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Abstract—We introduce Mechanic Miner 2023, a co-creative
game design tool that suggests game design ideas by exploring
the source code of the game itself instead of relying on predefined
domain knowledge. Exploration is driven by an genetic algorithm
which generates, evaluates and evolves simple two-state game
mechanics that use code reflection to manipulate a property of
the game’s source code during gameplay. Evaluation is performed
by an automated game-playing agent driven by Go-Explore,
a state-of-the-art algorithm for automated game-playing. We
demonstrate how Mechanic Miner 2023 can generate a diverse
set of novel solutions for a simple 2D puzzle platformer within
a time frame that suits iterative creative work.

Index Terms—automated game design, computation creativity,
mixed-initiative co-creative tools, procedural content generation,
game design, game development, genetic algorithm, code reflec-
tion, artificial intelligence, game AI

I. INTRODUCTION

In one form or another, Artificial Intelligence (AI) has
been part of games for decades. This includes Procedural
Content Generation (PCG), which is used both as part of the
player experience as well the development of games itself.
In both cases PCG is used for creating various types of
game content such as level architecture and visuals. Pro-
cedural content generation systems that output game rules
and mechanics aren’t a common part of commercial game
development, despite these receiving plenty of attention in
academics [1][2][3][4][5][6][7][8][9][10][11]. Game mechan-
ics are essential to the design of any game, with novel
combinations of systems and rules being particularly appealing
to game developers, especially those in independent game
development. Many systems for generating rules and me-
chanics depend on predefined domain-specific data to ensure
the validity and sensibility of the game design concepts they
produce. However, constructing a model that encodes domain
knowledge can be labor-intensive. And since games itself
are usually not built from domain knowledge alone, human
designers must translate the system’s output into the game,
making these systems less suited for real-life iterative game
development[12].

Mechanic Miner (MM13) by Michael Cook, Simon Colton,
Azalea Raad and Jeremy Gow. takes a different route by using

the source code of the game and game engine itself as domain
to search for game design ideas. It explores this space using an
genetic algorithm, where it creates game mechanics using code
reflection—the ability for the code to examine and modify
itself during runtime—which are tested and evaluated by a
game-playing algorithm and subsequently evolved[1].

In this paper we demonstrate the capabilities of a system
called Mechanic Miner 2023 (MM23), which re-implements
parts of MM13. It differs in that MM23 is completely focused
on the discovery of game mechanics alone, not level design as
well. Instead of breadth-first search, the game-playing agent
is driven by a the state-of-the-art Go-Explore algorithm[13].
And it is implemented in the popular Unity game development
environment and is made publicly available as open source
software under the MIT license on GitHub1. Unity’s modular
structure opens up a very large design space as well as
faster game mechanic discovery. By analyzing its output from
running it on a template game we will attempt to demonstrate
the potential of the Mechanic Miner 2023 concept as a mixed-
initiative co-creative tool[14].

In the following section we will elaborate on the background
of this research, which includes the relationship between AI
and games from a historical perspective, a brief taxonomy of
Procedural Content Generation with examples of its applica-
tion and a primer on Automated Game Design. The related
work section discusses Mixed-Initiative Co-Creative tools, the
common methods by which Automated Game Design systems
encode game design and the merits of using source code as
a design space. It will also describe MM13 in-depth where it
applies to MM23. In the methodology section we explain the
implementation of MM23 itself and setup of the experiment.
The results of the experiment are shown and discussed in the
results & discussion section, including case studies on some
of the subjectively novel results and a discussion on MM23
viability as the basis of a fully fledged co-creative tool. Finally
we conclude and suggest directions for future research.

1Source code repository for Mechanic Miner 2023 available on GitHub:
https://github.com/Niels-NTG/Mechanic-Miner-2023

https://github.com/Niels-NTG/Mechanic-Miner-2023


II. BACKGROUND

A. AI & Games

In Western scientific circles, the game of Chess was for
a long time seen as a test of one’s intellect. Mastery of
the game requires logical and strategic thinking. Building a
computer program that could play it on a high level could
be deemed intelligent, or rather an “artificial intelligence”.
Chess was therefore quite influential among early generations
of computer scientists.

While the number of possible sequences of board states in
classic games such as Checkers, Chess and Go are enormous,
these are still theoretically finite and therefore computable.
The challenge lies in finding the right algorithm to navigate
through this astronomically large web of possible states. The
creation of such an “intelligent” program became an important
frontier in computer science and became one of the driving
forces of artificial intelligence research for many decades[15].
This led to many discoveries with relevance far beyond the ap-
plication to games. Notable examples include the Minimax tree
search algorithm, initially discovered by John von Neumann in
1928[16], and later utilized by computer science pioneer Alan
Turing in 1950 to automate the playing of Chess[17]. And the
automated Checkers player by Arthur Samuel in 1957 using
a method that is now known as Reinforcement Learning[18].
Both minimax and reinforcement learning are a foundational
part of many AI systems today, for games as well as for
completely different applications such as recommendation
systems and robotics. Ever since there has been a continuous
co-evolution of AI and games.

The goal of applying AI to games isn’t only about creating
systems that play to win. Nor do classic two player zero-
sum abstract board games such as Checkers, Chess and Go
encompass all types of games. Far from it. The medium is
extremely broad and diverse. Some games are designed to be
played by a single player, while others can be played by large
groups. Players may compete with each other or work together
and may not play to win but instead play to get a certain
experience. Likewise, AI systems can be applied to many of
these different aspects of the medium.

B. Procedural Content Generation (PCG)

Systems that incorporate Procedural Content Generation
(PCG) methods can create content through algorithmic means.
This enables automation of the creation of content that other-
wise has to be created fully by hand. There is a large diversity
of PCG methods, each differing in its degree of autonomy,
controllability, determinism and adaptability.

PCG systems see a lot of use in games. Both as part of the
player experience and as part of the game development process
(the procedural content workflow). The types of content gener-
ated for games can be categorized in six distinct domains: level
architecture and terrain, visuals, audio, narrative and rules and
mechanics[4][19].

PCG can be used to generate a practically infinite varia-
tions of game content, which can greatly enhance a game’s

replayability value. This use case can be seen as early as
Beneath Apple Manor (Don Worth, 1978) and Rogue (Michael
Toy and Glenn Wichman, 1980) and has been increasingly
common in games ever since. Around the year 2010 this
application of PCG exploded in popularity among independent
game developers. Exemplary games are Spelunky (Derek Yu,
2008) and The Binding of Isaac (Edmund McMillen and
Florian Himsl, 2011), both taking queues from Rogue. With
the rise of Large Language Models (LLM) it has become
feasible to synthesize narrative content as well. For instance,
AI Dungeon (Nick Walton, 2019) is a text adventure game
which uses an LLM to generate characters, environments and
scenarios for the player on-demand instead of relying on pre-
authored content. Prototypes such as Inworld Origins (Inworld
AI, 2023) and NEO NPC (Ubisoft, 2024) take it a step further
by LLM-powered systems that embodied by 3D characters
who can perceive and interact with their virtual environment.

PCG can also be used to save on storage space. Instead of
having to store and load pre-made game assets, content can be
generated on-demand by PCG methods. A deterministic PCG
system can generate a whole game world from a single seed
value, which allowed Elite (David Braben and Ian Bell, 1984)
to fit a galaxy-sized world onto a single floppy disk and the
voxel-based worlds of Minecraft (Mojang Studios, 2011) go
on forever.

Game developers use various PCG tools to automate the
creation of content that could otherwise be a very labor
intensive task. These tools can be highly specialized such
as the creation of vegetation with SpeedTree (IDV, 2002),
character models with MetaHuman (Epic Games, 2021) and
landscapes with Terragen (Matt Fairclough, 1999) or World
Machine (World Machine Software, 2008). In large game
productions it is the job of the technical artist to tie all these
systems together using tools such as Houdini (Side Effects
Software, 1996).

1) PCG for Game Rules and Game Mechanics: In the
context of using PCG to generate game rules and game
mechanics, we define game rules as what frames the playing
experience. This could be the set of conditions for the game’s
win and fail state, or to forbid certain actions under certain
conditions. These cannot be changed during gameplay. Game
mechanics, also known as procedures, are the methods and
actions available to the player to achieve the objectives of
the game, such as being able to jump in Super Mario Bros.
(Nintendo, 1985)[20]. Rule sets and associated mechanics tend
to follow certain patterns that fit within the conventions of the
game’s genre. Games in the 2D-platformer genre for instance
are expected to have a jump action. Just as with other types of
game content, the rules and mechanics commonly associated
with a genre may change over time.

Games which allow the player to change the rules of the
game itself during gameplay, such as the puzzle game Baba is
You (Hempuli Oy, 2019), SuperMash (Digital Continue, 2020)
and Mosa Lina (Stuffed Wombat, 2022), do not in a strict sense
actually change the rules and thus the framing of the game
itself. Instead this ability is a game mechanic that changes the



working of other game mechanics.
Most known PCG methods for generating rules and mechan-

ics for the development of games are found in academic re-
search. Of note is the Ludi system[2], which used an evolution-
ary algorithm to evolve rules and mechanics represented in a
grammar by evaluating the depth and complexity of the game.
The system “invented”—or rather discovered—the boardgame
Yavalath2[3], which became a moderately commercial success.

C. Automated Game Design (AGD)

Automated Game Design (AGD) is the area of study and
the engineering practice of creating PCG systems that take an
active role in the making of games by creating, editing and
critiquing multiple types of game content simultaneously[21].

1) Brief History of AGD: Historically, AGD systems were
primarily focused on generating rules and mechanics that fit
within the domain of an game or a specific type of game. An
early example of such a system is Pell’s 1992 Metagame[22],
which generates rules for symmetric Chess-like games.

Many of these early systems were primarily focused on
generating rules and mechanics for games where this type of
content comprise the entirety of the game’s design; meaning
it outputs abstract zero-sum boardgames that are reminiscent
of Chess, Checkers, Go, etc. In many ways this mirrors the
history of game AI as a whole, where most of the attention in
the field was concentrated on creating AI systems for playing
these same types of abstract zero-sum boardgames with the
goal of outsmarting human opponents.

Since then AGD systems such as Game-O-Matic[7][8],
ANGELINA[9][10], Germinate[5][6] and Gamika[23][24] in-
corporated PCG subsystems for types of game content such
as visuals and narrative in addition to rules and mechanics,
making these AGD systems able to handle multiple creative
tasks at once.

III. RELATED WORK

This section reviews research in the areas of mixed-initiative
co-creative tools in the context of both game development in
general and AGD specifically. Here we take a closer look
at how AGD systems encode their output and discuss the
merits of two different types of approaches: game description
languages and using the source code domain. Finally we
discuss Mechanic Miner (MM13)[1] in-depth where it relates
to Mechanic Miner 2023.

A. Mixed-Initiative Co-Creative Tools

In any type of creative task, including game development,
the tools to perform the task vary in terms of the amount of ini-
tiative the human designer needs to take in order to use it. For
example, game engine editing tools such as Unity (Over the
Edge Entertainment, 2005), Unreal Editor (Epic MegaGames,
1996) or Hammer (Valve Software, 2004) automate certain
aspects of game development, yet still require a lot of proactive

2Yavalath, as listed on BoardGameGeek, the online board game database:
https://boardgamegeek.com/boardgame/33767/yavalath

initiative from the user to do most of anything. At the same
time the user has a lot of control over the output of the task.

In contrast to this there are tools where the computer takes
most of the initiative. These tools are often specialized for a
very specific tasks, such as the creation of the 3D models
of vegetation (SpeedTree) or large-scale landscapes (World
Machine). They do not require proactive input from the user
after submitting initial parameters, nor does the user have any
direct control over the output.

When the tool requires initiative from both the human
designer and the computer in equal parts, this can be classified
as a Mixed-Initiative Co-Creation (MI-CC) tool. This “dialog”
between human and machine has great potential to foster
creativity[14].

Examples of MI-CC systems applied to game development
are Tanagra[25] and Sentient Sketchbook[26], which are level
architecture PCG systems that are directly reactive to sugges-
tions from the user.

Historically, the initiative in AGD tools were with the
computer, not the user [7][8][9][10]. This somewhat limits
the utility of these tools as part of the game development
process, since these are designed to output a final product;
not necessarily something that can be iterated upon further
as part of a continuing creative process[27]. The Puck project
addresses this shortcoming by having the system communicate
to the user what it is currently working on as well being able
to respond to the user’s input at any time[11]. To facilitate
the dialog between system and user, both need to understand
a common language. In the case of Puck and many other
AGD systems this is achieved by using a Game Description
Language.

B. Game Description Languages
To encode domain knowledge, AGD systems are commonly

built around a Game Description Language (GDL): a high-
level description of a game’s design that is readable by both
humans and the AGD system via an interpreter. Works that
incorporate GDLs include the aforementioned Metagame, with
its own pseudo programming language[22], and Ludi with uses
a grammar to encode its output[2]. On special note is the Video
Game Description Language (VGDL)[28][29], which aims to
be a more universal GDL. It has been used in a variety of
research, such as to generate levels[30], game mechanics[31],
whole arcade games[32] and to aid in the development of
general game-playing agents [33][34][35][36][37].

While text files written in a GDL syntax to describe a
game’s design has the potential to be highly portable, the
level of abstraction is too high for it translate seamlessly to a
conventional game development environment. For example, a
game developer cannot use the GDL in an iterative way if there
is a misalignment between the capabilities of the GDL and the
game development environment. Nor can it easily integrate
with a pre-existing project[12][38].

C. Code Domain Space
Often AGD systems are designed to explore the design

space within the domain of a single existing game or a specific

https://boardgamegeek.com/boardgame/33767/yavalath


type of game. One major benefit of this approach, is that the
output of such a system has a higher likelihood of being
something sensible that fits within the expectations of the
domain. On the other hand, this approach limits the potential
to find novel and surprising ideas that lay outside of the
restrictions of the current domain.

To address this issue we can instead use the code-base
of the game and game engine itself as the domain of the
AGD system. While this is more open-ended than using using
domain knowledge of existing games, the system needs to
be made aware of code specifications that would otherwise be
only implicit to a human programmer. This can be achieved by
simply restricting the search space or by using programming
design patterns such as the Entity Component System[12].

D. Mechanic Miner

In 2013, [1] introduced Mechanic Miner (MM13), a sys-
tem that explores a game’s source code using an evolution-
ary algorithm to discover simple game mechanics. Through
reflection—the ability of the program to modify itself at
runtime—game mechanics can be generated programmatically
without the system having knowledge of game design.[1].

1) Toggleable Game Mechanics: The building blocks of
a game mechanic generated by MM13 are Toggleable Game
Mechanics (TGM). For the creation of a TGM, a property in
the game’s code, including that of the underlying game engine,
is chosen at random. Then a modifier that is appropriate for
the data type of the selected property (double, half or
invert) is chosen at random.

The TGM is an action the player can toggle at any time
whilst playing the game. When the TGM is turned on, it
applies the modifier to the selected property’s current value.
When the TGM is off, the inverse modifier is applied to that
value. This doesn’t mean that the value is perfectly reversible,
since other parts of the environment can also affect the value
of the property.

An example of a TGM could be a property with a numeric
value denoting the gravity force applied to the player object
with an invert modifier. When the TGM is toggled on the
value goes from 1.0 to −1.0, inverting the gravity and enabling
the player to walk on the ceiling of the level until the TGM is
toggled off, setting the gravity force back to 1.0 which makes
the player fall back towards the ground.

2) Genetic Algorithm & Evaluation: To search the design
space MM13 uses a genetic algorithm[39] which runs for
15 generations, maintaining a fixed population size of 100
members, each representing a TGM. 10% of each generation
are brand new TGMs, while the remainder of the population
members gets subjected to either crossover if the TGMs share
the same data type or mutation, whereby either the TGM’s
property gets changed to another field the same class of the
game’s code or the modifier gets randomly changed.

The fitness value of a TGM is determined through simulat-
ing gameplay inside a sample game level. The game playing
agent does a breadth-first search through the possibility space,
each time looking for actions that would change the player’s

position within the level. The final fitness value is equal to
how much of the level’s space the player agent was able to
explore while still being able to complete the level.

3) Game Environment: The game to which the MM13
system is applied is a simple 2D platforming game with
procedurally generated levels. The level generator outputs
levels of a fixed size of 20 horizontal and 15 vertical tiles.
A level is enclosed on all sides and contains a player starting
position, a level exit and a variety of obstacles, some in the
form of spikes that result in instant death of the player. The
player has the ability to move left, right, jump and toggle the
TGM at any time during gameplay.

The game is implemented in Flixel3, a Java-based game
engine that can be compiled for many different platforms.

4) Significance, Contributions and Limitations: The MM13
system shows that the code domain can be used as a design
space to search for game design ideas. Even though the system
has very limited domain knowledge, it is still able to come up
with unexpected and novel game design ideas.

However, the implementation of the game-playing agent
used to evaluate the game design ideas was a limiting factor.
To combat a combinatorial explosion, breadth-first search
algorithm was restricted in how much of the action space it
could explore.

IV. METHODOLOGY

This paper introduces Mechanic Miner 2023 (MM23): a
system that re-implements parts of MM13[1] with a num-
ber of enhancements. Firstly, MM23 does not implement
the procedural level generator which co-evolves levels with
discovered game mechanics. While Automated Game Design
(AGD) systems can often create multiple types of game
content simultaneously, doing both would make it difficult
to evaluate the game mechanic generation capabilities of the
system. Secondly, it’s implemented in Unity, a popular and
robust game development environment. Thirdly, the number
of supported data types and modifiers for TGMs has been
expanded compared to MM13. This greatly increases the
possibility space the system can explore. Finally, the game-
playing subsystem is driven by the state-of-the-art Go-Explore
method[13].

A. Game Environment

MM23 is implemented using Unity4. This is a very popular
game engine and development environment used by AAA
game studios as well as small independent game developers,
hobbyists and researchers. The editor is available for MacOS,
Windows and Linux and projects made with it can be compiled
to a wide variation of platforms.

Projects in Unity are compartmentalized into one or more
scenes. Objects contained within a scene are game objects.
Properties of a game object are defined by its components.
Aside from the always required Transform component,
which defines the object’s translation, rotation and scale, game

3https://flixel.org
4https://unity.com
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Fig. 1: Level A: “Wall”: impassable wall between the level
start and exit.

Fig. 2: Level B: “Wall + Elevation”: impassable wall between
the level start and an elevated exit.

objects can have any number of components5. Unity comes
with a wide range of component types, such as components
that add rigid body physics or add a collider to the object. For
creating any custom behavior that goes beyond what Unity has
to offer out-of-the-box users can create their own components
by writing C# code. All components can be accessed via its
C# API as well as its own user interface visible in the editor.
The UI is updated continuously to reflect the state of the scene.

The popularity of Unity as a game development tool and its
robust object-oriented architecture makes it a good foundation
for the development of MM23.

MM23 uses a simple 2D platformer as its template game.
The player’s goal is to navigate to the level exit by means of
jumping, moving left and right and triggering a special action:
the Toggleable Game Mechanic (TGM), see sectionIV-B. The
levels are of a fixed size, are fully enclosed and always
contain a starting and exit location. The level can contain
solid obstacles that cannot be passed through under normal
circumstances. It can also contain spikes which reset the player
to the starting location when touched. The level architecture
is aligned on a grid of squares. The player itself can move
through the level in a continuous manner and is subject to
simulated 2D rigid body physics.

The experiments are run with 6 different human-authored
levels (see Figs 1–6). All of these levels are impossible to
complete when only using “conventional” actions (move left,
move right and jump), but may be possible if these are used
in conjunction with one or more TGMs.

Due to the inherently stochastic nature of genetic algo-
rithms, the system runs 40 times for each level. Runs are per-

5Unity user manual on components: https://docs.unity3d.com/2023.1/
Documentation/Manual/class-GameObject.html

Fig. 3: Level C: “Ceiling”: level exit is located on the ceiling.

Fig. 4: Level D: “Deadly River”: level start and exit are on
either banks of a wide “river” made of deadly spikes.

Fig. 5: Level E: “Ravine”: level start and exit are on either
sides of a ravine.

Fig. 6: Level F: “Ravine + Spikes”: level start and exit are
on either sides of a ravine and there is an obstacle with spiked
walls hanging from the ceiling.

https://docs.unity3d.com/2023.1/Documentation/Manual/class-GameObject.html
https://docs.unity3d.com/2023.1/Documentation/Manual/class-GameObject.html


formed with Unity version 2023.1 on a desktop PC equipped
with an AMD Ryzen 5 3600, a consumer mid-range 6-core
CPU6, and 16 gigabytes of RAM.

B. Toggleable Game Mechanics

The TGMs are implemented the same way in MM23 as
described in MM13 with minor changes.

To better guide the system towards discovering functional
TGMs through the complex code domain space of the Unity
game engine, the list of properties TGMs can be generated
from has been limited to a user-defined list of components.
For this experiment this includes the following:

• Transform, collider and rigid body component on the
Player object.

• Grid layout and transformation of the level as a whole.
• Transform, collider, rigid body components for each layer

that make up a a single level:
– Outer walls of the level.
– Obstacles and platforms inside of the level bound-

aries.
– Level exit.
– Spikes (if present).

Properties of the Unity game environment that aren’t part of
a component belonging to a game object in a currently loaded
scene cannot be accessed programmatically while the game is
running and therefore cannot be used as part of a TGM.

To extend the scope of the design space two more modifier
types have been added in addition to the three from MM13
(double, half and invert) making for the following five
modifiers:

• double: doubles the value, mirrors half.
• half: halves the value, mirrors double.
• invert: invert the value, mirrors with itself.
• add: adds one unit to the value, mirrors subtract.
• subtract: subtracts one unit from the value, mirrors
add.

Additionally, the data types which can be used for a TGM
has been extended beyond the primitive data types supported
by MM13 (i.e. numeric and boolean types) to include more
complex data types that are commonplace in Unity: vectors,
quaternions, matrices, rectangles and enums.

When generating a new TGM, the generator picks a random
field from a random component. Then it tests if it has a
compatible data type, if it isn’t read-only and if applying any
of the modifiers to it causes the value to change.

C. Genetic Algorithm

Like MM13, MM23 makes use of a genetic algorithm to
explore the design space. Genetic algorithms are a type of
evolutionary algorithm in which individuals in a population
are represented by a genotype of a set of genes. These get
“evolved” over a number of generations by probabilistically se-
lecting individuals after evaluating their fitness, and then com-
bining individuals using methods such as gene crossover[39].

6AMD product description https://www.amd.com/en/product/8456

The genetic algorithm in MM23 is implemented using the
C# package Genetic Sharp[40]. It evolves a fixed population
of 100 members for 15 generations. It may terminate earlier if
the development of the fitness value stagnates. The evolution
of the genotypes, their fitness scores and evaluation simulation
data are recorded for further analysis.

1) Genotype: The genotype of a population member con-
sists of 4 genes, represented as text strings:

1) name of GameObject
2) name of Component
3) key of property in Component
4) modifier type (double, half, invert, add,

subtract)
2) Selection: When selection is performed, the individuals

are sorted on their fitness score. The top 10% highest scoring
are selected (elite selection), while the 10% lowest scoring
members are marked to be replaced with completely new
genotypes. Roulette wheel selection is used on the remaining
population members.

3) Evaluation: The fitness of a population member is based
on the fraction of grid tiles within the bounds of the level
the player is able to visit before finding the level exit. If the
player agent isn’t able to find the level exit before a fixed
iteration limit is reached, the fitness is automatically zero. We
find this to be a reasonable proxy to determine how much of a
challenge the TGM provides the player while still being able
to complete the level. A mechanic that enables the player to
finish the level in the blink of an eye (e.g. instantly teleporting
to the level exit) does not pose an interesting challenge for a
human player, while a mechanic that encourages exploration
does.

To perform the evaluation, a simulation is ran in an instance
of the level that is isolated from other members of the
population. To control the player agent, MM23 implements the
exploration part of the Go-Explore algorithm[13], described in
the next section.

D. Go-Explore

Games can have a high degree of complexity, requiring
the player to think many steps ahead. One way to com-
bat the immense branching factor is to use Reinforcement
Learning (RL), whereby an agent learns a behavior (a policy)
from receiving reward or penalty (negative reward) signals
during training. There have been several high-profile cases
in which RL-based game-playing systems were able to play
on a level near or beyond that of highly-skilled human
players[41][42][43].

One of the difficulties of engineering an RL-based system
is the reward function. It can take a lot of trial-and-error to
get right. If the reward signal is too dense—for example, the
Euclidean distance between the agent and the game’s ultimate
goal—the agent could learn a very greedy policy, where it
cannot find an alternative route if there are obstacles on the
path to the goal. Likewise, if the reward is too sparse—
for example, only reward the agent if it reaches the game’s

https://www.amd.com/en/product/8456


Fig. 7: Overview of the Go-Explore system. This figure has
been copied from its original paper[13] with written permis-
sion of its first author.

ultimate goal—the agent may learn a policy that largely relies
on random actions.

Go-Explore[13] attempts to address this problem by taking
some ideas from classical planning algorithms, except that it
does not attempt an exhaustive search of the space. The main
idea being that while the agent takes actions in the environment
it builds an archive of the resulting states. The archive is a list
of cells, where each cell represents a set of similar states. A
cell stores only a single state, which can get replaced if a state
with a shorter trajectory (number of actions leading to that
state) is found for that cell. After completing an exploration
roll-out (explore), it probabilistically selects a cell from the
archive, restores the agent to that state (go) and continues the
exploration from there. See Fig. 7 for an overview of the Go-
Explore algorithm.

The trajectories generated from exploring the environment
with the Go-Explore method can be used as input to train a
policy using methods such as imitation learning to drive the
behavior of a game-playing agent. This is what the authors of
Go Explore method call the robustification phase. In the case
of MM23 however, only the exploration phase is implemented
to control the game-playing agent during the simulation used
to evaluate a genotype.

V. RESULTS & DISCUSSION

A. Genetic algorithm and game-playing system performance

1) Non-zero fitness population size development: The gen-
erational development of median population size of members
with a fitness value above zero follows a distinct pattern for
most levels (Fig. 8). At first the number climbs gradually, only
to suddenly shoot up, after which is plateaus and gradually
decreases. This pattern cannot be observed in levels D (Fig. 4)
and F (Fig. 6). It’s however possible that if the genetic algo-
rithm would have kept running for longer than 15 generations
the shape of the plots for these levels would have ended up
being very similar.

2) Analysis of fitness evaluation method: In systems that
make use of an evolutionary algorithm it is usually desirable
that the fitness value has an upwards trajectory. Ideally the
maximum possible value is reached before a set time limit or
number of generations, allowing such a system to stop early.
Fitness values in conjunction with the selection mechanism
are a very substantial on how such an algorithm traverses
the feature space. However, when looking at the non-zero
fitness values coming out of MM23 it can be seen that the
development of median fitness levels over the different runs
has a very flat trajectory (Fig. 9).

Ideally the same genotype in the same environment should
yield a fitness value that is nearly exactly the same every
time. This however not the case in MM23 due to the non-
deterministic nature of the game-playing algorithm part of
computing the fitness value. Depending on the TGM + level
combination there can be a lot of variance in the fitness
value (Fig. 10). This creates instances where TGMs that were
evaluated to have a high fitness value in one generation to
suddenly disappear from the population just because in a later
evaluation of the same genotype in the same environment the
game-playing agent happens to perform poorly.

This makes it difficult to assess if the fitness metric
(see IV-C3) chosen for MM23 is a useful estimate on how
interesting a mechanic might be. For this reason the fitness
values of the TGMs discussed in the case studies sectionV-B
will be ignored.

This noisy signal could explain why the trajectory of the
fitness levels is so flat (Fig. 9), as well as why in levels
A (Fig. 1) and B (Fig. 2) the number of solutions with
a fitness higher than zero declines gradually after peaking
(Fig. 8). MM23’s selection method selects the top 10% fittest
individuals (elite selection) and replaces the bottom 10%
with new individuals, leaving the rest to be selected using
roulette wheel selection. The chance for any individual to be
selected here depends on their fitness. But if there is such
a high variance in fitness values between otherwise identical
individuals this part of the selection system becomes a too
unpredictable.

3) Unique gene count development: Looking at the median
number of unique TGMs that had a fitness above zero (Fig. 11)
shows that the system tends to converge on a single “best”
solution instead of finding as many different feasible solutions



Fig. 8: Evolutionary development of the median and 5%− 25%− 75%− 95% percentile number of population members with
a fitness above zero.

Fig. 9: Evolutionary development of the median and 5%− 25%− 75%− 95% percentile fitness values.

Fig. 10: Box-and-whisker plot of fitness values for all TGMs
discovered in level C (Fig. 3) across 40 runs, excluding TGMs
that never reach a fitness value larger than zero.

as possible. This is to be expected from a classic evolutionary
algorithm like what was implemented in MM23, but in part
may also be caused by the aforementioned inconsistent fitness
values. An additional termination condition that stops the ge-
netic algorithm when the number of unique solutions declines
could be a way to prevent this from happening and help to
ensure sufficient diversity among the population.

B. Case studies

Since the confines of the design space are known (see IV-B),
the resulting TGMs can be grouped based on the combination



Fig. 11: Evolutionary development of the median number and 5%− 25%− 75%− 95% percentile of unique genotypes with
a fitness value larger than zero across 40 runs for each level.

of the type of game object (player or level) and the type of
component (transform, collider, etc.). When looking only at the
TGMs which helped the game-playing agent to finish the level
(a non-zero fitness), the results show quite a diverse group of
solutions (Fig. 12). In the rest of this section various notable
TGMs found in the data are discussed in detail.

1) Physics manipulation: TGMs that manipulate the effect
of physics on game objects7 were discovered in all levels.
Especially in levels C (Fig. 3), D (Fig. 4) and E (Fig. 5) this
was quite a common type of solution.

In level C for instance, a common solution to reach the
exit located on the ceiling of the level is to invert the gravity
scale acting on the player (PlayerAgent, Rigidbody2D,
gravityScale, invert), making it fall towards the ceiling
instead of the floor. This is very much reminiscent of the
“gravity inversion” TGM discussed in the results of MM13[1].

In level E two common solutions were to subtract
the mass of the player (PlayerAgent, Rigidbody2D,
mass, subtract) or the gravity force acting on the
player (PlayerAgent, Rigidbody2D, gravityScale,
subtract) by 1, enabling the player to jump over much
larger distances than would otherwise be possible.

Another common occurrence in level E was a TGM that
changes rigid body of the outer walls of the level from
static to dynamic (TilemapOuterWall, Rigidbody2D,
isKinematic, invert). When activated the top of the
level fall onto the banks of the ravine, creating a bridge
for the player. While this seems like a novel and creative
solution, playing the level manually as a human reveals it’s

7The component in Unity that controls the effects of physics on an object
is called the Rigidbody https://docs.unity3d.com/2023.1/Documentation/
Manual/class-Rigidbody.html

not possible to clip through the level boundary with this TGM
alone. It only works in the simulation due to an oversight
in the implementation of the game-playing agent: when the
agent restores to an earlier state, it only restores the state of
the player object, not any other objects in the level.

2) Grid layout manipulation: TGMs that manipulate the
grid layout8 of the level itself were discovered in all levels.
Very often TGMs of this type ended up being among the
population in the final fifteenth generation of a run (Fig. 12).

In levels A (Fig. 1) and B (Fig. 2) a common solution is
half the size of the tiles on the grid (CustomLevel3, Grid,
cellSize, double), enabling the player to “slip through”
the gaps between the tiles of the wall which is normally
blocking access to the level exit (Fig. 13).

A TGM that halves instead of doubles the cell size was
also a viable solution. This effectively halves the scale of the
level without moving the player, making it so the player is
now at the other side of the wall (Fig. 14). Another common
grid manipulation TGM is those that change the way the grid
tiles are arranged. Variants of this solution could be seen in
every level, but it was especially prevalent in level C (Fig. 3),
where it was used to “flatten” the level into a single row of
tiles (Fig. 15).

3) Colliders: While collider components in Unity have a
wide variety of properties9, with a few exceptions the TGMs
discovered related to colliders were all alike. All disabled
a collider of an object in the level such that it would no
longer be an obstacle for the player. A clear demonstration

8Unity’s Grid component reference: https://docs.unity3d.com/2023.1/
Documentation/Manual/class-Grid.html

9Unity documentation on the Collider base class https://docs.unity3d.
com/2023.1/Documentation/ScriptReference/Collider.html

https://docs.unity3d.com/2023.1/Documentation/Manual/class-Rigidbody.html
https://docs.unity3d.com/2023.1/Documentation/Manual/class-Rigidbody.html
https://docs.unity3d.com/2023.1/Documentation/Manual/class-Grid.html
https://docs.unity3d.com/2023.1/Documentation/Manual/class-Grid.html
https://docs.unity3d.com/2023.1/Documentation/ScriptReference/Collider.html
https://docs.unity3d.com/2023.1/Documentation/ScriptReference/Collider.html


Fig. 12: Evolutionary development of the median distribution of TGMs types with a non-zero fitness value in 40 runs of the
system for each level.

Fig. 13: Doubling the grid cell size with CustomLevel3,
Grid, cellSize, double repositions all tiles on the grid
while the objects within the tiles stay the same size.

Fig. 14: Halving the grid cell size with CustomLevel3,
Grid, cellSize, half repositions all elements on the grid
to align with this grid of smaller cells while the objects in the
cells stay the same size.

of this can be seen in level A (Fig. 1), where a TGM
such as TilemapPlatforms, TilemapCollider2D,
enabled, or invert disables collision on the wall sepa-
rating the player and the exit when activated.

A more complex utilization of this mechanic can be ob-
served in levels B (Fig. 2) and F (Fig. 6). Here the player can

Fig. 15: With the TGM CustomLevel5, Grid,
cellSwizzle, add the coordinate system of the grid
is reordered such that the x-axis becomes the z-axis and visa
versa. In essence this rotates the entire level 90 degrees along
the global x-axis, flatting the entire level into a single row of
tiles from the perspective of the game’s camera. The level
exit, previously on the ceiling (1), now can be easily reached
now it’s on the same horizontal line as the level start (2).

move inside of the obstacle underneath the level exit when the
collider is disabled. If timed correctly, the player can get to the
top of the obstacle by jumping and then enabling the collider
again, making the obstacle solid once again. Jumping is not
a required action however, since enabling the collider of the
obstacle while the player is inside exploits a behavior of the
game engine to resolve the invalid state of intersecting rigid
bodies by pushing these apart. This depenetration algorithm
applies a force between the center of gravity of the two bodies.
So if the player happens to be above the center of mass of the
obstacle the player will be pushed upwards towards the level
exit.

In Unity colliders can be translated and resized relative to
the object they are attached to. Only a small number of TGMs
that make use of this property were discovered by MM23. A
clear demonstration can be seen in level A (Fig. 1), where it



Fig. 16: TilemapPlatforms, CompositeCollider2D,
offset, add adds 1 unit to the translation offset of the wall’s
collider (marked in green) creating a gap large enough for the
player to move through.

Fig. 17: TilemapExit, Transform, localScale, half
divides the scale vector by 2 when activated. Since the origin
of this object is at the lower-left corner of the level, the level
exit (1) does get smaller and moves to the other side of level’s
main obstacle (2).

offsets the collider by one unit from the level’s origin, creating
a gap underneath the wall allowing the player to pass through
(Fig. 16).

4) Transformation tricks: Solutions that translate, rotate or
scale the player object or a part of the level occurred in every
level. Especially in level F (Fig. 6), where solutions of this
type were particularly dominant.

A common solution for the levels B (Fig. 2) and F (Fig. 6)
was to half the scale of the level exit such that it moves to
the same side of the wall as where the player starts (Fig. 17).
Similar is one where the current position of the player gets
doubled, effectively “teleporting” it to the other side of the wall
and on top of the platform (Fig. 18), reminiscent of similar
behavior seen in MM13.

In level A (Fig. 1) a TGM was found that could move
the main obstacle of the level out of the way by essentially
switching places with the player19.

Fig. 18: PlayerAgent, Transform, position, double
multiplies the player’s current position vector by 2. If the
player is positioned far enough from the lower-left corner of
this level (origin of the player’s coordinate system) (1), the
x-component’s value is high enough to move it to the other
side of the wall when doubled (2).

Fig. 19: When the player is standing next to the wall block-
ing the the path to the level exit (1), activating the TGM
TilemapPlatforms, Transform, localPosition,
subtract shifts that wall one unit towards the origin in the
lower left corner (2). Since the colliders on both the player
and the wall cannot overlap, the game engine resolves this by
pushing the player to other side of the wall (3).

C. Mechanic Miner as a co-creative tool

A single run of the MM23 system, whereby a population
of 100 genotypes is evaluated for at most 15 generations on a
single level, takes approximately 8 to 15 minutes on a desktop
PC with an AMD Ryzen 5 3600 (a consumer mid-segment
6-core CPU) and 16 gigabytes of memory. While it does
utilizes all CPU cores, it cannot use these to their maximum
capacity consistently. Unity requiring calls to the active scene
to be executed on the main thread is a likely cause of this,
resulting in other threads having to “wait their turn”, limiting
the amount of computations that can be done in parallel. While
it’s very likely there is plenty of room for optimizations that
could further speed up the system, the current results already
demonstrate that MM23 can be run on locally on an ordinary
personal computer to output results in a reasonable amount of
time. The ability to deliver solutions quickly an an important
part of any co-creative tool.

Some of the solutions generated by MM23 seem to fit
within what would be expected of a solution thought up
by a human game designer given the same game and level
architecture. For instance, altering how gravity acts on the
player object to get across a wide deadly hazard as seen in
level D (Fig. 4) is an example of one of those “obvious”



solutions. MM23 also generated types of solutions that are
far outside the conventions of the puzzle-platformer genre.
Altering the arrangement or layout of the level’s grid for
instance was quite a common solution found for levels A
(Fig. 1), B (Fig. 2), C (Fig. 3) and E (Fig. 5). From a human
player’s perspective this type of mechanic may however seem
not very intuitive. It may require additional work on the part of
the game designer to implement this game mechanic concept
in a way that is more understandable to a human player.

Since Mechanic Miner is meant to be a co-creative tool, this
isn’t a problem. It isn’t expected nor even desirable for a co-
creative tool to output complete end-to-end solutions. Instead
it should help the human designer in their creative process by
providing them with novel and diverse ideas.

For Mechanic Miner to be useful as a co-creative tool it is
expected to give suggestions that spark creativity on the side
of the user. While measuring creativity is difficult, optimizing
for the output to be as diverse as possible has shown to be a
very effective way of getting to a desired target[44]. In terms
of promoting diversity, the MM23 system has demonstrated to
be able to output a diverse set of solutions for any problem it is
given (Fig. 12). Genetic algorithms like the one used in MM23
however tend to be optimized to find a single “best” solution,
not a diverse set of solutions. If there the termination condition
of a 15 generation limit was removed, the number of unique
solutions would most likely trend towards 1. This downwards
trend could be seen with some levels, particularly with A and
B (Fig. 11). This on to itself may be easily preventable by
introducing an additional termination condition to the genetic
algorithm that checks if the diversity the population is trending
downwards. All though it might be more effective to change
the selection criteria such that only unique individuals are
taken into consideration, which could prevent a small set of
genes from becoming dominant in the population.

Despite the limitation of the chosen search strategy, the
results do demonstrate that utilizing the source code as a search
space to generate game mechanics with code reflection is a
feasible alternative to using game description languages or
otherwise pre-constructed domain knowledge.

VI. FUTURE WORK

A. Game-playing agent

As was described in the results, the game-playing agent
component of MM23 performs inconsistently between runs
in exactly the same environment and starting conditions
(see V-A2). For the purposes of an evolutionary algorithm
where this game-playing agent is a key part of determining the
fitness score, this noisy signal makes it difficult to evaluate the
effectiveness of our fitness function, since the same genotype
combined with the same environment yields different fitness
score any time the simulation is ran.

There are a number of potential solutions for this. A record
could be kept of the highest fitness values for each unique
genotype. If the simulation yields a lower fitness value than
previously recorded, use the recorded value. If not, update the
record with the new value. Or alternatively, when a genotype

Fig. 20: Level G: “Spiked S-bend”: S-shaped upwards
corridor with plenty of instant-death spikes along its ceilings
and floors. Can be completed without any TGM, but doing so
requires very precise actions.

is created that hasn’t been seen before it is evaluated in
multiple parallel running simulations to find the highest fitness
value among the results from those. This approach has the
added benefit of no longer having to re-run simulations for
subsequent generations of the same genotype, which could
drastically reduce the time it takes the system to run.

When designing the experiment for this paper, one of
the human-authored levels was ultimately excluded from the
experiment due to our Go-Explore implementation not being
able to complete this level, apart from a small number of
“lucky” attempts (Fig. 20). This seems due to the sequence
of specific actions required to complete it being too long for
Go-Explore to find. Using Go-Explore to train a policy on an
authored curriculum of levels prior to running the evolutionary
algorithm could be a potential solution for these more complex
game environments. It may help the game-playing agent to
play through levels much more reliably, at the cost of the
human game designer having to provide a curriculum of
situations for the agent to train in, which in turn may hinder
MM23’s utility as a co-creative tool for quick iterative game
development.

B. More complex game environments

To further explore the potential and limitations of the
Mechanic Miner concept, we would like to apply it to more
complex and open-ended games.

In Rogue and games like it for instance the end state is
no longer a simple binary fail or pass, instead these games
encourage the player to maximize their score. The score
is calculated from multiple factors such as the progression
through the different stages and by gathering various different
resources. These things alone already allow for a wide variety
of viable player strategies. A Mechanic Miner-based system
could be used to synthesize new resources or abilities for the
player to find. These could be evaluated using metrics that
align with the intentions of the game designer.

C. Quality-Diversity search

Both MM23 and its predecessor MM13 use a fairly standard
evolutionary algorithm as a means to explore the possibility
space. Generally this type of algorithm starts with a diverse
and random population to search for local optima, meaning



that the total diversity in the population tends to trend down-
wards as it finds population members with higher and higher
fitness values. Here the promotion of diversity is mainly a way
to prevent the search from getting stuck on local optima in the
search of the highest possible fitness value in the possibility
space.

Quality-Diversity (QD) optimizations are different from
classic evolutionary algorithms in that these aim to generate
large collections of diverse yet high-performing population
members. Novelty Search is relatively simple yet effective
implementation of QD system, where it rewards population
members for behavior that diverges from the rest of the
population. While the classic fitness metric is still present, it it
only used to determine stopping conditions, not selection[44].

Applying a QD method such as Novelty Search may be an
effective way to counteract the downwards trending fitness and
population diversity as was seen in some cases in our results
(see V-A2). It would make Mechanic Miner a more effective
co-creative tool if does more in-depth exploration of a diverse
set of game design ideas before rejecting them in favor of
something that seems more promising in the short term.

VII. CONCLUSIONS

In this paper we presented Mechanic Miner 2023 (MM23),
a procedural content generation system that discovers game
mechanics based on code reflection by exploring the source
code of the game itself using an evolutionary algorithm, where
the found game mechanics were tested and evaluated by an
automated game-playing algorithm based on Go-Explore.

We’ve demonstrated that using the game’s source code as
a search domain for procedural content generation for game
mechanics content is a viable alternative to using game design-
specific data models such as game description languages. This
makes MM23 more flexible and has the potential to integrate
with a wide range of pre-existing game development projects.

We have shown MM23 can output diverse and novel game
mechanics that fit with a pre-authored game design within
a reasonable amount of time on an ordinary PC, making it
suitable for use as a co-creative tool.
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