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Abstract

This thesis examines quantum state preparation and optimizes the preparation by mini-
mizing the amount of two-qubit gates using an SAT-Solver and a cardinality constraint. With
this, we investigate if an SAT-Solver is a practically efficient method for finding the minimal
quantum state graph using single-qubit Clifford gates, where a quantum state graph represents
a quantum state. SAT-Solvers have been used within these problems but yet has anyone
looked at a cardinality constraint with SAT-Solver to find this minimum graph. We did this
by transforming this problem into a SAT problem, where we experimented which SAT-Solver,
search algorithm, and cardinality constraint are most efficient. We did this to optimize the
quantum state preparation, where we find the minimum amount of two-qubit gates needed to
reach a given quantum state.

1 Introduction

In the last couple of years, there have been a lot of changes and research with quantum computers
and quantum networks, before being able to use a quantum network, the quantum state needs to
be prepared. This is being done with different types of quantum gates, to create a working system
between the qubits.

A problem is the optimization of quantum computers and network preparation. These quantum
states are transposable to a graphical representation. Therefore, by optimizing the graph problem,
we also optimize the quantum state preparation problem.

There has already been research on such graph problems. One of the operations our graph problem
uses is the local complement, this operation has been thoroughly researched by informatics. For
example, Bouchet made an algorithm for proving locally equivalent graphs| ]. But other than
the combinatorial research, there has also been research with quantum state preparations. This
has been done by Brand] ], who looked at transforming graphs to a target graph on local
complements, and vertex deletions. Other research has been done to find the complexity of the
preparation with only local complements by Kumabe| ].

However, our research will work on the problem of efficiently finding the lowest locally equivalent
graph. Which represents finding the quantum state we can create with a minimal amount of
two-qubit gates. This is the case because the local equivalent graphs are a substitution for certain
single-qubit gates. With this graph problem, we can search for a state with the question, what
single-qubit operations must be used to have the minimum amount of two-qubit operations? To
answer this question we make a conversion to a SAT encoding to get an efficient solution with the
use of SAT-Solvers. With the encoding, we can provide an efficient solution for preparing quantum
states. As well as seeing if SAT-Solvers are an efficient tool to use in solving this problem, and
which SAT-Solver is the fastest in solving this problem. Finding what kind of SAT encodings will
improve the time spent finding the solution. Thereby looking at different ways of using a cardinality
constraint.

For our research aim we will focus on the research question: What is a practically efficient method
for finding min g G(E, V) € orbit(T') given a target graph T?



2 Background information

Before we delve deeper into the experiments we explain some key concepts. Within this background
section, we give a deeper understanding of the definition of quantum states and how they are
represented within graphs. The kind of operation we are performing on these graphs and what kind
of representation they have within quantum computers. What the definition of an orbit is within
this problem set. Lastly, some key concepts why this is not answerable with a simple or trivial
solution.

2.1 Quantum states as graphs

Before the quantum computer can perform tasks we have to prepare its state. The state preparation
we are looking at are various ways qubits can connect. This creation of connection of possible
gates is defined and explained within Quantum computation and quantum information| |. The
quantum state is the way the quantum system has been made and represents the way the qubits
are connected with these gates. However, we will only be looking at single-qubit Clifford gates to
solve our research question. The advantage of single-qubit Clifford gates are that this problem can
be transposed into a graph problem which is explained by Van den Nest et al| ]. With
these graphs, we will represent two types of gates, the controlled-Z gates and single-qubit Clifford
gates. These controlled-Z gates could lead to noise within a quantum computer, and they take
more time to be created than single-qubit Clifford gates. That is why this research aims to reduce
the amount of controlled-Z gates we need to use.

We define our graphs with a finite number of qubits where each vertex in our graph represents a qubit.
The edges between the qubits grasp the information regarding the quantum state’s entanglement.
Where there is an entanglement between qubits i and j if and only if there is a path between i and
j. Lastly, our graphs are simple graphs meaning we have an undirected graph with a maximum of
one edge between two vertexes, and no self-loops.

2.2 Controlled-Z gates as a graph operation

The first operation we can perform on our defined graphs is the CZ operation. The CZ corresponds
to a controlled-Z (CZ) gate, which creates an entanglement between two qubits. Although we
represent the CZ gate on quantum computers, which could fail to be created or create noise, as
said before we do not look at the probabilities of operations or noise created within the quantum
system. An example of what a CZ operation does on our graph is provided in Figure 1.
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Figure 1: An example of a CZ operation on a four qubit quantum state graph.
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2.3 single-qubit Clifford gates

The single-qubit Clifford gates work only on a single qubit. This operation is less noise introducing
than the CZ gate because CZ gates work on two qubits while the single-qubit Clifford gate works
on a single qubit. Plus the gate only performs on its local qubit, meaning we do not need to search
for contact with another qubit. This is a problem when your qubits are in completely different
locations making local gates more profitable. For such a network there is an example where there
has been a proposition to make a quantum network of 14 qubits where all qubits are in different
Dutch cities| ]. Therefore it is better if we use the minimal amount of CZ gates and replace
the most with single-qubit Clifford gates.

These single-qubit Clifford gates are equivalent to local complements (LC) on a vertex within our
graph]| ]. Such an LC on a vertex will switch all edges of all neighboring vertexes. An

example of an LC is in Figure 2.
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Figure 2: An example of an LC operation on a four qubit quantum state graph.

2.4 Orbit

Within the research question, we had it about searching for the minimum amount of edges within
the orbit. We define an orbit of a graph state as all graph states we can create with the LC
operations. This means that if we want to know if graphs A and B are in the same orbit. We need
to find the LCs on A which will create graph B. If this is discoverable then they are in the same
orbit. To get out of this orbit we can perform a CZ operation. This does not necessarily mean we
are out of the orbit but CZ operations are the only way we can get to a new orbit within our rule
set.

3 Method

3.1 Different Solvers

Initially, we wrote two simple methods before working on the optimization of the SAT-Solvers. The
first two methods are a bruteforce and a greedy approach written in C+4-. With these methods, we
get some insight into how this problem behaves. If our greedy program will always find the optimal
solution we will be done with our research. Also, the greedy solution will be compared to how close
it will be to our optimal solution. It could be that a greedy solution is practically a better solution
than an optimal solution. But the other side also holds for our bruteforce, if our bruteforce is quick,
it is already a practically efficient solution and we will be able to stop there. Otherwise, we have a
comparison to see how much faster our optimal is.



3.1.1 Bruteforce solution

The bruteforce algorithm needs to begin with an initial starting graph state. Then it goes through
all possible local complements until it has the whole orbit. Every time we visit a new graph we need
to count the amount of edges within the graph. When it has collected the whole orbit it looks at
which graph has the minimal amount of edges. The drawback of this bruteforce is that it calculates
and saves the whole orbit before providing an answer.

3.1.2 Greedy approach

Initially, we made a simple greedy approach. This simple greedy algorithm performs the LC on all
vertexes and chooses the smallest amongst them for the next cycle. It will repeat this cycle till the
LC does not give a smaller graph. This simple strategy does not give us the smallest graph for our
problem. For example, consider a circle with four qubits in Figure 3. Here it is necessary to go to a
larger amount of edges before getting to the minimum number of edges within the orbit. The final
solution has a minimal amount of edges because it has no loops.
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Figure 3: An example of LC operations finding the minimal amount of edges in a four-qubit graph.

This kind of greedy is simple and does not take a lot of memory or calculating power. Also in this
kind of greedy we know which vertexes we have performed local complement to get to our minimal
graph.

The solution to the previous example had |V| — 1 edges. This raises the question if it is always
possible to create |V| — 1 edges. This is the smallest any graph will be. However, there also is a
simple example of a circle with five qubits. The minimum amount of edges within the orbit is drawn
at the top of Figure 4. The operations have been simplified for a better overview, all isomorphic
graphs have been shown as one graph. A graph state with a circle of five holds the circle of five
throughout all LC operations. LCs are only able to add extra edges. This shows that always getting
|V| — 1 edges is not guaranteed.
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Figure 4: Circle of five-qubit orbit, where all isomorphic graphs are shown as one graph.

The previous graphs depict that simple greedy will not give us correct answers for even simple
instances. Therefore it is necessary to look into better solutions. However, the implementation of
the greedy can give us insight into how good the accuracy is. Which might practically be better
than calculating the correct answer with certainty:.

3.1.3 Different SAT-Solvers

To optimize the solution, we want to transition to SAT to be able to solve this with SAT-Solvers.
SAT is the question if a boolean formula is satisfiable, in particular, a formula in CNF. SAT is a
problem that is NP-complete [ | which means every problem in NP can be transformed into
an SAT problem. Where it is possible to transform our research question into an SAT formula. The
SAT-Solvers are constantly improved by other people, more than any other NP-complete problem.
Although we do not know if our problem is in P, it is likely not possible to solve this problem within
a polynomial time.

SAT-Solvers are solvers made for solving the SAT problem as optimally as possible. To do this
they are created to solve large problems of CNFs. There are three SAT-Solvers we will measure
their performance, 73 | |, Kissat| ], and Glucose4| ]

To create our SAT formula we had the help of the code from Brand| |, they had a solution
for finding a path between a source graph and a target graph with an extra rule the vertex deletion.
This operation is not needed, that is why we will remove this operation from the SAT encoding.
Once removed, we have created a transformation from our problem towards an SAT problem.

3.2 The SAT encoding

The SAT encoding for our problem will be formed from the SAT encoding by Brand| |. Only
the vertex deletions need to be removed and the target graph needs to be exchanged before it is
able to be used for our problem.



However, we begin by explaining the current SAT encoding. There are in total three different kinds
of variables in use. The x variables keep track of all the edges. The y variable holds the vertexes on
which an operation will be performed. The z variable which holds the operation is being used.
Every variable holds extra information in its name, for all of them the timestep at which the
variable holds. There we have the x variable which also holds the vertexes by which the edges are
within the graph. Here the name created is z_{i} {n}_{t} where i,;n is in V and t expresses the
timestep. With this encoding, it represents the source graph at value zero. For all different possible
operations, the formula will add the corresponding edges at the corresponding timesteps. The y
variable has the name y_{vertex}_{timestep} and the z variable has the name z_{timestep} both
of them together will decide on which vertex at which timestep will receive what for operation.
However, our SAT formula needs to exclude the implemented vertex deletions. The operation has
been encoded by which the z variable has to be false to represent an LC. We have to add the
constraint that the z variables may only be false. With this, the encoding has been transformed.
An example of how we can create the encoding in one step:

Figure 5: Example three-qubit graph.

We have three vertexes 5 and can perform our LCs on 1 2 and 3. First, we recreate the source
graph with the SAT encoding;:

r120AN2130AN—-2230

Then we create the operations and the vertexes belonging to the operation. z_{timestep}: 2.0,
where z_{timestep} = false means an LC. Then the vertexes are y_{node}_{timestep} connecting
the operation at certain vertexes to operate on. This whole makes us the formulas to append:
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Here every line is a different vertex where we perform an LC on. Lastly, the corresponding graphs
need to be added with the x variables. The last part is done by the formulas Brand] ]:
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The part we added to form the SAT encoding to our research question is the removal of the vertex
deletions and ensuring that still —=z_{timestep} is being kept for LCs. That is why we will add it
to the encoding ensuring that —z_{timestep} will always be taken.



3.3 The cardinality constraint

Then for the last step, we need to create our cardinality constraint, with the use of pysat we
made the target graph as the pysatcard function. This function can encode the lesser or equal
then constraint on the edges of the target graph. The cardinality constraint limits the number of
variables that are allowed to be true. Where we can decide in an SAT encoding how many edges
are maximally allowed. By using this as our target graph it restricts the SAT-Solvers to solve the
problem for a target graph with a certain bound, amount of edges.

There are various cardinality constraints available for SAT formulas. To get these encodings we use
the pysat library. In total we use 4 cardinality encodings, the sequential counter by Sinz] |, the
sorting network by Batcher| |, the cardinality network by Asin| |, and the kmtotalizer
by Morgando| ]. There are 2 more totalizers within the pysat, but these are excluded. One
totalizer is enough to see if it is an efficient solution. From the totalizers, we chose kmtotalizer on
the fact that it had the least amount of help variables created out of all the totalizers. This choice
has been made because the totalizers were best at keeping the introduced help variables the lowest.
And between all the totalizers the kmtotalizer was the best at it. By doing this we can see which
idea or cardinality encoding will be most efficient for our problem.
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Figure 6: The amount of variables against the bound for different cardinality encodings.

In Figure 6, The different cardinality constraints and the different amount of variables they make
are plotted. There are some interesting properties to be seen, the sequential counter has a parabolic
function that starts in the middle but on the higher bound, it has the lowest amount of variables.
Then the kmtotalizer is mostly constant and low in the creation of its variables, the cardnetwork
and sorting network are the highest in the number of variables, although the sortnetwork is also
really constant in the number of variables. All graphs converge to the same spot at bound 27
because we have done this test for 8 nodes creating at most 28 edges, if we want less or equal to 27
edges, it is all or’s over not all edges.


https://pysathq.github.io/

4 Implementation

4.1 Saving graph

First up we had to save our state in some way in the C++ program. We used a half adjacency
matrix saved in a boolean single array. All the edges can be looked up with index = (from
vertexCount) + to — (from + 1) % (from + 2) % 0.5. This method is efficient in both speed and
memory. For the Python SAT-Solvers, we used the implementation of Brand| |, they made a
Python object that saved a graph.

4.2 Bruteforce

Algorithm 1 Bruteforce
function GETORBIT(graphs, depth)
set orbit = graphs;
if depth > MAX then
return graphs;
end if
for graph in graphs do
for i in graph.Vertexes do
orbit += graph.LC(i);
end for
end for
if graphs.size() == orbit.size() then
return orbit;
end if
return GETORBIT(orbit, depth+1);
end function
function BRUTEFORCE(graph)
set orbit = GETORBIT(graph, 1);
for g in orbit do
if g.nEdges < graph.nEdges then
graph = g;
end if
end for
return graph;
end function

The bruteforce is a simple implementation of getting all graphs within an orbit and then choosing
the smallest graph. So to calculate the orbit we first have to calculate the number of steps we have
to take, and how many LCs we have to look at before getting to the orbit. The amount of steps we
have maximally to take is captured within the variable MAX. Then we save our graph in a set and
perform LCs on all vertexes. Then repeat it for all new graphs and reduce the amount of LCs we
have to take with one. When we have done all trajectories we have created the whole orbit and
have to search through the set to find the smallest in orbit.

8



4.3 Greedy
The greedy algorithm is exactly:

Algorithm 2 Greedy
function GREEDY (graph)
done = false;
while not done do
done = true;
for vertex in graph.vertexes do
new = graph.localComplement(i);
if new.nEdges < graph.nEdges then
graph = new;
done = false;
break;
end if
end for
end while
return graph;
end function

We also made a simple greedy, this is done by taking again LCs on all vertexes, but instead of
saving them in a set, we will take the smallest one from them. Then we repeat this until there are
no smaller graphs than the current graph.

4.4 Implementation of the SAT

To implement the SAT encoding in an experiment we used the CNF which was created by the
Brand| ]. We used this CNF to correctly implement the SAT encoding which is explained in
the method section. The only step it needed was to go from pysat to the CNF form to implement
our cardinality constraint. This is where we created a definition that performs this transformation.
This is done by creating a mapping from the CNF to pysats CNF, at which we encode all the edges.
Then pysat can produce the cardinality constraint in pysat, whereafter we transform the encoding
of the edges back to CNF with the mapping and create new variables for the help variables created
by the cardinality constraint.

4.5 Creating graphs

The graphs we used for testing our experiments are Erdos-Renyi graphs. An advantage of using
these graphs is that we can easily decide what density the graph has. This is done by giving a
probability at which every edge has to exist. When we give this a high number like 0.9 we get almost
complete graphs, while having a 0.6 probability results in a less dense graph. Hereby Erdos-Renyi
graphs have the trait that above the threshold an’ it has a high probability of creating a connected
graph]| |. Because an unconnected graph is undesirable for our tests we use this property to
get all graphs to be connected.



4.6 Implementing the cardinality constraint

Then for the experiments, we need to search for our lowest k, where we have to find a graph with
|E| < k. We start at an upperbound, |E| which is found at zero steps, and zero operations. The
upperbound for the amount of steps the calculation takes is the total amount of LC possible on the
graph given by Brand| |. Because we focus on finding the smallest graph in the orbit we do
not have to search over the amount of steps. We do this with different search algorithms that every
time search for the best low bound and upperbound until the smallest bound is found. Through an
identity operation, not all steps need to be filled with LC operations.

4.7 Result gathering

When our SAT-Solvers have calculated the best bound, we also want the amount of time spent
on encoding and solving the SATs. To get a practically efficient way of finding our smallest graph
we put a timeout of 30 minutes. Hereby we say that when our SAT-Solvers take longer than 30
minutes it is not practically efficient anymore.

The extra programs at which we look are the implementations of a greedy and bruteforce algorithm.
Because these will be our baselines. The optimized solution must be faster and as accurate as the
bruteforce algorithm to be more efficient. The greedy is likely to have quick solutions but are far
from the truth. But in the case greedy is not far off from the truth it would be practically better to
use the greedy algorithm.

5 Experiments

The experiments performed are to evaluate the efficiency and accuracy of the different approaches.
Here the different greedy approaches, the bruteforce approach, and different SAT-Solvers are being
tested. To test this on controlled instances, we made Erdos-Renyi graphs on densities from 0.6 to 0.9
and sizes from 4 to 14 qubits. We have chosen to go to fourteen qubits because of the proposition
to create a quantum network with fourteen qubits| ]. All these parameters let us compare
the different approaches between each other and classify the advantages and disadvantages of each
approach.

5.1 Greedy and bruteforce

The greedy and bruteforce algorithms used here are explained within the implementation section.
The greedy will be used to see how accurate it is. The bruteforce is checked upon the efficiency it
performs. Both of these algorithms were programmed within C++ while the implementation of our
SAT-Solvers has been done in Python.
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Figure 7: Greedy against bruteforce true minimal

In the above Figure 7 a simple greedy solution is significantly above the minimal solution. Moreover,
it seems to have a sharper curve than the minimal. A better greedy algorithm could have a significant
help in creating quantum states. However, this simple is not a practically efficient solution.
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Figure 8: Bruteforce average times, left 0.7 dense Erdos-Renyi graphs, right 0.6 to 0.9 dense
Erdos-Renyi graphs.

As shown in Figure 8, we have the average times of the bruteforce solution. The bruteforce approach
is practically efficient in terms of speed with a solution on fourteen qubits within 300 seconds.
Although the speed, this approach does take around 7.8 GB of memory to search the minimal
amount of edges on fourteen qubits. Which could only grow if we want to calculate larger amounts
of qubits.
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5.2 The SAT-Solvers

To test the efficiency of our SAT-Solvers we tested them against the same graphs as the greedy
and bruteforce. These Erdos-Renyi graphs were made with different densities and different sizes of
qubits. Initially checked how much time the SAT-Solvers took to find the optimal solution for every
instance in our test set. After the tests, the best SAT-Solver will be further tested with different
parameter settings.
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Figure 9: SAT-Solvers times, left different density Erdos-Renyi graphs, right different size qubits.

As shown in Figure 9 the best performing SAT-Solver on density and number of qubits is Kissat. Z3
is the worst in time performance of all three SAT-Solvers. Based on these results further experiments
will be done with the Kissat.

5.3 Search algorithms

Using the SAT-Solver Kissat we search for the best algorithm to find the minimal bound. This
experiment tests if there is a difference between bound search algorithms. Hereby we have a test set
of only 0.7 dense graphs. We chose 0.7 because it makes higher bounds while still getting to a high
amount of qubits without failing. The minimal amount of edges for 0.7 dense graphs is not always
|V| — 1, which is the case for a low and high bound. We will test four kinds of search algorithms on
the graphs.

The first one is a simple linear search where we start at the smallest possible graph and try a bound
higher until we find a satisfying assignment, which will be the answer to the problem.

Secondly, we have a binary search over the bound. This way we first take the lowerbound as |[V|—1
edges and the upperbound as the number of edges within the source graph. The binary search
puts the new bound between the lowerbound and upperbound. If it solves an unsat it moves the
lowerbound to the new bound. If it is a sat we move the upperbound to the new bound. This way
it finds the best bound when the lowerbound and upperbound are the same. Because binary search
puts the new bound halfway between the lowerbound and upperbound, it has to solve fewer bounds
before getting to the best bound. Hopefully, this approach lessens the search time, especially for
larger graphs.

12



Thirdly, we have an algorithm where we decide how many LC steps may be done before reaching
our final target graph. For the upper two, we put this on the maximum of possible LCs there are
within the orbit. However, this creates unnecessary clauses which could lead to a higher solving
time. With deciding the steps we try to minimize the number of needed clauses. This algorithm
starts with one LC step and searches for the minimum bound. This way it has a better upperbound
for the upcoming solutions. Then it increases the amount of steps with one and finds again the
best bound. We do this till we have had all the steps maximum possible. So because we still have
to do the maximum amount of LC it will be slower. But it is great to see the minimum amount of
steps it takes to get to our minimum graph.

Fourth is the linear algorithm, however this time from upperbound to lowerbound. This reverse
linear search starts at the upperbound and finishes when an unsat has been found. In that case,
The previous sat is the minimal bound. The idea with the reverse linear is that we only have to
encounter one unsat. There may be a significant difference between sat and unsat solve times. Then
we can implement a timeout in which the algorithm has a high probability of finding the minimal
bound. Although it did not find the unsat.
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Figure 10: The search algorithms and their time on 0.7 Renyi graphs.

As expected in Figure 10 the step search is the slowest. However, between linear and binary is
not much difference in the solve time in the lower amounts of qubits. Although on average binary
is faster than linear. Even if we had more qubits, for example, 14 qubits. In this case, we have a
minimal bound on 27 edges and starting on 53 edges. This means that linear will do 27 — 13 = 14
unsats before getting to the final sat solution. While binary will take 33, 22, 27, 24, 25, and 26 as
bounds, giving 6 checks. These checks will be 4 unsats against the 14 we had with linear.
Although binary search is a fast search algorithm, the reversed linear is even faster. This gets
the point that the unsat is best to avoid while solving this problem. With the reversed linear it
does matter less that it solves more sats. To be exact for the previous example, it has to solve
52 — 27 = 25 sats and one unsat. Although it has more formulas to solve, it is the quickest out of
all search algorithms in getting to the minimal bound.
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5.4 Different cardinalities

As shown in Figure 6 the cardinality constraint creates a large amount of help variables. This does
not help in easier formulas. It could be possible that different cardinality constraints have different
times associated with them. Therefore we experiment with several different cardinality constraints.
We have been using the sequential counter, but we will also experiment with the sorting network,
cardinality network, and kmtotalizer.

seqcount
sortnetwrk
cardnetwrk
kmtotalizer

700 A

ERX!

600 4

500 A

400

time (s)

300 1

2001

100

0 @ & . v

T T T T T
4 5 6 7 8 9
nqubits

Figure 11: different cardinality encodings on 0.7 Renyi graphs

Above in Figure 11, we can see that kmtotalizer is the worst. But between the others, there is not a
great difference. The sorting network is on average the fastest out of the three. However, we did not
test further, where the cardinality network could become the faster cardinality constraint. It is also
notable that the sorting network was the largest in creating help variables as shown in Figure 6.

—8— sorting network
800 1 —®— gluecard4
—8— minicard

f f ! T T
4 5 6 7 8 9
nqubits

Figure 12: different native cardinalities on 0.7 Renyi graphs and sorting network not native with
timeout on 900 seconds.

Aside from the SAT-Solvers mentioned so far, there are also several SAT-solvers with a native
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cardinality constraint. These include Minicard| | and Glucose4| ]. Pysat calls the native
solver of Glucose4, Gluecard4. In Figure 12 we have the average solving time of each of the native
solvers in the graph, plus the fastest previous cardinality encoding. However, it is shown that the
native solvers are not better than the sorting network encoding.

5.5 Best SAT-Solver approach

In this experiment, we combined all the best approaches. This experiment shows if the approaches
complement each other and make a better algorithm. With these results, it shows if it is an efficient
algorithm for solving the problem. To determine if the algorithm is efficient, we put a timeout on
30 minutes, because if it takes longer we consider it an inefficient algorithm.
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Figure 13: The rlinear algorithm with sorting network cardinality encoding on solving time timeout
on half an hour.

in Figure 13 the best solution times are shown. All the previous best solutions, do complement
each other, but it cannot get further than 9 qubits within half an hour on 0.7 Erdos-Renyi graphs.
Although this solution will indeed find the minimal amount of edges decently fast. The unsat is
hindering the SAT-Solver.

5.6 Sat against unsat

We see a difference between the calculation time in an sat against an unsat. Noting these differences
gives us insight into where most of the solving time is invested. Showing if it is better to avoid
unsats or sats or if the distinction does not matter.
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Figure 14: Left sat against unsat on time, right sat on time.

In Figure 14 is shown that our sats take seconds to solve. Do note that sat is not constant what
might look like in the left part of Figure 14. But the majority of time is put into our unsat,
Unfortunately, a search algorithm has to take at least one unsat before knowing the minimal graph
in orbit. Except if the smallest graph has |V| — 1 edges. This is why SAT-Solvers are not efficient
in solving this problem, although we can optimize a search by taking only one unsat.

5.7 Better greedy solutions

In the previous paragraph, we discussed the great time loss on the unsat statements before reaching
certainty over the minimal amount of edges. Although despite the long solving time, the best
solution is found faster. Thereby there are several search algorithms better than others in providing
a greedy solution. Here the algorithms focussing on keeping solving time low before continuing
are the best greedy solutions. The search algorithms are not all that great but with the rlinear
and steps implementations they follow the least resistant solve time towards the optimum solution.
However, checking if the solution is correct might take longer.
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For step search the idea is to reduce the solve time by looking first at smaller steps, taking less
time to find unsat solutions with lesser steps. As shown in figure 15 this certainly is taking less
time. The drawback is that for certainty it has to do the maximum amount of steps unless it has
seen |V| — 1 edges.

The reverse linear is almost the same as linear the only difference is that we start at the upperbound
and work our way to the lowerbound. Where uppon finding an unsat the previous one would be the
minimal amount of edges in the orbit. As you see for the solution we only have to find one unsat as
we know the unsat takes the most time, and this is certainly to our advantage. But what you can
notice is that the smallest amount of edges is most of the time on the lower side. This means we
have more calculations to perform, but as long as this is faster than going through the unsat, we
will probably have the answer the moment we have a long wait and can cut off prematurely.
Lastly, the binary search could also be a greedy approach where we can put a cutoff at a fifteen
minute timeout. The drawback of the binary search is that it has a higher chance of encountering
an unsat. Therefore the last one rarely is the minimal amount of edges.

On the right graph in Figure 15 we put the fastest time at finding the minimal bound. However,
we see that the cardinality of a sequential counter is faster than the sorting network. Although the
difference is minimal. It could be because the encoding for the sorting network is better at finding
unsats and different encodings are better at finding sats.

6 Discussion

This thesis aimed to find an efficient way of finding the minimal amount of edges within an orbit.
We took this and made a bruteforce, SAT-Solver, and several greedy solutions. We optimized the
SAT-Solvers with different search algorithms and different cardinality constraints.

Although we explored the different optimizations over the SAT-Solvers, we have shown that
bruteforce implementations are faster than the SAT-Solvers, while they do take more memory.
It would be worthwhile when trying to solve the research question to look into better bruteforce
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algorithms. Despite this, an unsat instance takes most of the solve time. This is why SAT-Solvers
are not efficient in solving the minimizing question. Because every solution must take at least one
unsat to solve. To counter this factor we made better greedy solutions, where they would only need
one unsat to solve the minimal amount of edges within an orbit. This way we can have a timeout
where there is a high chance we still found the minimal amount of edges. Although we came to this
conclusion, we did not further the research on how the new greedy solution performs until fourteen
qubits. The same holds for the amount of graphs we have used. We did the majority of testing on
0.7 Erdos-Renyi graphs. To get more insight we could have tested on more graphs and different
densities.

While most of our conclusions to use certain algorithms and encodings depended on the average
time. The times itself are not constant on the same graph. Because of the randomness of the
SAT-Solver, the solve times can for some graphs differentiate between the 10 seconds.

7 Conclusion

In this thesis, we searched for an optimal way to prepare a quantum state. This was done by
minimizing the amount of two-qubit gates needed. To do this we optimized a SAT-encoding which
searched the minimum amount of edges within an orbit. We optimized by testing different SAT-
Solvers, search algorithms, and cardinality constraints. Additionally, we checked the influence an
unsat and sat instances had on the total solving time.

To conclude, we have shown that Kissat is the fastest SAT-Solver to use for this problem. Out of
the different cardinality constraints sorting network is the fastest. Although the sorting network
makes the most amount of help variables. Lastly, we had different kinds of search algorithms to
search for the bound that represents the number of edges a graph maximally has. The fastest search
algorithm is a linear search starting from the upperbound. This is the case because it avoids the
most unsats. Combining every optimization lets us consistently solve up to 8 qubits within half an
hour.

The bruteforce algorithm could solve these problems to 8 qubits within seconds. This shows that a
bruteforce algorithm calculating the whole orbit is faster in solve time. However, a drawback for
the brute is that it takes a significant amount of storage to calculate the minimal graph in orbit.
Lastly, we have shown that an unsat instance takes significantly more time than a sat instance.
With this, we found that the best SAT-Solver approach can find the minimal amount of edges with
an average of 10 seconds for problems on 9 qubits.

This demonstrates that a SAT solution can be a practically efficient solution to finding the minimal
amount of edges within the orbit.

8 Future work

8.1 Different SAT encoding

There are a few parts that could be done better, first, we take a look at our SAT encoding. Because
we reformed another SAT formula for our problem our SAT formula is not optimal. This could be
made better by truly getting the vertex deletions out of there and thereby the removal of the z
variable. Because we will always perform the local complement operation on a vertex.
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8.2 Faster SAT greedy solutions

We have seen the importance of different search strategies within this problem. With almost
certainty, we can use the speed of these SAT-Solvers at which they find sat formulas. We have
sorted most of our work on the finding of the minimal edges. It might be that the other cardinality
constraints are faster in finding sat than the one we have chosen, because of the speed overall. For
example, this is seen in the greedy solution comparison with the best overall, and reverse linear in
Figure 15. If this is the case we could make faster greedy solvers.

8.3 Better Upperbound

Because the reverse linear did so well in finding the solution the fastest. It is important and could
enhance performance by finding a better upperbound. Because we have seen that in most of the
graphs, the optimal solution is on the lower side of the scale. Never on the high side, so it would
not be surprising if we could find a better upperbound for this problem.

8.4 Better upperbound for steps

The amount of steps helps in finding the unsat as we have noticed within the step search algorithm.
We know the amount of LC steps we have to take to find the whole orbit. But we do not need the
whole orbit only the minimal amount of edges, and as seen the amount of steps needed to take was
decently low despite what the max steps were. This part shows that there is a way we can safely
lower the amount of maximum steps needed to find the minimal amount of edges. This would help
immensely with the solving time needed for calculating the minimal edges. Also, We found that
binary search is reliable and quick in these problems. It could be that we can create better greedy
algorithms with the binary search and with steps, leading to faster finding the bound but still
reducing the number of unsats. This could lead to a better performance in finding the best solution.

8.5 Different approach

In this thesis, we looked at what the smallest graph is within an orbit. However, we want a certain
state with the least amount of two-qubit gates. To do this we could use the same SAT formula but
replace the target graph with the graph we are searching for. Then replace the source graph with
the current state(which could be empty). Lastly, we need a cardinality constraint over the amount
of CZ gates. This way we need to add edge flips into the SAT formula. The answer to this question
will also lead to the minimal amount of CZ gates used and might be a better formula to solve for

an SAT-Solver.
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