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Abstract

In this thesis, we study quantum-inspired variants of two-player deterministic
perfect-information games (combinatorial games), in which the last player to
move wins. In a quantum-inspired ruleset, a player may play multiple moves
in superposition, leading to a superposition of realisations (set of game states),
which can make playing optimally more difficult than in the classical ruleset.
We consider different classical rulesets, and effects of their properties on their
quantum-inspired variants. Then, we turn to Quantum Hackenbush (quantum-
inspired Hackenbush) as a case study. Hackenbush is a canonical example
of a combinatorial game, in which players take turns removing an edge of their
colour from a graph, with the rule that edges that are not path-connected to the
designated “ground” node disappear. We employ a combination of theoretical and
programmatic approaches to analyse structural properties, such as the winnability,
of commonly studied classes of restricted Hackenbush game states, when allowing
for superposed moves. This work presents a varied landscape of properties that can
occur in quantum-inspired variants of combinatorial games, and it constitutes a
promising starting point for further analysis of Quantum Hackenbush, or other
quantum-inspired combinatorial games.
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1 Introduction
In this thesis, we study a quantum-inspired generalisation of the combinatorial game
Hackenbush. The game of Hackenbush (sometimes also called Red-Blue Hacken-
bush) is played on a graph with blue and red edges1. A Hackenbush position can be
visualised as in Figure 1.1. One node in this graph is designated to be the ground node,
which is typically illustrated as a horizontal line on which the edges stand. The edges are
connected to the ground, either directly, or possibly through a path of other edges. Edges
which are directly connected to the ground are said to be grounded. The two players,
Left and Right, take turns removing a bLue or Red edge, respectively. Edges that are no
longer connected to the ground “fly away” (are removed). A player loses when they are
unable to play a move. Hackenbush is a canonical example of a combinatorial game [1,
2, 3].

Figure 1.1: An example of a Hackenbush position.

A generalisation of Hackenbush that is also studied in literature is Red-Green-Blue
Hackenbush [1, 2, 3], which introduces green edges that may be removed by either
player. With these green edges, it is possible to construct positions where it is always
possible for the first player to win (i.e., N -positions, see Section 2.1). Such positions do
not exist in Red-Blue Hackenbush.

We call the quantum-inspired generalisation of Hackenbush that we study Quantum
Hackenbush. This generalisation introduces superposed moves, which means that on
each turn, instead of selecting one edge to be removed, the player selects multiple
edges. This leads to a superposition of realisations (labelled positions), each realisation
corresponding to the removal of one of the selected edges. From such a superposition, a
player can again play a (superposed) move. The details are explained in Section 3, where
we follow the framework introduced by Dorbec and Mhalla [4] for defining quantum-
inspired variants of combinatorial games, in different “flavours”. An example of a small
Quantum Hackenbush game tree is shown in Figure 1.2.

This thesis is structured as follows. We start with a summary of the combinatorial
game theory that we use in Section 2. Then, in Section 3 we introduce quantum-
inspired combinatorial games, with some discussion on how properties of certain classical
rulesets impact their quantum-inspired variants, and some basic results. Sections 4 and 5
highlight our main theoretical and experimental results for different classes of restricted
Hackenbush positions. Then, in Section 6, we discuss an interesting direction for future
research, in finding an efficient representation of Quantum Hackenbush superposed
game states. In Section 7, we discuss how quantum-inspired combinatorial games relate
to “real” quantum mechanics, along with our attempt at designing a quantum circuit for
playing Quantum Hackenbush, and the difficulties that we encountered. Finally, in
Section 8 we discuss our conclusions, a few conjectures, and other interesting directions
for further research.

This thesis was written as part of the Computer Science master’s programme at the
Leiden Institute of Advanced Computer Science (LIACS), Leiden University. It was
supervised by Walter Kosters and Evert van Nieuwenburg.

1To make this thesis accessible to colourblind readers, we draw bLue edges (for the Left player) as
soLid lines, Red edges (for the Right player) as paRallel lines, and grEen edges (for Either player) as
dottEd lines. For other coloured pieces, we use a solid fill pattern for blue pieces, and a lines pattern for
red pieces.
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Figure 1.2: A small example Quantum Hackenbush game tree, which has superposed
game states and superposed moves. A superposed game state is a set of one or more
game states (“realisations”). A superposed move is a set of classical moves, each of which
we attempt to apply to each realisation of the current superposed game state. If a
classical move is illegal on a realisation, it does not lead to any realisation in the resulting
superposed game state. Note that equivalent realisations may be left out of a set of game
states, but we still show them here to emphasise how realisations are obtained from
superposed moves.
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2 Combinatorial games
A combinatorial game is a two-player deterministic game with perfect information [3].
We name the players Left and Right (or L and R in notation), and we also refer to
them as the female player (she) and the male player (he), respectively (following the
convention). By deterministic we mean that there are no random elements, i.e., the
player will always know the result of a move exactly, before making the move. Perfect
information means that both players always have complete knowledge of the game state,
with no elements being “hidden” from any player.

Formally, in combinatorial game theory, a game is an individual position [3]. A game
has Left options and Right options that can be moved to by the two respective players.
Combinatorial games can be impartial (both players have the same options) or partizan
(options can be specific for an individual player). For partizan games, some options may
still be shared by both players. In this thesis, we are concerned with the short partizan
game of Hackenbush. A short game is defined as a finite loopfree game, meaning that
it has a finite number of followers and all runs are of finite length (it is not possible to
loop back to an earlier position in the run) [3]. We have the following definition of short
games.

Definition 2.1. A short game is an ordered pair

G “ tG L | G Ru

of Left and Right options G L and G R.

Here, G L and G R are sets containing “simpler” short games that can be moved to from
G. We may also list the Left and Right options explicitly, written as

G “ tGL
1 , . . . , G

L
n | GR

1 , . . . , G
R
mu.

A follower of G is any position that can be reached from G, either directly or through a
sequence of moves, including G itself. An immediate follower of G is any G1 P G L ∪ G R.
Typically, a game is played by the two players alternating turns, which we also call
normal play. A player loses if after a finite number of turns they are unable to move.
The game t | u, where neither player has any options, is called the empty game. The
birthday of a short game G “ tG L | G Ru is defined as 1 plus the maximum birthday of
any short game in G L ∪ G R, where the base case t | u has a birthday of 0 [2]. A game’s
birthday is also the height of its game tree. The set containing all short games G forms
a partially ordered Abelian group G with group operation `, inverse operation ´, and
identity element 0 [3]. In Section 2.2, we will define the binary operation ` and the
unary operation ´ on games, and we will prove that G is partially ordered. We start by
defining the set of short games.

Definition 2.2. Let t | u “ 0 be the empty game, and

G0 “ t0u

the set containing only the empty game. Then for n ≥ 0 we recursively define

Gn`1 “
␣

tG L | G Ru : G L,G R ⊆ Gn

(

,

which finally gives us
G “

ď

n≥0

Gn.

This definition makes clear the finite and loopfree nature of short games.

2.1 Outcome classes
A fundamental computational problem in (algorithmic) combinatorial game theory is to
determine the outcome of a game as falling into one of four possible classes [5, 6]. The
outcome class of a game (position) tells a player whether it is possible for them to win.
The outcome classes are as follows:
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• L are the games that can always be won by Left, regardless of which player starts.

• R are the games that can always be won by Right, regardless of which player
starts.

• P are the games that can always be won by the second player.

• N are the games that can always be won by the first player.

Figure 2.1 shows a Red-Green-Blue Hackenbush example position for each outcome
class.

(a) Outcome L . (b) Outcome R. (c) Outcome P. (d) Outcome N .

Figure 2.1: An example position for each of the four outcome classes.

The player can also determine how to win, by considering the outcome classes of the
move options they have available. Table 2.1 recursively defines the outcome class opGq of
a short game G “ tG L | G Ru. Game G has outcome opGq “ N if both players can force
a win when they start, opGq “ L if only Left can force a win when starting, opGq “ R
if only Right can force a win when starting, and opGq “ P if neither player can force
a win when starting. The problem of determining the outcome class of a game can be
modelled as a decision problem. The complexity of solving this decision problem is also
referred to as the complexity of the game.

DGR P G R : GR P R ∪ P @GR P G R : GR P N ∪ L
DGL P G L : GL P L ∪ P opGq “ N opGq “ L
@GL P G L : GL P N ∪ R opGq “ R opGq “ P

Table 2.1: Recursive definition of the outcome class opGq of a short game G.

2.2 Values
In addition to being able to classify which player wins a game under ideal normal play, it
is also interesting to study by “how much” one of the players is able to win. For example,
in Hackenbush, a position that has exactly two blue edges (shown in Figure 2.2a) has
value 2. The way to understand this is to consider how many moves each player has
available. In the example, there are no red edges, so clearly Left wins. However, if Left
takes one of the blue edges, then the other edge will remain. This means that Left would
still be able to play another move if she was given another turn. Thus, Left wins by two
turns, i.e., the position consisting of two blue edges has value 2. Analogously, a position
consisting of exactly two red edges has value ´2. It is also possible to construct positions
in which a player wins by a “fraction of a move”. An example of such a position is one
consisting of a blue edge with a red edge placed on top, as shown in Figure 2.2b. Here,
Left can move to the empty position (value 0), while Right can move to the position with
a single blue edge (value 1). We say that Left wins by “half a move”, because the position
has value t0 | 1u “ 1

2 , which is the simplest number between 0 and 1 (we formalise this
in Theorem 2.20).

Let us now formally define how values can be assigned to short games, as has been
presented in the two examples above. For this, we consider the set G “ L ∪R ∪P ∪N
which contains all short games. We define a compound G`H of two short games G and
H, which is called the disjunctive sum. This compound is again a short game, in which
a player on their turn moves in exactly one of G or H. The disjunctive sum is defined as
follows.
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(a) A Hackenbush position with value 2. (b) A Hackenbush position with value 1
2
.

Figure 2.2: Two simple positions, with values 2 and 1
2 , respectively.

Definition 2.3. Given short games G,H P G, the disjunctive sum G`H is recursively
defined by

G`H “

#

ď

GLPG L

tGL `Hu ∪
ď

HLPH L

tG`HLu

ˇ

ˇ

ˇ

ˇ

ˇ

ď

GRPG R

tGR `Hu ∪
ď

HRPH R

tG`HRu

+

.

Notice that if H “ 0 then G ` H “ G (and H ` G “ G, by commutativity), meaning
that 0 is the identity element for the disjunctive sum operation. Although the disjunctive
sum is the most commonly studied compound in literature, different compounds may
be considered as well. A few examples are the conjunctive sum, where a player must
move in both components, the selective sum, where a player must move in one or
both component(s), or the sequential compound, where a player must move in the first
component, unless it has no move options; in that case in the second component [3].

Let us now define how the equality of two games can be determined, by the fundamental
equivalence [3].

Definition 2.4. Given short games G,H P G, we write

G “ H if and only if opG`Xq “ opH `Xq for all X P G.

Additionally, we write G – H when G is isomorphic with H, meaning that each Left
(Right) option of G is isomorphic with exactly one Left (Right) option of H, and vice
versa. One may also observe that G and H have identical game trees in this case, which
is not necessarily the case when they are merely equal. We also have that G` 0 – G for
any short game G.

Let us also define the negative of a short game.

Definition 2.5. The negative of a short game G is recursively defined by

´G “

#

ď

GRPG R

t´GRu

ˇ

ˇ

ˇ

ˇ

ˇ

ď

GLPG L

t´GLu

+

.

This corresponds to recursively swapping the Left and Right options, giving us the
inverse of the original game. Thus, we also have that ´p´Gq – G.

Now we can define the difference between two short games.

Definition 2.6. The difference G´H between short games G and H is defined as

G´H “ G` p´Hq.

By considering the outcome class of a difference game G´H we will be able to compare
any G and H. For this we define a partial order on the outcome classes as shown in
Figure 2.3.

Using this partial order on outcome classes, a partial order on the short games G can be
defined. We start with the condition that is necessary and sufficient for G ≥ H.

5



L

N P

R

Figure 2.3: A partial order on the outcome classes in terms of desirability for player
Left [3].

Definition 2.7. Given short games G,H P G, we write

G ≥ H if and only if opG`Xq ≥ opH `Xq for all X P G.

This means that in any sum of short games, the component G is always at least as
desirable as H for Left. Replacing H by G in any sum cannot result in an outcome class
that is worse for Left.

Theorem 2.8. The comparison relation ≥ induces a partial order on G.

Proof. Given short games G,H, J P G we have that ≥ respects the following properties.

(a) Reflexivity, since G ≥ G.

(b) Anti-symmetry, because if G ≥ H and H ≥ G then G “ H.

(c) Transitivity, because if G ≥ H and H ≥ J then G ≥ J .

Theorem 2.9. Given short games G,H, J P G such that G ≥ H, it holds that G` J ≥
H ` J .

Proof. Given G ≥ H and using that the disjunctive sum operation is associative, we
have that

oppG` Jq `Xq “ opG` pJ `Xqq ≥ opH ` pJ `Xqq “ oppH ` Jq `Xq for all X P G.

Using Definition 2.6 and Theorem 2.9, the following result can be obtained.

Theorem 2.10. Two short games G,H P G can be compared based on the comparison
of their difference to 0, as given by

G ≥ H ðñ G´H ≥ H ´H ðñ G´H ≥ 0.

Now also note that G ≥ 0 ðñ opGq ≥ P, since G “ 0 for all G P P. Extending this
partial order relationship between the value 0 and the outcome class P, we get the
following correspondence.

Definition 2.11. The partial order correspondence between the outcome classes and
the short games G P G is given by

opGq “ L ðñ G ą 0,

opGq “ R ðñ G ă 0,

opGq “ P ðñ G “ 0,

opGq “ N ðñ G ∥ 0.
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Here, ą and ă are defined based on ≥ and ≤ in the way that one would expect. The
notation G ∥ H means that G is incomparable with H, i.e., neither G ≥ H nor G ≤ H
holds.

The ability to compare short games G,H P G by considering opG´Hq can be used to
rewrite games into a simpler form. If we apply such a simplification to a short game
G P G, we obtain a G1 “ G equivalent to the original game, but for which the game tree
has a smaller number of nodes. Below we will consider two kinds of simplifications; namely
domination and reversibility. By repeatedly applying these simplifications until they
cannot be applied anymore (the order does not matter), we obtain a unique “simplest”
form K “ G of our original short game G, which is also called the canonical form of
G [3]. Canonical forms of short games are unique up to isomorphism, meaning that if
G “ H for two short games G,H P G which are both in canonical form, then G – H.

Let us define how a short game can be simplified by domination.

Definition 2.12. Given a short game G “ tG L | G Ru P G, an option is said to be
dominated in one of the following cases.

• A Left option GL P G L is dominated if there exists some GL1

P G L, GL1

fl GL

such that GL1 ≥ GL.

• A Right option GR P G R is dominated if there exists some GR1

P G R, GR1

fl GR

such that GR1 ≤ GR.

Theorem 2.13. If a short game G has a Left or Right dominated option and we obtain
G1 by removing this option, then G1 “ G.

More intuitively, we can say that outcome classes and values are not affected by the
removal of suboptimal options, since these properties are based on the assumption of
optimal play.

The second way to simplify a short game is through reversibility.

Definition 2.14. Given a short game G “ tG L | G Ru P G, an option is said to be
reversible in one of the following cases.

• A Left option GL “ tG LL | G LRu P G L is reversible if there exists some GLR P G LR

such that GLR ≤ G. It is also said that GL is reversible through GLR.

• A Right option GR “ tG RL | G RRu P G R is reversible if there exists some
GRL P G RL such that GRL ≥ G. It is also said that GR is reversible through GRL.

Theorem 2.15. If a short game G has a Left option GL that is reversible through
GLR “ tG LRL | G LRRu, then we can obtain G1 “ G by

G1 “ tG LRL ∪ G LztGLu | G Ru.

The set G LRL is also called the replacement set [2]. The symmetrical analogue of
Theorem 2.15 can be used in the case of a reversible Right option GR of G. Intuitively, if
for a Right option GLR of a Left option GL it holds that GLR ≤ G, then that means that
player Right can immediately counteract any advantage that Left may have obtained if
she moved to GL, by him moving to GLR. Right will of course always do this, so from
position G Left may as well immediately consider the options in G LRL instead of the
option GL. Left already knows what Right’s response will be if she moves to GL.

Let us now finally discuss how a number value can be assigned to a short game G by
considering its canonical form K “ G. As a start, we have already defined that t | u “ 0.
We have also observed that the game 0 acts as the identity element in disjunctive sums,
just as the integer 0 is the identity element in sums of rationals (or reals). We also know
that if Left has two free moves from K, i.e., K “ 2, then she has the option to move to
a position with one free move, while Right has no options (since K is in canonical form),
meaning that 2 “ t1 | u. In general, integer games in canonical form can be defined as
follows.
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Definition 2.16. Given an integer n ≥ 0, in canonical form we write

tn | u “ n` 1 and t | ´nu “ ´n´ 1.

These integer games also have the properties that one would expect.

Theorem 2.17. Integer games A,B,C P G with respective values a, b, c P Z have the
following properties.

• A ≥ B if and only if a ≥ b.

• A`B “ C if and only if a` b “ c.

This means that the subgroup of integer games is isomorphic with the integers, i.e.,
Z ⊆ G. We use this isomorphism to refer to these short games by their integer value.

We have also mentioned (but not yet proven) that t0 | 1u “ 1
2 . For this, one can notice

that the game 1
2 behaves just as the rational 1

2 .

Example 2.18. For example, 1
2 ` 1

2 “ 1, since

1

2
`

1

2
“ t0 | 1u ` t0 | 1u

“ t0 ` t0 | 1u, t0 | 1u ` 0 | 1 ` t0 | 1u, t0 | 1u ` 1u

“ tt0 | 1u | 1 ` t0 | 1uu

“ tt0 | t0 | uu | t0 | u ` t0 | 1uu

“ t0 | t0 ` t0 | 1u, t0 | u ` 0 | t0 | u ` 1uu (by reversibility)
“ t0 | tt0 | 1u, t0 | u | 2uu

“ t0 | tt0 | u | 2uu (by domination)
“ t0 | u (by reversibility)

“ 1.

Similarly, one can show that t0 | 1
2u “ 1

4 , and by iterating that 1
2n “ t0 | 1

2n´1 u for n ≥ 1.
Since G is closed under addition, any sum of such rationals is also a short game, i.e.,
m ¨ 1

2n “ m
2n P G, with m

2n “ 1
2n1 ` 1

2n2 ` . . . or m
2n “ ´ 1

2n1 ´ 1
2n2 ´ . . . for some odd m and

n ≥ 1. Rationals of this form, which are written in their lowest terms and have a power
of 2 in the denominator, are called dyadic rationals, and they form a group denoted by
D [3]. These are the only kinds of rational values that can occur in short games, because
their game trees have finite depth. The properties from Theorem 2.17 still apply to
dyadic rational games, so we also have an isomorphism between the subgroup of dyadic
rational games and the dyadic rationals, i.e., D ⊆ G. Again, we use this isomorphism
to refer to these short games by their dyadic rational value. In canonical form, dyadic
rational games can be written as follows.

Theorem 2.19. Given an odd integer m and an integer n ≥ 1, in canonical form we
write

m

2n
“

"

m´ 1

2n

ˇ

ˇ

ˇ

ˇ

m` 1

2n

*

.

Proof. Suppose that G “ tG L | G Ru “ m
2n P G, and assume by symmetry that m ą 0.

Then we can also write

G “ m ¨
1

2n
“

m times
hkkkkkkkikkkkkkkj

1

2n
` . . .`

1

2n
.

From the definition of disjunctive sum (Definition 2.3), we know that a player can move
in exactly one of the components. If Left moves in a component, which is of the form

8



1
2n “ t0 | 1

2n´1 u, then she moves to 0. If right moves in a component, then he moves to
1

2n´1 . Thus, we obtain

G “

"

pm´ 1q ¨
1

2n

ˇ

ˇ

ˇ

ˇ

pm´ 1q ¨
1

2n
`

1

2n´1

*

“

"

m´ 1

2n

ˇ

ˇ

ˇ

ˇ

m` 1

2n

*

.

We can also prove that this is indeed the unique canonical form by showing that no
simplifications, by neither domination nor reversibility, can be applied, based on the
proof from [3].

Proof. Assume that x “ m
2n and that it and all its followers are in canonical form, meaning

that all dyadic rational followers are in the form given in Theorem 2.19. For domination,
Left and Right both have only one option, so clearly there cannot be any dominated
options. For reversibility, let us consider xLR. We know that xL “ m´1

2n “ m1

2n1 for some
odd m1 and n1 ă n, since m´ 1 is even. Then xLR “ m1

`1
2n1 “ m´1

2n ` 1
2n1 ą m

2n “ x, and
thus there are no reversible Left options. Similarly, it can be shown that xRL ă x, so
there are no reversible Right options either.

If we determine the canonical form of a game, and we see that it is in the form of an
integer (Definition 2.16), a dyadic rational (Theorem 2.19), or 0, then we say that the
game is a number, and we can refer to it by its number value. Figures 2.1a, 2.1b, and 2.1c
show examples of Hackenbush positions with number values 1, ´1, and 0, respectively.
Otherwise, if a game is in canonical form, but not in the form of a number, then we
say that it is not a number. For example, Figure 2.1d shows a position that we denote
˚ “ t0 | 0u (pronounced “star”). Let us also denote games of the form G “ tx | xu, where
x is a number, as G “ x` ˚ “ x˚. This notation is inspired by the convention of writing
fractions a` b

c as a b
c . The value x of a short game G is also said to be its equivalence

class, because G “ G1 for any G1 “ x. A theorem that can be useful for determining the
number value of a short game (if it exists) is the simplest number theorem [2], which is
given as follows.

Theorem 2.20. A short game G “ tG L | G Ru, where GL ă GR for all GL P G L and
GR P G R, is the simplest number x lying strictly between the largest GL and the smallest
GR, as given by:

• The integer x “ n smallest in absolute value, for which GL ă n ă GR, if such an
integer exists.

• The fraction x “ i
2j for which GL ă i

2j ă GR with the smallest j, otherwise.
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3 Quantum-inspired combinatorial games
A quantum-inspired combinatorial game is a combinatorial game in which the domain of
game states and the move functions have been adapted to allow for superposed game states
and superposed moves, respectively. We call these games “quantum-inspired”, because
they are not based on quantum mechanics, with game states defined on continuous
qubits (quantum bits) and moves defined as unitary transformations. Rather, they are
combinatorial games (which have discrete game states and moves) with aspects inspired
by concepts from quantum mechanics; namely superposition, entanglement, collapse
(also referred to as measurement), and (constructive) interference.

When defining a quantum-inspired variant of a classical combinatorial game, we first
need a more explicit description of which classical moves are legal on a given game state,
and when classical moves are considered to be distinct, according to the ruleset. For
this reason we assign a label to each move option (for both Left and Right). The new
formulation that we introduce is similar to those introduced in [4] and [6], except that we
explicitly define labelled short games, where they must be used, and why they cannot be
simplified (unlike “normal” non-labelled short games). We refer to positions in labelled
short games as game states (instead of “positions”) for clarity, and to emphasise that
we cannot abstract away from what the visual representation of the state “looks like”
(which is possible for non-labelled short games).

Definition 3.1. Let G “ tG L | G Ru P G be a short game that can be generated by
following a ruleset R. Then, let pG denote a corresponding labelled short game, in which
each move option G1 P G L ∪ G R has been assigned a label σ P Σ “ t1, . . . , nu, for some
integer n ≥ 1, as defined by R, and where this labelling of move options is applied to
each G1 to yield pG1, recursively.

The finite set Σ is called the move alphabet.

Definition 3.2. We say that two game states pG and pH are equivalent, written pG ” pH,
if for each Left (Right) labelled move option of pG there is exactly one equivalent Left
(Right) labelled move option of pH that has been assigned the same label, and vice versa.

For ease of notation, we may also write pG – pH or pG – H, and pG “ pH or pG “ H
to mean isomorphism and equality in the combinatorial game sense, respectively. For
example, pG – H means “the short game G obtained from removing the labelling from
pG is isomorphic to the short game H”, and pG “ pH means “the short games G and H
obtained from removing the labellings from pG and pH, respectively, have the same value”.
However, whenever we are considering a set of game states, we mean elements to be
unique up to equivalence.

Any non-empty short game G generated by a given ruleset has a countably infinite
number of distinct (non-equivalent) corresponding labelled short games L “ t pG1, pG2, . . .u,
which are all defined by the ruleset. Any labelled move option pH of pG P L may be
recursively assigned a new label, as long as the new label does not already occur in any
follower of pG. We also call the repeated application of this process (zero or more times)
relabelling. In particular, notice that it is possible to “swap” any two labels in this way,
and that for our given G any pG can be relabelled to any other pG1 P L.

Theorem 3.3. Given two game states pG and pH, if any one can be relabelled to be
equivalent to the other, then pG – pH.

This relates to the concept of transpositions from combinatorial game theory, which are
positions with the same value reached through different sequences of moves [2]. Our
theorem ensures isomorphism, however, which is stronger than equality. The theorem
can be proven as follows.

Proof. By Definition 3.2, each Left (Right) labelled move option of pG has exactly one
corresponding isomorphic Left (Right) labelled move option in pH, and vice versa.

10



The ruleset defines a labelling of options of a game state, which is unique up to relabelling.

Definition 3.4. A ruleset is defined by

R “ pρL, ρRq,

where ρL, ρR : GR ˆΣ Ñ
Ť

pGPGRtt pGuu∪ tHu are the move functions for Left and Right,
respectively, and GR is the (countably infinite) set of all labelled short games generated
and labelled by following R. If from a game state pG P GR a player p P tL,Ru plays
an illegal move σ P Σ, then ρpp pG, σq “ H. Otherwise, the result is a singleton set
ρpp pG, σq “ t pG1u containing the resulting game state pG1. If σ is legal for both players,
then we also impose that ρLp pG, σq “ ρRp pG, σq (for both players, the same move must
lead to the same game state), and recursively that ρLp pG1, σq “ ρRp pG1, σq for all followers
pG1 of pG. This ensures that if a move that was at any point legal for both players becomes
illegal, then it will also be illegal for both players. If σ is only legal for exactly one
p P tL,Ru, then we impose for the opposing player p̄ that ρp̄p pG1, σq “ H, recursively for
all followers pG1 of pG (the move must never become legal for the other player).

The reason to use singleton sets in this way, is to allow for more natural definitions of
superposed game states and superposed move functions, which we will give below. We
have for impartial rulesets that ρL “ ρR, and for partizan rulesets that ρL ‰ ρR. An
empty game state is a game state on which no moves are legal, for Left nor Right.

Definition 3.5. Given a game state pG and player p P tL,Ru, the set of legal moves is
given by

Ppp pGq “ tσ : σ P Σ, ρpp pG, σq ‰ Hu.

Let us introduce some additional useful notation for moving and determining legal moves.

Definition 3.6. The spanning move function ρ : GR ˆ Σ Ñ
Ť

pGPGRtt pGuu ∪ tHu spans
across both players’ legal moves, and is defined as

ρp pG, σq “ ρLp pG, σq ∪ ρRp pG, σq.

The result will still always be a singleton set or H, because if σ is legal for both players,
then it must hold that ρLp pG, σq “ ρRp pG, σq, if it is legal for exactly one player, then
ρp pG, σq “ ρLp pG, σq or ρp pG, σq “ ρRp pG, σq, and if it is legal for neither player, then
ρpp pG, σq “ H for p P tL,Ru. Note that we are still considering both impartial and
partizan rulesets. The spanning move function simply “selects” a player p for which a
given move is legal (if there exists such a p).

Definition 3.7. Given a game state pG P GR the set of legal moves for any player is
given by

Pp pGq “ tσ : σ P Σ, ρp pG, σq ‰ Hu “ PLp pGq ∪ PRp pGq.

A ruleset can be said to have the dead-ending property [7].

Definition 3.8. A ruleset R is dead-ending if for all labelled short games pG and all
σ P Pp pGq, with ρp pG, σq “ t pG1u, it holds that Pp pG1q ⊆ Pp pGq.

This means that making a move cannot “reveal” another move to become legal in any
following game state. If a move becomes illegal, it will remain illegal for the remainder
of play. In this thesis we will mostly be concerned with R “ Hackenbush, which is
dead-ending, but other dead-ending rulesets will be considered as well. A simple example
of a non-dead-ending ruleset is Maze. It is played on a grid oriented at a 450 angle,
with certain edges highlighted as walls, and a piece that can be moved one or more cells
southwest or southeast, by Left or Right, respectively [2]. At a Maze game state, Left
may initially not have any move option, but Right’s move may “open up” an option for
Left. Figure 3.1 shows such an example.
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Figure 3.1: A Maze game state where Left does not initially have any move option (left),
but Right’s move gives Left a move option (right).

In Hackenbush, a move naturally corresponds one-to-one to the removal of an edge2.
Whenever two options correspond to the same move (i.e., “remove edge σ”), they are
assigned the same label σ P Σ, as defined by the ruleset. This means that for any game
state pG, a label corresponds to either exactly one Left (Right) option pG1, or to no Left
(Right) option at all. Labels that do not correspond to any Left (Right) option at a given
game state, correspond to illegal moves. We also require any labelling to be persistent,
which ensures that the “interpretation” of any label does not change as play progresses.
In combinatorial game theory, it is desirable to have games for which the rules can be
defined concisely, while at the same time making optimal play non-trivial. Thus, in order
to have a concise definition of a game’s rules, it is necessary for move labels to have an
interpretation that is consistent across all reachable game states [4]. Formally, we have
the following.

Definition 3.9. A ruleset R is said to be persistent if, given an arbitrary subset M ⊆ Σ
of moves, and some game state pG P GR, applying all moves σ P M in any order as a
sequence (by repeated application of the spanning move function) always results in either
t pG1u or H, where all pG1 are equivalent.

This means that moves always “accumulate” in the same way, leading to the same result,
regardless of the order in which they are applied. Note that Hackenbush is persistent.
We also know that this ruleset is dead-ending, but in general, if a ruleset is dead-ending
it does not necessarily mean that it is also persistent (nor the other way around). In
fact, for the dead-ending and persistence properties, there exist rulesets that have both
properties, only one of the two, and neither.

As an example of a dead-ending ruleset that is not persistent, take Clear the Pond.
It is played on a finite strip of squares, where each square may be empty or occupied by
a blue or red piece, and where a blue (red) piece can be moved to the first empty square
to its right (left) by Left (Right), or off the strip if no such empty square exists [2]. A
move for either player is labelled by which piece of their colour they wish to move, where
their pieces are indexed starting from the left. This ruleset is dead-ending, because the
number of pieces can only ever decrease (pieces can be moved off the strip, but there is
no mechanism for the number of pieces to increase). However, Clear the Pond is not
persistent, because different sequences of legal moves can lead to different game states.
An example is illustrated in Figure 3.2.

An example of a non-dead-ending, but persistent ruleset is Maze. This ruleset is
persistent, because a move (indicating direction and distance) is legal as long as it does
not attempt to move the piece through a wall. Thus, any sequence of legal moves can
always be “summed up”, as if the piece only moved in an L-shape on a grid without any
walls (all Left moves first, followed by all Right moves), to give the resulting game state.

Finally, an example of a ruleset which is not dead-ending nor persistent is Konane. It is
played on a rectangular grid, where each cell may be empty or occupied by a blue or red
piece, and where a blue (red) piece can jump over an orthogonally adjacent red (blue)
piece onto an empty cell, removing the piece that was jumped over [2]. A move for either
player is labelled by which piece of their colour they wish to move, and in which cardinal

2For certain other combinatorial games, such as Nim, there is more room for discussion, regarding
what constitutes a “natural labelling” when defining the ruleset. In Section 3.2 we elaborate on this
discussion.
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Figure 3.2: An example Clear the Pond position where Left moves first, followed by
Right (top), and where Right moves first, followed by Left (bottom). These are both
sequences of legal moves, but they do not lead to equivalent game states.

direction, where their pieces are indexed row-wise from the top left to the bottom right.
It is not dead-ending, because players can “open up” moves for each other, as illustrated
in Figure 3.3. Also, Konane is not persistent3, because applying two legal moves in
different orders can lead to different game states, as shown in the example in Figure 3.4.

Figure 3.3: A Konane game state where Left does not have any move option initially
(left), but where she does have a move option after Right’s move (right).

1 21 2

1,Ñ 1,Ð

1 2 1

1,Ð

11 2

1,Ñ

1 1 11
ı

Figure 3.4: A Konane game state where Left first moves her piece with label 1 east,
after which Right moves his piece with label 1 west (left subtree), and where Right first
moves his piece with label 1 west, followed by Left moving her piece with label 1 east
(right subtree). These two legal sequences of moves do not lead to equivalent game states.

Notice that, compared to our original Definition 2.1, in Definition 3.1 the notion of
moving has a different connotation. Rather than indicating the position that should
be transitioned to from the current position, we now indicate what we want to change
about the current game state in order to obtain the new game state, and we label this
change as σ P Σ. Which changes σ comprise legal moves from any given game state
pG P GR, is defined by the ruleset R. In the world of classical combinatorial games it is
not customary to introduce a move alphabet Σ, because it is typically easier to simply
describe a move by the resulting position, as we did in Definition 2.1. However, the
move alphabet will help us in providing a more “natural” definition of quantum-inspired

3It should be noted that the way in which we identify a piece when playing a move makes it so
that the ruleset is not persistent. We could also define Konane differently, for example by giving each
piece a unique number, and keeping track of each unique piece’s position throughout play, which would
then make the ruleset persistent. In Section 3.2 we elaborate on the discussion surrounding different
definitions of the “same” classical ruleset, which define different labellings.
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combinatorial games, which we will do below.

We follow the general framework for transforming a combinatorial game into a quantum-
inspired variant, introduced by Dorbec and Mhalla [4], and which has been used in later
work [6, 8]. They introduce five flavours of quantum-inspired combinatorial games; A, B,
C, C1, and D. The flavours differ in terms of when it is allowed to play an unsuperposed
move (move of width 1), and we define each of them below (Definition 3.13), after we
have defined superposed game states, superposed moves, and superposed move functions.

For the definitions below, we fix a (classical) ruleset R “ pρL, ρRq. In the framework, a
superposed game state is a set of distinct classical game states (also called realisations)
under a flavour f P tA,B, C, C1,Du. The definition is as follows.

Definition 3.10. A superposed game state

t pG1, . . . , pGnuf

is a set of n ≥ 0 distinct classical game states pG1, . . . , pGn P GR that all have the
same labelling (not just any labelling) as defined by R, with a flavour f . We say that
t pG1, . . . , pGnuf is n-wide. We also call a 1-wide superposed game state t pG1uf a classical
game state under flavour f . The set of all possible superposed game states is denoted
GRf

“

!

Af : A P 2G
R
)

(all possible sets of game states under a flavour f). The empty

superposed game state Hf never occurs in a (labelled) short game tree. Rather, it
represents the result of an illegal superposed move.

Notice that a superposed game state itself is also a game state, which has been labelled
as defined by the ruleset Rf (the quantum-inspired variant of R under flavour f). This
means that, if one would like, it is possible to define a quantum-inspired quantum-
inspired combinatorial game, or a quantum-inspired quantum-inspired quantum-inspired
combinatorial game, and so on.

Analogously to a superposed game state, a superposed move is a set of distinct classical
moves.

Definition 3.11. A superposed move

tσ1, . . . , σmu

is a set of m ≥ 1 distinct classical moves σ1, . . . , σm P Σ, which has move width m. A
move of width 1 is a classical move, which we denote by tσ1u or simply σ1. We use
Σw “

␣

tσ1, . . . , σmu : tσ1, . . . , σmu P 2Σ, 1 ≤ |tσ1, . . . , σmu| ≤ w
(

to denote the set of all
possible superposed moves of width ≤ w.

Notice that if Σ “ t1, . . . , nu and w ≥ n, then Σw contains all possible superposed moves.
For the remainder of this thesis, we do not make any assumptions on whether w is set to
some finite value or if it is unbounded, because usually this does not matter. For results
that are specific to some w, we will state it explicitly.

A superposed move tσ1, . . . , σmu is legal if each of its classical moves σ1, . . . , σm are
legal on at least one (not necessarily the same) realisation of the superposed game
state t pG1, . . . , pGnuf . The move functions for the players tL,Ru Q p are now of the form
ρfp : GRf

ˆ Σw Ñ GRf

, and are defined as follows.

Definition 3.12. Given a player p P tL,Ru, a superposed game state pS ” t pG1, . . . , pGnuf ,
and a superposed move tσ1, . . . , σmu, the superposed move function ρfp is defined as

ρfpppS, tσ1, . . . , σmuq ”

$

’

’

’

’

’

&

’

’

’

’

’

%

´

Ť

1≤i≤n,1≤j≤m ρpp pGi, σjq

¯f if 1 ă m ≤ w, and all σj are
legal on at least one pGi;

´

Ť

1≤i≤n ρpp pGi, σ1q

¯f if m “ 1, and σ1 is legal
according to f ;

Hf otherwise.
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Intuitively, making a superposed move means trying to apply all given classical moves
to all given classical game states in a “Cartesian product”-style fashion. If all classical
moves in the superposed move are illegal on a realisation that we are trying to apply
them to, then we also say that the realisation collapses. If the superposed move is illegal,
then it leads to the empty superposed game state.

In terms of relabelling, note that in a superposed game state any single realisation
may not simply be relabelled, because this could introduce additional legal superposed
moves (or remove them), which may affect winnability. Instead, all realisations should
be relabelled using the same relabelling function.

Let us now define the five flavours of quantum-inspired combinatorial games.

Definition 3.13. The five flavours, A, B, C, C1, and D, of quantum-inspired combinatorial
games are defined as follows.

• Flavour A: unsuperposed moves are never allowed.

• Flavour B: unsuperposed moves are not allowed, except if there exists only one legal
classical move across all realisations, then the player can play this unsuperposed
move.

• Flavour C: unsuperposed moves are not allowed, except if the move is legal across
all realisations.

• Flavour C1: unsuperposed moves are not allowed, except if the move is legal across
all realisations where the player still has at least one legal classical move.

• Flavour D: unsuperposed moves are always allowed.

The lattice of permissivity of the different flavours is shown in Figure 3.5. Flavours B
and C cannot be compared mutually, because flavour B allows for unsuperposed moves
that may be illegal in some realisations, while flavour C allows for unsuperposed moves,
even if other classical moves are available.

A

B C

C1

D

Figure 3.5: The lattice of permissivity for the different quantum flavours [4].

Under flavours A, B, C1, and D, empty realisations do not have any impact on which
(unsuperposed or superposed) move options are available to the player. Empty realisations
can safely be “ignored” in a superposed game state. Under flavour C, however, the presence
of an empty realisation means that whatever unsuperposed move the player may want
to play, it will be illegal on (at least) one realisation; namely the empty realisation. This
means that under flavour C, a player may have different options depending on whether
the current superposed game state contains an empty realisation.

3.1 Playing quantum-inspired combinatorial games
Quantum-inspired combinatorial games are played using superposed moves, which are
sets of classical moves. A superposed move is legal if and only if each of its classical
moves is legal in a possibilistic sense. This means that it must be possible for the current
superposed game state to “collapse” (to be measured in the physical sense, so that one of
the realisations becomes “reality”) in such a way that the classical move becomes legal,
meaning that the classical move should be legal in at least one realisation.
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It is possible to play a quantum-inspired variant of a combinatorial game, without needing
to keep track of all realisations, the number of which potentially grows exponentially
with the number of turns. The approach proposed in [4] is for a player on their turn to
announce the set of classical moves they want to play. If the other player suspects that
this superposed move is illegal, then they can challenge the player that moved to prove
that their superposed move was legal. This can be proven by, for each classical move
in the superposed move, providing a classical run respecting all superposed moves that
have been played thus far. This way, they prove that all classical moves they played were
legal in at least one realisation. If the challenged player manages to prove the legality of
their superposed move, then they win, otherwise they lose. Note that the option for a
player to challenge their opponent does not affect winnability. If a player is able to win
in the absence of challenges, then they are also able to win if they are challenged during
play.

This approach works for the more “straightforward” flavours A and D. However, for
flavours B, C, and C1, the set of realisations must be inspected to be able to determine
whether any unsuperposed move is legal. For example, under flavour B, if a player plays
an unsuperposed move, and they are challenged by their opponent, then they must
be able to prove that all other unsuperposed moves would have been illegal. Proving
that a classical move is illegal requires the player to consider all possible classical runs
respecting the superposed moves made thus far, effectively constructing the entire set of
realisations.

3.2 Labelling moves
For defining a quantum-inspired combinatorial game, the way in which we define the
ruleset of the classical game is important, because we obtain our labelling directly from
this ruleset. This labelling then, in turn, determines which classical moves in a superposed
move we consider to be distinct. We say that the ruleset Hackenbush is natural, because
it defines a “natural” labelling; namely one where a move (label) corresponds one-to-one
to the removal of an edge. So-called placement games have a similar property, where a
move corresponds one-to-one to placing a piece on a board [7]. However, many other
combinatorial games, such as Nim, do not have this property. We also call these games
nonnatural. The ruleset for the game of Nim can be given in multiple ways, each defining
a different labelling. We illustrate differences in labellings (and their effects on the
quantum-inspired variants of the rulesets) by defining two rulesets for Nim, which we
call Nim-Subtract and Nim-Cut, respectively.

Definition 3.14. Nim-Subtract is played on a number of heaps of tokens. On their
turn, a player selects one heap, from which they take (subtract) a number of tokens.

Definition 3.15. Nim-Cut is played on a number of heaps of tokens. On their turn, a
player selects one heap, for which they specify the height at which to cut, reducing the
heap to a size strictly smaller than its current size.

Intuitively, a move in Nim-Subtract can be seen as taking a number of tokens off the
top of a heap. On the other hand, in Nim-Cut a move can be seen as selecting a token in
a heap, and removing this token, along with any tokens above it. Note that both of these
rulesets are dead-ending and persistent. Also notice that Nim-Cut can be simulated in
Red-Green-Blue Hackenbush by constructing a green stalk of appropriate length
for each Nim heap. We also say that the game of Nim-Cut is contained in the game
of Red-Green-Blue Hackenbush. A Nim game state (ruleset Nim-Subtract or
Nim-Cut) can be illustrated as in Figure 3.6, where it is shown with its corresponding
Red-Green-Blue Hackenbush game state. Classically, Nim-Subtract and Nim-Cut
always behave the same way, in the sense that they generate isomorphic short games
when starting from any given heap configuration. However, as we will illustrate below,
from Nim-Subtract we obtain a more interesting quantum-inspired variant than from
Nim-Cut, because for a single heap the latter case essentially reduces back to the
classical game.

16



(a) A two-heap Nim-Subtract or Nim-Cut
game state with 3 and 1 token(s), respectively.

(b) A Red-Green-Blue Hackenbush game
state with two green stalks of length 3 and 1,
respectively.

Figure 3.6: A Nim game state with its corresponding Red-Green-Blue Hackenbush
game state.

We can play an “unlabelled” move (the resulting game state could be seen as the “label”
of the move) to the game state with 2 and 1 token(s) as shown in Figure 3.7.

ÝÝÑ

Figure 3.7: Moving to the Nim game state with 2 and 1 token(s), respectively.

In Nim-Subtract we would label this move by pi, nq, where i is the heap number and
n is the number of tokens being removed, as shown in Figure 3.8.

1 2

p1, 1q
ÝÝÝÑ

1 2

Figure 3.8: Applying move p1, 1q to a Nim-Subtract game state, which removes one
token from the first heap.

In Nim-Cut we would label this move differently, namely as pi, jq. Here, i still indicates
the heap number, but j indicates the height of the token that should be removed, along
with any tokens above it. An example is shown in Figure 3.9.

1
2
3

1 2

p1, 3q
ÝÝÝÑ 1

2
3

1 2

Figure 3.9: Applying move p1, 3q to a Nim-Cut game state, which removes token 3 and
any tokens above it from the first heap.

The outcome classes of superposed game states are not always equal between Quantum
Nim-Subtract and Quantum Nim-Cut. We illustrate an example of a superposed
game state for a single heap under flavour C1 in Figure 3.10. This superposed game state
can be reached starting from a classical game state of a single three-token heap and
removing one and two tokens in superposition, for example.

In Quantum Nim-Subtract (Figure 3.10a), the second player always wins, because the
first player is not able to immediately move to the classical empty game state. Rather,
the first player must play the superposed move tp1, 1q, p1, 2qu, or the only classical move
that is valid in all non-empty realisations p1, 1q. On the following turn, the second
player is able to move to the classical empty game state by move p1, 1q. However, in
Quantum Nim-Cut (Figure 3.10b), the first player is able to win by simply playing
p1, 1q immediately.
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(a) In Quantum Nim-Subtract, the second player always wins (this is a P-position).
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(b) In Quantum Nim-Cut, the first player always wins (this is an N -position).

Figure 3.10: Winning strategies for an example superposed game state, in Quantum
Nim-Subtract and Quantum Nim-Cut, both under flavour C1. This illustrates the
difference between two ways of labelling Nim moves in the quantum-inspired case.

If we consider Quantum Nim-Cut under flavour D with a single heap, then we can
notice that this ruleset effectively reduces back to classical Nim-Cut. Any superposed
game state can be collapsed into a classical game state by means of a classical move.
This is due to the property that no label ever repeats along any path in a Nim-Cut
labelled short game tree, which we call non-repeating. This means that whenever we play
a move, it becomes illegal for the remainder of play. It follows that, in a superposed game
state, any realisations on which we try to apply such a move “for a second time” collapse.
Nim-Subtract, on the other hand, is repeating. Whenever a move is “repeated”, it
does not necessarily mean that the realisation collapses. This means that, in general, we
obtain superposed game states consisting of more realisations, which cannot be collapsed
as easily, making the game more interesting.

3.3 Covered realisations
We call empty realisations that we are able to ignore covered realisations. The notion of
covering can be generalised to other realisations in a superposed game state, beyond the
trivial case of the empty game state [4], as we will discuss below.

Definition 3.16. Given a set of game states t pG1, pG2, . . . , pGnu P 2G
R

, we say that pG1

is covered by t pG2, . . . , pGnu if for all σ P Pp pG1q with ρp pG1, σq “ t pG1
1u, there exists some

pGi, 2 ≤ i ≤ n on which σ is also legal, and game state pG1
1 is covered by

Ť

2≤i≤n ρp pGi, σq.

Note that an empty game state pG1 (meaning that Pp pG1q “ H) is covered by any
non-empty set of other realisations.

Theorem 3.17. For flavour f P tA,B,Du, if we have a superposed game state
t pG1, pG2, . . . , pGnuf P GRf

such that pG1 is covered by t pG2, . . . , pGnu, then t pG1, pG2, . . . , pGnuf

” t pG2, . . . , pGnuf .

This theorem means that a covered realisation does not add any superposed move options.
It can be left out of the superposed game state without affecting the labelled short game
tree.

Note that this theorem does not hold for flavour C1, whereas it is allowed to ignore
empty realisations under that flavour. Take for example pS ” t pG1, pG2, pG3uC

1

, with
R “ Hackenbush, two moves σ1, σ2 P Σ, with PLp pG1q “ tσ1u, PLp pG2q “ tσ2u, and
PLp pG3q “ tσ1, σ2u, and where σ1 and σ2 are two grounded blue edges (since moves
correspond one-to-one to edges in Hackenbush). We have that σ1, the only move that
is legal on pG1, is also legal on a game state in t pG2, pG3u; namely on pG3, and applying σ1
to pG1 leads to the empty game state which is covered (by ρLp pG3, σ1q), so pG1 is covered
by t pG2, pG3u. However, we cannot say that pS ” pS1, with pS1 ” t pG2, pG3uC

1

, because the
classical move σ2 is not legal on pS (because σ2 is not legal on pG1, while Left does have
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a legal classical move σ1 on that realisation), while it is legal on pS1. We now give the
proof of Theorem 3.17, based on the proof from [4].

Proof. The equivalence can be proven by induction on the birthday of game state pG1. If
pG1 is empty, then it has birthday 0. In this case it is clear that pS ” t pG1, pG2, . . . , pGnuf

has the same legal move options as pS1 ” t pG2, . . . , pGnuf for f P tA,B,Du, meaning
that pS – pS1, and pS ” pS1 since both have the same labelling. Now for the induction
step, assume that the theorem holds for all game states which have a birthday smaller
than some arbitrary pG1’s birthday. If we apply some legal move tσ1, . . . , σmu P Σw

to our superposed game state pS ” t pG1, pG2, . . . , pGnuf , then we get the superposed

game state pT ”

´

Ť

1≤i≤n,1≤j≤m ρp pGi, σjq

¯f

. Here, for every σj P tσ1, . . . , σmu with

ρp pG1, σjq “ t pG1
1u, we have that pG1

1 is covered by
Ť

2≤i≤n ρp pG1
i, σjq (since pG1 is covered

by t pG2, . . . , pGnu), meaning that pT – pT 1, with pT 1 ”

´

Ť

2≤i≤n,1≤j≤m ρp pGi, σjq

¯f

. Thus,
pS1 has exactly the same legal move options as pS, so pS – pS1, and since both superposed
game states have the same labelling pS ” pS1.

Definition 3.18. A dead-ending ruleset R is said to be consistent if, given two game
states pG and pH such that Pp pGq ⊆ Pp pHq, for all σ P Pp pGq, with ρp pG, σq “ t pG1u and
ρp pH,σq “ t pH 1u, it holds that Pp pG1q ⊆ Pp pH 1q.

This means that, given Pp pGq ⊆ Pp pHq, whenever a move σ causes some moves σ1 (possibly
including σ) to become illegal in the follower pH 1 of pH, then all of these σ1 must also
become illegal in pG1 (the follower of pG). Note that many dead-ending rulesets, including
Hackenbush, Nim-Subtract, and Nim-Decrease, also have the consistency property.
In the case of Hackenbush, whenever the removal of an edge σ also causes the removal
of some other edges σ1, then these σ1 must also be removed in a game state that does
not contain any additional edges that could support them. A similar argument holds
for Nim-Decrease, with tokens requiring support from tokens at lower levels. In the
case of Nim-Subtract, if multiple tokens are removed from a heap, then removing this
same number of tokens from a smaller heap cannot result in a larger heap. However, it
is possible to design a ruleset that is dead-ending, but not consistent. For example, a
variant of Nim-Subtract with a move counter, which ends after a set number of moves
have been played. This ruleset is still dead-ending. However, if we have a game state pG
of a single heap of size 2 or greater that ends after 2 turns, and another game state pH of
a single larger heap that ends after 1 turn, then Pp pGq ⊆ Pp pHq, but if we apply the move
to remove one token to both game states, we end up with pG1 that still has a legal move,
and pH 1 that does not have any legal move, so Pp pG1q ⊈ Pp pH 1q.

Definition 3.19. Given two game states pG and pH, we say that pG is weakly covered by
pH if all moves σ P Σ that are legal on pG are also legal on pH, i.e., Pp pGq ⊆ Pp pHq.

In the example of Nim-Subtract with a move counter that we have just discussed, a
smaller heap may be weakly covered, but depending on the move counter it may not
be covered. For example, if the immediate follower of the covered realisation has move
options, while the immediate follower of the covering realisation does not have any move
options.

Theorem 3.20. Given a consistent ruleset R and set of game states t pG1, pG2, . . . , pGnu

such that pG1 is weakly covered by some pGi, 2 ≤ i ≤ n, then pG1 is covered by t pG2, . . . , pGnu.

Proof. Again, we use induction on the birthday of game state pG1. Assume that pG1 is
weakly covered by pGi P t pG2, . . . , pGnu. If pG1 is the empty game state, then it is trivially
both weakly covered by pGi and covered by any non-empty set of other realisations
t pG2, . . . , pGnu, so the theorem holds. Now, for our induction hypothesis, assume that
the theorem holds for all game states that have a birthday smaller than some pG1’s
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birthday. We want to show that for all σ P Pp pG1q with ρp pG1, σq “ t pG1
1u, there exists

some pGi, 2 ≤ i ≤ n on which σ is also legal, and pG1
1 is covered by

Ť

2≤i≤n ρp pGi, σq. Since
pG1 is weakly covered, there must exist some pGi, 2 ≤ i ≤ n such that Pp pG1q ⊆ Pp pGiq,
meaning that any move that is legal on pG1 is also legal on pGi. Also, since all pG1

1 have
a smaller birthday than pG1, it will suffice to show that all pG1

1 are weakly covered by
some pG1

j P
Ť

2≤j≤n ρp pGj , σq for σ P Pp pG1q, by our induction hypothesis. Now, if a move
σ P Σ causes some moves σ1 to become illegal in pGi, meaning that all σ1 R Pp pG1

iq, with
ρp pGi, σq “ t pG1

iu, then these moves must also be illegal in pG1
1, because pG1 is weakly

covered by pGi and R is consistent. This proves that Pp pG1
1q ⊆ Pp pG1

iq, so pG1
1 is weakly

covered by pG1
i.

Theorem 3.20 tells us that certain realisations can safely be left out of a superposed game
state without having to recursively check for coverage. As we have mentioned before, this
theorem does not apply to quantum-inspired variations of other combinatorial games in
general, because not all rulesets have the dead-ending property. We used Maze as an
example. Not all dead-ending rulesets are necessarily consistent either, as we have also
discussed.

3.4 Quantum Hackenbush
Let us now gain some intuition for how Quantum Hackenbush works by looking at
some examples, and deriving some basic results. Given a Hackenbush position G, we
can construct a width-1 Quantum Hackenbush superposed game state t pGuf , under
some flavour f . We have already shown a small example labelled game tree starting from
a classical game state in Figure 1.2.

To start, notice that, if legal, applying the same width-2 move tσ1, σ2u twice effectively
removes both edges “classically”. The result is as if the two edges σ1 and σ2 were removed
one by one, in nondeterministic order. All realisations from the original game state that
did not contain both σ1 and σ2 collapse, and we are left with a superposed game state
where no realisation contains σ1 or σ2.

We also have that, for n grounded edges of the same colour, a player will always be able
to play a total of n moves, under any flavour, by following the strategy that we now
define.

Definition 3.21. We say that a player follows chain-extension if they always play a
width-2 move whenever one is legal, and if they always include exactly one classical
move that they have not included in any previously played superposed move (a “new”
classical move), whenever this is possible.

If only an unsuperposed move is legal, then the player can play this move (which can
only be on their last turn). If the only superposed move that is legal is one that includes
more than one “new” classical move (which will always be on their first turn), or no
“new” classical moves at all (which can only be on their last turn), then the player can
also play this move.

Take for example, for a superposed game state t pGuf under any flavour f , with Pp pGq “

tσ1, σ2, σ3, σ4u, and where each move corresponds to a grounded blue edge. A 4-move
chain-extension sequence for Left would be tσ1, σ2u–tσ2, σ3u–tσ3, σ4u–tσ1, σ4u.

For quantum-inspired combinatorial games in general, a weakly covered realisation
cannot be left out of a superposed game state without changing its legal superposed
move options. However, this is possible for Quantum Hackenbush superposed game
states under flavour A, B, or D, because Hackenbush is consistent (Theorem 3.20).

From Section 4 onwards, we will study a few classes of restricted Hackenbush game
states in-depth. For such classes of game states, it is simpler to analyse certain properties,
such as the outcome class or value. Analysing such classes of restricted game states can
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reveal algebraic structures, which may be used for the purpose of inspiring the discovery
of similar structures in classes of more general game states.
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4 Results for Stalks game states
The first class of restricted Hackenbush positions that we study, we call Stalks. A
position in this class consists of several independent (non-connected) acyclic paths of
ℓ ≥ 1 edges (stalks), each originating from the ground.

Let us define a subclass of Stalks called Single Stalk, which are the positions containing
no more than one stalk. Classically, the value of any stalk can easily be read off by
interpreting the stalk as a Hackenbush string. A simple rule for determining the value
of a Hackenbush string was found in [9], and it is given as follows.

Theorem 4.1. The value of any Hackenbush string can be determined by first, starting
from the ground node, counting the number of edges m until the first colour change. If
the grounded edge is blue then this number has a positive sign (m), and if it is red the
number has a negative sign (´m). Then, for every nth edge after the first colour change
(the first edge of a different colour has n “ 1), add 1

2n for a blue edge, and subtract 1
2n

for a red edge.

Following this theorem, the value of a stalk G of length ℓ has the form

G “ p˘mq `

ˆ

˘
1
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˙

` . . .`

ˆ

˘
1

2ℓ´m

˙

.

In [9], it was also proven that the optimal move on a Hackenbush string is given as
follows.

Theorem 4.2. When playing on a Hackenbush string, the optimal move for either
player is to remove the edge of their colour which is farthest from the ground.

This also makes sense knowing how the value of a Hackenbush string G can be
determined (Theorem 4.1), because if another move were to be optimal, the edges of the
player’s colour farther from the ground would not contribute to the value of G.

Let us define another subclass of Stalks, which we will call Hollyhocks (the name was
first coined in [1]). A hollyhock is a stalk, with the additional restriction that if the
grounded edge is blue then all other edges above it must be red, and vice versa. We
call a hollyhock whose grounded edge is blue a blue hollyhock, and a hollyhock whose
grounded edge is red a red hollyhock. Figure 4.1 shows a general blue and red hollyhock.
The value of a blue hollyhock is 1

2ℓ´1 , where ℓ is the length (number of edges) of the
hollyhock. A red hollyhock has value ´ 1

2ℓ´1 . Proofs can be constructed in a way similar
to Example 2.18, or by using the rule from Theorem 4.1. In combinatorial game theory,
the value of a position consisting of several independent components is fully determined
by the values of the individual components [3]. Thus, a Hollyhocks position can be
written as a disjunctive sum

G – Hℓ ` . . .`Hℓ1 ´Hk ´ . . .´Hk1 ,

where Hℓ denotes a blue hollyhock of length ℓ, and ´Hk denotes a red hollyhock of
length k. Note that it is always allowed to reorder hollyhocks, because the disjunctive
sum is commutative.

..
.

ℓ´ 1

(a) A blue hollyhock of length ℓ.

..
.

k ´ 1

(b) A red hollyhock of length k.

Figure 4.1: Blue and red hollyhocks.

22



Additionally, let us define Short Hollyhocks to be the subclass of Hollyhocks positions
consisting only of hollyhocks of length ℓ ≤ 2. Short Hollyhocks positions are more
commonly called sums of halves, and wholes. The terms “half” and “whole” refer to the
values of such components, because H2 “ 1

2 and H1 “ 1 (and of course ´H2 “ ´ 1
2 and

´H1 “ ´1).

Finally, let us also define an even more restricted subclass of Hollyhocks, which we name
Blue Meadow. A Blue Meadow position consists of n blue hollyhocks H2 of length 2,
along with m red “weeds” ´H1 of length 1. It can be written as

G – n ¨H2 ´m ¨H1.

The position in Figure 1.1 is a Blue Meadow position consisting of two blue hollyhocks
and a single red weed.

4.1 A program for analysing Quantum Hackenbush
In the following subsections, we show multiple tables containing outcome classes or values
of certain Hackenbush classical game states under different flavours. These outcome
classes and values were calculated by a program for analysing Quantum Hackenbush
superposed game state trees, which we named quantum-hackenbush-suite4. This pro-
gram was written in C++, and significant parts of its implementation were inspired by
CGSynch5, which is a program for analysing combinatorial and synchronised games [10].

quantum-hackenbush-suite takes as an input a description of a Hackenbush position
G, and constructs a width-1 superposed game state pS ” t pGuf under a given flavour
f based on this. The program repeatedly applies simplifications to the short game S
obtained by removing the labelling from pS. The program uses domination and reversibility
until it reaches a canonical form, which it then outputs. The program can also determine
the birthday or outcome class of S. For these properties, the canonical form does not
need to be determined first. The outcome class in particular can be determined efficiently,
because only alternating turns need to be considered when searching the tree, rather
than needing to consider repeated turns by the same player, which is necessary for
determining the value.

To improve performance, the program uses three “databases” (hash maps) to store
intermediate results, preventing the same computation from being performed multiple
times. It stores intermediate results for Hackenbush game states, the superposed game
states made up of these, and the short games obtained by unlabelling superposed game
states. Specifically, it keeps references to the children of any game state, superposed
game state, or short game. For short games it also stores the result of operations such as
taking the inverse, comparing to another short game, or determining the canonical form.
To further improve performance, the program uses an efficient representation for Short
Hollyhocks and Single Stalk game states. For such game states containing k edges, the
program uses an array representation that scales with Opkq, which is more efficient (in
terms of both space and time) than the Opk2q adjacency matrix representation it uses
for general game states.

4.2 Values of single stalks
It turns out that the rule from Theorem 4.1 can be applied directly to any Single Stalk
game state under flavour f P tB, C1,Du, which we will prove below. For flavour A, we will
prove that a simple modification of the rule can be used. Let us start with a preliminary
theorem.

4quantum-hackenbush-suite’s source code can be found at https://github.com/jpleunes/
quantum-hackenbush-suite.

5CGSynch’s source code can be found at https://github.com/xlenstra/CGSynch.
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Theorem 4.3. Given a single-stalk position G and a flavour f P tA,B,Du, any follower
t pG1

1, . . . ,
pG1
nuf of t pGuf is equivalent to t pG1

juf , where pG1
j P t pG1

1, . . . ,
pG1
nu is the realisation

consisting of the tallest stalk.

Proof. Any realisation consisting of a smaller stalk is weakly covered by pG1
j , so it is

covered, according to Theorem 3.20. Since these realisations are covered, we have that
t pG1

1, . . . ,
pG1
nuf ” t pG1

juf , according to Theorem 3.17.

We can now prove that the classical rule can also be used under flavour f P tB, C1,Du.

Theorem 4.4. Under flavour f P tB, C1,Du, any single-stalk position G has the same
value as in the classical case, i.e., t pGuf “ G.

Proof. Under flavour D, using Theorem 4.3 we know that any superposed move leads
to a superposed game state that is equivalent to the classical game state where only
the classical move corresponding to the edge farthest from the ground was played. This
means that superposed moves do not introduce any additional options.

Under flavour C1, the player can always play a superposed move containing the edge σ
farthest from the ground which exists in any realisation, or if there exists exactly one
edge across all realisations, then the player can classically remove this edge. Playing
a superposed move containing edge σ leads to a superposed game state containing a
realisation which contains all edges below σ. Thus, effectively, either player has exactly
one move corresponding to each edge of their colour, just as in the classical case (this
follows from Theorem 4.2, which states that it is optimal for the player to not cause any
edges of their colour to fly away).

Under flavour B, Theorem 4.3 again tells us that a superposed move leads to an equivalent
classical game state, where the edge from the superposed move that is farthest from
the ground has been removed. This means that a player is effectively able to play any
classical move, except that they cannot remove the edge of their colour that is closest to
the ground if there exist multiple edges of their colour. This does not affect the value
of any classical game state that we encounter, however, because when playing on a
Hackenbush string the optimal move is always to remove the edge of your colour that
is farthest from the ground (Theorem 4.2). When there exists exactly one edge of a
player’s colour, then the player can play a classical move removing this edge, according
to flavour B.

We can also prove that a small modification of the classical rule can be used under
flavour A.

Theorem 4.5. Under flavour A, the value of a Hackenbush string can be determined
by following Theorem 4.1, but ignoring the first blue edge, if it exists, and the first red
edge, if it exists.

Proof. The proof is the same as for Theorem 4.4, flavour B, except that when there
exists exactly one edge of a player’s colour, then the player does not have any move
option. This means that a player will never be able to move to a classical game state
where the edge closest to the ground, of their colour, has been removed. Thus, these
edges do not contribute to the value, and can be ignored when following the rule from
Theorem 4.1.

Under flavour C, it is possible to construct classical game states that are not a number.
Figure 4.2 shows an example. Values of single stalks of different lengths, encoded as bit
strings, under flavour C are given in Table 4.1. Certain patterns appear in the non-number
values that arise. For example, the Hackenbush string G that encodes the decimal 4
always seems to have value pℓ ´ 3q˚, where ℓ ≥ 4 is the length of G. Also, the G that
encodes the decimal 2ℓ´1 ´4 always appears to be the last non-number value in a column,
with value 1

2ℓ´4 ˚. It is also interesting to note that any non-number canonical form of
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a G of length ℓ seems to appear as an immediate follower of some other non-number
canonical form of a G1 of length ℓ`1, which may imply that there exists some recurrence
relation for the non-number values shown in the table.
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“ tt0 | u | t0 | uu “ t1 | 1u “ 1˚

Figure 4.2: A classical stalk that is not a number under flavour C. Only non-dominated
options are shown for brevity.
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4 5 6 7
410 “ 00001002 1˚ 2˚ 3˚ 4˚

810 “ 00010002 t2 | 1u t3 | 2u t4 | 3u

910 “ 00010012 t1 | 1, 1˚u t2 | 2, 2˚u t3 | 3, 3˚u

1110 “ 00010112
1
2˚ 1 1

2˚ 2 1
2˚

1210 “ 00011002
1
2˚ 1 1

2˚ 2 1
2˚

1610 “ 00100002 t3 | 1u t4 | 2u

1710 “ 00100012 t2 | 1, t2 | 1uu t3 | 2, t3 | 2uu

1810 “ 00100102 t1 1
2 | 1, 1˚u t2 1

2 | 2, 2˚u

1910 “ 00100112 t1 | 1, t1 | 1, 1˚uu t2 | 2, t2 | 2, 2˚uu

2010 “ 00101002
3
4˚ 1 3

4˚

2210 “ 00101102 t 1
2 ,

1
2˚ | 1

2u t1 1
2 , 1

1
2˚ | 1 1

2u

2310 “ 00101112 t 1
2 | 1

4u t1 1
2 | 1 1

4u

2410 “ 00110002 t 3
4 | 1

2u t1 3
4 | 1 1

2u

2510 “ 00110012 t 1
2 | 1

2 ,
1
2˚u t1 1

2 | 1 1
2 , 1

1
2˚u

2710 “ 00110112
1
4˚ 1 1

4˚

2810 “ 00111002
1
4˚ 1 1

4˚

3210 “ 01000002 t4 | 1u

3310 “ 01000012 t3 | 1, t3 | 1uu

3410 “ 01000102 t2 1
2 | 1, t2 | 1uu

3510 “ 01000112 t2 | 1, t2 | 1, t2 | 1uuu

3610 “ 01001002 t1 3
4 | 1, 1˚u

3710 “ 01001012 t1 1
2 | 1, 1˚, t1 1

2 | 1, 1˚uu

3810 “ 01001102 tt1 | 1˚u | 1, t1 | 1, 1˚uu

3910 “ 01001112 t1 | 1, t1 | 1, t1 | 1, 1˚uuu

4010 “ 01010002 t 7
8 | 3

4u

4110 “ 01010012 t 3
4 | 3

4 ,
3
4˚u

4310 “ 01010112
5
8˚

4410 “ 01011002 t 1
2 , t

1
2 ,

1
2˚ | 1

2u | 1
2u

4510 “ 01011012 t 1
2 ,

1
2˚ | 3

8u

4610 “ 01011102 t 1
2 , t

1
2 | 1

4u | 1
4u

4710 “ 01011112 t 1
2 | 1

8u

4810 “ 01100002 t 7
8 | 1

2u

4910 “ 01100012 t 3
4 | 1

2 , t
3
4 | 1

2uu

5010 “ 01100102 t 5
8 | 1

2 ,
1
2˚u

5110 “ 01100112 t 1
2 | 1

2 , t
1
2 | 1

2 ,
1
2˚uu

5210 “ 01101002
3
8˚

5410 “ 01101102 t 1
4 ,

1
4˚ | 1

4u

5510 “ 01101112 t 1
4 | 1

8u

5610 “ 01110002 t 3
8 | 1

4u

5710 “ 01110012 t 1
4 | 1

4 ,
1
4˚u

5910 “ 01110112
1
8˚

6010 “ 01111002
1
8˚

Table 4.1: Canonical form values of Hackenbush strings of different lengths (horizontal)
that represent different binary encodings (vertical) under flavour C, for any finite or
unbounded w. The grounded edge corresponds to the leftmost bit, with blue edges
corresponding to 0s and red edges corresponding to 1s. For any length, we do not
consider binary strings that have 1 as the leftmost bit, because the value of each of these
Hackenbush strings can be obtained by taking the negative of the value of the inverted
binary string. Only values that differ from the classical case are shown.

4.3 Outcome classes can differ between flavours
Let us consider Blue Meadow positions, which are of the form G – n ¨H2 ´m ¨H1. In
classical Hackenbush, the value (and thus also the outcome class) of a Blue Meadow
position can easily be determined by considering each stalk separately. If n “ 2m, then
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the position is a P-position, since 2m ¨H2 ´m ¨H1 “ 2m ¨ 1
2 ´m ¨ 1 “ 0. Otherwise, if

n ă 2m the position is an R-position, or if n ą 2m it is an L -position.

However, in Quamtum Hackenbush superposed moves enable interactions between the
stalks, meaning that the stalks are no longer non-interacting components, so they cannot
be analysed separately anymore. This can result in a classical game state receiving a
different outcome class as compared to the classical case. In Table 4.2 we see the outcome
classes for small values of n and m for the different flavours A, B, C, C1, and D, with a
maximum move width of w “ 2. Except for flavours B and C1, all flavours are pairwise
different, in terms of the outcome classes that are shown.

0 1 2 3 4 5
0 P P R R R R
1 P R R R R R
2 L L R R R R
3 L L R R R R
4 L L R R R R
5 L L R R R R
6 L L L R R R
7 L L L
8

(a) Flavour A.

0 1 2 3 4 5
0 P R R R R R
1 L R R R R R
2 L R R R R R
3 L P R R R R
4 L L R R R R
5 L L R R R R
6 L L L R R R
7 L L L
8

(b) Flavour B.
0 1 2 3 4 5

0 P R R R R R
1 L R R R R R
2 L P R R R R
3 L L R R R R
4 L L R R R R
5 L L R R R R
6 L L L R R R
7 L L L
8

(c) Flavour C.

0 1 2 3 4 5
0 P R R R R R
1 L R R R R R
2 L R R R R R
3 L P R R R R
4 L L R R R R
5 L L R R R R
6 L L L R R R
7 L L L
8

(d) Flavour C1.
0 1 2 3 4 5

0 P R R R R R
1 L R R R R R
2 L R R R R R
3 L L R R R R
4 L L R R R R
5 L L P R R R
6 L L L R R R
7 L L L R R R
8 L L L

(e) Flavour D.

Table 4.2: Outcome classes of sums of n blue halves (vertical) and m red wholes
(horizontal), under all flavours, with maximum superposed move width w “ 2. Marked
in blue are the outcome classes that differ from classical Hackenbush.

4.4 Short Hollyhocks game states can have ˚-followers
In classical Hackenbush, there are no N -positions. This can be shown in a way similar
to that in [1], by noticing that removing a blue edge from a position G causes some
subgraph to be removed, which can in turn be viewed as a Hackenbush position G1

with a single grounded blue edge. This means that the Left option GL of G has value
GL “ G´G1 ă G, and a symmetrical inequality can be shown for Right options. Thus,
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since GL ă G ă GR for all Left options GL and Right options GR of G, the simplest
number theorem (Theorem 2.20) can be applied, so all Hackenbush positions must be
a number.

In Quantum Hackenbush, however, it is possible to encounter positions with value ˚

(which have outcome class N ) in the superposed game state tree. Figure 4.3 shows, for
every flavour, an example superposed game state with value ˚, along with how it can be
reached from a classical Short Hollyhocks game state.
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(a) Reaching a ˚ under flavour A. From the ˚, Left can play t1, 2u to move to 0, and Right can
play t3, 5u to move to 0.
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(b) Reaching a ˚ under flavour f P tB, C1
u. From the ˚, Left can play t1, 4u to move to 0, and

Right can play t6, 7u to move to 0.

Figure 4.3: A path leading to a superposed game state with value ˚, starting from some
classical Short Hollyhocks game state, under every flavour. Only non-dominated options
are shown for brevity. (Continues on next page.)

4.5 Values of Blue Meadow game states
Let us again consider Blue Meadow positions G – n ¨ H2 ´ m ¨ H1. We know that
classically G “ n ¨ 1

2 ´m. However, t pGuf “ G does not hold in general. Canonical form
values of small Blue Meadow classical game states under the different flavours are shown
in Table 4.3.

We were not able to calculate as many values for unbounded w compared to w “ 2,
because these computations are move intensive (in terms of both time and space), due to
the increased number of superposed move options. It is interesting to note that flavours
B, C1, and D seem to have identical values when considering unbounded w. For w “ 2,
flavours B and C1 also seem to have identical values, except for 3 ¨H2 (n “ 3 and m “ 0).

Theorem 4.6. The value of a Blue Meadow classical game state under any flavour
f can never be greater than its classical value, except under flavour A when there is
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(c) Reaching a ˚ under flavour C. From the ˚, Left can play t1, 3u to move to 0, and Right can
play t4, 6u to move to 0.
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(d) Reaching a ˚ under flavour D. From ˚, Left can play t4u to move to 0, and Right can play
t5u to move to 0.

Figure 4.3: A path leading to a superposed game state with value ˚, starting from some
Short Hollyhocks classical game state, under every flavour. Only non-dominated options
are shown for brevity. (Continued.)

exactly one red hollyhock, i.e., t´H1uA “ 0 ą ´H1 “ ´1.

Proof. The ability to play superposed moves can only be advantageous for Right (not for
Left), because this way he is, in some cases, able to “avoid” his edges from being removed
in all realisations, because Left may not (within a single move) be able to remove a
corresponding blue edge in all realisations. Left, on the other hand, will not be able to
play a total number of moves that is greater than in the classical case, because each turn
she must remove one blue edge from each realisation.

Under flavour A, any game state that has at most one edge of either colour has value 0,
because neither player will be able to move. This is not necessarily true for any other
flavour, because the players could play a classical move on the edge of their colour. The
only exception for Theorem 4.6 is t´H1uA, because this is the only Blue Meadow game
state containing exactly a single red edge, which classically has a value smaller than 0,
i.e., ´H1 “ ´1 ă 0.

Finally, under flavours B, C1, and D, with unbounded w, all canonical form values seem
to have birthday m if n “ 0, and birthday n` maxp1,mq ´ 1 otherwise.
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1 0 ´2 ´3 ´4 ´5 ´6
2 3

4
1
4

´1 1
4

´2 1
2

´3 1
2

´4 1
2

3 1 3
8

´1 1
8

´2 1
8

´3 1
8

´4 1
8

4 1 1
2

3
4

´ 1
2

´1 1
2

5 2 1 1
4

(a) Flavour A with w “ 2.
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(b) Flavour A with unbounded w.
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(c) Flavour B with w “ 2.
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(d) Flavour B with unbounded w.
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(e) Flavour C with w “ 2.
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(f) Flavour C with unbounded w.
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(g) Flavour C1 with w “ 2.
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(h) Flavour C1 with unbounded w.
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(i) Flavour D with w “ 2.
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(j) Flavour D with unbounded w.

Table 4.3: Canonical form values of sums of n blue halves (vertical) and m red wholes
(horizontal), under all flavours. Marked in blue are the values that differ for unbounded
maximum superposed move width w, as opposed to w “ 2.
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5 Circus Tent game states are numbers
Another class of restricted Hackenbush positions that we study is that of Circus Tent
positions. A position in this class consists of n ≥ 2 legs, which are each a single blue
edge with a single red edge on top. The tops of all legs are connected to each other. A
general circus tent is shown in Figure 5.1. Let us denote an n-leg circus tent by Cn.

¨ ¨ ¨

n

Figure 5.1: A circus tent with n legs.

Circus Tent is a subclass of the more general Redwood Furniture positions. Redwood
Furniture is defined as all positions where no grounded edge is red, where all blue edges
are grounded, each with its non-grounded side connected to a unique red edge, and
where all edges are (indirectly) connected. A useful theorem for determining the value of
a Redwood Furniture position is given as follows.

Theorem 5.1. A Redwood Furniture position G has value t0 | GRu, where GR is the
smallest Right option of G.

A proof for this theorem can be found in [1]. We can use this theorem to prove the value
of an arbitrary circus tent.

Theorem 5.2. A circus tent has value 1, i.e., Cn “ 1 for all n ≥ 2.

Proof. Let us prove the statement by induction on the number of legs n. For n “ 2,
we have C2 “ t 1

4 | 1 1
2u “ 1, as also illustrated in Figure 5.2. Now assume that Ck “ 1

for any given k ≥ 2. We want to prove that Ck`1 “ 1. If Right moves on Ck`1, then
he removes a red edge from one of the legs. This leaves us with CR

k`1 consisting of
a circus tent Ck with a separate blue edge, which has value Ck ` 1 “ 1 ` 1 “ 2.
Since Ck`1 is a Redwood Furniture position, we can apply Theorem 5.1 to obtain
Ck`1 “ t0 | CR

k`1u “ t0 | 2u “ 1.
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,

/

/

.

/

/

-

“ t 1
4 | 1 1

2u

Figure 5.2: The first move on C2. Left moves to a blue hollyhock of length 3, for which we
know H3 “ 1

23´1 “ 1
4 . Right moves to a sum of two hollyhocks H1 `H2 “ 1

21´1 ` 1
22´1 “

1 ` 1
2 “ 1 1

2 .

Theorem 5.3. Under flavour f P tA,B, C1,Du, any circus tent has value 1
2 , i.e., t pCnuf “

1
2 for n ≥ 2.

Proof. First notice that Left will always be able to move, as long as she has had strictly
fewer than n turns. She can follow chain-extension, but she can also follow any other
strategy, as long as she is careful under flavour A to not leave exactly a single blue edge
across all realisations.

Right will be able to move as long as he has had strictly fewer than n turns, there exists
at least one blue edge in at least one realisation (which is the case if Left has had strictly
fewer than n turns), he is careful under flavour A to not leave only a single red edge
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across realisations, and he is careful to not give Left “free” moves. Right can ensure that
he has move options under flavour A by following chain-extension. With this strategy,
he also does not give Left free moves, because he ensures (except possibly on his last
turn) that no red edge is removed from all realisations for which the corresponding blue
edge may still be present in some realisation(s) (i.e., “classically separating” some blue
edges from the remainder of the circus tent). Such separate blue edges give Left an
advantage, because she does not need to play these edges in order to remove all red
edges in all realisations. Thus, if Right follows chain-extension, he is always able to
satisfy the requirements for being able to move, except for both players Left and Right
having had strictly fewer than n turns. From now on, we only need to consider this
single requirement.

We now prove that pS ” t pCnuf “ 1
2 based on the properties that we have just found.

These properties are that, for any follower of pS, if Left has had k ă n turns, then she
can move, and if both Left and Right have had k ă n and ℓ ă n turns, respectively,
then Right can move. We can disregard (“reverse out”) the first 2 ¨ pn´ 1q turns of play
(n´ 1 turns for each player), because during these turns, either player is always able to
respond to any move by the other player. This means that the follower pS1 of pS, for which
k “ ℓ “ n´ 1, has the same value as pS, i.e., pS1 “ pS. For pS1, we have that if Left moves,
she moves to the empty position, and if Right moves, he moves to a position where Left
has one final move (to the empty position) and Right has no moves. Thus, formally,

pS “ pS1 “ t0 | t0 | uu “ t0 | 1u “
1

2
.

Theorem 5.4. Under flavour C, any circus tent has value 1, i.e., t pCnuC “ 1 for n ≥ 2.

Proof. Observe that Left is always able to move, as long as she has had strictly fewer
than n turns. Right is able to move as long as both Left and Right have had strictly
fewer than n turns, with one exception: if there exists exactly one red edge across all
realisations, but this edge is not present in all realisations, then he is not allowed to
play the unsuperposed move for this edge. In fact, Left can always force this situation to
occur whenever she has had exactly n´ 2 turns and Right has had exactly n´ 1 turns
(but not in any other case), which we will now prove.

Observe that if Right has had exactly n´ 1 turns, and Left has had strictly fewer than
n´1 turns, then any realisation contains at most one red edge, since any superposed move
by Right removes at least one red edge from every realisation (n´x ≤ 1 for x ≥ n´1). If
Right has followed chain-extension, then there will be at least two realisations that each
contain a different red edge (and possibly some other realisations that do not contain
any red edge). Otherwise, it is possible that all realisations contain the same red edge.
If Right has played poorly, it is also possible that no realisations contain any red edge,
but we can assume that Right plays optimally. Now, if Left has had exactly n´ 2 turns,
every realisation will contain exactly n´ pn´ 2q “ 2 blue edges (since all blue edges are
grounded). Say that, thus far, Left has classically removed a blue edge every turn. This
means that we either have exactly one realisation, or exactly two realisations, where both
realisations contain a different red edge. If there is exactly one realisation, then Left can
play an unsuperposed move, removing the blue edge corresponding to the final red edge.
Otherwise, if there are exactly two realisations, Left can play any unsuperposed move,
resulting in one realisation that no longer contains any red edge, and one realisation that
contains exactly one red edge. In both cases, Left has moved to a position that has value
1, because from the new position Left is able to move again (to the empty position), but
Right is not able to move. Left is not able to move to 1 from any position where she
has had strictly fewer than n´ 2 turns, because she cannot play any (unsuperposed or
superposed) move to ensure that two or more blue edges with their corresponding red
edges are removed from all realisations, leaving only a single red edge across realisations.
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Left is also not able to move to 1 from any position where Right has had strictly fewer
than n´ 1 turns, because such a position has, for each blue edge, at least one realisation
containing a red edge connected to that blue edge, along with at least one other red
edge.

We now know for the follower of pS ” t pCnuC where Left has had exactly k “ n´ 2 turns
and Right has had exactly ℓ “ n´ 1 turns, that Left is able to move to 1. For any other
follower, Left is able to move if she has had k ă n turns, and Right is able to move if
Left and Right have had k ă n and ℓ ă n turns, respectively. We can disregard the first
2 ¨ pn´ 2q turns of play, because the players are always able to respond to each other’s
moves during these turns. This means that follower pS1 of pS, with k “ ℓ “ n´ 2, has the
same value as pS, i.e., pS1 “ pS. Formally, according to the above properties, we have
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Example 5.5 illustrates how the value of a circus tent with n “ 2 legs is calculated, under
flavour C.
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The example shows how, if Right plays the first move, Left is always able to move to a
superposition where the final red edge does not exist in all realisations (or does not exist
in any realisation at all). Note that in a set of options we do not write superposed game
states that can be relabelled to one that is already given, because such superposed game
states are isomorphic (Theorem 3.3).
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6 Entanglement graph representation
When playing a quantum-inspired combinatorial game, the number of realisations is
multiplied by a factor w (the maximum move width) every turn, in the worst case. For
this section, we will restrict to w “ 2 to make our discussion easier. The exponential
growth in the number of realisations is not ideal if we want to keep track of the current
superposed game state’s set of realisations. However, since all realisations “originate”
from the same classical starting game state, they will all be equivalent, except possibly
for edges that have been included in previously played superposed moves. We want to use
this redundancy to represent the current superposed game state more space-efficiently, as
an entanglement graph. Unfortunately, when more moves have been played, it becomes
possible for the realisations to have fewer mutual commonalities, making it more difficult
to determine the result of any superposed move. The entanglement graphs that we
describe can only be used for flavours A, B, and D. They cannot be used for flavours C
and C1 directly, because these flavours require inspection of the realisations set in order
to determine the legality of an unsuperposed move.

Our goal is to represent a superposed game state in space linear in the number of
previously played moves t, rather than exponential, while being able to determine whether
any given superposed move is legal (preferably in time exponential in t, or asymptotically
faster). An entanglement graph A “ pV, e, Iq is a set of vertices (Hackenbush edges)
V “ tσ1, . . . , σnu, a finite sequence of edges (“entanglements”, or superposed moves)
e : N Ñ 2V , where for k P r1, ts, epkq “ tσi, σju consists of vertices σi, σj P V (possibly
with σi “ σj , for unsuperposed moves), and a vertex illegality function I : V Ñ tJ,Ku.
This vertex illegality function tells us for each σ P V , whether e contains a (not necessarily
contiguous) sequence of edges implying that σ cannot be used in any superposed
move (corresponding to the case where Hackenbush edge σ no longer appears in any
realisation). The vertex illegality function can be given in the form Ipσq “ C1 _ . . ._Cm,
where each clause is of the form C “ pptσi, σju, tσk, σℓuq^. . .^pptσ1

i, σ
1
ju, tσ1

k, σ
1
ℓuq. Here,

we have for every pptσi, σju, tσk, σℓuq that pptσi, σju, tσk, σℓuq “ J if and only if there
exist x, y P r1, ts such that epxq “ tσi, σju, epyq “ tσk, σℓu, and x ă y (i.e., entanglement
tσi, σju occurred before entanglement tσk, σℓu), and otherwise pptσi, σju, tσk, σℓuq “ K.
There is a vertex for each Hackenbush piece of some starting labelled short game
pG, and initially there are no entanglements, i.e., t “ 0. For all vertices σ P V , it then
holds that Ipσq “ K (because there are no entanglements). When a move is played, it is
appended to the end of sequence e. This new entanglement may cause Ipσq “ J for some
vertices σ, indicating that these vertices can no longer be used in superposed moves.

In general, for any σ P V , the expression for the vertex illegality function Ipσq can grow
very quickly with the number of Hackenbush edges in the starting game state. This
is because there are many ways in which a vertex could become illegal, each of which
needs to be represented as a clause. However, for some classes of simple Hackenbush
classical game states we do not need to construct this large expression. Instead, we
can reason about entanglement chains, which are formed by multiple entanglements
“connecting” vertices in a chain, for example by following the chain-extension strategy
(Definition 3.21). For classical game states only consisting of a sum of wholes, if any
entanglement chain forms a cycle, then all vertices of this cycle become illegal, along with
all vertices of chains connected to this cycle. In this case, n moves must have been played
on n Hackenbush edges, meaning that they can no longer appear in any realisation.
Figure 6.1 shows an example.

We can also consider a classical game state consisting of two equal halves, for which
the entanglement graph tree under flavour A is shown in Figure 6.2. If the red edges
are untouched, but the blue edges become entangled, then the red edges also become
entangled. This means that if Right then moves on these red edges, they become illegal,
because they were already entangled. However, if the red edges are entangled first,
followed by the blue edges, then the red edges do not become illegal. For two different
halves, as shown in Figure 6.3, the edge of the starting player’s colour farthest from the
ground becomes illegal if crossing entanglements are made. Future research can focus on
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developing (simple) rules for entanglement graphs of more complicated classical game
states, such as arbitrary Blue Meadow game states, or more generally, Short Hollyhocks
game states.

1 2 3

"

1 2 3

*f

1 2 3
ˆ ˆ

"

2 3 , 1 3

*f

1 2 3
ˆ ˆ ˆ

"

3 , 2 , 1

*f " *f

Figure 6.1: An example of an entanglement chain being formed, and all vertices being
made illegal by the last entanglement. The line segments with crosses at their ends indicate
which Hackenbush edges have occurred in a single move together (“entanglements”).
Below each entanglement graph, the corresponding realisations set is shown.
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Figure 6.2: The entanglement graph tree for a classical game state of two equal halves,
under flavour A. Below each entanglement graph, the corresponding realisations set is
shown.
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Figure 6.3: The entanglement graph tree for a classical game state of two different halves,
under flavour A. Below each entanglement graph, the corresponding realisations set is
shown.
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7 Relationship with quantum mechanics
As we have mentioned before, quantum-inspired combinatorial games relate to quantum
mechanics by certain aspects of their design. These aspects serve as metaphors for
concepts from quantum mechanics [11]; namely superposition, entanglement, collapse
(measurement), and interference.

A game state in a quantum-inspired combinatorial game can be viewed as being in a
superposition over its realisations, corresponding to the concept of a superposition of basis
states in quantum computing. However, unlike in quantum computing, the realisations do
not have any amplitude (making a superposed game state more similar to an equal-weight
superposition, where each state has the same amplitude). Rather, we only care whether
a realisation exists (has an amplitude strictly greater than 0) or not. Superposed moves
can be viewed as applying gates to qubits (which represent the presence of Hackenbush
edges, for example). These gates can generate entanglement between qubits. Illegal
classical moves can be viewed as collapsing realisations, leaving only the realisations that
can possibly be reached according to the classical ruleset. Finally, a phenomenon similar
to interference can be constructed in, for example, Quantum Hackenbush (any flavour)
by starting from a width-1 game state, and then applying the same width-2 move tσ1, σ2u

twice in a row. The first superposed move results in two realisations; one in which edge
σ1 has been removed, and another in which edge σ2 has been removed. The second
superposed move then removes edge σ2 from the realisation in which it is still present,
and edge σ1 from the other realisation which still contains it, respectively. This results
in two equivalent realisations, in which both σ1 and σ2 are no longer present. Thus, we
are left with a superposed game state containing only one realisation. This “merging”
of equivalent realisations in a superposed state reminds of constructive interference. In
quantum computing, a simple example can be given using the Hadamard gate and a
single-qubit starting state |0y. Applying the Hadamard gate once results in the state
1?
2

p|0y ` |1yq. Applying it a second time results in 1
2 p|0y ` |1y ` |0y ´ |1yq “ |0y.

However, as we will explain below, it is not trivial to use “real” quantum mechanics,
in the form of a quantum circuit, to simulate Quantum Hackenbush. As proposed
in [4], a game state should be represented as a multi-qubit state, and moves should be
implemented by certain unitary gates, but for this thesis we were not able to design a
circuit that simulates Quantum Hackenbush, even when only considering game states
consisting merely of independent grounded edges. Nonetheless, we will discuss our ideas
for what such a circuit could look like, and the details of the design we tried to use.

7.1 Designing a Quantum Hackenbush circuit
A seemingly natural approach would be to model a Hackenbush game state as a
fermionic system, which is used in physics to simulate the creation and annihilation
of particles [12]. Here we have sites, each of which may contain a particle or not. For
our purposes, one could, for example, say that each Hackenbush edge corresponds to
exactly one site, and that a particle being present at that site corresponds to the edge
being present. To be able to simulate a fermionic system, a fermion-to-qubit mapping
can be used. For example, Qiskit Cold Atom6 uses a qubit for each site, where |0y

means that the site is unoccupied, and |1y means that the site is occupied. Of course,
to be able to play the game, it should be possible to remove edges. However, since all
quantum computations must be reversible, it is not possible to simply set any qubit to
|0y, disregarding the state that it was in previously. Instead, we can add an ancillary
qubit, to which we can “swap occupation”. Superposed moves should also be possible.
For these, we need a way to split fermions across sites. This way, with some probability
the site for one of the two edges would be measured as being empty while the other
one is occupied, or the other way around with complementary probability. Splitting a
fermion creates a superposition of basis states. Fermions can be split by applying the

6Qiskit Cold Atom’s documentation can be found at https://qiskit-community.github.io/
qiskit-cold-atom/.
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swap Hamiltonian multiplied by a factor 1
2 . The above approach would only work for

flavour A or D, because for these flavours the current superposed game state (represented
as a superposition of basis states) does not need to be inspected to determine whether a
classical move is legal; classical moves are simply never legal or always legal.

On their turn, if a player suspects that their opponent’s latest move was illegal, they can
challenge their opponent, as we discussed in Section 3.1. To verify whether the move was
illegal, we can measure the ancilla that is now supposed to contain the occupancy of the
edge(s) that was (were) last removed. If this ancilla is in the |0y state, then we know that
the move was illegal (no edges were removed in any realisation). Note that after t turns
have been played, any particle has been split at most t times, meaning that in the worst
case we only have a 1

2t probability of measuring a |1y in a single measurement. Thus, in
order to have a probability of at least 1 ´ ϵ that we do not miss any basis state in which
the ancilla is |1y, the minimum number of times we should measure rks is calculated as
shown below.

1 ´

ˆ

1 ´
1

2t

˙k

≥ 1 ´ ϵ

ˆ

1 ´
1

2t

˙k

≤ ϵ

ln

˜

ˆ

1 ´
1

2t

˙k
¸

≤ ln pϵq

k ¨ ln

ˆ

1 ´
1

2t

˙

≤ ln pϵq

k ≥ ln pϵq

ln
`

1 ´ 1
2t

˘

If we never measure a |1y, then we say that the latest move was illegal, so the current
player wins.

7.1.1 Move gate design

If we want to simulate a game state consisting of n grounded edges, then we can start
by initialising an pn`mq-qubit state where the first n qubits each correspond to one of
the labelled edges and are set to |1y. The remaining m qubits are ancillas that are set
to |0y. For implementing moves, the idea is that on their turn, the player selects a gate
that swaps some occupancy to an ancilla. There could be one ancilla qubit per turn, to
ensure that the ancilla we are swapping to is always |0y, preventing occupations from
being swapped from an ancilla qubit back to an edge qubit (if the player attempts to
remove an edge that has already been removed). A Hackenbush game state consisting
of n edges has birthday n, meaning that a total of n moves can be played on it. This
means that we would need m “ n ancillas. For classical move gates, the occupancy for
a single edge of the player’s colour is swapped to an ancilla. For a width-2 superposed
move gate, the occupation for one of the edges is first swapped to the ancilla, after which
a “half swap” is performed between the two edges. The design described above has the
problem that, for any two untouched edges, applying the same superposed move twice
does not result in an occupancy of 0 for both edges, as we would want. Rather, they will
both have an occupancy of 1

4 , since
ˇ

ˇ

ˇ

ˇ

ˇ

ˆ

1
?
2

˙2
ˇ

ˇ

ˇ

ˇ

ˇ

2

“
1

4
.

The recurrence relation for applying the move gate Mi,j,k, for two given edges i ‰ j and
ancilla index k, some number of times t ≥ 1 in a row, is given by

|Ψty “ |ψt
1 . . . ψ

t
n`ty “ Mx,y,n`tp|Ψt´1y|0yq

“
1

?
2

p|ψt´1
1 . . . ψt´1

x´1 0x ψ
t´1
x`1 . . . ψ

t´1
n`t´1y ` |ψt´1

1 . . . ψt´1
y´1 0y ψ

t´1
y`1 . . . ψ

t´1
n`t´1yq|1y,
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with |Ψ0y “ |11 . . . 1ny, and two constant edges x ‰ y.

The main aspect of quantum-inspired combinatorial games that is difficult to simulate is
that realisations “disappear” when an illegal move is played on them. The problem above
was caused by this aspect not being simulated. If we represent a superposed game state
by a superposition of basis states, in the way that we described above, then we would
want a move gate U for a move that is not legal on a classcial game state represented by
a basis state |ψy to lead this basis state (with its trailing ancilla state |ay) to a state
U |ψay “ 0, with amplitude 0. Such a move gate U cannot exist, because any gate must
be unitary, meaning that it must preserve the norm of any state that it is applied to.

For future research, it may be interesting to see whether it is possible to simulate
“disappearing” realisations using some form of measurement-based quantum computing.
Some inspiration may be taken from Quantum Chess [11], but note that in that paper
measurements were used to add an element of non-determinism to the game, which is
not the goal in our case.

7.1.2 Dependencies between edges as Rydberg interactions

Another question that could be addressed in future research is that of simulating
Hackenbush game states with dependencies between edges. For example, in Short
Hollyhocks game states, the top edge of any half is dependent on the bottom edge of that
half. If a player selects the bottom edge of a half, then the corresponding top edge must
also be removed, if it was still present. In a fermionic system, a similar phenomenon can
occur by means of Rydberg interactions. A Rydberg blockade uses these interactions to
entangle two qubits in such a way that they will always have the same measurement
result [13]. No Rydberg blockade should be used when removing the top edge of a half,
however.
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8 Conclusions, conjectures, and further research
We started by introducing Hackenbush, along with the classical combinatorial game
theory that is relevant for our purposes. Then, we defined quantum-inspired combinatorial
games, based on the original paper that proposed them [4]. These have five “flavours”,
which each define different conditions for when classical moves are allowed. We have
formally defined properties of classical rulesets, and how these manifest in the quantum-
inspired case. We have also shown that for dead-ending consistent rulesets, such as
Hackenbush, certain realisations are covered, and thus can be left out. This result we
then used to prove values of single stalks in Quantum Hackenbush under all flavours,
except flavour C. Then, we discussed interesting results that were obtained using our
quantum-hackenbush-suite program. After that, we went back to theoretical analysis,
but this time of circus tents under all flavours. Finally, we discussed two ideas that we
have attempted to tackle for this thesis, but for both of which we encountered certain
difficulties, so we leave them for future research.

To conclude, quantum-inspired combinatorial games are intriguing for the additional
complexity that they introduce, in terms of determining optimal moves, and for the way
in which they serve as “metaphors” for concepts from quantum mechanics, giving players
a feel for the perhaps counter-intuitive nature of acting on quantum systems. We have
shown an extensive variety of properties and strategies that can arise when allowing
for superposed moves, such as non-number values, or even N -positions arising, while
in classical Hackenbush only numbers can be constructed. Superposed moves may
also change the outcome class of a position, or they may allow a player to “abuse” the
rules of the specific flavour that is being played under, shifting the advantage further in
their favour. This thesis is a promising starting point for further analysis of Quantum
Hackenbush, or other quantum-inspired combinatorial games, where similar diverging
properties may be found as compared to the classical ruleset.

8.1 Conjectures
In our experimental results, we have observed certain patterns, based on which we have
written the following conjectures. It may be interesting to prove these in future research.

Conjecture 8.1. All Blue Meadow classical game states are numbers, under any flavour.

This conjecture would imply that none of these positions are first player wins, for
example.

Conjecture 8.2. Under flavour f P tB, C1,Du, with unbounded w, for any Blue Meadow
position G – n ¨H2 ´m ¨H1, the canonical form value of t pGuf has birthday m if n “ 0,
and birthday n` maxpm, 1q ´ 1 otherwise.

Proving this conjecture would be interesting, because it would illustrate how superposed
moves allow Right to play moves on followers of t pGuf without Left having an immediate
answer, in the sense that Right is always able to “avoid” his edges from being removed
in all realisations (except for his last turn).

Conjecture 8.3. All Short Hollyhocks classical game states are numbers, under any
flavour.

This is a generalisation of Conjecture 8.1. It would mean that taller stalks, such as
the ones in the Single Stalks game states we have studied, are necessary to construct
non-number classical game states.

Conjecture 8.4. There are no classical game states with outcome class N , under any
flavour.

This would be in line with the ˚-positions for each flavour that we have seen in Section 4.4,
which have all been superposed game states of width greater than 1. It would mean that
it is not possible to have classical starting game state from which either player can win
if they start.
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Conjecture 8.5. Under flavour C, the canonical form value of a Single Stalk classical
game state of length ℓ is an immediate follower of the canonical form value of some
Single Stalk classical game state of length ℓ` 1.

Proving this conjecture could be interesting, because it might give more insight into the
patterns shown in Table 4.1.

Conjecture 8.6. Any Hackenbush classical game state has the same value under any
of the flavours f P tB, C1,Du, for unbounded w.

This would mean that, for R “ Hackenbush and unbounded w, there is no difference
between these flavours. Thus, in that case there would never be any benefit to playing a
classical move before you absolutely have to, because this is the only possible way to
play under flavour B. If this conjecture is proven, it also makes proving properties for
Hackenbush classical game states under these flavours easier, in the case of unbounded
w, because proving the property for any of these flavours would prove it for all.

8.2 Further research
In addition to attempting to prove the above conjectures, we have numerous ideas
that could be studied in future research. Two of these we have already discussed in
separate sections; namely representing Quantum Hackenbush superposed game states
as entanglement graphs (Section 6) and simulating Quantum Hackenbush using a
quantum circuit (Section 7).

The performance of programs for computing the outcome class, birthday, or value of
a classical game state in Quantum Hackenbush could also be improved by pruning
superposed game states that can be relabelled to another superposed game state in the
tree. These superposed game states are isomorphic (Theorem 3.3). For Short Hollyhocks
classical game states this is relatively easy, because for stalks that are “untouched” (all
edges of the stalk exist in all realisations), we only need to consider superposed moves
on combinations of different types of short hollyhocks (blue half, red half, blue whole,
and red whole). This is possible, because stalks are disjoint components. A preliminary
experiment, using an incorrect implementation7, only showed a noticeable speedup for
smaller numbers of halves and wholes, but a significant reduction in memory usage was
observed for larger numbers.

Lastly, we have a few suggestions for interesting research directions that we have not
mentioned earlier. First, there is finding a simple rule for determining the value of any
Single Stalk classical game state under flavour C, with a recurrence relation for the
non-number values, which we already alluded to in Section 4.2. Finding and proving
simple rules for the values of Short Hollyhocks classical game states under different
flavours is another possibility. Additionally, general (taller) Hollyhocks classical game
states may have interesting properties. We have also not yet studied general Redwood
Furniture classical game states, we have only considered Circus Tent classical game
states specifically. Adding green edges (Quantum Red-Green-Blue Hackenbush)
would also require a whole different analysis, possibly in some way relating to the results
for Quantum Nim-Subtract that were found in [4]. It may also be fun to come up
with different ways of altering combinatorial games in a quantum-inspired fashion. For
example: superposed moves may be assigned an age (number of turns), after which one
of its classical moves becomes the move that was played “in reality”. Another idea is to
select one realisation whenever a certain event occurs (e.g., one of the two players does
not have any move), similar to the cyclic entanglement rule of quantum tic-tac-toe [14].
Yet another idea is to keep track of the “weight” (amplitude) of each realisation, and
to allow measurements to occur by some rule, which then probabilistically selects one

7This implementation considered two superposed game states to be isomorphic if they were at the
same depth in the tree, and they contained the same number of realisations, and these realisations
were equivalent in terms of the number of blue halves, red halves, blue wholes, and red wholes in each
realisation. It was found that too many parts of the superposed game state tree were pruned based on
this rule, because for larger numbers of halves and wholes the program outputted incorrect values.
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realisation based on these weights. Finally, it may be interesting to study the relationship
between quantum-inspired combinatorial games and other variants of combinatorial
games, such as synchronised games, and quantum games, which are played using quantum
strategies [15]. For example: what happens to the winnability if both players move in
a width-2 superposed move? There may also be a relationship between synchronised
games and quantum games, because in both cases a Nash equilibrium can be determined
for the players’ strategies.
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