
Master Computer Science

Towards a Testbed for Evaluating Microservice Architecture

Performance

Name: Stephan van der Putten
Student ID: s1528459

Date: 30/08/2024

Specialisation: Data Science

1st supervisor: Kristian Rietveld
2nd supervisor: Alexandru Uta

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)

Leiden University

Niels Bohrweg 1

2333 CA Leiden

The Netherlands

Abstract

The microservice architecture has gained increasing attention in both industry and academia as a design pattern

for complex, distributed applications. However, there has been a lack of reproducible and representative scientific

research on microservice architecture performance due to the lack of benchmarks and tools. To address this gap,

we developed a minimal open-source testbed that includes a proof-of-concept setup for deployment, environment

setup, workloads, and experiment scripts for use in CloudLab. Using this testbed, we conducted a comprehensive

evaluation of three popular container orchestration engines that are typically used to deploy microservice applications.

Kubernetes, Nomad, and Docker Swarm. The knowledge we gained during the implementation to create a consistent

environment for the testbed will help other researchers when conducting similar research. Our experiments used

benchmarks from the DeathStarBench benchmark suite to investigate the performance of these engines under scaling

scenarios, with a focus on comparing the performance differences between the orchestrators. Our findings revealed

significant performance variations, for which we provide insights and recommendations based on our observations. Our

work contributes to a better understanding of the performance characteristics of container orchestration engines in

the context of microservice architecture and enables researchers and organisations to make informed decisions about

tool selection and deployment.

i

Acknowledgements

I would like to express my sincere gratitude to my thesis supervisors, Alexandru Uta and Kristian Rietveld, for their

guidance and support throughout the duration of this research project. I am grateful for the time, constructive

feedback, and effort they invested in helping me develop and refine my thesis. I would also like to thank Alexandru

Uta for his patience, support and encouragement, as well as my friends, family, and study advisor Alexandra for their

motivation and emotional support. In addition, I would like to express my appreciation to the reviewers who provided

valuable feedback on my work. All of these contributions were invaluable in the completion of this thesis.

ii

Contents

1 Introduction 1

1.1 Research goals and questions . 2

1.2 Our Contributions . 2

1.3 Thesis Organisation . 3

2 Background 4

2.1 From Monolith to Microservices . 4

2.1.1 Containers and VMs . 5

2.1.2 Container Orchestration . 5

2.2 Container orchestration tools . 6

2.2.1 Nomad & Consul . 6

2.2.2 Docker Swarm . 7

2.2.3 Kubernetes . 8

2.3 Testbeds and benchmark suite . 9

2.3.1 CloudLab: flexible, scientific infrastructure for research . 9

2.3.2 DeathStarBench: a benchmark suite . 9

3 Related Work 11

3.1 Benchmarking for microservice applications . 11

3.2 Performance and reproducibility . 12

4 Design & Implementation 13

4.1 Design of the Testbed . 14

4.2 Implementation . 15

4.2.1 Infrastructure: Preparation of the Cluster in CloudLab . 16

4.2.2 Orchestration: Deployment of the Orchestration Engine . 17

4.2.3 Monitoring: Node and Container . 20

4.2.4 Microservice: The Benchmark Suite . 20

4.2.5 Experiments: Preparation, Experiments, and Results . 23

4.2.6 Workflow: How to perform research in our Testbed . 24

iii

5 Performance Exploration with Docker Swarm 26

5.1 Tuning the Testbed . 26

5.1.1 Experimental Setup . 26

5.1.2 Evaluation Methodology . 27

5.2 Experiment A. Investigating the Workload Parameters . 28

5.3 Experiment B. Examining the Impact of 3 Test Clients on System Performance 30

5.4 Experiment C. Stress Testing the Microservices . 31

5.5 Experiment D. Redeployment and Time . 32

5.6 Closing thoughts on the Docker Swarm testbed experiments . 33

6 Orchestrator Experiments 34

6.1 Experiment Setup . 34

6.2 Evaluation Methodology . 34

6.3 Experiment A. Docker Swarm Performance . 35

6.4 Experiment B. Comparing Kubernetes Performance . 39

6.5 Experiment C. Comparing Nomad Performance . 42

6.6 Experiment D Comparing Swarm, Kubernetes and Nomad . 45

6.7 Experiment E. Validating Tail Latency Comparison with Social Network and Multiple Runs for each

Orchestrator . 47

7 Discussion 50

7.1 Answering the research questions . 50

7.2 Implications of the research . 51

7.3 Limitations and Improvements for the Testbed . 53

7.3.1 Strengths and trade-off . 53

7.3.2 Caveats and Weak Points (Limitations) with Solutions . 54

7.3.3 Improvements . 54

8 Conclusion and Future Work 56

8.1 Conclusion . 56

8.2 Future Work . 56

Bibliography 58

Appendices 62

A Preliminary experiments 63

A.1 Experiment Parameters . 63

A.2 Example of generated data . 64

A.2.1 Experiment 0 Exploring first run for workloads . 68

A.2.2 Experiment 1 Exploring the Parameter Space and Requests on Tail Latency 68

A.2.3 Experiment 2 Rerun of Exploring Parameter Space of Workloads with fixed Requests 70

iv

A.2.4 Experiment 3 Exploring usage of multiple Test Clients . 71

A.2.5 Experiment 4 Exploring Duration on the Latency . 72

A.2.6 Experiment 5 Breaking Points Run 1 . 73

A.2.7 Experiment 6 Rerun Breaking point with different Parameters 73

A.2.8 Experiment 7 Rerun Stress Applications with new Parameters 74

A.2.9 Experiment 8 Exploring time between experiments as factor on performance 75

A.2.10 Experiment 9 Full redeploy of applications after each run . 76

A.2.11 Experiment 10 Rerun to confirm breaking points . 76

A.2.12 Experiment 11 Nginx configurations experiments on performance 77

B Orchestrator Experiments 79

B.0.1 Overview Orchestrators . 80

B.1 Docker Swarm Experiment All Figures . 82

B.2 Kubernetes Experiment All Figures . 83

B.3 Nomad Experiment All Figures . 84

C Workload 85

C.1 Mixed workload Social-network . 85

C.2 Compose workload Media-microservices . 88

C.3 Mixed workload Hotel-reservation . 90

D Overview benchmark resources 94

D.1 Social Network resources . 94

D.2 Media Microservices resources . 95

D.3 Hotel Reservation resources . 96

E Jaeger 97

E.1 Tracing in Jaeger . 97

E.2 Breaking point in Jaeger . 98

F Experiment and benchmark setup files 100

F.1 Experiment bash script setup . 100

F.2 Docker Swarm Social Network . 101

F.3 Kubernetes Hotel Reservation . 101

F.4 Nomad Media Microservices . 102

F.5 Nomad Examples GUI . 104

v

Chapter 1

Introduction

The microservice architecture (MSA) is a term commonly associated with Service-Oriented Architecture, Virtualization,

Cloud, DevOps, Serverless and many current-day industry technologies, as described by Hamzehloui et al. and Eyk et al.

[34, 47]. Originally, microservices were an answer to monolithic applications that suffer from multiple issues, such as

maintainability, multiple dependencies, and scalability [16]. This led to the adaptation of microservices acknowledged

by numerous companies, such as Netflix [38] and Amazon [29]. Microservices enable the industry to revolutionise

its services in a more automated way, such as DevOps [3]. Meanwhile, interest continues to increase as the cloud

microservice market is expected to grow to a market of 3 billion in 2026 [39]. Although interest in the industry has

been high, academic analyses on microservice performance have been lagging behind. Current research from the

industry only primarily provides principles and guidelines or experience reports, without an in-depth academic point of

view.

Hamzehloui et al. [34] identified a lack of the tools and experience required as one of the main reasons why microservices

are not yet fully understood. Franesco et al. [21] found that only one of the 71 published studies checked until 2017

provided an open-source test system to benchmark microservice-based systems. In recent years, there has been a

noteworthy but limited effort to increase the availability of benchmarks. This is important as the lack of open-source

microservice benchmarks is a significant limitation for future MSA research, as it makes it difficult to compare results

between studies and replicate findings. Furthermore, most microservice systems are proprietary or not easily accessible

to the research community [2]. There are currently a limited number of open-source microservice reference applications

available, but these applications often lack the necessary depth and complexity for realistic comparison due to their

limited number of microservices. An overview of microservice applications that have been created for benchmarking in

cloud and/or microservices: TeaStore [48], TrainTicket [51], SocketShop [42], MusicStore [35], Spring Cloud Demo [6],

ACME Air [1], µSuite [44], Sirius [23], TailBench [28], CloudSuite [19], DeathStarBench [22], µBench [14]. With the

inclusion of DeathStarBench, we now have a benchmarking suite that consists of multiple reference applications with

a sufficient number of microservices to accurately represent realistic complex microservice systems. The open-source

benchmark suite has released three of a set of five end-to-end microservice-based applications suitable for cloud system

experimentation [13]. This benchmark suite enables researchers to focus on a more diverse and open landscape of

microservices, as it provides a higher level of depth and complexity compared to other available benchmarks.

1

1.1. RESEARCH GOALS AND QUESTIONS CHAPTER 1. INTRODUCTION

In the landscape of microservice architecture and cloud providers, there are numerous open-source frameworks and

tools, each with its own implementation and performance trade-offs. Each tool influences the microservice architecture,

as we have different categories such as container engine (Docker, LXC), container orchestration engines (Kubernetes,

Docker Swarm, Nomad), application architecture (DeathStarBench), public cloud platform (Google Cloud, Azure,

AWS), or other infrastructure platforms to consider [26].

1.1 Research goals and questions

To date, there has been a lack of reproducible academic research focused on comparative systems studies on microservice

architecture (MSA) with representative benchmarks for the complexity of microservice applications.

This sets our overlaying research goal to enable reproducible and relevant research for the MSA field through 1) the

design and implementation of an (experimental/prototype) testbed that utilizes the state-of-the-art benchmark suite

DeathStarBench; 2) contribute with experiments on the performance of different container orchestration engines,

workloads, and variables in the context of the microservice architecture.

We have identified the following research questions to guide our thesis.

RQ T.1: How to design and implement the DeathStarBench into a testbed?

RQ T.2: How do we implement consistency/reproducibility of our testbed? What is required to set up our

testbed/experiments?

RQ T.3: Using our testbed, how can we ensure consistency in our experiments? What pre-tuning is

required to conduct experiments, and what performance characteristics can we find?

RQ T.4: Using our testbed, are there performance differences in the orchestration tools in various scaling

scenarios?

1.2 Our Contributions

With this thesis we contribute the following:

• Design & Implementation of a minimal open-source testbed for CloudLab to experiment: Following the

implementation of our testbed, we had to create a configuration of our experimental setup. This includes how

we configured the nodes in Cloudlab (or any cluster of accessible nodes with root access) on which we run our

experiments and also how we configured the experimental setup to perform the experiments. This will help

future researchers decide how to set up our testbed for their research. Please refer to Chapter 4 along with the

deployment files found on GitHub 1.

• Comparative study on Containers Orchestration Tools: The first part of our experiments involves an initial

setup with Docker Swarm to establish the load generator settings and set a baseline for subsequent experimental

1https://github.com/Stvdputten/Orchestration

2

1.3. THESIS ORGANISATION CHAPTER 1. INTRODUCTION

comparisons. This part can help future researchers save time by deploying our tools for similar research. We

have implemented DeathStarBench on top of this testbed, please refer to Chapter 5, Chapter 6.

• Lessons learned during our configuration: To create our proposed testbed, we were faced with multiple

challenges in implementing the applications for different orchestration tools, and as such reflect that work in

this study in the discussion. Please refer to Chapter 7.

• Dataset of our Experiments: In our study, we performed extensive research on our testbed. Our results include

a dataset which has all our configuration settings of the load generator, experiment setup parameters including

horizontal-, vertical-scaling and orchestration tool, and results measured in tail latency and throughput available

for any researcher to compare it against. Please refer to our GitHub2.

1.3 Thesis Organisation

The chapters in this thesis are arranged as follows. The second and third chapters introduce the background of our

testbed and the related work. We continue the fourth chapter, Design & Implementation, by discussing the system

design choices to modify existing benchmarks to run with the infrastructure provided in Cloudlab. In this fourth

chapter, we also talk about how to set up our proof-of-concept testbed and the included scripts with examples to

extend the testbed. Our testbed is then used to perform the experiments on the MSA. We focus on exploring the

performance of the microservice architecture through scaling parameters (horizontal, vertical, high availability on/off),

different orchestration tools, and exploring the performance limits in the setup. In our preliminary experiments, we

only use Docker Swarm as a baseline to get an initial configuration setup using some tests presented in Appendix A

and Chapter five. The second part of the experiments, presented in Chapter six, continues with an extensive series of

initial experiments to create a comparison of the performance of the different orchestrators, to explore the scaling

parameters and to stress the benchmarks to their limits. The results are then discussed and evaluated. In Chapter

seven we discuss the pros and cons of our testbed, we propose the value of this research for others, how our research

can be extended, and the limits of our approach to extend this testbed to other benchmarks as our lessons learnt.

Chapter eight is the conclusion of our study and proposes future work.

2https://github.com/Stvdputten/hdr-plot & https://github.com/Stvdputten/Orchestration

3

Chapter 2

Background

In this chapter, we provide the background of the technology that enabled the adoption of the microservice architecture.

This is followed by a deeper look at the current tools used in our study. We first look at the origin of the microservice

architecture compared to the monolithic architecture. We continue with a look at containers and their comparison with

virtual machines. What are container orchestration tools, and which are we using in this study? Which physical testbed

(Cloudlab) are we building on for experimentation and research? Finally, what applications are in the benchmark suite

(DeathStarBench) and what is included in it?

2.1 From Monolith to Microservices

Monolithic architecture design was primarily used in the earlier days of application design. It was characterised

by a single unified software application with tight coupling between components, which can become unmanageable

and inflexible as the complexity of a system grows. Usually, the developed application(s) run on a single large virtual

machine.

As business needs grow due to an increase in demand, the complexity of applications increases with time, for

which monolithic application design becomes increasingly a burden to scale and maintain. With the introduction

of containers and lightweight environments to run applications, the concept of microservice-based applications was

realised. Compared to monoliths, microservices-based architectures offer greater flexibility and scalability through the

use of loosely coupled and independently deployable components.

Microservice architecture (MSA), has no one singular definitions, while some see it as a set of characteristics

defined by Lewis and Fowler [31], other see it as the realisation of another concept called service-oriented architecture.

Service-oriented architecture is an earlier architectural pattern that splits a software in a set of service components

that are similar to their business logic. Compared to MSAs, service-oriented architecture is more coarse-grained, the

philosophy about sharing data across services and also a focus on service orchestration to name a few. MSAs are

typically implemented as lightweight applications written in various modern programming languages, each with its

own specific dependencies, libraries, and environmental requirements. To ensure that a microservice has everything it

4

2.1. FROM MONOLITH TO MICROSERVICES CHAPTER 2. BACKGROUND

needs to run successfully, it is packaged together with its dependencies in a container, which can be easily deployed

and managed in a production environment. In the last decade, the microservice architecture for application design has

increased in popularity through wide adoption in the industry through public cloud platforms such as Google, AWS,

and Azure.

2.1.1 Containers and VMs

Containers are broadly used as the backbone of many current day software applications. Containers are a powerful tool

for delivering high-performing, scalable applications on any infrastructure, as they provide a means of encapsulating

microservices and their dependencies in isolated, portable virtual environments. Containers do not run microservices

directly but rather operate on container images, which are executable environments that bundle the application along

with its runtime, libraries, and dependencies. These images serve as the source for containers deployed on various

platforms, including workstations, virtual machines, and public clouds. The portability and flexibility of containerization

make containerization an attractive approach for the deployment of microservices in diverse environments. This enables

the deployment of microservices in a consistent and predictable manner, without interference from other running

applications in a single (virtual) environment.

Virtual machines (VMs) are a software-based abstraction of a physical computer that, with the need of some built-in

hardware support. VMs create a standalone, isolated environment in which an operating system and its applications

can run. Virtual machines are useful for a variety of purposes, such as testing and development, providing a consistent

runtime environment for applications, and enabling the deployment of legacy software on modern hardware. However,

they also have some limitations and overhead compared to other approaches, such as containers.

Containers, compared to VMs, are a lightweight and more efficient form of environment virtualization that allows

applications to be packaged together with their dependencies and run in isolated environments. Unlike virtual machines,

which create virtual copies of the entire hardware and operating system, containers share the same kernel of the

operating system as the host and only include the libraries and dependencies needed for the specific application.

Containers, similar to VMs, are portable and resource-efficient, as they can easily moved between different hosts and

environments without the need for re-installation or configuration. Containers are more efficient in this regard, as they

do not have to completely duplicate the entire OS kernel, offering lower costs and faster deployment time.

In conclusion, virtual machines provide a complete standalone environment for running multiple operating systems

and applications, while containers offer a more efficient and portable way of packaging and deploying applications

within a single operating system. Both approaches have their benefits and trade-offs, and the choice between them

depends on the specific requirements and needs of the application.

2.1.2 Container Orchestration

Container orchestration is the process of automating the deployment, scaling, and management of containers in a

distributed environment. Container orchestration involves coordinating the life cycle of containers across a cluster of

(virtual) nodes, including tasks such as deploying and scaling containers, distributing workloads across the cluster, and

ensuring the availability and resiliency of the system.

5

2.2. CONTAINER ORCHESTRATION TOOLS CHAPTER 2. BACKGROUND

Microservices are typically implemented using containerization. However, full utilization of containers requires

additional tools, such as container orchestrators. Container orchestration is an important aspect of modern distributed

systems, as it helps developers and operations teams to manage and deploy complex applications built using

microservices. By automating the management of containers, orchestration tools enable developers to focus on building

and developing their applications, rather than worrying about the underlying infrastructure.

2.2 Container orchestration tools

At the time of writing, various container orchestration tools are available. Within the scope of this thesis, we use

Nomad, Docker Swarm, and Kubernetes, as they are the most commonly used and widely supported by an open-source

community. We will now briefly discuss the orchestration tools and their configuration for those unfamiliar with them.

2.2.1 Nomad & Consul

Nomad [36] is a container and workload orchestrator developed by HashiCorp, which utilizes the HashiCorp Configu-

ration Language (HCL) to deploy applications. As it does not natively support automatic service discovery, Nomad is

often paired with Consul [12], a service mesh and service discovery tool that manages the sharing of data and service

discovery among microservices.

Both Nomad and Consul operate as services on pre-allocated nodes, as illustrated in Figure 2.1. Nodes can be configured

as either servers (managers) or clients (workers) nodes. Nomad and Consul both use the Raft consensus algorithm

and Serf gossip protocol for communication. Servers employ the Raft consensus algorithm to ensure log replication

and consistency between servers, as shown in Figure 2.1. The gossip protocol is used as shared communication by all

nodes (server and client) to perform actions such as job placement on client nodes and communicate the state of

nodes in the cluster. The RPC protocol is used for all direct and targeted communication between the server and

the client nodes. To ensure high availability, it is recommended that you have at least three or five manager nodes.

In Nomad, applications are executed using jobs, which are specifications consisting of task groups. Task groups are

workloads that must be run on the same node, while tasks are the smallest unit of a job and specify the work to be

performed (e.g., a Nginx service).

Figure 2.1: Overview of the Nomad & Consul setup. Managers (servers) communicate and allocate workloads to the
Nomad workers (clients). Consul takes care of the communication between services [18].

6

2.2. CONTAINER ORCHESTRATION TOOLS CHAPTER 2. BACKGROUND

2.2.2 Docker Swarm

Docker Swarm [15] is a container orchestrator provided by Docker as part of the Docker Engine, a standard tool for

deploying containers. To set up Docker Swarm, multiple nodes need to run the Docker Engine, for which each node

needs to be configured as either a worker or manager. Managers, which use the Raft consensus protocol to select a

leader, perform orchestration and cluster management to maintain the desired state of the applications. The worker

nodes execute tasks and report any changes to the managers. To ensure high availability, it is recommended to have

at least three manager nodes, as can be seen in Figure 2.2, managers delegate tasks (e.g., a Nginx service) to worker

nodes.

Figure 2.2: Overview of the Docker Swarm manager-worker relationship [25].

7

2.2. CONTAINER ORCHESTRATION TOOLS CHAPTER 2. BACKGROUND

2.2.3 Kubernetes

Kubernetes [30] is an open-source container orchestration platform that automates the management, deployment,

and scaling of containerised applications. It was originally developed by Google and is now maintained by the Cloud

Native Computing Foundation (CNCF).

Figure 2.3: Overview of the Kubernetes manager-worker relationship [37].

Kubernetes operates a control plane consisting of one or multiple control plane nodes (also known as managers),

which supervise the worker nodes that run the workloads assigned by the control plane, as illustrated in Figure 2.3. The

control plane stores critical data in etcd, a key-value storage system based on the Raft consensus protocol. Furthermore,

both manager and worker nodes use a container engine (such as containerd) to create containers for executing tasks.

Kubernetes also supports the use of multiple container networks with their Container Network Interfaces to create

overlay networks for communication between services. Kubernetes deployment can be complex, and tools such as

Kubeadm have been developed to facilitate the creation of a cluster. Kubernetes is widely used in the industry and

has become a de facto standard for container orchestration.

8

2.3. TESTBEDS AND BENCHMARK SUITE CHAPTER 2. BACKGROUND

2.3 Testbeds and benchmark suite

Testbeds will be frequently discussed throughout this thesis, and therefore we dedicate a few paragraphs describing

the definition of the testbed and its importance.

A testbed is conceptually speaking an experimental setup with included tools that are used to rigorously test and

monitor the performance of a (complex) system. To study the behaviour and characteristics of a system, researchers

use a testbed to design and conduct experiments under controlled conditions.

Testbeds are important for academic research because they provide a controlled and repeatable environment for

studying the performance and behaviour of complex systems. By using a testbed, researchers can systematically vary

different parameters (e.g., workload, network conditions, hardware configurations) and measure the effects on the

system’s performance using desired metrics such as throughput and tail latency. This allows researchers to gain a

better understanding of the underlying mechanisms and patterns of complex systems, and to identify potential issues

and challenges that may arise in real-world deployments. By conducting experiments on a testbed, researchers can

validate their hypotheses and theories and provide empirical evidence to support their findings and conclusions.

2.3.1 CloudLab: flexible, scientific infrastructure for research

Cloudlab [17] is one of the core components of our research. CloudLab is a platform for conducting experiments and

deploying testbeds in a cloud-like environment. It provides a standardized, reproducible, and scalable infrastructure for

researchers and developers to study and evaluate the performance and behaviour of complex distributed systems, such

as cloud computing platforms, networked systems, and distributed storage systems.

CloudLab consists of a network of physical and virtual machines, connected by high-speed networks, that can be

customized to create a wide range of experimental environments. Users can configure the hardware, software, and

networking aspects of their experiments and can use CloudLab to deploy and manage a variety of applications and

workloads.

CloudLab is designed to be user-friendly and easy to use, with a web-based interface and a range of tools and libraries

for building and deploying testbeds. It has been widely adopted by researchers in academia and industry and has been

applied in a range of fields, including computer science, engineering, and biology.

2.3.2 DeathStarBench: a benchmark suite

The DeathStarBench [13] (DSB) is an open-source benchmark suite that currently consists of three applications,

built out of microservices, that can be used to benchmark a system under test. Originally, it was used to analyse the

latency and throughput between client and server systems, producing the percentile latencies and data transfer per

second for all the HTTP requests. To allow comparisons between systems, each system is benchmarked using the

workloads of a load generator in an isolated network environment. The three applications are designed to function as

a social network, a media review system, and a hotel reservation plot system on Google Maps which can be deployed

on the target system. Each application contains a dataset to load and has one or more predefined workload generators.

All applications make use of Jaeger to monitor and trace communication between microservices.

9

2.3. TESTBEDS AND BENCHMARK SUITE CHAPTER 2. BACKGROUND

Benchmark 1: The Social Network

The Social Network (SN): The application includes 28 microservices. The application is a social media site in

which users can follow each other, create posts, search engines, and see each other’s profiles. The front-end uses

Nginx to communicate with multiple microservices in the back end which store their data in several database and

caching microservices (Redis, MongoDB, and Memcached). Furthermore, it uses Thrift-like microservice components

to implement the logic. The dataset can be loaded with a Python script with around 962 users. Users follow each

other according to a graph from the Facebook Reed98 dataset [40], but other social network graphs can easily be

applied. The included workload generator has three workloads for the supported HTTP requests: reading the user

timeline, home timeline, and composing user posts. The workload can also send mixed requests.

Benchmark 2: The Media Review System

The Media Microservice (MM) allows users to browse film information and review movies. Similarly to the social

network, the application can be accessed through a Nginx web service to back-end microservices, which also use

several database microservices, and includes a container-level network DNS resolver as a microservice. The dataset

uses a Python script that loads the film data and registers the users and movies in the application. It has only one

workload, which composes film reviews. The application includes around 31 microservices.

Benchmark 3: The Hotel Reservation System

The Hotel Reservation (HR) application is based on a Go microservice example of a Hotel Reservation application

[49]. The application allows the user to make hotel reservations, get profiles and ratings of nearby hotels during a

given time period, and recommend hotels based on user input. The application includes a front-end that is accessible

through HTTP using the gRPC for inter-service communication. The application also uses a container-level DNS

resolver microservice called Consul (similar software use case to our previous mention of Consul and Nomad, which

does node orchestration instead of inter-service communication). The dataset is included in the application and does

not require any further steps to configure. It includes a workload that sends a mixed variety of requests to reserve,

recommend hotels, and plot hotels on Google Maps. The application includes 19 microservices.

10

Chapter 3

Related Work

This chapter addresses related work on microservice architecture. What challenges do we face when benchmarking

microservice applications? In addition, we discuss performance-related studies to evaluate microservices and discuss

the state of reproducibility.

3.1 Benchmarking for microservice applications

Microservices have been around for a while and emerged in 2014 [31]. After those initial years, Hamzehloui et al. [34]

identified the lack of research in that area due to the tools and experience as one of the main reasons why microservices

were not that well understood performance wise. The lack of open-source microservice benchmarks is a significant

limitation for microservice architecture research, as it makes it difficult to compare the results between studies and

replicate the findings. Furthermore, most microservice systems are proprietary or not easily accessible to the research

community [2]. As this is still an open challenge, to enable open-source and reproducible research in this area, we will

focus our study on creating a tool that can support this.

In 2017, Aderlaod et al. evaluated several benchmarks for microservice systems, most of Acme Air, Spring Cloud

Demo Apps, Socks Shop, and MusicStore [1, 43, 42, 35]. An overview of relevant microservice applications that have

been created for benchmarking in cloud and/or microservices include TeaStore [48], TrainTicket [51], SocketShop [42],

MusicStore [35], Spring Cloud Demo [6], ACME Air [1], µSuite [44], Sirius [23], TailBench [28], CloudSuite [19],

µBench [14], DeathStarBench [22]. With the inclusion of DeathStarBench, we now have a benchmarking suite

that consists of multiple reference applications with a sufficient number of microservices to accurately represent

a realistic microservice architecture application. The open-source benchmark suite has released three of a set of

five end-to-end microservice-based applications suitable for cloud system experimentation [13]. DSB is promising

for enabling researchers to study microservice performance, as it provides a higher level of depth and complexity

compared to other available benchmarks. It is still an experimental suite of applications and tools that will require

some tweaking to meet our needs. Still, we will include DeathStarBench in the experimental testbed to find if we can

enable a comparative study tool for the microservice architecture.

11

3.2. PERFORMANCE AND REPRODUCIBILITY CHAPTER 3. RELATED WORK

3.2 Performance and reproducibility

Microservices present a unique challenge for analysis due to their decentralised and independent nature. In 2022,

Bushong et al. [8] provided a systematic mapping study where understanding performance issues was still perceived as

an open problem. In a study in 2017, Heinrich et al. [24], performed a study that showed that microservice performance

testing can be challenging for testing, monitoring, and modelling performance. The challenge arises due to the scale of

microservices and the autoscaling policies employed by orchestrators like Kubernetes, necessitating simpler models to

comprehend performance issues. Our experiments will therefore start with a fixed set of microservices and be limited

to explicit scaling of our resources in containers, to keep it simple and see what we can learn from that approach.

The DeathStarBench in our study will be the core benchmark suite of our tool to enable research in this field on

microservice performance; not much research has been done on performance in realistic environments. Furthermore,

performance variability is an acknowledged problem in the cloud and performance engineering field, as stated by Uta

et al. [46]. The study goes into more depth about reasons for a lack of performance reproducibility, such as a lack of

sound experimentation due to a lack of using enough statistics and at the same time the variability introduced by cloud

platforms. Our thesis will include a more stable environment, comparing systems using CloudLab [10] which is open to

the research community, making it possible to use similar hardware to perform our experiments. Furthermore, we will

look at a broad range of experiments to move toward reproducibility. Efforts are being made to improve reproducibility

within the research community. For example, a detailed study on the Alibaba cloud [32] has been published, which

includes a dataset. Nonetheless, reproducibility remains difficult due to insufficient transparency in the tools used.

Therefore, we will ensure that both our tools and dataset are accessible online.

Existing research directions in the microservice architecture performance domain are dispersed, focused on microservices

versus monolithic performance characteristics [7], examining the scaling policy performance [9, 50] or evaluating

varying (auto)scaling [5, 4] policies and performances for Kubernetes. Kubernetes stands as a leading orchestrator in

microservice performance research, whereas numerous other orchestrators have appeared and disappeared throughout

the years. Thus, we believe that it is crucial to conduct comparative research on the performance of various container

orchestrators, including Kubernetes. However, we can only find research of multiple orchestrators on functional

characteristics [27, 33], which focused on characteristics such as provisioning time, security, learning curve, and more.

Therefore, we will incorporate additional orchestrators into our study. We include Kubernetes, Docker Swarm and

additionally add Nomad as understudied orchestrator to compare and see if that also leads to similar reproducibility

between orchestrators. In conclusion, while the recent addition of benchmarks and experiments of representative

real-world microservice applications is a step in the right direction, we still find the lack of comparative studies for the

characteristics of the microservice architecture and orchestration platforms to be an existing gap.

12

Chapter 4

Design & Implementation

This chapter presents the design of the testbed and its components. Our goal is to create a reproducible and

representative tool for use in a controlled environment to experiment and benchmark microservice applications. During

the creation of our tool (testbed deployment files, automation, implementation of DSB, etc.), we designed and

implemented the testbed in parallel to the DeathStarBench (DSB) implementation on the testbed on which to conduct

experiments. We will begin with a visual overview of the testbed design, consisting of multiple layers that we logically

divided when creating this design for our testbed tool. Each component consists of a step-by-step guide to recreate our

testbed. These steps include the setup in CloudLab and (re)implementation of the applications from DeathStarBench

to ensure compatibility with the testbed for the container orchestrators: Kubernetes, Docker Swarm, and Nomad.

One of the recent additions to the research community is the DeathStarBench, a microservice benchmark suite. This

part represents, in terms of time spent, the majority of this thesis. To reflect that work, we have created a separate

chapter here to help guide future research to be able to reproduce our research. At the start of this thesis, we first

explored DSB to explore the applications inside. From there we continued designing and building a testbed and ported

the remaining DSB applications to our current product.

To motivate our approach and to perform reproducible research, the option of a testbed checks all the marks. During

our design, we have looked at the landscape of microservice architecture and the tools available to deploy these

applications. As a popular choice for cloud-native/microservice design, there are numerous open-source frameworks and

tools, each with its own implementation and performance trade-offs. Each tool influences the microservice architecture,

as we have different technologies such as the container engine (Docker, LXC, containerd), container orchestration

engines (Kubernetes, Docker Swarm, Nomad), application architecture/benchmark suites (DeathStarBench, TeaStore)

and/or public/private/federated cloud platform (Google Cloud, Azure, AWS, CloudLab) or other infrastructure

platforms to consider [26]. In this thesis, we focus on the most popular container orchestrators, Kubernetes, Nomad

and Docker Swarm. Our final design is shown in multiple layers; see Figure 4.1. The next section will discuss each

layer shown in the figure.

13

4.1. DESIGN OF THE TESTBED CHAPTER 4. DESIGN & IMPLEMENTATION

4.1 Design of the Testbed

In this section, we are answering our research question:

RQ T.1: How to design and implement the DeathStarBench into a testbed?

As we mentioned in Section 2.3, a testbed is conceptually speaking an experimental setup with included tools that are

used to rigorously test and monitor the performance of a (complex) system. To study the behaviour and characteristics

of a system, researchers use a testbed to design and conduct experiments under controlled conditions.

Before we start discussing the details to reproduce the implementation design choices we took in our thesis, we

will take a top-down approach to discuss the components of our testbed and the final contribution. Starting with a

complete overview and then discussing each layer separately.

Figure 4.1 is an overview of the testbed we designed and the underlying tools used during our thesis. The complete

testbed consists of five layers, each layer is implemented primarily with a set of scripts in Bash to automate the process

of deploying and running the experiments where possible. As mentioned before, our design considerations are both

reproducibility and representativeness to support the research community. Our selection of the number of layers is

based on the distinct phases of investigation required during the development of this testbed and its parts. Let us go

through the process.

Testbed Design

Nomad GUIKubernetes logs Docker logs Grafana + Prometheus

Monitoring
Layer

Experiments
Workload
Generator

(Wrk2)

Metrics
(Throughput & Tail

Latency)

Data Collection + Analyses

Microservices
Layer Social Network

Application

Media
Microservices

Application

Hotel Reservation
Application

DeathStarBench

Infrastructure
Layer

Orchestration
Layer

Kubernetes Docker Swarm Nomad + Consul

Figure 4.1: An overview of the testbed and each layer that is deployed to set up the experiments. The experiments are run
benchmarking the applications in the microservice layer. The testbed is run starting from the bottom layer and ending with
the top layer.

The infrastructure layer deploys the hardware and/or virtual machines on which we can run our orchestrators and

microservices. It runs on the CloudLab platform1, which is available to the research community with hardware that

1https://cloudlab.us/

14

4.2. IMPLEMENTATION CHAPTER 4. DESIGN & IMPLEMENTATION

supports reproducibility. It is of great value that CloudLab is available to us. Alternatively, we could have considered

the public cloud, but it is less affordable, adds an additional layer of complexity to our research due to development

time, and is also constantly changing, as mentioned by Uta et al. [46] in the case of single cloud usage due to

underlying (commercial) changes, which causes a reproducibility problem. In comparison, CloudLab is a more controlled

environment; as such, we will use CloudLab throughout this thesis. Furthermore, this step also includes the choice of

OS to deploy and the networking between each node in the infrastructure.

The orchestration layer deploys the container orchestrator platform on the nodes, which manages the deployment,

scaling, and networking of microservices. After our infrastructure is deployed, we ensure that each node is configured to

communicate with each other and includes the necessary environment including packages. Depending on the number

of nodes available and the type of experiment, the script will choose the number of managers and use the remaining

as workers. For example, with 9 available nodes, the straightforward choice would be three nodes as managers for

high availability and the remaining five nodes as workers. The last node is set as the client from which to run the

workloads on the remaining cluster.

The monitoring layer deploys all the tools to monitor performance and collect logs from the microservice layer and the

orchestration layer. Monitoring tools include Grafana and Prometheus for node and container monitoring, Jaeger for

tracing and overseeing container workloads, and the built-in orchestrator monitoring tools. These monitoring tools

have been helpful and necessary during the debugging of applications to support each orchestration engine.

The microservice layer deploys the applications, in our case the DeathStarBench, and ensures that each application

can be correctly deployed. The DeathStarBench has three applications available at the time of writing. Each of the

three applications consists of multiple microservices. Each application, although available, still required extensive effort

to rewrite to run and be ported in our testbed environment and to fit each of the orchestrators underlying design

choices, such as DNS resolving, networking design choice, etc.

The last top layer in Figure 4.1 consists of the experiment layer that includes workload generation, data collection, and

scripts (Python) with Jupyter Notebook to aggregate and visualise the results. The experiments run the workloads to

stress the applications, which we visualise with an arrow on the microservice layer. After DSB has been rewritten and

deployed on the testbed, we run the experiments. The workloads can be configured, such as the number of requests.

The workloads in DSB run using a singular service call, such as the composing of social media posts using the social

network application. We ran those workloads on the applications, which returned tail latency and throughput. Using

our testbed implementation, we input the results to evaluate the final performance with figures.

The remaining sections will discuss in detail the implementation of each layer in more detail.

4.2 Implementation

In this section, we are guided by our research question:

RQ T.2: How do we implement consistency/reproducibility of our testbed? What is required to set up our

testbed/experiments?

15

4.2. IMPLEMENTATION CHAPTER 4. DESIGN & IMPLEMENTATION

In this section, we will go through our testbed implementation and include the workflow to run, with extra details

where necessary. Each layer, shown in Figure 4.1, will be discussed. Our current tool is implemented as a set of scripts

in Bash that can be found on GitHub2. Each layer reflects a step in our tool written in Bash to prepare our cluster for

experimentation.

4.2.1 Infrastructure: Preparation of the Cluster in CloudLab

To run our testbed, we first (manually) deploy our node cluster in CloudLab, which is our infrastructure layer. Our

choice of CloudLab is straightforward, as the platform supports our need for reproducible research and is available

to the research community. To set up CloudLab, we reserve bare metal nodes and choose the profile of the small

LAN [11], as shown in Figure 4.2, which allows us to choose the number of nodes we require, the operating system

we want to install (Ubuntu 20.04) and the type of node (c6525-25g). When all nodes return to the ready state of the

platform, we can access the nodes using ssh. CloudLab prepares a Virtual Private Network to create a Local Area

Network setup.

Figure 4.2: Example to configure infrastructure through the CloudLab website. Usage of nine nodes with Ubuntu and the
physical node c6525-25g.

After the deployment, we (manually) copy the names of the nodes in our script and explicitly assign the roles of the

nodes. We assume either three or one node to support high or low availability in the control plane. One node is set

aside to be used later in the experimentation layer as a workload generator for the experiments, and we also call it the

test client. The remaining nodes will be used as a worker or server node for the remaining cluster, see Figure 4.3 for

the setup.

2https://github.com/Stvdputten/Orchestration

16

4.2. IMPLEMENTATION CHAPTER 4. DESIGN & IMPLEMENTATION

VPN

Client

Servers

HA Control-Plane

Figure 4.3: Architectural setup of the infrastructure. In total 9 nodes are used. We run 1 client node to run the workload
from. The control plane is run in high availability mode, which means at least 3 nodes are used. The remaining five nodes
are used as the servers. Each node is identical.

4.2.2 Orchestration: Deployment of the Orchestration Engine

This step consists of three scripts that each deploy a different container engine. We deploy only one because each

orchestrator needs unique configurations to be set up, and they should not interfere with each other. First, a generic

configuration script will do the initial setup as follows per node:

1. Disable the firewall

2. Install the Docker engine (version 20.10)

3. Download the benchmark suite from our GitHub repository

4. Install packages to run the benchmark tools (e.g., workload generator) and build any additional tools

To do this, we first specify which nodes will be managers, workers, or clients. The cluster uses our pre-specified

configuration file to determine which node has which role and configures them accordingly. In the case of 9 nodes

that would result in Figure 4.3. The next step to this is to set up our container orchestration engine.

Setting up the container orchestration engine

Our setup assumes that nine nodes are ready to be used. Each container orchestration engine, Docker Swarm,

Kubernetes, and Nomad are set up using separate deployment scripts available in our GitHub repository.

Docker Swarm requires the least effort of the orchestrators to deploy. The nodes have previously been deployed with

Docker in the previous step. First, we deploy our managers using the command:

1 docker swarm init --advertise-addr ip

17

4.2. IMPLEMENTATION CHAPTER 4. DESIGN & IMPLEMENTATION

Servers

HA control-plane
VPN

Figure 4.4: Architectural setup of the Docker Swarm infrastructure.

and advertise their private addresses in the network, which are accessible from our other nodes. The output of the

first manager node can be copied to the remaining nodes to assign a manager or worker role to the cluster. Now we

can use the Docker command-line tool to deploy the benchmarks and interact with the cluster. This final result can

be seen in Figure 4.4 for Docker Swarm.

Kubernetes is arguably more complex to deploy. Our approach follows the documentation chapter ‘Creating a cluster

with kubeadm‘3. We first deploy the manager nodes and the remaining nodes will join afterwards. The steps are as

follows:

1. Installing kubelet, kubectl and kubeadm (same versions), version 1.31

2. Disable swap memory (required by kubeadm)

3. Configure networking to open ports on nodes to listen and advertise their private IP

The container network interface for container-to-container communication is set to Flannel [20]. The manager node

runs the following command:

1 kubeadm init --control-plane-endpoint='ipmanager' --apiserver-advertise-address='ipmanager'

--upload-certs --apiserver-cert-extra-sans='ipmanager' --pod-network-cidr=10.244.0.0/16↪→

Kubectl is used to interact with the cluster and deploy the benchmarks. The setup is shown in Figure 4.5. Workers

and managers use their internal networks to communicate, as shown in the figure.

3https://Kubernetes.io/docs/setup/production-environment/tools/kubeadm/create-cluster-kubeadm/

18

4.2. IMPLEMENTATION CHAPTER 4. DESIGN & IMPLEMENTATION

Workers

HA control-plane
VPN

Kubernetes

Kubernetes

Figure 4.5: Architectural setup of the Kubernetes infrastructure.

Nomad & Consul is deployed using a tool called hashi-up[41], which allows us to easily configure our nodes to our

preference. In contrast to the previous container orchestrators, we first set up the consul cluster and then deploy the

nomad cluster on the node level. We install the service consul as follows:

1 hashi-up consul install --ssh-target-addr ipmanager1 --ssh-target-user user --server

--client-addr 0.0.0.0 --bootstrap-expect 3 --version consulversion --connect

--retry-join ipmanager1 --retry-join ipmanager2 --retry-join ipmanager3 --bind-addr "{{

GetInterfaceIP "device"}}"

↪→

↪→

↪→

When set up correctly, Nomad will identify Consul and can be installed as follows:

1 hashi-up nomad install --ssh-target-addr ipmanager1 --ssh-target-user user --server

--version nomadversion --bootstrap-expect 3 --advertise "{{ GetInterfaceIP "device"}}"↪→

Nomad also requires an extra configuration step that is required to enable Docker to be fully supported with the

configuration ‘docker.volumes.enabled‘. Furthermore, the container network required extra networking configurations.

A manager node is set up using a Consul DNS server so that containers can use that as a DNS resolver to find other

deployed containers on other nodes. Kubernetes and Docker Swarm support container service discovery out-of-the-box.

Both Consul and Nomad have a GUI that can be used to monitor the benchmark application resources. Nomad and

Consul have their separate command line interface which allows interaction with the cluster and deployment of the

applications. Figure 4.6 shows the setup for Nomad and Consul where the control plane also includes the Consul DNS

server to support the containers looking up other services when services are deployed on a different node.

19

4.2. IMPLEMENTATION CHAPTER 4. DESIGN & IMPLEMENTATION

Clients

HA Control-Plane

DNS

VPN

Nomad

Consul

Nomad

Consul

Figure 4.6: Architectural setup of the Nomad and Consul infrastructure.

4.2.3 Monitoring: Node and Container

Our testbed contains scripts for deploying monitoring solutions, which have been used as a support to debug and

observe the correct usage of resources and service calls of the applications during experimentation. The monitoring

tools are included in a separate script if not already built-in. As Figure 4.1 shows in the monitoring layer, Prometheus

and Grafana with cAdvisor and Node Exporter can be deployed to log additional information about the nodes or

containers, which we had to create ourselves. Furthermore, Jaeger is a service that is deployed as a microservice

additionally to the applications to trace the API calls by the workload generator. Our Kubernetes setup incorporates

the extra logs and monitoring features provided by Kubernetes, enabling us to monitor the containers. Our Docker

Swarm services can be monitored using the ‘docker logs‘ command for additional information, also we used a service

based on the tool swarmprom4 to visualize the node and container CPU and Memory resource usage. The Nomad

orchestrator has a built-in dashboard to monitor deployments, which is useful for monitoring resource usage for both

nodes and containers.

4.2.4 Microservice: The Benchmark Suite

As a major challenge in supporting the DeathStarBench for our testbed, we had to build a wide range of deployment

files. The DeathStarBench benchmark suite has been expanded to support multiple orchestrators, which was not

supported at the beginning of this thesis. As an experimental benchmark suite, we had to include a long building

and testing phase to prepare the benchmarks for experiments. Before we started our work, DeathStarBench only

included the deployment files for Kubernetes/OpenShift and Docker. We extended each benchmark to support Nomad,

Kubernetes, and Docker Swarm. In total, our work includes the creation of 36 separate deployment files. Supporting

the three benchmarks with three orchestrators and four experimental configurations (baseline, vertical, horizontal, and

unlimited resources). Furthermore, additional tedious and time-consuming debugging and testing, which we will briefly

discuss in Chapter 7, had to be performed for each of the separate 36 deployment files to ensure a working state

4https://github.com/stefanprodan/swarmprom

20

4.2. IMPLEMENTATION CHAPTER 4. DESIGN & IMPLEMENTATION

before we could experiment. We will continue with a more in-depth explanation of the considerations of creating the

deployment files and tweaking the benchmark applications that we have created.

Implementation considerations of the deployment files for the orchestrators

First, to the best of our knowledge, we tweaked and configured the benchmarks to be representative and fair use for

comparative research for the container orchestration engines. We achieved this by tuning our scripts and/or deployment

files for consistency where possible. For example, images are set to a specific version by (re)building container images

for each orchestrator setup, explicitly specifying the available resources to the containers. In each deployment file,

the resources have been explicitly defined, to limit usage of resources only to 1 CPU and Memory to 1 GiB. Each

deployment service file includes explicit Docker image versioning (e.g. stvdputten/media-microservices:swarm) that

we copied and/or built separately on a separate Docker Hub account to ensure the reproducibility of the work.

Docker Engine (20.10), Kubernetes (1.31), Nomad (1.1.6) and Consul (1.10.3) have been versioned, as shown in

Table 4.1. We use identical node types, which is typical. Our testbed tool benchmarks were forked from the version of

DeathStarBench on 27 May 2021.

Table 4.1: Overview of orchestrator specifications.

Specifications

Orchestrator Kubernetes Nomad Consul Docker Swarm
Version 1.31.1 1.1.6 1.10.3 20.10

Deployment tool Kubeadm Hashi-up Hashi-up Bash scripts
Container runtime containerd Docker Docker Docker

Second, the deployment files were created to match the DeathStarBench original papers’ [13] microservice architecture

as closely as possible. Our new Docker Swarm files are based on the original Docker Compose files. Our new Kubernetes

files are based on the available OpenShift, Docker Swarm, or Docker Compose implementation. Our Nomad job

files have been newly created to match the Docker Swarm or Docker Compose setup as closely as possible. Each

orchestrator has many components to take into account, such as service discovery, DNS resolution for internal

container-to-container communication, type of networking, storage choices, and all other general default options

that might differ between orchestrators. Our contribution to extending the number of supported orchestrators in

DeathStarBench is shown in Table 4.2.

Table 4.2: An overview of the orchestrators that were supported by the DeathStarBench suite per application. The
orchestrator that had to be introduced in this work per application.

Benchmark Original Container Orchestrators Introduced Container Orchestrators

Social Network Docker Compose, Docker Swarm, OpenShift Kubernetes, Nomad

Media Microservices Docker Compose, OpenShift Docker Swarm, Kubernetes, Nomad

Hotel Reservations Docker Compose, Kubernetes, OpenShift Docker Swarm, Nomad

The general approach to port the different benchmarks to our testbed is shown in Figure 4.7. The figure presents

the process we took to create each deployment file. For each of the three benchmarks, we first create the Docker

21

4.2. IMPLEMENTATION CHAPTER 4. DESIGN & IMPLEMENTATION

Swarm YAML files if it did not exist yet. If not, we would mostly manually create the Docker Swarm files from the

existing Docker Compose, otherwise some regular expressions and conversions tool could help along. Second, we check

whether all container resources have been explicitly set. If not, we explicitly set the number of cores to 1, and the

RAM to 1 GiB. Only the front-end service of the benchmarks, where we run our workloads, uses 4 cores and 4 GiB to

not provide a bottleneck for the experiments. We continue to define each service to only have one instance/replica

and ensure the Docker image is set to explicit versions found on the public repository of Docker Hub. We also use the

local node volume when we are required to specify a storage location for the different orchestrators.

Choose
Benchmark

Does it have a docker
swarm yaml?

Create the docker
swarm yaml

No

Are all the settings
explicitly defined?

Yes

Explicitly set:
Number of Cores

RAM Size
Image Versioned

Number of container

No

Do we have
Nomad job files?Yes

1. Copy the docker config files of the
services.

2. Copy the deployment files.
3. Convert microservices

1. Deployment/service settings
2. Networking
3. Storage

4. Replace remaining services with
identical alternative

5. Run deployment

Does the app work?

1. Run workload
2. Check error logs (jaegertracing/nginx

logs)
3. Debug
4. Repeat until it work

No

Yes

No

Do we have
Kubernetes files?

Yes

Run experiment(s) Yes

Start

End
No

Figure 4.7: The general approach to creating the deployment/service files for all three orchestrators: Nomad, Docker
Swarm and Kubernetes.

As Nomad deployment/job files are similar syntactically to Docker, we first manually create their files. At this point,

we ensure that everything is working with the Docker Swarm files by deploying and testing the applications. We

continue and create the Nomad job/deployment files. Nomad with Consul requires an extra step to support services

to communicate by using a Consul manager node as the DNS server for inter-container communication. We also

constrain the front-end web server (usually Nginx) to the first worker node.

For the Kubernetes deployment files, we use kompose5 to convert Docker Swarm files to Kubernetes. We confirm that

all benchmarks work as intended with a minimal stress test and by exploring the microservice logs.

The next step requires a separate deployment file for each of our four experiments (baseline/high availability on,

vertical, horizontal, high availability off), which will be discussed in Chapter 5. Vertical and horizontal scaling are

straightforward. Our solution is to copy the original deployment files and change the required settings. In the case of

vertical scaling, we double the CPUs and Memory resources (e.g. 1 core becomes 2 and 1 GiB becomes 2 GiB). With

horizontal scaling, we change the number of replicas from 1 to 2 for all microservices. The configurations of some

5github.com/Kubernetes/kompose/releases

22

4.2. IMPLEMENTATION CHAPTER 4. DESIGN & IMPLEMENTATION

containers have also been modified to ensure consistency between services, such as Nginx, Memcached, and MongoDB.

Usually, the tinkering involved library calls or explicit service discovery renaming. For a complete overview of the exact

specified resources per microservice, see Appendix D. In Appendix F snippets of the orchestrator and benchmarks are

shared. The Docker images that we built are publicly available on Docker Hub6. The built Docker images only include

the ones that are exclusive to the DeathStarBench (e.g. stvdputten/media-microservices:swarm). The exceptions

are the openresty-thrift image built by the original author, a few that could not be built from source, and the other

open-source public images; see Appendix F for the overview. A final note, we do try to limit the resources of the

tracing service because that might interfere with correctly reporting and monitoring the API calls. The overhead

introduced by the Jaegertracing service was assumed to not interfere with the measurements, since the resources

required by Jaeger, as observed during preliminary experiments, were not in any form close to starving the nodes for

resources.

4.2.5 Experiments: Preparation, Experiments, and Results

The final step in our process is to prepare the test client to perform our experiments, which we again include in a

script. This is straightforward once the application has been deployed correctly. Each benchmark is stressed using

the wrk2 load generator and traced using Jaeger. Each application has a front-end service that is exposed using the

orchestrator tools and that we made accessible to the test client.

Wrk2 [45] is a load generator included in the DeathStarBench that provides constant throughput with accurate

and correct latency. The DeathStarBench researchers have made slight modifications to wrk2 to integrate it into

the DeathStarBench suite. Wrk2 sends a fixed number of requests per second for a defined duration. The latency

measurements are +/- 1ms granularity, which the original developer mentions due to the behaviour of the OS sleep

time. The specific loads generated for each benchmark are defined in Lua. No modification has been made to the type

mixed workload in the DeathStarBench suite for our experiments. The workload scripts have been modified to fit our

parameterisation. The load generator allows the user to define the concurrent connections, the amount of requests,

the duration of the runs, and the threads. The load generator outputs the latency for different percentiles and reports

statistics: maximum, mean, standard deviation of the latency, input throughput/requests, and returned throughput in

requests per second. Our results focus on the 99th/ P99 percentile tail latency and throughput, though it is possible

to use other percentiles as well.

Our testbed is capable of performing experiments in three modes for running our applications: high availability (on/off),

horizontal scaling (on/off), and vertical scaling (on/off). Our baseline is defined as having high availability enabled

while the other parameters are disabled. There is also an option to assign limited resources or allow unlimited resources

for the application. The vertical and horizontal parameters cannot be enabled simultaneously; in such cases, our

scripts will activate one mode and skip the other. However, it is possible to disable high availability and still run the

vertical or horizontal scaling deployment files with the applications. Moreover, our current tool permits users to enter

predefined parameters into scripts or command lines, which will then carry out the specified range of requests for the

experiments with the selected workload and generate output accordingly. Appendix C shows the code that implements

the workloads, and an example of the output after the experiment has been run at Section A.2.

6hub.docker.com/repository/docker/stvdputten/social-network-microservices

23

4.2. IMPLEMENTATION CHAPTER 4. DESIGN & IMPLEMENTATION

We extended a simple Python script7 to extract multiple variables and create multiple datasets from the results. The

data can be visualised with the previous Python tool or by using our included Jupyter Notebook scripts.

4.2.6 Workflow: How to perform research in our Testbed

This section explains the DIY setup of our testbed. For a more detailed explanation of the creation of the testbed and

implementation details of our testbed, see our previous sections.

Figure 4.8: The repository containing the scripts to run the testbed.

After the infrastructure is operational, our testbed tool allows users to enhance the scripts to execute the benchmarks,

choosing the experiments to conduct. Figure 4.8 presents the setup of our testbed tool once the user has downloaded

it. The directories to our testbed are used as follows:

• Dataset: The dataset contains the throughput and tail latency measured in this thesis with additional parameters

for the experiments, including the Python scripts to visualize the results.

• Swarm—Nomad—Kubernetes/cloudlab/configs: input worker/manager nodes in the IPs file and the test client

in the remote file. Input the roles of each node into the roles file.

• start-up-all.sh: Will run configurations.sh, setup-swarm.sh, setup-monitoring, and setup-test.sh in that order.

Similar for the other directories named ‘Kubernetes/cloudlab‘ and ‘Nomad/cloudlab‘.

• Experiments: contains the experiments.sh, which are a set of experiments used in Chapter 5 and Chapter 6.

• Results: Will contain the results generated by the experiment the user has run, sorted by benchmark, experiment,

and additional information on which parameters have been used during the run in the file description.

We have included all our experiments, four experiments per orchestrator, and eleven additional configuration experiments

for Docker Swarm to perform some preliminary experiments for creating a similar baseline configuration. The experiment

files can be used by researchers as a template to run experiments, having the option to choose which orchestrator

to use by writing the environment variables inside the experiment scripts. The generated results can, for example,

be compared with our dataset for comparative analyses. Furthermore, the directories are structured in a way that

7github.com/Stvdputten/hdr-plot

24

4.2. IMPLEMENTATION CHAPTER 4. DESIGN & IMPLEMENTATION

researchers can build on this testbed by copying existing deployment scripts and rewriting components to fit their

unique infrastructure, orchestrator, monitoring tools, microservices, and/or experiments.

To give an example of how one would approach extending this. Let us discuss two use-cases:

1. ”I would like to run an Swarm cluster on Azure for the DeathStarBench”: The user would duplicate Swarm/-

cloudlab, see Figure 4.8, to ‘Swarm/azure‘. Starting from here, we suggest approaching the deployment and

configuration files one by one. If you would like to include the infrastructure deployment of your resources in

Azure, you could change the ‘configuration.sh‘ file to ensure that the resources have been created and are

accessible. The ‘configs‘ folder should include your ssh keys or other secrets that are required by the general

scripts and specify the roles of your noes. Then, deploy the orchestrator on your Azure resources by extending

‘setup-swarm.sh‘. Furthermore, ‘setup-monitoring.sh‘ is optional if it makes sense to add additional monitoring

tools to your cluster. Then ‘setup-experiments.sh‘ is the layer that deploys the benchmark to your cluster and

configures the environment to be able to benchmark the applications. The experiment workloads need to be

changed or added in the ‘experiments‘ folder to fit. These steps are just some general guidelines, and additional

tweaking or testing per script might be required to ensure everything is running correctly. If everything is working,

‘start-up-all.sh‘ should be able to run your benchmark with your new resources.

2. Another use case would be to add an additional benchmark, assuming that it is in CloudLab, one can change

the ‘setup-experiments.sh‘ to include another parameter which branches to your benchmark that includes the

deployment of your benchmark on docker swarm. It would also require manual extension of the workload and

experiments scripts in the ‘experiments‘ folder. One would copy any of the ‘experiments.sh‘ and change the

experiments to fit their new benchmark.

Ideally, both examples would be able to run using only the ‘start-up-all.sh‘ by being generic enough and providing the

parameters and/or configurations through the command line, e.g. ‘./start-up-all.sh -benchmark DSB -Requests 1000

-NumberOfRuns 5 ...‘.

25

Chapter 5

Performance Exploration with Docker

Swarm

The experiments are divided into two chapters. In this chapter i) exploring and tuning the testbed, w.r.t. the workload

parameters for experimentation, and ii) assessing the limits w.r.t. tail latency 99th percentile and throughput of

the current setup for a baseline with Docker Swarm as a reference. In the second chapter, Chapter 6, we further

experiment with performance benchmarking, for which we are running the experiments with all orchestrators.

5.1 Tuning the Testbed

In this section, we are guided by our research question:

RQ T.3: Using our testbed, how can we ensure consistency in our experiments? What pre-tuning is

required to conduct experiments, and what performance characteristics can we find?

With the help of our testbed, we can carry out rigorous and extensive research on performance. However, the breadth

of benchmarking the applications is still costly and time-consuming. This is due to the unavoidable large configuration

parameter space to choose from for each of the three applications for each orchestrator when running multiple runs.

To keep the time to run the experiments realistic and practical, we dedicate our first part to finding a realistic baseline

and parameter scope using Docker Swarm. In the second part of our experiments, we will look at the impact of various

configurations, such as the performance of Kubernetes, Docker, and Nomad under different conditions, including

horizontal/vertical scaling and the need for high availability.

5.1.1 Experimental Setup

All our experiments are run on CloudLab infrastructure using nine c6525-25g1 nodes, five workers, and three managers

with one client node for testing purposes to run the workloads from. Each node has identical hardware, shown in

1https://docs.cloudlab.us/hardware.html

26

5.1. TUNING THE TESTBED CHAPTER 5. PERFORMANCE EXPLORATION WITH DOCKER SWARM

Table A.2, is configured with Ubuntu 20.04 and is connected to a LAN network. Each node has 16 cores, 128GB

of memory, and two 480GB of SSD storage. The container orchestrator versions were set to the most recent

version at the time of running our experiments; see Table 4.1. For more information, see also Appendix A. Our

experiments use the social network (sn), media microservices (mm) and hotel reservation (hr) applications from the

DeathStarBench benchmark suite. The applications are deployed without limiting the resource usage, unless otherwise

stated. The orchestrator is scoped to Docker Swarm for tuning. The workloads are run with wrk2 included with the

DeathStarBench, only modified to work with our testbed, which produces a constant load per second and measures

latency and throughput. The workloads simulate user actions for each of the benchmarks. The social network uses a

mix of requests: 60% of the requests read the homepage, 30% read user timelines, and 10% composed user posts.

For the media microservice, the workload consists only of composing reviews. The hotel reservation consists of 60%

searching for a hotel, 39% recommending a hotel, and 1% reserving a hotel. Each experiment has a workload running

for a duration of 30 seconds. Each experiment is run only once, unless otherwise stated. In the case where we run

multiple runs, we report the mean latency and the error bar using the standard deviation.

5.1.2 Evaluation Methodology

For evaluation, we mainly consider the 99th percentile of latency as the performance metric; other percentile tail

latency metrics can also be easily used from the results. Our evaluation is interested in the ’breaking point’, the

point when the applications show significant performance reduction (e.g. going from milliseconds to seconds for the

requests to be processed). Unless otherwise stated, our experiments are run by deploying each application in Docker

Swarm, waiting until the application is ready (the front end is deployed and reachable using a curl command from the

test client). The application deployment files are not bound to resource limits at this stage of experimentation. The

workload is applied for a steady 30 seconds, per run. Whenever we refer to requests, it implies requests per second

unless otherwise specified. The range of our workload requests is 500 up to 20.000 per second, if necessary. During

that time, we measured the tail latency and throughput. To collect data, we use wrk2. The experiments are automated

using our experiment scripts.

Four experiments are conducted, each exploring the effect of performance and assessing whether consistency exists or

extra tuning is required in our next phase. All have a focus on exploring variance in our applications. Experiment A

focusses on exploring the parameter space of our workload generator. Experiment B looks at running multiple test

clients. Based on Experiments A and B, Experiment C stresses the benchmarks to their limits. Experiment D looks at

the impact of a redeployment, if any, between experiment runs.

A comprehensive overview of these experiments, including descriptions of the configurations and supporting figures,

can be found in Appendix A. For a complete overview of all the configurations used, refer to Appendix A Table A.1

which gives an overview of all the parameters used in all experiments. Our initial parameters are the ”initial” parameter

settings in the benchmark suite, as shown in Table 5.1.

27

5.2 Experiment A. CHAPTER 5. PERFORMANCE EXPLORATION WITH DOCKER SWARM

5.2 Experiment A. Investigating the Workload Parameters

Experiment A has the goal of exploring the initial performance metric using tail latency to find a standard set of

workload parameters. As the original paper lacks the initial experimentation design for the workload generator [13], we

will define a new set of workload parameters. The test client, uses the wrk2 workload parameters shown in Table 5.1

and include threads, connections, requests, and duration as parameters. The initial values are found as default in the

DeathStarBench. We will explore increasing the range of the previously mentioned parameters, except the duration.

Table 5.1: Overview of the workload configurations for the test client.

Parameters Description Initial New

Threads Number of threads used to execute workloads 4 8

Connections Open connection to the web server 8 512

Requests Amount of requests to the application per second 200 500

Duration How long do we run the experiment 30s 30s

The tail latency starts at: 12.7ms for hotel reservation, 9.29 ms for media microservice, and 7.79 ms for social network

under a load of 200 requests per second (req/s) and with the initial parameters, as shown in Figure 5.1. It seems that

all the benchmarks work with our current load and settings.

Figure 5.1: First tune, exploring tail latency of each application, using Docker Swarm.

Our next experiment, as visualized in Figure 5.2, includes a wide range of requests, threads, and connections while

keeping the remaining parameters fixed to our initial parameters. The first left figure has an increasing number of

requests from 500 to 3.000 req/s for each application. The range was incremented until we noticed a ’breaking point’,

which was reached first by the media microservice, then by the social network. Social network and media microservice

both have a noticeable effect on latency starting from 2.000 req/s. The hotel reservation remains capable of handling

the loads throughout. The hotel reservation benchmark has some unusual latency in the first run, but it does not show

any noticeable difference after the initial start. The second figure in the middle of Figure 5.2 shows the relationship

between threads and latency, run under 200 req/s. Again we vary the number of threads per worker with 200 req/s,

we have no noticeable effect when changing the thread count. The last figure on the right, which considers the

connection, does not show any noticeable tail latency.

28

5.2 Experiment A. CHAPTER 5. PERFORMANCE EXPLORATION WITH DOCKER SWARM

Figure 5.2: Effect of requests, connections and threads on latency per benchmark. The left requests experiment is run for 30

seconds per load. The threads and connections experiment are run with 200 req/s for 30 seconds.

Based on our previous results from Figure 5.2, we can see that only the request parameters primarily affect the tail

latency, as the performance for threads and connections are stable in comparison. We rerun the previous experiment

increasing the load slightly, from 200 req/s to 500 req/s, to see if minor load changes will lead to changes for

connections and threads on tail latency. This time we explore only the connection, 128, 512 and 1024 as these seem

closer to what we expect to be realistic to use for further experimentation.

(a) Connections ranged from 128 to 1024. (b) Threads range 4 until 16

Figure 5.3: Effect of connections, threads on latency with 200 req/s and 500 req/s load on P99 tail latency.

Figure 5.3 shows us varying threads and connections under two load levels. This time we ran the experiment 3

times. We use three values of connections and threads but use two load levels, 200 req/s and 500 req/s as top and

29

5.3 Experiment B. CHAPTER 5. PERFORMANCE EXPLORATION WITH DOCKER SWARM

bottom row. The figures include the mean of tail latency measurements per benchmark and the standard deviation. In

Figure 5.3a our connections range from 128 to 1024 and in Figure 5.3b our threads range from 4 to 16 threads.

When comparing the load of 200 req/s of the top row the connections and threads are stable as they stay the same

and the error bar remains small, indicating that threads and connections do not affect tail latency. When comparing

500 req/s, in the bottom row, we see a similar trend where the latency stays consistent. We conclude that the threads

and connections, do not really matter at this point, so we change the default workload parameters to 8 threads, 512

connections, and 500 req/s for now.

Figure 5.4: The effect of running the workload for a duration of 30, 60 and 150 seconds on the tail latency.

Our last experiment for the workload parameters is the duration, as shown in Figure 5.4. So far we assumed that 30

seconds is enough time to measure the tail latency, and to compare we will run a load of 500 req/s for a duration

of 60 and 150 seconds. The tail latency is again consistent across the board, with little variance. To be more time

efficient for further experiments and runs, we will continue to use the smallest value of 30 seconds.

Conclusion A: The first few test runs have not shown noticeable differences, but shows that the benchmarks are

mostly affected by the input loads, requests per second, which is expected. No noticeable performance anomalies are

observed except for the first hotel reservation run, which indicates that a cold-start effect is sometimes applicable.

5.3 Experiment B. Examining the Impact of 3 Test Clients on System

Performance

Experiment B compares the setup of three test clients when they are benchmarking the same application. In case one

of the test clients results in a different tail latency, we could further investigate if there is a single point of failure. A

total of nine runs have been performed, three runs per client for each of the three benchmarks

30

5.4 Experiment C. CHAPTER 5. PERFORMANCE EXPLORATION WITH DOCKER SWARM

Figure 5.5: Three test clients. Multiple clients on the tail latency, using 500 requests per second for a duration of 30 seconds.

Our results are shown in Figure 5.5, where we report the average tail latency. The results for each benchmark are as

follows (in order of social network, media microservice and hotel reservation) shown in Table 5.2.

Table 5.2: Tail latency for each benchmark, req/s is 500

Test Client Social Network Media Microservice Hotel Reservation

Client 1 8.17ms 5.76ms 10.59ms
Client 2 7.52ms 5.69ms 10.79ms
Client 3 7.54ms 5.71ms 10.45ms
Mean 7.74ms 5.72ms 10.61ms
Variance 0.0911 0.000867 0.019467

Table 5.2 indicates similar results across clients, as the results are within 1 ms of each other per application. The

margin is within the expected granularity of the wrk2 measurements. The variance is also small, below 1 ms. The only

noticeable take-away result is that the media microservice seems to have the lowest latency on average, followed by

the social network and then hotel reservation based on all previous experiments and runs.

Conclusion B: The setup of multiple test clients does not affect the performance of our benchmarks (Figure 5.5).

We will continue to use one single test client.

5.4 Experiment C. Stress Testing the Microservices

In experiment C, our primary goal is to find a breaking point of the applications, when we incrementally increase the

load until we see noticeable changes in tail latency. Now we have configured our experimental setup with workload

parameters, based on Experiments A and B which resulted in the new workload parameters 8 threads, 512 connection

with loads starting from 500 for 30 seconds. This reference will help us find the expected initial limits for the

applications. Our results are shown in Figure 5.6. We repeated the experiment five times per benchmark.

In Figure 5.6, we can see that the social network, media microservice application and hotel reservation are run in the

range of starting from 500 req/s up to 15.000 req/s. The social network shows performance problems after 6.000

31

5.5 Experiment D. CHAPTER 5. PERFORMANCE EXPLORATION WITH DOCKER SWARM

req/s as the tail latency goes into the seconds. The media microservice has a breaking point above 2.000 req/s. Hotel

reservation seems to be quite robust against our workloads, but does increase slightly when taken to the 15.000 req/s.

Figure 5.6: The tail latency in milliseconds for the benchmark, running from 500 to 15.000 req/s. Experiment has been
repeated 5 times per benchmark. Mm breaks after 2.000 req/s, sn after 6.000 req/s and hr requires more than 15.000 req/s.
The shades represent the 95% confidence interval.

The experiment shows the breaking points of our benchmarks based on tail latency. Furthermore, we can see that the

media microservice breaks first, then the social network second, and hotel reservation last under increasing loads. This

might be due to limitations of the Nginx web service, which serves as a front-end of both the microservices of the

media and the social network. In comparison, hotel reservation uses a Go-written front-end web service. We will use

the breaking order of this experiment as the reference for the next experiments when comparing orchestrators.

Conclusion C: The applications rank robustness in order of breaking: media microservices, social network and finally

hotel reservation in the case of Docker Swarm.

5.5 Experiment D. Redeployment and Time

Experiment D aims to evaluate the impact of time and frequent application redeployment on the tail latency. There

are multiple reasons to consider this experiment. Firstly, the time between experiment runs and redeployment can

introduce variability in the state of the applications. Secondly, we need to determine whether a cold-start effect is a

given for the applications to reach a steady state. This could influence the consistency and reliability of our results. To

evaluate this, we experimented with ranges similar to those of the previous experiment C. With time/temporal effect,

we leave an additional 60 seconds between each repeated stress test. With redeployment, we redeploy the applications

between each test using the orchestrator as if it were a completely new experiment.

Our results are visualized in Figure 5.7. We repeat the experiment five times per benchmark. The requests start at

500 req/s and increase up to 15.000 req/s. The column, shows the baseline as shown in Figure 5.6 the previous

experiment. The 2nd and 3rd columns show the time and redeployment experiments.

We are once again interested in the point where the tail latency increases and around which load. The social network,

32

5.6 Closing thoughts CHAPTER 5. PERFORMANCE EXPLORATION WITH DOCKER SWARM

Figure 5.7: The left figure (baseline) is the same as the image of Figure 5.6, the middle image shows the effect of time and
the right image shows the effect of redeployment on latency. Each experiment has been run five times, per benchmark. The
tail latency P99 is shown in milliseconds.

seems to stay reliable around 6.000 req/s before it breaks in all cases. The results indicate that the breaking point for

the media microservice application initially shows a breaking point between at 3.000 req/s based on our temporal

experiment. There is also a shift of the breaking point to a load of more than 5.000 req/s considering redeployment,

indicating that for media microservices there can be differences between runs. For the hotel reservation application,

the baseline breaking point falls between 6.000 and 15.000 req/s for the redeployment, with both the baseline and

time experiment exhibiting a similar breaking point starting somewhere between 10.000 to 15.000 req/s. Again, there

is a noticeable breaking limit change between runs.

Conclusion D: The results show that the benchmarks respond differently to timing and redeployment. We can derive

that the social network is stable in its performance, while media microservices and hotel reservation show a shift both

negative and positive to the breaking point. This might indicate that there are factors of variability that we do not yet

control. The overal trend to see which applications breaks first seems to remain similar.

5.6 Closing thoughts on the Docker Swarm testbed experiments

When we started these experiments, we were guided by the following research questions:

RQ T.3: Using our testbed, how can we ensure consistency in our experiments? What pre-tuning is

required to conduct experiments, and what performance characteristics can we find?

Experiments A-D have been run to establish the baseline performance and exploration of our testbed. Our preliminary

results of the experiment led us to choose a set of default workload parameters. Our initial experiments with Docker

Swarm show that some cold-start effects can affect the hotel reservation application. We also have observed and

empirical evidence of what load the applications can handle and at what point they break comparing each application,

when not limited by any resource limits in Docker Swarm. The microservice media is expected to break first, then social

networks usually show a performance reduction when stressed, followed by the hotel reservation. Further exploration

also showed some effect on performance due to time between experiments and redeployment, which means that

breaking limits can change when the state of the applications are affected by time or redeployment. However, we have

observed a consistent pattern in the breaking of the applications, which will be taken into account in our subsequent

experiments. In the next chapter, we will proceed by comparing the multiple orchestrators.

33

Chapter 6

Orchestrator Experiments

In this chapter, we are guided by our research questions;

RQ T.4: Using our testbed, are there performance differences in the orchestration tools in various scaling

scenarios?

In this chapter, the second part of our experiments, we expand our experiments on the testbed to include all

orchestration tools. As variability is a major part of this thesis, we scope our experiments to explore variability between

orchestrators. Our experiments compare the various scaling methods (the baseline with high availability on, vertical

scaling, horizontal scaling, and high availability off). The experiments will show the performance metrics of each

application per orchestrator, comparing Docker Swarm, Kubernetes, and Nomad with the help of our testbed, then we

focus on one microservice benchmark where we explore more in depth, and finally we finish with an overall comparison.

6.1 Experiment Setup

The experimental setup is identical to the previous setup, described in Section 5.1, however, where applicable the

changes will be explicitly mentioned. The orchestrators on the testbed are all explored: Docker Swarm, Kubernetes

and Nomad. Our experiments are run at least once, and where applicable, averages are shown. Our applications in

general have been resource limited for each orchestrator and benchmark to make the comparison with equal resources

possible.

6.2 Evaluation Methodology

To evaluate, we will run each experiment one time, for four scaling scenarios using performance metrics, tail latency

99th percentile (P99) to find the limits through a breaking point in performance. The default settings for the parameters

for scaling are shown in Table 6.1. Our baseline (high availability is on) uses eight nodes, of which three are the control

plane and five are the worker nodes with an additional test client to run the workloads from. When high availability

(HA-off) is turned off, we only use one node in the control plane instead. Horizontal scaling (HS) scales the replicas

34

6.3. Experiment A CHAPTER 6. ORCHESTRATOR EXPERIMENTS

Table 6.1: Overview of the experiments per orchestrator

Experiment Description

Baseline Default Container resources have a limit CPU= 1 and Memory = 1GiB, HA is on
Horizontal scaling Container count is 2 for each service
Vertical scaling Container resources are scaled 2x of the default
High availability off Control plane consists of one node, instead of three

per container to two, and vertical scaling (VS) scales the container resources to two times. Our experiments will stress

the systems until they break, and we will report the changes in performance for each orchestrator and between each

of the orchestrators. We generally run workloads with 8 threads and 512 connections for 30 seconds using workloads

as previously mentioned in subsection 5.1.2 using various constant-throughput loads. The overview of tail latency,

throughput, and workload input can be found in Appendix D. The three applications have their resources set so that

each container has 1 core and 1 GiB of memory except for the front-end service or the Nginx front-end service which

gets 4 cores and 4 GiB of memory, excluding changes made when we scale the resources.

At first, 36 runs are performed, 12 per orchestrator, with for 4 scaling scenarios 3 applications. The exact nodes used

during the experiments can change, as there is a pool of more than 100 nodes available at any time, but will usually

always stay the same once deployed. The nodes are redeployed, when we run the high availability scenarios, changing

nine nodes to seven nodes, and when we change from orchestrator as we do not run multiple orchestrator in one

cluster. Experiment A has a focus on the Docker Swarm. Experiment B has a focus on Kubernetes. Experiment C

looks at Nomad. Experiment D only compares the orchestrator results available from A, B, and C to create a separate

comparison between orchestrators. Experiments E, takes the social network benchmark and does 5 runs, for increasing

loads per orchestrator to create some statically significant results as validation of our testbed results. In the following

sections, we present the most relevant findings from these experiments along with supporting figures.

For a complete overview of the performance between the orchestrators, we refer to Section 6.6. Additional orchestrator

scenarios are visualised at Appendix B. The social network (sn) container resources can be found in Table D.1, media

microservices resources (mm) at Table D.2 and Table D.3 for hotel reservation (hr) resources.

6.3 Experiment A. Docker Swarm Performance

In Experiment A, we will look at the performance of Docker Swarm. A complete overview of the results is shown in

Section B.1. Our Figure 6.1a, Figure 6.2a and Figure 6.3a show different tail latency P99 results. Our Figure 6.1b,

Figure 6.2b and Figure 6.3b show the difference in throughput for applications deployed with Docker Swarm with

different applications.

After deploying the cluster using the usual nine node setup. We run a range of workloads for a duration of 30 seconds,

running from a single test client to measure the tail latency and throughput. The workload generator has increasing

loads for each application to run until we can clearly see a noticeable latency increase; this is done for each application

in the different scaling scenario. For the various scenarios, a performance increase would be expected for the vertical

and horizontal scaling, while the high availability should realistically show no difference or decrease in performance.

Let us see how realistic microservices, with real-world workloads, perform according to our testbed.

35

6.3. Experiment A CHAPTER 6. ORCHESTRATOR EXPERIMENTS

Social Network: First, Figure 6.1a shows the tail latency, indicating that the application can handle up to 2.000

req/s, our baseline reference of 100%. Increasing the resources 100% through VS and HS causes a 50% increase in

performance at a load of 3.000 req/s. Furthermore, HA-off causes the application to have a performance decrease of

25% to 1.500 req/s.

(a) Social network latency

(b) Social network throughput

Figure 6.1: Social Network tail latency P99 and throughput per second compared in the scaling scenarios using Docker
Swarm tor compared to requests per second.

The throughput is shown by Figure 6.1b. Here, the baseline shows the break around 2.000 req/s, also results in a

measured throughput of 2.000 req/s and decreases as the requests from the test client increases. VS and HS can

handle up to 50% more requests as they break around 3.000 req/s compared to the baseline of 2.000 req/s, while

HA-off reduces performance between at least 12, 5% − 25%. Increasing the load further causes the performance to

change. This trend is similar to HS, VS and HA-off. When the load is too high, the performance decreases more and

more as the load increases. One thing we can see is that HA-off does not immediately decrease, but has a slight

increase before also decreasing for increasing intervals.

Media Microservice: Second, we look at the performance of the media microservice. In Figure 6.2a, tail latency P99

starts at a load of 500 req/s (100%). VS and HS, increases tail performance with 100% up to 1000 req/s. The effect

of HA-off is not noticeable and shows no difference from the baseline.

36

6.3. Experiment A CHAPTER 6. ORCHESTRATOR EXPERIMENTS

(a) Media microservice latency

(b) Media microservice throughput

Figure 6.2: Media Microservice latency and throughput compared in the various scaling scenarios with Docker Swarm.

In Figure 6.2b, throughput shows a similar trend to latency for the baseline and HA-off. HS and VS similarly show a

100% performance increase before showing increases in tail latency. Interestingly, increasing the load beyond the 1.000

req/s breaking point causes the HS to plateau while VS performance decreases and plateaus to around 600 req/s.

Hotel Reservation: Now we look at the performance of the hotel reservation application. Figure 6.3a, represents the

tail latency. The baseline starts to break after a load of 2.000 req/s (100%). HA-off is similar with no noticeable

difference. VS increases the performance by almost 100%. For the HS, the throughput stops after the initial 2.000

requests per second which indicates that too many errors have been returned. HS has reached a breaking limit with

limited resources. Furthermore, Figure 6.3b shows that the throughput shows similar trends to tail latency when

comparing the baseline to VS and HA-off.

37

6.3. Experiment A CHAPTER 6. ORCHESTRATOR EXPERIMENTS

(a) Hotel Reservation latency

(b) Hotel Reservation throughput

Figure 6.3: Hotel Reservation latency and throughput compared in the various scaling scenarios with Docker Swarm.

Conclusion A: Based on the applications on Docker Swarm, comparing the baseline performance to vertical or

horizontal scaling (except for hotel reservation) can increase the performance with 100%. Furthermore, having no

high availability does not decrease performance, but in the case of the social network, it decreased performance to

25%. Finally, when the load is too high, the latency changes from milliseconds to seconds, clearly indicating that the

application has hit the breaking point and performance decreases.

38

6.4. Experiment B CHAPTER 6. ORCHESTRATOR EXPERIMENTS

6.4 Experiment B. Comparing Kubernetes Performance

In Experiment B, we will look at the performance of Kubernetes. A complete overview of the results is shown in

Figure B.4. Our Figure 6.4a, Figure 6.5a and Figure 6.6a shows tail latency P99 results for the different applications.

Our Figure 6.4b, Figure 6.5b and Figure 6.6b show the difference in throughput for the applications deployed with

Kubernetes.

Social Network: For the social networking performance we can see in Figure 6.4a that our baseline can handle up

to 2.000 req/s (100%), before breaking. HA-off, shows no difference compared to the baseline. Taking a look at

VS shows an increase of the performance by 50%, to 3.000 req/s before reaching a breaking point. Note that, in

contrast to Docker Swarm, HS, has a performance increase much greater than would be expected by 2x the number of

replicas. At this point, we do not have an explanation for this behaviour, and this would require further investigation.

In Figure 6.4b the throughput shows a trend comparable to latency.

(a) Social network latency

(b) Social network throughput

Figure 6.4: Social Network deployed with Kubernetes. Comparing latency and throughput in the various scaling scenarios.

Media Microservice: Again, we look at the media microservice performance. When evaluating tail latency in

Figure 6.5a, the baseline breaks after the initial load of 500 req/s (100%). Again HA-off is similar to the baseline. VS

increases the performance by 100%, to around 1.000 req/s. HS again shows unexpected behavior, out-of-the box the

tail latency is in the seconds, which indicates a performance decrease compared to the baseline.

When we look at throughput, in Figure 6.5b, we can see that the throughput through HS is able to handle up to

2.000 req/s with 1.900 req/s measured, and 280% performance increases more than one would expect from replicas

39

6.4. Experiment B CHAPTER 6. ORCHESTRATOR EXPERIMENTS

(a) Media microservices latency

(b) Media microservices throughput

Figure 6.5: Media microservices deployed with Kubernetes. Comparing latency and throughput in the various scaling
scenarios.

2x. VS reaches a limit of around 1.000 req/s a 100% performance increase. We verified these results by taking a

closer look at the data with Jaeger, and from the GUI we can see the increased latency in relation to the type of

workload per microservice. Specifically, certain requests, using workloads such as composing reviews, take longer to

complete than less demanding requests. In short, this suggests that only partial service performance degradation is the

reason for our overall higher tail latency P99 for HS.

Hotel Reservation: Finally, our performance of the hotel reservation applications. In Figure 6.6a, the baseline and

HA-off break around a load of 2.500 req/s (100%). VS gives us a 60% performance increase and can handle the load

up to around 4.000 req/s. HS again has a noticeable high latency, this performance can be due to the way how our

horizontal scaling is approached within the benchmark. It might be that replicas 2x does not scale and actually breaks

the application sooner.

For throughput, we look at Figure 6.6b. The baseline, HA-off and VS show the expected pattern. Based on the HS

we can see that performance compared to baseline decreases by at least 60%, when comparing the break point of

2.500 to the 1.500 req/s. One reason for this HS being broken here is that the application might simply be more

fragile in the horizontally scalable with limited resources.

40

6.4. Experiment B CHAPTER 6. ORCHESTRATOR EXPERIMENTS

(a) Hotel reservation latency

(b) Hotel reservation throughput

Figure 6.6: Hotel reservation deployed with Kubernetes. Comparing latency and throughput in the various scaling
scenarios.

Conclusion B: Based on the applications on Kubernetes, our observation shows that the baseline performance is

the same as the HA-off performance. Furthermore, VS also improves performance around 50% and HS can at best

improve performance up to 100%. However, we would consider further investigation into HS for the hotel reservation

application.

41

6.5. Experiment C CHAPTER 6. ORCHESTRATOR EXPERIMENTS

6.5 Experiment C. Comparing Nomad Performance

In Experiment C, our final experiment, we measure the performance of Nomad. All results are produced are shown in

the Appendix, with Figure B.6 and Figure B.7. The figures in this section are about the latency and throughput of our

applications for the scaling scenarios. In Figure B.6 we can see that we have found the breaking point of almost all

parameters.

In this section we discuss Figure 6.7a, Figure 6.8a and Figure 6.9a which show a slice of figures with tail latency

P99. Our Figure 6.7b, Figure 6.8b and Figure 6.9b show the difference in throughput for our Nomad-implemented

applications.

Social Network: Our investigation this time focuses on Nomad. In contrast to previous experiments, the baseline

performance seems to start noticeably higher. In Figure 6.7a the baseline can handle up to 10.000 req/s (100%) before

having a noticeable increase of latency. HA-Off and VS both show a similar breaking point. Surprisingly, HS breaks

at 6.000 req/s. This would imply that HS has a performance decrease of 40% and VS does not improve performance

based on tail latency.

(a) Social network latency

(b) Social network throughput

Figure 6.7: Social network deployed with Nomad. Comparing latency and throughput in the various scaling scenarios.

When we again look at Figure 6.7b to evaluate throughput, we can find that various scaling scenarios break around

10.000 req/s. Except for VS, which perfectly handles the load up to 20.000 req/s. We would not expect this, especially

as the resources are limited and also as our preliminary experiments indicated that unlimited resources in Docker

Swarm reach their breaking point before this range. HS however is bottlenecked at the same performance as the

42

6.5. Experiment C CHAPTER 6. ORCHESTRATOR EXPERIMENTS

baseline, meaning that having two containers does not help in this case. This could mean that in the case of Nomad,

the performance with the limited resources is very efficient or that this simply might be an outlier run.

Media microservices: Now let us look at the media microservice performance. In Figure 6.8a the baseline breaks

after the initial load of 500 req/s (100%). The HA-off shows no difference to the baseline. The vertical and horizontal

scaling improves the system 100% to around 1.000 req/s throughput before having a noticeable increase in latency.

(a) Media microservices latency

(b) Media microservices throughput

Figure 6.8: Media microservices deployed with Nomad. Comparing latency and throughput in the various scaling scenarios.

When comparing throughput in Figure 6.8b, the initial baseline and HA-off throughput drops after the initial 500

req/s and remain identical. This time VS and HS shows a slightly different story. The results show that VS increases

the initial baseline throughput almost up to 1.000 req/s, implying an increase of 100%, before dropping in performance

to around 900 req/s. HS actually is able to go past 1.200 req/s and stays around that number, implying an increase

of 120% performance. Showing that HS in this case is preferable.

Hotel reservation: Now we can take a look at the performance of the hotel reservation application. In Figure 6.9a

the baseline and HA-off, again following a similar trend with tail latency, break after a load of 2.000 req/s. The

VS and HS, both handle the load up to 3.000 req/s, implying at least an increase of performance of 50%. The HS

outperforms VS until 4.000 req/s, a 100% increase in performance, after which the performance starts to decline.

From the perspective of throughput, we can observe the results in Figure 6.9b. The baseline falls off around 2.500

req/s, while HA-off follows a similar trend. It’s clear that HS is able to handle up to 6.000 req/s , while in comparison

VS falls off after 5.000 req/s. This tells us that both VS and HS, but HS goes beyond a performance increase of

43

6.5. Experiment C CHAPTER 6. ORCHESTRATOR EXPERIMENTS

(a) Hotel reservation latency

(b) Hotel reservation throughput

Figure 6.9: Hotel reservation deployed with Nomad. Comparing latency and throughput in the various scaling scenarios.

100% in this case. This is interesting, given that our previous orchestrators and hotel reservation observation point to

the contrast.

Conclusion C: Based on the applications with Nomad, our applications tell us different conclusions from the previous

orchestrators with regards to scaling. Based on Social Network, VS is the preferable method, with an increase of

100% at best. However, the other two applications tell us that HS is the preferable method where it can actually

increase performance beyond 100% compared to the baseline. The HA-off in general did not show any difference to

the baseline in all cases.

44

6.6. Experiment D CHAPTER 6. ORCHESTRATOR EXPERIMENTS

6.6 Experiment D Comparing Swarm, Kubernetes and Nomad

In this final section, we will create an overview of the breaking points thus far, comparing tail latency of each

orchestrator for the various scaling scenarios. From this overview, we can determine the difference in performance

between orchestrator and scaling method. The table is shown in Table 6.2. The overview in the table is based on the

figures shown in the previous section and on the complete overview in the appendix, Figure B.1 and Figure B.2.

Table 6.2: Overview of the breaking points based on loads of requests per second. The breaking point implies that the
tail latency 99 percentile has a noticeable increase, based on requests per seconds. Bold shows the best performing
orchestrator(s) per benchmarked application, if applicable.

Social Networks Media Microservices Hotel Reservation

Baseline Availability Off Horizontal Vertical Baseline Availability Off Horizontal Vertical Baseline Availability Off Horizontal Vertical

Swarm 2.000 - 3.000 1.500 - 2.000 3.000 - 4.000 3.000 - 4.000 500 - 1.000 500 - 1.000 1.000 - 2.000 1.000 - 2.000 2.000 - 2.500 2.000 - 2.500 ?? - 500 4.000 - 6.000

Kubernetes 2.000 - 3.000 2.000 - 3.000 12.000 - 14.000 3.000 - 4.000 500 - 1.000 500 - 1.000 ?? - 500 1.000 - 2.000 2.500 - 3.000 2.500 - 3.000 ?? - 500 4.000 - 6.000

Nomad 10.000 - 14.000 10.000 - 14.000 6.000 - 10.000 20.000 - ?? 500 - 1.000 500 - 1.000 1.000 - 2.000 1.000 - 2.000 2.000 - 3.000 2.000 - 3.000 4.000 - 6.000 3.000 - 4.000

The range of breaking points of our orchestrators is shown in Table 6.2. Based on this table, we can see that most of

the performance is similar, especially when looking at Swarm and Kubernetes. We can see that there are some outliers,

e.g. performance difference has drastically increased such that 20.000 req/s for vertical scaling for Nomad does not

show a breaking point, that might indicate unknown factors that affected the performance of our benchmarks on

orchestrator. Our results have been checked to see if container resources were not correctly limited, but our testbed

monitoring tools and logs indicate that it was correctly limited, so further investigation should be done in future work

on the application or orchestrator to explain the performance difference. Still we believe some generalisations can be

made on the basis of this table. We will summarise the most noteworthy findings per application with a focus on

comparing the orchestrators and the best performing scaling technique.

Social Network: Our overview of the breaking points shows that the Nomad orchestrator outperforms both Kubernetes

and Docker Swarm. The testbed results are unexpected due to the drastic performance differences, further investigation

showed that our configurations are correct so we cannot attribute it to a testbed bug. Ignoring Nomad, we can see

that Kubernetes is able to perform better, with regards to horizontal scaling. Again, this is unexpected. However, the

remaining results shows that horizontal and vertical scaling can improve the performance to up to 200%.

Media Microservice: The results shows that on all scaling scenarios, media microservices perform the same for each

orchestrator. Furthermore, the vertical scaling indicates that increase of performance also translates to at maximum a

100% performance increase for both horizontal and vertical scaling. Except for Kubernetes, that has a decrease in

performance when using horizontal scaling. This might indicate that some factor outside our testbed is affecting the

results, such as a configuration bug in the orchestrator, which would need to be further investigated.

Hotel Reservations: Our final benchmark application, hotel reservation, is an interesting case. There are multiple

conclusions that can be drawn from here. First, the horizontal scaling seems to either not work well for Kubernetes

and Swarm, which could be due to the nature that application is setup or that these runs are an outlier. However,

Nomad seems to contradict this, where it simply works, which could suggest that it could be due to an outlier run.

The remaining table tells us that, compared to the baseline, vertical scaling is able to achieve a performance increase

of 100% − 200% at best.

45

6.6. Experiment D CHAPTER 6. ORCHESTRATOR EXPERIMENTS

Conclusion D: In this section, we compared the multiple orchestrators and latency breaking limits. Our approach shows

that there could be some factors that influence performance both at the orchestrator level and at the microservice

architecture level. In the case of Nomad, which is the only orchestrator where horizontal scaling works for the Hotel

Reservation application. Furthermore, comparing baseline performance with horizontal and vertical scaling often leads

to a performance increase of 100% − 200%, which is shown in the Social Network and Media Microservice. However,

we cannot confidently say that some other factors are in play due to unexpected performance results, which could

explain the performance of Nomad in the case of Social Network performance having an outlier performance compared

to Swarm and Kubernetes on all levels.

46

6.7. Experiment E CHAPTER 6. ORCHESTRATOR EXPERIMENTS

6.7 Experiment E. Validating Tail Latency Comparison with Social Net-

work and Multiple Runs for each Orchestrator

We feel that we require results with more repetitions to have more confidence in our previous conclusions, we will go

in depth on the previous results of breaking points shown in Table 6.2 on the left side for social network application.

Therefore, in this final experiment, we compare the social network benchmark where each orchestrator is compared in

the four scaling scenarios (baseline/high availability on, high availability off, vertical scaling and horizontal scaling)

but with more repetitions. The containers have limited resources, and the latencies are recorded for an increasing load

starting at 500 req/s up to 10.000 req/s for a duration of 30 seconds per run. Each run has 5 iterations. In total, 105

runs have been performed.

(a) Social Network Baseline/High Availability on

(b) Social Network High-Availability Off

Figure 6.10: Social Network tail latency performance P99 based on 5 iterations. Comparing the orchestrators baseline and
high availability off. Workloads are in requests per second run for a duration of 30 seconds.

Docker Swarm: Figure 6.10 and Figure 6.11 shows the average tail latency P99 for the baseline for Docker Swarm in

blue or the left bar. Figure 6.10a shows the baseline, with Figure 6.10b showing high availability turned off (HA-off),

vertical scaling (VS) is shown in Figure 6.11a and horizontal scaling (HS) is shown in Figure 6.11b for Docker Swarm.

The baseline shows that Docker Swarm can handle up to 2.000 req/s before breaking. We can see that that error bar

shows a significant variance increase when application reaches breaking point. As tail latency can shoot up to 25.000

ms, meaning the requests most likely did not finish or taking signficantly longer. HA-off is similar to baseline, which is

expected based on our previous experiments. The error bar shows a similar large variance around the 2.000 req/s. VS

actually increases the performance, where it can handle up to 3.000 req/s, compared to the baseline a 50% increase

47

6.7. Experiment E CHAPTER 6. ORCHESTRATOR EXPERIMENTS

to performance. HS also breaks down at 3.000 req/s, which also means a 50% performance increase.

Our previous Table 6.2, representing our previous experiment results, indicate some similarities and differences for the

results. The baseline still holds a similar breaking point up to 2.000 req/s, the new breaking point of HA-off is 2.000

req/s while our previous results said between 1.500 and 2.000 req/s. For VS, our current experiment shows that 2.000

req/s is where we see a noticeable performance decrease instead of the 3.000 req/s. However, 3.000 req/s is where

the error bar is the largest, indicating that the breaking point is somewhere between 2.000 and 3.000 req/s, close

to our previous results. For HS, we can see that 3.000 req/s is the clear breaking point for our current experiment,

similar to our previous results shown. In short, we see that the results in the case of Docker Swarm are consistent and

reproducible.

Kubernetes: Represented by the colour orange or the middle bar in Figure 6.10 and Figure 6.11. The baseline breaks

down at 2.000 req/s, similar to Docker Swarm. HA-off shows no performance changes as it also breaks at 2.000

req/s. VS breaks around 2.000 req/s as the tail latency increases to an average of 2.300 ms, so no performance gains.

HS in contrast is able to handle up to 10.000 req/s before breaking. Indicating a performance increase of 5 times

the baseline, 400%. This seems to be supported by the results as shown by our previous experiment B (Kubernetes

Performance). So the performance increase is more than one would expect from setting the replicas 2x.

Our previous Table 6.2, shows that the results for Kubernetes are similar. The baseline and HA-off breaks around

2.000 req/s, both in our previous and current experiment. For VS, our previously estimated breaking load was 3.000

req/s, and our new results show that 2.000 req/s has a noticeable performance decrease. Similarly to Docker Swarm

for VS, we can see that the error bar is the largest around 3.000 req/s, close to our previous estimated breaking load.

For HS, our previous results indicated an outlier of 12.000 req/s before breaking, however, this time we can see that

10.000 req/s is our new breaking limit, which is a large error bar. In short, we can see that the results of Kubernetes

are similar enough to our previous results, at least with regard to the trend shown for performance, and that our

previous runs had some outliers.

Nomad: As can be seen in green or the right bar in Figure 6.10 and Figure 6.11. The baseline can handle up to 6.000

req/s, the highest of all orchestrators. The HA-off has similar performance and shows no performance changes. VS

breaks at 10.000 req/s, indicating a 67% performance increase. HS Actually also breaks at 10.000 req/s, which means

a similar performance increase of 67%.

In the case of Table 6.2, which indicated that Nomad was the best performing orchestrator, we can see that the

breaking limits are different. The baseline and HA-off in our current experiment shows a breaking limit around 6.000

req/s, in contrast to our previous 10.000 req/s breaking limit. For VS, our new breaking limit is 10.000 req/s, in

comparison to 20.000 req/s previously. HS gives us the breaking limit of 10.000 req/s, with a large error bar. Previously,

the breaking limit was around 6.000 req/s. In the case of Nomad, our results seem to indicate completely different

breaking point, however, the overall trend of best performing orchestrator based on our results remains Nomad.

48

6.7. Experiment E CHAPTER 6. ORCHESTRATOR EXPERIMENTS

(a) Social Network Vertical Scaling

(b) Social Network Horizontal Scaling

Figure 6.11: Social Network tail latency performance P99 based on 5 iterations. Comparing the orchestrators vertical scaling
and horizontal scaling. Workloads are in requests per second run for a duration of 30 seconds.

Conclusion E: In this section, we compared the multiple orchestrators and latency breaking limits for the social

network repeating each increment of load 5 times per orchestrator. Reflecting on our previous experiments, we expect

similar results. In this experiment, a clear indication of breaking is the variance shown by the error bar. Compared

to the baseline, turning off high availability does not significantly change the performance of tail latency. VS can

increase performance from 50% to 67%. HS interestingly enough also increases performance 50% to 67% but in the

case of Kubernetes it increases up to 400%. In comparison to our previous results in Table 6.2 on breaking points,

we can see that Docker Swarm and Kubernetes showed similar performance, while Nomad has the most significant

performance differences. Overall, the trend is that performance increases in the case of VS and HS, with HS seeming

to be preferable in most cases as higher performance gains can be made. The baseline and HA-off did not show

significant differences. Our orchestrators results follow the same trend as our previous experiments, even in the case of

Nomad which showed more extreme performance changes. In conclusion, based on our testbed results, Nomad is

still outperforming our other orchestrators, in line with our previous experiments. Horizontal scaling has the highest

performance gain (potential). Kubernetes would outperform the Docker Swarm.

49

Chapter 7

Discussion

In this chapter, the results of the experiments presented in Chapter 5 and Chapter 6 are discussed. First, using these

results, the research questions are addressed. Secondly, we will look at our research implications in our field of study.

Finally, we will end with a brief discussion of the limitations of our research and testbed.

7.1 Answering the research questions

RQ T.1: How to design and implement the DeathStarBench into a testbed?

Our approach to building a testbed includes building DeathStarBench as part of the whole testbed.

Our testbed supports researchers to perform rigorous testing. The design of our testbed, described in

Section 4.1, is divided into five layers: Infrastructure, Orchestration, Monitoring, Microservice Applica-

tion/DeathStarBench, and Experimentation. Our minimal viable open-source testbed is extendable by

design with other microservice benchmarks, for which we started by building DeathStarBench on top of

our testbed.

RQ T.2: How do we implement consistency/reproducibility of our testbed? What is required to set up our

testbed/experiments?

To work toward a reproducible testbed, as described in Section 4.2, we include scripts to deploy and set

up a consistent test environment with multiple container orchestrator engines. On the infrastructure level,

we use CloudLab which provides the platform for reusable experimentation with transparent resources

available for research, such as profiles to create identical node clusters. The testbed is open source, and

this thesis includes an explanation on recreating our testbed.

RQ T.3: Using our testbed, how can we ensure consistency in our experiments? What pre-tuning is

required to conduct experiments, and what performance characteristics can we find?

To explore consistency and reproducibility, we compared benchmark applications in multiple preliminary

experiments using only Docker Swarm, which we discussed in Section 5.1. We manage parameters such as

50

7.2. IMPLICATIONS OF THE RESEARCH CHAPTER 7. DISCUSSION

the number of connections, threads, and duration of all experiments using the load generator. Additionally,

our testbed includes parameters like high availability, vertical and horizontal scaling, limited or unlimited

resources, and orchestrator settings. We controlled our test environment for software versions and ran

identical hardware. However, our preliminary results, with the metric tail latency and throughput, cannot

guarantee a consistent and reproducible result for the benchmarks if the experiments have not been

repeated enough. Experiments such as time between workloads and re-deploying the application change

the performance based on our results. For that reason, we conducted additional experiments to explore

more in-depth performance characteristics of the microservice with multiple runs, sometimes three or up

to five runs per load. In some experiments, our measured latency would start high and decrease with

increasing load, indicating a cold start phenomenon. In our later experiments, in Chapter 6, we again

seem to have some cold start issues w.r.t. hotel reservation. In summary, running the same experiments

with the same parameters would reveal different results but show similar trends in performance.

RQ T.4: Using our testbed, are there performance differences in the orchestration tools in various scaling

scenarios?

One of the main contributions of our testbed is the comparison of the benchmark applications deployed on

Kubernetes, Docker Swarm, and Nomad, as described in Chapter 6. Given the sheer amount of results, it

is hard to make some generalisations which depend on both the orchestrator and/or scaling scenario. We

found that there are some performance differences between orchestrators and parameters: high availability

does not implicate a performance change compared to the baseline. Increasing resources, by horizontal or

vertical scaling, usually doubles the performance, but could also increase the performance by more than

100%. However, the type of application and orchestrator affects performance. We would have to research

this increase, but that would be a future work. In short, Kubernetes and Docker Swarm seem to perform

similarly for applications. Nomad showed better performance overall, but despite repeated results, we find

it generalise this result and conclude the Nomad orchestration software has some innate ability to improve

the performance of the microservice architecture. For now, more research would be needed to understand

why.

7.2 Implications of the research

Here we address some of the open questions that we think are relevant to this thesis and our field of study.

What is the relevancy and importance of the experiments? As there is a lack of reproducible and open-source

experiments with realistic benchmarks in the research field, we are happy to contribute with our empirical data. Before

the start of this study, the field of microservice architecture was understudied concerning empirical evidence to show

the limitations of the microservice architecture, which is relevant for future study. As microservice architecture is still

relevant both in business and academia, the importance of empirical studies cannot be understated and should remain

verifiable and transparant.

What will these results bring new to the field/community? The contribution is primarily twofold. First, we know

51

7.2. IMPLICATIONS OF THE RESEARCH CHAPTER 7. DISCUSSION

that the baseline we created in this research can be used for future comparison, which is in the spirit of our goal of

reproducibility, especially if we focus on exploring the social network benchmark. The results allow future work to be

done both in depth and in breadth for empirical performance evidence. Secondly, with our testbed, we have worked

towards a tool for the research community to reproduce our results. Our scripts can be used to run similar research

with CloudLab or other clouds. As the several scripts are written in Bash, they can also be run on your own hardware,

albeit with a bit of a rewrite. Our research will remain available on GitHub, reproducible in the case of future research,

and can be run on different public or private (cloud) hardware for comparative research.

Could we have generated the results without our testbed? We believe that this research could be produced

without our testbed. We must say that the cognitive load to produce similar research might prevent an early researcher

from avoiding this topic, e.g. learning curve of multiple orchestration engines and microservice architecture design

and debugging, etc. Furthermore, the Docker Swarm and Nomad deployment files had not yet been created in the

open-source edition for all instances of the three applications of the DeathStarBench. Kubernetes/Openshift was only

available for the Social Network and Media microservice application in the original research, but the Hotel reservation

application had not been fully implemented for the orchestrators. If one would scope their research to the Social

Network the results of studying the performance characteristics for the microservice architecture would be the most

achievable when starting fresh. The other applications would require debugging and rewriting extensively depending

on your hardware/cloud platform. The experimental setup would also have to be created, which you have to re-tune

according to your setup. In other cases where you would not run some simple tests and want to compare using different

orchestration engines, our testbed has at least the advantage of reducing your research time. Our tools have been

experimented with on each orchestration engine to find the limits within each orchestration engine, and also include

these as explicit resource definitions in the deployment scripts and files. This work is not trivial to your research time,

saving your time which you can use to focus only on changing the testbed, benchmarks or experiments you require for

your specific research goal.

More takeaways. The microservice architecture offers a high degree of flexibility but can also introduce an element

of unpredictability in terms of system performance. To address this challenge, the following recommendations are

proposed. (1) Use a diverse set of metrics to measure the performance of the system, as relying on a single or limited

number of metrics may not accurately reflect the bottlenecks in the system. (2) Identify the weakest components in

the architecture, as a few poorly configured services can significantly impact the overall performance of the system.

(3) Consider scaling resources in both horizontal and vertical directions, as different applications and architectures

may benefit from different approaches to scaling. (4) Keep in mind that while containers may have access to increased

resources, certain services may need to be specifically configured to take advantage of these resources.

Limitations Experiments. The experiments, especially in the second part about orchestration, focused on a broader

scope of the experiments instead of repetition. This broader scope was a trade-off as we put extensive effort in

debugging and tuning the orchestrators with limited resource and automating this process, which was already quite

challenging due to a combination of the microservice applications being experimental and require configuration changes.

Furthermore, the orchestrators also posed some challenges, especially Nomad, as we had to manually verify the limits

imposed of the orchestrators and at the same time ensure that this was due a limitation of bug in our testbed. Nomad

52

7.3. LIMITATIONS AND IMPROVEMENTS FOR THE TESTBED CHAPTER 7. DISCUSSION

seemed to require more extensive debugging due to a lack of documentation. If not done correctly, this could have not

restricted container resources and invalidating some of our research, and that step took a while to verify. Based on

the major performance differences to the other orchestrators, Nomad performance seems deployed as if it were run

with no resource limits, which had us go back and forth a few times to check if the resources had been limited. At a

certain point, we had to assume the orchestrator was correctly tuned as our checks continued to verify the limits. In

future work, we would rerun the experiments to increase the repetitions and put major guard rails in place to ensure

that the resources are limited for the applications to increase the confidence in the results of Nomad, such as limiting

the resources on node level.

7.3 Limitations and Improvements for the Testbed

Before we developed this testbed we had some initial goals and ambitions. Many of these goals are simply not feasible

due to time constraints or are not within the scope of our research goals. As such, this section will discuss the relevant

(potential) limitations of the testbed and the improvements that could be made.

Our testbed currently supports running experiments on the DeathStarBench suite using a cluster of nodes as we

have not tried deploying it to a larger cluster of nodes. At most nine nodes were used to operate the control plane,

servers for the applications, and a test client to conduct the experiments. It has been tested only on the CloudLab

environment, with Ubuntu 20.04. The tools are only in an early version, as support for multiple cloud/infrastructure

platforms has not yet been incorporated and requires manual intervention. Further testing is required to verify our

results, as we did not run our experiments in multiple runs or a sufficient amount of runs, which we would like to see

in tenfolds. This implies that our results need to be made more statistically significant.

What the Testbed Does Not Do:

1. Does Not Simulate Real-World Scale Fully

2. Does Not Include Diverse Infrastructure

3. Does Not automate everything, several scripts need to be adjusted beforehand

7.3.1 Strengths and trade-off

1. Strength Provides comparative performance analysis of different orchestration engines, under similar controlled

conditions, which can provide insights into their relative performance.

Trade-off The controlled environment we have created, does not fully replicate the variability of real-world

cloud deployments. It can create a baseline to build future research on in a controlled environment.

2. Strength Focus on detailed metric collection for 99th percentile tail latency and throughput.

Trade-off There are more metrics in providing a holistic evaluation of the performance. Resource utilization can

be an example.

53

7.3. LIMITATIONS AND IMPROVEMENTS FOR THE TESTBED CHAPTER 7. DISCUSSION

3. Strength Enables repeatable experiments. The scripts all have been written to enable a wide range of

experimentation. Either in parameter tuning or through repeatable experimentation. These experiments aid in a

reliable comparison and benchmarking.

Trade-off The repeatability and control of the environment have yet to be verified, but we made a start with

the Social Network for each orchestrator. This future work is needed to ensure that we can be extrapolated

to other environments. Our experiments should be run on different hardware to ensure the repeatability and

control of our empirical results.

7.3.2 Caveats and Weak Points (Limitations) with Solutions

1. Workload variability: Currently, our experiments are run with a static workload. This may not be representative

of real workloads, which can vary greatly.

Solution: We can think of two solutions, either extending wrk2 to support dynamic workloads through existing

extensions found online or to find a suitable replacement workload generator tool that can perform dynamic

workload and re-implement the workload of each service per application.

2. Orchestration/Monitoring Overhead: We currently do not consider the orchestrator or monitoring overhead,

which is running next to the applications. Ensuring that those are not excluded in some way when the applications

are benchmarked ensures the results are not affected by monitoring tools, if even possible.

Solution: Our proposed solution would be to extend our current scripts to ensure the monitoring services have

been disabled before the experiments are run to ensure the state of the applications.

7.3.3 Improvements

1. Reproducibility: Orchestrator performance difference with our testbed has been shown in multiple experiments

however we limited runs. The current experiment(s) showed that reproducibility for the Social Network applications

seems possible. However, to ensure our conclusions are generalisable more future work has to be performed that

shows the significance for both the benchmarks and for our other experiments, either on similar or different

hardware.

2. User-friendliness: While our prototype has some instructions. We think that documentation and more examples

of how to run our tools would help the community adapt to using this tool.

3. Expand Benchmarks: We would like to extend the testbed with a wider variety of existing open-source

benchmarks that have already stood the test of time, such as TeaStore.

4. Higher level descriptors: Currently, there are many open source options to replace specific parts in our testbed

implementation code. Tools such as Terraform/OpenTofu might help with creating a hardware/infrastructure

agnostic testbed tool. Ansible/Chef can replace the configuration step of the nodes.

5. Support major cloud providers, deployment files. Existing results on cloud providers such as Azure, AWS

and even Google Cloud are scarcely and mostly unverifiable available through commercial parties on blogs. If

54

7.3. LIMITATIONS AND IMPROVEMENTS FOR THE TESTBED CHAPTER 7. DISCUSSION

the applications could be extended to be cloud-native, it could be a (relatively) small step. Then we think the

academic value of our testbed for comparative studies will increase significantly. However, it would require

implementation choices such as storage, network, and computing resources to choose from.

55

Chapter 8

Conclusion and Future Work

This chapter presents the conclusion of the thesis, which includes a summary of the research findings regarding the

main research questions and the implications of these findings. Furthermore, the conclusion suggests potential avenues

for future work based on the results of the testbed as a tool.

8.1 Conclusion

In conclusion, the use of microservice architecture in complex systems has been shown to have several potential

benefits, including increased scalability, flexibility, and maintainability. However, it is important to carefully consider the

trade-offs and potential challenges associated with this approach, such as the need for more sophisticated orchestration

and the risk of increased communication overhead. Our approach introduces an open-source testbed that research

can build on, including a baseline dataset for comparative research. Furthermore, we used our testbed to perform

rigorous experimentation to compare multiple orchestrators. Based on our results, we can take some key lessons from

this. Overall, the performance of microservice architecture in complex systems appears to be highly dependent on the

specific applications, orchestrator, and scaling scenario, and further research is needed to better understand how to

implement and optimise this approach effectively in practice. Compared, the difference in the performance of the

same application between scaling scenarios could be 50% or more, where horizontal scaling is preferred, as it shows

the most overall potential performance gains. Depending on the different orchestrators, performance differences have

been noted, and purely on performance Nomad would be the best performing orchestrator, then comes Kubernetes

and Docker Swarm ranks last.

8.2 Future Work

There are several promising directions for future research on the performance of microservice architecture in complex

systems using our testbed. The first and most important steps are to further ensure a generic, robust, and reproducible

testbed. Toward this goal, there are multiple approaches possible. One approach would require a more in-depth

exploration, building on top of our existing research to ensure verifiability. This could be done using similar hardware

56

8.2. FUTURE WORK CHAPTER 8. CONCLUSION AND FUTURE WORK

to rerun the experiments in CloudLab. Additionally, we can improve the reproducibility of our research by extending

the testbed to include a statistics module that reports the statistics around an experiment or extending the existing

Jupyter Notebook scripts to do this. Furthermore, we can envision an extension of our current testbed setup with a

more streamlined command-line interface to help better adapt the tools to the community. Finally, it is also possible to

continue research on performance differences by extending the range of (open-source) container orchestration engines

or to compare public cloud providers, either through a singular focus on Kubernetes or by deploying the testbed on a

virtualized environment using multiple virtual machines. Overall, there is still much to learn about the performance of

microservice architecture in complex systems and their relation to container orchestrators, and continued research

in this area will be critical to improving the design and deployment of large-scale distributed systems and enabling

researchers and organisations to make informed decisions about tool selection and deployment.

57

Bibliography

[1] Acme Air Sample and Benchmark. Acme Air, Jan. 28, 2021. url: https://github.com/acmeair/acmeair

(visited on 02/02/2021).

[2] Carlos M. Aderaldo et al. “Benchmark Requirements for Microservices Architecture Research”. In: 2017

IEEE/ACM 1st International Workshop on Establishing the Community-Wide Infrastructure for Architecture-

Based Software Engineering (ECASE). 2017 IEEE/ACM 1st International Workshop on Establishing the

Community-Wide Infrastructure for Architecture-Based Software Engineering (ECASE). Buenos Aires,

Argentina: 2017 IEEE/ACM 1st International Workshop on Establishing the Community-Wide Infrastruc-

ture for Architecture-Based Software Engineering (ECASE), May 2017, pp. 8–13. isbn: 978-1-5386-0417-5.

doi: 10.1109/ECASE.2017.4.

[3] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. “Microservices Architecture Enables DevOps:

An Experience Report on Migration to a Cloud-Native Architecture”. In: (May 2016), p. 13.

[4] David Balla, Csaba Simon, and Markosz Maliosz. “Adaptive Scaling of Kubernetes Pods”. In: NOMS 2020

- 2020 IEEE/IFIP Network Operations and Management Symposium. NOMS 2020 - 2020 IEEE/IFIP Network

Operations and Management Symposium. Apr. 2020, pp. 1–5. doi: 10.1109/NOMS47738.2020.9110428.

[5] Luciano Baresi et al. “KOSMOS: Vertical and Horizontal Resource Autoscaling for Kubernetes”. In:

Service-Oriented Computing. Ed. by Hakim Hacid et al. Cham: Springer International Publishing, 2021,

pp. 821–829. isbn: 978-3-030-91431-8. doi: 10.1007/978-3-030-91431-8_59.

[6] Kenny Bastani. Spring Cloud Example Project. Jan. 30, 2021. url: https://github.com/kbastani/spring-

cloud-microservice-example (visited on 02/02/2021).

[7] Grzegorz Blinowski, Anna Ojdowska, and Adam Przybylek. “Monolithic vs. Microservice Architecture:

A Performance and Scalability Evaluation”. In: IEEE Access 10 (2022), pp. 20357–20374. issn: 2169-3536.

doi: 10.1109/ACCESS.2022.3152803.

[8] Vincent Bushong et al. “On Microservice Analysis and Architecture Evolution: A Systematic Mapping

Study”. In: Applied Sciences 11.17 (17 Jan. 2021), p. 7856. issn: 2076-3417. doi: 10.3390/app11177856.

[9] Ivan Čilić et al. “Performance Evaluation of Container Orchestration Tools in Edge Computing Envi-

ronments”. In: Sensors (Basel, Switzerland) 23.8 (Apr. 15, 2023), p. 4008. issn: 1424-8220. doi: 10.3390/

s23084008. pmid: 37112349.

[10] CloudLab. Mar. 11, 2022. url: https://cloudlab.us/ (visited on 03/11/2022).

[11] CloudLab - Show Profile. Mar. 18, 2022. url: https://www.cloudlab.us/show-profile.php?project=

PortalProfiles&profile=small-lan (visited on 03/18/2022).

58

https://github.com/acmeair/acmeair
https://doi.org/10.1109/ECASE.2017.4
https://doi.org/10.1109/NOMS47738.2020.9110428
https://doi.org/10.1007/978-3-030-91431-8_59
https://github.com/kbastani/spring-cloud-microservice-example
https://github.com/kbastani/spring-cloud-microservice-example
https://doi.org/10.1109/ACCESS.2022.3152803
https://doi.org/10.3390/app11177856
https://doi.org/10.3390/s23084008
https://doi.org/10.3390/s23084008
37112349
https://cloudlab.us/
https://www.cloudlab.us/show-profile.php?project=PortalProfiles&profile=small-lan
https://www.cloudlab.us/show-profile.php?project=PortalProfiles&profile=small-lan

BIBLIOGRAPHY BIBLIOGRAPHY

[12] Consul by HashiCorp. Consul by HashiCorp. Mar. 11, 2022. url: https://www.consul.io/ (visited on

03/11/2022).

[13] DeathStarBench Open-Source Benchmark Suite for Cloud Microservices. delimitrou, Feb. 1, 2021. url: https:

//github.com/delimitrou/DeathStarBench (visited on 02/02/2021).

[14] Andrea Detti, Ludovico Funari, and Luca Petrucci. “muBench: An Open-Source Factory of Benchmark

Microservice Applications”. In: IEEE Transactions on Parallel and Distributed Systems 34.3 (Mar. 1, 2023),

pp. 968–980. issn: 1045-9219, 1558-2183, 2161-9883. doi: 10.1109/TPDS.2023.3236447.

[15] Docker: Accelerated Container Application Development. url: https://www.docker.com/#build (visited on

04/29/2024).

[16] Nicola Dragoni et al. “Microservices: Yesterday, Today, and Tomorrow”. Apr. 20, 2017. arXiv: 1606.04036

[cs].

[17] Dmitry Duplyakin et al. “The Design and Operation of CloudLab”. In: Proceedings of the USENIX Annual

Technical Conference (ATC). July 2019, pp. 1–14. url: https://www.flux.utah.edu/paper/duplyakin-

atc19.

[18] Experience Implementing Service Mesh on Nomad and Consul. Prog.World. May 7, 2020. url: https://prog.

world/experience-implementing-service-mesh-on-nomad-and-consul/ (visited on 03/11/2022).

[19] Michael Ferdman et al. “Clearing the Clouds: A Study of Emerging Scale-out Workloads on Modern

Hardware”. In: Association for Computing Machinery 40 (Mar. 3, 2012), p. 11. doi: 10.1145/2150976.

2150982.

[20] Flannel. Mar. 18, 2022. url: https://github.com/flannel-io/flannel (visited on 03/18/2022).

[21] Paolo Di Francesco, Ivano Malavolta, and Patricia Lago. “Research on Architecting Microservices:

Trends, Focus, and Potential for Industrial Adoption”. In: 2017 IEEE International Conference on Software

Architecture (ICSA). 2017 IEEE International Conference on Software Architecture (ICSA). Gothenburg,

Sweden: IEEE, Apr. 2017, pp. 21–30. isbn: 978-1-5090-5729-0. doi: 10.1109/ICSA.2017.24.

[22] Yu Gan. An Open-Source Benchmark Suite for Microservices and Their Hardware-Software Implications for Cloud

and Edge Systems. Yu Gan at Cornell ECE. Apr. 15, 2019. url: https://gy1005.github.io/publication/

2019.asplos.deathstarbench/ (visited on 01/28/2021).

[23] Johann Hauswald et al. “Sirius: An Open End-to-End Voice and Vision Personal Assistant and Its

Implications for Future Warehouse Scale Computers”. In: Proceedings of the Twentieth International

Conference on Architectural Support for Programming Languages and Operating Systems (2015), p. 223–238.

[24] Robert Heinrich et al. “Performance Engineering for Microservices: Research Challenges and Directions”.

In: Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering Companion.

ICPE ’17: ACM/SPEC International Conference on Performance Engineering. L’Aquila Italy: ACM,

Apr. 18, 2017, pp. 223–226. isbn: 978-1-4503-4899-7. doi: 10.1145/3053600.3053653.

[25] How Nodes Work. Docker Documentation. Mar. 10, 2022. url: https://docs.docker.com/engine/

swarm/how-swarm-mode-works/nodes/ (visited on 03/11/2022).

[26] P. Jamshidi et al. “Microservices: The Journey So Far and Challenges Ahead”. In: IEEE Software 35.3

(May 2018), pp. 24–35. issn: 1937-4194. doi: 10.1109/MS.2018.2141039.

59

https://www.consul.io/
https://github.com/delimitrou/DeathStarBench
https://github.com/delimitrou/DeathStarBench
https://doi.org/10.1109/TPDS.2023.3236447
https://www.docker.com/#build
https://arxiv.org/abs/1606.04036
https://arxiv.org/abs/1606.04036
https://www.flux.utah.edu/paper/duplyakin-atc19
https://www.flux.utah.edu/paper/duplyakin-atc19
https://prog.world/experience-implementing-service-mesh-on-nomad-and-consul/
https://prog.world/experience-implementing-service-mesh-on-nomad-and-consul/
https://doi.org/10.1145/2150976.2150982
https://doi.org/10.1145/2150976.2150982
https://github.com/flannel-io/flannel
https://doi.org/10.1109/ICSA.2017.24
https://gy1005.github.io/publication/2019.asplos.deathstarbench/
https://gy1005.github.io/publication/2019.asplos.deathstarbench/
https://doi.org/10.1145/3053600.3053653
https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/
https://doi.org/10.1109/MS.2018.2141039

BIBLIOGRAPHY BIBLIOGRAPHY

[27] Isam Mashhour Al Jawarneh et al. “Container Orchestration Engines: A Thorough Functional and

Performance Comparison”. In: ICC 2019 - 2019 IEEE International Conference on Communications (ICC).

ICC 2019 - 2019 IEEE International Conference on Communications (ICC). May 2019, pp. 1–6. doi:

10.1109/ICC.2019.8762053.

[28] Harshad Kasture and Daniel Sanchez. “Tailbench: A Benchmark Suite and Evaluation Methodology

for Latency-Critical Applications”. In: 2016 IEEE International Symposium on Workload Characterization

(IISWC). 2016 IEEE International Symposium on Workload Characterization (IISWC). Providence, RI,

USA: IEEE, Sept. 2016, pp. 1–10. isbn: 978-1-5090-3896-1. doi: 10.1109/IISWC.2016.7581261.

[29] Staci D. Kramer. The Biggest Thing Amazon Got Right: The Platform. Oct. 12, 2011. url: https : / /

gigaom.com/2011/10/12/419-the-biggest-thing-amazon-got-right-the-platform/ (visited on

01/25/2021).

[30] Kubernetes. url: https://kubernetes.io/ (visited on 04/29/2024).

[31] James Lewis and Martin Fowler. Microservices. martinfowler.com. url: https://martinfowler.com/

articles/microservices.html (visited on 01/13/2021).

[32] Shutian Luo et al. “Characterizing Microservice Dependency and Performance: Alibaba Trace Analysis”.

In: Proceedings of the ACM Symposium on Cloud Computing. SoCC ’21: ACM Symposium on Cloud

Computing. Seattle WA USA: ACM, Nov. 2021, pp. 412–426. isbn: 978-1-4503-8638-8. doi: 10.1145/

3472883.3487003.

[33] Anshita Malviya and Rajendra Kumar Dwivedi. “A Comparative Analysis of Container Orchestration

Tools in Cloud Computing”. In: 2022 9th International Conference on Computing for Sustainable Global

Development (INDIACom). 2022 9th International Conference on Computing for Sustainable Global

Development (INDIACom). Mar. 2022, pp. 698–703. doi: 10.23919/INDIACom54597.2022.9763171.

[34] Mohammad Sadegh Hamzehloui, Shamsul Sahibuddin, Ardavan Ashabi are with University Technology

Malaysia, Malaysia et al. “A Study on the Most Prominent Areas of Research in Microservices”. In:

International Journal of Machine Learning and Computing 9.2 (Apr. 2019), pp. 242–247. issn: 20103700. doi:

10.18178/ijmlc.2019.9.2.793.

[35] MusicStore Sample Application. GitHub. url: https://github.com/SteeltoeOSS/Samples (visited on

02/02/2021).

[36] Nomad by HashiCorp. Nomad by HashiCorp. Mar. 11, 2022. url: https://www.nomadproject.io/ (visited

on 03/11/2022).

[37] Options for Highly Available Topology. Kubernetes. url: https://kubernetes.io/docs/setup/production-

environment/tools/kubeadm/ha-topology/ (visited on 03/11/2022).

[38] Christian Posta. Netflix OSS, Spring Cloud, or Kubernetes? How About All of Them! Software Blog. June 2,

2016. url: https://blog.christianposta.com/microservices/netflix-oss-or-kubernetes-how-

about-both/ (visited on 04/30/2024).

[39] Verified Market Research. Cloud Microservices Market 2020 Trends, Market Share, Industry Size, Opportunities,

Analysis and Forecast by 2026 – Market Reports. url: https://www.instanttechnews.com/technology-

news/2020/02/16/cloud-microservices-market-2020-trends-market-share-industry-size-

opportunities-analysis-and-forecast-by-2026/ (visited on 01/25/2021).

60

https://doi.org/10.1109/ICC.2019.8762053
https://doi.org/10.1109/IISWC.2016.7581261
https://gigaom.com/2011/10/12/419-the-biggest-thing-amazon-got-right-the-platform/
https://gigaom.com/2011/10/12/419-the-biggest-thing-amazon-got-right-the-platform/
https://kubernetes.io/
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://doi.org/10.1145/3472883.3487003
https://doi.org/10.1145/3472883.3487003
https://doi.org/10.23919/INDIACom54597.2022.9763171
https://doi.org/10.18178/ijmlc.2019.9.2.793
https://github.com/SteeltoeOSS/Samples
https://www.nomadproject.io/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/ha-topology/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/ha-topology/
https://blog.christianposta.com/microservices/netflix-oss-or-kubernetes-how-about-both/
https://blog.christianposta.com/microservices/netflix-oss-or-kubernetes-how-about-both/
https://www.instanttechnews.com/technology-news/2020/02/16/cloud-microservices-market-2020-trends-market-share-industry-size-opportunities-analysis-and-forecast-by-2026/
https://www.instanttechnews.com/technology-news/2020/02/16/cloud-microservices-market-2020-trends-market-share-industry-size-opportunities-analysis-and-forecast-by-2026/
https://www.instanttechnews.com/technology-news/2020/02/16/cloud-microservices-market-2020-trends-market-share-industry-size-opportunities-analysis-and-forecast-by-2026/

BIBLIOGRAPHY BIBLIOGRAPHY

[40] Ryan A. Rossi and Nesreen K. Ahmed. “The Network Data Repository with Interactive Graph Analytics

and Visualization”. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January

25-30, 2015, Austin, Texas, USA. Ed. by Blai Bonet and Sven Koenig. AAAI Press, 2015, pp. 4292–4293.

[41] Johan Siebens. Hashi-Up. Mar. 16, 2022. url: https://github.com/jsiebens/hashi-up (visited on

03/18/2022).

[42] Sockshop Microservice Demo Application. Microservices Demo, Feb. 2, 2021. url: https://github.com/

microservices-demo/microservices-demo (visited on 02/02/2021).

[43] Spring Cloud. Jan. 25, 2021. url: https://spring.io/projects/spring-cloud (visited on 01/25/2021).

[44] Akshitha Sriraman and Thomas F. Wenisch. “muSuite: A Benchmark Suite for Microservices”. In: 2018

IEEE International Symposium on Workload Characterization (IISWC). 2018 IEEE International Symposium

on Workload Characterization (IISWC). Raleigh, NC: IEEE, Sept. 2018, pp. 1–12. isbn: 978-1-5386-6780-4.

doi: 10.1109/IISWC.2018.8573515.

[45] Gil Tene. Wrk2. Dec. 6, 2021. url: https://github.com/giltene/wrk2 (visited on 12/06/2021).

[46] Alexandru Uta et al. “Is Big Data Performance Reproducible in Modern Cloud Networks?” In: 17th

USENIX symposium on networked systems design and implementation (NSDI 20) (2020).

[47] Erwin Van Eyk et al. “Serverless Is More: From PaaS to Present Cloud Computing”. In: IEEE Internet

Computing 22.5 (Sept. 2018), pp. 8–17. issn: 1089-7801, 1941-0131. doi: 10.1109/MIC.2018.053681358.

[48] Joakim vonKistowski et al. “TeaStore: A Micro-Service Reference Application for Benchmarking, Mod-

eling and Resource Management Research”. In: 2018 IEEE 26th International Symposium on Modeling,

Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS). 2018 IEEE 26th Interna-

tional Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems

(MASCOTS). Sept. 2018, pp. 223–236. doi: 10.1109/MASCOTS.2018.00030.

[49] Harlow Ward. Golang Microservices Example. Dec. 4, 2021. url: https://github.com/harlow/go-micro-

services (visited on 12/06/2021).

[50] Naweiluo Zhou et al. “Container Orchestration on HPC Systems through Kubernetes”. In: J. Cloud

Comput. 10.1 (Feb. 22, 2021). issn: 2192-113X. doi: 10.1186/s13677-021-00231-z.

[51] Xiang Zhou et al. “Benchmarking Microservice Systems for Software Engineering Research”. In: Pro-

ceedings of the 40th International Conference on Software Engineering: Companion Proceeedings. ICSE ’18:

40th International Conference on Software Engineering. Gothenburg Sweden: ACM, May 27, 2018,

pp. 323–324. isbn: 978-1-4503-5663-3. doi: 10.1145/3183440.3194991.

61

https://github.com/jsiebens/hashi-up
https://github.com/microservices-demo/microservices-demo
https://github.com/microservices-demo/microservices-demo
https://spring.io/projects/spring-cloud
https://doi.org/10.1109/IISWC.2018.8573515
https://github.com/giltene/wrk2
https://doi.org/10.1109/MIC.2018.053681358
https://doi.org/10.1109/MASCOTS.2018.00030
https://github.com/harlow/go-micro-services
https://github.com/harlow/go-micro-services
https://doi.org/10.1186/s13677-021-00231-z
https://doi.org/10.1145/3183440.3194991

Appendices

62

Appendix A

Preliminary experiments

In our experiments, we only highlighted a part of the performed experiments that we believe are most interesting for

our reader. These experiments were also performed to evaluate the testbed and Docker Swarm orchestrator further

and gives a place to some of the experiments that did take place but were not that interesting to discuss.

A.1 Experiment Parameters

Unless otherwise stated, experiments are benchmarked with wrk2 using the parameters 4 in the first part and 8

threads for the second part, 512 connections and ran 30 seconds with 500 requests with three master nodes and five

worker nodes with one test client. The benchmark applications are orchestrated using Docker Swarm in the preliminary

phase. The complete overview of the parameters used during preliminary experiments and orchestrator experiments

(Experiment 12 and onwards) are shown in Table A.1, furthermore Table A.2 shows the hardware specification used

for experimentation in this thesis.

63

A.2. EXAMPLE OF GENERATED DATA APPENDIX A. PRELIMINARY EXPERIMENTS

Table A.1: Overview of the relevant parameters used during experimentation

Parameters Set of values explored Description

orchestrator [’swarm’, ’k8s’, ’nomad’] The orchestrator container engine

benchmark [’hr’, ’mm’, ’sn’] The benchmark application

n client [1 3] The number of clients used for testing

requests

[200, 500, 1000, 1500, 2000, 2500,

3000, 3500, 4000, 5000, 6000,

7000, 8000, 10000, 12000, 14000,

6000, 18000, 20000, 22000,

24000, 26000.]

The number of requests generated by wrk2

connections [8 16 1024 128 2048 512] The amount of open connections by wrk2

threads [4 8 16] The amount of threads used by wrk2

duration [30 60 150] The duration of the load by wrk2

infinite [0 1] Whether the deployment files have unlimited resources. Default is 1, limited.

baseline [0 1] Whether no additional modifications to the cluster is made.

availability [0 1] Whether the cluster has high-availability enabled or not.

vertical [0 1] Whether the containers are vertically scaled

horizontal [0 1] Whether the containers are horizontally scaled

runs [N] Amount of repeated runs per application

Table A.2: Overview of the resources of node type c6525-25g

c6525-25g AMD EPYC Rome, 16 core, 2 disk, 25Gb Ethernet

CPU 16-core AMD 7302P at 3.00GHz

RAM 128GB ECC Memory (8x 16 GB 3200MT/s RDIMMs)

Disk Two 480 GB 6G SATA SSD

NIC Two dual-port Mellanox ConnectX-5 25Gb GB NIC (PCIe v4.0)

A.2 Example of generated data

All experiments are run with the wrk2 command build from the DeathStarBench suite, with some modifications by

Shuang [13] the researcher of the original paper. The changes make wrk2 an open-loop (in contract to a closed-loop)

load generator, which means the http requests are sent no matter if the previous requests have been completed

or not. The example output below is generated with the following command ‘wrk -D exp -t 4 -c 512 -d 30s -L -s

./scripts/social-network/mixed-workload.lua http://localhost:8080/ -R 200‘. The output reports the input parameters,

stats of each load generating thread, (detailed) latency distribution with stats about the max, mean, standard deviation,

and total amount of requests received.

1 Using argument nginx

2 using args: threads=4 and connections=512 and duration=30 and requests=500

64

A.2. EXAMPLE OF GENERATED DATA APPENDIX A. PRELIMINARY EXPERIMENTS

Figure A.1: The top figure is the same as the bottom image of Figure 5.6, the middle image shows the effect of time and
the bottom image shows the effect of redeployment on latency.

3 Running 30s test @ http://10.10.1.7:5000

4 4 threads and 512 connections

5 Thread calibration: mean lat.: 2.796ms, rate sampling interval: 10ms

6 Thread calibration: mean lat.: 2.597ms, rate sampling interval: 10ms

7 Thread calibration: mean lat.: 2.554ms, rate sampling interval: 10ms

8 Thread calibration: mean lat.: 2.744ms, rate sampling interval: 10ms

9 Thread Stats Avg Stdev 99% +/- Stdev

10 Latency 2.57ms 1.64ms 7.75ms 80.18%

11 Req/Sec 131.06 116.75 444.00 58.44%

12 Latency Distribution (HdrHistogram - Recorded Latency)

13 50.000% 1.93ms

14 75.000% 3.51ms

15 90.000% 5.02ms

16 99.000% 7.75ms

17 99.900% 9.78ms

18 99.990% 11.24ms

19 99.999% 11.30ms

20 100.000% 11.30ms

21

22 Detailed Percentile spectrum:

23 Value Percentile TotalCount 1/(1-Percentile)

24

25 0.370 0.000000 1 1.00

65

A.2. EXAMPLE OF GENERATED DATA APPENDIX A. PRELIMINARY EXPERIMENTS

26 1.061 0.100000 991 1.11

27 1.277 0.200000 1986 1.25

28 1.575 0.300000 2971 1.43

29 1.758 0.400000 3968 1.67

30 1.930 0.500000 4956 2.00

31 2.038 0.550000 5446 2.22

32 2.171 0.600000 5941 2.50

33 2.367 0.650000 6435 2.86

34 2.975 0.700000 6932 3.33

35 3.507 0.750000 7425 4.00

36 3.727 0.775000 7675 4.44

37 3.929 0.800000 7921 5.00

38 4.119 0.825000 8168 5.71

39 4.363 0.850000 8418 6.67

40 4.687 0.875000 8664 8.00

41 4.859 0.887500 8787 8.89

42 5.023 0.900000 8914 10.00

43 5.215 0.912500 9034 11.43

44 5.423 0.925000 9158 13.33

45 5.671 0.937500 9282 16.00

46 5.831 0.943750 9345 17.78

47 5.983 0.950000 9405 20.00

48 6.103 0.956250 9468 22.86

49 6.267 0.962500 9530 26.67

50 6.563 0.968750 9591 32.00

51 6.707 0.971875 9623 35.56

52 6.823 0.975000 9653 40.00

53 6.947 0.978125 9684 45.71

54 7.095 0.981250 9715 53.33

55 7.339 0.984375 9746 64.00

56 7.423 0.985938 9761 71.11

57 7.535 0.987500 9778 80.00

58 7.695 0.989062 9792 91.43

59 7.831 0.990625 9808 106.67

60 8.007 0.992188 9823 128.00

61 8.059 0.992969 9831 142.22

62 8.207 0.993750 9839 160.00

63 8.327 0.994531 9846 182.86

64 8.559 0.995313 9854 213.33

66

A.2. EXAMPLE OF GENERATED DATA APPENDIX A. PRELIMINARY EXPERIMENTS

65 8.687 0.996094 9862 256.00

66 8.775 0.996484 9866 284.44

67 8.959 0.996875 9870 320.00

68 9.151 0.997266 9873 365.71

69 9.327 0.997656 9877 426.67

70 9.519 0.998047 9881 512.00

71 9.559 0.998242 9883 568.89

72 9.631 0.998437 9885 640.00

73 9.735 0.998633 9887 731.43

74 9.775 0.998828 9889 853.33

75 9.895 0.999023 9891 1024.00

76 9.975 0.999121 9892 1137.78

77 10.191 0.999219 9893 1280.00

78 10.255 0.999316 9894 1462.86

79 10.455 0.999414 9895 1706.67

80 10.479 0.999512 9896 2048.00

81 10.479 0.999561 9896 2275.56

82 10.543 0.999609 9897 2560.00

83 10.543 0.999658 9897 2925.71

84 11.023 0.999707 9898 3413.33

85 11.023 0.999756 9898 4096.00

86 11.023 0.999780 9898 4551.11

87 11.239 0.999805 9899 5120.00

88 11.239 0.999829 9899 5851.43

89 11.239 0.999854 9899 6826.67

90 11.239 0.999878 9899 8192.00

91 11.239 0.999890 9899 9102.22

92 11.303 0.999902 9900 10240.00

93 11.303 1.000000 9900 inf

94 #[Mean = 2.571, StdDeviation = 1.642]

95 #[Max = 11.296, Total count = 9900]

96 #[Buckets = 27, SubBuckets = 2048]

97 --

98 14815 requests in 30.03s, 6.10MB read

99 Socket errors: connect 0, read 0, write 0, timeout 1021

100 Requests/sec: 493.30

101 Transfer/sec: 208.09KB

67

A.2. EXAMPLE OF GENERATED DATA APPENDIX A. PRELIMINARY EXPERIMENTS

E. Evaluating/Tuning the Influence of Configurations on the Performance of Nginx as a Web Server

Our last experiment E is the tweaking of the front-end performance. The Social Network and media microservice

both share Nginx (a reverse proxy) as their web server front-end, as this particular service was also tuned by the

original paper. We will change the ‘worker connections‘ and ‘worker threads‘ from auto to the current threads and

connections. Figure A.1 shows the effect of changing the parameters on the benchmarks. We can see that the load

mm can handle is up to 5.000 Req/s.

Conclusion E: The workload on Social Network, breaks between 1.500 and 2.000 Req/s, except when the threads are

set to 4 and the connections to 512.

A.2.1 Experiment 0 Exploring first run for workloads

With the default parameters, mentioned in Table 6.1, we run the experiment using 4 threads, 8 connections, and

30 seconds with 200 Req/s for each benchmark with finite resource off. Our results show the throughput of each

benchmark: sn, mm and hr, throughput is rounded to 200 Req/s. Latency is 12.7ms for Hotel Reservation, 9.29ms for

Media Microservices and 7.97ms for the Social Network. The results are shown in Figure A.2. Nothing noticeable so

far.

Figure A.2: Three clients measured (tail) latency for the benchmarks. The 99th percentile is our focus.

A.2.2 Experiment 1 Exploring the Parameter Space and Requests on Tail Latency

Our initial experiment to show the effect of changing each workload parameter on latency in each application. Each

experiment is run with all parameters fixed and only varying one parameter. Req/s are 500, 1000, 1500, 2000 and

2500, 3000. Connections range 128, 512, 1024, 2048. Threads 4, 8, 16, for which we had to change the minimal

amount of connection to 16 because the amount of connections needs to be higher than the number of threads. No

resource limits have been applied.

68

A.2. EXAMPLE OF GENERATED DATA APPENDIX A. PRELIMINARY EXPERIMENTS

(a) Social Network (b) Media Microservices

(c) Hotel Reservation

Figure A.3: The tail latency compared when all parameters are the same except the requests.

(a) Social Network (b) Hotel Reservation

Figure A.4: The tail latency compared when all parameters are the same except the connections.

69

A.2. EXAMPLE OF GENERATED DATA APPENDIX A. PRELIMINARY EXPERIMENTS

(a) Social Network (b) Media Microservices

(c) Hotel Reservation

Figure A.5: The tail latency compared when all parameters are the same except the threads.

From the results shown in Figure A.4, Figure A.3, Figure A.5 only the increase of the amount of requests influences

the latency of the applications in our initial experiment. SN shows latency larger than 1000ms from 2500 requests,

MM shows increased latency when having around 3000 requests, HR seems to show increased latency when running

the initial 500 requests but not thereafter.

A.2.3 Experiment 2 Rerun of Exploring Parameter Space of Workloads with fixed Re-

quests

Our previous experiment 1 shows the effect of changing the requests can increase latency. To ensure the performance

is not influenced by the threads and connections, we run experiments again, but keep the requests stable. We assume

that enough connections need to be open with enough threads to properly stress the system. Each experiment is run,

with only one parameter being varied. Requests from 200, 500. Connections from 128, 512, 1024. Threads from 4, 8,

16. Results are shown in Figure A.6 and Figure A.7.

70

A.2. EXAMPLE OF GENERATED DATA APPENDIX A. PRELIMINARY EXPERIMENTS

(a) Social Network (b) Media Microservices

(c) Hotel Reservation

Figure A.6: The tail latency compared to when workload has 200 requests with varying connections and threads.

(a) Social Network (b) Media Microservices

(c) Hotel Reservation

Figure A.7: The tail latency compared to when workload 500 requests with varying connections and threads.

Based on the results, we see no deviations to indicate that connections or threads require tuning for smaller amounts

of requests.

A.2.4 Experiment 3 Exploring usage of multiple Test Clients

In this experiment, we use multiple clients to properly ensure that one or multiple clients does not affect the measured

latency. The experiments are run with 8 threads, 512 connections with 500 requests for 30 seconds.

71

A.2. EXAMPLE OF GENERATED DATA APPENDIX A. PRELIMINARY EXPERIMENTS

(a) Social Network (b) Media Microservices

(c) Hotel Reservation

Figure A.8: The tail latency with multiple clients.

A.2.5 Experiment 4 Exploring Duration on the Latency

In experiment 4 we use the default parameters of 4 threads, 512 connections, and 500 requests to explore the effect of

duration on the applications. The latency is measured with a duration of 30s, 60s, and 150s. All results are shown in

Figure A.9.

(a) Social Network (b) Media Microservices

(c) Hotel Reservation

Figure A.9: The tail latency using the default parameters but with a duration of 30, 60 and 150 seconds.

72

A.2. EXAMPLE OF GENERATED DATA APPENDIX A. PRELIMINARY EXPERIMENTS

A.2.6 Experiment 5 Breaking Points Run 1

In experiment 5 we stress the applications again. From experiment 1 we derived the breaking point of SN and MM to

be around 2500 and 3000 requests. HR could handle at least 3000 requests. The latency will be measured with the

requests rates 2500, 3000, 3500, 4000, 5000 and 6000. The results are shown in Figure A.10.

(a) Social Network (b) Media Microservices

(c) Hotel Reservation

Figure A.10: The tail latency measured with varying requests.

The results show that SN is already fully stressed with a latency of 8.79s at the 2500 request rate. MM latency can

handle up to 4000 requests before exceeding the 1s latency threshold with 5000 and onwards. HR shows increased

latency, but with a latency of around 5ms to 6ms we need to further investigate the required amount of requests for it

to have a noticeable latency increase.

A.2.7 Experiment 6 Rerun Breaking point with different Parameters

Now we rerun the experiment of 5 again and increase the threads and connections to see if the applications perform

similarly. We would assume SN to break again around 2500, MM to break around 5000 and HR to be able to handle

the workloads. Furthermore, the original paper of DSB states limitations regarding the Nginx service for the maximum

number of connections it is able to handle. The results are shown in Figure A.11, Figure A.12 and Figure A.13.

73

A.2. EXAMPLE OF GENERATED DATA APPENDIX A. PRELIMINARY EXPERIMENTS

(a) Social Network 8 threads (b) Social Network 16 threads

Figure A.11: The tail latency measured with 8 and 16 threads and 512 or 1024 connections for the Social Network.

(a) Media Microservices 8 threads (b) Media Microservices 16 threads

Figure A.12: The tail latency measured with 8 and 16 threads and 512 or 1024 connections for the Media Microservices.

(a) Hotel Reservation 8 threads (b) Hotel Reservation 16 threads

Figure A.13: The tail latency measured with 8 and 16 threads and 512 or 1024 connections for the Hotel Reservation.

The results do have some noticeable influence on the latency. When changing the amount of threads, we see that SN

breaks with 8 threads around 3000 requests and with 16 threads earlier around 2000 requests. MM shows similar

results, but more requests should have been used. HR shows similar latency around 8 threads independent of the

current input latency, but in the case of 16 threads with 3500 requests we see an increase of the latency although.

A.2.8 Experiment 7 Rerun Stress Applications with new Parameters

Experiment 7 we further explore the required amount of requests to stress the applications with the current default

parameters, Table 5.1. Social Network is are run the requests 1500, 2000, 2500, 3000 and 4000, Media Microservices

requests are 3000, 4000, 5000, 6000 and Hotel Reservation is run from 12000, 14000, 16000, 18000, 20000, 22000,

24000, 26000. Figure A.14.

74

A.2. EXAMPLE OF GENERATED DATA APPENDIX A. PRELIMINARY EXPERIMENTS

(a) Social Network (b) Media Microservices

(c) Hotel Reservation

Figure A.14: The tail latency with multiple clients.

A.2.9 Experiment 8 Exploring time between experiments as factor on performance

In this experiment we simply look if the state of the experiments change if we leave any time in between experiments,

some temporal aspect or cooling-down or warm up effect, the experiment is run without limiting the resources. We

run the Social Network with 1500 2000 2500 3000 4000 Req/s, media microservice with 2500 3000 4000 5000 6000

Req/s and Hotel Reservation with 12000 14000 16000 18000 20000 Req/s. Between every run, we sleep 60 seconds.

The results are shown in Figure A.15.

(a) Social Network (b) Media Microservices

(c) Hotel Reservation

Figure A.15: The tail latency measured with 60 seconds between each experiment workload.

75

A.2. EXAMPLE OF GENERATED DATA APPENDIX A. PRELIMINARY EXPERIMENTS

A.2.10 Experiment 9 Full redeploy of applications after each run

We look at the results given that we redeploy each application after each experiment run, only varying the amount of

requests. We run Social Network with 1500, 2000, 2500, 3500, 4000, requests, Media Microservices with 2500, 3000,

4000, 5000, 6000 and Hotel Reservation with 12000, 14000, 16000, 18000, 20000 Req/s. The results are shown in

Figure A.16.

(a) Social Network (b) Media Microservices

(c) Hotel Reservation

Figure A.16: The tail latency measured between application, but where we redeploy the application.

A.2.11 Experiment 10 Rerun to confirm breaking points

In experiment 10 we run the workloads again for with the current belief of requests to break the system, except that

we increase the duration of each experiment. In the case of SN we believe between 2000 and 3000, MM we believe

between 5000 and 6000, HR is expected to be 14000 and 16000 requests. The results confirm that the breaking points

are similar Figure A.17.

76

A.2. EXAMPLE OF GENERATED DATA APPENDIX A. PRELIMINARY EXPERIMENTS

(a) Social Network (b) Media Microservices

(c) Hotel Reservation

Figure A.17: The tail latency measured with an increased duration.

A.2.12 Experiment 11 Nginx configurations experiments on performance

In experiment 11 we configure Nginx to set the amount of connections and threads to ’auto’ which we assume not to

change the current performance and rerun all setups to ensure consistency. The results are shown in Figure A.18. This

time we run with 200, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 5000, 6000, 7000 Req/s and 512 connections

and 4 threads. The Hotel Reservation was run with 200, 500, 1000, 1500, 2500, 3500, 4000, 5000, 6000, 7000 Req/s

and 512 connections and 8 threads and Hotel Reservation with 8000, 9000, 10000, 11000, 12000, 13000, 14000,

15000, 16000 Req/s. The results are shown in Figure A.19, Figure A.20.

77

A.2. EXAMPLE OF GENERATED DATA APPENDIX A. PRELIMINARY EXPERIMENTS

(a) Social Network (b) Media Microservices

(c) Hotel Reservation (d) Hotel Reservation

Figure A.18: The tail latency measured with Social Network

(a) Social Network (b) Media Microservices

(c) Hotel Reservation (d) Hotel Reservation

Figure A.19: The tail latency measured with Media Microservices

(a) Social Network (b) Media Microservices

Figure A.20: The tail latency measured with Hotel Reservation

78

Appendix B

Orchestrator Experiments

This chapter consists of an overview of all experiments concerning the orchestrators and can provide more insights. The

applications are benchmarked with wrk2 using the parameters 4 threads, 512 connections, and ran for 30 seconds with

500 requests with 3 master nodes and 5 worker nodes with 1 test client. The benchmark applications are orchestrated

using Docker Swarm, Kubernetes and Nomad. The complete overview of the parameters used during preliminary

experiments and orchestrator experiments (Experiment 12 and onwards combined in these sections) are shown in

Table B.1.

Table B.1: Overview of the relevant parameters used during experimentation

Parameters Set of values explored Description

orchestrator [’swarm’, ’k8s’, ’nomad’] The orchestrator container engine

benchmark [’hr’, ’mm’, ’sn’] The benchmark application

n client [1] The number of clients used for testing

requests

[200, 500, 1000, 1500, 2000, 2500,

3000, 3500, 4000, 5000, 6000,

7000, 8000, 10000, 12000, 14000,

6000, 18000, 20000, 22000,

24000, 26000.]

The number of requests generated by wrk2

connections [512] The amount of open connections by wrk2, similar to users

threads [4] The amount of threads used by wrk2

duration [30] The duration of the load by wrk2

infinite [1] Whether the deployment files have unlimited resources. Default is 1, limited.

baseline [0 1] Whether no additional modifications to the cluster is made.

availability [0 1] Whether the cluster has high-availability enabled or not.

vertical [0 1] Whether the containers are vertically scaled

horizontal [0 1] Whether the containers are horizontally scaled

79

APPENDIX B. ORCHESTRATOR EXPERIMENTS

B.0.1 Overview Orchestrators

An overview of the latency and throughput measured for the orchestrator with a baseline compared to vertical,

horizontal scaling and turning high-availability off. Figure B.1

0

5000

10000

15000

20000

25000

La
te
nc
y

Exp = baseline Exp = high availability off Exp = vertical 2x

Orchestrator = swarm

Exp = horizontal 2x

0

5000

10000

15000

20000

25000

La
te
nc
y

Orchestrator = k8s

0 5000 10000 15000 20000
Requests

0

5000

10000

15000

20000

25000

La
te
nc
y

0 5000 10000 15000 20000
Requests

0 5000 10000 15000 20000
Requests

0 5000 10000 15000 20000
Requests

Orchestrator = nom
adhr

mm
sn

Figure B.1: Latency of the different experiments and orchestrators with increasing load.

80

APPENDIX B. ORCHESTRATOR EXPERIMENTS

0

2500

5000

7500

10000

12500

15000

17500

20000

Re
qS

ec

Exp = baseline Exp = high availability off Exp = vertical 2x

Orchestrator = swarm

Exp = horizontal 2x

0

2500

5000

7500

10000

12500

15000

17500

20000

Re
qS

ec
Orchestrator = k8s

0 5000 10000 15000 20000
Requests

0

2500

5000

7500

10000

12500

15000

17500

20000

Re
qS

ec

0 5000 10000 15000 20000
Requests

0 5000 10000 15000 20000
Requests

0 5000 10000 15000 20000
Requests

Orchestrator = nom
ad

hr
mm
sn

Figure B.2: Throughput of the different experiments and orchestrators with increasing input requests.

81

B.1. DOCKER SWARM EXPERIMENT ALL FIGURES APPENDIX B. ORCHESTRATOR EXPERIMENTS

B.1 Docker Swarm Experiment All Figures

(a) Social Network latency (b) Media Microservices latency

(c) Hotel Reservation latency (d) Social Network throughput

(e) Media Microservices throughput (f) Hotel Reservation throughput

Figure B.3: Social Network tail latency and throughput compared in the scaling scenarios.

82

B.2. KUBERNETES EXPERIMENT ALL FIGURES APPENDIX B. ORCHESTRATOR EXPERIMENTS

B.2 Kubernetes Experiment All Figures

(a) Social Network (b) Media Microservices

(c) Hotel Reservation

Figure B.4: The effect of the parameters on the tail latency for the benchmarks

(a) Social Network (b) Media Microservices

(c) Hotel Reservation

Figure B.5: The effect of the parameters on the tail latency for the benchmarks

83

B.3. NOMAD EXPERIMENT ALL FIGURES APPENDIX B. ORCHESTRATOR EXPERIMENTS

B.3 Nomad Experiment All Figures

(a) Social Network (b) Media Microservices

(c) Hotel Reservation

Figure B.6: The effect of the parameters on the tail latency for the benchmarks

(a) Social Network (b) Media Microservices

(c) Hotel Reservation

Figure B.7: The effect of the parameters on the throughput for the benchmarks

84

Appendix C

Workload

The workload scripts, created for each benchmark and written in Lua. No modification have been made from the

original workload in the DeathStarBench suite for our experiments.

C.1 Mixed workload Social-network

1 require "socket"

2 local time = socket.gettime()*1000

3 math.randomseed(time)

4 math.random(); math.random(); math.random()

5

6 local charset = {'q', 'w', 'e', 'r', 't', 'y', 'u', 'i', 'o', 'p', 'a', 's',

7 'd', 'f', 'g', 'h', 'j', 'k', 'l', 'z', 'x', 'c', 'v', 'b', 'n', 'm', 'Q',

8 'W', 'E', 'R', 'T', 'Y', 'U', 'I', 'O', 'P', 'A', 'S', 'D', 'F', 'G', 'H',

9 'J', 'K', 'L', 'Z', 'X', 'C', 'V', 'B', 'N', 'M', '1', '2', '3', '4', '5',

10 '6', '7', '8', '9', '0'}

11

12 local decset = {'1', '2', '3', '4', '5', '6', '7', '8', '9', '0'}

13

14 local function stringRandom(length)

15 if length > 0 then

16 return stringRandom(length - 1) .. charset[math.random(1, #charset)]

17 else

18 return ""

19 end

20 end

21

85

C.1. MIXED WORKLOAD SOCIAL-NETWORK APPENDIX C. WORKLOAD

22 local function decRandom(length)

23 if length > 0 then

24 return decRandom(length - 1) .. decset[math.random(1, #decset)]

25 else

26 return ""

27 end

28 end

29

30 local function compose_post()

31 local user_index = math.random(1, 962)

32 local username = "username_" .. tostring(user_index)

33 local user_id = tostring(user_index)

34 local text = stringRandom(256)

35 local num_user_mentions = math.random(0, 5)

36 local num_urls = math.random(0, 5)

37 local num_media = math.random(0, 4)

38 local media_ids = '['

39 local media_types = '['

40

41 for i = 0, num_user_mentions, 1 do

42 local user_mention_id

43 while (true) do

44 user_mention_id = math.random(1, 962)

45 if user_index ~= user_mention_id then

46 break

47 end

48 end

49 text = text .. " @username_" .. tostring(user_mention_id)

50 end

51

52 for i = 0, num_urls, 1 do

53 text = text .. " http://" .. stringRandom(64)

54 end

55

56 for i = 0, num_media, 1 do

57 local media_id = decRandom(18)

58 media_ids = media_ids .. "\"" .. media_id .. "\","

59 media_types = media_types .. "\"png\","

60 end

86

C.1. MIXED WORKLOAD SOCIAL-NETWORK APPENDIX C. WORKLOAD

61

62 media_ids = media_ids:sub(1, #media_ids - 1) .. "]"

63 media_types = media_types:sub(1, #media_types - 1) .. "]"

64

65 local method = "POST"

66 local path = "http://localhost:8080/wrk2-api/post/compose"

67 local headers = {}

68 local body

69 headers["Content-Type"] = "application/x-www-form-urlencoded"

70 if num_media then

71 body = "username=" .. username .. "&user_id=" .. user_id ..

72 "&text=" .. text .. "&media_ids=" .. media_ids ..

73 "&media_types=" .. media_types .. "&post_type=0"

74 else

75 body = "username=" .. username .. "&user_id=" .. user_id ..

76 "&text=" .. text .. "&media_ids=" .. "&post_type=0"

77 end

78

79 return wrk.format(method, path, headers, body)

80 end

81

82 local function read_user_timeline()

83 local user_id = tostring(math.random(1, 962))

84 local start = tostring(math.random(0, 100))

85 local stop = tostring(start + 10)

86

87 local args = "user_id=" .. user_id .. "&start=" .. start .. "&stop=" .. stop

88 local method = "GET"

89 local headers = {}

90 headers["Content-Type"] = "application/x-www-form-urlencoded"

91 local path = "http://localhost:8080/wrk2-api/user-timeline/read?" .. args

92 return wrk.format(method, path, headers, nil)

93 end

94

95 local function read_home_timeline()

96 local user_id = tostring(math.random(1, 962))

97 local start = tostring(math.random(0, 100))

98 local stop = tostring(start + 10)

99

87

C.2. COMPOSE WORKLOAD MEDIA-MICROSERVICES APPENDIX C. WORKLOAD

100 local args = "user_id=" .. user_id .. "&start=" .. start .. "&stop=" .. stop

101 local method = "GET"

102 local headers = {}

103 headers["Content-Type"] = "application/x-www-form-urlencoded"

104 local path = "http://localhost:8080/wrk2-api/home-timeline/read?" .. args

105 return wrk.format(method, path, headers, nil)

106 end

107

108 request = function()

109 cur_time = math.floor(socket.gettime())

110 local read_home_timeline_ratio = 0.60

111 local read_user_timeline_ratio = 0.30

112 local compose_post_ratio = 0.10

113

114 local coin = math.random()

115 if coin < read_home_timeline_ratio then

116 return read_home_timeline()

117 elseif coin < read_home_timeline_ratio + read_user_timeline_ratio then

118 return read_user_timeline()

119 else

120 return compose_post()

121 end

122 end

C.2 Compose workload Media-microservices

Note, the original file contains all movies titles

1 require "socket"

2 time = socket.gettime()*1000

3 math.randomseed(time)

4 math.random(); math.random(); math.random()

5

6 local charset = {'q', 'w', 'e', 'r', 't', 'y', 'u', 'i', 'o', 'p', 'a', 's',

7 'd', 'f', 'g', 'h', 'j', 'k', 'l', 'z', 'x', 'c', 'v', 'b', 'n', 'm', 'Q',

8 'W', 'E', 'R', 'T', 'Y', 'U', 'I', 'O', 'P', 'A', 'S', 'D', 'F', 'G', 'H',

9 'J', 'K', 'L', 'Z', 'X', 'C', 'V', 'B', 'N', 'M', '1', '2', '3', '4', '5',

10 '6', '7', '8', '9', '0'}

11

12 local movie_titles = {

88

C.2. COMPOSE WORKLOAD MEDIA-MICROSERVICES APPENDIX C. WORKLOAD

13 "Avengers: Endgame",

14 "Kamen Rider Heisei Generations FOREVER",

15 "Captain Marvel",

16 "Pokémon Detective Pikachu"

17 }

18

19 function string.random(length)

20 if length > 0 then

21 return string.random(length - 1) .. charset[math.random(1, #charset)]

22 else

23 return ""

24 end

25 end

26

27 request = function()

28 local movie_index = math.random(1000)

29 local user_index = math.random(1000)

30 local username = "username_" .. tostring(user_index)

31 local password = "password_" .. tostring(user_index)

32 local title = urlEncode(movie_titles[movie_index])

33 local rating = math.random(0, 10)

34 local text = string.random(256)

35

36 local path = "http://127.0.0.1:8080/wrk2-api/review/compose"

37 local method = "POST"

38 local headers = {}

39 local body = "username=" .. username .. "&password=" .. password .. "&title=" ..

40 title .. "&rating=" .. rating .. "&text=" .. text

41 headers["Content-Type"] = "application/x-www-form-urlencoded"

42

43 return wrk.format(method, path, headers, body)

44 end

45

46 function urlEncode(s)

47 s = string.gsub(s, "([^%w%.%-])", function(c) return string.format("%%%02X", string.byte(c)) end)

48 return string.gsub(s, " ", "+")

49 end

89

C.3. MIXED WORKLOAD HOTEL-RESERVATION APPENDIX C. WORKLOAD

C.3 Mixed workload Hotel-reservation

1 require "socket"

2 math.randomseed(socket.gettime()*1000)

3 math.random(); math.random(); math.random()

4

5 local function get_user()

6 local id = math.random(0, 500)

7 local user_name = "Cornell_" .. tostring(id)

8 local pass_word = ""

9 for i = 0, 9, 1 do

10 pass_word = pass_word .. tostring(id)

11 end

12 return user_name, pass_word

13 end

14

15 local function search_hotel()

16 local in_date = math.random(9, 23)

17 local out_date = math.random(in_date + 1, 24)

18

19 local in_date_str = tostring(in_date)

20 if in_date <= 9 then

21 in_date_str = "2015-04-0" .. in_date_str

22 else

23 in_date_str = "2015-04-" .. in_date_str

24 end

25

26 local out_date_str = tostring(out_date)

27 if out_date <= 9 then

28 out_date_str = "2015-04-0" .. out_date_str

29 else

30 out_date_str = "2015-04-" .. out_date_str

31 end

32

33 local lat = 38.0235 + (math.random(0, 481) - 240.5)/1000.0

34 local lon = -122.095 + (math.random(0, 325) - 157.0)/1000.0

35

36 local method = "GET"

37 local path = "http://localhost:5000/hotels?inDate=" .. in_date_str ..

90

C.3. MIXED WORKLOAD HOTEL-RESERVATION APPENDIX C. WORKLOAD

38 "&outDate=" .. out_date_str .. "&lat=" .. tostring(lat) .. "&lon=" .. tostring(lon)

39

40 local headers = {}

41 -- headers["Content-Type"] = "application/x-www-form-urlencoded"

42 return wrk.format(method, path, headers, nil)

43 end

44

45 local function recommend()

46 local coin = math.random()

47 local req_param = ""

48 if coin < 0.33 then

49 req_param = "dis"

50 elseif coin < 0.66 then

51 req_param = "rate"

52 else

53 req_param = "price"

54 end

55

56 local lat = 38.0235 + (math.random(0, 481) - 240.5)/1000.0

57 local lon = -122.095 + (math.random(0, 325) - 157.0)/1000.0

58

59 local method = "GET"

60 local path = "http://localhost:5000/recommendations?require=" .. req_param ..

61 "&lat=" .. tostring(lat) .. "&lon=" .. tostring(lon)

62 local headers = {}

63 -- headers["Content-Type"] = "application/x-www-form-urlencoded"

64 return wrk.format(method, path, headers, nil)

65 end

66

67 local function reserve()

68 local in_date = math.random(9, 23)

69 local out_date = in_date + math.random(1, 5)

70

71 local in_date_str = tostring(in_date)

72 if in_date <= 9 then

73 in_date_str = "2015-04-0" .. in_date_str

74 else

75 in_date_str = "2015-04-" .. in_date_str

76 end

91

C.3. MIXED WORKLOAD HOTEL-RESERVATION APPENDIX C. WORKLOAD

77

78 local out_date_str = tostring(out_date)

79 if out_date <= 9 then

80 out_date_str = "2015-04-0" .. out_date_str

81 else

82 out_date_str = "2015-04-" .. out_date_str

83 end

84

85 local hotel_id = tostring(math.random(1, 80))

86 local user_id, password = get_user()

87 local cust_name = user_id

88

89 local num_room = "1"

90

91 local method = "POST"

92 local path = "http://localhost:5000/reservation?inDate=" .. in_date_str ..

93 "&outDate=" .. out_date_str .. "&lat=" .. tostring(lat) .. "&lon=" .. tostring(lon) ..

94 "&hotelId=" .. hotel_id .. "&customerName=" .. cust_name .. "&username=" .. user_id ..

95 "&password=" .. password .. "&number=" .. num_room

96 local headers = {}

97 -- headers["Content-Type"] = "application/x-www-form-urlencoded"

98 return wrk.format(method, path, headers, nil)

99 end

100

101 local function user_login()

102 local user_name, password = get_user()

103 local method = "GET"

104 local path = "http://localhost:5000/user?username=" .. user_name .. "&password=" .. password

105 local headers = {}

106 -- headers["Content-Type"] = "application/x-www-form-urlencoded"

107 return wrk.format(method, path, headers, nil)

108 end

109

110 request = function()

111 cur_time = math.floor(socket.gettime())

112 local search_ratio = 0.6

113 local recommend_ratio = 0.39

114 local user_ratio = 0.005

115 local reserve_ratio = 0.005

92

C.3. MIXED WORKLOAD HOTEL-RESERVATION APPENDIX C. WORKLOAD

116

117 local coin = math.random()

118 if coin < search_ratio then

119 return search_hotel()

120 elseif coin < search_ratio + recommend_ratio then

121 return recommend()

122 elseif coin < search_ratio + recommend_ratio + user_ratio then

123 return user_login()

124 else

125 return reserve()

126 end

127 end

93

Appendix D

Overview benchmark resources

This chapter includes the explicit resources used for the microservices in our testbed. The container images are available

on dockerhub1 and have multiple tags based on the orchestrator. The flags correspond where the :latest tag is specific

to swarm, :kubernetes to kubernetes, and :nomad to nomad, e.g. stvdputten/openrest-thrift:nomad. The open-source

images include redis:alpine1.13, dns-proxy-server:2.19.0, mongo:4.4.6, memcached:1.6.9, jaegertracing/all-in-one:1.23.0

and consul:1.9.6.

D.1 Social Network resources
Table D.1: Resource overview of the Media Microservices benchmark. (B) is the benchmark limits set for experiment 12,
(V) has vertical scaling with 2x the resources for experiment 13, (H) has horizontal scaling with 2x the containers for
experiment 14, (G) is the setup based on the open-source Github where NA means the deployment files does not exist at
time or writing, (O) is the observed resources used. Memory is set using Gibibyte. Inf means the explicit resource limit is
not set.

Microservices (social-network) (B) Cores (B) Memory (V) Cores (V) Memory (H) Cores (H) Memory (G) Cores (G) Memory (O) Cores (O) Memory

jaeger NA NA NA NA NA NA inf inf 1 0.1GiB
compose-post-service 1 1 2 2 2 2 1 1 1 0.1GiB
home-timeline-redis 1 1 2 2 2 2 inf inf 1 0.2GiB
home-timeline-service 1 1 2 2 2 2 1 1 1 0.1GiB
media-frontend 1 1 2 2 2 2 1 1 1 0.1GiB
media-memcached 1 1 2 2 2 2 inf inf 1 0.1GiB
media-mongodb 1 1 2 2 2 2 inf inf 1 0.1GiB
media-service 1 1 2 2 2 2 1 1 1 0.1GiB
nginx-thrift 4 4 8 8 8 8 4 4 10 0.3GiB
post-storage-memcached 1 1 2 2 2 2 inf inf 1 0.1GiB
post-storage-mongodb 1 1 2 2 2 2 inf inf 1 0.2GiB
post-storage-service 1 1 2 2 2 2 1 1 16 0.1GiB
social-graph-mongodb 1 1 2 2 2 2 inf inf 1 0.3GiB
social-graph-redis 1 1 2 2 2 2 inf inf 1 0.1GiB
social-graph-service 1 1 2 2 2 2 1 1 1 0.1GiB
text-service 1 1 2 2 2 2 1 1 1 0.1GiB
unique-id-service 1 1 2 2 2 2 1 1 1 0.1GiB
url-shorten-memcached 1 1 2 2 2 2 inf inf 1 0.1GiB
url-shorten-mongodb 1 1 2 2 2 2 inf inf 1 0.2GiB
url-shorten-service 1 1 2 2 2 2 1 1 1 0.1GiB
user-memcached 1 1 2 2 2 2 inf inf 1 0.1GiB
user-mention-service 1 1 2 2 2 2 1 1 1 0.1GiB
user-mongodb 1 1 2 2 2 2 inf inf 1 0.2GiB
user-service 1 1 2 2 2 2 1 1 1 0.1GiB
user-timeline-mongodb 1 1 2 2 2 2 inf inf 1 0.2GiB
user-timeline-redis 1 1 2 2 2 2 inf inf 1 0.1GiB
user-timeline-service 1 1 2 2 2 2 1 1 1 0.1GiB

1https://hub.docker.com/repository/docker/stvdputten/

94

D.2. MEDIA MICROSERVICES RESOURCES APPENDIX D. OVERVIEW BENCHMARK RESOURCES

D.2 Media Microservices resources

Table D.2: Resource overview of the Media Microservices benchmark. (B) is the benchmark limits set for experiment 12,
(V) has vertical scaling with 2x the resources for experiment 13, (H) has horizontal scaling with 2x the containers for
experiment 14, (G) is the setup based on the open-source Github where NA means the deployment files does not exist at
time or writing, (O) is the observed resources used. Memory is set using Gibibyte. Inf means the explicit resource limit is
not set.

Microservices (media-microsvc) (B) Cores (B) Memory (V) Cores (V) Memory (H) Cores (H) Memory (G) Cores (G) Memory (O) Cores (O) Memory

jaeger NA NA NA NA NA NA NA NA 11 34GiB

cast-info-memcached 1 1 2 2 2 2 NA NA 1 0.1GiB

cast-info-mongodb 1 1 2 2 2 2 NA NA 1 0.2GiB

cast-info-service 1 1 2 2 2 2 NA NA 1 0.1GiB

compose-review-memcached 1 1 2 2 2 2 NA NA 4 0.1GiB

compose-review-service 1 1 2 2 2 2 NA NA 15 0.1GiB

dns-media 1 1 2 2 2 2 NA NA 1 0.1GiB

movie-id-memcached 1 1 2 2 2 2 NA NA 1 0.1GiB

movie-id-mongodb 1 1 2 2 2 2 NA NA 1 0.1GiB

movie-id-service 1 1 2 2 2 2 NA NA 6 0.1GiB

movie-info-memcached 1 1 2 2 2 2 NA NA 1 0.1GiB

movie-info-mongodb 1 1 2 2 2 2 NA NA 1 0.1GiB

movie-info-service 1 1 2 2 2 2 NA NA 1 0.1GiB

movie-review-mongodb 1 1 2 2 2 2 NA NA 7 1GiB

movie-review-redis 1 1 2 2 2 2 NA NA 1 0.1GiB

movie-review-service 1 1 2 2 2 2 NA NA 4 0.1GiB

nginx-web-server 4 4 8 8 8 8 NA NA 5 0.2GiB

plot-memcached 1 1 2 2 2 2 NA NA 1 0.1GiB

plot-mongodb 1 1 2 2 2 2 NA NA 1 0.1GiB

plot-service 1 1 2 2 2 2 NA NA 1 0.1GiB

rating-redis 1 1 2 2 2 2 NA NA 1 0.1GiB

rating-service 1 1 2 2 2 2 NA NA 4 0.1GiB

review-storage-memcached 1 1 2 2 2 2 NA NA 1 0.1GiB

review-storage-mongodb 1 1 2 2 2 2 NA NA 2 1GiB

review-storage-service 1 1 2 2 2 2 NA NA 2 0.1GiB

text-service 1 1 2 2 2 2 NA NA 1 0.1GiB

unique-id-service 1 1 2 2 2 2 NA NA 1 0.1GiB

user-mongodb 1 1 2 2 2 2 NA NA 1 0.1GiB

user-review-mongodb 1 1 2 2 2 2 NA NA 8 1GiB

user-review-redis 1 1 2 2 2 2 NA NA 1 0.1GiB

user-review-service 1 1 2 2 2 2 NA NA 5 0.1GiB

user-service 1 1 2 2 2 2 NA NA 2 0.1GiB

95

D.3. HOTEL RESERVATION RESOURCES APPENDIX D. OVERVIEW BENCHMARK RESOURCES

D.3 Hotel Reservation resources

Table D.3: Resource overview of the Media Microservices benchmark. (B) is the benchmark limits set for experiment 12,
(V) has vertical scaling with 2x the resources for experiment 13, (H) has horizontal scaling with 2x the containers for
experiment 14, (G) is the setup based on the open-source Github where NA means the deployment files does not exist at
time or writing, (O) is the observed resources used. Memory is set using Gibibyte. Inf means the explicit resource limit is
not set.

Microservices (hotel-reservation) (B) Cores (B) Memory (V) Cores (V) Memory (H) Cores (H) Memory (G) Cores (G) Memory (O) Cores (O) Memory

jaeger NA NA NA NA NA NA NA NA 9 19GiB

consul 1 1 2 2 2 2 NA NA 1 0.1GiB

frontend 4 4 8 8 8 8 NA NA 11 0.1GiB

geo 1 1 2 2 2 2 NA NA 3 0.1GiB

memcached-profile 1 1 2 2 2 2 NA NA 1 0.1GiB

memcached-rate 1 1 2 2 2 2 NA NA 1 0.1GiB

memcached-reserve 1 1 2 2 2 2 NA NA 2 0.1GiB

mongodb-geo 1 1 2 2 2 2 NA NA 1 0.1GiB

mongodb-profile 1 1 2 2 2 2 NA NA 1 0.1GiB

mongodb-rate 1 1 2 2 2 2 NA NA 1 0.1GiB

mongodb-recommendation 1 1 2 2 2 2 NA NA 1 0.1GiB

mongodb-reservation 1 1 2 2 2 2 NA NA 1 0.1GiB

mongodb-user 1 1 2 2 2 2 NA NA 1 0.1GiB

profile 1 1 2 2 2 2 NA NA 7 0.1GiB

rate 1 1 2 2 2 2 NA NA 5 0.1GiB

recommendation 1 1 2 2 2 2 NA NA 2 0.1GiB

reservation 1 1 2 2 2 2 NA NA 8 0.1GiB

search 1 1 2 2 2 2 NA NA 11 0.1GiB

user 1 1 2 2 2 2 NA NA 1 0.1GiB

96

Appendix E

Jaeger

The following chapter includes figures of the Jaeger as observed during runs where we specifically observed breaking

points of our applications during benchmarking. It includes the trace of the microservice services and can clearly show

which of the service is the cause of the breaking points observed in Jaeger. This can help the reader understand how

we used certain tools in the monitoring layer to help us experiment.

E.1 Tracing in Jaeger

Figure E.1, Figure E.2 and Figure E.3 illustrate the traces and the duration taken by each microservice. During the

experiments, the load generator sends the HTTP request to API of the application. The URI call can be seen in the

top left of the examples sn and mm ‘/compose‘ and hr ‘/hotels‘.

Figure E.1: Latency overview of the Social Network application.

97

E.2. BREAKING POINT IN JAEGER APPENDIX E. JAEGER

Figure E.2: Latency overview of the Media Microservices app.

Figure E.3: Biggest span and latency overview of the Hotel Reservation app.

E.2 Breaking point in Jaeger

The breaking point of the benchmarked applications can be observed through the latency of the load generator or

confirmed by monitoring the Jaeger traces. Figure E.4, Figure E.5 and Figure E.6 show examples of microservice

failure. Specifically, the time spent at a microservice and the red exclamation mark which is shown when an error

event has occurred.

98

E.2. BREAKING POINT IN JAEGER APPENDIX E. JAEGER

Figure E.4: The Nginx service returns an error. Tracing the latency and breaking point to the text-service for the Social
Network benchmark.

Figure E.5: The Nginx service returns an error. Tracing the latency and breaking point to the movie-id-service for the
Media Microservices benchmark.

Figure E.6: The front end service returns an error. Tracing the latency and breaking point to the reservation-service for the
Hotel Reservation benchmark.

99

Appendix F

Experiment and benchmark setup files

Includes examples lines from the scripts used to run the experiments in the experiment layer. Environment variables

are used to determine the parameters for the experiments. Furthermore, deployments files are shown for Kubernetes,

Docker Swarm and Nomad as examples of our files.

F.1 Experiment bash script setup

1 # experiment params

2 export availability=0

3 export unlimited=1

4 export horizontal=1

5 export vertical=1

6

7 for benchmark in socialNetwork mediaMicroservices hotelReservation; do

8 echo "Running the baseline tests stress $experiment for $benchmark"

9 export benchmark=$benchmark

10 for requests in 500 1500 2000 3000 4000 5000 10000 15000 20000; do

11 for connections in 512; do

12 for threads in 4; do

13 ./setup-experiments.sh -t $threads -c $connections -d 30 -R $requests

14 done

15 done

16 done

17 done

100

F.2. DOCKER SWARM SOCIAL NETWORKAPPENDIX F. EXPERIMENT AND BENCHMARK SETUP FILES

F.2 Docker Swarm Social Network

475 nginx-thrift:

476 deploy:

477 resources:

478 limits:

479 cpus: '4.0'

480 memory: 4GiB

481 replicas: 1

482 placement:

483 constraints:

484 - node.role==worker

485 restart_policy:

486 condition: any

487 image: stvdputten/openresty-thrift:latest

488 hostname: nginx-thrift

489 ports:

490 - 8080:8080

491 depends_on:

492 - jaeger

493 volumes:

494 - ./nginx-web-server/lua-scripts:/usr/local/openresty/nginx/lua-scripts

495 - ./nginx-web-server/pages:/usr/local/openresty/nginx/pages

496 - ./nginx-web-server/conf/nginx.conf:/usr/local/openresty/nginx/conf/nginx.conf

497 - ./nginx-web-server/jaeger-config.json:/usr/local/openresty/nginx/jaeger-config.json

498 - ./gen-lua:/gen-lua

499 - ./docker/openresty-thrift/lua-thrift:/usr/local/openresty/lualib/thrift

500 - ./keys:/keys

F.3 Kubernetes Hotel Reservation

25 spec:

26 containers:

27 - command:

28 - frontend

29 image: stvdputten/hotel_reserv_frontend_single_node:kubernetes

30 name: frontend

31 ports:

32 - containerPort: 5000

33 resources:

101

F.4. NOMAD MEDIA MICROSERVICES APPENDIX F. EXPERIMENT AND BENCHMARK SETUP FILES

34 limits:

35 cpu: "4.0"

36 memory: "4Gi"

37 volumeMounts:

38 - mountPath: /go/src/github.com/harlow/go-micro-services/config.json

39 subPath: config.json

40 name: config-json

41 restartPolicy: Always

42 volumes :

43 - name: config-json

44 configMap:

45 name: configmap-config-json

46 items:

47 - key: config.json

48 path: config.json

F.4 Nomad Media Microservices

19 group "nginx-web-server" {

20 count = 1

21 constraint {

22 attribute = "${attr.unique.hostname}"

23 value = "${var.hostname}"

24 }

25 network {

26 mode = "bridge"

27 port "nginx" {

28 static = 8080

29 }

30 port "jaeger-ui" {

31 static = 16686

32 }

33 port "jaeger" {

34 static = 6831

35 }

36 dns {

37 servers = ["${var.dns}", "8.8.8.8"]

38 searches = ["service.consul"]

39 }

102

F.4. NOMAD MEDIA MICROSERVICES APPENDIX F. EXPERIMENT AND BENCHMARK SETUP FILES

40 }

41

42 task "nginx-web-server" {

43 driver = "docker"

44

45 resources {

46 cpu = 4000

47 memory_max = 4000

48 }

49

50 config {

51 memory_hard_limit = 4000

52 cpu_hard_limit = true

53

54 image = "yg397/openresty-thrift:xenial"

55 ports = ["nginx"]

56 command = "sh"

57 args = ["-c", "echo '127.0.0.1 jaeger.service.consul' >> /etc/hosts && echo '127.0.0.1 jaeger' >> /etc/hosts && /usr/local/openresty/bin/openresty -g 'daemon off;'"]

58 mount {

59 type = "bind"

60 target = "/usr/local/openresty/nginx/lua-scripts"

61 source = "/users/stvdp/DeathStarBench/mediaMicroservices/nomad/lua-scripts"

62 }

63 mount {

64 type = "bind"

65 target = "/usr/local/openresty/nginx/conf/nginx.conf"

66 source = "/users/stvdp/DeathStarBench/mediaMicroservices/nomad/nginx.conf"

67 }

68 mount {

69 type = "bind"

70 target = "/usr/local/openresty/nginx/jaeger-config.json"

71 source = "/users/stvdp/DeathStarBench/mediaMicroservices/nomad/jaeger-config.json"

72 }

73 mount {

74 type = "bind"

75 target = "/gen-lua"

76 source = "/users/stvdp/DeathStarBench/mediaMicroservices/nomad/gen-lua"

103

F.5. NOMAD EXAMPLES GUI APPENDIX F. EXPERIMENT AND BENCHMARK SETUP FILES

F.5 Nomad Examples GUI

Figure F.1: Overviw of the Hotel Reservation benchmark on Nomad

Figure F.2: Topology of the containers from the Nomad GUI

104

	Introduction
	Research goals and questions
	Our Contributions
	Thesis Organisation

	Background
	From Monolith to Microservices
	Containers and VMs
	Container Orchestration

	Container orchestration tools
	Nomad & Consul
	Docker Swarm
	Kubernetes

	Testbeds and benchmark suite
	CloudLab: flexible, scientific infrastructure for research
	DeathStarBench: a benchmark suite

	Related Work
	Benchmarking for microservice applications
	Performance and reproducibility

	Design & Implementation
	Design of the Testbed
	Implementation
	Infrastructure: Preparation of the Cluster in CloudLab
	Orchestration: Deployment of the Orchestration Engine
	Monitoring: Node and Container
	Microservice: The Benchmark Suite
	Experiments: Preparation, Experiments, and Results
	Workflow: How to perform research in our Testbed

	Performance Exploration with Docker Swarm
	Tuning the Testbed
	Experimental Setup
	Evaluation Methodology

	Experiment A. Investigating the Workload Parameters
	Experiment B. Examining the Impact of 3 Test Clients on System Performance
	Experiment C. Stress Testing the Microservices
	Experiment D. Redeployment and Time
	Closing thoughts on the Docker Swarm testbed experiments

	Orchestrator Experiments
	Experiment Setup
	Evaluation Methodology
	Experiment A. Docker Swarm Performance
	Experiment B. Comparing Kubernetes Performance
	Experiment C. Comparing Nomad Performance
	Experiment D Comparing Swarm, Kubernetes and Nomad
	Experiment E. Validating Tail Latency Comparison with Social Network and Multiple Runs for each Orchestrator

	Discussion
	Answering the research questions
	Implications of the research
	Limitations and Improvements for the Testbed
	Strengths and trade-off
	Caveats and Weak Points (Limitations) with Solutions
	Improvements

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Appendices
	Preliminary experiments
	Experiment Parameters
	Example of generated data
	Experiment 0 Exploring first run for workloads
	Experiment 1 Exploring the Parameter Space and Requests on Tail Latency
	Experiment 2 Rerun of Exploring Parameter Space of Workloads with fixed Requests
	Experiment 3 Exploring usage of multiple Test Clients
	Experiment 4 Exploring Duration on the Latency
	Experiment 5 Breaking Points Run 1
	Experiment 6 Rerun Breaking point with different Parameters
	Experiment 7 Rerun Stress Applications with new Parameters
	Experiment 8 Exploring time between experiments as factor on performance
	Experiment 9 Full redeploy of applications after each run
	Experiment 10 Rerun to confirm breaking points
	Experiment 11 Nginx configurations experiments on performance

	Orchestrator Experiments
	Overview Orchestrators
	Docker Swarm Experiment All Figures
	Kubernetes Experiment All Figures
	Nomad Experiment All Figures

	Workload
	Mixed workload Social-network
	Compose workload Media-microservices
	Mixed workload Hotel-reservation

	Overview benchmark resources
	Social Network resources
	Media Microservices resources
	Hotel Reservation resources

	Jaeger
	Tracing in Jaeger
	Breaking point in Jaeger

	Experiment and benchmark setup files
	Experiment bash script setup
	Docker Swarm Social Network
	Kubernetes Hotel Reservation
	Nomad Media Microservices
	Nomad Examples GUI

