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Abstract

Dynamic patterns of states in the evolution of a cellular automaton can
be described in the simple syntax of our new modal logic. Not only can
the logic express local properties such as the local state-transition rule,
but also global properties such as periodicity and nilpotency. We present
the semantics of the logic via a novel coalgebraic model of cellular au-
tomata that explicitly separates cells from connections between them. This
model is sufficiently general to describe any graph shape, and generalises
to non-uniform cellular automata in which different cells may admit differ-
ent local rules. Finally, we define a coalgebraic definition of similarity that
includes a map between the parameters of the type functor. A generalised
Hennessey-Milner theorem proves that two cellular automata are similar
if and only if every modal logic formula valid on the one can be translated
into a formula valid on the other.
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1 Introduction

Cells in a human body, particles in a gas cloud, ants in an ant-hill, components in electronic circuits; the
world is full of systems consisting of a collection of simple objects (cells, particles, ants, components) that
interact only locally with similar objects in their surrounding. Cellular automata (CA) are computational
models for studying such systems mathematically and/or simulating them on a computer. In practise, CA
are employed in the empirical sciences to for example biological [10] and physical systems [32][33], but also
as tools in areas such as game design [47][17][44], music generation [3] and in and cryptography [28][49][27]
[46]. In the theory of computation, CA are a very general computational model: many other models such
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1 Introduction

such as Turing Machines [42][24], have be described as specific CA.

A CA consists of a graph where every vertex (usually called a cell) is inhabited by a deterministic automa-
ton. These cells hold a single symbol, their state, and in discrete time steps they synchronously take their
neighbour’s states as inputs and update their own state according to a deterministic local rule. This de-
fines a global transition function between assignments of states to the cells (configurations). From a given
initial configuration, one can recursively compute the trace sequence of successor configurations using this
global function. Despite the simplicity of individual cells, consisting of no more than a single state and a
deterministic local rule, the global trace can exhibit complex behaviour.

Local spatial and/or temporal patterns in the trace of CA are often of great importance in their analysis
and design. Such patterns are, for example, data structures or signals between isolated groups of actively
interacting cells. Currently, there is a deficit in the supply of universal tools to describe, present, compare
and reason about such patterns. Visualisations are commonly employed, but are informal and describe
only limited portions of space and time. Furthermore, some graphs (such as four-dimensional grids) can be
visualised. The aim of this study is to provide a symbolic logic capable of describing spatio-temporal patterns
with a uniform syntax for all graphs.

Modal logics are logical languages that have successfully been employed to describe and reason about local
properties of various computational models, such as labelled transition systems [12]. Essentially, modal logic
is propositional (Boolean) logic that uses a coloured graph of worlds, which are assignments of Boolean values
to variables, instead of a single such assignment. Formulas can reason about truths in a given world, but also
evaluate subformulas in worlds related via a coloured edge. It is this graph-based nature that makes modal
logic an inviting choice for a logic of CA: spatially, CA have cells arranged in a graph, and temporally, CA
represent their computation via their trace sequences. Hence the research question of the present work:

Research question: Is it possible to define a modal logic on CA, capable of describing spatial
and temporal relations of cells’ states in a trace sequence?

Many dynamical systems have been be modelled in the form of coalgebras [39], a concept from category
theory that has been proposed to be a universal framework for modal logic [6][23]. In particular, here exists
a standard framework of predicate-lifting developed by Pattinson [31][30], Schröder [41] and Klin [22] for
automatically generating a modal logic with an expressivity guarantee for coalgebras.

Hence a natural starting point for the present study was to model CA coalgebraically as to employ this
framework. This line of thought led to a natural generalisation of CA to non-uniform cellular automata,
in which distinct cells are allowed to have different local rules. However, we show that the predicate-lifting
framework would generate a modal logic that is only capable of describing static properties of the graph
structure of a CA, and not of properties of computation traces.

Fortunately, the present coalgebraic model provided a suitable foundation for the semantics of a tailor made
modal logic that is capable of describing patterns in traces. The logic is especially expressive when extending
it with infinitary disjunctions; in some cases can even describe certain global asymptotic properties of traces.

Finally, we define a notion of mutual similarity on cells in two CA, based on the ability to simulate each
other. In a Hennessy-Milner style theorem we establish that CA are mutually similar if and only if they have
a similar logic. In fact, we prove the stronger statement that a cell x can be simulated by another cell if and
only if x’s logic can be embedded in y’s logic, using a translation of incompatible logical symbols.

Summary of contributions The contributions of this thesis can be summarised as follows:

1. A new coalgebraic model of uniform and non-uniform cellular automata based on a Set-valued comonad,
which explicitly separates cells from connections between cells. We propose different classes of non-
uniform CA that arise as full subcategories of our coalgebras.
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1.1 Related work 1 Introduction

2. When using the logic generated by the predicate lifting framework, two cells would have the same logic
if they are behaviourally equivalent. We show how CA can be contracted to the minimal CA to which
it is behaviourally equivalent, and how all contractions can be embedded in a terminal coalgebra. The
outcome of this study is that many CA are BE, even when their trace sequences on the same initial
configuration are different. Hence the predicate lifting’s logic would be unable to describe the details
of the trace sequences, which our design goal requires.

3. A tailor made modal logic for describing spatio-temporal patterns in traces of non-uniform CA: an
extension of propositional logic with unary modalities for connections between cells and for timesteps
in a trace sequence. We show how it can be extended with infinitary disjunctions, and give examples
properties of CA that the logic can express.

4. A Hennessey-Milner style theorem establishing the equivalence of semantical simulation and logical
simulation.

Thesis overview In Section 2 we gather the required background concepts and we set notational conven-
tions used in this thesis. The main ideas behind our coalgebraic model are introduced in Section 3, which also
proves a correspondence between the classical and coalgebraic definitions of CA. Thereafter, Section 4 refines
those ideas, and simultaneously generalises them to non-uniform CA; in particular it shows how definitions
of two subclasses of non-uniform CA can naturally be formulated in terms of coalgebras. Section 5 analyses
morphisms between our coalgebras, and shows that the standard framework for coalgebraic modal logic does
not provide the desired logic. We explain the basic version of our manually designed logic in Section 6, and
extend it with infinitary disjunctions in Section 7. The latter section also showcases examples of what the
logic can express. In Section 8 we define simulations and logical simulations between cells, and prove their
relation in a Hennessy-Milner style theorem The concluding remarks in Section 9.3 finish the thesis.

1.1 Related work

Coalgebraic modal logic The semantics of various modal logics can be defined in terms of coalgebras,
and general results for coalgebraic model logics have been published; see the surveys by Cîrstea et al. [6] and
by Kupke and Pattinson [23] for an overview. Both these surveys argue that coalgebras provide the ideal
abstract framework to reason about modal logics. We have attempted to use the predicate-lifting framework
which authors such as Pattinson [31][30], Schröder [41] and Klin [22] develop for automatically creating an
expressive modal logic for endofunctors on Set, Set and Set-like categories respectively, but the output did
not match our design goals. Our manually designed modal logic instead uses a coalgebraic model of CA
indirectly to define the semantics, which is incompatible with the standard framework. Most of the existing
meta-theory therefore not apply to our logic.

Bisimulations We prove a CA analogue of the Hennessy-Milner (HM) theorem [12]. The original
Hennessy-Milner theorem states that two labelled transition systems (LTS) satisfy the same model logic
formulas if and only if they are bisimilar. This latter notion of bisimilarity is a special case of many coalge-
braic definitions of bisimilarity (see Staton [43] for an overview). Our HM theorem does not use the standard
definition of bisimilarity, but a novel CA definition of simulation. Our definition extends a one-way embed-
ding correspondence (a simulation in [40]) with requiring the preservation of a cell’s behaviour dynamics. It
is unclear if our definition is a special case of the simulations defined by Hughes and Jacobs in [13]. Unlike
the original HM theorem, we first prove that one-directional simulation is equivalent to embedding of the
logic, and the two-way case follows by applying this in both directions. We also allow simulations and logical
equivalence to include a in injection on the underlying signatures (of the coalgebras and logical formulas,
respectively).

5



2 Preliminaries

Path logic of concurrent systems Joyal, Nielsen and Winskel [18] also define a uniform modal logic
for paths (analogous to CA traces) for various concurrent systems, such as Labelled Transition Systems and
Event Structures, and prove a HM theorem for a generalised definition of simulation. Our work is orthogonal
to this, since there seems to be no direct correspondence between CA and the considered concurrent systems.

Temporal Description Logic for CA Delivorias et al. [7] construct a decidable Temporal Description
Logic for describing the evolution of states of a CA on Z2, with semantics given via knowledge bases. Like
ours, their language has atomic formulas for states, includes time modalities and an “until” operator, and they
give similar examples of expressible properties. The main differences are: (1) we use coalgebraic semantics
that apply to any graph (not only to Z2) and to non-uniform CA, (2) our logic is undecidable, and (3) our
language has additional space modalities.

Simulations between CA A CA B simulates a CA A if the configurations of A can be injectively
embedded into the configurations of B, in such a way that the dynamics are preserved. A CA B is intrinsically
universal if it can simulate every CA in a given class. Various authors use different choices of the precise
definition of simulation. These choices vary in the constraints on the embedding and how they define the
preservation of the dynamics. We only give a partial account, and focus on the most general definitions. A
historic overview of the study of simulation and universality is given by Ollinger in [29], and §5.2 therein
gives a very a general definition of direct simulation (given for CA on grids of the form Zd for some d ∈ N,
but it applies to all CA). Simulations between CA on Cayley graphs have been studied by Roká [36]. For a
discussion on different definitions of intrinsic universality, see [9]. Also non-injective simulations have been
studied, for example in [14].

The definition of simulation used in this thesis (Definition 8.15) is in some sense more general than the
definitions cited above, as applies to many classes of CA (all non-uniform CA, which includes uniform CA
on Zd and all CA on Cayley graphs), but it is more restricted in what kinds of simulations it permits. In
particular, our notation of simulation does imply Ollinger’s definition of direct simulation, but not vice versa.

Categorical models of CA The literature provides a few other categorical models of CA, all different
from the current model. Capobianco and Uustalu have modelled CA as morphisms between coalgebras of
a comonad on the category of uniform spaces [4], as well as morphisms between coalgebras of a graded
comonad on Set [5]. We have attempted to adapt this latter construction to the standard coalgebraic modal
logic framework, which unfortunately only yielded a trivial logic. In the present work, CA are modelled as
coalgebra objects themselves and not as morphisms between coalgebras.

Widemann and Hauhs [48] have published a bialgebraic model specific to two-dimensional CA. Their focus
lies on the theoretical relation between different programming styles for implementing CA.

Non-uniform CA In hindsight we discovered that non-uniform CA have been well-studied: see [1] for an
overview.

2 Preliminaries

This section fixes the notations used in this thesis and recites necessary background concepts. Many topics
are too large to cover fully, but we try to provide references for further reading where possible. We assume
that the reader is familiar with basic category theory. For a general introduction to category theory, see for
example one of the books [26], [35] or [25].
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2.1 Sets and functions 2 Preliminaries

2.1 Sets and functions

We fix the following notational conventions for set-theoretical concepts.

For a function f : A → B and a subset C ⊆ A, the function f ↾C : C → B is the domain restriction of f ,

f [C]
def
= {f(c) | c ∈ C} is the f -image of C. The preimage of f on C is partitioning of C in sets of elements

that f maps to the same point in B:

PreIm
C

(f)
def
= {{c ∈ C | f(c) = b} | b ∈ f [C]}.

For functions f : A \B → C and g : B → C, we write f ∪ g : A→ C to denote the function

x 7→

{

f(x) x ∈ A \B

g(x) x ∈ B.

We will sometimes use λ-notation to define a function. As an example of λ-notation, λn . n+ 1 denotes the
map N → N defined as n 7→ n + 1. Sometimes we explicitly annotate the domain of variables, e.g., as in
λn ∈ N . n+ 1. Functions A→ B that always output the same element b ∈ B (i.e., those of the form λa . b)
will also be denoted as constb.

The set 1 denotes the set with exactly one element. The powerset of a set A is denoted as ℘(A). Set difference
is denoted with \, defined as:

A \B
def
= {a ∈ A | a /∈ B}.

Partition orderings Similar to how a complete pizza can be cut into slices or a continent be divided into
countries, a set can partitioned into mutually disjoined subsets that together form the whole set:

Definition 2.1: Partitioning

A partitioning of a set A ∈ Set is a set B ⊆ ℘(A) such that every a ∈ A is included in exactly one set
in B (so

∪

B = A), and ∅ /∈ B. Elements of B are called partitions. For every a ∈ A, we denote the
partition in B containing a by |a|B .

The set of all partitionings of A is denoted by

Part(A)
def
= {B ∈ ℘(B) |

∪

B = A, ∅ /∈ B, |n|B , |m|B ∈ B ⇒ (|n|B = |m|B) ∨ (|n|B ∩ |m|B = ∅)}.

We define the following partial ordering on Part(A): for partitionings B and C, we have B ≤ C if and only
if C is further “cut up” partitioning of A than B is: every partition in C can be obtained as a subset of a
partition in C. This is equivalent to saying that a, a′ ∈ |a|C only occurs if a, a′ ∈ |a|B . Formally:

Definition 2.2: Partitionings ordering

The partitionings ordering of a set A, denoted as PartOrd = (Part(A),≤), is the poset where ≤ is defined
for B,C ∈ Part(A) as:

B ≤ C ⇔ ∀
a∈A

|a|C ⊆ |a|B .

7
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For example, the Hasse-diagram of PartOrd({a, b, c}) is:

{{a}, {b}, {c}}

{{a}, {a, b}} {{a, c}, {b}} {{a}, {b, c}}

{{a, b, c}}

(1)

2.2 Cellular automata and monoids

A cellular automaton (CA) is a computational model whose static structure consists of a directed graph with
labelled directed edges whose vertices, called cells.

In the dynamics, every cell is assigned a state (often visualised as a colour) from a chosen set of states.
Such an assignment of states to cells is called a configuration. Every CA comes equipped with (1) a subset
of edge labels called a neighbourhood, such that every cell has an outgoing edge for every label in the
neighbourhood, and (2) a local rule that tells how a cell updates it state depending on the states it can see in
its local neighbourhood (so the local rule maps an assignment of states to neighbourhood labels to a single
state). The local rules define a global rule that maps configurations to configurations as follows: the cells
synchronously read the states of their neighbours according to the input configuration, feed this to the local
rule, and use the output as their state in the output configuration. By iterating the global rule on a given
initial configuration, one obtains a trace of successor configurations. This can be seen as a computation with
the initial configuration as input. For general introductions to CA, see for example the books [8] and [37] or
the survey [20].

A classical example is Conway’s Game of Life (CGOL) [11][9]. This CA uses the regular 2D grid Z2 as a
graph, and as neighbourhood the 3 × 3 region around a cell (including the central cell itself). It uses only
two states: “dead” (white) and “alive” (black). The local rule has an intuitive description:

If you are dead, you will become alive the next timestep if you have 3 or 4 alive neighbours. If you
are alive, you will stay alive the next timestep if you have 2 or 3 alive neighbours. In all other
cases you will be dead the next timestep.

k

γ(k)

1

0

−1

−1 0 1

Figure 1: Example of one of CGOL’s rules: a dead cell (the central cell, with relative coordinates (0, 0)) with
three alive neighbours will become alive next timestep.
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2.2 Cellular automata and monoids 2 Preliminaries

c0 c1 c3

Figure 2: First three configurations in a trace on CGOL. Live cells are visualised as black, dead cells as
white. Only parts of the configurations are shown, the other cells are assumed to be white.

To give a precise description of the classical definition of a CA, we fix the convention of representing grids
by monoids.

Definition 2.3: Monoid

A monoid (M , •,1) is a set of elements M together with an associative binary multiplication operation
• : M × M → M and a distinguished identity element 1 ∈ M . The multiplication operation satisfies,
for all m,n, ` ∈ M , the monoid associativity law:

m • (n • `) = (m • n) • `

and the monoid unit laws:

1 •m = m = m • 1.

Remark 2.4. We typeset monoids in a thin calligraphic font, e.g., M . Often we use the same symbol for
both the entire monoid as well as the underlying set of elements. Expressions such as XM , m ∈ M and
N ⊆ M always refer to the underlying set of elements.

Example 2.5. The natural numbers with addition (N,+, 0) form a monoid.

Definition 2.6: Freely generated monoid

For any set X, let X∗ be the set of finite sequences of elements from X (called strings):

X∗
def
= {[x1, x2, . . . , xk] | k ∈ N, x1, . . . , xk ∈ X}.

Let ε = [ ] be the empty string, and let •X : X∗ ×X∗ → X∗ be string concatenation:

[x1, x2, . . . , xk] •X [y1, y2, . . . , yℓ]
def
= [x1, x2, . . . , xk, y1, y2, . . . , yℓ]

(for all k, ` ∈ N and x1, . . . , xk, y1, . . . , yℓ ∈ X). Then (X∗, •X , ε) is a monoid called the monoid freely
generated over X.

Example 2.7. If we encode 0 = ε, 1 = S, 2 = SS, 3 = SSS, etc., and denote string concatenation with +,
then N is freely generated over {S}.

9



2.2 Cellular automata and monoids 2 Preliminaries

Definition 2.8: Generated monoid

A monoid congruence ∼ on a monoid (M , •,1) is an equivalence relation ∼ ⊆ M × M such that for
all m,n, n′ ∈ M , if n ∼ n′ then also m • n ∼ m • n′ and n •m ∼ n′ •m.

A monoid generated over a set X and a relation R ⊆ X∗×X∗ is the monoid (X∗/∼R, •R, |ε|∼R
) where

• (X∗, •, ε) is the monoid freely generated over X.

• ∼R ⊆ X∗ ×X∗ is the monoid congruence

∼R
def
= ∩{∼ |R ⊆ ∼, ∼ is a monoid congruence on (X∗, •, ε)}.

• |n|∼R
for n ∈ X∗ denotes the equivalence class of n under ∼R.

• The multiplication •R is:

|n|∼R
•R |m|∼R

def
= |n •m|∼R

.

This is well-defined since ∼R is a monoid congruence.

Remark 2.9. Relations are often written as equalities. E.g., if R = {(AB,C)} then we write R = {AB = C}.

Example 2.10. Encode 0 = ε, 1 = S, 2 = SS, 3 = SSS, etc., and −1 = P, −2 = PP, −3 = PPP, etc. Then
the integers Z are generated over {S,P} and the relation R = {SP = ε}. Addition is string concatenation
modulo ∼R.

A homomorphism between monoids is a map of elements that preserves monoid multiplication.

Definition 2.11: Monoid homomorphism

A monoid homomorphism h : (M , •,1) → (M ′, •′,1′) between two monoids (M , •,1) and (M ′, •′,1′)
is a function h : M → M ′ such that

h(1) = 1
′ (2)

and
h(m • n) = h(m) •′ h(n)

for all m,n ∈ M .

Definition 2.12: Category of monoids

The category Mon has as objects monoids and as morphisms monoid homomorphisms.

We can now state the definition of the static structure of a CA:

Definition 2.13: Cellular automaton (classical)

A cellular automaton (CA) A is a 4-tuple A = (M , N, S, γ), where:

• (M , •,1) is a monoid that represents the graph;

• N ⊆ M is the neighbourhood. We require that 1 ∈ N ;

• S is a set of states;

10
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• γ : SN → S is a local rule.

We interpret elements x ∈ M as cells. But an element m ∈ M also represents an edge label for the
edge between x and m • x (for every x ∈ M ).

Remark 2.14. This is a very general definition of a CA. Many authors limit the allowed monoids to relatively
regular grids. For example, only monoids generated over a finite set. Or, even stronger, only those of the
form Zd with d ∈ N. The present definition allows monoids that are not grid-like at all, such as binary trees.

Remark 2.15. Not all authors require that 1 ∈ N . Ultimately this makes little difference; one can always
define γ to ignore the state at 1 (i.e., γ(z) = γ(z′) for all z, z′ : N → S that only differ on input 1).

The static structure of a CA determines the dynamics given by the global rule as follows:

Definition 2.16: Global rule of a CA (classical)

An assignment of states to cells c : M → S is called a configuration. Every CA A induces a map
GA : SM → SM between configurations called the global rule. For every cell m ∈ M , it is defined as
follows:

GA(c)(m)
def
== γ(λn ∈ N . c(n •m)). (3)

An initial configuration c0 : M → S induces an sequence of configurations (ci)i∈N called the trace

sequence, which is inductively defined as ci
def
= Gi

A
(c0).

Example 2.17 (Conway’s Game Of Life (CGOL)). We can now describe CGOL formally. The Game of Life
is the CA

CGOL
def
= (Z2, N, {•, ◦}, γ), (4)

where N = {(i, j) | − 1 ≤ i, j ≤ 1} is the 3 × 3 rectangle surrounding a cell, and where the state set
{•, ◦} has only a “dead” (◦) and “alive” (•) state. For every input k : N → {•, ◦} of the local rule, denote

A(k)
def
= card{(i, j) ∈ N | k((i, j)) = •}. Then the local rule γ : {•, ◦}N → {•, ◦} can be defined as:

γ(k)
def
=



















◦ A(k) ≤ 2

• A(k) = 3

k((0, 0)) A(k) = 4

◦ A(k) ≥ 5

(5)

2.3 Category theory

We briefly review concepts from category theory, to start with coalgebras and comonads. For general intro-
duction into coalgebras, see for example [15], [39], [38] or [16]. More background on comonads can be found
in textbooks such as [26, Ch6] or [35, Ch5].

Definition 2.18: Coalgebra

A coalgebra of an endofunctor F : C → C on a category C an F -coalgebra is a pair X = (X, d) where
X ∈ C is an object (referred to as the carrier) and d : X → FX a morphism in C (referred to as the
dynamics, or (if clear from context) as the coalgebra).

A coalgebra homomorphism between two F -coalgebras (X, d) and (Y, e) is a morphism h : X → Y in C

11
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such that commutes:

X Y

FX FY

d

h

e

Fh

(6)

This diagram will be called the coalgebra homomorphism law.

The coalgebras of F together with the coalgebra homomorphisms form a category Coalg(F ).

We typeset coalgebras in a thick calligraphic font, e.g., X . If a coalgebra name contains multiple symbols

we use overarrows instead, e.g.,
−−−→
CGOL.

If the endofunctor F is a comonad, then one can construct the coEilenberg-Moore category coEM(F ) of
comonad-coalgebras, which is a subcategory of Coalg(F ).

Definition 2.19: Comonad

A comonad is an endofunctor F : C → C equipped with two natural transformation εX : FX → X
(called the counit) and δX : FX → FFX (called the comultiplication) such that the following diagrams
commute for all X ∈ C:

FX FFX

FFX FFFX

δX

δX FδX

δFX

(7)

FX

FX FFX FC

δX

δFX FδX

(8)

which will be referred to as the comonad coassociativity law and comonad counit law respectively.

Definition 2.20: coEilenberg-Moore coalgebras

The category coEM(F ) of comonad F : C → C is the subcategory of Coalg(F ) containing only the objects
(X, d) such that the following diagrams commute:

X FX

FX FFX

d

d Fd

δX

(9)

X FX

X

d

εX (10)

These diagrams will be referred to as the comonad coalgebra coassociativity law and the comonad
coalgebra counit law, respectively.

For coalgebras on endofunctors of Set these exists a natural notion of similarity between elements of their
carriers, known as behaviroural equivalence. See Staton [43] for an overview of related definitions generalised
beyond Set.

12



2.4 Modal logic 2 Preliminaries

Definition 2.21: Behavioural equivalence

Let X = (X, d) and Y = (Y, e) be F -coalgebras. Let x ∈ X and y ∈ Y . Then x is behaviourally equivalent

to y, denoted x
BE
≈ y, if there exist a coalgebra (Z, f) and coalgebra homomorphism h : (X, d) → (Z, f)

and k : (Y, e) → (Z, f) such that h(x) = k(y).

Remark 2.22. For any coalgebra Y there always exists an identity endohomomorphism IdY : Y → Y. As a

result, for any coalgebra homomorphism h : X → Y it automatically holds that x
BE
≈ h(x) for all x ∈ X (this

uses k := IdY).

In this thesis we use functors defined in terms of dependent sums in Set, for which we use the following
definition:

Definition 2.23: Dependent sums of sets

Given a set A and a A-indexed family of sets B the dependent sum
∑

a∈AB(a) is defined as the set of
tuples (a, b) such that b ∈ B(a) (the set B(a) from which the second element is drawn depends on the
first element a).

Remark 2.24. The set
∑

aB(A) is the coproduct in Set of the diagram

D : ∆A → Set

D : ∆A 7→ {a} ×B(a)

where ∆A is the small discrete category with elements of A as objects and with only identity morphisms.

2.4 Modal logic

We review only the basic definitions and relevant results of modal logic. We refer the reader to the textbook
by Blackburn, De Rijke and Venema [2] for a comprehensive introduction.

A Kripke modal logic is an extension of propositional (Boolean) logic with unary operators �i known as modal
operators.

Definition 2.25: Grammar of modal logic

A signature for modal logics is a pair (τ,Φ) where τ is a set of unary operators (�i)i∈τ and Φ =
{p, q, r, . . . } a set of propositional letters (equivalent to Boolean variables).

The set of well-formed formulas Form(τ,Φ) on a signature (τ,Φ) is:

Form(τ,Φ) ::= ¬ψ ψ1 ∨ ψ2 ⊥ p �iψ

where p ∈ Φ and i ∈ τ . We abbreviate ¬ �i ¬ψ as 2iψ.

One can generalise the diamonds to be n-ary operators for any n ∈ N, but this generalisation is not relevant
for the present work.

Modal formulas are interpreted at points in relational structures, also known as Kripke models.

Definition 2.26: Kripke frame and models

Let (τ,Φ) be a signature for a Kripke modal logic.

A Kripke frame F = (W,Ri)i∈τ consists of a set W points (also called worlds), and a τ -indexed set of

13
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binary relations (Ri ⊆W ×W )i∈τ .

A Kripke model (F, V ) consists of a Kripke frame F = (W,Ri)i∈τ together with a valuation V : W →
℘(Φ).

A formula ψ ∈ Form(τ,Φ) is either true (satisfied) or false (unsatisfied) when interpreted at a specific point
w ∈ W of a model ((W,Ri)i∈τ , V ). Propositional letters are true at w when they occur in V (w). However,
the truth of ψ at w does not only depend on V (w): the modal operators �iψ

′ allow to evaluate the truth a
subformula ψ′ at a Ri-neighbour v (i.e., (w, v) ∈ Ri). In particular, �iψ

′ is true at w as soon as there exist
any Ri neighbour of w where ψ′ is true. Dually, 2iψ

′ is true at w if ψ′ is true at all Ri-neighbours of w.

Definition 2.27: Kripke semantics modal logic

Given a Kripke model M = (F = (W,Ri)i∈τ , V ) defined on a signature (τ,Φ), we define for each w ∈W
and formula ψ ∈ Form(τ,Φ) the proposition M,w ⊨ ψ to either be true or false (synonyms: φ is either
satisfied or unsatisfied at w in M). This truth is defined by structural induction on ψ as follows:

M,w ⊨ ¬ψ iff it is false that M,w ⊨ ψ

M,w ⊨ ψ1 ∨ ψ2 iff (M,w ⊨ ψ1 or M,w ⊨ ψ2)

M,w ⊨ ⊥ is always false

M,w ⊨ p iff p ∈ V (w)

M,w ⊨ �iψ iff there exists a v ∈W such that (w, v) ∈ Ri and M, v ⊨ ψ.

A formula ψ is:

• globally satisfied in a model M if M,w ⊨ ψ for all w ∈W .

• valid in a frame F if (F, V ), w ⊨ ψ for all V : W → ℘(Φ) and w ∈W .

• valid at a point w ∈W if (F, V ), w ⊨ ψ for all V : W → ℘(Φ).

Remark 2.28. The semantics of formulas without modal operators are the same as in propositional logic,
which justifies the following familiar notational shorthands (for all ψ1, ψ2 ∈ Form(τ,Φ)):

ψ1 ∧ ψ2
def
= ¬((¬ψ1) ∨ (¬ψ2))

ψ1 → ψ2
def
= (¬ψ1) ∨ ψ2

ψ1 ↔ ψ2
def
= (ψ1 → ψ2) ∧ (ψ2 → ψ1)

>
def
= ¬⊥.

An important result of modal logic is the Hennessy-Milner theorem [12]. Intuitively, the theorem asserts
that two points w, v ∈ W of a model satisfy the same set of formulas if and only if they have a similar
successor structure (by recursively following outgoing relations Ri) in the model. The latter property is
called bisimilarity, and the precise definition is as follows:

Definition 2.29: Bisimulation and logical equivalence

Let (τ,Φ) be a modal logic signature. Let M = (W, (Ri)i∈τ , V ) and M = (W ′, (R′i)i∈τ , V
′) be Kripke

models. A bisimulation Z : M - M ′ is a binary relation Z ⊆W ×W ′ that satisfies the following three
conditions:

14
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1. If uZu′ then V (u) = V ′(u′) (for all u ∈W and u′ ∈W ′).

2. If uRiv and uZu′ then there exists a v′ ∈ W such that u′Riv
′ (for all u, v ∈ W , u′ ∈ W ′ and

i ∈ τ).

3. If u′R′iv
′ and uZu′ then there exists a v ∈ W such that uRiv (for all u ∈ W , u′, v′ ∈ W ′ and

i ∈ τ).

Points w ∈ W and w′ ∈ W are bisimilar, denoted w - w′, if there exists a bisimulation Z : M - M ′

such that wZw′. The points are logically equivalent, denoted w↭ w′, if for all ψ ∈ Form(τ,Φ) it holds
that

(M,w ⊨ ψ) iff (M ′, w′ ⊨ ψ).

Definition 2.30: Image finite frame

A Kripke frame F = (W, (Ri)i∈τ ) is image-finite if for all relations Ri and all points w ∈W the set

Ri(w)
def
= {v ∈W |wRiv}

is finite.

Theorem 2.31: Hennessy and Milner, 1984, [12]

Let (τ,Φ) be a Kripke modal logic signature, M = (W, (Ri)i∈τ , V ) and M = (W ′, (R′i)i∈τ , V
′) be

image-finite Kripke models and w ∈W , w′ ∈W ′ be points. Then

w - w′ iff w↭ w′.

3 Uniform cellular automata

In this section we exhibit the class of CA as a subcategory CCA
+
U of the coalgebras of an endofunctor

CU : Set → Set. The main result, Theorem 3.17, states that there is an essentially surjective functor from
classical CA c.f. Definition 2.13 to CCA

+
U . This coalgebraic formalisation will be refined in section 4, and

thereafter feature in the semantics of the modal logic described in Sections 6 and 7.

3.1 Graph as coalgebras

We first sketch the intuition of our coalgebraic model of CA. Unlike the classical definition of a CA (Defini-
tion 2.13) and Capobianco’s and Uustalu’s [5][4] model, we will distinguish between cells and paths between
cells. To describe how cells are interconnected, we use the same cowriter comonad as used by Capobianco
and Uustalu (in a limited form described for CA before by Piponi [34]). To model paths, we use a monoid
(M , •,1), and interpret the monoid operation m • n as path composition (so traversing m • n is equivalent
to first traversing n and m thereafter).

The comonad works as follows: a coalgebra (X,χ) consists of a carrier X, the set of cells, and a mapping
χ : X → XM . Unlike Capobianco and Uustalu, we interpret X as the set of cells instead of the set of states.
We take the convention to write χ as an infix operator ©χ . For every path m ∈ M and cell x ∈ X, we
compute the cell one arrives at by traversing the path m from the initial cell x as m©χ x.
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We will show that the comonad structure ensures that the graph structure is coherent. First of all, traversing
the empty path 1 ∈ M should not lead to a different cell. In particular, we require that the following identity
holds for all x ∈ X:

1©χ x = x. (11)

We further require that ©χ respects path composition. Suppose that m1 is a path from x to x′, and that m2

is a path from x′ to x′′. Then in the •-is-path-composition interpretation it should hold that m2 •m1 is a
path from x to x′′.

x x′ x′′

m2•m1

m1 m2

This means that we require (for all m1,m2 ∈ M and all x ∈ X):

m2 ©χ (m1 ©χ x) = (m2 •m1)©χ x. (12)

(From now on, we will usually omit parenthesis in expressions of the form m2 ©χ m1 ©χ x).

Requiring χ to adhere to conditions Eq. (11) and (12) turns out to be equivalent to requiring (X,χ) to be a
coalgebra in the coEilenberg-Moore category (Definition 2.20) of the following cowriter comonad:

Definition 3.1: Cowriter functor

The cowriter functor P = P : Set → Set is the functor whose action on objects X ∈ Set is

P : X 7→ XM (13)

and whose action on functions f : X → Y is:

Pf
def
= λk . f ◦ k : XM → Y M (14)

for all k : M → X.

To make P a comonad, we define the associated natural transformations:

Definition 3.2: Comonad structure of the cowriter functor

The counit ε and comulitplication δ of P are:

ε : P ⇒ Id δ : P ⇒ PP

εX : XM → X δX : XM → (XM )M

εX(k)
def
= k(1) δX(k)

def
= λm . λn . k(n •m) (15)

for all k : M → X and where m,n ∈ M .

Remark 3.3. Alternatively, we could also define comultiplication δ as

δX : k 7→ λm . λn . k(m • n). (16)

In this case, we should interpret of m • n as the path obtained from first traversing m and thereafter n (for
n,m ∈ M ), and it would be more convenient to write x©χ m©χ n instead of m©χ n©χ x. We do not follow this
alternative approach, but it showcases that the interpretation of the order in path composition is arbitrary.

Before we prove that this is indeed a comonad, we check that the comonad coassociativity and counit laws,
(9) and (10) respectively, indeed correspond to Eq. (12) and (11) respectively. The first law (9) expresses

16
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that the following diagram commutes:

X XM

XM (XM )M

χ

χ Pχ

δX

On inputs x ∈ X and m,n ∈ M , the upper path outputs:

(Pχ ◦ χ)(x,m, n) = (Pχ(χ(x)))(m,n)

= (χ ◦ (χ(x)))(m,n) // Definition 3.1.

= (χ(m©χ x))(n)

= n©χ (m©χ x).

The lower path outputs:

(δX ◦ χ)(x,m, n) = (δX(χx))(m,n)

= (λm′ . λn′ . (n′ •m′)©χ x)(m,n) // Definition 3.2.

= (n •m)©χ x.

Equality of these paths is indeed exactly requirement (12).

The second law (10) states that the following diagram commutes:

X XM

X

χ

εX

Then, for every x ∈ X, we have:

x = (εX ◦ χ)(x) = εX(χ(x)) = χ(x)(1) = 1©χ x,

as required by (11).

We now show that Definition 3.2 indeed a comonad structure on the cowriter functor P . This result is not
new, but we present the details for the reader’s convenience:

Lemma 3.4

(P, ε, δ) is a comonad.

Proof. Referring to Definition 3.2, we need to show that ε : P ⇒ Id and δ : P ⇒ PP are indeed natural in
their arguments, and that the comonad coassociativity law (7) and comonad counit law (8) are satisfied.

As for the naturality of ε, let f : X → Y , and it is to show that commutes:

XM Y M

X Y

εX

Pf

εY

f

Indeed, for any k : M → X we observe that

(f ◦ εX)(k) = f(k(1)) = (f ◦ k)(1) = (εX ◦ Pf)(k).
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The naturality condition for δ for a function f : X → Y is

XM Y M

(XM )M (Y M )M

δX

Pf

δY

PPf

We can indeed calculate that for any input k : M → X we have:

(PPf) ◦ δX(k) = PPf(λm . λn . k(n •m)) // Definition δ (Definition 3.2).

= λm . Pf ◦ λn . k(n •m) // Definition outermost P (Definition 3.1).

= λm . λn . (f ◦ k)(n •m) // Definition P (Definition 3.1).

= (δY ◦ (Pf))(k). // Definition δ (Definition 3.2).

The comonad coassociativity law (7) requires that commutes:

XM (XM )M

(XM )M ((XM )M )M

δX

δX PδX

δ
XM

(17)

For an input k : M → X, the upper path evaluates to:

(δXM ◦ δX)(k) = λu . λv . δX(k)(v • u) // Definition δ (Definition 3.2).

= λu . λv . λm . λn . k(n •m)(v • u) // Definition δ (Definition 3.2).

= λu . λv . λn . k(n • v • u).

This indeed agrees with the lower path:

(PδX ◦ δX)(k) = PδX [λu . λw . k(w • u)]

= λu . δX(λu . λw . k(w • u)) // Definition P (Definition 3.1).

= λu . λv . λn . (λu . λw . k(w • u))(n • v) // Definition δ (Definition 3.2).

= λu . λv . λn . k(n • v • u),

which shows that both paths in the diagram indeed agree.

Finally, we need to show that the comonad counit law (8) holds:

XM

XM (XM )M XM

δX

ε
(XM ) PεX

(18)

To this end, we show for both inner triangles separately that they commute on any input k : M → X. The
following computation shows that the right triangle commutes:

PεX(δX(k)) = PεX(λm . λn . k(n •m))

= λm . εX(λn . k(n •m)) // Definition P (Definition 3.1).

= λm . k(1 •m) // Definition ε (Definition 3.2).

= k.
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Commutativity of the left triangle follows by a similar computation, using the definitions of δ and ε (Defini-
tion 3.2):

ε(XM )(δX(k)) = ε(XM )(λm . λn . k(n •m)) = λn . k(n • 1) = k.

3.2 Extending graphs with local rules

The coalgebras of the paths functor P are cells with a graph structure. These structured need to be comple-
mented with local rules before they become CA, and we will build the local rules directly into the coalgebra
type functor. To this end, we will modify P into a “uniform CA” functor CU with an additional component
for specifying local rules. We will use CU to construct a category of coalgebras that correspond to uniform
CA, i.e., CA where all cells use the same local rule, as in Definition 2.13 (the underscript u stands for uni-
form). Section 4 will construct an endofunctor CG and a category of non-uniform coalgebras in which cells
are allowed to have different local rules.

In the following, we assume an additional parameter next to M : a state set S ∈ Set.

Definition 3.5

The functor CU : Set → Set is given by the following action on every set X ∈ Set:

CU(X)
def
= XM × SS

M

and the action on functions f : X → Y is:

CUf
def
= λk . (f ◦ k)× Id

where k : M → X and (f ◦ k) : M → Y .

Let (X, d) be a CU-coalgebra and x ∈ X. Then d(x) ∈ XM × SS
M

has two components π1(d(x)) and
π2(d(x)), where πi denotes the projection to the ith component. All our applications will use these components

separately, and we use the following notational convention to ease this: if we define χ
def
= π1 ◦ d and γ

def
= π2d,

then we will write 〈χ, γ〉 for d.

Observe that first component χ : X → XM has the same type as a cowriter coalgebra as discussed in
Section 3.1. The second component has type

γ : X → SS
M

. (19)

Thus γ assigns to every cell x ∈ X a local rule γx : S
M → S, with neighbourhood M . This is a more general

collection of local rules than the local rules in a classical CA according to Definition 2.13: (1) it is possible
that γx¬γx′ for x, x′ ∈ X, and (2) the neighbourhood is the entire monoid M , while a CA may have a smaller
neighbourhood N ⊆ M .

Example 3.6 (A coalgebraic model of Conway’s Game of Life). It is straightforward to describe CGOL

(Example 2.17) as a CU-coalgebra
−−−→
CGOL

def
= (Z2, 〈+, γ〉) where (Z2,+, (0, 0)) is the underlying monoid and

the used cowriter comonad coalgebra “+” is component-wise addition: (i, j) ⊕ (k, `)
def
= (i + k, j + `). The

neighbourhood N and local rule γ are exactly as in the classical definition of Example 2.17.

3.3 Uniform cellular automata as coalgebras

We will now construct the category of CU-coalgebras that corresponds to classical CA (Definition 2.13).
Different CA may have different underlying monoids M , neighbourhoods N ⊆ M and state sets S. Therefore
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we will need to combine coalgebras of CU for different choices of the parameters M and S. To avoid ambiguity,

we write C
(M ,S)
U when using CU with parameters M and S.

We will call the parameters of a CA a signature:

Definition 3.7: Signature

A signature is a triplet (M , N, S) where (M , •,1) is a monoid, N ⊆ M with 1 ∈ M a neighbourhood,
and S ∈ Set a state set.

After an auxiliary definition (of rooted coalgebras), we will specify the subcategory CCA
(M ,N,S)
U of Coalg(C

(M ,S)
U

of coalgebras that correspond to CA defined on this signature (M , N, S). Thereafter we will combine these
subcategories (over all choices of signatures) in one category CCA

+
U , and show that the latter exactly corre-

sponds to the collection of classical CA conform Definition 2.13.

For any M ⊆ M , a coalgebra (X, 〈χ, γ〉) and an x ∈ X, we will denote the M -image of χ(x) as:

M ©χ x
def
= {m©χ r |m ∈M}. (20)

We can now define a rooted coalgebra:

Definition 3.8: Rooted coalgebra

A coalgebra X = (X, 〈χ, γ〉) is rooted in a distinguished root r ∈ X if M ©χ r = X.

Remark 3.9. The choice of r may not be unique, and not every coalgebra may have a root.

Definition 3.10

Let (M , N, S) be a signature, then CCA
(M ,N,S)
U is the subcategory of Coalg(C

(M ,S)
U ) whose objects

X = (X, 〈χ, γ〉) satisfy the following constraints:

1. There exists an essential local rule γ̊ : SN → S such that γx(k) = γ̊(k↾N) for all x ∈ X and all
k : M → S.

2. X is rooted in a chosen root r ∈ X.

3. (−)©χ r : M → X is an injection.

4. (X,χ) is a cowriter comonad coalgebra (of the functor P , Definition 3.1 and 3.2).

We usually make the essential local rule γ̊ and the root r ∈ X explicit, in which case we denote a
coalgebra in CCAU as X = (X, 〈χ, γ〉 , γ̊, r).

The morphisms in CCA
(M ,N,S)
U are root-preserving coalgebra homomorphisms.

Remark 3.11. Item 1 ensures that the CA has exactly one local rule for all cell (uniformity), and that this
rule is also actually local (its output only depends on the states in an N -neighbourhood around x).

Example 3.12. One-dimensional CA are CA on the monoid (Z,+, 0) with as cells Z and as cowriter comonad
coalgebra the usual addition. Any cell n ∈ Z can be chosen as the root: every number m ∈ N can be uniquely
written as m = (m− n) + n, thus (−) + n has Z as image, and is injective.

Now we combine the CCA
(M ,N,S)
U over all choices of signature into one category CCA

+
U . A technical detail

required to prove the correspondence between classical CA and CCA
+
U (in Theorem 3.17) is that we need to
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introduce additional arrows aside from existing the coalgebra homomorphisms. Intuitively, these extra arrows
are isomorphisms between coalgebras that are identical up to a renaming of the elements of the monoid they
are defined on.

Definition 3.13

The category CCA
+
U is the coproduct of the categories CCA

(M ,N,S)
U over all signatures (M , N, S),

extended with the following arrows: for every pair of signatures (M , N, S) and (M ′, N ′, S) with the
same set of states, and for every monoid isomorphism φ : M

∼
→ M ′, and for all pairs of coalgebras

X = (X, 〈χ, γ〉 , γ̊, rX) ∈ CCA
(M ,N,S)
U

Y = (Y, 〈ξ, δ〉 , δ̊, rY ) ∈ CCA
(M ′,N ′,S)
U ,

if

1. X = Y and rX = rY ,

2. m©χ x = φ(m)©ξ x for all x ∈ X and m ∈ M ,

3. and δ̊ = λk . γ̊(k ◦ φ),

then there is an arrow φX ,Y ∈ CCA
+
U (X ,Y) whose action on cells is the identity map. The inverse of

this arrow is (φ−1)Y,X ∈ CCA
+
U (Y,X ).

Remark 3.14. The isomorphism φX ,Y ∈ CCA
+
U (X → Y) witnesses that the following diagram commutes:

X Y

XM × SS
M

Y M
′

× SS
M

′

Id

⟨γ,χ⟩ ⟨ξ,δ⟩

Id′

(21)

where
Id′

def
= (λf . Id ◦ (f ◦ φ−1))× (λg . λk . g(k ◦ φ)).

This is a condition similar to that of a coalgebra homomorphism (compare with diagram (6)), except that
it has been extended with the monoid isomorphism φ to ensure type consistency. In the special case where
φ = IdM , diagram 21 simplifies to the coalgebra homomorphism law on IdX : X → X , since

(λf . IdX ◦ (f ◦ Id−1
M

))× (λg . λk . g(k ◦ IdM )) = (IdX ◦ f)× Id
(SSM )

def
= CU(IdX).

To prove that CCA
+
U corresponds to the classical CA, we view the classical CA as category, and construct an

essentially surjective functor. To our knowledge, there is no clear standard definition for morphisms between
classical CA, so we formulate the classical CA as a discrete category:

Definition 3.15: Classical CA as a category

The category classical has as objects classical CA according to Definition 2.13, i.e., the collection of
quadruples (M , N, S, γ̊) where M is a monoid, N ⊆ M with 1 ∈ N , S ∈ Set and γ̊ : SN → S. As
morphisms it has only identity morphisms.

We will need the following auxiliary lemma in order to establish essential surjectivity:
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Lemma 3.16

For every signature (M , N, S) there exists a functor

G(M ,N,S) : CCA
(M ,N,S)
U → Mon

such that for every X ∈ CCA
(M ,N,S)
U there exist a monoid isomorphism

ψX : G(M ,N,S)(X )
∼
→ M .

Proof. We abbreviate G(M ,N,S) as G. We first define the action of G on objects, so let X = (X, 〈χ, γ〉 , γ̊, r) ∈

CCA
(M ,N,S)
U be a coalgebra rooted in r. Note that, by definition of a root (Definition 3.8) and the fact that

(−)©χ r is an injection (Definition 3.10), every x ∈ X can be written in the form mx©χ r for a unique
mx ∈ M . Then we define G(X ) to be the monoid (X, •X , r). Here •X is defined for every x = mx©χ r ∈ X
and x′ = mx′ ©χ r ∈ X as

(mx©χ r) •X (mx′ ©χ r)
def
= (mx •mx′)©χ r.

The monoid identity laws indeed hold for any mx©χ r ∈ X:

r •X (mx©χ r) = (1 •mx)©χ r = mx©χ r = (mx • 1)©χ r = (mx©χ r) •X ©χ r,

where we used the fact that r = 1©χ r. The monoid associativity law follows from the associativity of •: let
mx©χ r,my ©χ r,mz ©χ r ∈ X, then

(mx©χ r) •x
(

(my ©χ r) •x (mz ©χ r))
)

= (mx • (my •mz))©χ r // Definition •X (used twice).

= ((mx•)my •mz)©χ r // Associativity of •.

=
(

(mx©χ r) •x (my ©χ r)
)

•x (mz ©χ r)). // Definition •X (used twice).

Thus G(X ) is a well-defined monoid. To define G on morphisms, let X = (X, 〈χ, γ〉 , rX , γ̊) and Y =

(Y, 〈ξ, δ〉 , rY , δ̊) be coalgebras in CCA
(M ,N,S)
U and let h : X → Y by a coalgebra homomorphism. We claim

that we can defineGh
def
= h, so we show that h : G(X ) → G(Y) is a monoid homomorphism. The first condition

of a monoid homomorphism (Definition 2.11) requires preservation of identity elements, but indeed h(rX) =

rY by definition of CCA
(M ,N,S)
U . It remains to prove the other condition of a monoid homomorphism. To this

end, we first observe that for any x ∈ X, the coalgebra homomorphism law (diagram (6) in Definition 2.18)
on h evaluates to:

ξ(h(x))× (δh(x)) = (h ◦ χ(x))× (h ◦ γx)

Taking the first projections of both sides of the equation gives

ξ(h(x)) = h ◦ χ(x),

which on input m ∈ M evaluates (in infix notation) to:

m©ξ h(x) = h(m©χ x). (22)

This property allows to prove the second condition of a monoid homomorphism, that h(x•Xx
′) = h(x)•Y h(x

′)
for all x, x′ ∈ X. Write x = mx©χ rX and x′ = mx′ ©χ rX ∈ X, then it indeed holds that:

h((mx©χ rX) •X (mx′ ©χ rX)) = h((mx •mx′)©χ rX) // Definition •X .

= (mx •mx′)©ξ h(rX) // Eq. (22).

= (mx©ξ h(rX)) •Y (mx′ ©ξ h(rY )) // Definition •Y .

= h(mx©χ rX) •Y h(mx′ ©χ rX). // Eq. (22).
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That G preserves composition and identity morphisms is trivial, thus we established that G is a functor.

It remains to give the monoid isomorphism ψX : G(X )
∼
→ M . In the following, we abbreviate ψX by ψ. For

all m©χ r ∈ X, we define:

ψX (m©χ r)
def
= m

This is well-defined since (−)©χ r is an injection (by Definition 3.10). The monoid homomorphism conditions
(Definition 2.11) are straightforward to check:

ψ(r) = ψ(1©χ r) = 1

ψ((mx©χ r) •X (mx′ ©χ r)) = ψ((mx •mx′)©χ r)

= mx •mx′

= ψ(mx©χ r) • ψ(mx′ ©χ r),

for all mx©χ r,mx′ ©χ r ∈ X. The inverse of ψ is (−)©χ r, which also satisfies the monoid homomorphism
conditions:

1©χ r = r

(m • n)©χ r = (m©χ r) •X (n©χ r).

That ((−)©χ r) ◦ ψ = IdG(X ) and ψ ◦ ((−)©χ r) = IdM are, respectively, easy to see:

ψ(m©χ r)©χ r = m©χ r

ψ(m©χ r) = m.

Theorem 3.17

There exists an essentially surjective functor F : classical → CCA
+
U .

Proof. We first construct a functor F : classical → CCA
+
U , and thereafter show that it is essentially surjective.

Given a classical CA A = (M , N, S, γ̊) ∈ classical, we define F (A) to be the coalgebra (M , 〈χ, γ〉 ,1, γ̊), which
uses the monoid elements as cells and 1 as root. It remains to define χ and γ, and that F (A) ∈ CCA

+
U . For

the latter, it suffices to show that F (A) ∈ CCA
(M ,N,S)
U , thus we will show that F (A) satisfies the conditions

of CCA
(M ,N,S)
U as given in Definition 3.10.

For all m,x ∈ M , we define:

m©χ x
def
= m • x.

We can immediately confirm that condition 4 of Definition 3.10 is satisfied: the properties of a cowriter
comonad coalgebra, Eq. (11) and (12), follow directly from the monoid identity and associativity laws on •
(see Definition 2.3).

For all x ∈ M and k : M → S, we define

γx(k)
def
= γ̊(k↾N).

Condition 1 of Definition 3.10 holds by construction. Condition 2, which requires that that 1 is indeed
the root of the CA, follows from the monoid identity law (see Definition 2.3): m = m • 1 for all m ∈ M .
Finally, Condition 3, i.e., injectivity of (−)©χ 1, also follows from the monoid idenity law since ©χ = • (for
any m,n ∈ M , if m • 1 = n • 1 then the monoid identity law gives m = n).
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This established F as a well-typed functor. As for essential surjectivity, assume any arbitrary X = (X, 〈χ, γ〉 , γ̊, r) ∈
CCA

+
U . It is to show that there exists an A ∈ classical such that F (A) ∼= X . Without loss of generality, we

may assume that X ∈ CCA
(M ,N,S)
U for a signature (M , N, S).

From the definition of F we can already see that A needs to be defined on a monoid with the set X as
elements. Using the functor G(M ,N,S) of Lemma 3.16, we can choose

A
def
= (G(M ,N,S)(X ), N ©χ r, S, γ̊′) ∈ classical,

where
γ̊′

def
= λk . γ̊(k ◦ ψX )

(here ψX : G(M ,N,S)(X )
∼
→ M is the isomorphism from the proof of Lemma 3.16 and the type of k is

(N ©χ r) → S). The F -image of A is

F (A) = (X, 〈•X , γ
′〉 , γ̊′, r) ∈ CCA

(G(X ),N ©χ r,S)
U

where
γ′x = λk . γ̊′(k) = λk . γ̊(k ◦ ψX ). (23)

It remains to show that F (A) is isomorphic to X . The coalgebras F (A) and X are defined on different
signatures but with the same state set, so the only possible isomorphism in one of the extra arrows in CCA

+
U

(Definition 3.13) that is defined by a monoid isomorphism. And indeed, the monoid isomorphism ψX of the
proof of Lemma 3.16 satisfies the conditions listed in Definition 3.13:

1. The first condition is immediate.

2. The second condition requires showing that x •X r = ψX (x)©χ r for all x ∈ X. Recall from the proof of
Lemma 3.16 that we can write x = m©χ r for a unique m ∈ M , and observe that r = 1©χ r. Hence we
can indeed compute that:

x •X r = (m©χ x) •X (1©χ r)

= (m • 1)©χ r // Definition •X (see the proof of Lemma 3.16).

= m©χ r

= ψX (m©χ r)©χ r // Definition ψX (see the proof of Lemma 3.16).

= ψX (x)©χ r.

3. The last condition is exactly Eq. (23).

Hence we indeed have an isomorphism (ψX )F (A),X : F (A)
∼
→ X by Definition 3.13.

We can also define global rules for coalgebras, in such a way that the global rules for coalgebras in CCAU

also correspond to the classical global rules.

Definition 3.18: Global rule (coalgebraic)

Let (M , N, S) be a signature and let Let X = (X, 〈χ, γ〉) ∈ Coalg(C
(M ,S)
U ). A configuration of X is a

function c : X → S. The global rule of X is a map between configurations defined as

GX : SX → SX

GX (c)(x)
def
= γx(λm ∈ M . c(m©χ x)). (24)
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Note that for coalgebras X = (X, 〈χ, γ〉 , γ̊, r) ∈ CCA
(M ,N,S)
U this definition evaluates to:

GX (c)(x) = γ̊(λn ∈ N . c(n©χ x)).

Every initial configuration c0 : X → S induces a trace sequence (ci)i∈N defined as ci
def
= GiX (c0).

The functor F of Theorem 3.17 preserves global rules exactly:

Lemma 3.19

Let A = (M , N, S, γ̊) be a classical CA (as in Definition 2.13), and let F (A) = (M , 〈χ, γ〉 , γ̊,1) be the
output of the functor constructed in Theorem 3.17. Then: GA = GF (A).

Proof. Take any arbitrary configuration c : M → S and any cell m ∈ M . Then the classical definition of a
global rule (Definition 2.16) shows that

GA(c)(m)
def
= γ̊(λn . c(n •m)).

The coalgebraic global rule (Definition 3.18) of F (A) is

GF (A)(c)(m)
def
= γ̊(λn . c(n©χ m)),

but by definition of F (see the proof of Theorem 3.17) it holds that n©χ m = n •m, thus the global rules are
indeed equal.

3.4 Modelling irregular and non-uniform CA

We finish this section by providing arguments for further refining the functor CU in the next section in order
to better model CA whose cells have distinct local behaviour.

There are two ways in which the local behaviour of cells can be different: (1) they have a different neigh-
bourhood structure, and (2) they can have different local rules. To avoid confusion, I will call the former
condition irregularity and the latter non-uniformity.

Definition 3.20: Irregular CA

A CA is irregular if it has two cells x and x′ and two paths in the neighbourhood n1, n2 ∈ N such that
n1 and n2 lead to different cells when traversing them from initial cell x, but to the same cell when
traversed from x′.

In case the CA is given as a coalgebra X = (X, 〈χ, γ〉) ∈ CCA
(M ,N,S)
U , then this means that n1 ©χ x 6=

n2 ©χ x but n1 ©χ x′ = n2 ©χ x′.

Example 3.21 (An irregular CA). Let X = (Z, 〈χ, γ〉) ∈ CCA
(Z2,N,S)
U be the CA with:

• as underlying monoid (Z2,+, (0, 0)),

• neighbourhood N = {(i, j) | − 1 ≤ i, j ≤ 1},

• and with the following cowriter comonad coalgebra χ:

(a, b)©χ x
def
= a+ x.
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Then X is irregular, since (0, 1), (0,−1) ∈ N but for any x ∈ Z it holds that (0, 1)©χ x = x = (0,−1)©χ x.

Irregular CA always have incomplete cells:

Definition 3.22: Incomplete cell

An incomplete cell is a cell that does not have a distinct neighbour for every n ∈ N .

Remark 3.23. The existence of incomplete cells does not imply irregularity: it is possible that n1, n2 ∈ N
lead to the same neighbour for all cells in a CA.

Definition 3.24: Non-uniform CA

A CA with neighbourhood N is non-uniform if there exist two cells x and x′ such that the local rule
γx : S

N → S used to compute the next state of x in a trace sequence is different from the local rule
γx′ : SN → S used at x′.

Remark 3.25. We defined non-uniformity in such a way that the neighbourhood N is still the same for all
cells. This is not restrictive, since one can model a CA where different cells have different neighbourhoods
as an irregular CA, and take N to be the union of all neighbourhoods.

Both classical definition of a CA (Definition 2.13) and CCA
+
U allow irregular CA but not non-uniform CA.

In particular, all cells in a coalgebra in CCA
+
U use the same local rule γ̊ : SN → S. However, this does not

imply that all cells behave identically. Furthermore, a uniform CA may have an incomplete cell x, not all
inputs of the type SN to the local rule at x can occur in the computation of a trace sequence. This is because
configurations assign states to cells and not to paths. The next example gives a concrete instance of this
phenomenon.

Example 3.26. Consider the monoid M = ({1, A,B}, •, ε) where

A •A = A B •B = B A •B = B •A = 1.

Define the neighbourhood N = {1, A,B} and the CA X = (X, 〈χ, γ〉 , γ̊, r) ∈ CCA
(M ,N,S)
U where X =

{r, x, y} as in Figure 3.

r

x A B

B
y

B A

A

Figure 3: An irregular CA X = ({r, x, y}, 〈χ, γ〉) defined on the monoid M of Example 3.26. Arrows show
the action of χ; arrows for the monoid identity element have been omitted. Under the assumption that γ is
well-behaved, we see that X is in CCA

+
U , since it satisfies the conditions of Definition 3.10: it is rooted in r,

and (−)©χ r is an injection since r has 3 distinct neighbours (including itself) while M has only 3 elements.

Observe that x has only a B-neighbour that is not itself, and y only an A-neighbour. In any configuration
c0 : X → S, it will always hold that c0(x) = c0(A©χ x) and c0(y) = c0(B©χ y). When using the global rule
GX : SX → SX to compute the next state for x in a trace, the inputs k : N → S to the local rule γ̊ are
always of the form λn . c0(n©χ x). These will therefore never have k(1) 6= k(A), but k(1) 6= k(B) is possible.
Similarly for y, the inputs will never have k(1) 6= k(B), while k(1) 6= k(A) is possible. Thus only a strict
subset of the domain SN of γ̊ will be used at x, which means that the local rule at x contains superfluous
data. Even stronger, the reachable part of the domain SN of γ̊ at y is different from that at x, and the
intersection are only the constant inputs. That is, x and y behave almost independently, except that they
behave the same in the case where there only neighbour has the same state as themselves.
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The next section will show how to construct CA such that the local rule at every cell does not contain
superfluous data. We will adapt the type of the local rule at a cell x to SNx , where Nx has only one element
for every distinct neighbour of x. A side effect of allowing different cells to have different local rules is that
it becomes possible to formulate constraints on how the local rules should relate to each other, and the next
section will discuss two choices of such constraints in depth.

We only required CA in CCA
+
U to be rooted in order to prove Theorem 3.17: otherwise the functor

classical → CCA
+
U would not be essentially surjective. The latter worry is irrelevant when allowing non-

uniform CA, since this implies intentionally including coalgebras not corresponding to classical CA as de-
scribed in Definition 2.13. Note that the root is also unrelated to the local behaviour of a CA.

3.5 Summary of uniform CA

We have described a coalgebraic model of CA, that exploits the idea that cells and connections between cells
can be separate mathematical objects. Concretely, we first modelled a CA’s graph structure as comonad
coalgebras of the cowriter comonad P (Definition 3.1), parametrised by a monoid of “paths” between cells.
We interpreted the carrier sets of those coalgebras as the set of cells. To endow coalgebras with local rules,
we further modified the cowriter comonad P to a “uniform CA” functor CU. From the coalgebras of CU we
constructed the category CCA

+
U , whose objects correspond to the classical, uniform CA (Definition 2.13) as

coalgebras: Theorem 3.17 shows that there exists an essentially surjective functor from the classical (uniform)
CA to CCA

+
U . Finally, we have discussed irregular and non-uniform CA, and sketched why we will refine

CU in the next section in order to model such CA more naturally.

4 General cellular automata

In this section we will refine CU to a functor CG, whose coalgebras can also be non-uniform CA. We will
define the class of general CA, contains not only the class of classical CA but also non-uniform CA and CA
without a root. Thereafter we show how the class of general CA and two subclasses thereof can be specified
as subcategories of Coalg(CG).

Aside from capturing a more general definition of CA, the CG-coalgebras will also have more appropriately
typed local rules for irregular CA. Recall from Section 3.4 (and in particular, Example 3.26) that coalgebras
of irregular CA in CCA

+
U have redundant data in their local rules, as these local rules take assignments

N → S of states to paths in the neighbourhood N . In the computation of a trace sequence, states are
assigned to cells instead, so not all assignments N → S can occur in this computation at an incomplete cell
x. The functor CG instead will ensure, at type level, that local rule of a coalgebra at a cell x takes as input
an assignment of one state to each distinct neighbour of x.

4.1 Classes of general CA

When allowing cells in a CA to have different local rules, the question arises whether there should be a
correspondence between the distinct local rules of distinct cells, if any at all. There is no unique answer to
this question, and different applications of CA may require different degrees of uniformity. In particular, we
consider the following hierarchy classes of CA with various degrees of uniformity, from most general to most
specific:

1. All general CA: the largest class allows all cells to have unrelated local rules.

2. Neighbourhood uniform (general) CA: cells with the same neighbourhood structure have the same
local rule. This will be more clearly defined in Definition 4.8.
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3. Extension uniform (general) CA: the local rule of a cell is an extension of the local rule of cells
whose neighbourhood is smaller. Cells with the same neighbourhood structure have the same local
rule. This will be more clearly defined in Definition 4.8.

4. Uniform general CA: all cells have essentially the same local rule γ̊ : SN → S, but only with a local
modification to the local neighbourhood of the cell. This is simple to implement: given an assignment
k : (N ©χ x) → S of states to the neighbours of x, one can simply use γx(k) = γ̊(λn ∈ N . n©χ x). Hence
this class is similar to CCA

+
U (Definition 3.10), except for (1) the domain of the local rule at a cell x

is adapted the neighbourhood structure of x (2) not requiring the existence of a root r nor injectivity
of (−)©χ r.

One may need an infinite amount of data to describe an arbitrary general CA, even when using a finite
state set and a finite neighbourhood, since the local rule of every individual cell must be specified separately.
However, both in the neighbourhood-uniform and extension-uniform classes, the number of distinct local
rules on a neighbourhood N is bounded by 2card(N). Furthermore, the appropriate local rule of a cell does not
need to be given individually for every cell: it can be determined locally from observing the neighbourhood
structure of the cell.

More classes can be defined, but are not considered in this thesis. For example, there is a class of CA whose
local rules to agree on inputs that assign every neighbour the same state.

The next step is to formally define the class of general CA, as well as the subclasses of neighbourhood-
uniform CA and extension-uniform CA. Before we can give the definitions, we first need to clarify the notion
of neighbourhood structures and how they can be compared. After defining these three classes of CA, we
will continue this section with showing how each can be modelled as a subcategory of the coalgebras of a
“general CA” functor CG, which is a modified version of CU. To this end, we will describe how the relations
that neighbourhood-uniformity and extension-uniformity enforce between local rules of a coalgebra can be
formulated as naturality conditions on the local rule component γ of the coalgebra’s dynamics.

Neighbourhood quotients The definition of a general CA takes a more abstract view on the neighbour-
hood of a cell x, not depending on the neighbours x′ ∈ N ©χ x as cells, but on rather on the set Nx of sets
of paths from x to distinct neighbours. This perspective makes it possible to compare different cells that
have essentially the same neighbourhood lay-out, even when the actual the neighbours (as elements of X)
are distinct.

Definition 4.1: Neighbourhood quotients

For a cell x ∈ X, define the neighbourhood quotient Nx
def
= N/ ∼x where ∼x⊆ N × N is the relation

defined for all n,m ∈ N as:
(n ∼x m) ⇔ (n©χ x = m©χ x). (25)

We denote the equivalence class (with respect to x) of a path n ∈ N by |n|x ∈ Nx.

We typically use the abbreviation neighbourhood for neighbourhood quotient.

Observe that Nx is always a partitioning of N (Definition 2.1). Consequently, the poset structure on parti-
tionings (Definition 2.2) provides a means of comparing neighbourhoods:

Definition 4.2: Compatible neighbourhood-configuration

Let Nx, Nx′ ∈ PartOrd(N) be the neighbourhoods of cells x, y ∈ X. Then Nx is Ny-compatible if
Ny ≤ Nx.
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A neighbourhood configuration z : N → S is Nx-compatible if

∀n,m∈N [|n|x = |m|x ⇒ z(n) = z(m)] . (26)

Intuitively: z is Nx-compatible if for all paths n and m (starting from x) that lead to the same cell y, then
z assigns these paths the same state.

Remark 4.3. The condition Nx′ ≤ Nx implies

∀
n,m∈N

[|n|x = |m|x ⇒ |n|x′ = |m|x′ ] .

It follows that any Nx′ -compatible z : N → S is also Nx compatible when Nx′ ≤ Nx (since we would have
|n|x = |m|x ⇒ |n|x′ = |m|x′ ⇒ z(n) = z(m)).

The main purpose of the concept of compatibility is allowing us to “downscale” neighbourhood configurations
N → S into the shape of the neighbourhood Nx of a particular cell x:

Definition 4.4: Downscaling

Given an Nx compatible neighbourhood configuration z : N → S,
define the x-downscaled function zx : Nx → S as:

(zx)(|n|x)
def
= z(n).

Note that this definition is well-defined (independent of the choice of the representative of |n|x): this follows
directly from the definition of Nx-compatibility (Definition 4.2).

Example 4.5 (Irregular neighbourhood structures). The CA of Figure4 has four cells each with a different
neighbourhood:

• For x, the three neighbourhood paths inN = {ε, L,D} all lead to a different cell. SoNx = {|ε| , |L| , |D|}.

• For y, both ε and L lead back to itself, but D leads to z. Thus Ny = {|ε, L| , |D|}.

• For w, both ε and D lead back to itself, but D to z. Therefore Nw = {|ε,D| , |L|}.

• For z, all paths in N lead back to itself. So Nz = {N}.

(here we denoted entire equivalence classes as a set delimited with |(−)|, a convention we will continue to
use when explicitly giving neighbourhood-quotient equivalence classes). In particular, note that y and w
have the same number of neighbours, but still a different neighbourhood structure. In fact, Ny and Nw are
incomparable in PartOrd(N). However, we do have the relations Nz ≤ Nx, Ny ≤ Nx, Nw ≤ Nx, Nz ≤ Ny
and Nz ≤ Nw. Note that all neighbourhoods are Nz-compatible.

xy

z

L

D

D

L

L/D

wL
D

Figure 4: Example of a non-uniform CA with four cells X = {w, x, y, z} on the monoid freely generated over
the alphabet {L,D} and neighbourhood N = {ε, L,D}, where ε (the empty string) is the monoid identity.
Note that all cells have a different neighbourhood structure.
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Suppose we have state set S = {•, ◦} and a neighbourhood configuration k : N → S such that k(ε) = k(L) = ◦
and k(D) = •. Then k is compatible with Nx and Ny, but not with Nz or Nw.

Classes of generalised CA The definition of a general CA is very similar to that of a classical CA
(Definition 2.13), except that it assigns every cell its own local rule (allowing non-uniformity) and allows
CA without a root. The subclasses of neighbourhood-uniform and extension-uniform CA follow the same
definition, but with additional constraints on the local rule. The presented form of the definition of a general
CA is designed to facilitate modelling it coalgebraically:

Definition 4.6: General CA

Static structure
A general CA is a tuple X = (M , N, S,X, χ, γ) where:

• (M , N, S) is a signature (Definition 3.7).

• X ∈ Set is a set of cells.

• (X,χ) is a cowriter-comonad coalgebra (see Definition 3.1 and 3.2). Equivalently, χ : X → XM

is an action of M that satisfies Eq. (11) and (12).

• γ is a family of maps γx : S
Nx → S indexed by x ∈ X (called the local rule).

Dynamics
A configuration of X is an assignment c : X → S. Given an initial configuration c0, the trace sequence
of X on c0 is the sequence of configurations (ci)i∈N, where for every i ∈ N, ci is computed inductively
as:

ct+1
def
= Gt+1

X
(c0). (27)

Here the global rule GX : S
X → SX is defined as:

GX(ct)(x)
def
= γx(λ |n|x ∈ Nx . ct(n©χ x)). (28)

The class of neighbourhood-uniform CA is the subclass of general CA (Definition 4.6) of CA with the following
property: cells with the same neighbourhood use the same local rule. The subclass of extension-uniform CA
only contains general CA with the following property: the local rules of cells with large neighbourhoods
“extend” the behaviour of cells with smaller neighbourhoods. Extensions are defined as follows:

Definition 4.7: Extension

Let X and Y be sets of cells, and let γ : X → SS
N

and δ : Y → SS
N

be local rules on the same signature
(M , N, S). A component γx : S

Nx → S at a cell x ∈ X extends the component δy : S
Ny → S at a cell

y if Ny ≤ Nx and for all Ny-compatible z : N → S it holds that

γx(zx) = δy(zy).

Definition 4.8: Subclasses of general CA

Let X = (M , N, S,X, χ, γ) be a general CA.

Then X is:
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• neighbourhood-uniform if if it has the property that γx = γx′ when Nx = Nx′ (for all x, x′ ∈ X).

• extension-uniform if if for all x, x′ ∈ X with Nx′ ≤ Nx it holds that γx extends γx′ (according to
Definition 4.7).

Remark 4.9. The class of extension-universal is a subclass of the class of neighbourhood-universal CA,
which can be seen as follows. Suppose that X is extension-uniform, then X is also neighbourhood-uniform if
and only if for all x, x′ ∈ X such that Nx = Nx′ it holds that γx = γx′ . But if Nx = Nx′ , then also Nx′ ≤ Nx,
thus by (4.7) we find

γx(zx) = γx′(zx′) (29)

for all z : N → S that are Nx′ -compatible. But z is Nx′ -compatible if and only it is Nx-compatible, so all
inputs to γx and γx′ are of the form zx and zx′, respectively, for Nx-compatible z : N → S. Therefore (29)
fully specifies γx and γx′ , and we indeed conclude that γx = γx′ .

The next two examples illustrate the consequences of neighbourhood- and extension-uniformity on two specific
CA graphs.

Example 4.10 (Forktree). Define the “forktree” F as the tree where the branching factor of nodes at an
even depth is 2, but 1 for nodes at an odd depth. More precisely, F is the monoid generated (Definition 2.8)
over the alphabet {L,R} and the following equalities between elements:

sL = sR⇐⇒ ∃
n∈N

[s ∈ {L,R}2n+1], (30)

that is, the L- and R-successors of odd-length strings are the same element.

See Figure 5 for a visualisation of F .

ε
L

L

L/R L/R L/R L/R

L/R L/R

R

R L R

Figure 5: The forktree monoid. The top point is the empty string ε. Labels of arrows denote the neigh-
bourhood element that need to be right-multiplied with the tail point to obtain the head point; the notation
“L/R” is used in case multiplication with L and R lead to the same result. Arrows with label ε (which are
all self-loops) have been omitted. Observe that some points have the same L- and R-successor, while other
points have two distinct successors. Only the generating elements {L,R} are shown as arrows, composite
arrows are omitted.

In this example we consider general CA of the form X = (F , N, S,X, 〈χ, γ〉) whose graph is exactly the
forktree, and whose neighbourhood is the direct-successor relation:

• N = {ε, L,R}.

• X = F .
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• ©χ is the forktree’s multiplication.

Observe that this CA is irregular: there are two classes of cells based on their neighbourhood quotient. The
first class X1 ⊆ X are the cells at an odd depth in the tree (containing cells such as R, L, RRR, LLL, etc.).
By the equalities of the forktree Eq. (30), these cells have branching factor 1 and therefore have the same L-
and R-successor. Their neighbourhood quotient is:

NR = {|ε| , |L,R|}.

The other class, X2, consists of cells at even depth with branching factor 2: they have distinct L- and
R-successors. These cells have neighbourhood quotient

Nε = {|ε| , |L| , |R|} ∼= N.

This class contains cells such as ε, LL, RR, LLRR, etc.

Neighbourhood-uniformity
If we want X to be neighbourhood-uniform, then all cells in X1 need to have the same local rule, and all cells
in X2 need to have the same local rule as well. Thus we would be free to independently choose two local

rules γ1, γ2 : X → SS
N

and set, for every x ∈ X:

γx =

{

γ1 x ∈ X1

γ2 x ∈ X2

For example, we may take S = {•, ◦} and define γ the following rule set:

L/R L R L R L R L RL/R

Figure 6: Example definitions for γ1 (left two rules) and γ2 (right four rules). The A denotes that a copy of
the rule holds for every possible value at that cell.

An example of a possible trace sequence with this local rule is the following:

Figure 7: Example trace sequence on the forktree graph F using the local rules of Figure 6 and an arbitrary
initial configuration F → {•, ◦} (the leftmost configuration). Cells that are not drawn are all in state ◦.

Extension-uniformity
If we instead want X to be extension-uniform, then we need to take the fact that NR ≤ Nε into account.
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This means that we can choose γ1 freely, but γ2 must extend γ1: for every neighbourhood configurations
z : N → S such that z(L) = z(R), we need γ2(zε) = γ1(zR). The outputs of γ2 on inputs with z(L) = z(R)
can still be chosen independently of γ1.

The local rule γ presented above in Figure 6 is not extension-uniform. In particular, the following combination
of local rules violates the extension property, since the right neighbourhood configuration Nε → S is an
“upscaled” version of the left configuration NR → S, and should therefore give the same output (which is ◦):

L RL/R

Example 4.11 (Three-forktree). Define the three-forktree monoid 3F as the monoid generated over the
alphabet {L,M,R} and with equalities:

s1Ms2R = s1Ms2M

s1Ms2L = s1Ms2M

s1Rs2L = s1Rs2M

s1Ls2R = s1Ls2M

for all s1, s2 ∈ {L,M,R}∗. Figure 8 sketches this monoid.

L

M/R L/M

R

M

L/M/R

L/M/R

L/M/R L/M/R

M/R

L

L

R

R

L/M

ε

Figure 8: Visualisation of (a part of) 3F with the points a = ε, x = L, y = RR and w =M annotated.

As in Example 4.10, we consider CA X = (F , N, S,X, 〈χ, γ〉) whose graph structure correspond exactly to
the monoid structure of 3F , and whose neighbourhood is the direct-successor relation:

• The neighbourhood is N = {ε, L,M,R}.

• X = 3F .

• ©χ is 3F ’s multiplication.

Now consider the following three neighbourhood configurations zi : N → S with N
def
= {ε, L,M,R} and

S
def
= {s0, s1, s2, s3}:

33



4.2 General CA functor 4 General cellular automata

s0 s1s1

s1

Z1

L

M

R

s0 s1s2

s1

Z2

L

M

R

s0 s1s3

s2

Z3

L

M

R

Figure 9: Three neighbourhood configurations z1, z2, z3 : N → S defined on 3F (see Figure 8) with neigh-

bourhood N
def
= {ε, L,M,R} and state-set S

def
= {s0, s1, s2, s3}. All three map ε to s0, as indicated by the

central nodes.

From Figure 8 it becomes clear that there are four classes of cells with the same neighbourhood quotient:

• Xε = {ε}: ε is the unique cell with neighbourhood Nε ∼= N .

• XL: the cells {L,LL,LLL, . . . } with neighbourhood NL = {|ε| , |L| , |M,R|}.

• XR: the cells {R,RR,RRR, . . . } with neighbourhood NR = {|ε| , |L,M | , |R|}.

• XM : all other cells (so this includes M , MM , RM , LMM , etc.). These all have neighbourhood
NM = {|ε| , |L,M,R|}.

Note that NL 6= NR, despite being isomorphic as sets. Even stronger, NL ≰ NR and NR ≰ NL: the
neighbourhood quotients are incomparable in PartOrd(N).

Neighbourhood-uniformity
If we want X to be neighbourhood-uniform, then we can independently define a local rule γi for every choice
of i ∈ {ε, L,R,M}, with the requirement that γx = γi whenever x ∈ Xi.

Extension-uniformity
If instead we want X to be extension-uniform, then we need to take into account that

NM ≤ NL ≤ Nε

and

NM ≤ NR ≤ Nε.

Therefore γL and γR only need to extend γM and not need to extend each other (since NL and NR are
incomparable). However, γε needs to extend γL and γR (and γM , but any extension of γL or γR always is an
extension of γM ).

One may wonder if the extension requirement of γε restricts the choices of γL and γR: after all, γε cannot
be an extension of two disagreeing local rules at the same time. The answer is negative: we can choose γL
independently from γR, this will not cause problems when choosing γε. To see this, we observe that any
z : N → S that is NL-compatible but not NM -compatible assigns L and M different states, and is therefore
not NR-compatible. Similarly, if z is NR-compatible but not NM -compatible, then z is not NL compatible.
So the only inputs on which both γL and γR are defined are NM -compatible, on which γL and γR agree.

4.2 General CA functor

We will now define the “general CA” functor CG, which is a modification of CU (Definition 3.5) that ensures
that the local rule components of coalgebras adapt to the neighbourhoods of cells. The idea is simple: where
the γ component of a CU-coalgebra had type γx : S

M → S for every cell x ∈ X, the γ component of a
CG-coalgebra instead has type γx : S

Nx → S. Hence it takes inputs of type Nx → S that assign exactly one
state to every distinct neighbour of x.
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Coalgebraic models of general CA arise as a full subcategory CCAG of Coalg(CG). Since neighbourhood-
uniform CA and extension-uniform CA are subclasses of general CA, we in turn construct coalgebraic models
of these subclasses as subcategories of CCAG.

The following definition defines CG. It is not directly obvious that it satisfies the functor laws, but this will
be proven in Lemma 4.15.

Definition 4.12

For every signature (M , N, S), the functor CG : Set → Set is defined on objects X ∈ Set as:

CG(X)
def
=

∑

f∈XM

SS
PreImN (f)

. (31)

(where
∑

denotes the dependent sum of Definition 2.23).

The action of CG on functions h : X → Y is defined as:

CGh :
∑

f∈XM

SS
PreImN (f)

→
∑

f ′∈YM

SS
PreImN (f′)

CGh : (f, g) 7→ (h ◦ f, λk . g(λ |n|f . k(|n|h◦f ))). (32)

where |n|f gives the equivalence class of n ∈ N under the relation n′ ∼ n′′ iff f(n′) = f(n′′) (and
analogous for |n|h◦f ).

Remark 4.13. As for CU-coalgebras (Definition 3.5), CG-coalgebras (X, d) have two components χ(x)
def
=

π1(d(x)) and γx
def
= π2(d(x)) for every x ∈ X. We continue the convention of omitting the projections and

denote the coalgebra directly as (X, 〈χ, γ〉).

Remark 4.14. There are three important insights not directly obvious from the definition of CG:

1. For a coalgebra (X, 〈χ, γ〉) ∈ Coalg(CG) it holds that PreImN ((−)©χ x) = Nx (see Definition 4.1) for
every cell x ∈ X. This means that γx : S

Nx → S, as desired.

2. The element in preimN ((−)©χ x) are equivalence classes of the form |n|(−)©χ x for some n ∈ N . By the

previous remark, this class is the same as |n|x.

3. For h : X → Y , the map CGh is well-defined only if |n|h◦f is independent of the choice of the represen-
tative of |n|f . This is indeed true: if |n|f = |n|f , then f(n) = f(n′), which implies h(f(n)) = h(f(n′)).
The latter implies |n|h◦f = |n′|h◦f . Note that the type of the bound variable k is k : PreImN (h◦f) → S.

Lemma 4.15

The action of CG (Definition 4.12) on morphisms is functorial.

Proof. Let X ∈ Set and (f, g) ∈ CGX =
∑

f∈XM

SS
PreImN (f)

, then identity preservation is simple to verify:

CGIdX(f, d) = (IdX ◦ f, λk . d(λx . k(IdX(x))))

= (f, λk . d(λx . k(x)))

= (f, λk . d(k))

= (f, d).
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Composition preservation follows from evaluating λ-expressions. Take any pair of functions:

X Y Zh ℓ

and an input (f, g) ∈ CGX =
∑

f∈XM

SS
PreImN (f)

. Then we compute:

(CG` ◦ CGh)(f, g) = CG`(h ◦ f, λc . g(λ |n|f . c(|n|h◦f ))) // Evaluate CGh.

= (` ◦ h ◦ f, λk .
(

g(λ |n|f . c(|n|h◦f ))
)(

λ |n′|h◦f . k(|n′|ℓ◦h◦f )
)

) // Evaluate CG`.

= (` ◦ h ◦ f, λk .
(

g(λ |n|f .
(

λ |n′|h◦f . k(|n′|ℓ◦h◦f )
)

(|n|h◦f ))
)

)

// Substitute λ |n′|h◦f . k(|n′|ℓ◦h◦f ) for c.

= (` ◦ h ◦ f, λk .
(

g(λ |n|f . k(|n|ℓ◦h◦f ))
)

) // Substitute |n|h◦f for |n′|h◦f .

def
= CG(` ◦ h)(f, g) // Definition CG(` ◦ h).

as required. Note that the bound variables have types

c : PreIm
N

(h ◦ f) → S

and

k : PreIm
N

(` ◦ h ◦ f) → S.

The type of coalgebras of C
(M ,N,S)
G together with Remark 4.14.1 make it clear that the subcategory of

C
(M ,N,S)
G -coalgebras whose first component is a cowriter-comonad coalgebra are exactly the general CA on

signature (M , N, S) (Definition 4.6). Thus we can define general CA coalgebraically as:

Definition 4.16: Category of general CA coalgebras

For every signature (M , N, S), let CCA
(M ,N,S)
G be the subcategory of Coalg(C

(M ,N,S)
d ) of coalgebras

whose first component is a cowriter-comonad coalgebra (Definition 3.1 and 3.2). Let the category of

general CA coalgebras, denoted CCAG, be the coproduct of CCA
(M ,N,S)
G over all signatures (M , N, S).

4.3 Neighbourhood- and extension-uniform CA

We claimed that the coalgebras X = (X, 〈χ, γ〉) ∈ CCAG that are neighbourhood-uniform or extension-
uniform CA respectively, are exactly the coalgebras whose second projection (the local rule γ) satisfies a
respective naturality constraint. We will show this via backward reasoning: first we show that neighbourhood-
and extension-uniformity can be stated as an commuting diagram involving γ, and thereafter we construct
the categories and functors that show that this diagram is a naturality condition.

In the remainder of this section, we fix a general CA X = (X, 〈χ, γ〉) ∈ CCAG on a signature (M , N, S).

Extension-uniformity First consider extension-uniformity (Definition 4.8), which requires that for any
pair of cells x, x′ ∈ X with Nx′ ≤ Nx it holds that γx extends γx′ (extensions were defined in Definition 4.7,
and ≤ is from the poset PartOrd(N) of Definition 2.2). That is, for any Nx′ -compatible z : N → S it holds
that

γx(zx) = γx′(zx′),
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where (zx) ∈ SNx and (zx′) ∈ SNx′ . We can construct a mapping SNx′ → SNx that sends zx′ to zx
as follows:

Qx,x′ : SNx′ → SNx

Qx,x′(k) = λ |n|x . k(|n|x′).

This mapping is well-defined (independent of the choice of representative of |n|x), this follows from the
definition of ≤ on Nx′ ≤ Nx. Now indeed we can check that

Qx,x′(zx′)
def
= λ |n|x . (zx′)(|n|x′) // Definition Qx,x′ .

= λ |n|x . z(n) // Definition  (Definition 4.4).

= λ |n|x . (zx)(|n|x) // Definition  (Definition 4.4).

= zx,

as we desired.

Thus, γ is extension-uniform if, for all x, x′ ∈ X with Nx′ ≤ Nx, the following diagram commutes:

SNx′ S

SNx S

γx′

Qx,x′

γx

(33)

Neighbourhood-uniformity The reasoning for neighbourhood-uniformity is the same, except with the
condition Nx′ ≤ Nx replaced by Nx′ = Nx. To see this, recall from the discussion in Remark (4.9) that,
under the assumption Nx′ = Nx, the condition γx = γx′ is equivalent to the condition that γx extending
γx′ (which is equivalent to γx′ extending γx). Thus, γ is neighbourhood-uniform if and only if Diagram (33)
commutes for any pair of cells x, x′ ∈ X such that Nx = Nx′ .

4.3.1 The local rule as a natural transformation

The previous paragraphs showed that γ is neighbourhood- and extension-uniform, respectively, if Dia-
gram (33) commutes whenever Nx′ ≤ Nx or Nx′ = Nx, respectively. To show that this is a naturality
condition on γ, we define appropriate categories and functors such that Diagram (33) is a naturality square.

As domain of the functors we use the following thin category, using the poset structure of PartOrd(N):

Definition 4.17: Neighbourhood category

The neighbourhood category of X , denoted as NX , is the category with as objects the neighbourhood
quotients Nx of every x ∈ X, and a unique morphism Nx′ → Nx whenever Nx′ ≤ Nx.

The neighbourhood-iso-category of X , denoted as N
=
X , has the same objects as NX but only identity

morphism.

For extension-uniformity, the first functor is Q : NX → Set that sends every object Nx to SNx . On a

morphism f : Nx′ ≤ Nx we define Qf
def
= Qx,x′ , as required by Diagram (33). The second functor is ∆S that

maps every object to the set S, and every morphism to IdS .

The condition that γ is a natural transformation γ : Q⇒ ∆S means that, for every morphism f : Nx′ ≤ Nx,
Diagram (33) commutes. As argued above, this is exactly the extension-uniformity requirement.
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4.4 Summary of general CAs 5 Coalgebra homomorphisms and behavioural equivalence

As for neighbourhood-uniformity, we can use the functor Q= : N=
X → Set, which is defined the same way as

Q. The naturality condition γ : Q= ⇒ ∆S means that Diagram 33 need to commute only for every morphism
witnessing f : Nx′ = Nx (by definition of the morphisms in N

=
X ), i.e., whenever Nx′ = Nx. Again, we have

already argued that this is exactly the neighbourhood-uniformity condition.

In the remainder of this thesis, we will denote the subcategory of CCAG of coalgebras where γ is a natural
transformation Q= ⇒ ∆S (neighbourhood-uniform) and Q ⇒ ∆S (extension-uniform) by CCANU and
CCAEU respectively.

4.4 Summary of general CAs

This section defined the class of general CA (Definition 4.6): a generalisation of CA (in comparison to
Definition 2.13) that also allows non-uniform CA and CA without root. We constructed a functor CG and a
category CCAG of CG-coalgebras that are exactly the general CA.

We also defined two subclasses of general CA, namely the neighbourhood-uniform CA and the extension-
uniform CA. These classes consist of CA in which different cells may have different local rules, but where
CA with similar neighbourhood structures must have related local rules. We showed that these arise coal-
gebraically as the subcategories CCANU and CCAEU, respectively, of coalgebras in CCAG whose local rule
satisfies a naturality condition.

In the remainder of this thesis we will investigate the options of defining a modal logic over coalgebraic CA.
We will take the coalgebras in the category CCAG as our working definition of “CA”.

5 Coalgebra homomorphisms and behavioural equivalence

An important theoretical tool that can automatically construct modal logic languages for coalgebras is the
predicate lifting framework developed by Pattinson [30, 31] and Schröder [41] for coalgebras of endofunctors
on Set. See Klin [22] for a treatment of base categories beyond Set. This framework uses behavioural
equivalence (BE, Definition 2.21) as the main notion of similarity. In particular, the language that this

framework provides ensures that cells x ∈ X and y ∈ Y satisfy the same formulas iff x
BE
≈ y. A consequence

that any differences between cells x ∈ X and y ∈ Y cannot be described by the logic as soon as x
BE
≈ y.

We will see that this unfortunately means that the framework is inappropriate to describe spacial-temporal
patterns in trace sequences of CA, since certain pairs of CA with very different dynamics turn out to be
behaviourally equivalent. Phrased differently: to fulfill our research question, a model logic must apparently
be able to distinguish behaviourally equivalent coalgebras.

Before we can justify this conclusion, we need to develop a clear overview of what behavioural equivalence
means in context of CA. To this end, we will first analyse homomorphisms between CA. This will reveal
that coalgebra homomorphisms are characterised two properties: (1) they commute with cowriter-comonad
coalgebras and (2) they witness an extension condition similar to the one of the class of extension-uniform CA
(Definition 4.7). Thereafter we construct two methods of characterising behaviourally equivalent cells: (1)
contracting a CA such that it has no distinct behaviourally equivalent cells anymore, and (2) constructing a
terminal coalgebra in CCA

Σ
G that has exactly one cell for every equivalence class of behaviourally equivalent

cells in CCA
Σ
G (for a any signature Σ).

Throughout this section, we assume a fixed signature Σ = (M , N, S). Analogously to CCA
Σ
G (Defini-

tion 4.16), we define CCA
Σ
NU to be the full subcategory of CCANU of coalgebras defined of Σ (equivalently,

it is the full subcategory of CCA
Σ
G of neighbourhood-uniform CA).
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5.1 Characterising coalgebra homomorphisms

We will begin the investigation of behavioural equivalence by characterising the properties of coalgebra
homomorphisms in CCA

Σ
G . These homomorphisms have two properties, because the output of the object

map of the functor CG (Definition 4.12) is a Cartesian product between two sets. The first property states
that coalgebra homomorphisms commute with the cowriter coalgebras, and the second property states an
extension relation between local rules of cells in the domain and image, similar to the extension relation
between local rules in extension-uniform CA (Definition 4.8).

In this subsection, we assume two fixed general CA X = (X, 〈χ, γ〉),Y = (Y, 〈ξ, δ〉) ∈ CCA
Σ
G .

Both properties follow from the coalgebra homomorphism law (Eq. (6)). For a coalgebra homomorphism
h : X → Y this law asserts that the following diagram commutes:

X Y

∑

f∈XM

SS
PreImN (f) ∑

f ′∈YM

SS
PreImN (f′)

h

⟨χ,γ⟩ ⟨ξ,δ⟩

CGh

(34)

Both paths from X (upper left) to
∑

f ′∈YM

SS
PreImN (f′)

(lower right) in Diagram (34) output a tuple of the form

((−)©ξ y, δy) on any input x ∈ X. The diagram commutes for evert coalgebra homomorphism h, which means
that both the upper-left path and the right-lower path output the same tuple. The upper-left path is the
morphism:

〈χ, δ〉 ◦ h

and the right-lower path is:

CGh ◦ 〈χ, γ〉 = (h ◦ ((−)©χ χ), λx . λk . γx(λ |n|x . k(|n|h(x))

by definition of CG (Definition 4.12), where the type of the bound variable k is Nh(x) → S.

Remark 5.1. The discussion above used the notational simplifications indicated in Remark 4.14. We wrote
Nx for PreImN ((−)©χ x) = PreImN (χ(x)), Nh(x) for PreImN (ξ(h(x))) and |n|x for |n|χ(x). Finally, we also
used the following simplification:

|n|h(x) = |n|(−)©ξ h(x)

= |n|ξ(h(x))

= |n|(ξ◦h)(x) .

5.1.1 First property: commutativity with cowriter-comonad coalgebras

We first consider the equality of the first elements of the tuples that the paths in Diagram (34) output. This
equality asserts that h is a M -χ-ξ-homomorphism, defined as follows:

Definition 5.2: M -χ-ξ-homomorphism

A M -χ-ξ-homomorphism between the cowriter-comonad coalgebras (X,χ) and (Y, ξ) is a function
h : X → Y with the following property: for all x ∈ X and m ∈ M , it holds that

h(m©χ x) = m©ξ h(x). (35)

A M -χ-ξ-homomorphism h is an M -restricted surjection (injection/isomorphism respectively) if, for
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every x ∈ X, the restriction
h↾(M ©χ x) : (M ©χ x) → (M ©ξ h(x)) (36)

is a surjection (injection/bijection respectively).

Lemma 5.3

Every coalgebra homomorphism h : X → Y is a M -χ-ξ-homomorphism.

Proof. The first projections of the composite paths in Diagram (34) gives ξ ◦ h = (h ◦ (−)) ◦ χ, i.e.,

ξ ◦ h = λx . λm . h(χ(x)(m)).

On inputs x ∈ X and m ∈ M this evaluates, in infix notation, to:

m©ξ h(x) = h(m©χ x).

An important property of M -χ-ξ-homomorphisms is that they are always M -restricted surjective.

Lemma 5.4

Every M -χ-ξ-homomorphism h : (X,χ) → (Y, ξ) is an M -restricted surjection.

Proof. Take any x ∈ X, then we need to show that M ©ξ h(x) is contained in the image of h under M ©χ x.
To this end, take an arbitrary m ∈M , the property of an M -χ-ξ-homomorphism asserts that:

h(m©χ x) = m©ξ h(x),

and indeed (m©χ x) ∈ (M ©χ x).

Remark 5.5. It might still be possible that there exist an y ∈ Y for which there exist no m ∈ M such that
y = m©ξ h(x). In this case y may not be in the image of h under M ©χ x.

We provide two examples of coalgebra homomorphisms: the first one is M -restricted injective, the second
not.

Example 5.6 (Coalgebra isomorphism). Recall Example 4.10, which showed that we can we can construct
a neighbourhood-uniform CA on the forktree monoid F whose graph structure is the same as the forktree.
Assume such a neighbourhood-uniform CA X ∈ CCA

Σ
NU, and we will construct a coalgebra homomorphism

X → X . Let h be the the mapping h : F → F that appends the suffix LL to every string, that is,

h : x 7→ xLL.

It sends the root ε to LL, but the subtree rooted in LL is isomorphic to F (as seen in Figure 5). Furthermore,
it preserves the structure of the forktree: it sends cells to cells with the same neighbourhood. For example,
h sends the children of the root L and R to LLL and RLL, respectively, and the only child of L, which is
LR = LL to the only child of LLL, which is LLLL = LRLL, etc. Therefore h is a M -χ-χ-homomorphism,
the first property of a coalgebra homomorphism by Theorem 5.9.

Neighbourhood-uniformity ensures that cells with the same neighbourhood have the same local rule, which
implies that the extension property is satisfied. Thus from Theorem 5.9 it follows that h is indeed a coalgebra
homomorphism.
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Example 5.7 (Non-injective coalgebra homomorphism). Example 4.11 showed that we can we can construct
an extension-uniform CA on the three-forktree monoid 3F whose graph structure is exactly the three-
forktree. Let X ∈ CCAEU be such an extension-uniform CA. We will construct a non-injective coalgebra
homomorphism h : X → X .

Recall that all cells whose string starts with the character M have the same neighbourhood NM , and therefore
the same local rule γM . Furthermore, we saw that the local rules of all other cells need to extend γM .
Therefore the extension-property of Theorem 5.9 is always satisfied if we map cells to cells whose strings starts
with the character M . Thus we conjecture that we can define h as follows: it sends every string s ∈ 3F to
Ms′ where s′ is s but with all occurrences of L and R replaced by M . For example, h(MRR) = MMMM ,
h(ε) = M and h(MLRML) = MMMMMM . Note that this mapping is independent of the choice of
representative of equivalence classes under congruence, since by definition of 3F , all generating equalities
only equate strings of the same length (see Example 4.11, it can also be seen in Figure 8). Put visually, h
maps every cell of depth k in the tree to the cell Mk+1 of depth k + 1 in the central branch of Figure 8.

It follows that for all monoid elements m ∈ 3F and every cell x ∈ X = 3F that h(m©χ x) =Mkm+kx where
km and kx are the lengths of the strings m and x respectively. But we can write m = s0s1s2 . . . skm for
si ∈ {L,M,R} and ` ∈ N. Then the generating equalities of 3F and the cowriter-comonad property of ©χ

(Eq. (12)) ensure that:

m©χ x = skm ©χ skm−1 ©χ . . . ©χ s1 ©χ s0 ©χ h(x)

= skm ©χ skm−1 ©χ . . . ©χ s1 ©χ s0 ©χ Mkx

=Mkxs0s1 . . . skm−1skm

=MkxMs1 . . . skm−1skm // Generating equalities of 3F .

= . . .

=MkxMkm−1skm // Generating equalities of 3F .

=MkxMkm // Generating equalities of 3F .

=Mkx+km

= h(m©χ x),

which shows that h is also a M -χ-χ-homomorphism. Thus h has all properties of a coalgebra homomorphism
as required by Theorem 5.9. Now h is not injective, as it collapses the three-forktree into a tree with branching
factor 1 (e.g., it maps L and R, which are distinct cells, both to MM).

5.1.2 Second property: extension of local rules

Now we analyse the implication of equality of the second elements of the tuples that the paths in Dia-
gram (34) output. It asserts that the local rule of a cell in the image of a coalgebra homomorphism extends
(Definition 4.7) the local rule of the corresponding cell in the domain.

Lemma 5.8

A M -χ-ξ-homomorphism h : (X,χ) → (Y, ξ) is a coalgebra homomorphism h : X → Y if and only if it
has the property that γx extends δh(x) for all x ∈ X.

Proof. Unfolding the definition of an extension (Definition 4.7), we need to show that for all x ∈ X and all
Nh(x)-compatible z : N → S (Definition 4.2) it holds that:

δh(x)(zh(x)) = γx(zx).
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The second projection of the output of the paths in Diagram 34 asserts that for all x ∈ X and k ∈ SNh(x) it
holds that

(δ ◦ h)(x)(k) = (CGh ◦ γ)(x)(k) (37)

But note that Nh(x)-compatible elements of SN are in bijection with SNh(x) (with the bijection given by
(−)h(x)). Thus the above statement is equivalent to the statement that for everyNh(x)-compatible z : N → S
it holds that:

(δ ◦ h)(x)(zh(x)) = (CGh ◦ γ)(x)(zh(x)).

Simplifying both sides gives

δh(x)(zh(x)) = (CGh(γx))(zh(x))

= γx(λnx . (zh(x))(|n|h(x)) // Definition CGh (Definition 4.12).

= γx(λnx . z(n)) // Definition h(x) (Definition 4.4).

= γx(λnx . (zx)(|n|x) = γx(zx), // Definition x (Definition 4.4).

as required.

We can summarise the characterisation of coalgebra homomorphisms as follows: convenient notation as
follows:

Theorem 5.9: Characterisation of CCA
Σ
G -morphisms

The coalgebra homomorphisms h : X → Y in CCA
Σ
G are exactly the M -χ-ξ-homomorphism with the

following extension property: extension property: for all x ∈ X and Nh(x)-compatible z : N → S it
holds that:

δh(x)(zh(x)) = γx(zx). (38)

5.2 Illustration of behavioural equivalence

Theorem 5.9 characterises the coalgebra homomorphisms, but on a very abstract level. We will now show
several examples and more specific results to obtain an intuition when cells are behaviourally equivalent.

We begin with a basic example of finding a coalgebra homomorphism (in this case even an isomorphism) via
Theorem 5.9:

Example 5.10. Define the data:

M = Z

N = {−1, 0, 1}

X = {Z+ = {m+}m∈Z,
⟨

χ, γ+
⟩

}

with n©χ m
def
= n+m

Z = {Z− = {m−}m∈Z,
⟨

ξ, γ−
⟩

}

with n©ξ m
def
= m− n

where γ+n+ = γ−n− is an arbitrary local rule on an arbitrary state set S. Note that all cells have Nn+ = Nn−
∼=

N , so with a minor abuse of notation we will write all neighbourhood quotients as N .

Now define h : Z+ → Z− as negation: h(n)
def
= −n. We can verify that h is a coalgebra homomorphism by

checking it has the two required properties (see Theorem 5.9).
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To check that h is a M -χ-ξ-homomorphism, observe that:

h(n©χ m) = h(n+m) = −(n+m) = −n−m = (−m)− n = n©ξ h(m).

To check that h satisfies the extension relation Eq. (38), take any z : N → S, observe that:

(zh(n+))(|m|h(n+)) = z(m) = (zn+)(|m|n+)

thus when γ−h(n+) queries m ∈ N to the input configuration zh(n+), it obtains the same state in S as when

γ+n+ queries m to its own input zn+. Since γ+n+ = γ−n− , they must therefore give the same outputs on those
inputs.

Note that the m-neighbour of h(n+) is m©ξ − n− = −n− −m whereas the m-neighbour of n+ is n+ +m.
This does not matter for the extension relation, which only depends on whether paths in N lead to distinct
cells.

Lemma 5.11

Every cell in a uniform CA X = (X, 〈χ, γ〉) ∈ CCA
Σ
G (i.e., γx = γx′ for all x, x′ ∈ X) is behavioural

equivalent to the cell of a single-celled CA.

Proof. Let X = (X, 〈χ, γ〉) be a uniform CA on the signature (M , N, S). If X = ∅ the lemma holds vacuously,
so assume that X is not empty.

We construct a single-celled CA U = ({∗}, 〈ξ, δ〉) ∈ CCA
Σ
G on the same signature. The cowriter-comonad

coalgebra of U is trivial: (−)©ξ ∗
def
= λm . ∗.

As for the local rule δ, first note that the neighbourhood quotient N∗ = {N} is a singleton set, so all
neighbourhood configurations z : N∗ → S are of the form consts = λ |n|∗ . s : N∗ → S for some s ∈ S. Since
U has only one cell, δ has only one component δ∗ : N∗ → S that we need to define. Since X is not empty,
there exists an x ∈ X, and uniformity asserts that γx is the same for any choice of x. Therefore we can define
δ∗ unambiguously as follows:

δ∗(consts)
def
= γx(λ |x| . s).

Now h : X → U defined as h = const∗ satisfies all properties of a coalgebra homomorphism (Theorem 5.9),
and indeed sends all cells of X to a CA with a single cell.

Example 5.12 (CGOL is behavioural equivalent to a constant dead CA). The proof of Lemma 5.11 shows
that two cells x ∈ X and y ∈ Y of two uniform CA are behaviourally equivalent as soon as γx and δy agree
on constant neighbourhood configurations (inputs in which all neighbours have the same state).

For CGOL (Examples 2.17 and 3.6) this means that all cells are behavioural equivalent to a rather trivial
single-celled CA whose single cell always becomes ◦ the next timestep. Indeed, we observe that CGOL’s local
rule (Eq. (5)) always outputs ◦ on constant neighbourhood configurations z : N → {•, ◦} (for z = const◦,
the target cell and all neighbours are dead, so it stays dead. For z = const•, the cell has too many alive
neighbours to stay alive).

This observation is quite significant, since CGOL is universal (both Turing universal, as well as universal for
2D CA [9]), while the dynamics of the constant-dead-single-cell CA are completely trivial.

5.3 The terminal coalgebra

With a practical characterisation of coalgebra homomorphisms at hand (theorem 5.9), we can construct a
more complete overview of the behavioural equivalence relation. The terminal object of CCA

Σ
G provides a

succinct characterisation of behavioural equivalent cells: all pairs of behavioural equivalent cells are mapped
to the same cell in this terminal coalgebra. In this subsection we construct this terminal coalgebra.
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5.3.1 Coalgebra contractions

We will construct the terminal coalgebra by (1) contracting every CA X ∈ CCA
Σ
G into a canonical form

‖X‖ ∈ CCA
Σ
G , such that there exist exactly one ιX : X → ‖X‖, and (2) combining all contractions in one

coalgebra. The second step requires some additional care to avoid quantifying over a large collection that is
not a set.

Definition 5.13: Contraction

Given a coalgebra X = (X, 〈χ, γ〉) ∈ CCA
Σ
G , define the contraction ‖X‖ of X to be the CG-coalgebra

(‖X‖, 〈‖χ‖, ‖γ‖〉) where:

• ‖X‖ are the equivalence classes ‖x‖ (with x ∈ X) under the transitive closure of
BE
≈.

• m ‖©χ‖ ‖x‖
def
= ‖m©χ x‖.

• ‖γ‖∥x∥ : S
N∥x∥ → S is defined to be γx ◦ u where

u : SN∥x∥ → SNx

u(k)(|n|x)
def
= k(|n|∥x∥),

which is well defined only if N∥x∥ ≤ Nx for all x ∈ ‖x‖. This indeed holds; see Theorem 5.14
below.

Lemma 5.18 will show that ‖X‖ ∈ CCA
Σ
G .

Theorem 5.14

For all x ∈ X it holds that:
N∥x∥ ≤

∧

x∈∥x∥

Nx ≤ Nx.

This theorem is easiest to prove with the help of a new definition and two lemmas. For convenience, denote

N∧
def
=
∧

x∈∥x∥Nx and the classes in N∧ by |n|∧.

Definition 5.15: Domino relation

Let U ∈ Set and let {Ai ⊆ U}i∈I be a set of subsets of U . Then there exists a domino path from a ∈ U
to b ∈ U if there exists an n ∈ N and a sequence (xi, Ai)1≤i≤n+1 such that a ∈ A0, b ∈ An+1 (xn+1

may differ from b) and
xi+1 ∈ Ai ∩Ai+1 for all 0 ≤ i ≤ n.

This relation is an equivalence relation ÷~ ⊆ U × U :

• The singleton sequence ((a,A)) proves the reflexive case.

• Symmetry follows from the sequence (xn+1−i, An+1−i), which gives a domino path from b to a.

• Transitivity is simply concatenating sequences.
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{1, 6}

{6, 3}

{3, 2}

{2, 4}

{4, 5}

Figure 10: Example of a domino path proving 1÷~ 5 in the collection U = {{1, 6}, {6, 3}, {3, 2}, {2, 4}, {4, 5}}.
Note that we can interpret the elements of U as domino pieces in the actual game, thus justifying the name
of the relation.

Lemma 5.16

Consider the domino relation over the N -partitions {Nx |x ∈ ‖x‖}, then

|m|∧ = |m′|∧ iff m÷~m′. (39)

Proof. We show both directions, to begin with right-to-left. Let (ni, |ni|∧)1≤i≤k be the domino sequence
proving m÷~m′. All sets in N∧ are mutually disjoined, but ni+1 ∈ |ni|∧ and ni+1 ∈ |ni+1|∧. Therefore it must
be that |ni|∧ = |ni+1|∧, which implies all sets in the sequence are equal, and in particular |m|∧ = |m′|∧.

We prove the other direction via contraposition: assume that there exists no domino path from m to m′,
but still |m|∧ = |m′|∧. We will derive a contradiction by constructing an N∆ ∈ PartOrd(N) such that
N∧ ⪇ N∆ ≤ Nx′ for all x′ ∈ ‖x‖, which cannot exist since N∧ is the greatest lower bound.

Let N∆ = {|n|∆}n∈N where:

|n|∆
def
= {n′ ∈ N |n÷~n′}.

Since we are using domino paths over {Nx′ |x′ ∈ ‖x′‖} it holds that
∪

x′∈∥x′∥|m|x′ ⊆ |m|∆ (since clearly

m÷~n for all n ∈ |m|x′ via a length-1 path, so |m|x′ ⊆ |m|∆). Hence N∆ ≤ Nx.

It remains to show that N∧ ⪇ N∆. We first show N∧ ≤ n∆. Take any n ∈ N , then it is to show that
|n|∆ ⊆ |n|∧. For any n′ ∈ N we have n÷~n′ iff it holds that |n|∆ = |n′|∆. But we have already shown
the right-to-left direction of the current lemma, thus we also know that n÷~n′ implies |n|∧ = |n′|∧ Hence
|n|∆ = |n′|∆ implies |n|∧ = |n′|∧, i.e., |N |∆ ⊆ |n|∧, as required.

The last step is to show that N∧ 6= N∆. By our assumption, m 6 ÷~m′, and thus |m|∆ 6= |m′|∆, while we
assumed |m|∧ = |m′|∧. Thus we conclude N∧ ⪇ N∆ ≤ Nx for all x ∈ ‖x‖, which is our sought contradiction.

Lemma 5.17

For x ∈ X and y ∈ Y (given coalgebras X = (X, 〈χ, γ〉) and Y = (Y, 〈ξ, δ〉)), if x
BE
≈ y then (m©χ x)

BE
≈

(m©ξ y).

Proof. If x
BE
≈ y then there exists a Z = (Z, 〈ζ, α〉) and h : X → Z and a k : Y → Z such that h(x) = k(y).

From the M -χ-ζ- and M -ξ-ζ-homomorphism properties of h and k respectively it follows that

h(m©χ x) = m©ζ h(x) = m©ζ k(y) = k(m©ξ y),

which indeed proves (m©χ x)
BE
≈ (m©ξ y).

We can now prove Theorem 5.14:
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Proof. For convenience, denote the classes N∥x∥ = {|n|• |n ∈ N}, and take any n ∈ N ; then it is to show
that |n|∧ ⊆ |n|•. To this end, we pick arbitrary m,m′ ∈ |n|∧ and show that |m|• = |m′|•. (If we do this for all
m ∈ |n|∧, then it follows that |n|• = |m|• for all such m, so m ∈ |n|• and it follows that indeed |n|∧ ⊆ |m|•).

There either exists or not exists an x0 ∈ ‖x‖ such that y := m©χ x0 = m′©χ x0 =: y′. If such an x0 exists,

then the identity coalgebra homomorphism shows y
BE
≈ y′, which implies ‖y‖ = ‖y′‖. Hence both m and m′

have that
m ‖©χ‖ ‖x0‖ = ‖m©χ x0‖ = ‖y‖ = ‖y′‖ = ‖m′©χ x0‖ = m′ ‖©χ‖ ‖x0‖,

which proves that m and m′ lead from ‖x0‖ to the same cell ‖y‖ via ‖©χ‖ , thus |m|• = |m′|• by definition of
neighbourhood quotients.

The case where no such x0 exists remains. From Lemma 5.16 it still follows that m÷~m′. So we obtain a
domino sequence (ni, |ni|xi

)1≤i≤k such that xi ∈ ‖x‖, ni+1 ∈ |ni|xi
∩ |ni+1|xi+1

, m = n0 and m′ ∈ |nk+1|xk+1
.

From the definition of neighbourhood quotients and the fact that ni+1 ∈ |ni|xi
it follows that

ni©χ xi = ni+i©χ xi.

Therefore the identity coalgebra homomorphism proves that ni©χ xi
BE
≈ ni+1 ©χ xi, so by definition of ‖(−)‖

we find ‖ni©χ xi‖ = ‖ni+1 ©χ xi‖. But by definition of ‖©χ‖ this means that ni ‖©χ‖ ‖xi‖ = ni+1 ‖©χ‖ ‖xi‖. Thus
from the definition of neighbourhood quotients |(−)|• = |(−)|∥x∥ (now in the contracted coalgebra) it follows

that |ni|• = |ni+1|•. This holds for all 0 ≤ i ≤ k, thus by transitivity we find the desired |m|• = |m′|•.

The following lemma shows that the output of a contraction is again in CCA
Σ
G , i.e., the first component is

again a cowriter-comonad coalgebra:

Lemma 5.18

If X ∈ CCA
Σ
G then ‖X‖ ∈ CCA

Σ
G . That is, ‖©χ‖ is a cowriter-comonad coalgebra that satisfies Eq. (11)

and (12).

Proof. Take any n,m ∈ M and ‖x‖ ∈ ‖X‖ (for some x ∈ X), then we verify that Eq. (11) and (12) are
satisfied as follows:

1 ‖©χ‖ ‖x‖
def
= ‖1©χ x‖ = ‖x‖

n ‖©χ‖ (m ‖©χ‖ ‖x‖)
def
= n ‖©χ‖ ‖m©χ x‖

def
= ‖(n •m)©χ x‖

def
= (n •m) ‖©χ‖ ‖x‖.

Example 5.19 (Example of a contraction). Figure 11 visualises the effect of a contraction of a general CA.

We assume that γa = γa′ and γb = γb′ , which implies that a
BE
≈ a′ and b

BE
≈ b′. We also assume that γa and

γb disagree on constant configurations, which ensures that a 6
BE
≈ b and a 6

BE
≈ b. If they would happen to agree

on constant configurations, then the CA would be contracted to a single cell.
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b

b′

a a′

A

A

M M

L

L R

R

∥a∥ ∥b∥
R

L

Figure 11: Left: a small CA on the monoid freely generated over {L,M,R,A} with the empty string ε
as identity element, neighbourhood N = {ε, L,M,R,A} and four cells X = {a, a′, b, b′}. Only paths in N
are shown, with labels are indicated in gray; omitted paths (in N) implicitly denote paths to the cell itself.
Right: contraction of the CA on the left, assuming that γa and γb disagree on constant configurations, but
that γa = γa′ and γb = γb′ .

Remark 5.20. It is possible that N∥x∥ ⪇
∧

x′∈∥x∥Nx′ . Take for example the neighbourhood-uniform CA

X ∈ CCA
Σ
NU of Figure 12 below:

c

a bM

M

L R

M

L/R L/R

Figure 12: The neighbourhood-uniform CA X ∈ CCA
Σ
NU with X = {a, b, c}. The underlying monoid

M is freely generated over the alphabet {L,M,R} and has the empty string ε as identity element. The
neighbourhood is N = {ε, L,M,R}. Only arrows in N are shown (but this is a generating set of M ), and
the notation L/R means that both the paths L and R lead to the same neighbour.

The neighbourhood quotients of its cells are:

Nc = {|ε,M | , |L,R|}

Na = Nb = {|ε, L,R| , |M |}.

These neighbourhoods are incompatible, thus γc can be chosen independently from γa and γb. Thus we
can choose γc such that it disagrees with γa on constant inputs (e.g., pick S = {•, ◦}, γc = const◦ and
γa = γb = const•). In this case, c will not be contracted to a in ‖X‖, but a and b will both be contracted to
‖a‖. We would obtain the contraction of Figure 13 below:

47



5.3 The terminal coalgebra 5 Coalgebra homomorphisms and behavioural equivalence

∥c∥

L/R

M

∥a∥

L/M/R

Figure 13: Contraction ‖X‖ of the CA X Figure 12 (in the case that the local rule at cell c disagrees with
the local rule at cell a on constant configurations; otherwise the contraction would be a single cell).

In this contraction, it trivially holds that
∧

x∈∥c∥Nx = Nc (the meet of a singleton set), but N∥x∥ =

{|ε,M | , |L,R|}. Thus N|c| ⪇
∧

x∈∥c∥Nx.

Before we can prove the uniqueness of ιX , we need to show several other properties of contractions. But we
can already start with defining the map itself:

Lemma 5.21

There exist a coalgebra homomorphism ιX : X → ‖X‖.

Proof. The most obvious definition works:

ιX (x)
def
= ‖x‖ (40)

for all x ∈ X. Applying the characterisation of coalgebra homomorphisms given by Theorem 5.9, we need
to show that ιX (1) is a M -χ-‖χ‖-homomorphisms and (2) that (zx) = (z‖x‖) for all N∥x∥-compatible
z : N → S. This last requirement follows directly from the definition of ‖γ‖ (Definition 5.13).

To show ιX is an M -χ-‖χ‖-homomorphism, simply observe that:

ιX (m©χ x)
def
= ‖m©χ x‖ = m ‖©χ‖ ‖x‖

def
= m ‖©χ‖ ιX (x).

The next observation is rather trivial, but of great importance:

Lemma 5.22

There exist no distinct u, v ∈ ‖X‖ such that u
BE
≈ v.

Proof. By definition of a contraction, we can write u = ‖x‖ and v = ‖x′‖ for some x, x′ ∈ X. If there would
exist h : ‖X‖ → Y and ` : ‖X‖ → Y such that h(u) = `(v), then (h ◦ ιX )(x) = (` ◦ ιX )(x

′), which would imply

x
BE
≈ x′. But then u = ‖x‖ = ‖x′‖ = v.

Lemma 5.23

‖(−)‖ can be extended to an endofunctor CCA
Σ
G → CCA

Σ
G .
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Proof. Lemma 5.18 asserts that the object map of ‖(−)‖ indeed outputs another object in CCA
Σ
G .

We define the action of ‖(−)‖ on homomorphisms h : X → Y as follows:

‖h‖(‖x‖)
def
= ‖h(x)‖ (41)

for all ‖x‖ ∈ ‖x‖.

Functoriality is immediate, but it is obvious not that ‖h‖ is a coalgebra homomorphism; we prove this via
the characterisation of coalgebra homomorphisms (Theorem 5.9). The first property we need to show is that
‖h‖ is a M -‖χ‖-‖ξ‖-homomorphism. This can indeed be seen as follows (for arbitrary ‖x‖ ∈ ‖X‖):

‖h‖(m ‖©χ‖ ‖x‖)

= ‖h‖(‖m©χ x‖) // Definition ‖©χ‖ .

= ‖h(m©χ x)‖ // Definition ‖h‖.

= ‖m©ξ h(x)‖ // h is a M -χ-ξ-homomorphism.

= m ‖©ξ ‖ ‖h(x)‖ // Definition ‖©ξ ‖ .

= m ‖©ξ ‖ ‖h‖(‖x‖). // Definition ‖h‖.

The other required property states that, for all N∥h(x)∥-compatible z : N → S, it holds that:

‖γ‖∥x∥(z‖x‖) = ‖δ‖∥h(x)∥(z‖h(x)‖).

But we know h is a coalgebra homomorphism, so

γx(z
′x) = δh(x)(z

′h(x)) (42)

for all Nh(x)-compatible z′ : N → S. Since both ιY and h are N -restricted surjections, it holds that N∥H(x)∥ ≤
Nh(x) ≤ Nx, so z is also Nh(x)- and Nx-compatible. Therefore:

‖γ‖∥x∥(z‖x‖)
def
= γx(zx)

(42)
= δh(x)(zh(x))

def
= ‖δ‖∥h(x)∥(z‖h(x)‖).

Corollary 5.24

ι : IdCoalg(CG) ⇒ ‖(−)‖ is a natural transformation.

Proof. Directly from the definitions of ιX and ‖(−)‖ on morphisms (see the proof of Lemma 5.23:

‖h‖(ιX (x))
def
= ‖h‖(‖x‖)

def
= ‖h(x)‖

def
= ιY(h(x))

(for all h : X → Y and x ∈ X). Hence the naturality square commutes:

X Y

‖X‖ ‖Y‖

ιX

h

ιY

∥h∥

(43)
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Lemma 5.25

For any coalgebra X ∈ CCA
Σ
G it holds that ‖X‖ ∼= ‖‖X‖‖ with the isomorphism being ι∥X∥.

Proof. No two distinct cells of ‖X‖ are behaviourally equivalent, so any coalgebra homomorphism h : ‖X‖ →
‖‖X‖‖ must be injective. Contracting never adds cells, thus h must also be surjective. Hence h must be an
isomorphism; and ι∥X∥ witnesses the existence of such a h.

Theorem 5.26

The coalgebra homomorphism ιX : X → ‖X‖ is the unique morphism between those coalgebras.

Proof. Suppose any other h : X → ‖X‖, and take any x ∈ X. Then there exists an x′ ∈ X such that
h(x) = ‖x′‖. From the proof of Lemma 5.23 it follows that the action of ‖h‖ : ‖X‖ → ‖‖X‖‖ maps ‖x‖ to

‖h(x)‖ = ‖‖x′‖‖ (recall that ‖‖X‖‖ has as elements singleton sets ‖‖x‖‖
def
= {‖x‖} for every ‖x‖ ∈ ‖X‖. See

the proof of Lemma 5.25).

From Lemma 5.25 it follows that ι∥X∥ is an isomorphism, thus ι−1∥X∥ ◦ ‖h‖ : ‖X‖ → ‖X‖ is a coalgebra

homomorphism that sends ‖x‖ to ‖x′‖. Thus ‖x‖
BE
≈ ‖x′‖ in ‖X‖; but a contraction has no distinct BE cells

(Lemma 5.22), thus

ιX (x)
def
= ‖x‖ = ‖x′‖ = h(x).

Since x was arbitrary it follows that ιX = h.

It is important to realise that contractions may not preserve uniformity, neighbourhood-uniformity and
extension-uniformity. Note that CCA

Σ
NU includes all CA that have one of these three forms of uniformity,

therefore we prove the following: if X ∈ CCA
Σ
NU, then ‖X‖ might not be in CCA

Σ
NU.

Lemma 5.27

There exists a CA X ∈ CCA
Σ
NU such that ‖X‖ /∈ CCA

Σ
NU.

Proof. We construct a CA such that its contraction has two cells with the same neighbourhood quotients,
but with different local rules. By definition of neighbourhood-uniformity (Definition 4.8, any CA in CCA

Σ
NU

has the property that all cells with the same neighbourhood have the same local rule.

Define the CA X = (X, 〈χ, γ〉) with X = {xi}i∈Z ∪ {yi}i∈Z, on the monoid M freely generated over the
alphabet {L,M,R,A} with the empty string ε as the unit element and neighbourhood N = {L,M,R,A}.
We use the two-state alphabet S = {•, ◦}, local rules γxi

= const• and γyi = const◦ for all i ∈ Z, and cells
connections χ defined as:

L©χ xi =M ©χ xi = xi−1

R©χ xi = xi+1

A©χ xi = yi

L©χ yi = yi−1

M ©χ yi = R©χ yi = yi+1

A©χ yi = xi,

which is visualised in Figure 5.27.
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x0

y0

x1

y1

x2

y2

x
−1

y
−1

x
−2

y
−2

M/R M/RM/RM/R

L/M L/M L/M L/M

A A A A A A A A A A

RRRR

L L L L

Figure 14: Fragments of the CA X of the proof of Lemma 5.27.

There exists a “shifting”-endohomomorphism hn : X → X for every n ∈ Z defined as:

hn(xi)
def
= xi+n

hn(yi)
def
= yi+n

for all i ∈ Z. Thus xi
BE
≈ xi+n and yi

BE
≈ yi+n for all i, n ∈ Z. Note that xi 6

BE
≈ yj for all i, j ∈ Z since γxi

and
γyj disagree on all inputs.

∥x0∥

∥y0∥

A A

L/M/R

L/M/R

Figure 15: Contraction ‖X‖ of the CA X of Figure 14 and the proof of Lemma 5.27.

Thus the contraction of X (see Figure 15) has two classes, ‖x0‖ for the xi’s and ‖y0‖ for the yi’s, with the
same local rules ‖γ‖∥x0∥ = const• and ‖γ‖∥y0∥ = const◦ respectively. However, these two classes have the
same neighbourhood quotients:

N∥x0∥ = N∥y0∥ = {|ε, L,M,R| , |A|},

and thus both the conditions of neighbourhood-uniformity and extension-uniformity would require ‖x0‖ and
‖y0‖ to have the same local rule if ‖X‖ were to be a CA.

5.3.2 Construction of the terminal coalgebra

The previous discussion showed that there is a unique homomorphism from every X ∈ CCA
Σ
G to ‖X‖.

The strategy is now to construct the terminal coalgebra by putting all contractions of CA together in one
coalgebra. To do so, two remaining challenges need to be solved:

1. There may (and in fact do) exist morphisms between contractions, and hence different morphisms from
X to the union of all contractions. This is shown in Section 5.3.3.

2. The disjoined union of coalgebras
⊎

X∈CCAΣ
G
‖X‖ quantifies over a collection greater than Set; the

resulting collection is therefore not a set, and hence not the carrier of a coalgebra (since CG : Set → Set).
We will instead only work with contractions that are unique up to isomorphism, i.e.,

⊎

X∈CCAΣ
G
/∼=‖X‖,

but it is still not obvious that this is a set. However, Section 5.3.4 will show that this union has a
cardinality.
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5.3.3 Morphisms between embeddings

To analyse challenge 1, we will show that the image of ‖(−)‖ under CCA
Σ
G (denoted by ‖CCA

Σ
G‖) is a thin

category containing only embeddings as morphisms (i.e., there exists at most one embedding ‖X‖ ↪→ ‖Y‖),
but also that not all morphisms are isomorphisms. Hence even after removing isomorphic contractions via a
quotient, the union T =

⊎

∥X∥∈∥CCAΣ
G
∥/∼=‖X‖ of all (up to isomorphism unique) contractions still contains

distinct BE cells; but – provided T it is a set – we can contract all the morphisms by using ‖T ‖ to obtain
a coalgebra towards which every CA has a unique morphism. The following four lemmas and theorem will
justify those claims.

Lemma 5.28

For ‖X‖, ‖Y‖ ∈ ‖CCA
Σ
G‖, every e : ‖X‖ → ‖Y‖ is an embedding.

Proof. If h is not injective, then there would exist ‖x‖ 6= ‖x′‖ such that h(‖x‖) = h(‖x′‖). But then

‖x‖
BE
≈ ‖x′‖, contradicting Lemma 5.22.

The next lemma is needed to show that there exists at most one embedding between contractions. The
intuition of this next lemma is as follows: given two CA cells z1 and z2 that are essentially the same, and
also M ©ξ z1 is identical to M ©ξ z2, then we can exchange all cells in M ©ξ z1 with the corresponding cells
M ©ξ z2 without any essential change to the CA.

More generally, the next lemma will show that for a coalgebra Y = (Y, 〈ξ, δ〉) containing two isomorphic
subcoalgebras with isomorphism ψ : Z1

∼
→ Z2, we can construct a coalgebra Y ′ with Z1 and Z2 exchanged,

and “lift” ψ to:

ψ+ : Y → Y ′

ψ+(y)
def
=











ψ(z1) ∈ Z2 u = z1 ∈ Z1

ψ−1(z2) ∈ Z1 u = z2 ∈ Z2

y u = y ∈ Y \ (Z1 ∪ Z2)

. (44)

Z1

Z2

Y \ (Z1 ∪ Z2)

Y⃗

Z2

Z1

Y \ (Z1 ∪ Z2)

Y⃗ ′

ψ+

Figure 16: If Y has two isomorphic subcoalgebras Z1 and Z2, then there exists an isomorphism ψ+ : Y ∼= Y ′

that exchanges these subcoalgebras.

Lemma 5.29
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The image Y ′
def
= ψ+[Y] is a coalgebra and ψ+ : Y

∼
→ Y ′ an isomorphism.

Proof. We first show that Y ′ = (Y ′, 〈ξ′, δ′〉) is a well-defined CG-coalgebra.

Carrier: On the level of sets, it is clear that ψ+ is a bijection Y
∼
→ Y , so the carrier Y ′ of Y ′ is simply Y .

ξ′ of dynamics: As for the ξ′ of Y ′, note that every element of Y ′ can be written in the form ψ+(u) for
an u ∈ Y , so define for all m ∈ M :

m©ξ
′(−) : Y ′ → Y ′

m©ξ
′ψ+(u)

def
= ψ+(m©ξ u). (45)

It indeed satisfies the path-comonad laws (Eq. (11) and (12)):

1©ξ
′ψ+(u)

def
= ψ+(1©ξ u) = ψ+(u).

(m • n)©ξ ′ψ+(u)
def
= ψ+((m • n)©ξ u) = ψ+(m©ξ n©ξ u)

def
= m©ξ

′ψ+(n©ξ u)
def
= m©ξ

′n©ξ
′ψ+(u).

δ′ of dynamics: Being an isomorphism, we have Nz1 = Nψ(z1) for all z1 ∈ Z1, thus the extension property
(Theorem 5.9) gives δz1 = δψ(z1), and by definition of ψ+, the latter indeed equals δψ+(z1). Analogously

δz2 = δψ−1(z2) = δψ+(z2) for all z2 ∈ Z2. Trivially also δy = δψ+(y) for all y ∈ Y \ (Z1∪Z2) (since ψ+(y)
def
= y),

thus the δ′ of Y ′ is just δ.

ψ+ is a coalgebra isomorphism: That ψ+ is a M -ξ-ξ′-homomorphism follows directly from the defini-
tions of δ′ and ξ′. To show it is an isomorphism, we construct its inverse by lifting ψ−1 analogously:

(ψ−1)+ : Y ′ → Y

(ψ−1)+(u)
def
=











ψ−1(z1) ∈ Z2 u = z1 ∈ Z1

ψ(z2) ∈ Z1 u = z2 ∈ Z2

y u = y ∈ Y \ (Z1 ∪ Z2)

.

Before we prove that (ψ−1)+ has the properties of a coalgebra homomophism, we first show that it is indeed
the inverse of ψ+ on cells. For any u ∈ Y we have:

(ψ−1)+(ψ+(u))
def
=











u u ∈ Y \ (Z1 ∪ Z2)

ψ−1(ψ(u)) u ∈ Z1

ψ(ψ−1(u)) u ∈ Z2

= u.

Analogously we find ψ+((ψ−1)+(u)) = u for all u ∈ Y ′.

As usual, to prove that (ψ−1)+ is a coalgebra homomorphism we will use Theorem 5.9. To see that (ψ−1)+

is a M -ξ′-ξ-homomorphism, again note that every element of Y ′ can be written in the form ψ+(u) for some
u ∈ Y . Thus it suffices to take arbitrary m ∈ M and u ∈ Y and observe that:

(ψ−1)+(m©ξ
′ψ+(u)) = (ψ−1)+(ψ+(m©ξ u))

= m©ξ u // (ψ−1)+ and ψ+ are inverses, so also on the cell m©ξ u.

= m©ξ (ψ−1)+(ψ+(u)). // Idem but for the cell u.
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Writing u′ := ψ+(u) this can be summarised as:

(ψ−1)+(m©ξ
′u′) = m©ξ (ψ−1)+(u′),

exactly the required relation.

It remains to show the extension property of (ψ−1)+. But indeed, for an arbitrary ψ+(u) ∈ Y ′:

δ(ψ−1)+(ψ+(u)) = δu = δψ+(u)

where the first equation follows from the fact that (ψ−1)+ and ψ+ are inverses on cells, and the second is
the earlier observed extension property of ψ+.

Lemma 5.30

For ‖X‖, ‖Y‖ ∈ ‖CCA
Σ
G‖, there exist at most one embedding e : ‖X‖ ↪→ ‖Y‖.

Proof. Let e1, e2 : ‖X‖ ↪→ ‖Y‖, then we need to show that e1 = e2.

Since both ei are surjective on M ©χ ei(‖x‖) for all ‖x‖ ∈ ‖X‖ (by Lemma 5.4), they are isomorphisms
ei : ‖X‖

∼
→ ei[‖X‖] (in Coalg(CG)). Surjectivity also means that no cell in ‖Y‖ \ ei[‖X‖] is reachable from a

cell in ei[‖X‖]. Hence ei[‖X‖] is a subcoalgebra of ‖Y‖ with only incoming paths from cells in ‖Y‖ \ ei[‖X‖].

In particular we have e1[‖X‖] ∼= ‖X‖ ∼= e2[‖X‖]. Denote this isomorphism by ψ : e1[‖X‖]
∼
→ e2[‖X‖]. Using

Lemma 5.29 we lift ψ to ψ+ : ‖Y‖
∼
→ ‖Y‖′, where ‖Y‖′ is ‖Y‖ but with subcoalgebras e1[‖X‖] and e2[‖X‖]

exchanged. The construction of lemma 5.29 shows that ψ+ ↾e1[‖X‖] is just the isomorphism ψ with image

e2[‖X‖] in ‖Y‖′, which allows us to define the composite isomorphism φ
def
= e−12 ◦ (ψ+↾e1[‖X‖]) ◦ e1.

‖X‖ ‖X‖

e1[‖X‖] e2[‖X‖]

ϕ

e1

ψ+↾e1[∥X∥]

e−1
2

But ‖X‖ has no distinct BE cells (Lemma 5.22), thus all endohomomorphism must send every cell to itself.
Hence φ = Id∥X∥.

Now take any ‖x‖ ∈ ‖X‖. Then

e−12 (ψ+(e1(‖x‖))) = φ(‖x‖) = ‖x‖.

Applying e2 to both sides gives

ψ+(e1(‖x‖)) = e2(‖x‖),

which is an equality of elements in the subcoalgebra e2[‖X‖] of ‖Y‖′. Thus these elements are also equal in
‖Y‖′. But since ψ+ is an isomorphism (this is the observation for which Lemma 5.29 is really used) ψ+ has
an inverse, and applying the inverse to both sides gives:

(ψ+)−1(ψ+(e1(‖x‖))) = (ψ+)−1(e2(‖x‖)),

which is an equality in ‖Y‖. Choosing h := (ψ+)−1 ◦ ψ+ and k := (ψ+)−1 shows that h(e1(‖x‖)) =

k(e2(‖x‖)), thus e1(‖x‖)
BE
≈ e2(‖x‖). But ‖Y‖ is a contraction, and therefore has no distinct BE cells. Thus

e1(‖x‖) = e2(‖x‖). Since ‖x‖ was arbitrary, this proves e1 = e2.

The next lemma will justify the need of contracting T , since it may have non-trivial endohomomorphisms
otherwise. It would be possible to postcompose such endohomomorphisms with arbitrary homomorphsim
h : X → T , which would show that h is not the unique homomorphism from X to T .
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Lemma 5.31

There exist ‖X‖, ‖Y‖ ∈ ‖CCA
Σ
G‖ and e : ‖X‖ ↪→ ‖Y‖ such that e is not an isomorphism.

Proof. Let the monoid M be freely generated over the alphabet {L,M,R,U}, and consider the contracted
coalgebras ‖X‖ and ‖Y‖ as depicted in Figure 17. We can check that this are indeed contractions for a
suitable choices of the local rules: all cells have different neighbourhood quotients that are incomparable
under the PartOrd(N) ordering (Definition 2.2), and hence mutually incompatible (Definition 4.2).

N∥x0∥ = N∥y0∥ = {|L,U | , |ε,M,R|}

N∥x1∥ = N∥y1∥ = {|ε, L,M | , |R,U |}

N∥y2∥ = {|ε| , |L| , |M,U | , |R|}

N∥y3∥ = {|ε, L,R| , |M,U |}

So the local rules at every cell can be chosen independently and differently. We choose them as such; then
no pair of cells within ‖X‖ or withing ‖Y‖ is behavioural equivalent to another cell in the same coalgebra.

∥x0∥ R/U

L/U

∥x1∥

L/M M/R

∥y0∥ ∥y1∥

L/M M/R

R/U

L/U

∥y3∥

∥y2∥

L/R

M/U M/U

∥X∥

∥Y ∥

L R

Figure 17: Embedding of a contracted coalgebra ‖X‖ (top) into a larger contracted coalgebra ‖Y‖ (bottom).
The dotted arrows indicate the cell-map of the embedding. The underlying monoid M is freely generated
over {L,M,R,U}. Only paths in the neighbourhood N = {ε, L,M,R,U} are shown, but this is a generating
set of M . The notation M/U denotes that paths M,U ∈ N lead to the same cell.

Remark 5.32. Any embedding e : ‖X‖ ↪→ ‖Y‖ has in its image all cells of M ©ξ e(‖x‖) (for all ‖x‖ ∈ ‖X‖),
because of Lemma 5.4. Thus the embedding e[‖X‖] has exactly the same form as ‖X‖ and no outgoing
arrows to other cells in ‖Y‖, but as the proof of Lemma 5.31 shows, it may have incoming arrows.

The next theorem will be used to prove the uniqueness of the homomorphism towards ‖T ‖:
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Theorem 5.33

There exists at most one unique coalgebra homomorphism h : X → ‖Y‖ when X ,Y ∈ CCA
Σ
G .

Proof. It suffices to factor h via ιX : X → ‖X‖ and an embedding e : ‖X‖ ↪→ ‖Y‖, since by Theorem 5.26
and Lemma 5.30 these two maps are necessary unique.

By naturality of ι w.r.t. the functor ‖(−)‖ (Corollary 5.24) the following solid square commutes:

X ‖Y‖

‖X‖ ‖‖Y‖‖

h

ιX ι∥Y∥

∥h∥

ι∥Y∥

Lemma 5.25 tells us that ι∥Y∥ is an isomorphism, thus it has an inverse (the dotted arrow in the above
diagram). Hence

ι−1∥Y∥ ◦ ‖h‖ ◦ ιX = h,

and therefore we can take e := ι−1∥Y∥ ◦ ‖h‖.

5.3.4 Cardinality of union of contractions

The next lemmas will establish that ‖CCA
Σ
G‖/

∼= is a set, and thus that
⊎

∥X∥∈∥CCAΣ
G
∥/∼=

‖X‖ is also a set.

The first lemma will be used to bound the number of behaviourally distinct (as in not-behaviourally-
equivalent) cells in a contraction: contractions have no two cells with essentially the same successors.

Lemma 5.34

Let X = (X, 〈χ, γ〉) ∈ CCA
Σ
G . Let x, x′ ∈ X be such that for all m ∈ M ,

Nm©χ x = Nm©χ x′

γm©χ x = γm©χ x′

then x
BE
≈ x′.

Proof. We construct a coalgebra X ′ by using a construction similar to a contraction (c.f. Definition 5.13),
but we only contract pairs of cells of the form m©χ x and m©χ x′ into an equivalence class (for every m ∈ M ).

So let X ′
def
= (X/∼, 〈χ′, γ′〉) where ∼⊆ X ×X is the reflexive and symmetric closure of the relation m©χ x ∼

m©χ x′ (for all m ∈ M ). Denote equivalence classes of ∼ by |y| (for all y ∈ X), and note that equivalence
classes contain either 1 or 2 cells.

Define χ′ as follows:

n©χ
′ |y|

def
= |n©χ y|

for all n ∈ M and y ∈ X. To see that this definition is independent of the representative of |y|, there are
only two cases to consider:

1. |y| = {y}, in which independence of the choice of representative is trivial.
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2. |y| = |m©χ x| for some m ∈ M . Then well-definedness follows from the following observation:

n©χ
′ |m©χ x| = |n©χ m©χ x| = |(n •m)©χ x| = |(n •m)©χ x′| = |n©χ m©χ x′| = n©χ

′ |m©χ x′| .

To see that χ′ is a cowriter-comonad-coalgebra, observe that:

n©χ
′`©χ ′ |y|

def
= n©χ

′ |`©χ y|
def
= |n©χ `©χ y| = |(n • `)©χ y|

def
= (n • `)©χ |y| .

The definition of γ′ follows the same approach as ‖γ‖:

γ′|y|
def
= γy

where:

u : SN|y| → SNy

u(k)(m)
def
= k(|m|).

Note that u is only well-defined when N|y| ≤ Ny (in PartOrd(N), Definition 2.2). That is, if |m|y = |n|y
implies |m||y| = |n||y|. To prove this, assume |m|y = |n|y, that is, m©χ y = n©χ y. Then applying |(−)| to

both sides gives |m©χ y| = |n©χ y|, which by definition of χ′ is equivalent to m©χ ′ |y| = n©χ ′ |y|, which is
equivalent to |m||y| = |n||y|.

Finally, we let φ : X → X ′ be the quotient map φ : y 7→ |y|. That this is a well-defined coalgebra homo-
morphism follows directly from the definitions of χ′ and γ′ (and Theorem 5.9). We further observe that

φ(x) = φ(x′), thus we conclude that x
BE
≈ x′.

We proceed now by counting cardinalities. Fix an arbitrary monoid M , neighbourhood N ⊆ M and state
set S, and denote their cardinalities as:

µ = card(M )

ν = card(N)

σ = card(S).

The following lemma gives a (very coarse) upper bound on the number of behaviourally distinct cells a CA
may have.

Lemma 5.35

For a CA X = (X, 〈χ, γ〉) ∈ CCA
Σ
G , the number of distinct equivalence classes of X under the BE-

relation is upper bounded by
κ = 2µµ(22

ν

)(σσ
ν

).

Proof. From Lemma 5.34 it follows that a sufficient condition for cells x, x′ ∈ X to be BE is having:

• The same number of M -reachable successors.

• The same Nm©χ x = Nm©χ x′ and γm©χ x = γm©χ x′ for all m ∈ M .

The number of disjoined partitions of N is upper bounded by 22
ν

, the number of subsets of subsets of N .
Hence, there are at most 22

ν

choices for Nx for a given cell x ∈ X.

Recall that γx ∈ SS
Nx

, and since card(Nx) ≤ ν, the number of choices of γx is bounded by σσ
ν

.

57



5.4 Summary of coalgebra homomorphisms and behavioural equivalence5 Coalgebra homomorphisms and behavioural equivalence

From the above two observations, it follows that there are at most (22
ν

)(σσ
ν

) distinct choices of pairs (Nx, γx).

A cell x has at least 1 successor (itself) and at most µ successors. For a chosen number 1 ≤ α ≤ µ of
successors of x, there are α(22

ν

)(σσ
ν

) ways to choose the data inside the successors. But by the cowriter-
comonad structure (Eq. (12)), the successors of successors of x are also successors of x, hence this fixes the
successors of all cells m©χ x automatically as well. Since there are 2µ choices for α, and since α ≤ µ, this
means that the total number of ways to configure x and all reachable successors is bounded by

κ
def
= 2µµ(22

ν

)(σσ
ν

).

Note that a cell x may still have a myriad of (possibly independent) parents that it cannot see. The trick is
that those parents themselves are also among those κ choices.

Corollary 5.36

If X ∈ CCA
Σ
G then ‖X‖ has at most κ cells.

Proof. ‖X‖ has no distinct behaviourally equivalent cells, and there are at most κ behaviourally distinct cells
by Lemma 5.35.

Corollary 5.37

There are, up to isomorphism, at most 2κ distinct contractions of coalgebras in CCA
Σ
G .

Proof. This is the number of subsets of κ, the upper bound of the total number of possible cells.

Let A = {‖X‖ |X ∈ CCA
Σ
G}/

∼=.

Theorem 5.38

T
def
= ]∥X∥∈A‖X‖ is a set, and so is ‖T‖. Therefore ‖T ‖ is the terminal coalgebra in CCA

Σ
G .

Proof. The fact that T is a set follows from Corollary 5.37, which gives an upper bound on the cardinality
of T .

Every X ∈ CCA
Σ
G has a unique morphism to ‖X‖ (Theorem 5.26), and clearly there is the inclusion map

i : ‖X‖ ↪→ T . Thus we have the composition:

X ‖X‖ ‖‖X‖‖ ‖T‖
ιX ι∥X∥ ∥i∥

Theorem 5.33 asserts that this coalgebra homomorphism is unique as well.

5.4 Summary of coalgebra homomorphisms and behavioural equivalence

The concept of behavioural equivalence seems appropriate for describing the distinct atomic building blocks
of a non-uniform CA (uniform CA have only one such building block), but not for reasoning about the global
dynamics of a CA.

Using Theorem 5.38 as a practical characterisation of coalgebra homomorphisms, we have developed the
concept of the contraction ‖X‖ of a CA X . In a contraction, all BE cells are merged into one cell. There
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6 Logic for computation traces

is a unique map from a CA X to any contracted CA (Theorem 5.33), and also at most one map between
contractions (Lemma 5.30). The reader acquainted with Homotopy Type Theory may see an analogy with
propositional truncations: for every type A there is a unique map to its propositional truncation ‖A‖, and
there is at most one map between two propositional truncations (as they are propositions).

We used contractions to construct the terminal coalgebra ‖T ‖ (Theorem 5.38). This coalgebra encodes a
complete picture of all equivalence classes of BE cells of CA (defined for a given signature (M , N, S)), as it
contains exactly one cell for each class.

A modal logic obtained via the predicate-lifting framework for coalgebras cannot logically distinguish BE
cells, and therefore it cannot distinguish a CA from its contraction. However, contractions preserve few of
the global dynamics of a CA. The contraction of a uniform CA is particularly trivial, as it is a single cell
(Lemma 5.11). For example, Example 5.12 shows that CGOL is contracted to the single-celled constant-
dead-state CA; the logic would not be able to differentiate between the computationally universal dynamics
of GCOL and a trivial constant state.

The conclusion is that a logic capable of describing spatio-temporal patterns in the trace sequence of a CA is
necessarily also capable of distinguishing behaviourally equivalent cells. A logic generated by the predicate
lifting framework is not able to do the latter. This justifies manually defining of a modal logic with semantics
based on trace sequences, which will be the topic for the remainder of this thesis.

6 Logic for computation traces

Section 5 argued that the standard framework for defining modal logics for coalgebras due to Schröder [41]
and Klin [22] is not appropriate for describing the global dynamics of a CA.

This section will manually construct an elementary modal logic for describing the states of cells in a trace of
a CA. Like how Kripke modal logics are evaluated from the perspective of points, our logic will be evaluated
locally from the perspective of cells. Given a coalgebra X = (X, 〈χ, γ〉) on a monoid M , we can assign a
state to cells via a configuration c0 : X → S. Therefore it seems natural to take states as out analog of
propositional letters and traces [c0, c1, . . . ] (which are entirely determined by c0) as analogs to valuations.
Hence our atomic formulas will be individual states s ∈ S and models will be a coalgebras X paired with an
initial configuration c0.

In Kripke modal logics, when evaluating a formula at a point x, it is possible to specify that a subformula
should be evaluated at a related point y via a diamond �R if xRy. In the context of CA, there are two
relation-like structures we can define diamonds for: the CA’s connections between cells are encoded in χ, as
well as the chain-shaped trace c0 → c1 → c2 → c3 → . . . . Therefore we will introduce “space” diamonds
�m for m ∈ M to traverse the CA’s graph, as well as a “time” diamond 1 to evaluate a subformula at the
next configuration in a trace. In combination with the familiar Boolean logic connectives ∧, ∨, ¬ and →, we
can encode statements such as “If my m ∈ M neighbour has state s0, then I will have state s1 in the next
timestep”:

(�ms0) → 1s1.

This section will incrementally build a basic modal language Lstg that implements the ideas below. We will
first construct the space diamonds, then add the time diamonds. Thereafter we discuss the possibilities of
performing uniform substitution, and this section concludes with proving a collection of practical reasoning
tools.

6.1 Space modalities

A configuration of a CA X = (X, 〈χ, γ〉) ∈ CCAG is an assignment c : X → S of each cell x ∈ X to a state
s ∈ S. This is essentially a Kripke model:
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6.1 Space modalities 6 Logic for computation traces

• The propositional letters are S, the worlds are X.

• There is a successor relation Rm for every m ∈ M , namely xRmx
′ iff x′ = m©χ x.

• The valuation V : X → ℘(S) is just the configuration: V (x)
def
= {c(x)}. Note that that every world is

assigned exactly one letter in a valuation c.

This perspective allows us to introduce a propositional “space modalities” modal logic Ls with modalities �m
for every m ∈ M , that can express “space” properties of a CA. This logic cannot yet express the dynamics
of a CA (which follow from the local rules γx), but it is a foundation to which we will incrementally extend
with more symbols in subsequent subsections.

6.1.1 Grammar

The grammar of Ls is as follows:

Ψ ::= ¬ψ ψ1 ∨ ψ2 ⊥ s �m

where m ∈ M and s ∈ S. The notational abbreviations ∧, →, ↔ and > are defined as usual. The states
s act as logic constants; the intuition is that a formula “s” is satisfied at a cell x in configuration c iff x is
assigned state s (i.e., iff c(x) = s).

6.1.2 Semantics

As in Kripke semantics, we distinguish between static frames and models, which are assignments of values to
“variables”. In the context of CA, the natural choice of these variables are the initial states of the cells.

Definition 6.1: Frame

A frame X = (M , N, S,X, 〈χ, γ〉) is a coalgebra X = (X, 〈χ, γ〉) ∈ CCAG together with the monoid
M , neighbourhood N ⊆ M and state set S on which X is defined.

Definition 6.2: Model

A model (X, c0) is a frame X = (M , N, S,X ) together with an initial configuration c0 : X → S.

Definition 6.3: Space modalities semantics

Define modal satisfaction of a formula ψ ∈ Ψ in a model (X, c0) at a cell x ∈ X, to be the proposition
(which is strictly either true or false):

X, c0, x ⊨ ψ,

whose truth is given recursively as follows:

X, c0, x ⊨ ⊥ is always false

X, c0, x ⊨ s iff c0(x) = s

X, c0, x ⊨ ¬ψ iff X, c0, x ⊭ ψ

X, c0, x ⊨ ψ1 ∨ ψ2 iff (X, c0, x ⊨ ψ1 or X, c0, x ⊨ ψ2)

X, c0, x ⊨ �mψ iff X, c0,m©χ x ⊨ ψ
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where s ∈ S, m ∈ M , ψ,ψ1, ψ2 ∈ Ψ and “X, c0, x ⊭ ψ” denotes “it is false that X, c0, x ⊨ ψ”.

A formula that holds in all choices of the initial configuration is called valid:

Definition 6.4: Validity of a formula

A formula ψ is valid in frame X at a cell x ∈ X, denoted X, x ⊨ ψ, if X, c0, x ⊨ ψ for all c0 : X → S. A
formula ψ is valid in X itself, denoted X ⊨ ψ, if ψ is valid at all cells in X.

The logic of a frame, denoted Log(F), is the set of all formulas that a frame validates. The logic of x
for a cell x ∈ X, denoted Log(x), is the set of formulas that are valid at x.

Stacking space diamonds, e.g., �m�n, semantically corresponds to monoid multiplication n •m. An example
usage of this property is that a logic for finitely generated monoids only need a diamond for every generating
element. Formally, the property is:

Lemma 6.5

For all ψ ∈ Ψ, the formula �m �n ψ is semantically equivalent to �n•mψ.

Proof. Directly from the definition of the semantics:

X, c0, x ⊨ �m �n ψ iff X, c0,m©χ x ⊨ �nψ

iff X, c0, n©χ m©χ x ⊨ ψ

iff X, c0, (n •m)©χ x ⊨ ψ

iff X, c0, x ⊨ �n•mψ

6.1.3 Expressivity of space modalities

The logic Ls can express both basic properties of the input configuration c : X → S and some properties of
χ. As for a basic example:

Example 6.6. Consider the 2D grid (i.e., the monoid Z2), and denote the modalities corresponding to
(1, 0), (−1, 0), (0, 1), (0,−1) ∈ Z2 with�→ ,�← ,�↑ ,�↓ respectively. As cells, simply use X = Z2 as well. Use
the colours green, orange and purple as states (i.e., S = {sor, sgr, spu}).

0 1−1

−1

0

1

sor

sor

spu

spu

spu

sgr sgr

sgr

sgr

Figure 18: Part of a configuration S → Z2 using the three-colour state set S = {sor, sgr, spu}.

In the configuration c of Figure 18, and the frame F = (Z2, S,
−→
Z2), the point x = (0, 0) satisfies and unsatisfies
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respectively the following formulas:

F, c, x ⊨ sor
F, c, x ⊭ sgr
F, c, x ⊨�→�↓ sor

F, c, x ⊭�↑ spu

F, x, x ⊨ (�← sgr) ∧ ((�↑ spu) ∨ (¬�↓ ssgr )).

By using the notion of validity, the logic Ls can already separate cells that are BE, implying Ls is more
expressive than the notion of BE. A frame F validates ψ ∈ Ψ, denoted as F ⊨ ψ, if F, c, x ⊨ ψ for all c : X → S
and x ∈ X. The logic of a frame, denoted Log(F), is the set of formulas that the frame validates. Analogously
a cell x ∈ X may validate a ψ if F, c, x ⊨ ψ for all c : X → S, which in turn defines the logic of a cell Log(x).

Lemma 6.7

There exist X ,Y ∈ CCAG and x ∈ X and y ∈ Y such that x
BE
≈ y but Log(x) 6= Log(y).

Proof. Refer back to Example 5.12, which showed that all cells in CGOL are BE to the CA with a single
cell and the local rule that always outputs the “dead” state ◦. Denote this single-cell-constant-dead CA by
1◦, with the single cell ∗, state set {•, ◦} and γ∗ = const◦. The CA 1◦ uses the same signature (Z2, N, S =

{•, ◦}) as
−−−→
CGOL (coalgebra homomorphisms only exist between CA defined on the same signature) where

N = {(i, j) | i, j ∈ {−1, 01}}. Now a configuration on 1◦ is of type c : {∗} → {•, ◦} and all neighbours of ∗
(which is only ∗ itself!) all receive the same state in any configuration. Hence

◦ →�↑ ◦ ∈ Log(∗).

In CGOL this formula is not valid at any cell (x, y) ∈ Z2, seen (for example) by the configuration c(x, y) = ◦
and c(x, y + 1) = •. (Note that the formula is satisfied in the model of CGOL’s frame with a configuration c

s.t. c(x, y) = c(x, y + 1). But this does not hold for all configurations on
−−−→
CGOL).

Example 6.8 (Neighbourhood quotients). The logic Ls can express properties of the neighbourhood quo-
tients. For example the formula

�ns0 ↔ �ms0 (46)

is valid at a cell x iff |n|x = |m|x (assuming S ≇ 1). This can be seen as follows: if n©χ x 6= m©χ x, then one
can define a configuration such that c(n©χ x) 6= c(m©χ x), in which case (46) is not satisfied.

6.2 Time modalities

The logic Ls cannot express any properties about the dynamics of a CA; neither local dynamic properties
such as the local rules γx (the semantics c.f. Definition 6.3 are independent of γx) nor properties about the
global dynamics of a CA. Recall from the definition of a general CA (Definition 4.6) that the global dynamics
are a sequence of configurations (ci)i∈N (where ci : X → S) computed by recursively applying the global rule
GX (Eq. (28)) to an configuration c0.

In order to express the evolution of the configurations over time we introduce a new time modality 1 to the
logic Ls, obtaining the “space & time modalities” logic Lst, with semantics:
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Definition 6.9: Space & time modalities semantics

Define modal satisfaction of a formula ψ ∈ Ψ in a model (X, c0) at a cell x ∈ X, to be the proposition
(which is strictly either true or false):

X, c0, x ⊨ ψ.

Unlike in the semantics of Ls, modal satisfaction depends depends recursively on the truth in models
(X, Gt

X
(c0)). Thus we define the truth of propositions

X, Gt
X
(c0), x ⊨ ψ (47)

for all t ∈ N. Since c0 is usually clear from context, we ease the notation by writing ct for Gt
X
(c0).

Now the truth of (47) can be given recursively as:

X, ct, x ⊨ ⊥ is always false

X, ct, x ⊨ s iff ct(x) = s

X, ct, x ⊨ ¬ψ iff X, ct, x ⊭ ψ

X, ct, x ⊨ ψ1 ∨ ψ2 iff (X, ct, x ⊨ ψ1 or X, ct, x ⊨ ψ2)

X, ct, x ⊨ �mψ iff X, ct,m©χ x ⊨ ψ

X, ct, x ⊨ 1ψ iff X, ct+1,m©χ x ⊨ ψ

The only difference between the semantics of Lst and Ls (Definition 6.3) are the 1 case, and generalising from
c0 to all ct.

6.2.1 Expressivity of time modalities

The logic Lst gives a positive answer to our research question, but only for finite patterns:

Example 6.10. The logic Lst can already express any finite spatio-temporal pattern of a trace of a rooted
(Definition 3.8) CA. To see this, let X = (M , N, S,X, 〈χ, γ〉) ∈ CCAG be a CA rooted in r ∈ X. For any cell
x ∈ X and state s ∈ S, we can express that x has state s in the (t− 1)th configuration of a trace with initial
configuration c0 : X → S as follows. First we rewrite x = m©χ r (for some m ∈ M , which is possible since
r is the root), and then we note that Gt

X
(x) = s holds iff X, c0, r ⊨ 1

t �m s. For patterns involving multiple
cells and/or multiple points in time we simply use conjunctions.

We will now show examples of properties related to the dynamics of a CA that Lst can express but Ls cannot.

Example 6.11. Lst can logically distinguish a CA whose local rules are the constant-◦-output from a CA
whose local rules are the constant-•-output; the latter validates 1• but not 1◦, for the former it is exactly
the other way around.

Lemma 6.12

If N is finite, then Lst can express the mapping of γx piecewise for every input z : Nx → S.
If S is also finite, then Lst can express γx entirely in one formula.

Proof. The formula for γx(z) is:
(

∧

n∈N

�nz|n|x

)

→ 1γx(z). (48)
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The reading is as follows:
∧

n∈N �nz(|n|x) is satisfied in X, ct, x iff ct ↾(N ©χ x) = z ◦ |(−)|x, so it encodes if
the neighbours of x have the states as encoded in z. The conclusion 1γx(z) encodes that X, ct+1, x ⊨ γx(z),
i.e., that x will have state γx(z) in the next timestep.

If S is finite, then SNx is also finite, so one can take the conjunction over all z ∈ SNx of equations (48).

Example 6.13 (Local rule). Suppose we have a CA X on the monoid freely generated over {L,R} with the
finite neighbourhood N = {1, L,R} and state set S. Given a cell x with a full neighbourhood Nx = {N}, we
can express γx on an input z : N → S as:

∧

z : N→S

(z(1) ∧ �Lz(L) ∧ �Rz(R)) → 1γx(zx).

6.3 Global variables and uniform substitution

In the context of Kripke frames, a key strength of normal modal logics is the ability to characterise a class
C of frames by a finite set of formules ΨC such that X ∈ C iff X ⊨ ψ for all ψ ∈ ΨC . For example, p → �p
characterises frames based on a reflexive relation. This is possible because of the propositional letters p ∈ Phi
in Kripke semantics: these act as global variables and can be uniformly substituted by arbitrary subformulas
without changing the validity of the outer formula.

This raises the question whether one can also introduce a form of uniform substitution in the logic for CA,
as this would be helpful to finitely classify classes of CA.

The answer is positive, but we cannot simply use the states s ∈ S as propositional letters. To see this, observe
that Kripke propositional letters are indistinguishable and whose semantics are entirely determined by the
valuation V : W → ℘(Φ) added to a frame X = (W,R ⊆ W ×W ) to construct a model (X, V ). However,
states s ∈ S are not necessarily indistinguishable and may partially have a constant value that the choice
of c0 (our analog of V ) cannot change. The simplest example is a constant local rule γx = consts0 for some
s0 ∈ S. A model may freely choose c0, but ct + 1(x) = s0 for all t ∈ N. Hence x validates 1s0. Obviously we
cannot substitute s0 by any arbitrary formula, such as “s1” for a state s1 6= s0 ∈ S!

The solution is straightforward: only consider the states in c0, which do not have any constant value. We
introduce new 0-ary symbols vS for all s ∈ S and extend the semantics with the rule:

X, Gt
X
(c0), x ⊨ vS iff c0(x) = s. (49)

When c0 is clear from context, this will be written as X, ct, x ⊨ vS iff c0(x) = s. We denote extension of Lst

with global variables as Lstg.

One complication remains: a normal modal logic formula ψ in a Kripke frame becomes either true or false
after giving a valuation V . A formula can be seen as a function ℘(Φ)W → 2 that maps a valuation to a
true/false truth value. But for CA, the truth value of a formula ψ might also depend on the point in time in
which it is evaluated. It follows that one cannot substitute a variable vS (which does not depend on the point
in time in which it is evaluated, i.e., X, c0, x ⊨ vS iff X, ct,⊨ vS for all t ∈ N) by a formula ψ whose truth does
change over time: that is, if X, ct1 , x ⊨ ψ but X, ct2 , x ⊭ ψ for some t1, t2 ∈ N. However, when restricting to
time invariant formulas, uniform substitution does remain sound for CA.

Definition 6.14: Time invariant formula

A formula ψ ∈ Ψ is time invariant if, for all c0 : X → S:

X, x ⊨ ψ iff for all t ∈ N: X, x ⊨ 1

tψ.
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Denote the time invariant formulas in Ψ of a cell by TIΨ(x), and the formulas that are time invariant
in all cells in a CA X by TIΨ(X ).

For a frame X based on X we will also write TIΨ(X) to denote the same set as TIΨ(X ).

Lemma 6.15: Valid formulas are time invariant

If X, x ⊨ ψ then ψ is time-invariant.

Proof. Take any c0 : X → S and any t ∈ N. We need to show that X, c0, x ⊨ 1

tψ, but this holds iff X, ct, x ⊨ ψ,
which indeed follows from the assumption X, x ⊨ ψ (since ct = Gt

X
(c0) is just another choice of model).

Note that we cannot restrict the grammar to only time invariant formulas, since time invariance depends on
the CA. For example, recall CGOL and 1◦ from the proof of Lemma 6.7 and Example 5.12. The formula
◦ → 1◦ is not valid in CGOL but it is if valid (and hence time invariant) in 1◦.

Further note that the absence of constants s ∈ S in a formula ψ is not required for time invariance. For
example, s ∨ > is always valid and s ∧ ⊥ is always invalid, and hence both are time invariant.

Lemma 6.16: Uniform substitution of time invariant formulas

If X ⊨ ψ (and S ≇ 1), then for all s ∈ S and φ ∈ TIΨ(X) it holds also that X ⊨ ψ
[

ϕ/vS
]

.

It is most convenient to first prove the following auxiliary lemma:

Lemma 6.17

For all θ ∈ Ψ containing the term vS, s 6= s′ ∈ S, φ ∈ TIΨ(X) and c0 : X → S, if we define

c′0
def
=

{

s X, c0, x ⊨ φ

s′ otherwise
,

then for all t ∈ N and x ∈ X:
X, c′t, x ⊨ θ iff X, ct, x ⊨ θ

[

ϕ/vS
]

.

where we abbreviated Gt
X
(c′0) as c′t.

Proof. Proceed by structural induction on θ. We assumed that θ contains vS, so the cases θ = s ∈ S and
θ = ⊥ do not apply.

Case θ = vS: By the semantics of vS, X, c′t, x ⊨ vS iff c′0(x) = s. By definition of c′0, this holds iff X, c0, x ⊨ φ.
The latter holds iff X, ct, x ⊨ vS

[

ϕ/vS
]

, as required.

Note that this first case is the reason for introducing vS. If we would use the atoms s ∈ S instead as
propositional letters to be substituted, then we would only be able to show the equality for t = 0 in the θ = s
case. However, we need it to show for all t ∈ N in order to have a sufficiently strong induction hypothesis
for the θ = 1ψ case.

Case θ = ψ1 ∨ ψ2:
Induction hypothesis: for all x ∈ X, t ∈ N and j ∈ {1, 2} it holds that:

X, c′t, x ⊨ ψj iff X, ct, x ⊨ φj
[

ϕ/vS
]

.
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Observe that (ψ1 ∨ ψ2) [
a/b] = (ψ1 [

a/b]) ∨ (ψ2 [
a/b]) for all strings a and b. Therefore we can compute:

X, c′t, x ⊨ ψ1 ∨ ψ2

iff (X, c′t, x ⊨ ψ1 or X, c′t, x ⊨ ψ2)

iff (X, ct, x ⊨ ψ1

[

ϕ/vS
]

or X, ct, x ⊨ ψ2

[

ϕ/vS
]

) // By the induction hypothesis.

iff X, ct, x ⊨ (ψ1 ∨ ψ2)
[

ϕ/vS
]

.

Case θ = ¬ψ:
Induction hypothesis: for all x ∈ X and t ∈ N it holds that:

X, c′t, x ⊨ ψ iff X, ct, x ⊨ ψ
[

ϕ/vS
]

.

Now we compute:

X, c′t, x ⊨ ¬ψ iff X, c′t, x ⊭ ψ

iff X, ct, x ⊭ ψ
[

ϕ/vS
]

// By the induction hypothesis and the fact that a formula is either satisfied or not.

iff X, ct, x ⊨ ¬(ψ
[

ϕ/vS
]

)

iff X, ct, x ⊨ (¬ψ)
[

ϕ/vS
]

.

Case θ = 1ψ:
The induction hypothesis is as in the ¬ case.

X, c′t, x ⊨ 1ψ iff X, c′t+1, x ⊨ ψ

iff X, ct+1, x ⊨ ψ
[

ϕ/vS
]

// By the induction hypothesis.

iff X, ct, x ⊨ 1(ψ
[

ϕ/vS
]

)

iff X, ct, x ⊨ ( 1ψ)
[

ϕ/vS
]

.

Case θ = �mψ (m ∈ M ):
The induction hypothesis is again as in the ¬ case.

X, c′t, x ⊨ �mψ iff X, c′t,m©χ x ⊨ ψ

iff X, ct,m©χ x ⊨ ψ
[

ϕ/vS
]

// By the induction hypothesis.

iff X, ct, x ⊨ �m(ψ
[

ϕ/vS
]

)

iff X, ct, x ⊨ (�mψ)
[

ϕ/vS
]

.

Proof of Lemma 6.16. Assume that X ⊨ ψ and that φ ∈ TIΨ(X ). It is to show that X ⊨ ψ
[

ϕ/vS
]

. To this

end, take any arbitrary c0 : X → S and x ∈ X, then it suffices to show that X, c0, x ⊨ ψ
[

ϕ/vS
]

, i.e., that

X, c0, x ⊨ ψ
[

ϕ/vS
]

(50)

But define c′0 as in Lemma 6.17, then X ⊨ ψ implies that X, c′0, x ⊨ ψ. Now Eq. (50) follows directly from
Lemma 6.17.

We conclude with an example application of global variables and time-invariant uniform substitution.
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Example 6.18. Given a CA X = (M , N, S,X ) with at least two distinct states s0, s1 ∈ S, the formula

vss0 → �mvss0 (51)

is valid at a cell x ∈ X iff x = m©χ x (otherwise we could unsatisfy with a configuration c0 s.t. c(x) = s0 and
c(m©χ x) = s1). Unform substitution of time-invariant formulas allows to substitute vss0 by any other time
invariant formula. This is not surprising: if x satisfies ψ and x = m©χ x, then m©χ x must clearly also satisfy
ψ!

6.4 Logical reasoning rules

One of the main applications of defining a logic is the possibility to perform symbolic reasoning. Logical
reasoning can, for example, be used to prove properties about the mathematical structures that form the
semantics. This requires reasoning rules that are sound, i.e., that are consistent the semantics. We will
present several such rules in the style of natural deduction, many of which will be used in proofs in later
sections.

In this section, we use X = (M , N, S,X, 〈χ, γ〉) as an arbitrary frame. A rule about validity of a formula in
X will be presented as follows:

Definition 6.19: Sound rule

A rule with n-premises X ⊨ φ1,X ⊨ φ2, . . . ,X ⊨ φn and conclusion X ⊨ ψ,

denoted
X ⊨ φ1 X ⊨ φ2 . . . X ⊨ φn

X ⊨ ψ
, is sound if X ⊨ ψ whenever X ⊨ φi for all 1 ≤ i ≤ n.

Double bars, as in
A

B
, denote the pair of rules

A

B
and

B

A
.

A rule may apply both to space diamonds �m (for all choices of m ∈ M ) as well as for time diamonds 1, in
which case the notation � will be used. All instances of � within a rule must be substituted with the same
diamond.

We will also write metamathematical statements (such as s ∈ S) as premises in rules. Technically this means
that we define a family of rules over all choices of the metavariables in the metamathematical premises.

Be aware that we give no guarantee of completeness: there may exist valid formulas that cannot be derived
from the rules in this section.

The first two rules are very versatile; they show that we can perform basic propositional logic in Lstg.

Lemma 6.20

For any propositional logical tautology τ in propositional variables x1, x2, . . . xn, we have the rule:

ψ1, ψ2, . . . , ψn ∈ Ψ
Taut

X ⊨ τ
[

ψ1/x1

] [

ψ2/x2

]

. . .
[

ψn/xn

]

Proof. The semantics for Lstg concerning the symbols ¬, ∨ and ⊥ (and hence also →, ∧ and >) are equivalent
to those of propositional logic.

In any model given by a configuration c0 : X → S, the semantics of the formulas ψi evaluate to tt or to ff.
So the semantics in c0 of a formula φ containing ψi are (in c0) the same as φ

[

ϕi/⊤
]

or φ
[

ϕi/⊥
]

respectively.

Since τ is a tautology, it is true for any substitution of the variables x1, x2, . . . , xn by > and ⊥.
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Lemma 6.21: Modus Ponens

The following rule is sound:
X ⊨ ψ → φ X ⊨ ψ ψ, φ ∈ Ψ

MP
X ⊨ φ

Proof. Take any configuration c0 : X → S. Then for all x ∈ X we have (unfolding the definition of →)
X, c0, x ⊨ ¬ψ ∨ φ and X, c0, x ⊨ ψ. This combination is only possible if X, c0, x ⊨ φ. Since c0 and x were
arbitrary we find X ⊨ φ.

Remark 6.22. Many common reasoning strategies can be obtained as a combination of a propositional
tautology and MP. For example, ∧-elimination can be encoded as a tautology A ∧B → A. Thus, if one has
derived that X ⊨ φA ∧ φB for some φA, φB ∈ Ψ, we first obtain the tautology X ⊨ φA ∧ φB → φA via Taut

(Lemma 6.20), and conclude X ⊨ φA via MP (Lemma 6.21).

MP gives a tool for implication elimination, but implication introduction is also often useful. The following
lemma shows that we can introduce implications by the usual method of propositional logic.

Lemma 6.23: Implication introduction

If one can prove X, c0, x ⊨ φ when assuming X, c0, x ⊨ ψ, then X, c0, x ⊨ ψ → φ holds in general.

Proof. Assume we can derive X, c0, x ⊨ φ from X, c0, x ⊨ ψ.

By definition of “→” we know X, c0, x ⊨ ψ → φ holds iff X, c0, x ⊨ ¬ψ ∨ φ. Assume X, c0, x ⊭ ¬ψ, then we
need to show that X, c0, x ⊨ φ. But X, c0, x ⊨ ψ holds iff X, c0, x ⊨ ψ (by Lemma 6.29). By the premise of
the lemma, this implies X, c0, x ⊨ φ. The latter was to be shown.

The next two rules follow from the fact that, in any configuration, a cell has exactly one state.

Lemma 6.24: Single state

The following rule is sound:
s0, s1 ∈ S s0 6= s1

Det1
X ⊨ s0 → ¬s1

Proof. Take any x ∈ X and c0 : X → S. Suppose s0 6= s1 ∈ S and that X, c0, c ⊨ s0. Then, by the
semantics of the formula s0, it must be that c0(x) = s0. Thus c0(x) 6= s1, which implies X, c0, x ⊭ s1. Hence
X, c0, x ⊨ s0 → ¬s1.

The following rule shows that we cannot distinguish � from ¬�¬; this is unlike in Kripke modal logics, where

2
def
= ¬ � ¬ does have different semantics than �.

Lemma 6.25: Diamonds are boxes

For any ψ ∈ Ψ the following rule is sound:

X ⊨ �ψ
Det2

X ⊨ ¬ � ¬ψ
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Proof. For any c0 : X → S and x ∈ X it holds:

X, c0, x ⊨ 1ψ iff X, GX(c0), x ⊨ ψ

iff X, GX(c0), x ⊭ ¬ψ

iff X, c0, x ⊭ 1¬ψ

iff X, c0, x ⊨ ¬ 1¬ψ.

(Note that, by definitions of the semantics of 1, (X, GX(c0), x ⊨ ¬ψ) and (X, c0, x ⊨ 1¬ψ) have the same truth
value).

The case where � = �m for some m ∈ M is analogous (but changing x to m©χ x instead of c0 to GX(c0).

Lemma 6.26: Generalisation

The following rule is sound:
X ⊨ ψ ψ ∈ Ψ

Gen
X ⊨ �ψ

Proof. In case � = 1, take any c0 : X → S and x ∈ X. We need to show that X, c0, x ⊨ 1ψ, i.e., that
X, GX(c0), x ⊨ ψ. But GX(c0) is just a configuration, so this follows from X ⊨ ψ.

Lemma 6.27: K-axiom

The following rule is sound:

s0, s1 ∈ S
K

X ⊨ �(vs0 → vs1) → ((�vs0) → (�vs1))

Proof. We first consider the case where � = �m for some m ∈ M . Assume any s0, s1 ∈ S, c0 : X → S
and x ∈ X. Applying Lemma 6.23, we assume that X, c0, x ⊨ �m(vs0 → vo) and we need to show that
X, c0, x ⊨ (�mvs0) → (�mvs1). We apply Lemma 6.23 again, and assume that X, c0, x ⊨ �mvs0 ; it remains to
show that X, c0, x ⊨ �mvs1 . Our two assumptions are equivalent to:

X, c0,m©χ x ⊨ vs0 → vs1

and

X, c0,m©χ x ⊨ vs0 .

respectively. We can apply MP on these latter forms to obtain X, c0,m©χ x ⊨ vs1 . This is equivalent to
X, c0, x ⊨ �mvs1 , which was to be shown.

The case � = 1 is analogous, except that we replace c0 by GX(c0) instead of x by m©χ x.

Space-time independence Suppose it is 11:55 AM. Then you could (1) walk downstairs and wait there
for 5 minutes, and (2) wait for 5 minutes and thereafter go downstairs. But both options make you end up
on the ground floor at 12:00. The key insight is that the stairs lead to the same place at any point in time.

Lemma 6.28: Space-Time Independence (STI)
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For any m ∈ M and ψ ∈ Ψ, the following rules are sound:

X ⊨ �m 1ψ
STI

X ⊨ 1 �m ψ

Proof. Directly from the semantics:

X, c0, x ⊨ �m 1ψ iff X, c0,m©χ x ⊨ 1ψ

iff X, GX(c0),m©χ x ⊨ ψ

iff X, GX(c0), x ⊨ �mψ

iff X, c0, x ⊨ 1 �m ψ.

Lemma 6.29: Double Negation

For any ψ ∈ Ψ, the following rule is sound:

DN
X ⊨ ¬¬ψ ↔ ψ

Proof. This follows from the definition of the semantics: a formula in a model (X, c0) at a cell x ∈ X is either
satisfied or not. Thus, if X, c0, x ⊭ φ is not true (for any φ ∈ Φ), then the only remaining possibility is that
X, c0, x ⊨ φ. So we observe that X, c0, x ⊨ ¬¬ψ iff X, c0, x ⊭ ¬ψ. Now X, c0, x ⊨ ¬ψ holds iff X, c0, x ⊭ ψ,
thus X, c0, x ⊭ ¬ψ holds iff X, c0, x ⊨ ψ.

6.5 Summary of basic modal logic

This section constructed the basic modal logic Lstg, a cellular automaton analogue of Kripke modal logics.
The frames X = (M , N, S,X ) in this logic are CA coalgebras in CCAG, together with the signature (M , N, S)
on which they are defined. Models are frames paired with an initial configuration c0 : X → S, which define a
trace [c0, c1, c2, . . . ] that assigns a state to every cell at every point in time. These states s ∈ S act as atomic
formulas, which are true at a cell x ∈ X in a configuration c0 iff c0 assigns state s to x (i.e., c0(x) = s).
Paired with the Boolean connectives ∧, ∨, ¬ and →, these atomic formulas form the basic building blocks of
the language Lstg. But by encapsulating subformulas in space �m and time 1 diamonds, we allow to evaluate
subformulas at cells m©χ x for m ∈ M , as well as in a the next configuration c1 in the trace. Diamonds can
be nested, which allow to specify any reachable point in the CA’s graph and any future configuration ct.

Unlike in Kripke modal logics, the atomic formulas s ∈ S cannot be freely substituted by other formulas. We
introduced a global variable vS for every s ∈ S that can be freely substituted by time-invariant formulas, while
preserving formula satisfaction. Luckily, many other reasoning tools familiar from Kripke modal logics, such
as the K-axiom, modus ponens, generalisation of valid formulas and the validity of all Boolean tautologies
do carry over to Lstg.

The language Lstg can express certain properties of a CA, such as the local rule (provided that the neigh-
bourhood N is finite). But it also has its limits. Every diamond connects a cell in a specific point in the trace
to a single other specific cell in a specific point in the trace. This makes it impossible to express properties
such as “for all m ∈ M , it holds that . . . ” or “for all ct with t ∈ N it holds that . . . ”. The next section will
extend the language with infinitary disjunctions and (derived) infinitary conjunctions, which can encode such
quantifications and greatly increases the expressivity of the language.
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7 Logic extension: infinitary disjunctions

The expressivity of Lstg can significantly be improved after extending it with infinitary disjunctions, which
are practically existential quantifiers.

7.1 Intuition and motivation

We first motivate the need of this extension with three examples. Thereafter we present the formal extensions
to the grammar and semantics.

Example 7.1 (Expressing all spatio-temporal patterns in a trace). Example 6.10 showed how Lst can express
that a given cell has a certain state in a certain point in time in a trace. With the help of a finite number of
conjunctions we could describe any finite patterns this way. With infinitary conjunctions (which automatically
are as the duals ∧ = ¬∨¬ of infinitary disjunctions) we can describe any spatio-temporal pattern in a trace
of a rooted CA.

Example 7.2 (Expressing “forever after” and “eventually”). There are many examples of properties that
can be expressed with the notions of forever and eventually. For example, a CA may have a “dead” state
sd ∈ S that a cell cannot leave once entered. This state satisfies the statement “if in state sd, then forever
after in state sd”. Logically, “forever after ψ holds” means that 1

nψ holds for all choices of n ∈ N repetitions
of the time diamond. Thus out statement would be:

sd →
∧

n∈N

1

nsd. (52)

As for another example, some CA have dynamics such that every trace will converge to a fixpoint in which all
cells have a “dead” (quiescent) state sd. However, the exact number of timesteps before a cell dies may vary
with the initial configuration chosen. We only know there exists a choice of a finite number of timesteps before
this occurs, which is an infinite disjunction over all number of timesteps. Hence we can express “eventually
state sd will be attained” as:

∨

ℓ∈N

1

ℓsd. (53)

This does not yet express that the cell will remain in sq. However, combining these two examples, we can
express “every cell will eventually obtain state sd, and once in sd, it will retain this state forever after”:

∨

ℓ∈N

1

ℓ

(

∧

n∈N

1

nsd

)

. (54)

Example 7.3 (Quiescent states). A quiescent state is a state sq ∈ S such that if a cell and all its neighbours
have state sq, then the cell will stay in state sq the next timestep. Quiescent states are useful for simulating
a CA with in infinite grid on a real computer: this is possible if the number of non-quiescent cells is finite,
since the quiescent cells do not need to be stored or computed explicitly.

If we allow infinitary disjunctions, then we obtain infinitary conjunctions as their dual (
∧

= ¬
∨

¬). With
these conjunctions we can express “all neighbours have state sq” in a formula as

∧

n∈N �nsq. The statement
“the cell will stay in state sq” means that state sq will occur the next timestep, i.e., the formula 1sq. So
quiescence of sq can be expressed with

(

∧

n∈N

�nsq

)

→ 1sq. (55)
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Finally, “there exists a quiescent state” holds as soon as (55) is valid for some choice of sq ∈ S. This is
essentially a disjunction over all states:

∨

s∈S

((

∧

n∈N

�ns

)

→ 1s

)

. (56)

7.2 Formal definitions of infinitary disjunctions

We extend the language Lstg with a new constructor
∨

i∈I ψi for every index set I and set of subformulas
{ψi}i∈I . We interpret

∨

i∈I ψi the same way as the (possible infinite) formula obtained as the disjunction of
ψi over all i ∈ I. While results in very large and very general language L′CA, we will primarily continue to
work with a subset LCA ⊆ L′CA of a few specific choices of sets of formulas {ψi}i∈I .

Definition 7.4: Grammar of L′CA

The well-formed formulas Ψ that form the grammar of L′CA are given by:

Ψ ::= ⊥ ¬ψ ψ1 ∨ ψ2 �mψ 1ψ s vs
∨

i∈I ψi

where ψ,ψ1, ψ2 ∈ Ψ, m ∈ M and {ψi}i∈I ⊆ Ψ.

Definition 7.5: Semantics of L′CA

The semantics of L′CA are as for Lstg (see Definition 6.9 and Eq. (49)), extended with the rule:

X, Gt
X
(c0), x ⊨

∨

i∈I

ψi iff there exists an i ∈ I such that X, Gt
X
(c0), x ⊨ ψi.

Remark 7.6. We will write
∧

i∈I ψi to denote ¬
∨

i∈I ¬ψi; observe we can deduce the familiar semantics:

X, Gt
X
(c0), x ⊨

∨

i∈I

ψi iff for all i ∈ I it holds that X, Gt
X
(c0), x ⊨ ψi.

Remark 7.7. All the deduction rules of Section 6.4 are also sound for L′CA. This is straightforward to see:
the given proofs also work for L′CA.

Remark 7.8. Uniform substitution of time-invariant variables (Lemma 6.16 and Lemma 6.17) also holds
for L′CA. The only required modification in the proofs is adding the θ =

∨

i∈I ψi case to the structural
induction on θ in Lemma 6.17 (with the induction hypothesis assumed for each ψi). However, this case is
analogous to the binary disjunction θ = ψ1 ∨ψ2 case since we have a similar distribution of the substitution:
(
∨

i∈I ψi
) [

ϕ/vS
]

=
∨

i∈I(ψi
[

ϕ/vS
]

).

We will be working with LCA, which uses the following infinitary disjunctions:

Definition 7.9: Subset LCA of L′CA

LCA is L′CA but with restricted choices of the sets of subformulas used in infinitary disjunctions.

The first few of those sets are “decorated” version of a fixed formula ψ ∈ Ψ, and defined for each chose

of ψ. Let A
def
= {M ,M \ 1, N,N \ 1}, then the sets of decorations for ψ over signature (M , N, S) in

LCA are:
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• The set of steps in an arbitrary direction:

{�m |m ∈ Z} (57)

for any choice of Z ∈ A. Disjunctions over this set will be denoted as
∨

m∈Z �mψ.

• The set of paths over Z for any choice of Z ∈ A and ψ ∈ Ψ:

Paths(Z)
def
= {�m1 �m2 . . . �mk

|mi ∈ Z, k ∈ N}. (58)

Notation:
∨

π∈Paths(Z) πψ.

• For any choice of Z and m ∈ Z the set of repetitions of �m:

{�km | k ∈ N}. (59)

Notation:
∨

k∈N �kmψ.

• The set of repetitions of the time modality:

{ 1
k | k ∈ N}. (60)

Notation:
∨

k∈N 1

kψ.

LCA may also includes disjunctions over set of states s ∈ S and the set of global variables vs with s ∈ S.
This are sets of atomic formulas (and do not depend on ψ).

Finally, LCA also has all variants of the following until modality:

φUψ
def
=
∨

k ∈ N( 1

kψ) ∧
∧

0≤j≤k−1

1

jψ. (61)

(Intuitively: “ψ will eventually hold after k timesteps, and if k > 0 then φ holds after any 0, 1, . . . , k−1
timesteps.”)

Remark 7.10 (Cardinality of formulas in LCA). The cardinality on the size of a set of formulas in infinitary
disjunctions in LCA is bounded by the cardinality κ of the signature (M , N, S). The effective length of
formulas (when unfolding the infinitary disjunctions into actual infinite sequences of disjunctions) can be any
finite power of κ since we can nest infinitary disjunctions (e.g.,

∨

m∈M

∨

n∈M

∨

ℓ∈M
�m �n �ℓψ is effectively

a disjunction over card(M )3 subformulas).

Remark 7.11 (Until modality). Many variants of the “until modality” are possible: e.g. one could analo-
gously define it for repetitions of a space diamonds �m, or drop the constraint that ψ must eventually hold
(then it is possible that φ holds forever and ψ never).

Also interesting is to define the following “until modality” for paths. Paths work a bit different than mere
repetition, so we define φUPaths(Z)ψ to denote that every path first visits a sequence of cells where φ hold,
then a cell where ψ holds, and continues without further constraints. Since we do not both control the length
and direction of the path, it may keep circling in the φ-region; the solution is simply to use the “until”-variant
where the end condition ψ is not guaranteed to hold.

Formally, let < denote the is-a-strict-prefix relation (e.g., �m1
�m2

�m3
< �m1

�m2
�m3

�m4
), then we can define:

φUPaths(Z)ψ
def
=

∧

π∈PathsZ

((

πφ ∧
∧

θ<π

θφ

)

∨
∨

θ<π

(

θψ ∧
∧

ω<θ

ωφ

))

.
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The interpretation is easiest to explain when we take the CA on the grid Z2 with two colours S = {◦, •} and
pick φ := • and ψ := ◦. Then π ◦∧

∧

θ<π θ• means “all cells on the path π are ◦”, and
∨

θ<π

(

θ • ∧
∧

ω<θ ω◦
)

means “there exists a prefix of π that first only visits ◦ cells and ends in a cell in state •.” Thus ◦UPaths(Z2)•
reads “I am in a blob of ◦ cells, and this blob is surrounded by • cells.” See Figure 19 for a visualisation.

x

Figure 19: Example configuration of black and white states ({◦, •}) on the grid Z2, the cell x satisfies
◦UPaths(Z2)•. The formula does not concern the states of gray cells, which can therefore be arbitrary.

7.3 Examples of expressible properties

The expressivity of LCA is best illustrated by concrete examples. In particular, we will explore certain
formulas that are valid on a frame iff that frame has a specific property.

Most examples only apply to rooted (recall from Definition 3.8) frames with at least two states (card(S) ≥ 2).
We will refer to these CA as nice CA.

Rootedness ensures that there is a cell that can describe properties of every other cell, i.e., global properties.
At least two states are needed because a “CA” with card(S) = 1 has no dynamics at all, and the only non−⊥
atomic formulas are states; hence all cells satisfy the same formulas at any timestep and cannot be told apart.

Local rules Lemma 6.12 showed how to express local rules for finite neighbourhoods N as formulas; with
infitary conjunctions, the same proof generalises to local rules on infinite N .

Eventually everyone We can express that, after a given number of timesteps, all cells satisfy a given
formula ψ.

Lemma 7.12

A nice CA X validates
EvEv(ψ)

def
=
∨

k∈N

1

k
∧

m∈M

�mψ (62)

iff for every initial configuration c0 : X → S there exists a t ∈ N s.t. X, Gt
X
, x ⊨ ψ for all x ∈ X.

Proof. Let r ∈ X be the root. Then in a given model c0 we have that X, c0, r ⊨ EvEv(ψ) iff there exists a
t ∈ N s.t. X, Gt

X
(c0), r ⊨

∧

m∈M
�mψ. The latter holds iff X, Gt

X
(c0),m©χ r ⊨ ψ for all m ∈ M . Since r is the

root, M ©χ r = X, thus this holds iff all cells x ∈ X satisfy ψ at time t.
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Example 7.13 (Eventually everyone is dead). Suppose we have a “dead” state sd ∈ S. Then
∧

t∈N 1

tsd
expresses that a cell is dead and stays dead forever after. Hence

EvEv(
∧

t∈N

1

tsd) =
∨

k∈N

1

k
∧

m∈M

�m
∧

t∈N

1

tsd (63)

expresses (in a nice CA) that “eventually, every cell will be forever dead”.

The trace will become periodic A CA X = (M , N, S,X ) might be such that for every initial configura-
tion c0 : X → S, the resulting trace [c0, c1, c2, c3, . . . ] (computed c.f. (28)) becomes periodic. More precisely,
there exists (for every c0) a starting timesteps k ∈ N and a period p ∈ N such that ck+i = ck+i+p = ck+i+2p =
ck+i+3p = . . . for all i ∈ N. An intuitive example is a traffic light: it is a periodic 3-cell CA with states
{off, green, orange, red}.

Lemma 7.14

A nice CA X validates
∨

p∈N

EvEv (ψ(p)) (64)

where
ψ(p)

def
=
∧

k∈N

∧

s∈S

1

k(s→ 1

ps) (65)

iff it all its traces eventually become periodic.

Proof. A trace is periodic with period p iff every cell has a sequence of states that repeats with period p.
Thus, by Lemma 7.12, it suffices to show that ψ(p) expresses “my states are repeating periodically with period
p”.

Assume an arbitrary initial configuration c0 : X → S and write ci for Gi
X
(c0). We need to show that

X, ci, x ⊨ ψ(p) iff x’s states in the suffix [ci, ci+1, ci+2, . . . ] of the trace repeat with period p.

For the first direction, assume that
X, ci, x ⊨ ψ(p). (66)

Take an arbitrary point 0 ≤ z ≤ p − 1 in the period and let s0 := ci+z(x), then we need to show that
X, ci+z+np, x ⊨ s0 for all n ∈ N. We proceed with induction on n. Note that the base case holds trivially by
definition of s0.

For the inductive step, assume the induction hypothesis X, ci+z+np, x ⊨ s0. If we choose k := z + np and
s := s0 in (66) we obtain X, ci+z+pn, x ⊨ s0 → 1

ps0. Using the inductive hypothesis and modus ponens
(Lemma 6.21) we find X, ci+z+pn, x ⊨ 1

ps0. This holds iff X, ci+z+p(n+1), x ⊨ s0, which was the goal of the
inductive step.

For the reverse direction, assume ci+z = ci+z+np for all 0 ≤ z ≤ p − 1 and n ∈ N. It is to show that
X, ci, x ⊨

∧

k∈N

∧

s∈S 1

k(s → 1

ps). It suffices to show that, for an arbitrary k ∈ N and s0 ∈ S it holds that
X, ci+k, x ⊨ s0 → 1

ps0. We use the method from propositional logic of “→”-introduction (Lemma 6.23). So
assume X, ci+k, x ⊨ s0; this holds iff ci+k(x) = s0. But by our periodicity assumption we know ci+k = ci+k+p,
so ci+k+p(x) = s0 as well. The latter is equivalent to X, ci+k+p, x ⊨ s0, which holds iff X, ci+k+p, x,⊨ 1

ps0.

Undecidability Two of the previous examples are actually already show that LCA can encode undecidable
properties of CA. On the one hand, this highlights the expressivity of the language; on the other hand, it
seems not practically possible to compute whether a formula is valid on a given CA.
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Corollary 7.15

Frame validity of a formula in LCA is undecidable. (I.e., there exist a frame X and a formula ψ in LCA

such that it is undecidable whether X ⊨ ψ).

Proof. We give two proofs that use a different classical result.

A CA X is nilpotent if there exists a t ∈ N and a configuration cd : X → S such that cd is a fixpoint of GX,
and Gt

X
(c0) = cq for any initial configuration c0 : X → S. Kari proved in 1992 [19] that it is undecidable for

a CA on Z whether it is nilpotent. This cited paper also shows that in a nilpotent CA, cd necessarily assigns
all cells the same state, say sd ∈ S. Example 7.13 exactly expresses that the configuration constsd will be
reached; we only need to add “there exists a sd ∈ S such that eventually all cells will be in state sd”. Hence
a CA is nilpotent iff it validates:

∨

sd∈S

EvEv

(

∧

k∈N

1

ksd

)

def
=
∨

sd∈S

∨

t∈N

1

t

(

∧

m∈M

(

�m
∧

k∈N

1

ksd

))

.

A CA is periodic if there exists an p ∈ N such that Gp
X
= Id. Since the trace are just the outputs of Gt

X
(c0)

for all t, this definition is equivalent to periodicity of the trace. Lemma 7.14 shows how to express that the
trace will eventually become periodic. Removing the disjunction

∨

k∈N 1

k over the starting point in time of
the periodicity (it should start immediately), we obtain the formula that expresses periodicity:

∨

p∈N

∧

m∈M

�m

(

∧

t∈N

∧

s∈S

1

t(s→ 1
ps)

)

.

Whether a CA on Z is periodic is undecidable (proven by Kari and Ollinger in 2008 [21]).

Note that the classical undecidability results remain when restricting to nice CA. Z is a rooted grid, and
both problems are trivial to decide when a CA has only a single state (hence it is not possible that only the
subclass of CA on Z with card(S) = 1 is undecidable).

Steady states A cell x may, in a given model (X, c0), eventually reach a steady state. That is, ci(x) =
ci+k(x) for some i ∈ N and all k ∈ N. This is simply expressed as X, c0, x ⊨

∨

i∈N

∨

s∈S 1

i
(
∧

k∈N 1

ks
)

. More
interestingly, we can also show that a cell (or even stronger, no cell) will never reach a steady state.

Lemma 7.16: Never reach a steady state

A cell x ∈ X will never reach a steady state in model (X, c0) iff

X, c0, x ⊨
∧

s∈S

(

s→
∨

i∈N

1

i¬s

)

. (67)

It follows that no cell in any model on a nice CA will reach a steady state iff

X ⊨
∧

m∈M

∧

s∈S

(

s→
∨

i∈N

1

i¬s

)

. (68)

Proof sketch. A cell x will reach a steady iff it will reach some state s s.t. all future states of x are also s.
Equivalently, a state is not steady iff there exist a future state of x that is different. Thus it suffices to show
that x has no steady state iff every state will eventually be succeeded by another state, which is exactly
expressed by (67).
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7.3 Examples of expressible properties 7 Logic extension: infinitary disjunctions

The local rule of a CA may ignore the state of a given neighbour at path n ∈ N . I.e., γx(z) = γx(z
′) for all

z, z′ : M ©χ x→ S that only differ on input n©χ x.

Lemma 7.17

Suppose N = {n0, n1, . . . , nk} is a finite neighbourhood. The local rule γ of a frame X always ignores
neighbour n0 ∈ N iff

X ⊨
∧

s0∈S

∧

s1∈S

. . .
∧

sk∈S

∧

s′∈S

([((�n0
s0) ∧ (�n1

s1) ∧ · · · ∧ (�nk
sk)) → 1s′] → [((�n1

s1) ∧ · · · ∧ (�nk
sk)) → 1s′])

(69)

Information flow graph In configuration ci in a trace of a model (X, ci), the state of a cell x in the next
timestep (i.e., ci+1(x)) is entirely determined by (1) γx and (2) the states of x’s neighbours in ci. But the
neighbours’ states depend on the states of their neighbours in ci−1, which in turn depend on their neighbours’
states in ci−2, and so on, until c0. Thus, the transitive closure of the is-a-neighbour-of relation relates a cell
x to all the cells x′ that may influence the states occurring at x in the trace. If x is not related to a cell
x′′ this way, then no information coming from x′′ can influence x. Hence, we can construct the graph that
depicts how information can “flow” in a CA:

Definition 7.18: Information flow graph

Given a frame X = (M , N, S,X ), define the information flow graph G
N = (V,E) to be the directed

graph where:

• The vertices are the cells: V = X.

• The edges E ⊆ V × V are the is-a-neighbour-of-relation: (x, x′) ∈ E iff x′ ∈ N ©χ x.

In many cases, GN has the same shape as “the grid” (which is the graph obtained by (x, x′) ∈ E iff x′ ∈
M ©χ x), such as for the forktree (Figure 5) and the Z2 grid in CGOL. An interesting exception is the CA Y
of Example 8.28: this one has an hexagonal information graph.

There are many important properties of G
N that can be expressed as LCA formulas. A first example is

essential undirectedness of GN :

Definition 7.19: Essential undirected graph

A graph (V,E) is essentially undirected if E is a symmetric relation (i.e., (x, x′) ∈ E iff (x′, x) ∈ E).

Lemma 7.20

The information graph G
N of a nice CA X is essentially undirected iff

X ⊨ vs0 →
∧

m∈N

∨

n∈N

�m �n vs0 (70)

where s0 6= s1 ∈ S are distinct states.

Proof. Suppose X validates (70) and (x, x′) ∈ E. Choose states s0, s1 ∈ S such that s0 6= s1, and pick

c0 : X → SX as c0(x
′′) =

{

s0 x′′ = x

s1 otherwise
. Then X, c0, x ⊨ vs0 , and by modus ponens we find that X, c0, x ⊨
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∧

m∈N

∨

n∈N �m �n vs0 . Since (x, x′) ∈ E, there exists an m ∈ N such that x′ = m©χ x. Using this m, by
∧-elimination we find X, c0, x ⊨

∨

n∈N �m �n vs0 . Thus there exists an n ∈ N such that X, c0, x ⊨ �m �n vs0 ,
which holds iff X, c0, x′ ⊨ �nvs0 , which wholds iff X, c0, n©χ x′ ⊨ vs0 . So x′ has a n-neighbour with state s0;
but x is the only cell with state s0 in c0, so n©χ x′ = x. Hence n witnesses that (x′, x) ∈ E as well.

For the other direction, suppose E is symmetric and take any x ∈ X and c0 : X → SX . By Lemma 6.23 it
suffices to assume X, c0, x ⊨ vs0 and to show X, c0, x ⊨

∧

m∈N

∨

n∈N �m �n vs0 . So take an arbitrary m ∈ N .
By definition (x,m©χ x) ∈ E, and since E is symmetric, this means (m©χ x, x) ∈ E. The latter implies the
existence of an n ∈ N s.t. n©χ m©χ x = x. Rewriting this into X, c0, x ⊨ vs0 gives X, c0, n©χ m©χ x ⊨ vs0 , i.e.,
X, c0, x ⊨ �m �n vs0 , which implies X, c0, x ⊨

∨

n∈N �m �n vs0 . As m was arbitrary, we obtain the outer the
infinitary conjunction.

Other interesting properties of G
N in LCA as well. The proofs are similar as the essential undirectedness

formula, and therefore omitted.

Commuting information flow graph Call a G
N commuting if first following the step m and then n

leads to the same cell as first following n and then m.

Lemma 7.21

The information graph G
N of a nice CA X is commuting iff

X ⊨
∧

m∈N

∧

n∈N

(

�m �n vss0 ↔ �n �m vss0

)

. (71)

Many regular grids such as Z2 are commuting. In fact, G
N will commute as soon as M is a group; this

ensures that • is commuting and from Lemma 6.5) it follows that �m�n = �n•m = �m•n = �n�m.

Reachability implies dependence It is interesting to know whether the existence of a path m ∈ M from x to
a cell m©χ x implies that information in m©χ x can flow to x. That is, (x,m©χ x) ∈ E for all m ∈ M . Many
CA have this property, but for example not in Z when using the neighbourhood N = {−1, 0}; then the state
of x is never influenced by a past state of x+ 1.

Lemma 7.22

The information graph G
N of nice CA X has the property (x,m©χ x) ∈ E for all x ∈ X and m ∈ ©χ iff

X ⊨
∨

m∈M



(�mvs0) →
∨

π∈Paths(N)

πvs0



 . (72)

One-way Cellular Automata A One-way Cellular Automaton (OCA) is a CA s.t. information can “flow
in only one direction”. The typical example is Z with N = −1, 0; in such a CA, cells do not depend on their
right neighbour, thus information can only flow from left to right. There are different ways to generalise
one-wayness to other CA, but the following expresses it in terms of GN :

Definition 7.23: One-way Cellular Automaton (OCA)

A One-way Cellular Automaton is a CA whose information graph G
N has no cycles except for self-loops

(x, x) ∈ E.
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7.4 Summary of infinitary disjunctions 8 Correspondence semantical and logical bisimulation

The property “is an OCA” cannot be expressed via validity of a L′CA formula; we will prove this in Lemma 8.30
using the results of Section 8. However, LCA can express that a CA is not an OCA.

Lemma 7.24

A nice CA X is not an OCA if
X ⊨ vs0 →

∨

π∈Paths(N\{1})

πvs0 . (73)

This is an “if ” statement, and not an “iff ”; indeed, if X does not validate (73), then that only means that a
counterexample exists. We have such a counterexample as soon as there exists some cell that does not lie on
a nontrivial cycle in G

N ; it does not imply that no cell has such a nontrivial cycle!

7.4 Summary of infinitary disjunctions

This section showed that Lstg can be extended with disjunctions over arbitrary (and possibly infinite) sets
to obtain the logical language L′CA. The fragment LCA, which only takes disjunctions over sets directly in
or related to the sets in a frame (M , N, S,X ), can already express many properties of CA that Lstg cannot.
This includes properties of the global dynamics, such as the property of the trace converging to a fixpoint
with all cells in a permanent “dead” state.

8 Correspondence semantical and logical bisimulation

There are two ways to compare two cells x ∈ X and y ∈ Y : we can compare the sets Log(x) and Log(y)
of logical formulas they validate, or we can directly compare them categorically as elements of coalgebras
in CCAG. This situation also occurs in modal logics for Kripke frames: the Hennessy-Milner theorem [12]
states that points x ∈ F and y ∈ G are semantically similar (bisimilar, denoted x - y) iff they are logically
equivalent (x↭ y) (provided that the frames are image finite: every point has only finitely many successors
for each given edge colour).

Since the semantics of the logic are entirely defined in the dynamics of a coalgebra, it is clear that similar
coalgebras should indeed validate a similar logic. Conversely, the logic Log(x) of a cell x in a CA frame
X = (M , N, S,X, 〈χ, γ〉) can express the essential data of the dynamics at x, such as the local rule γx
(Lemma 6.12) and the neighbourhood layout Nx (Example 6.8), thus we expect a similar logic to imply
similar cells.

This section will first develop an intuition for the right CA definitions of similarity and logical equivalence
with a few examples. We first show an example of similarity between CA with the same monoid and state
set; Section 8.2 will prove a HM theorem for this setting. Thereafter we illustrate that a more general notion
of similarity is needed to capture many pairs of CA that can directly simulate each other. The solution is to
define a general notion of simulation, which is roughly a coalgebra homomorphism extended with a monoid
homomorphism and a state set mapping. We also need a corresponding logical embedding that translates
occurrences of monoid elements and states in formulas. A HM theorem proving that a cell x can be simulated
by y iff the logic of x can be embedded in y can be found in Section 8.3. Note that this implies that x and y
can mutually simulate each other (mutual similarity, our generalisation of similarity) iff their logics can be
embedded into each other (mutual logical simulation). Example 8.28 concludes this section with a less trivial
mutual similarity from the literature.

The results in this section apply to all the languages Lstg, L
′
CA and LCA. However, for Lstg there often is the

additional condition that the neighbourhood N is finite (the apparent analog to image-finiteness condition
of the Kripke logic HM theorem).
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8.1 Examples of similarity 8 Correspondence semantical and logical bisimulation

8.1 Examples of similarity

The first example shows similarity between CA with the same monoid and state set. This specific form of
similarity can be directly phrased in terms of coalgebra homomorphisms.

8.1.1 A basic example of similarity

A starting point is to define logical equivalence x↭ y simply as Log(x) = Log(y), for cells x ∈ X = (X, 〈χ, γ〉)
and y ∈ Y = (Y, 〈ξ, δ〉). As for coalgebraic similarity x - y, called similarity, we should demands that
Nx = Ny (similar neighbourhood layout) and that γx = δy (same dynamics). This demand is satisfied if
there exist homomorphisms

−−−−→
M ©χ x

−−−−→
M ©ξ y

h

k

such that h(x) = y and k(y) = x, because (1) h and k are surjective on M ©ξ y and M ©χ x respectively
(Lemma 5.4), which already implies Nx = Ny, and (2) Theorem 5.9 guarantees that γx = δy.

Example 8.1. Take the binary tree as monoid, i.e., the monoid T = ({L,R}∗, •, ε) freely generated over
{L,R}, and the neighbourhood N = {ε, L,R} (i.e., the node itself and its two children). Now consider a
frame X = (T , N, S,T , 〈χ, γ〉) where χ is simply string concatenation, and the states S and local rules γ
can be chosen freely.

Now every cell has the same successor structure: it has two children, each of which has two children, who
both have two children in turn, and so on. So T ©χ x is isomorphic to T ©χ x′ for any x, x′ ∈ T , which is also a

coalgebra isomorphism
−−−−→
T ©χ x→

−−−−→
T ©χ x′ since all cells have the same local rule. The only difference between

x and x′ is the number of ancestors they may have; but modal formulas can only refer to cells reachable via
paths in T , and there are no paths from x to its ancestors. Validity of modal formulas at x can only depend
on cells reachable from x (this is proven in Lemma 8.7), i.e., only on T ©χ x. Hence we conclude that all cells
in T validate exactly the same formulas.

ε

L R

L

L L L L

LR R

RRRR

Figure 20: Visualisation of the freely generated binary tree monoid T = ({L,R}, •, ε).

A similar observation holds for the forktree CA F (Figure 5), but now x↭ x′ iff Nx = Nx′ . Hence there
are two classes of logically equivalent cells on F .

8.1.2 Motivation extending similarity with monoid homomorphisms

Example 8.2 (90°rotation). Let X = (Z, N, S,X ) where X = (X, 〈χ, γ〉) be a simple 1D CA frame, in
particular with the 110 Wolfram number rule1(the numbers were introduced by Wolfram in [50], but see [45,
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8.1 Examples of similarity 8 Correspondence semantical and logical bisimulation

§2.4] for this specific rule).

X = {xi}i∈Z N = {−1, 0,+1}

n©χ xi = xi+n S = {•, ◦}

γ(◦, ◦, ◦) = ◦ γ(◦, ◦, •) = •

γ(◦, •, ◦) = • γ(◦, •, •) = •

γ(•, ◦, ◦) = ◦ γ(•, ◦, •) = •

γ(•, •, ◦) = • γ(•, •, •) = ◦

Now make a copy X j for every j ∈ Z, and “stack up” these copies along the vertical axis of Z2 to obtain the
CA H = ({xji}i,j∈Z,

⟨

χH , {γj}j∈Z
⟩

) with NH = ((−1, 0), (0, 0), (1, 0)) and (a, b)©χHxi,j = xi+a,j+b. This CA
is simply a parallel execution of independent copies of X .

Now we can repeat the same trick, but rotated by 90°counter clockwise (⟲): let V = ({xji}i,j∈Z,
⟨

χV , {γj}j∈Z
⟩

)

with NV = ((0,−1), (0, 0), (0, 1)) and (a, b)χV xji = xj+ai+b . We obtain the same parallel execution of the copies
of X , but with the whole graph rotated 90°.

Intuitively, H and V are “the same”, but they are not similar in the sense defined above (NH 6= NV , so
coalgebra homomorphisms H → V are not even defined). Nor do they satisfy the same logic, as evident from
the fact that H validates

ψ =
(

(�(−1,0)•) ∧ (�(0,0)◦) ∧ (�(1,0)•)
)

→ 1•, (74)

i.e., the encoding of the rule “γ(•, ◦, •) = •”. This formula is not valid in V, since the configuration c0 : V →
{•, ◦} with around the origin is:

c0 =

1 ◦ ◦ ◦
0 • ◦ •
−1 ◦ ◦ ◦

-
1

0 1

the next timestep will result in

c1 =

1
0 • ◦ •
−1

-
1

0 1

(states that we cannot compute from the partial configuration are omitted).
Since c0 satisfies the premise of ψ but not the consequence we conclude that V, c0, x00 ⊭ ψ.

The problem is that the neighbours of x00 are above and below it, but left and right in H and in ψ. A simple
fix is to apply a 90°counterclockwise rotation

ρ : Z2 ∼→ Z2

ρ : (a, b) 7→ (−b, a)

to all modalities. This gives

ρ[ψ] =
(

(�(0,−1)•) ∧ (�(0,0)◦) ∧ (�(0,1)•)
)

→ 1•, (75)

which is valid in V.

1Here we slightly abuse the notation γ(◦, •, ◦) = • to denote γxi (z) = • where z(|−1|
x
) = z(|1|

x
) = ◦ and z(|0|

x
) = •.
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8.2 Basic Hennessy-Milner theorem 8 Correspondence semantical and logical bisimulation

On the semantical side, ρ can also be extended to a variant of a coalgebra homomorphism h : H → V , that

rotates cell coordinates 90°: h(xji )
def
= xi−j . This mapping satisfies a property very similar to the Z2-©χH -©χV -

homomorphism property (Definition 5.2) that coalgebra homomorphisms satisfy (as proven in Lemma 5.3):

h((a, b)©χHxji ) = h(xj+bi+1)
def
= xi+a−j−b = (−b, a)©χV xi−j = ρ(a, b)©χV h(xji )

(For a real Z2-©χH -©χV -homomorphism k : Y → Z, the property is of the form k(m©ξ y) = m©ξ k(y), but
here the RHS is of the form ρ(m)©ξ k(y).) Observe that h preserves the dynamics of the CA; the (−1, 0)
neighbour of a cell xji , which is xji−1 is mapped to the (0,−1) neighbour of xi−j , which is xi−j−j . Indeed, the
left neighbour (horizontal layout of X in Z) is mapped to the up neighbour (vertical layout), and the local
rules are the same. Also, h has an inverse: rotating 90°clockwise.

Conclusion: we retain a similarity-to-logical-equivalence correspondence if (1) we generalise the definition
of coalgebra homomorphisms to be paired with a monoid homomorphism, and (2) allow logical equivalence
up to a monoid homomorphism on space modalities. Note that this is indeed a generalisation, since the old
definition is recovered by taking the identity monoid homomorphism.

8.1.3 Motivation extending similarity with state mappings

A CA Y might be able to simulate a CA X, while using a different state s′ ∈ SY to represent a certain
simulated state s ∈ SX .

As for a simple example, take the single-cell CA X = (1,1, SX = N, (X = 1, 〈χ, γ〉)) where the graph is
trivial 1©χ 1 = 1 but the state becomes increment every timestep γ1(constn) = n+1. Let Y be the same CA,
except for using SY = N≥1. Clearly, X becomes Y after incrementing all states by 1. This also holds for the
logic, for example, X, const0,1 ⊨ 1 12 iff Y, const1,1 ⊨ 1 13. Note that const1 is i ◦ const0 where i : n 7→ n+ 1,
and that 1 13 is 1 12 with i applied to all occurrences of states.

A reverse simulation, of Y by X, is obviously given by decrementing states by 1. But also incrementing states
by any other fixed n ∈ N works; if i1000 : n 7→ n+ 1000, then Y, const1,1 ⊨ ψ iff X, const1001,1 ⊨ i1000[ψ].

Conclusion: we obtain more bisimarity-to-logical-equivalences if we extend coalgebra homomorphisms (in
this case the identity on cells) with a function between state sets SX → SY , and define logical equivalence
also up to a map between states.

8.2 Basic Hennessy-Milner theorem

The logic Lstg admits a cellular automaton variant of the Hennessey-Milner theorem of Kripke modal logics.
The Hennessey-Milner theorem states that two worlds in two image-finite Kripke models satisfy the same
formulas iff they are “bisimilar” [12]. We will define an alternative notion of similarity for CA cells, and prove
two cells validate (i.e., satisfy on all models) the same formulas iff they are similar. The upcoming definitions
assume that the compared CA have the same monoid; Section 8.3 will generalise the definitions to distinct
monoids.

Definition 8.3: Similar cells

Let X = (X, 〈χ, γ〉) and Y = (Y, 〈ξ, δ〉) be CA in CCAG based on the same signature (M , N, S), and let

x ∈ X and y ∈ Y . Write
−−−−→
M ©χ x and

−−−−→
M ©ξ y for the subcoalgebras of X and Y respectively containing

the cells M ©χ x = {m©χ x |m ∈ M } and M ©ξ y = {m©ξ y |m ∈ M }.

Then x is similar to y, denoted x - y, iff there exist coalgebra homomorphisms

−−−−→
M ©χ x

−−−−→
M ©ξ y

h

k
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such that h(x) = y and k(y) = x.

Remark 8.4. This definition of similarity is very strict: observe that cells are already non-similar if they
have a different number of neighbours (h and k are both surjective on the set of reachable cells, by Lemma 5.4)
or if they have a different local rule.

Remark 8.5. The standard coalgebraic definition of bisimilarity states that cells x and y are bisimilar in Z
if there exist coalgebra homomorphism h : X → Z and k : Y → Z such that h(x) = k(y). Similarity according
to Definition 8.3 hence means that x and y are both bisimilar in X and in Y.

Definition 8.6: Logically equivalent

Let x be a cell in the frame X = (M , N,X ) and y be a cell in the frame Y = (M , N,Y). Then x and y
are logically equivalent, denoted as x↭ y, when for all ψ ∈ Ψ, X, x ⊨ ψ iff Y, y ⊨ ψ.

Note that logical equivalence is about validity of a formula at a cell, not about satisfiability, since we are not
using an initial configuration c0 : X → S.

Whether a formula is satisfied in a cell x depends only on the cells that are reachable from a path from x.
This is intuitively to be expected, since (1) the local rule of x depends only on cells that x can reach (since
N ⊆ M ), and (2) we only have space modalities that follow existing paths in M .2

Lemma 8.7

Let x be a cell in a frame X = (M , N,X, 〈χ, γ〉). Let c, c′ : X → S s.t. If c↾(M ©χ x) = c′ ↾(M ©χ x).
Then for all ψ ∈ Ψ it holds: X, c, x ⊨ ψ iff X, c′, x ⊨ ψ.

Proof. Prove the stronger claim: for all t ∈ N, m ∈ M it holds that:

X, c,m©χ x ⊨ ψ iff X, c′,m©χ x ⊨ ψ

by induction on ψ.

Lemma 8.8

If there exist coalgebra homomorphisms

−−−−→
M ©χ x

−−−−→
M ©ξ y

h

k

such that h(x) = y and k(y) = x, then h and k are inverses of each other.

Proof. For all m ∈ M , it holds that:

k(h(m©χ x)) = k(m©ξ h(x))

= m©χ k(h(x))

= m©χ k(y)

= m©χ x.

An analogous argument shows that h(k(m©ξ y)) = m©ξ y.

2
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Corollary 8.9

If there exist coalgebra homomorphisms

−−−−→
M ©χ x

−−−−→
M ©ξ y

h

k

such that h(x) = y and k(y) = x, then for all m ∈ M :

Nm©χ x = Nh(m©χ x)

Nk(m©ξ y) = Nm©ξ y

Proof. The statements are symmetric, so we only prove Nm©χ x = Nh(m©χ x) explicitly.

Let x′ = m©χ x. We have |n1|x′ = |n2|x′ ∈ Nx′ iff n1 ©χ x = n2 ©χ x. Since h is a bijection (Lemma 8.8), this
holds iff n1 ©ξ h(x′) = h(n1 ©χ x′) = h(n2 ©χ x′) = n2 ©ξ h(x′), which holds iff |n1|h(x′) = |n2|h(x′).

The following lemma is (a slightly strengthened variant) of one direction of the Hennessey-Milner theorem
(the other direction is proven in Theorem 8.12).

Lemma 8.10

If x - y then x↭ y.

Proof. We will prove the following two claims:

• For all t ∈ N, c0 : X → S, m ∈ M and ψ ∈ Ψ:

X, Gt
X
(c0),m©χ x ⊨ φ iff Y, Gt

Y
(c0 ◦ k), h(m©χ x) ⊨ φ (H1)

• For all t ∈ N, c0 : Y → S, m ∈ M and ψ ∈ Ψ:

Y, Gt
Y
(c0),m©ξ y ⊨ ψ iff X, Gt

X
(c0 ◦ h), k(m©ξ y) ⊨ ψ (H2)

To see why these claims imply x↭ y, suppose X, x ⊨ ψ and take any arbitrary c0 : Y → S.

Satisfiability of ψ at y only depends on c0↾(M ©ξ y) (Lemma 8.7), we have Y, c0, y ⊨ ψ iff Y, c′0 ◦ k, y ⊨ ψ for
all c′0 : X → S such that c′0 ◦ k↾(M ©ξ y) = c0 ↾(M ©ξ y). From (H1) it follows that Y, c′0 ◦ k, y ⊨ ψ holds iff
X, c′0, x ⊨ ψ, but that is known to hold (we assumed X, x ⊨ ψ). Since h and k are bijections (Lemma 8.8, we
do have exactly such an c′0, namely c′0 := c0 ◦ h (now c′0 ◦ k = c0, so the requirement is satisfied trivially).

It remains to prove (H1) and (H2). Because of symmetry we only need to prove (H1) explicitly (the proof of
(H2) is exactly the same after swapping the symbols h↔ k, X ↔ Y , x↔ y, χ↔ ξ and γ ↔ δ).

We proceed by induction on ψ. As a shorthand for induction hypotheses, write H(φ) to denote:

H(φ)
def
= ∀

c0 : X→S
t∈N
m∈M

X, Gt
X
(c0),m©χ x ⊨ φ iff Y, Gt

Y
(c0 ◦ k), h(m©χ x) ⊨ φ (76)

Case ψ = φ1 ∨ φ2
Induction hypotheses: H(φ1) and H(φ2).
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We observe that, for all t, c0 and x′ = m©χ x ∈ (M ©χ x), it holds that:

X, Gt
X
(c0), x

′ ⊨ φ1 ∨ φ2

iff (X, Gt
X
(c0), x

′ ⊨ φ1 or X, Gt
X
(c0), x

′ ⊨ φ2) // Semantics of ∨.

iff (Y, Gt
Y
(c0 ◦ k), h(x

′) ⊨ φ1 or Y, Gt
Y
(c0 ◦ k), h(x

′) ⊨ φ2) // Induction hypothesis.

iff Y, Gt
Y
(c0 ◦ k), h(x

′) ⊨ φ1 ∨ φ2 // Semantics of ∨.

Case ψ =
∨

i∈I φi
Induction hypotheses: H(φi) for all i ∈ I.
As in the binary disjunction case, for all t, c0 and x′ = m©χ x it holds that:

X, Gt
X
(c0), x

′ ⊨
∨

i∈I

ψi

iff exists i ∈ I such that X, Gt
X
(c0), x

′ ⊨ φi // Semantics of infinitary disjunctions.

iff exists i ∈ I such that Y, Gt
Y
(c0 ◦ k), h(x

′) ⊨ φi // Induction hypothesis.

iff Y, Gt
Y
(c0 ◦ k), h(x

′) ⊨
∨

i∈I

ψi. // Semantics of ∨.

Case ψ = ⊥
It follows immediately from the semantics of ⊥ that, for all t, c0 and x′ = m©χ x, that both X, Gt

X
(c0), x

′ ⊨ ⊥
and Y, Gt

Y
(co ◦ k), h(x

′) ⊨ ⊥ are always false.

Case ψ = ¬φ
Induction hypothesis: H(φ).
For all t, c0 and x′ = m©χ x it holds that:

X, Gt
X
(c0), x

′ ⊨ ¬φ iff X, Gt
X
(c0), x

′ ⊭ φ

iff Y, Gt
Y
(c0 ◦ k), h(x

′) ⊭ φ // Induction hypothesis.

iff Y, Gt
Y
(c0 ◦ k), h(x

′) ⊨ ¬φ

Case ψ = vS for some s ∈ S
This case is still quite straightforward, since the semantics of vS do not depend on t. In particular, for all t,
c0 and x′ = m©χ x, it holds that:

X, Gt
X
(c0), x

′ ⊨ vS iff c0(x
′) = s

iff c0(k(h(x
′))) = s // k(h(x′)) = x′ by Lemma 8.8.

iff Y, Gt
Y
(c0 ◦ k), h(x

′) ⊨ vS

Case ψ = s for some s ∈ S
This case is considerably more complicated than the vS case, since the truth value of s does depend on the
point in time. Inductively we need to show that ct(x

′) = (ct◦k)(h(x
′)) (where ct = Gt

X
(c0)) for all x′ ∈ M ©χ x

and t ∈ N, which is done in Lemma 8.11 below. With this lemma available, we can show (for all t, c0 and
x′ = m©χ x) that:

X, Gt
X
(c0), x

′ ⊨ s

iff Gt
X
(c0)(x

′) = s // Semantics of s.

iff Gt
Y
(c0 ◦ k)(h(x

′)) = s // Lemma 8.11.

iff Y, Gt
Y
(c0 ◦ k), h(x

′) ⊨ s. // Semantics of s.
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Case ψ = �nφ for some n ∈ M

Induction hypothesis: H(φ).
For all t, c0 and m it holds that:

X, Gt
X
(c0),m©χ x ⊨ �nφ

iff X, Gt
X
(c0), n©χ m©χ x ⊨ φ // Semantics �n.

iff X, Gt
X
(c0), (n •m)©χ x ⊨ φ

iff Y, Gt
Y
(c0 ◦ k), h((n •m)©χ x) ⊨ φ

// Induction hypothesis (note that (n •m) ∈ M , so (n •m)©χ x ∈ (M ©χ x)).

iff Y, Gt
Y
(c0 ◦ k), h(n©χ m©χ x) ⊨ φ

iff Y, Gt
Y
(c0 ◦ k), n©χ h(m©χ x) ⊨ φ

iff Y, Gt
Y
(c0 ◦ k), h(m©χ x) ⊨ �nφ. // Semantics �n.

Case ψ = 1φ
Induction hypothesis: H(φ).
This is the case for which the quantification over time in (H1) was needed; for all t, c0 and x′ = m©χ x it
now holds that:

X, Gt
X
(c0), x

′ ⊨ 1φ

iff X, Gt+1
X

(c0), x
′ ⊨ φ // Semantics 1.

iff Y, Gt+1
Y

(c0 ◦ k), h(x
′) ⊨ φ // Induction hypothesis.

iff Y, Gt
Y
(c0 ◦ k), h(x

′) ⊨ 1φ. // Semantics 1.

Lemma 8.11

If there exist coalgebra homomorphisms

−−−−→
M ©χ x

−−−−→
M ©ξ y

h

k

such that h(x) = y and k(y) = x, then it holds for all t ∈ N and c0 : X → S that:

Gt
X
(c0)↾(M ©χ x) =

(

Gt
Y
(c0 ◦ k) ◦ h

)

↾(M ©χ x). (77)

Proof. Induction on t ∈ N. The base case, when t = 0, follows directly from Lemma 8.8 and the fact that
G0 = Id:

c0(m©χ x) = c0(k(h(m©χ x)) = ((c0 ◦ k) ◦ h)(m©χ x)

holds for all m©χ x ∈ M ©χ x.

For the inductive case, assume (77) holds for a given t ∈ N. We need to show it also holds for t+1. Take an
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arbitrary x′ = m©χ x ∈ M ©χ x, then we compute:

Gt+1
X

(c0)(x
′) = GX(G

t
X
(c0))(x

′)

= γx′(λ |n|x′ . G
t
X
(c0)(n©χ x′)) // Definition of global rule (Eq. (28)).

= δh(x′)(λ |n|h(x′) . G
t
X
(c0)(h(n©χ x′))) // By Corollary 8.9, |n|x′ = |n|h(x′).

// Thus by the extension property of coalgebra homomorphisms (Theorem 5.9).

= δh(x′)(λ |n|h(x′) . G
t
X
(c0)(n©χ h(x′)))

= δh(x′)(λ |n|h(x′) . G
t
Y
(c0 ◦ k)(n©χ h(x′))) // Induction hypothesis.

= GY(G
t
Y
(c0 ◦ k)(h(x

′)) // Definition of global rule (Eq. (28)).

= Gt+1
Y

(c0 ◦ k)(h(x
′)).

The converse of Lemma 8.8 also holds, but in Lstg only if neighbourhoods N and M are finite:

Theorem 8.12

Let x be a cell in the frame X = (M , N,X ) and y be a cell in the frame Y = (M , N,Y). then x - y iff
x↭ y. (This holds in L′CA and LCA, and also in Lstg if N and M are finite).

Proof. The left-to-right direction follows from Lemma 8.8. For the other direction, assume x↭ y. We now
need to construct coalgebra homomorphisms

−−−−→
M ©χ x

−−−−→
M ©ξ y

h

k

such that h(x) = y and k(y) = x. By Theorem 5.9, these need to be M -χ-ξ-homomorphisms. Hence we have
no choice but to define (for all m ∈ M ):

h : x 7→ y,

h : m©χ x 7→ m©ξ h(x) = m©ξ y,

k : y 7→ x,

k : m©ξ y 7→ m©χ k(y) = m©χ x.

Note that h = k−1.

It remains to prove the extension property. Because of symmetry, we only show this for h; so it remains to
prove that for all x′ = m©χ x ∈ M ©χ x it holds that:

γx′(zx′) = δh(x′)(zh(x
′))

for all z : N → S that are Nh(x′) compatible. Note that Nx′ = Nh(x′) since h is an isomorphism (isomorphism
implies n1 ©χ x′ = n2 ©χ x′ iff n1 ©ξ h(x′) = h(n1 ©χ x′) = h(n2 ©χ x′) = n2 ©ξ h(x′), i.e., |n1|x′ = |n2|x′ iff
|n1|h(x′) = |n2|h(x′)).

Further observe that
Log(m©χ x) = Log(h(m©χ x)). (78)

This follows from the fact that (omitting frames) m©χ x ⊨ φ iff x ⊨ �mφ iff (because x↭ y) y ⊨ �mφ iff
m©ξ y ⊨ φ and m©ξ y = m©ξ h(x) = h(m©χ x) (these statements can easily be proven via the semantics of
�m).
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We can use Lemma 6.12 to express γx′(zx′) as a formula (in L′CA and LCA this is possible for all N , in Lstg

only if N is finite). In particular, γx′(zx′) = s0 holds iff

X, x′ ⊨

(

∧

n∈N

�nz(|n|x′)

)

→ 1s0,

which holds iff (by Eq. (78), and since |n|h(x′) = |n|x′)

Y, h(x′) ⊨

(

∧

n∈N

�nz(|n|h(x′))

)

→ 1s0,

which (again by Lemma 6.12) holds iff δh(x′)(zh(x′)) = s0. Since z and s0 were arbitrary, the desired
conclusion also holds: γx′(zx′) = δh(x′)(zh(x

′)) for all Nx′ = Nh(x′) compatible configuration z : N → S.

8.3 Generalised Hennessy-Milner theorem

Theorem 8.12 gives a variant of the Hennessy-Milner theorem that allows to compare similarity of two CA
X and Y that are based on the same monoid M and use the same set of states S. We will now formalise the
generalised definitions of similarity and logical equivalence as sketched in Sections 8.1.2 and 8.1.3, and prove
a corresponding Hennessey-Milner theorem.

8.3.1 General CA morphisms

We will now generalise the definition of coalgebra homomorphisms to include morphisms between CA defined
on different signatures. Recall that CCAG (Definition 4.16) is the coproduct of CCA

Σ
G over all signatures

Σ. As such, it has no morphisms between CA defined on different signatures.

We will extend CCAG to the category CCA
+
G , which has the same objects, but whose morphisms are general

CA morphisms, which have the characteristic properties of coalgebra homomorphisms (Theorem 5.9) but also
include a monoid homomorphisms and a function between state sets. Coalgebra homomorphisms are special
cases of general CA morphisms (where the monoid homomorphism and state set maps are the identities), so
CCAG is a subcategory of CCA

+
G .

To define general CA morphisms we first need the following auxiliary definition:

Definition 8.13: Graph-neighbourhood morphism

Let M ,N ∈ Mon be monoids and let M ⊆ M and N ⊆ N . A graph-neighbourhood morphism
hG : (M ,M) → (N , N) is a monoid homomorphism (in Mon) such that hG[M ] ⊆ N .

Definition 8.14: General CA morphism

A general CA morphism h : X → Y from X = (M ,M, SX , X, 〈χ, γ〉) to Y = (N , N, SY , Y, 〈ξ, δ〉) is
triple of functions (hG, hC, hS) where

• hG : (M ,M) → (N , N) is a graph-neighbourhood morphism.

• hC : X → Y is a function between cells. We usually omit the subscript and write h(x) for hC(x).

• hS : SX → SY is a function between states.

Furthermore, this triple adheres to the following constraints:
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1. (Module property)
hC(m©χ x) = hG(m)©ξ hC(x)

for all x ∈ X and m ∈ M .

2. hS is injective.

3. For any x ∈ X and y ∈ Y s.t. hC(x) = y, the restriction hC↾(M ©χ x) : (M ©χ x)↣ (N ©ξ y) is an
injection.

4. (Extension property)
hS (γx(z)) = δhC(x)(z

′)

for every x ∈ X and every z : Mx → SX , where z′ : Nh(x) → SY is any extension of hS◦z◦(h
Mx

G )−1.

Here hMx

G : Mx → NhC(x) is defined as hMx

G : |m|x 7→ |hG(m)|hC(x)
3.

As a commuting diagram this is:

SMx

X S
hMx
G

[Mx]

Y S
Nh(x)

Y

SX SY

hS◦(−)◦(h
Mx
G

)−1

γ

extend

δh(x)

hS

A coarse shorthand to capture the essence of this law is:

hSγ = δhS.

Note that coalgebra homomorphisms are special cases of general CA homomorphisms.

8.3.2 Generalised notions of similarity

Definition 8.15: Simulation and mutual similarity

Let X = (M ,M, SX , X, 〈χ, γ〉) and Y = (N , N, SY , Y, 〈ξ, δ〉) be frames in CCA
+
G . A cell x ∈ X is

simulated by a cell y ∈ Y , denoted as x�� y, if there exists a general CA morphism h :
−−−−→
M ©χ x→

−−−−→
M ©ξ y

such that hC(x) = y. If also y ��x (i.e., if there also exists a k :
−−−−→
M ©ξ y →

−−−−→
M ©χ x such that kC(y) = x),

then x is mutually similar to y, denoted as x - y.

Remark 8.16. The definition of a simulation h : x�� y tells directly that the local rules γ and δ commute
with the embedding given by h. We will later see (in Lemma 8.24) that h also commutes with the global
rules GX and GY.

Remark 8.17. The definition of mutual similarity does not require h and k to be each other’s inverse.

The general definition of logical equivalence is less straightforward than Definition 8.3, since the two CA
may have different states and different path monoids, and hence different symbols. We propose the following
“translation” of formulas between incompatible CA:

Definition 8.18: Logical simulation

Let Ψ(M ,M, S) denote the Lstg-formulas (idem when using L′CA or LCA) defined on the monoid M ,

3It may not be obvious that hMx
G

is well-defined, since |hG(m)|
h(x) is ill-defined when hG(m) /∈ N . The latter cannot occur,

since the hG[M ] ⊆ N condition of a graph-neighbourhood morphism (Definition 8.13) ensures that hG(m) ∈ N when m ∈ M .

89



8.3 Generalised Hennessy-Milner theorem 8 Correspondence semantical and logical bisimulation

neighbourhood M ⊆ M and state set S. Then a logical simulation hL : Ψ(M ,M, S) → Ψ(N , N, S′)
is a pair (hG, hS) where hG : (M ,M) → (N , N) is a graph-neighbourhood morphism (Definition 8.13)
and hS : S → S′ a function.

The computation of hL on a formula in Ψ(M , S) is defined by straightforward recursion:

hL(⊥)
def
= ⊥

hL(si)
def
= hS(si)

hL(vsi)
def
= vhS(si)

hL(¬ψ)
def
= ¬hL(ψ)

hL(ψ1 ∨ ψ2)
def
= hL(ψ1) ∨ hL(ψ2)

hL(
∨

i ∈ Iψi)
def
=
∨

i∈I

hL(ψi)

hL(�mψ)
def
= �hG(m)hL(ψ)

hL( 1ψ)
def
= 1hL(ψ)

We define the image configuration of hL on Y as the set

ImC(hL)
def
= {c0 : Y → SY | c0(hG(x)) = hS(s) for some s ∈ SX , for all x ∈ X}. (79)

This are, intuitively, all possible extensions of the (hG, hS) images of X configurations.

To define logical equivalence, we first define logical simulation. Intuitively, x⇝ y if Log(x) can injectively be
translated into a fragment of Log(y). It is possible that Y has more states or more paths than X does, but
these are then simply not part of the fragment in which Log(x) is embedded. We call x and y if their logics
can be embedded into one each other’s. The formal definitions are as follows:

Definition 8.19: Logical simulation

Let X = (M ,M, SX , X, 〈χ, γ〉) and Y = (N , N, SY , Y, 〈ξ, δ〉) be frames in CCA
+
G . A cell x ∈ X is logi-

cally simulated by a cell y ∈ Y , denoted as x⇝ y, if there exists a logical simulation hL : Ψ(M ,M, SX) →
Ψ(N , N, SY ) such that for all c0 : Y → SY ∈ ImC(hL):

X, h−1S ◦ c0 ◦ hC, x ⊨ ψ iff Y, c0, y ⊨ hL(ψ) (80)

for all ψ ∈ Ψ(M , SX), where

hC : (M ©χ x)
∼
→ (hG[M ]©ξ y),

hC : m©χ x 7→ hG(m)©ξ y.

If both x⇝ y and y ⇝ x, then x and y are mutually logically similar, which is denoted by x↭ y.

Remark 8.20. Eq. (80) does apply to all models on the frame X: Lemma 8.22 will show that hC is injective,
so every c′0 : X → SX can be written in the form c′0 = h−1S ◦ c0 ◦ hC for some c0 ∈ ImC(hL). Note that this
is well defined (despite hS not being a bijection), as by definition of ImC(hL), all cells in the image of hC do
have a state in the image of hS.

Time invariance (Definition 6.14) is preserved under logical simulations, for configurations using only states
in hS[SX ]:
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Lemma 8.21

If hL : x ⇝ y and if ψ is time invariant for x then hL(ψ) is time invariant for y on models using
configurations c0 : Y → hS[SX ].

Proof. Let c0 : Y → hS[SX ], then (since hS is injective) it is of the form hS ◦ c
′
0 for some c′0 : Y → SX . Hence

Y, c0, y ⊨ hL(ψ) iff X, c′0 ◦ hC, x ⊨ ψ. Since ψ is time invariant for x, the latter holds iff X, c′0 ◦ hC, x ⊨ 1

tψ for
all t ∈ N. Since x ⇝ y, this in turn holds iff Y, c0, x ⊨ 1

thL(ψ) for all t ∈ N (note that hL( 1

tψ) = 1

thL(ψ)).
Hence Y, c0, y ⊨ hL(ψ) iff Y, c0, x ⊨ 1

thL(ψ) for all t ∈ N, which is exactly the property of time invariance.

8.3.3 Generalised Hennessy-Milner theorem

We will now show that x - y iff x↭ y. First we prove the left-to-right direction. Although I state it as
a lemma, in reality I first performed the proof, and used the result to find the correct definition for x�� y:

Lemma 8.22

If x⇝ y then x�� y, under the conditions that that card(SX) ≥ 2 and card(SY ) ≥ 2 (and in case of Lstg,
also that M and N are finite).

Proof. The assumption x ⇝ y gives us a logical simulation hL = (hG, hS) : Ψ(M ,M, SX) → Ψ(N , N, SY ).

We will extend (hG, hS) to a general CA morphism h = (hG, hC, hS) :
−−−−→
M ©χ x →

−−−−→
M ©ξ y. The definition of

hC : (M ©χ x) → (N ©ξ y) is straightforward:

hC : x 7→ y

hC : (m©χ x) 7→ hG(m)©ξ y

This definition already implies that property 1 of a general CA morphism (Definition 8.14) is satisfied.

As for the injectivity of hS (property 2), suppose for contradiction that there exist two states s0 6= s1 ∈ SX
such that hS(s0) = hS(s1). In any configuration, x can have at most one state, so X, x ⊨ s0 → ¬s1 (see
Lemma 6.24). From x⇝ y it follows that Y, c0, y ⊨ hS(s0) → ¬hS(s1) (for any c0 : ImC(hL), see Remark 8.20).
Now write s′ = hS(s0), then this is Y, c0, y ⊨ s′ → ¬s′. Now pick the particular c′0 ∈ ImC(hL) such that
c′0(y) = s′ (e.g., c′0 = consts′). Then Y, c′0, y ⊨ s

′, and from modus ponens (Lemma 6.21) it follows what
Y, c′0, y ⊨ ¬s′. Thus s′ = c′0(y) 6= s′; a contradiction.

We show injectivity of hC (property 3) via a similar argument. First observe that, for any x′ = m©χ x ∈
M ©χ x:

if X, x′ ⊨ φ then X, x ⊨ �mφ. (81)

. Thus Y, c0, y ⊨ �hG(m)hL(φ) (for all c0 ∈ ImC(hL)), which is equivalent to Y, c0, hG(m)©ξ y ⊨ hL(φ). But by
definition of hC, it holds that hC(x

′) = hG(m)©ξ y, so Y, c0, hC(x′) ⊨ hL(φ).

Now suppose hC is not injective, and that hC(m1 ©χ x) = hC(m2 ©χ x) whilem1 ©χ x 6= m2 ©χ x. Then hG(m1)©ξ y
and hG(m2)©ξ y are the same cell, so they have always the same state. Hence Y, c0, y ⊨ (�hG(m1)hS(s)) ↔
(�hG(m2)hS(s)) for any s ∈ SX and all c0 ∈ ImC(hL). By definition of x⇝ y, this means that for all s ∈ S:

X, x ⊨ (�m1
s) ↔ (�m2

s) (82)

(by Remark 8.20 we indeed obtain satisfaction in all models, i.e., validity). Since SX has at least two states,
so there exists s1 6= s2 ∈ SX . Recall that m1 ©χ x 6= m2 ©χ x are different cells, we can pick c′0 : X → SX such
that c′0(m1 ©χ x) = s1 and c′0(m2 ©χ x) = s2. Then X, c′0, x ⊨ �m1

s1 by the semantics �m1
s1. But ∧-elimination
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and MP4we obtain X, c′0, x ⊨ �m2s1, which holds iff X, c′0,m2 ©χ x ⊨ s1, i.e., iff c′0(m2 ©χ x) = s1; the latter is
indeed a contradiction!

It remains to prove the extension property (property 4). To this end, take any arbitrary x′ = m©χ x ∈ M ©χ x
and any z : Mx′ → SX .

Let z′ : NhC(x′) → SY be any arbitrary extension of hS ◦ z ◦ (h
Mx′

G )−1 : h
Mx′

G [Mx′ ] → SY . Using Lemma 6.12,
we can express the local rule γx′ on input z as the formula:

X, x′ ⊨





∧

|mi|∈Mx′

�mi
z(|mi|)



→ 1γx′(z). (83)

We can do the same for hC(x
′) and δhC(x′):

Y, hC(x
′) ⊨





∧

|n|∈NhC(x′)

�nz
′(|n|)



→ 1δhC(x′)(z
′). (84)

But, similarly as we did for Eq. (81), we can translate Eq. (83) under the logical simulation to:

Y, c0, hC(x
′) ⊨





∧

|mi|∈Mx′

�hG(mi)hS(z(|mi|))



→ 1hS(γx′(z)), (85)

for all c0 ∈ ImC(hL). The restriction to configurations in ImC(hL) is not problematic, since the extension
property only concerns the action of δ on local neighbourhood configurations z′ where all cells in the image

of hG obtain a state in the image of hS (i.e., extensions of hS ◦ z ◦ (h
Mx′

G )−1 for some z : X → SX). All
such neighbourhood configurations indeed arise as a subconfiguration in ImC(hL). Hence there exist enough
choices for c0 to use (85) to completely specify δ on inputs z′.

Since hG[M ] ⊆ N (Definition 8.13), it follows that h
Mx′

G [Mx′ ] ⊆ NhC(x′). Hence the premise of (85) contains
a subset of the conjuncts of the premise of (84). Abstracting to propositional logic, we have two formulas:

(A1 ∧A2 ∧ · · · ∧ Aℓ) → B1,

(A1 ∧A2 ∧ · · · ∧ Aℓ ∧ C1 ∧ · · · ∧ Cq) → B2,

These can be further abstracted to

A→ B1,

A ∧ C → B2,

Using the logical tautology (A → B1) → (A ∧ C → B1) and modus ponens (Lemmas 6.20 and 6.21) we find
that A ∧ C → B1, i.e.,

Y, c0, hC(x
′) ⊨





∧

|n|∈NhC(x′)

�nz
′(|n|))



→ 1hS(γhC(x′)(z)). (86)

So, given that the neighbours reachable from hC(x
′) via paths n ∈ hG[M ] have states z′(|n|hC(x′)), the state

of hC(x
′) in the next timestep in the trace is hS(γhC(x′)(z)). This holds regardless of the states z′ assigns to

cells at paths N \ hG[M ]. Since δhC(x′) also gives the next state of hC(x
′), and since hC(x

′) has at most one
state per timestep, these states must coincide (i.e., semantically we know B1 ↔ B2) (i.e., varying the states
of cells at paths N \ hG[M ] does not change the output of δhC(x′) as long as the states of the paths in hG[M ]
are given by z′). Hence the desired conclusion follows: hS(γx′(z)) = δhC(x′)(z).

4More precisely, we use Lemma 6.20 with the logical tautology α ∧ β → α, with α := ⋄m1s1 → ⋄m2s1 and β := ⋄m2s1 →
⋄m1s1. Now Eq. (82) gives α ∧ β, thus by modus ponens (Lemma 6.21) we obtain α. Finally apply modus ponens on α, since
the premise X, c′0, x ⊨ ⋄m1s1 is known to hold.
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Corollary 8.23

If x↭ y then x - y.

Proof. Apply Lemma 8.22 twice.

We will now prove the converse of Lemma 8.22 and Corollary 8.23, but this first requires an auxiliary lemma:

Lemma 8.24

Given h : x�� y, then for all c0 ∈ ImC(hL):

hS ◦GX(h
−1
S ◦ c0 ◦ hC) ◦ h

−1
C = GY(c0)↾hC[M ©χ x] (87)

are the same configuration hC[M ©χ x] → SY .

SXX ImC(hL)

SXX ImC(hL)

GX

h−1
S
◦(−)◦hC

GY

hS◦(−)◦h
−1
C

(88)

It follows that
GX(h

−1
S ◦ c0 ◦ hC) = h−1S ◦GY(c0) ◦ hC (89)

(and that h−1S ◦GY(c0) ◦ hC is well-defined).

Proof. Write h for hC and take any hC(x
′) ∈ h[M ©χ x]. Then:

(

hS ◦GX(h
−1
S ◦ c0 ◦ hC) ◦ h

−1
C

)

(hC(x
′)) = hS(GX(h

−1
S ◦ c0 ◦ hC)(x

′))

= hS
(

γx′(λ |m| ∈Mx′ . (h−1S ◦ c0 ◦ hC)(m©χ x′))
)

// Definition global rule GX (Eq. (28)).

= hS(γx′(z)) // Let z := λ |m| ∈Mx′ . (h−1S ◦ c0 ◦ hC)(m©χ x′):

= δhC(x′)(z
′) // Extension property (Definition 8.14.4).

for any extension z′ : Y → SY of hS ◦ z ◦ (h
Mx′

G )−1 : h
Mx′

G [Mx′ ] → SY . The latter equals

hS ◦ z ◦ (h
Mx′

G )−1 = λ |m| ∈ ((h
Mx′

G )−1 ◦ h
Mx′

G )[Mx′ ] . (hS ◦ h
−1
S ◦ c0 ◦ hC)(m©χ x′)

= λ |m| ∈Mx′ . (c0 ◦ hC)(m©χ x′)

= λ |m| ∈Mx′ . c0(hG(m)©ξ hC(x
′))

= λ |n| ∈ h
Mx′

G [Mx′ ] . c0(n©ξ hC(x
′)). // Since h

Mx′

G is an injection.

The extension property guarantees that δhC(x′)(z
′) behaves the same on any extension z′ of (// Since h

Mx′

G is an injection.),
including the intuitively natural extension:

z′ := λ |n| ∈ NhC(x′) . c0(n©ξ hC(x
′)).

Continuing where we left off in (// Extension property (Definition 8.14.4).) with this choice of z′, we find:

= δhC(x′)(z
′)

= δhC(x′)

(

λ |n| ∈ NhC(x′) . c0(n©ξ hC(x
′)).
)

def
= GY(c0)(hC(x

′)), // Definition global rule GY (Eq. (28)):
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which was to be shown.

Lemma 8.25

If x�� y then x⇝ y.

Proof. We need to prove that, for all c0 ∈ ImC(hL) it holds that

X, h−1S ◦ c0 ◦ hC, x ⊨ φ iff Y, c0, y ⊨ hL(φ).

We will prove the stronger claim that for all k0 ∈ ImC(hL) and all x′ = m©χ x ∈ M ©χ x:

X, h−1S ◦ k0 ◦ hC, x
′ ⊨ φ iff Y, k0, hC(x

′) ⊨ hL(φ). (90)

For convenience, we omit explicitly notating the frames X and Y.

Case φ = 1ψ:
This is the only difficult case. Observe the following:

∀
c0∈ImC(hL)

h−1S ◦ c0 ◦ hC, x
′ ⊨ 1ψ

iff ∀
c0

GX(h
−1
S ◦ c0 ◦ hC), x

′ ⊨ ψ // Semantics 1.

iff ∀
c0

h−1S ◦GY(c0) ◦ hC, x
′ ⊨ ψ // Lemma 8.24 Eq. (89).

iff ∀
c0

GY(c0), hC(x
′) ⊨ hL(ψ) // Induction hypothesis (with k0 := GY(c0)).

iff ∀
c0

GY(c0), hC(x
′) ⊨ 1hL(ψ) // Semantics 1.

iff ∀
c0

GY(c0), hC(x
′) ⊨ hL( 1ψ).

Case φ = s ∈ SX (case vS is analogous):
Fix any arbitrary c0 ∈ ImC(hL), then:

X, h−1S ◦ c0 ◦ hL, x
′ ⊨ s

iff h−1S (c0(hC(x
′))) = s

iff hS(h
−1
S (c0(hC(x

′)))) = hS(s) // hS is an injection.

iff c0(hC(x
′)) = hS(s)

iff c0, hC(x
′) ⊨ hS(s),

and indeed hL(φ) = hS(s) in this case.

Case φ = �mψ (for some m ∈ M ):
Again fix any arbitrary c0 : ImC(hL) and observe:

X, h−1S ◦ c0 ◦ hC, x
′ ⊨ �mψ

iff X, h−1S ◦ c0 ◦ hC,m©χ x′ ⊨ ψ // Semantics �m.

iff Y, c0, hC(m©χ x′) ⊨ hL(ψ) // Induction hypothesis.

iff Y, c0, hG(m)©ξ hC(x
′) ⊨ hL(ψ)

iff Y, c0, hC(x
′) ⊨ �hG(m)hL(ψ) // Semantics �hG(m).

iff Y, c0, hC(x
′) ⊨ hL(�mψ).
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Remaining cases:
The φ = ⊥ case is trivial. The φ = ¬ψ, φ = ψ1 ∨ ψ2 and φ =

∨

i∈I ψi cases for almost immediately from the
induction hypothesis.

Corollary 8.26

If x - y then x↭ y.

Proof. Apply Lemma 8.25 twice.

We now summarise the work done above as:

Theorem 8.27

x�� y iff x⇝ y

and

x - y iff x↭ y

(given and card(SX) ≥ 2 and card(SY ) ≥ 2, and in case of Lstg, also that M and N are finite).

8.3.4 Example applications

The following example shows a mutual similarity between two CA on very different graphs. It is based on
an example from the literature [36, Prop. 2, 2nd proof], and demonstrates how the current approach, which
separated the set of cells and the paths monoid, fits well with the description of the simulation:

Example 8.28 (Hexagonal to 3D). Let the hexagonal paths grid H be the Abelian group generated over
the set {A,B,C} with equalities ABC = 1, AB = BA, AC = CA and BC = CB5.

As neighbourhood we use M = {1, A,B,C,A−1, B−1, C−1}. Since this group is Abelian, we can draw it as
the following grid:

A A A

AA

A A A

A

C B
=

x

x

1

BB

B B

B

B

C

CCC

C C

Figure 21: Right: a piece of the grid encoded by H , not showing the inverse group elements. Right: the
equality ABC = 1.

As cells of the CA frame X = (H , N, S,X, 〈χ, γ〉) we take X = H , and the neighbours-mapping ©χ is the
multiplication on H . The state set S and local rule γ : (MX → S)X can be arbitrary (as long as card(S) ≥ 2).
Since γx is the same for all x ∈ X, we can simply write γx = γ∗. Since all M neighbours of every cell are
distinct, we will (with a minor above of notation) also write M for Mx.

5The equalities AC = CA and BC = CB are superfluous and can be derived from the pair ABC = 1 and AB = BA.
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We can simulate this CA on Z3 by using the CA

Y = (Z3, N = {(i, j, k) | |i|+ |j|+ |k| ≤ 1}, S, Y = Z3 + (1, 1, 1)Z3, 〈ξ, δ〉),

such that ©ξ is addition modulo (1, 1, 1) (so (a, b, c)©ξ ((p, q, r)+(1, 1, 1)Z3)
def
= (p+a, q+b, r+c)+(1, 1, 1)Z3).

Again we will write δ∗ for δy⃗ and N for Ny⃗. It remains to define δ, but this is easier after a few more
observations.

The intuitive layout of Y in Z3 is as follows: if we fix the value 0 for the third coordinate, we obtain a plane
containing every cell of Y exactly once (for every (i, j, k) ∈ Z3 + (1, 1, 1)Z3, we have that (i − k, j − k, 0) +
(1, 1, 1)Z3 is the same cell, and the only occurrence of this cell at third coordinate 0). The plane where the
third coordinate is 1 is the same, but with the origin at (1, 1, 1) instead of (0, 0, 0). We see that every cell is
repeated endlessly along diagonal lines with slope (1, 1, 1).

To define δ, observe that every element of H can be written as AiBjCk because H is Abelian. Since
ABC = 1, we may assume a canonical representation of the cells in H (and hence X) in which at least one
of i, j and k is zero. This already gives an isomorphism from H to Z3 + (1, 1, 1)Z3:

h : AiBjCk 7→ (i, j, k).

Intuitively, we identify A, B and C with the axes of the 3D grid. The A and A−1 neighbours become the
left and right neighbours, the B and B−1 the forth and back neighbours, and C and C−1 the up and down

neighbours. Thus h : M ∼= N , and we define δ∗
def
= γ∗ ◦ h

M
G : SN → S.

(0, 0,−1)

AA−1

B−1

B C

C−1 (−
1,

0,
0)

(1
,

0,
0)

(0
, 1

, 0)

(0
,

−

1
, 0)

(0, 0, 1)

M
N

Figure 22: Left: the neighbourhood M on the hexagonal grid. Right: the isomorphic neighbourhood N in
Z3.

After taking hS
def
= IdS , we see that h trivially satisfies extension property of a general CA morphism (Def-

inition 8.14.4), and the other requirements are also straightforward to check. Since h also has an inverse,
we obtain a mutual similarity AiBjCk - (i, j, k) + (1, 1, 1)Z3 for every (i, j, k) ∈ Z3. Furthermore, from
Theorem 8.27 it follows that (up to an isomorphism) Log(AiBjCk) and Log((i, j, k)) are the same.

The Hennessy-Milner theorems can also be used to prove what kind of simulations are impossible. For
example, one cannot simulate a CA with a quiescent state on an CA without a quiescent state:

Lemma 8.29
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Consider frames X and Y such that X has a quiescent state. If x�� y for some x ∈ X and y ∈ Y , then
Y has a quiescent state.

Proof. Let ψ be the has-a-quiescent-state-formula (Eq. (56)), then X, x ⊨ ψ. By Lemma 8.25 it holds that

Y, c0, y ⊨ hL(ψ) (91)

for all c0 : Y → hS[SX ]. Now it might be that hC[M ©χ x] ⊊ N ©ξ y, thus (91) does not completely specify δy
on the constant neighbourhood configuration consthS(s) : (N ©ξ y) → SY yet. This is not an issue, since we
can pick a c0 such that all neighbours of y (even those not in the image of X under hC) have state hS(s), in
which case (91) does imply that δy(consthS(s)) = hS(s). The latter is exactly the quiescence condition.

The converse may not hold when hS is not surjective; in this case Y might have a quiescent state in SY \hS[SX ]
which is not of a concern in the definition of x⇝ y.

Finally, the Hennessy-Milner theorem allows to prove that certain properties cannot be axiomatised in L′CA.
One example is the property of being an OCA (Definition 7.23 of Section 7.3).

Lemma 8.30

There exists no ψ ∈ L′CA such that X, x ⊨ ψ iff there exist no nontrivial path from x to x in G
N .

Proof. Let X = (Z, {0}, S,Z, 〈χ, γ〉) and Y = (Z, {−1, 0, 1}, S,Z, 〈χ, δ〉) where S = {•, ◦}, γz = const◦ : {z} →
S and δz = const◦ : {z − 1, z, z + 1} → S for all z ∈ Z. Using hC = IdZ, hS = IdS and hG = IdZ we obtain a
mutual similarity h : z �� z for all z ∈ Z (between z in X to z in Y). Thus by Theorem 8.27 also z ⇝ z, since
ImC(hL) = SZ are all configurations on Y, this implies X, z ⊨ ψ iff Y, z ⊨ ψ.

Now suppose there exists a ψ that is validated in a point z iff there exist no nontrivial path in G
N from z to

z. But X is an OCA, so X, z ⊨ ψ holds for all z ∈ Z. Hence by the previous observation, also Y, z ⊨ ψ for all
z ∈ Z. The latter implies that Y is an OCA; but this is a contradiction since Y’s information graph is the
essentially undirected (c.f. Definition 7.19) Cayley graph of Z.

8.4 Summary of the Hennessy-Milner theorem

This section proved a Hennessey-Milner theorem: a direct link between the logic of CA and the ability of CA
to semantically simulate each other. We first saw, in Theorem 8.12, that CA X and Y defined over the same
signature (M , N, S) validate exactly the same logic iff there exist coalgebra homomorphisms k : X → Y and
h : Y → X .

Thereafter we generalised coalgebra homomorphisms to general CA morphisms between frames. In order
to translate signatures, these CA morphisms are coalgebra homomorphisms between cells extended with an
additional monoid homomorphism and a state-set map. Intuitively, exists a general CA morphism h : X → Y
when X can be simulated by Y.

We likewise generalised logical equivalence to logical simulation in order to compare logics of frames on
different signatures. This is implemented by allowing a monoid homomorphism and state-set map to translate
the signature-dependent symbols in the logic.

Finally, we proved a generalised Hennessy-Milner theorem (Theorem 8.27): frames can simulate each other
via general CA morphisms if and only if their logics can be embedded into one each other’s.
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9 Concluding remarks

We finish this thesis by reflecting on the advantages and disadvantages of the presented constructions, out-
lining directions for potential future work, and a final summary.

9.1 Discussion of the coalgebaic model

The main particularity of the present coalgebraic model of CA is the separation between the set of cells X
and the monoid M of paths between cells; most existing works identify those sets. The separation seems
to offer new flexibility. For example, we showed in Example 8.28 how to embed the hexagonal grid into Z3,
which was straightforward since we only use the cells of the hexagonal CA and adjust the paths accordingly
(intuitively, we identify multiple grid points with the same cell). This should be compared to the non-
coalgebraic description by Roká [36], which had to explain how to translate a configuration on the hexagonal
grid to a configuration on Z3 by copying the state of a source cell to all Z3 grid-points with which it is
identified.

Classes of general CA We proposed several classes of general CA with different levels of uniformity
between local rules in Section 4.1, None of these is the obvious “correct” class: this is probably application
dependent. However, our coalgebras are sufficiently expressive that any coalgebraic categories of CA according
to of the desired degree of uniformity simply arise as full subcategories of CCAG, the category of general
CA.

The standard coalgebra framework The present model does not fit in well with existing approaches
of describing dynamical systems coalgebraically. The strongest discrepancies are Section 5, which showed
that the concept of behavioural equivalence for our coalgebras has little to do with the actual behaviour of
CA. But the issue runs deeper: traditionally, the elements of carrier sets of coalgebras are called “states”. In
our model, this are the cells, and part of the static structure rather than the dynamics of the system. The
question whether there exist a coalgebraic model for CA that is better aligned with existing work remains
open for future work.

Alternative base categories Our coalgebraic model uses an endofunctor on Set, but future work could
investigate other base categories with more structure. For example, we can “lift” the functor CG to an
endofunctor on the category of posets, in such a way that CG is recovered by precomposing with the forgetful
functor. This would result in orderings on cells and states, and monotone general CA morphisms and local
rules. Alternatively, we can consider the base category of small categories and use the morphisms of a
category as connections between cells, instead of a separate monoid.

9.2 Discussion of the new modal logic

The presented modal logic LCA is quite expressive; aside from any finite spatio-temporal pattern in the
trace of a CA, it can sometimes even describe asymptotic behaviour of the trace (recall Examples 7.13 and
Lemma 7.14). However, infinitary disjunctions come at the cost of making the logic undecidable (Corol-
lary 7.15). We conjecture that Lstg is decidable, at least for CA with a finite state sets and neighbourhoods,
but a proof of this remains open for future work.

One-way cellular automata Lemma 8.30 shows that L′CA does not have a formula that expresses that
a CA is a one-way CA. This is not in conflict with the design goal of the language, since the property of
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being an OCA is not visible in the trace. Indeed, the proof of Lemma 8.30 constructs two CA with the same
traces, but one is an OCA and the other not.

This example shows that it is debatable whether the definition of an OCA is “correct”, and more generally,
whether the definition of the information flow graph (Definition 7.18) is “correct”. The alternative is to
define one-directedness based on the actual dynamics of the CA: we could for example define essential one-
directnedness as follows: a CA is essentially one-directed if for any cell x in a configuration ct of which it is
known that x’s state in configuration ct+1 is st+1, for any k ∈ N, the state of x in ct+1+k is the same for
any state of x in the current configuration ct. While somewhat technical, this expresses that information
about x’s past states cannot flow back to influence its future states (other than directly influence the direct
successor state of course). One could generalise the definition of the information flow graph analogously.
While semantically more intuitive, it may not solve the inexpressivity issue: we have not found a formula to
express essential one-directedness.

A more general definition of simulation? Theorem 8.27, our generalised Hennessy-Milner theorem, is
based on our definition of a simulation and CA being mutually similar (Definition 8.15). It is straightforward
to see that a simulation h : x�� y indeed embeds the dynamics of X visible from x intro y, but note that this
is a simulation that always simulated 1 cell by 1 cell, 1 state by 1 state, and 1 timestep by 1 timestep.
There are many examples of more general definitions of simulations between CA found in the literature,
such as allowing groups of cell to simulate groups of cells, and allowing a constant time delay between
the simulated and simulating CA, or even mapping entire configurations to configurations (see e.g., [36]
for simulations of CA on Cayley graphs, and [29, §5.2] for a very general definition for graphs of the form
Zd). It seems possible to generalise our definition of �� accordingly, and it might also be possible to extend
the definition of logical equivalence with a search-and-replace operation that multiplies occurrences of 1 (to
express a delay), replaces occurrences of atomic states by a conjunction of states (when a single state of the
simulated CA can be represented by multiple states in the simulating CA) or even replaces occurrences of
atomic states s ∈ S by spatially arranges “blocks” of states (e.g., when s is encoded in the simulating CA by
multiple cells in the states s1, . . . , sk arranged in the pattern given by m1, . . . ,mk then one would replace s
by �m1

s1 ∧ �m2
s2 ∧ · · · ∧ �mk

sk). This possibility remains open for future work.

Uniform substitution We showed in Section 6.3 that the global variables of out logic, which semantically
represent the states in the initial configuration, allow a limited form of uniform substitution: only substitution
of time-invariant formulas. In future work we may investigate the alternative option of assigning propositional
letters to cells (as in the Kripke semantics), in which case full uniform substitution likely becomes possible.

9.3 Conclusion

We have successfully constructed a modal logic for describing spatio-temporal patterns in the trace of a CA
(see Example 7.1). Aside from these patterns, the logic can also express some global properties of a CA,
such as nilpotency (Example 7.13) and periodicity (Example 7.14). To implement the semantics of the logic,
we constructed a novel coalgebraic model of CA that separates cells from paths between cells. We proposed
two variants of a a generalisation of CA in which different cells can have different local behaviour. Our
coalgebraic model is sufficiently flexible to also represent both irregular and non-uniform CA, to which the
logic also applies.

The logic is not based on the predicate-lifting framework for coalgebraic modal logic, since we showed that
this framework cannot express dynamic properties for our coalgebraic representation of CA.

The syntax of the logic is uniform for all CA, but formulas may contain state labels or paths labels specific to
a CA. However, we gave a generalised Hennessy-Milner theorem stating that the formulas validated by a CA
can be translated into formulas validated by another CA if and only if the latter CA can directly simulate the
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former. This result simplifies to a direct logical equivalence in the special case where both CA have exactly
the same states and paths.
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