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Abstract
The field of Automated Machine Learning and language models have witnessed significant
research, with a considerable impact. Language models, typically built on transformer-
based architectures, have achieved significant milestones in natural language processing.
However, they come with a set of challenges, primarily stemming from their associated
compute footprint. The application of AutoML to language models can lead to their de-
mocratization and foster further research, development, and usage of these architectures.
We report on a case-study that does neural architecture search, with the aim of optimiz-
ing the backbone of the DistilBERT model in a resource-constrained environment (using a
compute budget of 6 500 GPU-hours). We perform this neural architecture search on the
DistilBERT model using an evolutionary algorithm. Despite the selection of a relatively
small language model, we show that the cost of searching for a novel architecture for such
models is immense and we propose several techniques to alleviate the linked cost of pre-
training the candidate models. We propose a two-level hierarchical search space by incor-
porating macro-level architecture hyperparameters to a cell-based search. Furthermore, we
present a segmented pipeline that allows for individual investigation and enhancement of its
different components. Experimental results depict an efficiently diverse exploration method
across generations. Additionally, findings reveal a strong correlation between pre-training
performance and downstream task performance, suggesting its potential applicability as a
cutoff criterion during model training. Finally, our learning curves analysis emphasizes the
potential for efficient resource allocation through the adoption of an epoch-level stopping
strategy, thus directing resources toward more promising candidate models. Future work
should focus on scaling these insights to larger language models and a more diverse set of
downstream tasks.
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1 Introduction
The recent progress in the fields of Large Language Models (LLMs) [1] has captivated
the attention of both researchers and users. Rapid breakthroughs in the field of Natural
Language Processing (NLP) have been demonstrated through the release of the transformer
architecture [2], and many models that followed - stemming from this architectural design -
such as Bidirectional Encoder Representations from Transformers (BERT) [3], versions of
Generative Pre-trained Transformer (GPT) [4], LLaMa [5] and OpenAssistant [6]. These
have provided remarkable capabilities in terms of language comprehension and generation,
whilst also paving the way for democratization in the field of NLP. Notably, platforms like
HuggingFace [7] play a pivotal role by empowering developers, researchers, and organiza-
tions. Through the provision of access to pre-trained models, they facilitate the develop-
ment of innovative applications and foster community-driven growth in NLP research.

The field of Automated Machine Learning (AutoML) [8] introduces the notion of uti-
lizing experience gained from previously seen datasets and plays a supporting role in au-
tomating the identification of an appropriate machine learning pipeline, based on the task
at hand. The fundamental objective is to democratize machine learning by enabling re-
searchers to apply their expertise to more high-value tasks while automating routine pro-
cesses. The exploration of better-performing architectures has been an extensively studied
domain, highlighting the evident challenges in the design and tuning of neural networks.
The constrained intuitive understanding of their effective design is an obstacle hindering the
ability to explore architectures, as humans are generally less inclined to investigate more
complex architectures. These have led to the inception of the field of Neural Architecture
Search (NAS) [9], where the task of designing an architecture is automated.

Our study delves into the complex realm of LLM, characterized by their transformer-
based architecture and an extensive number of trainable parameters. The first objective is
to dissect the macro-architecture of these models, deriving an effective search space en-
capsulating diverse models for potential exploration. Additionally, we seek to implement
a search methodology that leverages a multi-objective optimization approach, with the pri-
mary goal being the optimization of the performance of the model on the downstream
task of question-answering, whilst secondary minimizing the explored candidate models’
size. Motivated by the convergence of AutoML and LLMs, our research acknowledges
challenges [10]. Some of these challenges include the extreme computational cost of pre-
training a base LLM, as well as the complexity of the application of an AutoML task which
becomes even more relevant due to the necessity of its application across different lifecycle
steps of an LLM. An LLM ideally should be improved in its pre-training, finetuning and
inference phases. Associated with the learning phases are a considerable number of learn-
ing paradigms, thus the need for identifying or optimizing one is also evident. To address
some of these challenges, we propose counter-measures, aiming to mitigate their impact
and identify potential solutions for feasibility in a resource-constrained environment.
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Through this research, we will report on insights derived from the application of NAS
on language models in a resource-constrained environment. Due to the extensive com-
putational costs, this research is conducted as a case-study to see whether a reasonable
setup works, rather than a scientific study towards which of the various options perform
best. In such a resource-constrained environment, this research utilized 6 500 GPU-hours
of NVIDIA A100 GPUs with 40GB VRAM. The need for utilizing these resources is as-
sociated with the pre-training phase, which utilizes large corpus of data and the benefit of
higher GPU memory is evident in terms of training time. The proposed NAS methodology
utilized the pre-trained model DistilBERT 1 from the HuggingFace platform, which is pre-
trained on the task of Masked Language Modeling (MLM). While larger models exist, due
to the computational cost of pre-training such models, we choose this relatively smaller
language model of approximately 66 million parameters. As such, we will refer to Dis-
tilBERT as a language model, rather than an LLM. The (large) language models training
procedure consists potentially of two phases, (i) a pre-training phase on a large corpus of
(often unlabelled) text, which is typically expensive, and (ii) a fine-tuning phase on the task
of interest, which is computationally much cheaper.

As previously mentioned, the first challenge for the application of NAS on language
models is the associated need for pre-training the explored models. The proposed method
for altering the model includes two searchable levels by adding macro-level architecture
parameters to a cell-based search; derived from modules stemming from the architecture
of the transformer encoder. These modules are more specifically subsets of the transformer
encoder architecture or the transformer encoder itself. The search method is based on a
Genetic Algorithm (GA) [11], and more specifically heavily influenced by Non-dominated
Sorting Genetic Algoritm II (NSGA-II) [12] since we work towards optimizing generated
models on the two previously mentioned objectives (performance and model size). Using
the pre-trained model from HuggingFace we retrieve a set of weights for the original archi-
tecture, and any architectural changes applied to the model will only affect the weights of
altered or added modules (which take randomly initialized weights). Another method to re-
duce the pre-training cost is to have a cut-off phase during the pre-training, where only half
of the generated models will continue in the second phase of pre-training. The selection
process follows the investigation of learning curves and only the best-performing models,
in terms of loss on the MLM task, are selected. Another technique utilized to reduce the
cost of pre-training is having two phases of pre-training, where the first one is focused on
training solely modules that have been newly initialized, followed by training the whole
architecture for calibration purposes.

The second challenge was the selection of appropriate datasets and accompanying
learning paradigm for the task of pre-training. The pre-training phase uses the original

1This is the distilled version of Bert Base uncased provided by HuggingFace which is trained on English
language using a Masked Language Modeling (MLM) objective.
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datasets introduced for the training purposes of BERT and DistilBERT, namely BookCor-
pus [13] and English Wikipedia [14]. The training procedure follows the task of MLM, to
ensure a rigorous and equitable comparison with the baseline model from HuggingFace. In
regards to the finetuning phase, the Stanford Question Answering Dataset (SQUAD) [15]
was utilized, in order to achieve benchmarking on the task of question-answering and com-
pare the models’ downstream task performance.

Aside from the innovations of the transformer architecture, one cannot refute the in-
creasing complexity and huge number of trainable parameters accompanying it. These
factors have necessitated a more automated and effective approach towards designing and
optimizing their architecture, potentially identifying models with better performance and
reduced compute footprint. This has raised the following question:

Can the application of neural architecture search, in a resource-constrained environment,
aid the identification of better language model transformer-based architectures,

in terms of performance on the task of question answering and the size of the model?

To address the research question, this study will focus on specific proposed options for
the following tasks:

Search Space: Search space definition for transformer-based language models.

Multi-Objective Optimization: Approaching the problem as a multi-objective optimiza-
tion, with a prioritization on a specific objective.

Cost efficient pre-training: Considerations and strategies aimed at the minimization of
the cost of pre-training during the application of NAS.

This work proposes a novel search space for adapting the backbone of transformer
encoders through the utilization of a segmented NAS pipeline. We highlight the poten-
tial applicability of learning curve analysis on language models and present experimental
indications of a high correlation between the pre-training task and the downstream task,
which indicates its applicability as a cutoff criterion for candidate models. Our findings
and insights act as empirical evidence but more broad experiments and scaling to LLMs is
necessary to solidify these.

This research has been conducted in collaboration with the company DEUS 2 (Am-
sterdam), and the research field aligns with their interest in identifying a good perform-
ing model for the task of question-answering, with the necessary considerations in terms
of computational cost in its lifecycle. The aim is to make such a model’s application
to real-world scenarios feasible in resource-constrained environments, thus democratizing
language models.

2https://www.deus.ai/
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The outline of the thesis is conducted as follows. Section 2 provides an overview of the
main architectural and methodology-related components that provide background knowl-
edge for our research. Section 3 explores related work and research that influenced our
decision process. Section 4 provides implementation details and the proposed method-
ology for answering our research questions. Section 5 covers details of our experimental
setup, followed by Section 6 which depicts and analyzes the experimental results. Section 7
outlining the limitations and respective future work extensions, while Section 8 provides
remarks and conclusions from our work.

2 Background
In this section, we will cover architectural and methodology-related components, which

are deemed vital background knowledge of this project. We will expand upon the topics of
evolutionary algorithms [11], the architecture of transformers [2], and neural architecture
search [9].

2.1 Evolutionary Algorithms
Evolutionary Algorithms represent a class of adaptive computational search methods that
rely on operations and techniques that are inspired by the process of natural and biological
evolution [11]. The biological theory of evolution, based on the concept of natural selec-
tion, favors the best-fitted individuals, which are used to create the next generation through
evolutionary operations. Similarly, evolutionary algorithms such as genetic algorithms,
follow an iterative and sequential process of genetic operators and appropriate individual
selection.

At the core of evolutionary algorithms is the concept of a population, collectively com-
posed of candidate solutions. These candidates are represented through a suitable genotype
(genetic encoding of the phenotype), depending on the specific problem domain. The next
vital part of the evolutionary process is the definition of a fitness evaluation function, which
is determined by our objective(s). The fitness value represents the quality of the individ-
ual and typically this should be optimized, by approaching it either as a maximization or
minimization problem. As stated earlier promising individuals will be selected (according
to their fitness values) in order to undergo the application of genetic operators and gen-
erate a new population (offspring). These operators can include crossover/recombination
and mutation, and their application diverges the individuals from their ancestors. These
also provide a balance between exploration and exploitation for traversing through the as-
sociated search space. It is essential to define carefully the selection process for both the
mating selection (i.e. selection of fitted parents to create the offspring population) and next
generation selection (i.e. individuals that compose the next generation of parents). Fig-
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Figure 1: The general scheme of an Evolutionary Algorithm, represented in a flow chart
format

ure 1 depicts the general scheme that is followed in an evolutionary algorithm, including
the previously mentioned operators and processes.

2.1.1 Non-dominated Sorting Genetic Algorithm II (NSGA-II)

Amongst the vast list of evolutionary algorithms, is the NSGA-II [12]. This was devel-
oped to counter some of the initial shortcomings of early evolutionary algorithms. It has
specifically emerged to tackle multi-objective optimization problems, where more than one
objective needs to be optimized at the same time, with possibly conflicting interests. This
can be depicted in a multi-dimensional space with the set of solutions known as the Pareto
front.

The main idea behind the NSGA-II approach centers around the handling of non-
dominated solutions and the iterative identification of these sets of solutions. It categorizes
sequentially the non-dominated solution into fronts, removing the currently selected set and
moving into the identification of the next one. It also introduces the concept of the crowd-
ing distance (distance of candidate to neighboring solutions), to prioritize the selection of
the most diverse solution (less crowded ones, i.e. with the closest neighboring candidates
furthest away). This provides the ability to preserve diversity by encouraging the spread
of selected solutions, i.e. varying in their objective scores compared to other individuals in
the same Pareto rank. Finally, its other substantial contribution was the addition of the as-
pect of elitism, where the best candidate solutions, called the elites, in each generation, are
inserted into the next generation. This is achieved by selecting candidates for the next gen-
eration selection in order of Pareto front ranking and in case the population to be selected is
smaller than the pool, the last front will undergo selection utilizing the crowding distance
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Figure 2: The outline of the NSGA-II next-generation selection procedure. Rt represents
the combined population of Pt and Qt, representing the parent and offspring population
of generation t respectively. Fi represent the set of solutions included in the ith front in
descending order of importance. Figure taken from [12].

as well. An outline of the next-generation selection procedure is depicted in Figure 2.

2.2 Transformers
Arguably, one of the most influential papers in deep learning research presented the archi-
tecture of transformers and attention layers [2]. This powerful neural architecture has been
widely used in different NLP tasks, including language modeling, text generation, and text
summarization. This relied on the concept of self-attention, providing a selective focus on
different parts of the input sequence during the output generation. Moreover, the ability of
transformers to process the whole input sequence at once allowed for computing relations
between all pairs of the input tokens. In this section we will go over all the main parts that
the transformers consist of, and how these are incorporated into its architectural design.

2.2.1 Architectural overview

In contrast to Recurrent Neural Network (RNNs) and Long Short-Term Memory (LSTM)
models, that were previously state-of-the-art (SOTA), transformers have the ability to par-
allelize the processing of information across the whole input sequence. This allows them
to identify relationships between the words and provide long-range dependencies across
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Figure 3: The architecture of the transformer is represented. The left part of this diagram
depicts the transformer encoder, whilst the right one is the decoder. Figure taken from [2].

them. Moreover, transformers are autoregressive, meaning that the sequentially generated
output tokens become part of the input in the next step.

Transformer-based models comprise of multiple stacked encoder layers, enabling the
model to capture complex patterns and refine the representations of the input. The output
representation of the encoder stack, known as the context representation is fed as input
onto the decoder stack. In contrast to the encoders, decoders have a masked self-attention,
which ensures visibility of information preceding the current position during the generation
by masking tokens that would follow.

2.2.2 Attention Mechanism

The attention mechanism is a computational mechanism that provides the model with a se-
lective focus on the input sequence during the output generation. Its purpose is the mapping
of queries and a set of key-value pairs to an output. This is calculated as follows:

Attention(Q,K, V ) = Softmax
(
Q ·KT

√
dk

)
· V

7



Figure 4: (left)Scaled Dot-Product Attention. (right)Multi-head attention consists of sev-
eral attention layers running in parallel. Figure taken from [2]

where K represents the set of keys, V is the set of values and Q is the set of queries,
and all of the above are vector representations (derived from the input sequence). dk is
the dimension of the key vectors. The softmax function normalizes the dot product be-
tween Q and K, resulting in the set of attention weights. It is worth noting that these
attention weights are calculated based on the similarity of query and key, and can be uti-
lized as both self-attention and cross-attention, capturing dependencies within and across
sequences. The introduced “Scaled Dot-Product Attention” is visualized on the left side of
Figure 4.

Naturally extending the concept of self-attention to multi-head self-attention enhances
the ability of the model to encapsulate information of different types of dependencies across
the input. Through the usage of multiple sets of the previously mentioned query (Q),
keys (K), and values (V ) matrices, the model can process input parts simultaneously. The
following equation depicts its calculation process:

MultiHead(Q,K, V ) = Concat(Head1,Head2, . . . ,HeadH) ·WO

where Headi represents the ith attention head, with each attention head retaining its own
set of weights. H represents the number of attention heads and WO is a weight matrix that
combines the outputs from all the attention heads. Each attention head can specialize in
capturing different relationships across the data and has been proven effective on many
NLP tasks. The multi-head self-attention can be visualized on the right side of Figure 4.
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Figure 5: An overview of neural architecture search according to its three dimensions (Fig-
ure based on [17]). The search strategy iteratively selects an architecture (α) from the
predefined search space A. The performance estimation strategy will output a prediction
of its ultimate task. This will then be used to select the next architecture according to the
prior knowledge.

2.2.3 Feed-Forward Neural Network

Each of the encoder and decoder layers contains a fully connected Feed-forward Neural
Network (FNN). The original architecture of the FNN consists of two linear transforma-
tions and a RELU [16] activation function. This follows the multi-head self-attention,
allowing the model to direct its focus on the local interaction of the data and thus enabling
the learning of more complex features.

2.3 Neural Architecture Search
The high complexity of Neural Networks (NNs), combined with the limited intuition in
terms of designing them, presents an obstacle towards efficient and effective architectural
design choices. This, in turn, constricts the explored search space, since humans are less
likely to manually identify more complex and diverse architectures. Due to this, the need
for more effective and possibly automated design choices is evident.

Neural Architecture Search has emerged as a subfield of Automated Machine Learning
(AutoML) [8], which is the process of automating the steps of a machine learning pipeline.
NAS focuses on the processes of designing the optimal neural network for a specified task.
The main principle which guides the search and consequently the choice of architecture
is the effect on the model’s performance. Several concepts need to be introduced in order
to provide a general overview of what components compile as NAS methodology. NAS
methods are typically categorized based on three dimensions: the search space, the search
strategy, and a performance estimation strategy [17] (see Figure 5). These components
are explored further in this research project and thus will be explained in the subsequent
sections.
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2.3.1 Search space

The search space, in terms of a NAS algorithm, represents the realm of possible neural
network configurations that would be likely to be explored during the execution of our al-
gorithm. This can be defined based on various choices that would define the architecture of
the NN, such as number of layers, type of layers, type of connections, activation functions,
hyperparameters, etc. The defined search space aims to encapsulate valid and possible so-
lutions whilst also limiting choices and as a result, constricting its size, since the aim would
be to be able to explore a considerate portion of it.

A careful definition of the search space is a fundamental step in the process of NAS
methodologies, and failure to provide this would result in unproductive exploration with
the likelihood of identifying a superior architecture reduced. An architecture such as the
transformer can be considered complex with a broader search space. Architectural deci-
sions which would determine the possible candidates and the search space require thorough
investigation.

2.3.2 Search strategy

Following the definition of the search space, we need to determine an intricate way to tra-
verse it. This is achieved through the search strategy, which is an optimization technique,
used to identify promising candidate architectures. These can typically lie under two main
categories: black-box optimization techniques [18, 19] and one-shot techniques [20]. The
focus of our research is black-box optimization techniques and more specifically investiga-
tion of the principles of EA.

During the efficient exploration of the search space, we would typically be interested
in enhancing the performance of our baseline model, however, the model size would also
be of importance. We can view these two objectives as our optimization objectives in a
multi-objective setting. NSGA-II would operate as a “black-box optimizer” which would
iteratively generate candidate architectures and through investigation of the two objective
goals (under Pareto fronts) would determine the next generation of candidates and guide
the search accordingly.

2.3.3 Performance estimation strategy

The performance estimation strategy refers to a technique that can be applied in order
to retrieve an estimation of the ultimate model performance, which is one if not the sole
optimization objective. The most simple approach would be following the standard proce-
dure for training the model and evaluating it. This is undoubtedly extremely expensive, as
proven by prior research as well [18], and would render the application of NAS on language
models in resource-constrained environments infeasible. Some of the techniques that have
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been researched and employed typically in other domains have been lower fidelity esti-
mates [21] (data or epoch level), weight inheritance from parent model [22] and learning
curve analysis and extrapolation [23]. The aforementioned techniques are implemented
and evaluated in our research, in an attempt to optimize the cost of pre-training and derive
insights on their potential applicability to language models.

3 Related work
This section will cover some of the key papers in the two respective fields, LLMs and
NAS, which have provided breakthroughs and thus encouraged further research in these
areas. Firstly, we will explore the recent work in the field of LLMs and NAS separately,
and the analysis of literature for NAS targeted towards language models will follow.

3.1 Large Language Models
As previously highlighted, the transformer architecture [2] and the introduction of the atten-
tion mechanism have revolutionized the field of NLP, with breakthroughs in various tasks,
including language modeling, text generation, and text summarization. The self-attention
mechanism (see Section 2.2.2) allowed for the identification of relations across all the to-
ken embeddings in the input sequence in a parallelized fashion. This has permitted the
processing, in terms of dependencies, for longer sequences, compared to previously state-
of-the-art models which relied on Recurrent Neural Networks (RNNs) [24], Convolution
Neural Networks (CNNs) [25] or Long-Short Term Memory (LSTMs) [26] models.

The transformer architecture paved the way for the creation of LLMs since they are typ-
ically transformer-based. Among the most influential LLMs, the GPT [4] (a decoder-based
transformer model) has showcased the potential of unsupervised pre-training and finetun-
ing. Other models such as BERT [3] utilized bidirectional transformers (more specifically
stacked transformer encoders) and a masked language model objective to capture rich con-
textual understanding of words from the input sequence. It was pre-trained on a large
corpus based on the BookCorpus [13] and English Wikipedia [14] datasets. In the past,
BERT achieved state-of-the-art results across various natural language processing tasks.

Text-to-Text Transfer Transformer (T5) [27] provided a single model for a diverse
set of tasks such as classification, translation, summarization, and question answering. It
utilized once again a transformer-based architecture and through casting all tasks as text-
to-text transformations, it achieved the generation of output text given the respective input
text.

These models have been extremely successful and impactful in the field of NLP. How-
ever, their deployment is computationally expensive and resource-demanding, making their
applicability in many real-world applications infeasible. Due to our resource-constrained
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environment, experimentation in this research will focus on a distilled [28] version of such
a model. More specifically, the focus is DistilBERT [29], like the name suggests, a distilled
version of BERT that aims to reduce the computational footprint while retaining substan-
tial performance gains. This leverages knowledge distillation techniques, utilizing BERT
as the teacher model. The reduced model size allowed for more flexibility in terms of the
application of NAS, making the exploration of stemmed architectures feasible.

3.2 Neural Architecture Search
Designing a neural network can be a hard and time-consuming process. The limited in-
tuition for designing them is an obstacle that restricts the explored architectures. These
have led to the inception of the field of NAS, where the designing of an architecture is
automated. One of the most influential papers in the field of NAS has been a paper where
reinforcement learning has been integrated into NAS [18]. The main idea revolves around
the utilization of an RNN controller, which is responsible for generating a string represent-
ing an NN (e.g. CNN). This architecture represents the child network, which is then trained
and evaluated on the validation set. This performance metric is fed into a policy-based re-
inforcement agent as the reward, which in turn updates the parameters of the controller
model. This iterative procedure is repeated to explore and more effectively identify a good
child network. This was however limited to CNN or RNN-based models. Another obvious
limitation or drawback of such an implementation would be the fact that it requires each
child network to be fully trained which can be extremely computationally and time-wise
expensive.

A recent approach to counter this black-box optimization search has been a one-shot
search, where essentially one model is fully trained and the final model is a sub-network of
the so-called one-shot model (also known as supernetwork). A famous approach following
this is the Differentiable Architure Search (DARTS) [20], where continuous relaxation of
the search space enables the use of gradient descent. It allows for the treatment of the
search domain as a continuous space thus making it differentiable. This in turn allows for
the identification of the local optimum model. Evolutionary algorithm-based methods were
proposed to exploit evaluated candidate models for effective population maintenance and
evolution [19, 12].

3.3 Neural Architecture Search on Language Models
Research in the area of CNN and RNN models has been quite extensive, with a heavy focus
on the area of computer vision. Although limited, research in the area of transformers has
now been steadily growing, with branching to NLP-related tasks. The AutoTrans [30] re-
search paper focused on the discovery of good transformer-based architecture by automat-
ing the design choices in the model. This involves (i) setting the layer norm (which in turn
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affects the training stability), (ii) where to put encoder attention, (iii) the number of layers,
and many more. To achieve this they have employed an RL strategy through ENAS [31].
To further boost the performance and speed up the architectural search, they have utilized
specialized parameter-sharing strategies for multi-head attention. The architecture search
consists of two main phases. Initially, the child model with shared parameters (ω) is trained.
The training of the θ parameters of the RNN controller follows, which is achieved by opti-
mizing the expected reward by using REINFORCE [32].

A very interesting approach, dubbed as Primer [33], utilized a NAS algorithm based on
an evolutionary algorithm that would search for a decoder-only auto-regressive language
model. Two of the main modifications have been squaring ReLU activations and adding
a depthwise convolution layer after each Q, K, and V projection in self-attention. These
modifications should be applicable to other scenarios as well. The search space is defined
as a collection of TensorFlow [34] applications (primitives) and evolution is applied to
search for the model architectures. This research possesses interesting findings, however,
it is accompanied by limitations. The main limitation would be the constricted application
to TensorFlow, however, this can be countered by deriving the respective primitives for
PyTorch [35] or other machine learning frameworks. Our focus has been a hierarchical-
based search space that deviated from the idea of primitives, however, the identification of
elemental blocks that contribute to the architectural design is an obvious similarity.

AutoTinyBERT [36] is an approach that focuses on the automatic optimization of hyper-
parameters, producing LLMs based on the architecture of BERT tailored towards resource-
constrained environments. This approach applied NAS and hyperparameter tuning, by
automatically generating different configurations that define the architecture of the trans-
former encoders and the number of stacked transformers; resulting in a homogenous archi-
tecture. Inspired by this, we define custom modules that serve as integral elements of the
transformer encoder. This extends the possible exploration compared to solely relying on
the configuration setup provided by HuggingFace [7] which can be viewed as a hyperpa-
rameter optimization task. It allows for independent configuration of the encoder blocks,
whilst also endorsing deviations with the possible addition of such modules.

AutoBERT-Zero [37] is another evolutionary algorithm-based approach that focuses on
the exploration of the backbone of the BERT model, by utilization of primitive mathe-
matical operations in the intra-level aimed at the exploration of attention structures. On
the inter-layer, they used convolutional layers to learn local dependencies. They proposed
Operation Priority Neural Architecture Search (OP-NAS) algorithm, to balance the tradeoff
of exploration and exploitation, and another technique called Bi-Branch Weight Sharing in
order to minimize the need for pre-training by sharing weights of modules of the supernet.

Through researching the above solutions, we can identify different techniques that aim
to achieve a more balanced training procedure and also efficiently determine a search space
and search method for traversing said space. It was determined that NAS through the usage
of an evolutionary algorithm-based back-box optimization method enabled optimization
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with retained knowledge of explored candidates. AutoTinyBERT [36] focused on a macro-
search space that contained limited expressiveness but depicted very promising results.
Inspired by the AutoTinyBERT, we developed a more expressive hierarchical search space,
that defined primitive components of the transformer encoder backbone and added macro-
level architecture hyperparameters to mutate the current architecture in a modular approach.
Additionally, we retain weights associated with unaffected layers post-mutation [22] and
investigate the effectiveness of epoch-level multi-fidelity in our NAS method. Changes can
be applied independently to each of the modules resulting in diverse transformer encoders
within the same model. Finally, inspired by techniques shared in AutoBERT-Zero [37], we
can add modules into the encoder architecture, like the Feed Forward Neural Network, to
potentially encourage more stability during training.

4 Proposed methods
In the context of NAS and its application to a specific model, two essential steps are the def-
inition of an appropriate search space and an accompanying search method which should
explore models within this search space. In the following section, we will provide an
overview of both the search space definition and details of the search method, seen in
Sections 4.1 and 4.2 respectively. It should be highlighted that due to the extensive com-
putational costs, we conduct a case study to derive insights, rather than compare various
alternative options for the definition of the search space and search strategy. It was nec-
essary to perform simulations and small-case experiments, before the actual execution, to
ensure that the pipeline executes successfully. The performance estimation strategy in our
approach is involved in the intermediate step in the two-phase pre-training which is outlined
in Section 4.2.4.

4.1 Search Space Definition
To provide elaborate and carefully defined search space for our NAS method applied to
DistilBERT, we first needed to explore and investigate its architecture. It comprises a stack
of transformer encoder blocks which consist of the following counterparts:

Multi-head self-attention allows the model to focus its attention on different parts of the
input sequence simultaneously. This component allows the model to capture infor-
mation encapsulating different relationships within the data and provide a compre-
hensive representation of those relationships.

Layer Normalization This component is used to stabilize and speed up the training through
normalizing activation within each layer. It is placed in between the multi-head self-
attention and feed-forward neural network layers.
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Feed-forward Neural Network layer (FNN) This component consists of two linear trans-
formations with an activation function in between (in this case GELU). This archi-
tecture allows for the modeling of non-linear relationships in the data and the repre-
sentation of high-level features.

Output Layer The final component of the transformer block takes the output of the FNN
and combines it with the output of the multi-head self-attention mechanism. This
is then fed through a linear representation which represents the final output of the
encoder block and consequently the input of the transformer encoder block to follow.

Analysis of these critical architectural components has led to the decision of a modular
component-based approach for the definition of the search space. As explained above, the
multi-head self-attention allows the model to focus on different parts of the input sequence
simultaneously, capturing relationships within the data. The FNN introduces non-linearity,
allowing the capture of intricate patterns and high-level features. Arguably the two afore-
mentioned components are the most crucial parts of the transformer encoder and we intro-
duce enhanced searchability to a cell-based approach by incorporating macro-level archi-
tecture hyperparameters; thereby incorporating two levels of searchability in a hierarchical
search space. Therefore, we utilize the most important components of the transformer en-
coder block - including the multi-head self-attention, the FNN, and the transformer encoder
as a whole - and by definition of a parameter space, we create blocks of these components.
The utilization of these blocks and their integration in our mutation function will be ex-
plained more in-depth in the subsequent Section 4.2.1. The transformer encoder block is
an identical copy of the block in the original model of DistilBERT. The remaining modules
do retain the same general structure (as the original model) but their respective parameter
options are outlined hereafter.

1. Multi-head Self-attention:

Number of attention heads defines the number of attention heads that are included
in the associated component. Each attention head focused on different aspects
or patterns within the data allowing parallelization. More attention heads allow
for the capturing of a richer set of information and understanding of complex
patterns in the data, however, it comes with an associated computational cost
and memory usage.

2. Feed-forward Neural Network:

activation function defines the activation to be used in between the linear layers of
the FNN. The options are [ReLU [16], GELU [38]], in contrast to the original
option being solely GELU.
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intermediate size defines the dimensionality of the hidden layers of the FNN. If
there are more than two stacked linear layers then we can alter the intermediate
size of the middle layers.

number of layers defines the number of stacked linear layers (minimum value of
2).

All of the hyperparameters mentioned above have a parameter space that spans relatively
close to the original values of the model of DistilBERT and follows similar settings to the
AutoTinyBert[36].

4.2 Genetic Algorithm Pipeline
After formulating the search space, the next logical and crucial step was the definition of the
search method. This is based on techniques from genetic algorithms and more specifically
the NSGA-II approach. The complete pipeline of the proposed search method is depicted
in Figure 6. This can be visualized in incremental steps, which are outlined in detail in the
subsequent sections.

The choice for NSGA-II was based on the fact that it has been proven empirically and
through literature studies that it can be an effective way to apply evolutionary algorithms
to a multi-objective problem. Modifications applied to the original algorithm, driven by
intuition, empirical analysis derived from small-scale experiments, and the limitations im-
posed by the available project resources. Pivotal decisions at various stages of the pipeline,
as well as this adaptation, will be analyzed and explained in subsequent sections.

4.2.1 Mutation function

The mutation function of the GA-based pipeline is important since it will create our candi-
date models and guide the traversal through the search space with considerations towards
the exploration and exploitation trade-off. The modules of Multi-head self-attention, Feed-
forward Neural Network and transformer encoder block are used to make changes to exist-
ing models and create the new candidate models of our search method.

Our first option would be to add or remove probabilistically the entirety of the encoder
block. This is achieved through either the addition or deletion of the encoder block from the
associated dictionary and re-indexing the remaining encoder blocks. The HuggingFace [7]
package allows for easy adaptation to the configuration where a parameter determines the
number of encoder blocks to be included. Moreover, through this adaptation, we can easily
retain the remaining possible changes that are indicated in our model dictionary which
represents the new model.

We can probabilistically change existing modules of Multi-head self-attention or FNNs
by switching existing ones with newly generated ones. For this we randomly create one of
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Figure 6: The NAS pipeline outlines the operational steps for the proposed exploration
method, based on genetic algorithms. The original DistilBERT model undergoes muta-
tions to create the initial parents’ population of size µ. Mating selection is then performed
by investigating the Pareto front to choose the best-fitted parents. These selected parents
undergo further mutations to generate the stemmed offspring population, which requires
pre-training. Candidate models are pre-trained, and the top-performing half is chosen based
on their masked language modeling loss. Subsequently, the selected models undergo addi-
tional pre-training and fine-tuning. Finally, we compute their objective scores and choose
the next-generation parents through plus-selection.

the previously mentioned blocks based on the hyperparameters explained in Section 4.1.
Each module generation is independent of the previous one, featuring random instantiation
of hyperparameters drawn from the parameter space. These hyperparameters may devi-
ate from the original values whilst also impacting factors such as the number of stacked
linear layers and the associated activation functions within the Feed-Forward Neural Net-
work (FNN). These generated modules, combined with the addition or alteration of the
FNN module and adjustments to the Multi-head self-attention, collectively contribute to
the diversification of the search space, deviating from the original transformer encoder and
DistilBERT architecture.

The probabilities of the occurrence of each of the aforementioned mutations have been
empirically set to the following values:

Encoder 0.2 with a corresponding likelihood of either adding or removing the encoder
block established as 2

3
and 1

3
, respectively.

FNN 0.4 with a corresponding likelihood of either adding or altering the existing FNN
block established as 2

3
and 1

3
, respectively.
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Multi-head Self-attention 0.4 probability of altering the existing Multi-head Self-attention
module.

Further experimentation with these hyperparameters is encouraged, but the associated
computational with each experimental run is immense.

The encoder mutation will be applied first, and the encoder list will be traversed in a
random order, ensuring an equal probabilistic chance for the mutation of a module across
all encoders. This allows for experimentation with dynamic mutation probabilities, even
though they have not been currently implemented. To ensure that the newly instantiated
modules will be identifiable during the training process, we include a flag in the genotype
indicating whether altered modules have experienced training yet or not.

4.2.2 Population Initialization

The first step towards running a genetic algorithm is the initialization of the parent pop-
ulation. It was essential to ensure that the generated population arising from the original
design of DistilBERT, possessed a diverse set of alterations ensuring that the generated
models are deviating from each other and the baseline. To achieve this, the mutation func-
tion was utilized with the provision of more aggressive mutation probabilities. Moreover,
empirical analysis of the individuals generated was applied, ensuring that the generated
individuals are diverse. Analysis of the instantiated modules, as well as the size of models
generated assured the application of different mutations.

The motivation for seeking a sufficiently varied population is to encourage the explo-
ration of a wider search space. This decision is considered essential based on the fact that
the limited resource environment restricts further the exploration phase, thus initializing on
a broader spectrum of the search space, whilst exploiting the respective areas with future
generations is vital.

4.2.3 Mating Selection

The mating selection process is heavily based on the NSGA-II algorithm, to achieve the
creation of the offspring for the next generation. Due to the need to prioritize the ob-
jective of boosting the performance of the candidate models on the downstream task of
question-answering, adaptations have been made to remove the balance priority that was
pre-established.

Similarly to the original approach, we need to first assess the Pareto dominance of
the candidates (according to the two objectives) and iteratively categorize them into non-
dominated Pareto fronts. To do this, we identify the set of non-dominated solutions, place
them in a new front, remove these candidates, and repeat the process until all of the individ-
uals have been split into fronts. The lower the Pareto front index the higher the importance
of the individual. Following this, we calculate the crowding distance of the individuals in
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each front, but we utilize only one of the two axes. We calculate the distance from neigh-
boring candidates based on the axis representing the model size objective. This promotes
diversity in the set of solutions based on their model size, whilst of course, we aim to
optimize the performance of the model.

The NSGA-II approach incorporated the concept of elitist selection, where it directly
selected individuals in order of Pareto fronts, which were inserted in the next generation.
Binary tournament selection was employed, with the selection criterion being the crowding
distance. This leads to favoring candidates with higher crowding distance, endorsing higher
diversity. Intuitively, it was decided to adapt the selection process and remove the elitist
approach. Instead, pure tournament selection was effectively in place, where a random
subset of the population was selected (of size k) and the best-fitted individual was selected.
This was determined firstly by the Pareto front-ranking, and in the case of a draw the
crowding distance was used as the decisive criterion.

The above decision was justified by the fact that elitist selection favors exploitation dur-
ing the generation of offspring. This is guaranteed by the selection of the best individuals
to be used for the generation of offspring. This will likely otherwise lead to faster conver-
gence, but based on the fact that we lack the ”crossover” function, we need to encourage
exploration with other techniques. In contrast to this, tournament selection intrinsically
leads to a more diverse generation of candidates by randomly selecting the individuals who
will compete against each other. The decision of the hyperparameter k was set to 3 in
an attempt to solidify the enforced diversity. The decision is grounded in literature and
small-scale experimentation, indicating that a small value of k leads to more exploration
and induced robustness in a noisy environment (such as the one under consideration). The
decision for a small value for this hyperparameter is also grounded on the fact that we have
small population sizes.

4.2.4 Pre-training Phases

In an attempt to further stabilize and possibly speed up the pre-training process, this was
split into two distinct and sequential stages. The generated offspring that would require to
be pre-trained retain partially pre-trained weights from the parent which they stem from.
Undeniably, this knowledge relies on the original architecture of the ancestor, however,
based on the fact that changes incrementally occur per individual, it is safe to assume that
these weights can be re-used [22] as the ground basis and treated as existing knowledge.

Taking into account the aforementioned assumptions, it was decided to set up the two
phases of pre-training as follows. The first phase will freeze any retained modules, en-
forcing training to take place exclusively on the newly initiated modules (resulting from
the mutation function). This in theory should allow for more stable and efficient training,
since by freezing weights the number of parameters to be updated is reduced. This makes
training faster whilst also reducing the demand for computational resources. This process
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of pre-training will hereafter be referred to as pre-training phase 0. This is applied to the
complete datasets and a total of four epochs.

Due to the change in architectural design, the need for training and adjusting the whole
network is clear. The next phase of pre-training involves the entirety of the model, thus
all of the trainable parameters are unfrozen. However, in order to effectively reduce the
need for pre-training explored models, the application of selection criteria was enforced.
At the end of the pre-training phase 0, the trained models undergo a cutoff process, where
only the top half of the population will be selected to proceed in the second phase of pre-
training. The selection criterion is their respective performance in the task of MLM. More
specifically, the models with the lowest evaluation loss at the end of training are selected.
This is achieved through the investigation of recorded losses and associated learning curves.

The selected models proceed to enter the second phase of pre-training, so-called pre-
training phase 1. As previously stated, these are trained for all the possible trainable pa-
rameters. This is done to calibrate the layers of the network (across existing and newly
instantiated modules) and further train the retrieved models. This has been set to 8 epochs
with usage of the full dataset. Due to the restricted resource environment, a fixed and
equal distribution of computational resources was applied. The associated risk of partial
pre-training is acknowledged, but in efforts to counter this, the selected hyperparameters
of pre-training as well as the number of epochs were empirically determined during exper-
imental training of a variety of architectures (created through our mutation function).

4.2.5 Finetuning on the downstream task

To retrieve the performance on the downstream task of question-answering, we finetune the
selected candidate models for 3 epochs using the SQUAD dataset. Next, we evaluate them
using the test set and record their performance on the two typically benchmarked metrics
for this dataset, F1 and Exact Match (EM). Since both scores are on the same scale and
present equal importance in the benchmarking of this dataset, we then proceed to average
them and use their average as the performance objective metric of our candidates. Each
model is now associated with performance and size objective scores, which are used in the
following step, the next-generation selection.

4.2.6 Next Generation Selection

For the process of selecting the next generation of parents, two techniques that could have
been followed were plus-selection and comma-selection. The comma selection, also rep-
resented as (µ, λ), allows selection for the next generation of parents exclusively from the
offspring population of the current generation. This selection approach will aid the conver-
gence to a global optimum and maintain diversity in the population from one generation to
the next because it completely replaces the current population with offspring. However, in
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the case of low parent and offspring population sizes, µ and λ respectively, this can also
result in the loss of good genetic material, meaning that a bad generation of offspring can
result in losing all of the previously attained progress.

In contrast to this, plus-selection also indicated as (µ + λ), provides the capability of
selecting the next generation of parents from the current generation’s parents and offspring.
This provides a form of elitism since it retains individuals potentially from the previous
generation of parents thus preventing loss of good genetic material, ensuring that the best-
performing candidates have a higher likelihood of surviving from one generation to the
next. This was even more vital in our case, due to the small population sizes, essentially
running the risk of generating a bad batch of offspring and losing the progress.

The next generation of each population is selected in a deterministic way, in which the
best µ individuals are selected out of the µ parents and λ offspring (µ + λ). This is done
by selecting the top individuals from the pool of parents and offspring, based on the Pareto
rank. This allows for the best candidates to be selected for the next generation of parents,
whilst also taking advantage of the benefits accompanying the NSGA-II approach (see Sec-
tion 2.1.1). Essentially the Pareto front is created for the pool of individuals, we calculate
the Pareto rank and crowding distances, and finally, proceed to select the top individuals
the same way that NSGA-II implemented their next-generation selection phase.

5 Experiments
The problem statement and research question have been outlined in Section 1. To align with
the scope of this project, the experimental setup has been designed to address the following
key questions through its execution:

Pareto front investigation Is there sufficient exploration of candidate models based on
the conflicting objective scores (as determined through Pareto front analysis)?

Multi-fidelity optimization Is multi-fidelity optimization on an epoch level effective on
language models?

Cutoff criterion Is the pre-training loss an effective cutoff criterion and a good perfor-
mance indicator for the downstream task?

Due to the low number of generations, it is essential to assess the performance trend
across generations, which would in turn provide insight into the potential success of this
research project and future research routes.
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5.1 Baselines
Our baseline model is the original pre-trained model of DistilBERT, retrieved from the
HuggingFace platform. Our baseline model is the original pre-trained DistilBERT model
from HuggingFace with an EM score of 62.0 and F1 of 75.9, thus an average of approxi-
mately 69.0. This is used as the basis for the creation of stemmed models, resulting from the
application of NAS. The training phase of these models follows three distinct phases (see
Section 4) and the trained and finetuned models are compared to the original DistilBERT
model after it has been finetuned on the task of question-answering.

To ensure a fair comparison between the generated models and the baseline, a stan-
dardized training procedure was followed. For the finetuning task, the performance of the
models is compared on the metrics of F1 score [39] and EM score, which are the typical
metrics for benchmarking on SQUAD. The models are also compared based on their re-
spective model sizes. Intermediate and final model evaluation is also based on the learning
curves of the loss retrieved from the pre-training phase on the task of MLM.

5.2 Datasets
The DistilBERT model as well as the subnetworks generated, stemming from the original
architecture, require two stages of training. The first stage was the (partial) pre-training of
the models on the task of masked language modeling. To clarify, what is meant by partial
pre-training, is the fact that models undergo the normal pre-training procedure, but the
weights of the pre-trained parent model are loaded and the mutations will only initialize
weights for the affected layers. Layers and modules that have not been altered through
the mutation phase retain their weights [22]. The pre-training phase will aid the model in
achieving a deeper understanding of language semantics and syntax. The associated trained
weights provide the foundation for linguistic capabilities, which enable the model to learn
a downstream task, such as question-answering; thus finetuning it effectively in the second
stage of training. These two previously mentioned tasks rely on the appropriate selection
of datasets to achieve the respective goals. The chosen datasets are explored in more detail
in the following section.

5.2.1 Datasets for Masked Language Modeling

Our models followed training under the task of MLM to achieve the proper understanding
of language. This means that some of the tokens are probabilistically masked, and the
model is assigned the task of predicting the hidden token. Two datasets were used to
achieve this, namely the English Wikipedia dataset [14] and the BookCorpus dataset [13].

The English Wikipedia dataset consists of a large collection of textual content extracted
from the articles existing in the English version of Wikipedia. Only text passages are
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extracted, whereas lists, tables, and headers are ignored. As per the justification in the
original paper of BERT [3], it was crucial to consider a document-level, instead of a shuf-
fled sentence-level one (such as One Billion Word benchmark). This was done to retrieve
contiguous sentences and therefore aid the language understanding capabilities.

The BookCorpus Dataset was also used, which provided the textual content retrieved
from a considerable number of books across many genres, and surrounding themes. The
different styles of writing and structures provided a complementary context in terms of
linguistics whilst also typically providing longer forms of writing.

The combination of the two datasets provides a comprehensive and extensive sample of
textual content, encapsulating linguistic patterns, language syntax, semantics, and contex-
tual relationships across sentences. This can act as the baseline for further enhancing the
captured knowledge of the model and sufficiently provide the building blocks for moving
into more complex downstream NLP tasks. Another crucial factor for the decision of the
previously mentioned datasets was the alignment with the training procedure of the base-
line, in an attempt to provide a fair and meaningful comparison of achieved performances
across models.

The pre-processing steps for the task of MLM involve the aforementioned datasets, En-
glish Wikipedia and BookCorpus, therefore the first step was retrieving and concatenating
them. These are purely textual datasets, with the raw format of the text. Pre-processing
and filtering steps can typically influence the performance of the trained model, either pos-
itively or negatively. Since the focal point of our research is the application of NAS, we
aimed to mitigate any potential effects that can be introduced by third-party factors, thus it
was decided to not include pre-processing steps for filtering the dataset.

A standardized pre-processing step in terms of tokenization was followed. The textual
information was converted to tokens. A maximum length of 512 tokens was set and se-
quences longer than that were truncated and split into chunks. The default tokenizer (from
HuggingFace) parameters for padding and application of stride were used. The tokenized
dataset was also randomly shuffled at the end of its processing.

5.2.2 Datasets for Question-Answering

The Standford Question Answering Dataset (SQUAD) [15], is well known and widely used
dataset in the field of NLP. It consists of a wide and diverse collection of Wikipedia articles,
providing the necessary means to assess the ability of a language model in comprehension
of context and extraction of accurate answers. Each instance of the dataset presents a pas-
sage from the Wikipedia article (with the title of said article). This passage also referred to
as context is accompanied by a set of questions that should be answered from said passage.

For our purposes, we used SQUADv1.1 which consists of questions that have at least
one answer provided. The goal would be to provide questions spanning in complexity and
topics, for the finetuned models to be able to train on extracting the correct answer to a
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question (assuming that the appropriate context has been provided). To offer a concise and
clear depiction of the dataset’s structure, the following representation is provided:

• Context: Portion of text from a Wikipedia article, where the answer to the question
can be extracted from

• Question Answer Sets:

– Question: The question in text format

– Answers: A set containing the possible answers (minimum size 1)

– Answer Positions: A list of indices, indicating which character position, in the
context, the answer starts at

– Question ID: A unique identifier to the question

• Title: The Wikipedia article’s title

• Dataset role: which dataset portion it belongs to: [validation or training]

In regards to the SQUAD v1.1 dataset, there was no filtering step for discarding any of
the records. The provided dataset from the HuggingFace platform [40] provides the train
and validation set. After loading the two datasets, the train set was split to create the test
set, with the train set retaining 80% and the test set 20%. Next, the necessary steps were
taken for tokenization, truncation, padding, and application of stride. The first step was
tokenizing the long sequences of textual information, which provided the context, question,
and answer pairs. The text was split into smaller units, known as tokens, consisting of
typically words or subwords. We defined a maximum sentence length of 384 [7], to be able
to handle longer sequences of text, by truncating them. Stride is used to define the number
of overlapping tokens between two successive chunks of tokens, where the truncation has
been applied.

Additionally, special characters are used, [CLS] and [SEP ], to separate the context and
question in the tokenized data. This can be visualized as follows:

[CLS] question [SEP ] context [SEP ]

Information related to the starting and ending positions of the answers has also been used,
to create the proper mapping. The start indices and length of answers from the original
dataset will be used to index the respective start and end tokens encapsulating the answer.
The model will thus be tasked with predicting one start and end logit per token. These
predictions will be used to determine which tokens encapsulate the answer, within the
provided context. An example of such tokenization 3 is depicted in Figure 7.

3Based on the HuggingFace NLP course https://huggingface.co/learn/nlp-course/
chapter7/7?fw=tf
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Figure 7: Depiction of the tokenized version of SQUAD for a context, question pair. The
yellow rectangles depict the tokens representing the words of the respective part of either
the question or the context. The pair of logits below them represent the start and end logits
which are to be predicted for the individual tokens. The answer tokens are highlighted with
red rectangles, whilst the start and end tokens are also represented through the positive
logits in respective positions.

5.3 Experimental setup
The aim of the experimental setup is the validation of the objectives of the thesis, expanded
in Section 1, with consideration of the computational cost associated with them. The pro-
vided hardware (by the SURF Cooperative) specifications can be seen in Table 1.

Due to the extreme associated cost of pre-training a language model as well as the
restricted resources available (in terms of computation and time), it was rendered infeasible
to repeat experimental runs, and all of the provided results and trained models are based on
a single execution of the pipeline for three generations. Presented results, in Section 6, are
aimed towards answering the research questions and provide indications that would foster
further research and experimental runs that would solidify conclusions towards decisions
associated with the proposed methodology.

The empirical model validation is grounded on the basis of standardized methods of
training and datasets, with the usage of pre-determined metrics for comparison, such as the
F1 and EM scores on the task of question answering. Furthermore, a comparison of inter-
mediate models’ performance is achieved through a comparison of the learning curves and
achieved loss on the MLM task, on the point of reference during the training. The restric-
tive and finite budget led to the decision to allow models to be trained until a predetermined
number of epochs (rather than until convergence). In this way, we ensure equitable assess-
ment of the performance of the model and equal distribution of budget amongst them.

One of the key setup hyperparameters involved in any genetic algorithm is the definition
of the parents and offspring population. These were set intuitively and through small-scale
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Lenovo Node Type CPU SKU CPU cores
per Node Accelerator(s) DIMMs Total memory

per Node (per core)

ThinkSystem SD650-N v2

Intel Xeon Platinum 8360Y (2x)
36 Cores/Socket

2.4 GHz (Speed Select SKU)
250W

72
NVIDIA A100 (4x)

40 GiB HMB2 memory

16 x 32 GiB

3200 MHz, DDR4

512GiB
160GiB HMB2

(7.111 GiB)

Table 1: Hardware specification of a single node, available on the Snellius cluster, provided
by SURF Cooperative.

experiments and simulation runs. Due to the high expense of pre-training models, it was
evident that both populations should naturally be low in size. The parents’ population size
(µ) was set to a value of 8, whilst the offspring population (λ) was set to 12. Additionally,
it should be noted that due to the usage of Pareto fronts, these values had to be high enough
to formulate ideal unambiguous Pareto sets.

The experimental setup is split into several sections, following the pipeline of our
methodology. Descriptions and hardware utilization for each section can be seen in Ta-
ble 2. This provides in detail node utilization of each step and details for the respective
process. Each of the processes depicted in the table (aside from the population initializa-
tion) is repeated in full per generation of our pipeline. Breaking down the execution into the
outlined stages within the pipeline provided finer control over the process. Segmentation
and independent execution of the stages enabled us to assess intermediate results, allowing
flexibility towards accommodating potential errors. This in turn minimizes the risk of in-
validating the entire run, which is especially crucial in resource-intensive executions within
a resource-constrained environment such as this one.
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Process Name
Node

Utilization
Description

Initialize Population 1/4 The mutation function was used - with higher probabil-
ities of each individual mutation taking place - in order
to create diverse set of individuals stemming from the
original DistilBERT architecture

Offspring Generation 1/4 Parents are selected based on the custom NSGA-II
mating selection approach and pairs of parents are cre-
ated until a population of size λ (offspring size) is cre-
ated. These are then mutated in order to create the
offspring population

Pre-training phase 0 2/4 During this process of pre-training the individuals,
only the newly initialized modules in the models retain
unfrozen weights and undergo training for 4 epochs on
the task of MLM.

Models Cutoff 1/4 Investigate the learning curves of the pre-training
phase 0, and select half of the models with the smallest
loss which should continue onto pre-training phase 1.

Pre-training phase 1 2/4 The selected models have all of their weights unfrozen
and continue training for 8 epochs on the task of MLM.

Finetune 2/4 The selected models undergo finetuning on the task of
question answering, consisting of 3 epochs.

Evaluate 1/4 The selected models are evaluated on the task of ques-
tion answering and recorded metrics of F1 and EM are
saved.

Next Generation

Selection
1/4 Using plus-selection process, the best candidates out

of the population are selected to form the next genera-
tion parents population of size µ.

Table 2: Outline of the experimental steps which are repeated throughout our experimental
execution. The first column presents the name of the process, followed on the next column
by the node utilization used to run the respective step. Detailed description of individual
nodes can be seen in Table 1. The third and last column provides a description of the
process with associated details if applicable.
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6 Results
This section provides the collected data from the pipeline execution and supplementary
experiments. The experimental analysis is presented in three distinct key areas of investi-
gation, namely Pareto front investigation, Multi-fidelity optimization and Cutoff criterion.
These will be expanded upon in the subsections to follow.

6.1 Pareto front investigation
The generation of Pareto fronts involves an iterative and repeating process. A candidate
solution dominates another if it is at least as good as any other solution in the pool in all
objectives and strictly better in at least one objective. The identification of non-dominated
solutions categorizes them in the current Pareto front ranking. These solutions are then
excluded from the set, and the process is repeated until no candidate solutions remain.
Higher-numbered Pareto fronts (see Figure 8) are less significant, as they are dominated by
candidates from lower-numbered fronts.

Figure 8 illustrates the plotted Pareto fronts across the three generations. The type of
population is represented by different shapes, with offspring candidates denoted by squares
and the parent population by circles. Coloration is employed to distinguish the Pareto front
rankings for each candidate. Analysis of the progress across generations indicates little im-
provement, as evident by the predominant selection of candidates for the next generation
from the set of parents. Additionally, it should be stated that the original model of Distil-
BERT has not been outperformed, with our best model achieving comparable performance.
However, the diverse set of data points in the Pareto fronts indicates effective exploration,
which is crucial for capturing the different trade-offs between the typically conflicting ob-
jectives that are under investigation. This, coupled with the earlier statement, reinforces
the need for plus-selection for selecting the next generation of parents. Lack of inclusion
of the parents in the candidate pool would amount to the loss of good genetic material and
loss of progress across generations.

The lack of improvement may stem from the relatively low number of explored config-
urations both within generations and across the whole execution of the pipeline. Another
factor hindering the improvement could be the predetermined allocation of budget, which
is uniform across all candidates and defined by the number of epochs of pre-training. More-
over, the absence of convergence as depicted in Figure 9 may affect the proper exploration
of potentially promising candidates, since the possibility of their selection for future gen-
erations is limited.

Our limited generation of models is emphasized when considering the findings of the
authors of [37], where exploration was extended to more than 750 candidates; where we
were able to only explore dozens of candidates within our compute budget. This highlights
the necessity of seeking strategies to expand population pool sizes. Such a strategy could be
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the utilization of learning curve [23] analysis, which would allow for effective allocation
of resources to more promising candidates, thus ensuring full convergence of a smaller
portion of models.

6.2 Multi-fidelity optimization
Figure 9 presents the offspring population of the third and last generation. In order to as-
sess the effectiveness of our decision to employ model training cutoff, we proceed to fully
train all of the models of the last generation to retrieve the final performance of all of the
offspring candidates. The offspring population underwent training through both phases of
pre-training as well as finetuning on the downstream task. Two models that experienced
exploding gradients have been excluded from the figure. The examination of the MLM
loss learning curves provides insights into the effectiveness of the cutoff criterion between
the two training phases and raises the question of whether a multi-fidelity optimization
approach, particularly on an epoch level, would be a valuable strategy for further explo-
ration. The analysis of the learning curves reveals that the majority of the selected models
(depicted by solid lines) maintain their dominance even after the cutoff criterion at around
18 000 steps. Notably, candidate model 0 which was the worst performer at our cutoff point
managed to outperform a significant number of models, including two of the initially se-
lected models that performed less effectively. However, it is important to highlight that
despite this improvement, model 0 does not manage to achieve performance comparable to
the best-performing models. This data suggests the potential merit of conducting a learning
curve analysis on LLMs. This can potentially allow the exploration of more models, lever-
aging selection mechanisms such as hyperband [41], thereby enhancing the exploration of
the search space.

6.3 Cutoff criterion
To conduct a more thorough evaluation of the effectiveness of our cutoff criterion, we in-
vestigate the correlation between the MLM loss during pre-training and the performance
on the downstream task. We record the pre-training loss on the task of MLM at the cut-
off point (between the two phases of pre-training) and the final pre-training loss of our
offspring models in the last generation. We then plot them against the performance on
the downstream task of question answering. The rationale for monitoring and recording
the pre-training loss both during and after training, while also examining its correlation
with downstream task performance, stems from the lack of insights into the ultimate model
performance throughout the training process. Observing Figure 10 provides empirical in-
dications that the loss during pre-training can be an effective cutoff criterion for model
selection. The presented correlation for the final pre-training loss and the cut-off point pre-
training loss in regard to the downstream task performance score is −0.771 and −0.789,
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respectively. These results demonstrate a strong correlation, affirming the relevance of
the pre-training metric score as an indicator of our downstream task performance. This is
crucial because, during the training phase of the model, we lack knowledge of its future
performance on the downstream task, which should be optimized. Establishing an effective
stopping criterion is necessary for optimizing the allocation of available resources to the
more promising candidates.
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Figure 8: Pareto fronts were formulated for the primary objective of the downstream task
of question answering (average of F1 and Exact Match scores), and the secondary objective
of the ratio of the original model size to the candidate model size. Higher numbered Pareto
front ranking indicates models of less significance since they are dominated by the models
in lower numbered Pareto fronts. Pareto front rankings are indicated by coloration choices
specified in the legends, while population type is depicted by the shape of the data point.
Circles represent candidates in the parent population, while squares depict the parents.
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Figure 9: Masked language modeling task loss captured during the two phases of pre-
training for the offspring population of generation 3. The solid lines represent the selected
models that have moved to pre-training phase 1, whilst the dotted lines represent the mod-
els that were otherwise cut off.
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Figure 10: Presenting the correlation between the retrieved loss during the pre-training
phase, and the downstream task performance score (post pre-training). The blue dots rep-
resent the final pre-training masked language modeling loss, whilst the red dots depict this
loss at the cutoff point.

32



7 Limitations and Future work
A clear drawback of this current project is the lack of extensive execution of the program.
The restricted number of generations of EA, stemming from the limitation of resource and
time acquisition, is not sufficient to reach convergence of the search procedure. We highly
encourage the continuation of the execution of the pipeline to reach convergence or possi-
bly better-resulting models. However, before committing additional resources, we should
first explore further avenues for enhancing the training efficiency of the pipeline, partic-
ularly focusing on the pre-training component. While there is an abundance of research
dedicated to parameter-efficient fine-tuning techniques [42], there are limited insights on
how to enhance the efficiency of the pre-training phase. It would be worthwhile to investi-
gate further methodologies that leverage the retained weights of the unaffected layers in the
model. This can potentially enable us to expedite the pre-training process, thus allowing a
more extensive exploration of the search space without increasing the resource expenditure.

The current implementation of the pipeline explores the optimization of two objective
metrics, i.e. the performance on the downstream task and the model size. However, there
are a multitude of performance indicators, and their careful assessment should highlight
their respective importance according to our task at hand. The Pareto front optimization
for a multi-objective setting allows for the potential addition of more objectives such as
inference time, energy consumption, memory usage, and so on. The exploration of more
downstream tasks will also have a positive impact and indicate the generalizability of can-
didate models but a selection of a proxy task should be in place to avoid increasing the
dimensionality of our objective space unnecessarily.

Our experiments indicate that utilizing the pre-training loss as a termination criterion
during the training process is a viable path. The strong correlation with the final perfor-
mance on the downstream task, which is our objective of interest, highlights its potential to
act as a performance indicator during the training procedure (see Figure 10). A pivotal de-
cision for our research was to utilize learning curves for the early cutting of models which
depicted less potential. This was necessary in order to minimize the computational for
the pre-training phase of the models, and our insights suggest that learning curve analysis
on language models is worth investigating. Further research on multi-fidelity optimization
techniques (on an epoch level), such as hyperband [41], is highly recommended since it
holds the potential for more efficient resource allocation. This can result in the generation
of more models per generation, thus expanding the explored search space.

Due to the high associated cost of the pre-training phase, another training technique
that would be worth investigating would be the application of knowledge distillation [28].
The usage of a pre-trained (typically bigger) model, as the teacher, might aid the student
model (our retrieved models) to achieve possibly a higher performance score whilst poten-
tially utilizing fewer resources. Therefore investigation and comparison of self-training and
knowledge distillation, for both pre-training and finetuning on the downstream task would
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be beneficial.
Another point worth exploring in our proposed pipeline is the possible addition of a

crossover function. Typically, in an evolutionary algorithm, we induce exploration through
the crossover of the selected parents of the pair, whilst the mutation function provides
exploitation capabilities. Both are very important for the efficient identification of a good
candidate, however, the complexity of NNs renders the implementation of the crossover
function more difficult. In this work, the balance between exploration and exploitation
is provided through the mutation function in combination with the selection mechanism
which favors diversity but the effective addition of the crossover would be highly beneficial.
Undoubtedly, many considerations need to be in place, that would allow the application of
crossover without further increasing the need for pre-training.

Our research focused exclusively on the extraction of the answer, assuming that the
model has been provided the correct context. However, it cannot be guaranteed that knowl-
edge is neither universal nor static across time. Investigation of the application of NAS
on a model responsible for the retrieval part of the context would be interesting research.
This can potentially lead to the creation of a generative model augmented by the retrieval
of information, both of which have been optimized through NAS. This could also highlight
the respective importance of the extractive, generative, and retrieval parts which are applied
towards answering a given question.

Further research could explore alternative options for the NAS methodology. An area
that would be beneficial to investigate is the usage of a dynamic mutation probability. In
theory, this should provide the possibility of an adapting mutation rate through the progres-
sion of the execution. This will ultimately allow the algorithm to respond to changes in the
optimization landscape or the population’s characteristics. This provides a seamless switch
between exploration and exploitation, with the prospect of leading to better convergence
and solution quality. The associated limitation is the increased associated complexity in-
troduced by the requirement of tuning and the necessary consideration for the respective
adaptations.

Finally, we believe that subsequent research efforts should prioritize the extension of
these findings to encompass larger language models and a broader array of downstream
tasks, thereby enhancing the generalizability of the insights.

8 Conclusion
In this work, we have performed a neural architecture search towards DistilBERT, rang-
ing over 6 500 GPU-hours on NVIDIA A100 GPUs with 40GBs of VRAM. We propose a
novel hierarchical search space to adapt the backbone of the transformer encoder. This is
accompanied by the integration of a segmented NSGA-II-based pipeline, serving as our ex-
ploration strategy. In contrast to traditional holistic pipelines, this segmentation facilitates
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individualized analysis and improvement of its components, thus enhancing the optimiza-
tion process. We indicate components of the pipeline that are important to undergo further
investigation, where dedicated efforts towards their optimization will potentially improve
the retrieved results and resource expenditure.

Our findings highlight a compelling correlation between the performance metric in the
pre-training phase and the downstream task. Additionally, there are indications of the ap-
plicability of learning curve analysis for language models, and consequently potential ef-
fectiveness of a multi-fidelity optimization approach on an epoch level. We emphasize the
importance of conducting further empirical investigations to strengthen these observations.
Analysis of multiple downstream tasks will aid the generalization of our insights, whilst
investigation of larger language models is also paramount towards ensuring potential scal-
ing of conclusions to LLMs. Based on the above, we conclude that the application of
NAS, in a resource-constrained environment, can possibly aid the identification of better
transformer-based language models, but it is deemed necessary to allocate resource and re-
search efforts toward optimizing parts of the pipeline prior to further execution (especially
on large language models).
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Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M.
Rush. Transformers: State-of-the-art natural language processing. In Proceedings
of the Conference on Empirical Methods in Natural Language Processing: System
Demonstrations, EMNLP, pages 38–45, 2020.



[8] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. Automated Machine Learning:
Methods, Systems, Challenges. Springer International Publishing, 2019.

[9] Colin White, Mahmoud Safari, Rhea Sukthanker, Binxin Ru, Thomas Elsken, Arber
Zela, Debadeepta Dey, and Frank Hutter. Neural architecture search: Insights from
1000 papers. Computing Research Repository, CoRR, abs/2301.08727, 2023.

[10] Alexander Tornede, Difan Deng, Theresa Eimer, Joseph Giovanelli, Aditya Mo-
han, Tim Ruhkopf, Sarah Segel, Daphne Theodorakopoulos, Tanja Tornede, Henning
Wachsmuth, and Marius Lindauer. AutoML in the age of large language models:
Current challenges, future opportunities and risks. Computing Research Repository,
CoRR, abs/2306.08107, 2023.
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