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Abstract

Deep neural networks can provide highly accurate classifications with lim-

ited resources, which makes their applications convenient in embedded electronic

devices. Unfortunately, these devices are vulnerable to several hardware attack

techniques that aim to intentionally affect their functionalities, such as adver-

sarial attacks, or to recover private intellectual property like model parameters

and hyperparameters. Among these attacks, fault injection poses serious concerns

for the security of deep neural network models as state-of-the-art research has

demonstrated the high capability of fault injection to affect deep neural network

model accuracy. Moreover, as attack models become more sophisticated, recover-

ing model parameters through fault injection is also an increasing concern.

This work explores and studies the robustness and security of the multi-layer

perceptron against simulated fault injection attacks. First, we perform model

characterization of the different neural networks against fault injection. Second,

we evaluate the possibility of recovering model parameters using the stuck-at-

zero fault model. Our results indicate that the number of trainable parameters

and activation functions impact the robustness, and the attacker can get certain

leakage information through fault injection.
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1 Introduction

In recent years, due to the continuous development of AI technology, people’s lives

have gradually become closely inseparable from AI innovations. Consequently,

there is an increasing need to deploy neural networks on embedded computing

systems. Neural networks are of paramount importance and are applied in various

fields, such as computer vision [19], image analysis [1], medical treatment [35],

autonomous driving [2], and even security domains [45]. Due to the wide range

of applications, the security of deep neural networks has become increasingly

critical. Concerning user privacy and security, the robustness of neural networks

cannot be disregarded. When deployed on embedded devices, neural networks

may exhibit several vulnerabilities to adversarial attacks and model stealing. To

thwart these malicious attacks, it is crucial to conduct security assessments of

neural networks and characterize their primary vulnerable aspects.

Running on embedded devices, deep neural networks may offer several se-

rious vulnerabilities. Nowadays, it is well-known that deep neural networks are

highly vulnerable against adversarial attacks [48]. These attacks implement input

data modifications to intentionally affect the accuracy of a model and achieve

peculiar goals, such as system malfunction, which can lead to safety and security

concerns. Another big concern is model stealing [36]. Manufacturers invest signif-

icant resources to train neural network models and want to prevent that model’s

parameters, hyperparameters, and training data leak to malicious players.

With the development of hardware computing systems and the current re-

search on neural network compression technology, neural networks can also be

configured on various microcontrollers, such as Arduino, STM32, etc. At the

same time, with the development of the Internet of Things(IoT), attackers can

more easily attack computing components through physical approaches [6]. And

the security of these mobile computing platforms is indispensable.

The thesis considers simulated fault attack models for two main goals. First,

we consider fault models for characterizing neural networks to identify the most

vulnerable parts of a model. Second, by using a well-defined simulated fault model,

we theoretically evaluate the possibility of reversing engineering neural networks.

Our analysis focuses on small multi-layer perceptrons (MLPs), and we train these

models with different datasets. This thesis has the following main contributions:

• We train several different neural networks on different datasets, and we

inject faults into the weights of the pre-trained models. We would consider
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several datasets, iris, WDBC, wine and Spine, we would pre-train neural

networks on these datasets and conduct fault injection attack experiments

on these pre-trained models. Our experiments and analysis are divided into

two parts.

• The first step is to characterize the injection errors of the pre-trained neu-

ral network model and obtain the faults distribution by injecting different

types of faults, thereby analyzing which parts of the neural network are

more sensitive to faults and which layers or neurons are more vulnerable to

faults. In this process, we would also analyze what kind of neural network

structure is more resistant to fault injection errors. Thus we can propose

countermeasures to reduce the impact of neural network failures.

• The second part of the experiment is based on the above characterization

and error distribution. We would use stuck-at-zero to inject the fault model,

restore all the bits of each weight by analyzing the changes in model accuracy

before and after each attack, and finally analyze the entire The extracted

model is analyzed for accuracy and loss values to determine what extent the

model can be restored in this way.

1.1 Problem definition

This work explores the following research questions:

1. For a white-box threat model, in the situation that the attacker knows

everything except the training data, what is the effectiveness of fault attacks

against deep neural networks?

2. What components of a neural network model demonstrate the highest re-

silience and susceptibility to fault attacks?

3. In a threat model in which the adversary has access to the model’s hyper-

parameters and is based on an optimistic fault model, to what extent can

model parameters (i.e., weights) be recovered?

4. In the previous fault model for the model’s parameters stealing, can all bits

be restored, and what is the accuracy of the recovered models?

1.2 Structure of the thesis

Section 2 provides the relevant knowledge background used in the thesis, including

machine learning security issues, model extraction, and fault injection. Section
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3 describes related works on fault injection against deep neural networks. In

Section 4, the details of our approach are demonstrated, including simulated fault

models for model characterization and model parameters extraction. Simulations

experiment results are shown in Section 5. The discussion of our results is given in

Section 6. Finally, in Section 7, we draw a conclusion of our analyses and describe

prospects for future works.
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2 Background

In this section, we elaborate on the background of our work. We start with the

main concepts of multi-layer perceptrons and with a review of relevant topics on

the security of AI. In this scope, we also briefly discuss the main threat models and

how they impact the decisions for attacks and countermeasures. A description of

fault injection attacks and their impact on deep neural networks is also provided.

Finally, this section describes the datasets used in this work.

2.1 Deep neural networks

2.1.1 Multi-Layer Perceptrons

This work focuses on multi-layer perceptrons (MLPs) as the target architecture

type. Thus, in this section, we review the main concepts of this type of neural

network.

MLPs are artificial neural networks that have the characteristics of a forward-

structured directed graph. The example diagram of the MLP is shown in Figure 1.

These models consist of an input layer, one or more hidden layers and an output

layer. Each layer has a certain number of neurons. The neurons of each layer l are

fully-connected to all neurons in the subsequent layer l + 1. The connections are

defined by a weight value ωi,j that connects the neuron i-th neuron from layer l

to the j-th neuron from layer l+1 [38]. The output of a neuron, xl+1
j is computed

from the weighted summation of its inputs xi using the weights ωi,j associated to

these inputs:

xl+1
j =

L∑
i=1

xli.ωi,j + bl+1
j (1)

where bl+1
j is the bias of the neuron j in the layer l + 1 and L is the size of layer

l.

Each neuron is a node with a non-linear activation function. Different ac-

tivation functions also have different effects on the training of neural network

models and have different responses to attacks. Commonly used activation func-

tions include sigmoid, ReLU, identity, and tanh. The equations and images of

these activation functions are shown in Figure 2.
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x1
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Input layer Hidden layer Output layer

Figure 1: An example diagram of a MLP, which contains the input layer, the hidden
layer, and the output layer [25].

Figure 2: Different activation functions in neural network models [24].

The training process of a MLP involves several key steps aimed at optimizing

the network’s parameters to accurately map inputs to desired outputs. Initially,

the weights and biases of the MLP are randomly initialized. Then, during each

iteration of training, a batch of input-output pairs is fed forward through the

network, producing predictions. The difference between these predictions and the

actual target outputs is measured using a loss function, such as mean squared

error (MSE) or cross-entropy loss. The type of loss function depends on the under-

lying task that the MLP receives. In regression-based tasks, the MSE loss function

is commonly employed. For classification tasks, categorical cross-entropy is usu-

ally considered and the output layer is set with softmax activation function, which

maps the output activations from precedent layer into class probabilities.

The backpropagation method is employed to compute the gradients of the
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loss function with respect to each parameter in the network. These gradients

indicate the direction and magnitude of adjustments needed to minimize the loss.

The optimizer algorithm, like stochastic gradient descent (SGD) or Adam, then

updates the weights and biases in the network, minimizing the loss. This process

iterates over the training dataset multiple times (epochs), gradually refining the

model’s parameters until the desired level of performance is achieved, or until a

stopping criterion is met.

Regularization Regularization is a method in machine learning to prevent

deep neural network models from overfitting during the training process. Over-

fitting typically happens when the model memorizes the training data too well

while it demonstrates very poor performance to the validation set. Regularization

prevents the model from becoming too complex by employing a penalty mecha-

nism for the weight updates in the loss calculation. Commonly used regularization

methods include L1, L2, weight decay and dropout [8]. The L1 and L2 methods

separately utilize the sum and square sum of the absolute values of the weights

in the loss function, which are utilized to prevent the weights from being too

large [16]. Dropout refers to the method of randomly throwing away the output

of a certain proportion of neurons in each epoch of the training process to make

the model more versatile [41].

In this work, to analyze if the regularization has impacts on DNN models’

resistance against fault injection, we also experiment on models with L2 and

dropout layers and compare the results with the models without regularization.

2.1.2 Embedded deep neural networks

Embedded deep neural networks (DNNs) enable complex computations to be

performed directly on embedded systems with limited computational resources.

These networks are carefully designed to find a delicate balance between accuracy

and efficiency, making them suitable for deployment in various real-world appli-

cations, including robotics, Internet of Things (IoT) devices, and autonomous ve-

hicles. Unlike traditional DNN architectures that rely on high-performance com-

puting resources, embedded DNNs are tailored to operate within the constraints

of embedded platforms, optimizing model size, computational complexity, and

power consumption while maintaining impressive performance levels [43].

One of the key challenges in developing embedded DNNs lies in achieving the

desired level of functionality within the resource constraints imposed by embedded
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systems. Researchers and engineers continually explore innovative techniques such

as model compression, quantization, and specialized hardware accelerators to en-

hance the efficiency of embedded DNNs. Moreover, the deployment of embedded

DNNs introduces unique considerations regarding real-time inference, robustness

to environmental variations, and energy efficiency, further driving advancements

in algorithmic and architectural design. As embedded systems become increas-

ingly pervasive across diverse domains, the evolution of embedded DNNs promises

to revolutionize the landscape of intelligent edge computing, empowering devices

to exhibit sophisticated cognitive capabilities in a compact and energy-efficient

manner.

Several techniques enable DNNs to fit within embedded systems. Model com-

pression techniques, such as pruning [28], quantization [23], and knowledge dis-

tillation [17], reduce the size of DNNs by eliminating redundant parameters or

representing them with fewer bits. As we discuss in the next sections, compressed

DNNs also become attractive targets for attackers regarding model performance

and model stealing.

2.2 AI security

AI-based systems can exhibit numerous vulnerabilities if their security is ne-

glected. With the rapid evolution of AI across various domains in recent years,

a plethora of attacks targeting deep neural networks have been showcased to be

viable [14]. Among these threats, adversarial attacks stand out as perhaps the

most prominent, aiming to undermine the accuracy of models by manipulating

input data [10].

To establish robust defenses against strong adversaries, it’s essential to com-

prehend the workings of attacks and the primary elements within deep neural

networks that facilitate effective attack outcomes. Risks are categorized into en-

vironmental exposure, data manipulation, model training, and usage, as well as

the threat of producing misleading results [48]. For instance, in [9], Carlini et al

proposed a methodology for the best practices in deep neural network security

evaluations against adversarial attacks. Given the high complexity of such attacks

and also the fast evolution of this field, defining efficient protections that cover

all types of attacks methods becomes nearly impossible. Even state-of-the-art AI

models such as ChatGPT can be highly vulnerable to adversarial attacks. For

instance, in [32], authors demonstrated how simple manipulation of input data
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can extract blocks of training data, exposing confidential information from the

model manufacturer and from private users.

Attacks on environmental exposures. Environmental exposures include

backend software, docker attacks, hardware and supply chain attacks, etc. Back-

end software attacks refer to attacks that rely on Python libraries and backend

structures. The architecture and application of neural networks rely on many ma-

chine learning frameworks, such as TensorFlow and PyTorch, hundreds of com-

puting frameworks, and third-party dependent libraries, such as NumPy, SciPy,

etc. However, people have found some security vulnerabilities in the libraries and

the machine learning systems that rely on these libraries, for instance, the attacks

on pointers, arrays, servers, etc. [46]. Docker attack refers to the attack on impor-

tant computing nodes of the neural network through the KubeFlow library. The

attacker deploys the container by adding malicious additional Python code. Hard-

ware Trojan attacks are attacks that make small changes to the lookup table of

a machine learning model that has been trained and deployed on hardware with-

out being discovered by humans [29]. Supply chain attacks involve the attackers

providing malicious models on open-source platforms, and the poisoned models

are downloaded by consumers, leading to malicious backdoor vulnerability on the

consumers’ computers.

Attacks on datasets. This category includes malicious data poisoning and

data backdoor attacks. Malicious data poisoning refers to feeding the model with

contaminated data during training [11]. There are two situations. In the first

situation, the attacker makes the model perform normally during training. Still,

when the pre-training process is completed, the model incorrectly classified spe-

cific categories. The second case is that the attacker gives more poisoned training

data, so the model performs poorly during the training process and is difficult to

converge [40]. Data poisoning in this process also includes clean data poisoning

and wrong data poisoning. The former refers to adding errors difficult for hu-

mans to detect in the data. These errors are relatively hidden, and the trainer

treats these data as normal data. The latter refers to introducing wrong labels

into the training set, which has low concealment and is easy for humans to dis-

cover. However, this method has a higher attack success rate. Data poisoning

is also called adversarial instance attack, which we will introduce in detail in

section 2.3. At present, security attacks on data-level machine learning models
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are relatively mature. Corresponding countermeasures include increasing vigi-

lance against data from unknown sources and conducting adversarial detection

and analysis before using datasets to prevent the use of poisonous data that is

difficult for humans to identify during training. Backdoor attacks are currently

a relatively novel method of attacking neural networks. The machine learning

model has a backdoor installed by the attacker in the neural network so that the

attacked model behaves normally when the backdoor is not activated [11]. How-

ever, when the attacker activates the backdoor, the infected model would output

specified malicious results.

2.3 Adversarial Attacks for Model Parameters Ma-

nipulation

An increasing number of methods for assessing the security robustness of neural

networks has emerged [32], notably including the study of adversarial examples.

Adversarial examples are crafted input data designed to perturb models during

training, inducing misclassifications and vulnerabilities in deep neural network

(DNN) models [48].

In the work of Madry et al, adversarial examples are viewed as manifestations

of inherent instability within neural networks, prompting efforts to enhance the

resilience of these networks against such attacks [30]. Illustrated in Figure 3, their

approach involves introducing noise into the original image dataset, causing in-

stances initially labeled as cats to be misclassified as dogs by DNNmodels. Despite

the introduction of noise, the alterations to pixel values remain imperceptible to

human vision, indicating the powerful capability of adversarial attacks.

+ =

'Cat' ×0.11 'Dog'

Figure 3: Adversarial attack examples.

Nowadays, while the technology for attacking deep neural network models

and implementing countermeasures has significantly evolved, attacks aiming at
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recovering and manipulating model parameters still has several limitations. This

type of attack scenario is more feasible when attacker can manipulate neural

network parameters in memory systems, such as embedded devices. Rowhammer

attacks are examples of adversarial attacks DNNs[42] by manipulating DRAM

memories. Additionally, neural networks are deployed on high-performance phys-

ical devices, such as CPUs and GPUs. However, the landscape has evolved, with

embedded neural network models increasingly integrated into computing sys-

tems, often employing compression techniques like pruning and quantization [49].

These embedded systems, exemplified by platforms like ARM-based systems or

Arduino for low-power applications (e.g., Internet-of-Things), often feature lim-

ited storage and memory capacities, rendering them less resilient compared to

their high-performance counterparts like CPUs and GPUs [3].

In contrast to the well-established strategies for safeguarding data on CPUs

and GPUs, such as hardware performance counters (HPC) utilized for debugging

programs and analyzing security vulnerabilities in hardware data [21], embedded

systems lack comparable robust security measures. This disparity indicates the

need for novel strategies to improve the security and stability of embedded neural

network deployments, particularly as these systems become increasingly applica-

ble in diverse computing environments. However, the mobile platforms might lack

data integrity checking mechanisms due to limited resources, leading to vulner-

ability to fault injection attacks [37]. This vulnerability of DNN models might

result in serious consequences, mainly due to the misclassification of input data

due to affected parameters during model inference.

This work focus on vulnerabilities that may arise in embedded neural net-

works when fault injection attacks are considered. Our simulated fault model is

described in Section 4.4.1.

2.4 Attacks for model parameters extraction

Model extraction involves the retrieval of critical information from the model, such

as its trainable parameters and structure. This tactic is often utilized when the

attacker can access the model’s input, output, or even the underlying dataset [18].

There are different types of model extraction attacks with different goals [34]. In

some cases, the main goal of an adversary is to recover specific hyperparameters

such as regularization values in hidden layers. Other scenatios [44]. Other attacks

attempt to recover the information about the model architecture [33]. Other tech-
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niques attempt to extract the trained parameters of a model, even with the usage

of physical side-channel information [47].

In our work, we combine model extraction with fault injection to extract and

recover the weights of trained MLP models. As will described in Section 4.4.2, our

simulated fault model allows an adversary to partially extract model weights from

an MLP. This partial information allows the adversary to initialize the model and

fine-tune it to achieve similar or better performance than the original model.

2.5 Fault Injection Attack

Fault injection attacks are a form of security breach in which an attacker delib-

erately introduces faults or errors into a system’s hardware or software to com-

promise its integrity or confidentiality [39]. These attacks exploit vulnerabilities

in the system’s design or implementation, taking advantage of unexpected be-

haviors triggered by injected faults. The primary goal of fault injection attacks is

to disrupt the normal operation of a system, potentially leading to unauthorized

access, data leakage, or system failure.

One common method of fault injection is through physical means, such as ma-

nipulating power sources, temperature, or electromagnetic fields to induce errors

in hardware components. For example, an attacker might disrupt the power sup-

ply to a device or expose it to extreme temperatures to cause malfunctions. An-

other approach involves exploiting software vulnerabilities to inject faults directly

into the code execution process. This could include exploiting buffer overflows to,

for instance, inject malicious code.

Physical methods include voltage, electromagnetic manipulation, or laser meth-

ods. For voltage, there is voltage manipulation (VM), which is the approach in

which faults are induced by manipulating the voltage of the hardware devices;

the attackers can steal information. Also, body bias injection (BBI) focuses on

the threshold voltage of semiconductor components, and the attackers induce er-

rors by manipulating the minimum voltage. Meanwhile, the attackers can also

get leaky information by modifying electromagnetic radiation. In addition, laser

attack is also a relatively simple and efficient method.

In the last two decades, fault injection has been widely explored against cryp-

tographic systems and secure bootloaders in embedded devices. Given that com-

puting systems without any protection can be easily compromised by the injection

of malicious faults, different solutions based fault tolerant systems have been pro-
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posed, such as redundancy, error checking and error correction codes. Because

deep neural networks started to be highly deployed on embedded systems, these

type of implementations also became quite vulnerable to fault attacks [27]. Be-

cause the output predictions deep neural networks are highly dependent on almost

all model weights, affecting some weights with fault injection can already com-

pletely compromise the model’s accuracy. In this work, we explore simulated fault

models as a way to characterize the most vulnerable elements of neural network.

Moreover, we also explore how fault injection can be used for model extraction.

2.6 Datasets

In our experiments, we trained MLP models on four different datasets, which are

widely used in the machine learning field. In the first stage of our experiments,

we use Spine and WDBC datasets for characterization. In the second part of

our experiments, we consider MLP models trained with Iris and Wine datasets

for model weights recovery. The example instances of iris and Spine are shown

in Figures 4 and 5, respectively. These four datasets are all available from the

Python library scikit-learn, which is open-source library that includes several

machine learning methods. Our MLP models are also trained with the classes

and function provided by this library.

Figure 4: Iris dataset Figure 5: Spine dataset

The WDBC (Breast Cancer Wisconsin Diagnostic) dataset [4] contains the

characteristics of sampled cell nucleus images, which is possible to determine

whether the tumor is benign or malignant. There are 569 instances in the WDBC

dataset, and 31 features to describe each instance. The Spine dataset is collected

from information on several patients with spinal diseases. In this dataset, 11
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attributes are used to demonstrate the Spine information of 310 patients. These

instances would be classified into three categories: lumbar disc herniation, spondy-

lolisthesis, and normal. The first two of them are also classified as abnormal. The

iris dataset is also a commonly used classification dataset. It contains 3 types of

iris flowers, with 50 examples in each category. The wine dataset includes 178

instances of three different classes. These instances are described by 13 features,

including alcohol type, content of organic and inorganic substances such as antho-

cyanins, etc. We considered these dataset which contain small amounts of training

data to make the simulated process faster either for model training or inference.
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3 Related work

As mentioned in the last section, several types of AI security threats exist. The

following research has been conducted on environmental exposure attacks. In the

work of Liu et al. [29], they conducted research on commonly used neural net-

work frameworks, including TensorFlow, PyTorch, etc., and discovered security

vulnerabilities in them, including causing the framework service to crash, program

hangs, data stream hijacking, etc., affecting images and speech. Identification has

a greater impact. In the work of Clements et al. [13], they explored the supply

chain security threats posed by neural network hardware Trojans. It causes huge

damage to the neural network by introducing small Trojan errors that cannot be

found on the testset [3].

In current attacks on neural networks, researchers are still focusing on the ma-

licious manipulation of data. This includes data poisoning and backdoor attacks

on data. As introduced in the previous section. Taking into account white-box

attacks, the attacker even only needs one poisoning instance to cause the model

to misclassify a specific class [40]. For black-box models, attackers can also use

multi-model integration methods to increase the proportion of contaminated data

to cause misclassification with a higher success rate [50]. An attacker can make

the testset data be classified as the result specified by the attacker by only mod-

ifying a few training set images. At the same time, another method targets data.

The attacker conducts more malicious injections and manipulations of the train-

ing data, reducing the accuracy of the training set during the training process

and thus greatly reducing the convergence speed. Attackers use this method to

damage the performance of some traditional machine learning models, such as

SVM [5], logistic regression [31], etc.

However, the above methods are all aimed at the environment and data level

during the neural network training period, and the research on malicious data

attacking neural networks has been relatively mature. There are very few attacks

on neural network structures. In Rakin et al. [37], a method called Bit-Flip Attack

(BFA) is used to attack deep neural networks; in the case of limited storage space,

malicious bit-flipping is performed on the neural network to destroy the model,

and the number of flipping bits is as small as possible. Clavier et al., [12], defined

ineffective fault injection, which can be used to recover and detect intermediate

values by using the XOR instruction to determine whether the detected value

was 0 before being attacked. In the work of Dobraunig et al., the definition of
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statistics ineffective fault attack is given, which means ineffective fault attack with

the probability of successful attack [15]. In the work of Breier et al. [6], they attack

mainly by injecting faults into different activation functions on the hidden layers

of neural networks. In the work of Breier et al. [7], they improved the accuracy of

the restored neural network model by performing bit-flip attacks on the signal-

bit. However, so far, there has been almost no overall characterization of neural

networks through fault injection, including analyzing how the structure of a neural

network can be more resistant to fault injection attacks and how an attacker can

quickly destroy a neural network. Therefore, we make more exploration related

to these issues.
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4 Simulated Fault Injection on MLPs

In this section, we elaborate and discuss specific fault models using simulated

experiments. We start by defining a threat model to clarify the assumptions

about the adversary’s capabilities. Next, we discuss the fault models and methods

of weights encoding to represent weights in binary form.

In our experiments, small MLP models are trained with datasets described in

Section 2.6 and then we conduct different attacks based on two fault models: bit-

flip and stuck-at-zero models, as described in Section 4.2. The detailed simulation

methods with the two models are demonstrated in Section 4.4.

4.1 Threat Model

In order to thoroughly examine how well MLP models stands up to fault injection,

it’s crucial to examine scenarios from the perspectives of both potential attackers

seeking to compromise the model and the legitimate users who train and uti-

lize it. Throughout our research, we’ll distinguish between these two parties as

the ”attacker” and the ”model user” respectively, for clarity. By understanding

what information and capabilities are available to potential attackers, we can re-

fine our strategies for optimizing attack methodologies and outcomes. Ultimately,

this understanding allows model users to implement effective countermeasures to

safeguard against such attacks.

In the experimental characterization phase, we utilize the white-box attack

model. The objective is to assess the model’s resilience against fault injection at-

tacks. In this context, the attacker is presumed to possess comprehensive knowl-

edge about the models, including their structure and parameters.

In the subsequent phase of our experiments, we focus on black-box models

for weight recovery. In this scenario, the attacker is aware of the structure of the

targeted model, including details like the number of layers and neurons within

the neural network. However, crucial parameters of the MLP, such as weights and

biases, remain undisclosed. Additionally, we assume that the attacker has access

to the test dataset but lacks the capability to acquire the original training data

utilized in the neural network’s pre-training. Despite this limitation, the attacker

can still evaluate the model’s performance on the test set to gauge its accuracy.

In the subsequent simulation experiments, we operate under the assumption

that the attacker possesses the capability to manipulate all bits of the weights

being targeted. This manipulation involves the conversion of bits from 0 to 1 or
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from 1 to 0, and it can be executed on a hardware device, as described by Hector

et al [20]. By systematically altering different bits of the weights and monitoring

the resulting accuracy of the neural network model for each bit change, we can

conduct an analysis to detect any leakage of information through discrepancies

in accuracy.

4.2 Fault Model

Our experiments aim at simulating the process of injecting faults on real hardware

devices. In our fault model, the weights being attacked are treated in binary form.

The process of injection faults on a MLP architecture is shown in Figure 6.

x1
w1

FI Attack

Figure 6: Fault injection attack on neural network example.

4.2.1 Bit-flip Attack

Bit-flip attack is a common method of fault injection attack to deliberately in-

ducing bit errors in memory of a computing system to cause wrong data storage

and, consequently, wrong or faulty data processing [37]. This alteration can lead

to unexpected behavior in the targeted system, potentially allowing the attacker

to gain unauthorized access, bypass security measures, or cause the system to
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malfunction in a controlled manner. For the case of deep neural networks, bit-

flip attacks may drastically alter the behavior of model, affecting its performance

through aggressive accuracy drops.

The attacker can use bit-flip attack strategy to affect specific bits on the neural

network. In order to evaluate the robustness of MLP models against fault injec-

tion attacks, we use simulated bit-flip attack model to characterize the model’s

behavior as a first part of our experiments. Through this method, we are able

to analyze which layer or weight in the neural network is more sensitive or vul-

nerable to bit-flip by considering an adversary as defined in the threat model

of Section 4.1. As an expected behavior of MLP models, faults injected in dif-

ferent layers should produce different impacts on the model’s accuracy. Because

our threat model is white-box (i.e., the adversary has access to model hyperpa-

rameters and model weights), the adopted strategy for our simulations assume

that the attacker can target specific layers and weights. Moreover, we consider

the worst-case scenario for this characterization in which the adversary can also

target specific bits in the model weights. Although this sounds a very optimistic

fault model, our study serves as baseline to understand the damages that could

be caused to the model by a very strong adversary.

4.2.2 Stuck-at-zero Attack

Ineffective Fault Attack and Stuck-at-zero Attack In the work of

Clavier et al [12], the definition of ineffective fault attack was first proposed that

certain errors in embedded systems can be used to infer the intermediate bits of

the keys of encryption algorithms. Now we can extend to the stuck-at-zero attack.

For example, in a fault injection attack on an AES key, the attacker converts the

bit under attack to 0 but leaves the other bits unchanged. If the encrypted text

can still be received, it proves that the attacked bit was originally 0; the attacker

does not change anything through the attack. On the contrary, if the encryption

text cannot be received, the attack can know that the attacked bit should be 1

at first. The attacker can obtain the complete encryption key by attacking bit by

bit. Meanwhile, this method can be used to crack encryption keys and extended

to crack any data that can be represented in binary. Therefore, we would apply

this method to attack and restore the trainable parameters of a certain neural

network model, such as the weights we want to recover, etc.

18



Stuck-at-zero Attack on neural network Now we utilize the stuck-at-

zero attack on neural network model. When we attack the weights of the neural

network, every time we conduct an attack on a bit, we convert it into 0, no

matter if it was 0 or 1 before. Then we observe the accuracy, if the accuracy

changes, we can infer that the original bit is 1. If the accuracy does not change,

the original bit might be 0, or the bit being attacked is not a sensitive weight,

and the impact of the bit change is negligible for the model due to the complexity

of the neural network, but here we assume it is 0. Thus, through this method, we

can theoretically recover all the bits of the neural network.

In other work, stuck-at-one attack [20] is also used, which converts the bit

being attacked into 1. Theoretically, there are not any differences between the

two methods, but in real physical experiments on hardware devices, the difficulty

of converting the bit into 0 and 1 can be different, which is based on the attacking

methods(EMFI, voltage manipulation, or laser injection) or the hardware devices

[22].

4.2.3 The effect of faults on intermediate data

During the encryption process, the results caused by injected faults are affected by

many aspects, such as physical attack methods(laser, EMFI, etc.) or calculation

parameters [15]. However, once faults occur, they have a common characteristic.

They all change the original correct n-bit intermediate value x to a fault value

x′. By analyzing different fault models, we can get the fault distribution table as

shown in Figure 7, which can be used to analyze the impact of different faults.

In real physical experiments, a very strong attack is required to ensure a perfect

attack. We also need to add noise to the experiment to change the probability of

a successful attack.
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Figure 7: Fault distribution [15].

4.3 Weights Encoding

As discussed in Section 2, ensuring security against attacks on embedded com-

puting systems, such as micro-controllers, is crucial. In almost all of computing

systems, data transmission, data storage and data processing rely on informa-

tion treated as binary data. Since neural network weights can also be represented

as negative floating numbers, the binary form is much different from encryption

processes, which are common fault injection attack targets. Thus, to implement

a fault model characterization for neural networks, we also need to take into

account the specific representations of the weights in binary form. We need a

complement form with a sign bit for the negative numbers and the float part

needs a special representation as well. Now, when we combine these compo-

nents, we can get the following equation to define the conversion from binary(
b =

[
bNq−1, . . . , bϵ

]
∈ {0, 1}Nq

)
to decimal w ∈ W form of positive and negative

floating numbers [37]:

w = −2Nq−1 · bNq−1 +

Nq−2∑
i=ϵ

2i · bi (2)

where w is a weight in the neural network in decimal format. In the equation (2),

Nq is the length of the binary form, ϵ represents the number of digits after the

decimal dot of weight w. According to this equation, we can also derive the reverse

process of converting from decimal form into binary form correspondingly. This

is a significant component if we aim to inject faults into the weights’ bits, it is

the prior condition for bit-flip and stuck-at-zero attack.

Based on the equation above, to simulate the process of injecting faults on real
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hardware devices, in our experiments, we use the binary representation method

as shown in Figure 8. Note that neural network weights may also contain neg-

ative float numbers. In the binary format of a number for the neural networks

considered in this works, there are 4 bits before the decimal dot. The first bit

represents the sign. If the bit is 1, the weight is a negative number; otherwise,

it is positive. To represent the weight value with good precision, there are 8 bits

after the dot in the binary format. This means that we can represent float num-

bers in the range [−15.99609375, 15.99609375] (the corresponding binary format:

[0111.11111111, 1111.11111111]). This range covers all the trained weights in our

models, which are mostly within the range of (−1, 1). Because when we initialize

the MLP models, the range of weights is set to (−1, 1). Such expressions cover

the range and ensure precision, making our simulation experiments more reliable.

1000.11100000-0.875

0000.111010000.90625

Fault Injection

signal bit fifth bit after dot

Figure 8: The converting of numbers from decimal to binary form.

A simple example of a fault attack to flip one bit of a weight value is shown

in Figure 8 as a flowchart process. In this case, we simulate a fault injection on

a weight which as the the value −0.875 in decimal format. However, in memory,

this weight value is stored in its binary format. Suppose the adversary wants to

perform a bit-flip attack on both the signal bit and on the fifth bit after the

decimal dot. Then we flip the fifth bit after dot from 0 to 1 and convert the signal

bit from 1 to 0. Figure 8 also shows the resulting faulty weight in decimal format.

As a result, the weight value after the fault injection attack becomes completely

different. For the weights of a neural network, such changes could have significant

impacts on the accuracy.
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4.4 Simulation

So far we have introduced fault attack considered in this work. Now, we go further

to discuss how to combine these methods with our experimental setup to carry

out the following analysis. In this section, we provide details about simulated

fault injection experiments. We first start with the characterization of the model

and after we describe how we use the stuck-at-zero fault model for model weights

recovery. We also provide pseudo-codes for our simulated fault models.

4.4.1 Model characterization using bit-flip attacks

In evaluating MLP models against fault attacks, we focus on the bit-flip attack

model. In this model, each attack involves flipping a targeted bit to its comple-

mentary value: a 0 becomes a 1, and vice versa. We systematically record the

model’s accuracy after each attack, allowing us to analyze how various attack

scenarios affect accuracy. This analysis enables us to assess the sensitivity and

robustness of different layers and individual bits within the model. The procedure

for injecting a bit-flip fault into a trained MLP model is outlined in Algorithm 1.

Algorithm 1 Simulated Bit-flip Fault Attack for Model Characterization

Input: weights, bit position,mlp model, test set

Output: weights faults

1: procedure SimulatedBitFlipAttack(mlp model)

2: for i = 0 to len(weights) do

3: Decimal to Binary(weight)

4: weight fault= inject fault bitflip(bit position, weight)

5: Binary to Decimal(weight fault)

6: end for

7: evaluate accuracy(faulty model, testset)

8: end procedure

Algorithm 1 takes several inputs including the weights of the model, the po-

sition of the bit to be manipulated, the MLP model itself, and a test set to check

the accuracy after the fault. The goal is to simulate the effect of bit-flip faults on

the model’s weights and assess its performance. The algorithm works as follows:

• Input parameters: the algorithm takes as input the weights of the model,

the position of the bit to be flipped, the MLP model itself, and a test set.
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• Procedure initialization: the procedure SimulatedBitF lipAttack is initi-

ated.

• Iterative weight manipulation: For each weight in the model:

– Convert the weight from decimal to binary representation to facilitate

bit manipulation.

– Inject a fault by flipping the bit at the specified position using the

inject fault bitflip function.

– Convert the manipulated weight back to decimal.

• Model evaluation: after all weights have been manipulated, the accuracy of

the faulty model is evaluated using the evaluate accuracy function with the

provided test set.

Using this approach, we can carry out various characterization experiments.

For instance, we can compare the relative sensitivity of different layers within neu-

ral networks or identify the most vulnerable bit positions. Concurrently, we can

explore strategies to enhance the stability of the neural network. In the upcom-

ing section, we will systematically investigate and analyze these issues, providing

insights into the research questions through an examination of the corresponding

results.

4.4.2 Model weights recovery using stuck-at-zero attack

In the subsequent phase of our experiments, we implement a black-box attack

strategy for weight recovery. Here, the attacker possesses knowledge regarding

the model’s structure, including the number of layers and neurons, as well as

access to the test dataset. However, crucially, the trainable parameters remain

undisclosed, and access to the training dataset is restricted. Consequently, the

attacker is tasked with recovering the model’s weights by leveraging fault injection

attacks on the original neural network. To accomplish this, we adopt the stuck-

at-zero model. The pseudocode outlining this process is delineated in Algorithm

2.

Algorithm 2 takes as input the weights of the model, the position of the bit

to be manipulated, the MLP model itself, and a test set. The primary objective

is to recover the weights of the model through a fault injection attack, specifi-

cally utilizing the stuck-at-zero model. Here’s a breakdown of how the algorithm

operates:
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Algorithm 2 Simulation Stuck-at-zero Attack

Input: weights, bit position,mlp model, test set
Output: weights faults

1: procedure SimulatedModelRecoveryAttack(mlp model)
2: for i = 0 to len(layers) do
3: for j = 0 to len(weights) do
4: Decimal to Binary(weight)
5: weight fault= inject fault stuck at 0(bit position, weight)
6: Binary to Decimal(weight fault)
7: end for
8: set weights(layer i)
9: end for

10: evaluate accuracy(recovered model, testset)
11: end procedure

• Input parameters: the algorithm requires the weights of the model, the bit

position to be manipulated, the MLP model, and the test set as input.

• Procedure initialization: the procedure SimulatedModelRecoveryAttack is

initiated.

• Layer-wise weight manipulation: For each layer in the neural network:

– Iterate through each weight within the layer.

– Convert the weight from decimal to binary representation for manipu-

lation.

– Inject a fault using the stuck-at-zero model to set the targeted bit to 0.

– Convert the manipulated weight back to decimal.

• Updating weights: after manipulating all weights within a layer, update the

weights of the layer in the model.

• Model evaluation: once all layers have been processed, evaluate the accuracy

of the recovered model using the provided test set.

Our approach involves systematically attacking the neural network layer by

layer, targeting different bits within each weight. Specifically, we flip each targeted

bit to 0 using the stuck-at-zero fault model. If we observe a drop in the model’s

accuracy on the test set, it indicates that the originally targeted bit was 1. Con-

versely, if there’s no discernible change in accuracy, we infer that the attacked

bit was originally 0. This distinction is crucial, as it helps identify sensitive bits

within the model. Once we’ve successfully recovered all weights across all layers,
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we evaluate the accuracy of the extracted model on the test dataset, comparing

its performance metrics with those of the original model.

Given the inherent difficulty in achieving a perfect attack in practice, we also

conduct weight recovery experiments with varying levels of noise. This involves

simulating attacks with success rates of 70%, 80%, and 90%. Furthermore, since

the attacker has access to the test dataset, we explore the option of training the

extracted model (recovered model) using this data. Subsequently, we compare its

performance with that of the original model and analyze the convergence process.

This comprehensive approach enables us to gain insights into the robustness of the

model against adversarial attacks and the effectiveness of our recovery techniques.

4.5 Summary

The present section described two simulated fault attack scenarios against MLP

model weights: bit-flip model and stuck-at-zero model. Based on these two fault

models, we provided the description of the algorithms considered in our simulated

fault injection attacks for model characterization and model stealing (weights

recovery).
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5 Experimental results

5.1 Model characterization

In the initial phase of our experimentation, we explore the characterization of

fault injection on both the MLP models trained with Spine and WDBC datasets.

Through the injection of various errors, we meticulously examine the distribution

of faults, shedding light on the sensitivity of bits positioned at various locations,

such as sign bits and those immediately following the decimal dot. Additionally,

we examine the susceptibility of different model layers to fault injection attacks.

Subsequently, we extend our analysis to models with diverse structures, aiming

to extract information about their resilience against such attacks. To mitigate the

impact of randomness, all experiment results are derived from the average values

of ten trials conducted with distinct random seeds. It’s noteworthy that this seg-

ment of experiments employs white-box attacks, assuming the attacker possesses

comprehensive access to all information pertaining to the targeted models, except

for the training dataset.

5.1.1 Characterizing the impact of individual bits in model weights

Table 1 presents the distribution of weights across the layers of the MLP models

trained on the Spine and WDBC datasets. For clarity, we distinguish between

these models as the Spine model and the WDBC model, respectively. As both

models are fully-connected neural networks, the number of weights in each layer

is determined by multiplying the number of neurons in the preceding layer by

the number of neurons in the current layer. Notably, due to discrepancies in the

feature counts of the datasets, the input layer of the Spine model comprises 6

neurons, contrasting with the WDBC model’s input layer, which encompasses 30

neurons. However, we maintain uniformity across the hidden layers and output

layer in both models, with each hidden layer housing 10 neurons and the output

layer featuring a single neuron.

Model Hidden layer 1 Hidden layer 2 Output layer

Spine model 60 100 10

WDBC model 300 100 10

Table 1: Number of weights in each layer of the Spine and WDBC models.
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Firstly, we initiate training for Spine and WDBC models utilizing the initial

structures outlined in Table 1. Subsequently, leveraging the two MLP models as

foundations, we introduce faults across various bit positions and layers to verify

the fault distribution. This analysis enables us to identify which components of

these MLP models are more susceptible to bit errors. Furthermore, we explore

fault induction in models employing diverse activation functions and regulariza-

tion methods, as elaborated in Section 2. Activation functions encompass ReLU,

Sigmoid, Tanh, and Identity, while regularization methods include L2 regulariza-

tion and dropout layers, both method to reduce overfitting.

To evaluate the impact of individual bits on robustness, we systematically

attack bits at various positions within each weight of the two models. At each

iteration, upon detecting an error in a bit, we record the accuracy of the affected

model on the test set. Subsequently, we restore the neural network to its original

state and proceed to attack the next bit, repeating the process.

To quantify and illustrate the results obtained after injecting simulated faults,

we keep the worst accuracy obtained by flipping a specific bit position in each

weight of a layer. Going weight by weight in the layer, we keep the worst accuracy.

It’s important to note that the accuracy values presented represent the worst-case

scenario obtained by attacking bits one by one. This allows us to verify what is

the most vulnerable bit and most vulnerable weight in the attacked layer. Results

of simulated fault attack results against Spine and WDBC models are shown in

Figures 9 and 10. These figures show results for fault injected in the first layer. The

x-axis represents the index of the affected weight in the layer. The y-axis shows

the worst accuracy obtained until certain weight index (which explains why the

worst accuracy has a decreasing trend). These figures show worst accuracy results

for simulated faults on one bit of the weight at the time, including the sign bit.

The faults are injected only on the bits after the dot as for that all the weights

of the two models are in the range of (−1, 1).

As shown in Figures 9 and 10, the signal bit exhibits the most pronounced

influence on the neural network’s accuracy, followed by the first bit subsequent

to the decimal point, and so forth. This aligns with our initial assumptions, as

the signal bit dictates the sign of the weights under attack, resulting in more

significant disruptions to the model. Additionally, the n-th bit after the decimal

point regulates the range by a factor of 2n (where n ranges from -1 to negative

infinity). For instance, the first bit after the decimal point governs a range of

0.5, while the second bit controls a range of 0.25, and so forth. Notably, the
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controllable range diminishes with each subsequent bit after the signal bit. When

we apply our bit-flip fault model to 5th to 8th bit after the dot, the accuracy

drops also happens, however with less impact. However, this shows that even

when affecting bits with less importance to the weight value, the model’s accuracy

is also affected.

Figure 9: Worst accuracy obtained when attacking different bits of every weight in the
first hidden layer of Spine model

Figure 10: Worst accuracy obtained when attacking different bits of every weight in the
first hidden layer of WDBC model
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5.1.2 Characterizing the impact of regularization on model ro-

bustness

To get the fault distribution and assess the impact of errors on various layers of

MLP models, we conduct experiments targeting the first bit of every weight within

different layers of both the Spine and WDBC models. Building upon our previous

experiments characterizing the effects of bits at different positions, we recognize

that the first bit of the weights demonstrates significant impact and serves as

a representative measure. Consequently, we opt to target the first bit for the

subsequent experiments. Moreover, we conduct comparisons between models with

and without L2 regularization to analyze the influence of regularization techniques

on robustness against the evaluated fault model, and the hyperparameter of L2

is set as 0.001, which is a value in the reasonable range of (0, 0.1) [26].

The results, as illustrated in Figure 11 and 12, showcase the worst accuracy

observed in both models when targeting the first bit of every weight across dif-

ferent layers. Notably, it’s evident that the first layer exerts a more substantial

impact on accuracy. This observation can be attributed to the inherent character-

istic of forward propagation in neural networks, wherein the output of each layer

serves as input to the subsequent layer. Consequently, errors occurring in the first

layer can propagate to subsequent layers, potentially amplifying and culminating

in classification errors at the output layer, thereby leading to a drop in accuracy.

In Figures 11 and 12, the line plots have different lengths because each layer has

a different number of weights. It is clear that L2 regularization does not create

any positive impact for model robustness as the accuracy drops is the same as

when L2 regularization is not considered.

Additionally, we incorporate another regularization method during the pre-

training phase of our models, namely dropout layers with a dropout rate of 20%

inserted between every two layers. Figures 13 and 14 illustrate that the utilization

of dropout layers leads to increased vulnerability of the neural networks to faults.

This observation suggests that while dropout layers enhance model versatility by

randomly dropping out outputs from certain neurons to combat overfitting, they

concurrently compromise performance and render the models more susceptible to

the implemented fault model.
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Figure 11: Results when attacking the first bit of every weight in different layers of
Spine model.

Figure 12: Results when attacking the first bit of every weight in different layers of
WDBC model.

Figure 13: Attacking different layers of Spine model on the 1st bit of every weights.

30



Figure 14: Attacking different layers of Spine model on the 1st bit of every weights.

5.1.3 Characterizing the impact of different activation functions

on model robustness

Next, we assess how the choice of activation function influences the model’s ro-

bustness against the considered fault model. Analysis of the results depicted in

Figures 15 and 16 reveals notable variations in the worst accuracy observed when

targeting models trained with different activation functions. In the case of the

Spine model, attacking models employing tanh, ReLU, and identity activation

functions leads to varying degrees of accuracy decline, with the identity activa-

tion function exhibiting the highest vulnerability. However, when using sigmoid

activation function, the model is very stable. Intriguingly, when attacking the

first bit after the decimal point of the model with sigmoid activation function, no

discernible drop in accuracy is evident. This indicates the significant impact of

the choice of activation function on the model’s resilience against the evaluated

fault model, with certain functions demonstrating greater robustness compared

to others under the specified fault model.
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Figure 15: Results when attacking on Spine model with different activation function.

Figure 16: Results when attacking on WDBC model with different activation function.

Similarly, as depicted in Figure 16 for the WDBCmodel, attacking the sigmoid

model results in a negligible decrease in accuracy, less than 0.002, indicating

remarkable robustness compared to the other three activation function models.

However, it’s crucial to acknowledge that the sigmoid model also exhibits certain

shortcomings. For instance, its initial accuracy is not as high as that of the trained

models utilizing the other three activation functions.

Therefore, model owners are faced with a decision-making dilemma, needing

to weigh the importance of initial accuracy against the model’s robustness. This

trade-off underscores the necessity for careful consideration and prioritization

based on the specific requirements and objectives of the application at hand.
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5.1.4 Characterizing the most-related-bits in the model

At this stage, we introduce a novel concept termed ”most-related-bits,” which

encapsulates our comprehensive attack strategy targeting all bits of all weights

across all layers of the model. This approach subjects each bit to a bit-flip attack

and recording the resulting model accuracy. Subsequently, we sort the accuracy

values obtained from attacking every bit, thereby identifying the top bit in this

sorted list as the most relevant bit.

Moving forward, we utilize the Table 2 as a guideline for conducting subse-

quent experiments, attacking the model in the order prescribed by this table. This

systematic approach ensures that we prioritize the bits with the highest relevance,

facilitating a more focused and targeted analysis of the model’s vulnerability to

bit-flip attacks.

Model layer row column position accuracy
most-related-bit 1 1 5 8 signal bit 0.41
most-related-bit 2 1 4 9 signal bit 0.470
most-related-bit 3 1 4 8 #1 bit 0.471
most-related-bit 4 2 8 9 signal bit 0.471
most-related-bit 5 1 2 3 signal bit 0.471

...

Table 2: Example of most-related-bits of Spine model, row and column represent the
position of the weight in its layer, and the #1 bit refers to the first bit after dot.

From the experimental results shown in Figures 17 and 18, we can see that

accuracy drops are observed in both models under attack. Specifically, in the

Spine model, attacking the top-3 most-related bits collectively results in a sub-

stantial 40% decrease in accuracy. Intriguingly, a slight increase in accuracy is

observed upon attacking more bits of the Spine model. We speculate that this

phenomenon may arise from the intricate interactions and combinations of altered

bits, which can impact the model’s stability due to the inherent complexity of

neural networks.

Conversely, in the WDBC model, attacking the 20 most-related bits leads

to only a modest 5% decrease in accuracy. However, a steady decline in accu-

racy is observed as more most-related bits are targeted. Notably, when attacking

100 most-related bits simultaneously, the accuracy of the attacked WDBC model

drops to approximately 70%. These findings show the varying degrees of vulnera-

bility exhibited by different models and highlight the importance of understanding
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the complex relation between bit alterations and their collective impact on model

performance.

Figure 17: Results when attacking on Spine model with different numbers of most-
related-bits being attack.

Figure 18: Results when attacking on WDBC model with different numbers of most-
related-bits being attack.

The substantial difference in accuracy drop observed when attacking the most-

related bits of the two models suggests a potential correlation with the number

of weights in the first hidden layer. The structural dissimilarity lies primarily

in the number of weights present in this layer: 60 weights for the Spine model

and 300 weights for the WDBC model. This variance in the number of trainable

parameters in the first hidden layer indicates that it may significantly influence the

robustness of MLP models against fault injection for the fault model considered

in this work.
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5.1.5 Characterizing the impact of first layer size in model’s ro-

bustness

In the subsequent stage of characterization, we intend to systematically experi-

ment with varying numbers of trainable parameters in the first hidden layer of

the two models. This analysis aims to verify whether this hyperparameter (i.e.,

number of neurons in the first layer) indeed plays a crucial role in determining

the models’ susceptibility to the evaluated fault model, thereby providing insights

into optimizing MLP model architectures for enhanced robustness and resilience.

The results presented in Figures 19 and 21 indicate that increasing the num-

ber of trainable parameters in the first layer leads to a gradual and consistent

improvement in the minimum accuracy of the models after the fault. Moreover,

as shown in Figures 20 and 22, even when errors are injected into the second layer

while the number of trainable parameters in the first hidden layer is increased,

a similar trend of gradual improvement in minimum accuracy is observed. This

suggests that augmenting the neural network parameters of the first layer exerts

a stabilizing influence on the overall robustness of the neural network. By enhanc-

ing the complexity and capacity of the first layer, the neural network becomes

better equipped to resist and recover from errors injected at subsequent layers.

This indicates the critical role played by the architecture and configuration of the

initial layers in determining the overall resilience and performance of MLP neural

networks against the evaluated fault model. Finally, Figures 19 to 22 also include

results when L2 regularization is considered. The illustrated results indicate that

L2 regularization plays a insignificant role in model’s robustness against our fault

model.
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Figure 19: Results when attacking on Spine model with different numbers of parameters

(weights) in the first layer.

Figure 20: Results when attacking on Spine model with different numbers of parameters

(weights) in the first layer.
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Figure 21: Results when attacking on WDBC model with different numbers of param-

eters (weights) in the first layer..

Figure 22: Results when attacking on WDBC model with different numbers of param-

eters (weights) in the first layer.

5.2 Model weights recovery

In this section, we employ the stuck-at-zero fault model to deliberately induce

faults in the weights of MLP models trained with iris and wine datasets. We refer

to these two MLP models as iris and wine models, respectively. Subsequently, we

attempt to recover these faulty weights and assess the accuracy of the models us-

ing the recovered weights. This evaluation serves as a crucial measure to measure
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the efficacy and integrity of our weight recovery approach.

In these experiments, we operate under a specific threat model in which the at-

tacker possesses knowledge solely of the structure of the trained MLP model (i.e.,

its hyperparameters), which includes the number of layers and neurons within

the MLP models. However, the attacker lacks access to the trainable parameters,

such as weights and biases. Under this threat model, the dataset is partitioned

such that half is allocated for training and the other half for testing. The attacker

has no access to the training set, however has access to the test dataset.

During the attack, the adversary employs the stuck-at-zero fault model to

manipulate all weight values of the MLP model. The test dataset is utilized to

evaluate the accuracy of the recovered model. This evaluation process involves

comparing the performance of the recovered model against the original model,

which was trained using the training dataset. Through this methodology, we aim

to assess the efficacy of the recovery process and see how the recovered model

compares to the original model.

The numbers of weights of the iris and wine trained MLP models are shown

in Table 3. Considering that the numbers of features are different in two datasets,

separately there are 4 neurons and 11 neurons in the input layer, the numbers

of weights and layers are also different in the two MLP models. The iris model

is smaller with only one hidden layer and, therefore, less weights. In the wine

model, there are two hidden layers and more neurons in each layer.

Model Hidden layer 1 Hidden layer 2 Output layer
iris model 40 ———— 30

wine model 260 200 30

Table 3: The number of weights in each layer of iris and wine model.

As stuck-at-zero fault model can be employed to recover keys in cryptographic

algorithms [3], we suppose that it is also feasible to recover parameters of neu-

ral networks through stuck-at-zero injection fault attacks. We aim to verify our

assumption through two models of different sizes. Additionally, we would em-

ploy this method to see the process of restoring the neural network weights and

see the completeness of the recovery by comparing the accuracy of the extracted

model and the original model with the test set. In the following, we would refer to

the model that we recovered and extracted through the stuck-at-zero fault injec-

tion attack as the extracted model, and the model obtained through the original

training but without attack is called the original model.
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As shown in Figures 23 and 24, we perform stuck-at-zero attacks on MLP

models trained with iris and wine datasets. We attack the model layer-by-layer

and weight-by-weight. For example, for the first hidden layer of the iris model, we

first attack the sign bit of every weight. After conducting a stuck-at-zero attack

on the sign bit of one weight, we record the accuracy. Subsequently, we restore

the neural network to its original state and proceed to attack the signal bit of the

next weight. Restoring the model is assumed to be possible, e.g., by the attacker

by simply turning-on and off the target embedded device.

Following, we attack the first bit after the decimal point for every weight, and

so on, until we attack all the bits of all layers. We can also show the accuracy

drop as heatmaps. Through the heatmaps, we can clearly observe the accuracy

differences when we deduce faults on different bits. If there are accuracy drops,

we set these bits to 1, other bits are assumed as 0.

Figure 23: Iris model attacking accuracy array and heatmap, the left one is when we
attack the first layer of the iris dataset, the model accuracy after attacking the bits at
different positions of each weight, and the right picture is when we attack the first layer
heatmap of bit time relative to accuracy.

Model iris model wine model

original Model without attack 0.501 0.220

attack without noise 0.735 0.717

with 90% Probability 0.691 0.709

with 80% Probability 0.548 0.564

with 70% Probability 0.508 0.560

Table 4: The accuracy of the extracted models and the original models.
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Figure 24: Wine model attacking accuracy array and heatmap, the left one is when we
attack the first layer of the wine dataset, the model accuracy after attacking the bits at
different positions of each weight, and the right picture is the accuracy heatmap when
we attack the signal bit of different weights on the first hidden layer.

We observed larger accuracy drop on iris model. When attacking a certain bit,

the worst accuracy of iris model is 65%, but the lowest accuracy of the wine model

is 93%. We think this is due to the wine model is much larger compared to the iris

model. There are more layers and more trainable parameters in the wine model,

so the wine model would be less affected and more robust and stable than the iris

model. This is also consistent with the conclusion drawn in our characterization

experiments.

In our threat model, we also assume that the attacker has access to the test

set but not to the training set. Thus, we also retrain the recovered models (i.e.,

the models with recovered weights) with test set and record the training process.

We are able to make a comparison with the original model’s performance with

randomly initialized weights (note that the attacker can perform model initial-

ization as the hyperparamaters are known). In addition, to simulate the process

in real physical experiments, we enhance our evaluation with noise, which is the

possibility of a successful attack, as shown in Figures 25 and 27. In these figures,

”attack with 90% possibility” means that we have 90% possibility to convert a

bit to 0, and 10% possibility to conduct an unsuccessful attack. Because in real

physical experiments, due to the complexity of the hardware computing system,

perfect attacks cannot be guaranteed [3].

Based on the results shown in Figure 25 and 26, we notice that when we use the

extracted models for training, the model’s training process converges much faster

than the original model. For the iris model, the original model takes 35 epochs
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Figure 25: iris model accuracy, attacking the model

Figure 26: iris model loss, attacking the model

to converge, while the extracted model with perfect attack and the model with a

90% probability of success only take 5 epochs to converge. When the noise value

is higher, the extracted models converge within 16 epochs. In addition, according

to Figure 26, we can observe that the loss values of our extracted models are

overall lower than the original model.

We can obtain similar results in the wine model experiments. The extracted

model recovered by the perfect attack can achieve a high accuracy of 75% at the

beginning. Then we continue to use the test set to train the extracted model,

which only takes 20 epochs to converge. From the results with noise, we can
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Figure 27: Extracted wine model validation accuracy compared to the original model

Figure 28: Extracted wine model loss compared to original model

see that the model converges within 30 epochs. According to Figure 28, it is

notable that the loss value of our extraction model with perfect attacks can reach

convergence rapidly, and the converged loss is also lower than the original model.

For attacks with noise, the losses also converge fast. But we can also notice that

the final loss result of the noisy attack is still worse than the original one. We

guess this is because the noisy attack gives incorrect initialization, which leads to

poor performance in the subsequent training process.

Through the simulation experiments of weights recovering, we confirm our hy-

pothesis that using fault injection attack, the parameters of the neural network
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can be recovered and extracted. When accuracy of the original models is nearly

100%, through fault injection attack, the models we recover can reach 75% ac-

curacy. If the possibility of a successful attack is 90%, the extracted models can

reach 70% accuracy. In addition, if we retrain the recovered models with the test

sets, they converged much faster compared to the training process of the origi-

nal models. In addition, we converted all weights of the original models and the

extracted model weights into binary format. Consider the optimal attack model

(i.e., a perfect attack without noise), we recovered 81.1% and 79.0% bits of the

iris and wine models respectively.
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6 Discussion

6.1 Answers to research questions

Based on the experiment results, now we can discuss in detail towards the research

questions.

1. For a white-box threat model (i.e., the attacker knows everything except the

training data), what is the effectiveness of fault attacks against deep neural

networks?

For the Spine and WDBC models, WDBC is more stable than Spine, Ac-

cording to the experimental results of our characterization, we can find that

for relatively small models such as the Spine model, even only 3 of the most-

related-bits need to be attacked to achieve the lowest accuracy of the model.

If the attacker wants to destroy a larger model like WDBC, more bits need

to be affect with a bit-flip fault model. Based on the results, attacking 20

most-related-bits can make the model drop to 90% of accuracy. When at-

tacking 100 most-related-bits, the accuracy can drop to 75%. Nevertheless,

our simulated results emphasize that even under a white-box threat model,

significant accuracy drops are achieved when affecting a larger amount of

weight bits. For the strongest attacker to affect model’s accuracy by chang-

ing only a few bits of a model, the selection of these most important bits for

model’s robustness is a difficult task and would require an excessive amount

of injected faults.

2. What components of a neural network model demonstrate the highest re-

silience and susceptibility to fault attacks?

According to the second stage of the characterization experiments, it is

notable that when we use the sigmoid activation function, the model is the

most robust in the face of attacks, but the performance of the model us-

ing the logistic activation function without attack is not as good as others.

Thus the model user should decide which characteristic is more important,

the security of the model or the performance without attack. Secondly, we

also conducted a regularization analysis of the model. By comparing the
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worst accuracy of attacking the models using L2 and dropout layers with

the model without regularization, we found that L2 regularization can make

the model slightly more stable (although the effect is almost imperceptible),

but models with dropout layers are more vulnerable to fault injection at-

tacks.

In addition, weights in the first hidden layer are more vulnerable to errors,

we also conducted experiments with different trainable parameters of the

first hidden layer. We can find that when we gradually increase the number

of weights in the first layer, if we are also In the first layer of injection errors,

the minimum accuracy we can achieve when attacking a certain bit gradually

increases. If increase we the number of neurons in the first layer but deduce

errors in the second hidden layer, the models are also more resistant when

facing errors.

In general, according to our experimental results, MLP models with the fol-

lowing characteristic are more robust against fault injection attacks: more

neurons in the first hidden layer, L2 regularization, and sigmoid activation

function, but without dropout layers.

3. In a threat model in which the adversary has access to the model’s hyper-

parameters and is based on an optimistic fault model, to what extent can

model parameters (i.e., weights) be recovered?

We converted all weights of the original models and the extracted mod-

els into binary format. Consider the optimal attack model (i.e., a perfect

attack without noise), we recovered 81.1% and 79.0% bits of the iris and

wine models respectively.

4. In the previous fault model for the model’s parameters stealing, can all bits

be restored, and what is the accuracy of the recovered models?

In the second part of our experiment, when we use stuck-at-zero to at-

tack the neural network to restore the weights of the neural network, the

accuracy of the original model can reach 95-99%. In this situation, our ex-

traction model can achieve an accuracy of more than 70% on the test set.

We also added noise. When there is a 90% probability of executing a success-

ful attack, the extracted model can achieve performance similar to that of
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the perfect attack model but slightly lower. When the probability of success

attack is 70-80%, the accuracy is lower. When we use the test set to retrain

our extracted models, the convergence speed is much faster than that of the

original model. In the case of perfect attacks, the extracted models converge

within only 1/5 of the number of epochs required by the original models.

Therefore, an attacker can steal information of MLP models through fault

injection attacks, and achieve good accuracy. This process is similar to fine-

tuning a neural network with another dataset. In our case, our threat model

determines that the attacker has access to a test set that is drawn from the

same set as the training set. Therefore, fine-tuning the model after weight

recovery is expected to provide accuracy similar or even better than the

accuracy of the orginal model and with a short number of epochs.

6.2 Future work

In the work we have completed, we focus on using simulation methods to explore

the security and stability of neural networks against fault injection attacks. In

subsequent work, we hope to extend it to real microcontrollers to continue to

verify the correctness of physical experiments. In this work, physical experimental

verification could not be completed due to time limitations and the complexity of

setting up the physical equipment. In addition, this work has verified the behavior

of the MLP against simulated fault models. We hope to continue to advance the

method to more complex neural networks, such as convolutional neural networls

(CNNs) which are also highly deployed on embedded systems. Moreover, we plan

to explore the effectiveness of evaluated fault models when neural network models

include adversarial training to improve protection against fault injection.
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7 Conclusions

In this work, we conducted two main groups of experiments to attack MLP models

with simulated fault injection. In the first part, we performed bit-flip experiments

on MLP models trained with Spine and wine datasets. From these experiments, we

obtained the distribution of faults and characterized the sensitivity of different

parts of the neural network models. We also analyzed what structure is more

resistant and stable against fault injection attacks. At the same time, we verified

whether neural network hyperparameters may act as natural countermeasures

against evaluated faults. In the second part of our experiments, we also explored

to what extent the neural network weights can be recovered through stuck-at-

zero attacks fault model. this time, we considered a weaker adversary with access

to model hyperparameters and to a test set. We found that for a simple model

trained with iris dataset and a more complex model trained with wine dataset,

and under a perfect attack, it is possible to restore the model to an accuracy

of above 70%. In addition, we use the test dataset to retrain the models we

extracted. Compared to the training process of the original model, the recovered

models converged much faster. When there is attacking noise (i.e., when there are

different successful possibilities to convert the attacked bit into 0), the accuracy

is lower compared to the perfect attack, but the extracted models still converge

faster than the original ones.
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