
for filtering out artifacts from detected plumes. One way of finding similarity between images is
using the Pearson Correlation Coefficient (PCC). When calculating the correlation between the
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dependent variable and its supporting variables with the package xr.corr from the library xarray
[HH20], normally all valid pixels will be used for each data grid, but since there are missing pixels,
every image needed to be checked. Because the dependent variable often has missing pixels where
other variables still have valid pixels, every pair of dependent variable and support variable needs
to be corrected for this difference since you cannot calculate a correlation over NaN-values. This is
done because the calculation of the correlation gets impacted by the complete data arrays. If the
first data array has a NaN value and the second data array has a valid pixel, the valid pixel will
influence the outcome of the correlation calculation, while the NaN pixel will not. Calculating the
correlation will be further discussed in Section 4.

3.3 Final Dataframe Contents

After performing all preprocessing steps, the final dataset contained data points with correlations
between the reference variable and support variables. For the sets of two consecutive scenes, the
correlations of two scenes are included within a single data point, for sets of three consecutive scenes
the correlations for three scenes are included within a single data point. Besides the correlations,
the range of the methane variable and the maximal methane value of every scene within a set of
consecutive scenes were included.
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4 Methods

This section discusses all methods used in the experiments. The goal of the research is to find if it
is possible to use a decision tree classifier to find spatiotemporal patterns, by training and testing
the classifier with data containing the PCC of the mentioned variables in 1. Here, a decision tree
classifier is used because it is possible to plot, and allows for easy insight into the decisions made
by the classifier on the test set. If the decision tree classifier can reliably point out artifacts from
plumes, the methods might turn out to provide valuable insight into the reasons why artifacts
sometimes occur. First, the Pearson Correlation Coefficient is discussed. After that, the decision
tree classifier is discussed. All these methods were used for the sets of two consecutive scenes and
three consecutive scenes.

4.1 Pearson Correlation Coefficient

For the experiments, the data was used to calculate the Pearson Correlation Coefficient (PCC),
denoted as r, of two data arrays (the data array of the dependent variable and a supporting variable)
from the same scene. The PCC method is used for statistical analysis, pattern recognition, and
image processing [MNVF+13]. The PCC used will be related to image processing, by functioning
as a disparity measure. For all sets and every scene within each set, the PCC will be calculated
between the dependent variable and each supporting variable, after preprocessing each pair of data
arrays as discussed in Section 3.2.5. The PCC is given by:

(PCC) = r =

∑
i

(xi − x̄)(yi − ȳ)√∑
i

(xi − x̄)2
∑
i

(yi − ȳ)2

where:

• xi and yi are the pixel value at the same location i in data arrays x and y,

• x̄ and ȳ are the mean pixel value of data arrays x and y,

• n is the total number of pixels in each image.

The value of the PCC (r) ranges from -1 to 1. A value of:

• r = 1 indicates a perfect positive linear relationship between x and y,

• r = −1 indicates a perfect negative linear relationship, between x and y,

• r = 0 indicates that there is no linear relationship between x and y.
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To calculate the PCC for every pair of data arrays, the function xr.corr from the library xarray
is used. This is done by using the code:
corr = cov / (da_a_std * da_b_std),

which translates to:

r =
cov(arraya, arrayb)

std(arraya) · std(arrayb)

This is the same as the method used by Neto et al [MNVF+13]. By using the PCC, various locations
with plume and artifact detections will be compared and used to explore the possibilities of finding
spatiotemporal patterns that allow for the distinction between artifacts and plumes.

After calculating the PCC for a pair of data arrays, the value was added to a set of other PCCs
related to the set of consecutive scenes. Each value was given the variable name of the supporting
variable and whether it was calculated from the first, second, or third scene from a set.

4.2 Decision Tree Classifier

To find potential patterns using the PCC, a decision tree classifier was used. The reason a decision
tree was used, is its interpretability. A stable classifier, even with moderate accuracy, could be used
to find spatiotemporal patterns, even if this is only applicable to a fraction of the artifacts. By
visualizing the decision tree and analyzing it together with the dataset used to train and test the
classifier, decisions leading to nearly pure leaves can be described as a pattern. The interpretability
is important because the main goal is not to find a classifier to improve artifact detection, it is
used to automate the detection of spatiotemporal patterns. The sets of PCC values were each
used as a data point to train and test the decision tree model. For the implementation, the library
scikit-learn in Python was used, which supports the use, training, and testing of a decision tree
classifier model. Scikit-learn implements the CART algorithm to build decision tree classifiers
[sci24a]. The CART decision tree model is an algorithm acting greedily at every node, working as
follows [BFOS84]:

1. Binary Splitting: At each node, the data is split into two child nodes based on a threshold
value of a feature, aimed at maximizing the quality of the target variable within each child
node.

2. Recursive Partitioning: This splitting process is applied recursively, creating a binary tree
structure. Each internal node represents a decision based on a feature, and each terminal
node (leaf) represents a class label.

3. Impurity Measures: For classification trees, the impurity of a node can be measured using
“Gini impurity” or entropy as a measure. The algorithm chooses splits that minimize the
impurity in the resulting child nodes.
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In addition, the scikit-learn library adds the following feature to the CART algorithm [sci24b]:

1. Pruning: the constructed tree may be pruned by removing nodes that provide little predictive
power. This is often done using the technique “cost-complexity pruning”. This method of
pruning balances tree complexity with prediction accuracy.

To test the validity of the decision tree, 5x5-fold Cross-Validation (CV) was performed over the test
set. To find the optimal parameters, the function GridSearchCV from the library scikit-learn
was used.

The aim is to use a decision tree for finding spatiotemporal patterns for artifacts and plumes which
could provide insight in preventing the occurrence of artifacts. It is also important to note that
any decision tree able to accurately classify between artifacts and plumes is considered better than
any decision tree which classifies between “empty” and artifacts. The reason for this is that any
artifact classified as “empty” should be an acceptable (but not favorable) error since artifacts and
plumes were originally both classified as plumes. However, plumes classified as artifacts are not
acceptable, since the aim of the classifier is to filter out as many artifacts to be able to show any
potential patterns. Plumes classified as artifacts would lead to an unreliable decision tree, which is
therefore also unreliable for discussing any patterns. If the classifier classifies artifacts as plumes a
lot, it indicates that the problem of artifacts in plume recognition is much more complicated and
requires other, more advanced methods. When the decision tree is not accurate enough, or not
stable enough, no reliable conclusions can be made using the decision tree.
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5 Experiments

This section discusses the experiments performed to find if it is possible to find any patterns using
the PCC. All experiments are performed using an 80-20 train-test split. Besides being a standard
practice in computer science, an 80-20 train-test split was chosen because this would train on
a relatively big amount of data points, while still maintaining enough data points to verify the
performance and consistency of the classifiers. If the classifiers perform well, additional data might
be needed to test the classifier again, to make sure the results are not biased. Every experiment is
performed on both the dataset with two and three scenes in a single data point. The difference
between every experiment is the labelled data in both the training and test sets. Before training a
“cross-validation grid search” is performed for finding the most suitable parameters for the decision
tree classifier. Also, a 5x5-fold cross-validation is performed before training. This is done to grant
better insight into the accuracy and consistency of the tried experiment. 5-fold cross-validation was
chosen because of the low number of data points. The 5-fold cross-validation is performed 5 times

with a different random state, providing a more accurate cross-validation score and standard
deviation. This means 25 runs of cross-validation have been done, to be able to picture a better
understanding of the performance of the classifiers, while dealing with a low number of data. The
Github repository containing the code used for this experiment can be found in the link shared in
Appendix For insight into the code used to perform these experiments,

5.1 Testing and Training with All Labels

This experiment features no adjustments to the training and/or test set. Ideally, the classifier
predicts all labels accurately, however, it does not matter much if the classification of artifacts
and empty locations gets mixed up by the classifier. This means that an “empty” data point gets
labelled as an artifact, which can be considered acceptable because data points as “empty” and
artifact are both supposed to be “empty” data points. This also works the other way around, for
artifacts being misclassified as “empty”. On the contrary, this would indicate that there is much
similarity in correlations between artifacts and empties, and therefore it should be possible to
retrieve patterns from the decision tree.

Parameter Value

Criterion Gini
Max Depth None
Min Samples Leaf 4
Min Samples Split 2

Figure 7: Parameters for the decision tree classifier for the experiments with all labels (both for
sets of two and sets of three consecutive scenes).
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5.2 No Empties in Data

This experiment features a dataset with no data points labelled as “empty”. By doing this, training
and testing is only done on artifacts and plumes. This was done for several reasons. It could provide
insight into how many data points labelled as “empty” are useful or can be considered unnecessary
for the classifier. Also, since the labels and artifacts are all detected as plumes, training and testing
on only plumes and artifacts might yield better results compared to the training and testing on the
dataset which also contains data points labelled as “empty”. The reason for this is that the real
problem is the distinguishment between plumes and artifacts. Therefore, the “empty” data points
could be considered as noise or might interfere with solving this problem. This experiment is to test
the performance when “empty” data points are removed. The reason for trying this is because the
real problem is the distinguishment between plume and artifact. Comparing this experiment with
the other experiments could also provide more insight into when you want to use the classifier.

Parameter Value

Criterion Gini
Max Depth None
Min Samples Leaf 1
Min Samples Split 2

Figure 8: Parameters for the decision tree classifier for the experiments with no “empty” labels
(both for sets of two and sets of three consecutive scenes).
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6 Results

This section discusses the results of the performed experiments. The results of the best-performing
experiment will be discussed on a more in-depth level, considering that it will be the best opportunity
to find any patterns in the correlation between artifacts and plumes.

Dataset Case # data points µ± σ Extra Vars

Two Consecutive Scenes
All Labels 492 0.636 ± 0.045 ✓

0.568 ± 0.047 □

No Empties 451 0.829 ± 0.043 ✓
0.809 ± 0.059 □

Three Consecutive Scenes
All Labels 244 0.699 ± 0.078 ✓

0.604 ± 0.082 □

No Empties 209 0.793 ± 0.087 ✓
0.795 ± 0.073 □

Table 2: Combined Cross-Validation results of all experiments. µ indicates the average accuracy
over the 5x5 cross-validation, while σ indicates the standard deviation. The “Extra Vars” column
indicates whether the data points included the range and maximum value of the methane variable
as a variable per scene, as described in Section 3.3.

6.1 Testing and Training with All Labels

This section discusses the results of the experiments performed with the datasets with all labels.
Considering Table 2, experiments using the datasets including the extra variables for the range
and maximum of the methane ratio (see Section 3.3) show better results than when only using the
PCC for classification. Therefore all discussed results will be about the results using the datasets
including these extra variables.

6.1.1 Sets of Three Consecutive Scenes

For the classifier trained and tested on sets of three consecutive scenes, the CV test results show a
mean accuracy of 70% and a standard deviation of 7.8%. This indicates that the decision trees
constructed by the classifier can differentiate between the different labels in quite some situations.
It should be noted that the standard deviation of 7.8% is quite high. Since a decision tree classifier
is used, it is necessary to have a more stable model, meaning a much lower standard deviation,
since describing the patterns found in one decision tree would need a stable classifier. If we were to
use the unstable decision tree classifier, it would lead to unreliable prediction.
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Figure 9: Confusion Matrix for testing and training with all labels with sets of three consecutive
scenes. The matrix represents the results on the test set, with an accuracy of 52.3%, which is much
lower than the mean CV accuracy score for this case. When artifacts and empties are considered
the same, the accuracy is 73.8%.

The instability of the model can also be seen in the confusion matrix of the model on the test set in
Figure 9. The figure also shows that taking the same measure as taken in the cross-validation, the
mean accuracy is very low, and about the same as the mean accuracy when considering empties
and artifacts as the same label. This can however be explained by the high standard deviation. The
confusion matrix shown could also be considered to not be as reliable as required. The standard
deviation from the CV tests shows that the outcome of testing the test set is influenced significantly
by the test and training split. Considering everything mentioned in this section, the decision trees
constructed in this case are deemed unreliable, and will not be used to describe spatiotemporal
patterns. The reason a “better” decision tree model is sought in this case, is because this is considered
overfitting, while the goal is to have a reliable, and suitable on a global scale, decision tree that
allows for the discussion of spatiotemporal patterns, which could also be applicable on other
locations not included in the training and test data.

6.1.2 Sets of Two Consecutive Scenes

The CV test results of this experiment show a mean accuracy of 63.6% and a standard deviation of
4.5%. This shows that the decision tree classifier in this case is performing worse than in the previous
case with three consecutive scenes. A reason for this could be the lower amount of data available
in the case of three consecutive scenes, leading to overfitting. The stability can be considered as
an improvement in this case. A reason for an improvement in stability could be the fact that the
number of data points in the training and test sets are more than double compared to the amount
of data points in the case with three consecutive scenes.
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Figure 10: Confusion Matrix for testing and training with all labels with sets of two consecutive
scenes. The matrix represents the results on the test set, with an accuracy of 60.4%, which is
relatively close to the mean CV accuracy score for this case. When artifacts and empties are
considered the same, the accuracy is considered to be 71.4%.

Figure 10 shows the confusion matrix for the case with all data and two consecutive sets. While
showing an accuracy closer to the mean accuracy of the CV tests, it is quite low. Also, even though
the standard deviation of the CV tests is relatively low compared to the case with three consecutive
sets, it still indicates that the model is quite unstable. Yet, it may still be considered a valid option
for finding spatiotemporal patterns, since an increase in data points yields an increase in stability.
Another option could be the removal of noise in the data. Since the problem of artifacts is only
between plumes and artifacts, “empty” locations could be considered as noise. Therefore, in the next
experiment, the data points with the “empty” label for each case are removed. this does however
reduce the number of data points but might yield a much more stable decision tree. In this case, the
decision tree might not contain all spatiotemporal patterns, but if some leaves are near pure in the
decision tree, the path to these pure leaves could be used to identify at least some spatiotemporal
patterns.

6.2 No Empties in Data

Training a decision tree classifier on data containing all the labels shows potential but still lacks
the stability to reliably show spatiotemporal patterns. One reason for this may be the fact that
there is a lot of noisy data in the datasets. In this experiment “empty” data points are considered
as noise. Since the problem of artifacts only occurs in scenes where there is a potential plume,
it seems prudent to have the experiments performed without training and testing on data that
also contains data with “empty” labels. This experiment aims to test if removing the “empty” data
points yields significantly more stable decision tree models, allowing the use of those models for
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describing spatiotemporal patterns by analyzing the path of (nearly) pure leaves. To be able to
find these spatiotemporal patterns, it is required to be much more stable than the decision tree
models in the previous experiment. Besides stability, considering both Figure 9 and Figure 10 The
removal of the “empty” data points also improves the accuracy of the models. Therefore testing
and training a classifier might combine a more stable model with a more accurate model.

6.2.1 Sets of Three Consecutive Scenes

The CV test results of this case show a mean accuracy of 79.3% and a standard deviation of 8.7%.
Compared to the case in the previous experiment, this is a much higher mean accuracy, showing
improvement in the classification capabilities of the decision tree classifier. It should however be
noted that the standard deviation also increased.

Figure 11: Confusion Matrix for testing and training with no empties in the data of sets of two
consecutive scenes. The matrix represents the results on the test set, with an accuracy of 87.0%,
which is above the mean CV accuracy score for this case.

Considering the confusion matrix in Figure 11, together with the CV scores, it may be said that
the model is capable of classifying artifacts and plumes. In the confusion matrix it shows to always
classify plumes, and only misclassifies artifacts. It should however be noted that because of the
high standard deviation and the low number of data points in the dataset, the confusion matrix
shown is probably biased. Since the aim was to find a more stable decision tree model, it can be
said that while improving overall classification probabilities, the stability of the classifier decreased,
because the standard deviation also increased. A reason for the instability may be caused by the
lack of data, as seen in the previous experiment, where the case with three consecutive scenes had
a much higher standard deviation while having fewer data points to train and test on than the case
with two consecutive scenes. Therefore, it can be considered sensible the experiment is performed
on the case with two consecutive scenes.
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6.2.2 Sets of Two Consecutive Scenes

The last experiment, performed on the dataset with sets of two consecutive scenes, yields the most
promising results The CV test results show a mean accuracy of 82.9% and a standard deviation of
4.3%. This means there is a big increase in accuracy for the case with two consecutive scenes when
removing the “empty” data points.

Figure 12: Confusion Matrix for testing and training with no empties in the data of sets of two
consecutive scenes. The matrix represents the results on the test set, with an accuracy of 80.7%,
which is slightly under the mean CV accuracy score for this case.

Considering the confusion matrix in Figure 12, it may be said that the classifier is capable of
classifying artifacts and plumes, with only a few misclassifications for both plumes and artifacts.
The standard deviation, regarding the standard deviation of the other experiments, is also the
lowest. It should however be noted that the standard deviation still shows that the decision tree
models in this case are unstable. Because of this, and since there is still a low number of data points
available to train and test on, the decision tree models are still not reliable enough to be used to
describe any spatiotemporal patterns.

6.3 Discussion

The results show a promising result in a decision tree being able to classify artifacts and plumes
when using the PCC between various sensor channels and the methane ratio of sets of consecutive
scenes as data points. The case using sets of two consecutive scenes, without data points labelled
as “empty”, yielded the best results, both in mean accuracy (82.9%) and stability described by
the standard deviation (4.3%). It should be noted that a pattern is visible after performing the
experiments. Less scenes used in a data point to construct variables seem to lead to a higher
stability in classifier performance. However, this also influenced the amount of data points, which
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may be the biggest reason for the instability of the classifiers. Therefore the results indicate that
the use of decision trees with PCCs to describe any spatiotemporal patterns yields inconsistent and
unfavorable decision trees when using too little data to train and test on. Here, an unfavorable
decision tree is not necessarily a decision tree with a relatively low accuracy, but a decision tree
constructed by a classifier that is deemed unstable. Another reason for this instability, besides the
low number of data points available, is that decision trees are easy to be overfitted [HTF09]. Besides
this, changes in the training set can lead to much different performing decision trees [BFOS84], as
is shown in the high standard deviations of the experiments.
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7 Conclusions and Further Research

Researching the distinguishment of real methane plumes with artifacts using the Pearson Correlation
Coefficient (PCC) and multiple scenes within one data point for training a decision tree classifier
has shown several insights. While the methods used in this thesis show that it is possible to classify
plumes and artifacts, it also shows how having the PCC between various sensor channels from
multiple scenes within one data point has a negative impact on the accuracy and stability of the
classifiers. Reasons for this are the fact that it is a high dimensionality problem, limited data points
were used, and the fact that decision trees are sensitive to changes in the training set. It could be
possible that using a decision tree for finding spatiotemporal patterns is not favorable, since the
decision tree picks a PCC between sensor channels from either the first, second, or third scene in
this case. There is no regard for the actual temporal sequence in the data points. Trying to find
spatial patterns combined with temporal characteristics is a high-dimensional problem. This may
indicate the use of other, more advanced methods are needed, which can consider several rules, to
take both temporal and spatial dimensions into account when classifying. These methods allow for
much more accurate and stable classification, like the method described by Roger et al. [RILG+23].
The problem with these methods is that the decision-making often tends to be less interpretative
and does not easily allow for insight into decision-making, besides which classification has been
given. It is also that spatiotemporal analysis should be performed by not using a classification
model, but with a more in-depth analysis of spatial features of locations, their impact on being
classified as an artifact at certain timestamps, and what other effects that get captured by the
TROPOMI satellite lead to classification.
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A Tables

A.1 Variable Descriptions

Variable Description

methane mixing ratio Probability density function of the CH4 dry air
mixing ratio, stripe corrected

qa value Continuous quality descriptor, varying between 0
(no data) and 1 (full quality data)

surface pressure Pressure at surface elevation of S5P SWIR pixel.
aerosol optical thickness SWIR Retrieved aerosol optical thickness in the SWIR

band
aerosol optical thickness NIR Retrieved aerosol optical thickness in the NIR

band
surface albedo SWIR Retrieved surface albedo in the SWIR band
surface albedo NIR Retrieved surface albedo in the NIR band

Table 3: Variable descriptions, based on [APS+23].

B Github Repository

Here you can find the link to the Github repository containing all code used for the experiments:

https://github.com/maximilionis/bsc-experiments
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C Additional Materials

C.1 CSV File: locations.csv

The locations file contains the following:

id,type,lat,lon,note,subtype
e0,empty,-37.650806,142.908026,australia,
e1,empty,-9.888889,18.835594,angola,
e2,empty,11.516510,-7.180029,mali,
e3,empty,26.861925,100.220530,yunnan,
e4,empty,53.546162,-66.277310,newfoundland,
e5,empty,51.769221,5.272029,NL,
e6,empty,69.983779,151.697808,russia,
e7,empty,-6.097547,-60.348648,amazone,
e8,empty,-37.892741,-72.477553,chile,
e9,empty,-45.087279,169.834380,new zealand,
p0,plume,-34.603722,-58.381592,google maps cords locatie door Schuit gegeven,
p1,plume,40.30,-3.64,paper table b4,
p2,plume,33.48,-7.54,paper table b4,
p3,plume,28.88,20.93,paper table b4,
p4,plume,-21.91,148.06,paper table b4,
p5,plume,-26.2, 29.2,given by Berend,
p6,plume,31.66,6.06,given by Berend,
p7,plume,15.56, 45.80,given by Berend,
p8,plume,28.6139,77.2090,google maps cords locatie door Schuit gegeven,
p9,plume,39.754,-80.224,cluster in paper Schuit et al.,
a0,artefact,-19.89,120.36,,artefact_coast
a1,artefact,-20.07,119.63,,artefact_coast
a2,artefact,-19.9,120.32,,artefact_coast
a3,artefact,-19.91,120.29,,artefact_coast
a4,artefact,71.15,98.83,,artefact_cloud
a5,artefact,-24.59,-54.51,,artefact_cloud
a6,artefact,22.26,-63.32,,artefact_albedo
a7,artefact,-37.35,-58.09,,artefact_cloud
a8,artefact,75.47,103.08,,artefact_albedo
a9,artefact,18.43,56.66,,artefact_coast_albedo
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