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Abstract

As companies transition to automate extracting information from texts, Named Entity
Recognition (NER) has become progressively more important. With the rise of Large Language
Models, NER is becoming more accessible than ever. However, only some companies have
the resources to acquire the best models. This thesis explores the effectiveness of smaller,
open-source Large Language Models (LLMs) in Named Entity Recognition (NER) tasks,
particularly focusing on cross-domain and business-specific applications. This research evaluates
the performance of several smaller, open-source LL.Ms, OpenLLLaMA 3b, Dolly-v2-3b, Falcon-
rw-1b, and the closed-source PaLM model. This is done by conducting experiments on
cross-domain and business-specific NER datasets. We calculate the accuracy and F1 score
to determine which model performs the best in the cross-domain NER experiment. We use
humans to evaluate the models responses for the business specific NER experiment. Here we
use the ICC score to determine how reliable the responses are. The study aims to identify
which models offer the best performance in these domains and assess their practicality for
organizations with limited resources.
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1 Introduction

1.1 Background

At the present day, many technological fields are growing and expanding rapidly [I]. One of the
technological fields that is also growing, is Natural Language Processing (NLP) [2]. One of the
critical tasks in the field of NLP is called information extraction. This task is aimed at automatically
retrieving structured information from unstructured plain text [3]. Information extraction is applied
in many different sectors such as customer relations, healthcare and legal document analysis [1]. It
enables organizations to efficiently manage and analyze large amount of data. This information
can then be used to do various things, such as to make informed decisions and operate more efficiently.

A crucial task within the field of Information Extraction is Named Entity Recognition (NER). This
task is aimed at identifying named entities such as a person, organization, locations, time, etc [5]
and classifying them. NER is a crucial task for extracting valuable and actionable information from
raw unstructured text. However, there are still many challenges that need to be solved in NER.
One of such complexities is the need to accurately classify entities across different contexts and
domains [6]. An example of such a problem is when we want to classify the word ” Apple”, this can
either be referring to the fruit or the tech company. Traditional NER systems struggle with such
ambiguity and they struggle even more when they are applied to new domains which they were
never specifically trained for [6]. This makes traditional NER systems less diverse and not scalable.

This field has made advancements over the recent years, partially due to the rapid growth of Large
Language Models (LLMs) [7]. Some LLMs have showcased how good and efficient they are at NLP
specific tasks and how generalizable they are over many domains [7] [3].

Even with LLMs achieving promising results with many NLP tasks, LLMs are still challenged by
NER tasks. LLMs can struggle with accurately labeling entities in complex and ambiguous sentences
[9]. This problem is then extended when LLMs are tasked to perform cross-domain NER on such
sentences. Instead of building and training completely new models, using pre-trained open-sourced
LLMs which already have some sense of contextual understanding could save costs in terms of
money and time.

This thesis explores how well open-sourced Large Language Models perform in cross-domain and
business specific NER tasks.

1.2 Problem Formulation

This thesis aims to answer two key research questions:
RQ1: Which (smaller size) open-sourced LLM performs the best in cross-domain NER.
RQ2: Which (smaller size) open-sourced LLM performs the best in the business domain NER.

Cross-domain NER tasks are one of the most challenging tasks in the realm of NLP [10]. Many
factors such as terminologies, abbreviations and context can vary across different domains, making



it hard to perform NER. Answering the question of which (smaller size) open-source LLM performs
the best in cross-domain NER could lead to understanding more about how adaptable, efficient,
and scalable these (smaller size) open-source LLMs are for the NER task. Knowing which model
performs the best in cross-domain NER has possible real-world applications. For example, companies
that have customer support can apply this LLM to their cross-domain NER task. More specifically
this (smaller size) open-source LLM can be used in companies that do not have enough resources
to acquire larger and more powerful models.

Extending our research to the business specific domain is important because of the wide range of
applications it might cover. This includes finance, customer relation management, marketing and
certain legal documentation. Instead of finding a LLM that performs best in cross-domain NER, we
can find a LLM that performs the best in business specific NER. The applications stay the same
but instead of using the LLM on different domains, this LLM is specifically good at business topics.

Not all companies have the resources to use larger and more expensive LLMs for their NER tasks.
These companies might also not have sufficient computing power and memory needed to run these
larger models. That is why, in this thesis we also want to focus specifically on smaller LLMs,
which require less computing power and memory, to help understand how well these (smaller size)
open-source LLMs perform in NER.

To answer the first question, we will conduct a few cross-domain NER experiments on three
open-source LLMs, OpenLLaMA 3b, Dolly-v2-3b and Falcon-rw-1b. We will also perform these
experiments on one other model which is not open-sourced, the PaLLM model. To see which model
performs the best, we calculate the accuracy and F1 score. To answer the second question, we will
perform the tests on business specific data. We will then evaluate these models with human ratings,
using the Intraclass Correlation Coefficient to evaluate their reliability.

2 Definitions

To better understand some terminology of this bachelor thesis, an overview of definitions will be
made. These definitions will explain the concepts of some terminology used and in some cases also
examples of how such technology will work.

2.1 Natural Language Processing

”Natural Language Processing (NLP) is the computerized approach to analyzing text that is
based on both a set of theories and a set of technologies” [11]. Essentially, NLP helps computers
communicate with humans in their own language. NLP makes it possible for computers to read
text, interpret it, measure sentiment and identify what part of the sentence is important. It is
possible to perform NLP operations on texts to complete certain tasks, one of these being Named
Entity Recognition (NER) [12].

It is possible to break NLP down into two main components, Natural Language Understand and
Natural Language Generation, respectively NLU and NLG for short [13]. NLG is the process



of generating things like sentences and paragraphs that are meaningful from an internal repre-
sentation. NLU, as the name suggests, is the component that allows machines to understand
natural language and analyze it by extracting entities, emotions, and keywords from the given
text. Furthermore, this research will be focusing slightly more on this specific component of NLP [13].

2.2 Information Extraction

Information Extraction is defined as ”IE systems analyze unrestricted text in order to extract
specific types of information” by [14]. The subfield of artificial intelligence that focuses on the
process of automatically retrieving structured information and specific entities from text data
is called Information Extraction. This transformative technology turns unstructured text into
meaningful information by applying computational techniques. The primary goal of information
extraction is to facilitate computers to process human (natural) language and convert it into an
organized format to be easily visualized and analyzed. To properly extract the correct information
from a document, the computer must be able to identify keywords. Therefore this task, labeled
Named Entity Recognition (NER), plays a major role in Information Extraction.

2.3 Named Entity Recognition (NER)

Named Entity Recognition (NER) is the part of IE that focuses on identifying and classifying
named entities within a text. NER is a NLP task that tries to identify important parts of a natural
language text and these are called entities [5]. These entities are pre-defined categories and can
include people, organizations, locations and other such values. In short, the task of NER is to
identify and classify entities within the text for applications such as summarization and question
answering.

As an example, we can use paragraph p and the task of NER is to identify and classify entities ey,
e, e3... within the text. For a practical example, we can assume paragraph p ”Obama walks into
the White House”, with ”Obama” and ”White House” as entities e; and e;. These entities are then
labeled as 'person’ and ’location’, respectively [5].

2.4 Large Language Models (LLMs)

A Large Language Model is an advanced Artificial Intelligence (Al) that is capable of processing
and generating natural language [15]. Such models are particularly good in handling NLP tasks
and bare promising advancements for the future of NLP. A LLM can be trained to be effective in a
broad range of tasks or a specific task. Although there are mainly three main schools of AI Narrow
Artificial Intelligence (ANI), General Artificial Intelligence (AGI), and Superintelligent Artificial
Intelligence (ASI), the main AI that has been developed and that we come across in our daily lives,
such as ChatGPT, is classified as ANI. These machines are set to specific tasks and have limited
abilities to understand and learn any intellectual task that a human can perform [10].



The size of a LLM is often measured by how many parameters a LLM has. In [17] parameters are
defined as " Parameters are the numerical values that an LLM learns during training, that it adjusts
to understand language.”. Size or amount of parameters is often a big factor in how well LLMs
perform in certain tasks [18]. Having more parameters and thus being larger has benefits. "It allows
them to capture more complex language relationships and handle nuanced prompts.” as cited in
[17]. Additionally, size is not the only thing that is important in a model’s performance. Factors
such as architecture [19], pre-training data [20] and token count [21] play a role in the model’s
performance.

3 Related Work

3.1 Information Extraction

In the field of LLMs and Information Extraction (IE), some research has been done. [3] has con-
ducted a survey that provides a comprehensive exploration of LLMs for IE, categorizing different
works based on various IE subtasks and learning paradigms. The writer breaks generative IE
down into three sub tasks/types of IE and those are Named Entity Recognition (NER), Relation
Extraction (RE) and Event Extraction (EE).

The paper suggests [3] that multiple studies have pointed researchers in the direction of LLMs
for NER tasks. Several studies have proposed methods using LLMs as an approach to NER tasks,
such as GPT-NER, Uni-NER and PromptNER. The research mentioned in this paper suggests
that LLMs have shown potential to enhance zero-shot NER performance through fine-tuning and
training-free self-improving frameworks.

3.1.1 Relation Extraction (RE)

RE is the task of identifying relationships between entities in natural language texts. This paper
[3] mentions different approaches such as QA4RE and GPT-RE to address the poor performance
of LLMs on RE tasks. QA4RE introduces a framework that enhances an LLM’s performance by
aligning RE tasks with question-answering tasks. GPT-RE incorporates task-aware representations
and enriching demonstrations with reasoning logic, to improve the low relevance between entity
and relation.

3.1.2 Event Extraction (EE)

EE focuses on the task of extracting events from a natural language text. This paper [3] mentions
other proposed methods such as, BART-Gen, Text2Event, and Code4Struct as LLM-based methods
to improve EE. The paper [3] collected experimental results from recent studies concerning LLM
based EE. The results show that the number of methods using LLMs for either zero-shot or
few-shot learning is still small. The results also indicate that generative methods significantly
surpass discriminative approaches, particularly in Argument Classification metrics, further showing



the possible implications of generative LLMs for EE.

3.1.3 Universal Information Extraction (UIE)

This paper [3] also showcases Universal Information Extraction which aims to handle various and
diverse IE tasks and domains using a unified framework, either based on natural language-based
LLMs (NL-LLMs) or code-based LLMs (code-LLMs). This paper mentions previous works such as
InstructUIE, and GoLLIE which explore the use of NL-LLMs and Code-LLLMs to model multiple
IE tasks effectively.

3.2 Generative Information Extraction

The paper of [3] categorizes methods based on their learning paradigms such as, supervised
fine-tuning, few-shot, zero-shot and data augmentation to highlight the different commonly used
approaches for adapting LLMs to IE.

3.2.1 Zero-shot Learning

Zero-shot learning is a method of training LLMs to generalize to unseen tasks without any
explicit training examples for specific IE tasks. In certain scenarios, zero-shot learning can leverage
similarities with common cases to generate informed predictions or analyze customer reviews for
new products [22].

Additionally, it enhances recommender systems by suggesting items that users have not previously
encountered, based on their preferences, even for objects that have not been seen before [22].
Zero-shot learning faces significant challenges in ensuring the capacity to generalize effectively
across untrained tasks and domains. Due to the large amount of knowledge embedded within, LLMs
show impressive abilities in zero-shot environments [3].

3.2.2 Few-shot learning

Few-shot learning is a type of system that is commonly used in areas where there is very limited
labeled training data available [3]. Unlike, zero-shot learning, few-shot learning uses a small number
of examples per class to generalize to new, similar tasks. This method tries to train LLMs to
generalize for tasks and domains they have not been exposed to. This paper [3] states that because of
the very limited labeled training data, leads to challenges like overfitting and difficulty in capturing
complex relationships. This paper states that LLMs with increased parameters tend to show more
impressive generalization capabilities in few-shot learning environments.

3.2.3 Supervised Fine-Tuning (SFT)

Supervised fine-tuning is a common method for training LLMs on IE tasks using labeled data.
It works by inputting all training data to fine-tune the LLM, this allows the model to capture



the patterns in the data and also allows it to generalize well to unseen IE tasks. The survey also
mentions Deepstruct, UniNER and GIELLM as supervised fine-tuning methods [3].

The method of supervised fine-tuning offers benefits such as high accuracy and task-specific opti-
mization [23]. The explanation given by [23] clearly explains why SFT yields such high accuracy,
"By exposing the LLM to labeled data, the model learns to make more accurate predictions by
aligning its outputs with the desired labels”. This makes it easier to train models for specific tasks,
making them specialist in certain tasks. By learning from specific data, the models can be tailored
to achieve high accuracy in specific tasks.

However, because it learns so well from labeled data, there are certain drawbacks of SF'T. SF'T
is very dependent on high-quality data because it runs the risk of learning from biased data,
which will let the model suffer from bias [24]. Additionally, using SFT can make a model bad
at generalizing. Learning from specific datasets makes the models good at specific tasks but this
prevents the models from being generalized to unseen data outside the scope of the training data [24].

3.2.4 Data Augmentation

”Data augmentation involves generating meaningful and diverse data to effectively enhance the
training examples or information, while avoiding the introduction of unrealistic, misleading, and
offset patterns” [3]. This paper divides data augmentation into three strategies, Data Annotation,
Knowledge Retrieval, Inverse Generation.

Data Annotation is the strategy that directly generates labeled data using LLMs [3]. Research
that is referenced in this survey proposes a method called LLMaAA to improve accuracy and
data efficiency. Another method referenced in this paper, called AugURE enhances the diversity of
positive pairs for unsupervised RE, and introduces margin loss for sentence pairs.

Knowledge retrieval strategies enhance IE by utilizing LLMs for retrieving relevant information,
similar to retrieval-augmented generation (RAG) [25]. PGIM [26] employs ChatGPT for efficient
entity prediction, while [27] uses synthetic context retrieval datasets for NER on long documents.

Inverse Generation is the strategy that prompts LLMs to generate natural text or questions based
on provided data. Research in this survey [28] demonstrates that with SynthIE, LLMs can produce
high-quality synthetic data for complex tasks by inverting the task directions. Another research
[29] suggests that STAR generates structures from valid triggers and arguments, then generates
passages with LLMs [3].

The survey [3] states that each strategy has its pros and cons. Data Annotation can directly meet
task requirements but the ability of LLMs for structured generation needs improvements. Knowledge
Retrieval provides additional information but it may hallucinate and introduce noise problems.
Inverse Generation is aligned with the question-answer paradigm of LLMs but requires structural
data.



3.3 Named Entity Recognition
3.3.1 Prompt Learning with Type Related features

There have been multiple researches done to look into the added value of LLMs on NER tasks.
A research [30] conducted has explored a framework named PLTR that aims to address some
challenges in few-shot NER. PLTR is short for Prompt Learning with Type-Related features (PLTR)
and it can automatically extract entity type-related features (TRF's) to identify useful knowledge
in the source domain and enhance knowledge transfer. This proposed framework aims to bridge the
gap between training data and out-of-domain (OOD) data. Furthermore, to enhance the model’s
ability to capture important knowledge from the source domain, PLTR identifies tokens that are
closely associated with specific entity types. This significantly improves the model’s generalization
to unseen domains. This unique approach and advancements allow these researchers to obtain an
improved NER performance, allowing models to generalize effectively to new unseen domains with
limited labeled examples.

This method [30] was experimented with in both in-domain and cross-domain settings. The experi-
ments demonstrate the effectiveness of the PLTR framework by surpassing SOTA methods, showing
significant advancements in few-shot NER performance. The model’s capability to accurately
recognize named entities across various domains was severely improved. The key contributor to
enhancing the model’s generalization and NER performance is the incorporation of TRFs and the
generation of prompts based on these features.

This paper [30] shows how the PLTR framework offers a promising solution to the challenges faced
in few-shot cross-domain NER. It showcases a practical approach to improving model adaptability
and performance across various domains. It showcases how NER performance can be enhanced
even in an environment with limited labeled examples.

3.3.2 GPT-NER approach

Earlier, there was a method mentioned in [12] called GPT-NER, which was used in few-shot and
zero-shot NER tasks. This method introduces a new perspective to the topic of using LLMs for
NER tasks. This paper addresses how it is possible to harness the huge potential of LLMs for NER
tasks. The researchers of this method pointed out that there was a large difference in how the two
systems functioned [9]. Since LLMs widely focus on text generation and not sequence labeling tasks
such as NER, LLMs still sometimes find it challenging to successfully perform NER tasks. This
paper addresses how it is possible to harness the huge potential of LLMs for NER tasks.

The researchers propose a method called GPT-NER to bridge the gap between the two different
tasks. They created a prompt that would transform the sequence labeling task of a NER task
to a generation task that an LLM could easily adapt [9]. They first start out with a task de-
scription to formally introduce the LLM to the task at hand. After that, in the case of few-shot
demonstrations, they exposed the LLM to some examples of how they wanted their output to
be. In the end, they asked the LLM to perform a NER task of a sentence. In figure 1 we can see
an example of how they introduced the LLM to the examples in the case of few-shot demonstrations.



Input: [Example Sentence],
Output: [Labeled Sentence];

Input: [Example Sentence];,
Output: [Labeled Sentence],,

where k£ denotes the number of demonstrations.

Figure 1: Example Few-Shot Demonstrations GPT-NER

In figure 2 we can see how they constructed the entire prompt that they fed into the LLM to
perform the NER task using the GPT-NER method. As seen in the examples they demonstrated
to the LLM, GPT-NER uses the method of marking the entity with special tokens. They used
@@ and ## to mark specific entities mentioned in the task description, like the location entities
showcased in figure 2, QQentity#+.

l I am an excelent linquist. The task is to label location entities in the given sentence. Below are some examples Task Description

Input: Only France and Britain backed Fischler 's proposal .
Output: Only @@France## and @@Britain## backed Fischler's proposal .

Input: Germany imported 47,600 sheep from Britain last year, nearly half of total imports .
Output: @@Germany## imported 47,600 sheep from @@Britain## last year, nearly half of total imports .

Input: It broughtin 4275 tonnes of British mutton . some 10 percent of overall imports .
Qutput: It broughtin 4275 tonnes of British mutton . some 10 percent of overall imports .

Input: China says Taiwan spoils atmosphere for talks .

Qutput: @@China## says @@Taiwan## spoils atmosphere for talks . Input Sentence

Figure 2: Example Input Sentence GPT-NER

Additionally, this paper also proposes a new strategy to combat the overconfidence and the com-
mon hallucination problem of LLMs. They propose a self-verification strategy in the form of a
self-verifying prompt. They apply this strategy in the same form as the few-shot demonstrations
showcased in figure 2, task description, few-shot demonstrations and input sentence . As shown
in figure 3, they use few-shot demonstrations to boost the accuracy of the self-verifier but in this
few-shot demonstration, each demonstration consists of three sentences [9].

They conducted experiments on both flat and nested NER datasets, and achieved comparable
performances to fully supervised baselines. They concluded the paper by also stating that GPT-NER
has a "remarkable ability in the low-resource scenario” [9]. The results of GPT-NER are better than
that of a supervised model when when there is a very limited amount of training data available.



(1) “The input sentence: Only France and Britain
backed Fischler’s proposal”,

(2) “Is the word "France" in the input sentence a
location entity? Please answer with yes or no”.

(3) Yes.

Figure 3: Example Few-Shot Demonstration Self-Verifier GPT-NER

3.4 Human Evaluation

There is a statistical measure that is used in the human evaluation of the models. The Intraclass
Correlation Coefficient (ICC), is used to assess the reliability of measurements made by different
raters for continuous data, similar to the Cohen’s Kappa Score. Reliability is defined as ”consistency
or stability of a measurement”[31]. There are 10 different forms of ICCs [32] and each form considers
different situations. According to the McGraw and Wong (1996) Convention, there are certain
criteria for determining which form of ICC is needed in an experiment.

The three factors are model, type of relationship and unit [33]. The factor "model”, consists of
determining how the group is chosen and what kind of group it is. The factor "type of relationship”,
focuses on the ratings of the raters. Lastly, the factor "unit”, focuses on how many raters’ ratings
we are interested in.

4 Methods

To answer the research questions, we will perform cross-domain and business specific NER on 4
LLMs. These models are three open-source models, OpenLLaMA 3b!, Falcon-rw-1b? and Dolly-v2-
3b3. The other model which is closed-source, is the PaLM model. The aim of using these models
is to evaluate how well open-sourced models perform in cross-domain and business specific NER
compared to closed-sourced models, such as PalLM.

4.1 Model Selection and Justification

Since we needed to test four LLMs in this research, the Kaggle environment was used, to utilize the
Python language. Kaggle allows its users to make use of an accelerator called GPU T4 x 2. This
allows us to run the models and perform the experiments with increased speeds [34]. To conduct
the experiments, the spaCy Large Language Model package* was used, due to the integration of
LLMs into spaCy, turning unstructured responses into robust outputs for various NLP tasks, with
no training data required. Using this package with the supported LLMs made the experiments
a leveled playing field, making it easier to spot which LLM performs better than the other in a
zero-shot learning environment. The three open-sourced models, OpenLLaMA 3b Falcon-rw-1b

Lhttps : //hugging face.co/openlm — research/open;lamasb

Zhttps : | /hugging face.co/tiiuae/ falcon — rw — 1b

3https : //hugging face.co/databricks/dolly — v2 — 3b

4Documentation can be found at this web address: https://spacy.io/usage/large-language-models



and Dolly-v2-3b, were loaded from the website huggingface, where there are multiple open-sourced
models to experiment on.

These models were chosen from the list of available open-sourced models in the spaCy documenta-
tion®. Due to problems with the 7 billion parameter models being too big to run in the Kaggle
environment, the focus shifted to smaller models that could be experimented with in the Kaggle
environment. Out of the list of models to choose from, from the spaCy documentation, there were
only models with 3 billion parameters that were smaller than the 7 billion parameter models. The
Dolly and OpenLLaMA models are both 3 billion parameter models. The Falcon model with 1
billion parameters was intentionally chosen to experiment and see how much impact the size of
the model had on NER. The chosen closed-sourced model is from Google Cloud’s services, the
PaLLM model, specifically the text-bison-001 variant of the model. The reason behind this choice,
was because Google Cloud Services offered free credits when signing up that could be used to run
some of its closed-sourced models. Running this model on Google Cloud’s services allows us to use
a larger model. With this model, we can compare PaLM to how well the open-sourced LLMs perform.

In the table below, various specifications are listed for each model. The architecture of each model
is a transformer-based architecture with a decoder-only structure. One notable thing in the table is
that the PaLM model has the highest amount of parameters and layers by far. Also, no information
could be found on the amount of layers the Dolly model has.

Models Size (Parameters) Layers Pre-trained Knowledge

Open Sourced

Pre-trained on a mixture of English
Falcon-rw-1b 1 Billion 24 and multilingual text
from the RefinedWeb dataset.

Trained on the RedPajama dataset,
a large-scale collection of text data

OpenLLaMA 3b 3 Billion 26 comprising various sources,
including web pages, books, and
academic articles.

Fine-tuned from an existing open-source
language model (pythia-12b),

Dolly-v2-3b 3 Billion ) trained on a curated dataset
called ”databricks-dolly-15k”.
Closed Sourced
Pre-trained on a large-scale dataset
Pal M 3 Billion-62 Billion 118 comprising multilingual text from

various sources, including web pages, books,
Wikipedia, and code repositories.

Table 1: Table that shows the models and their specifications.

®Documentation can be found at this web address: https://spacy.io/usage/large-language-models
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To load in the models, the following pseudo code is used. We import some necessary libraries to
allow the code to work. To combat some GPU memory issues, we used certain techniques from
the CUDA memory documentation. A tokenizer is also used, which converts raw text into tokens,
which are numerical representations that the model can process. We also use a tokenizer specifically
designed for the LLaMA model.

1. Import necessary libraries.
2. Set environment variable for CUDA memory allocation
to optimize memory usage.
3. Define model options:
— Option 1: Load and configure the Dolly—v2—3b model.
— Option 2: Load and configure the Falcon model.
— Option 3: Load and configure the Open LLaMA model.
— Option 4: Load and configure the PaLM model.
6. Clear GPU memory cache to free up space.

4.2 Data Collection
4.2.1 CoNLL

There are many datasets available for cross-domain NER evaluation. Taking the availability, com-
parability and costs into consideration, the CoNLL 2003 was chosen for the cross-domain task.
The CoNLL dataset is an English dataset that focuses on four types of entities: persons, locations,
organizations and names of miscellaneous entities that do not belong to the previous three groups
[35]. The dataset consists of multiple features, there is id, tokens, pos_tags, chunk_tags and ner_tags.
For this research, we will be focusing on the id, tokens and ner_tags. The dataset contains multiple
English sentences which are marked by their ID number. These sentences are broken down into
tokens, giving each word its token and each token could be an entity. There are also ner_tags which
mark a token as being a certain entity or not. The ner_tags are noted in numbers in the following
order: ‘O’: 0, 'B-PER’: 1, 'I-PER’: 2, 'B-ORG’: 3, 'I-ORG’: 4, 'B-LOC’: 5, 'I-LOC’: 6, 'B-MISC’: 7,
'I-MISC’: 8. "Whenever two entities of type XXX are immediately next to each other, the first word
of the second entity will be tagged B-XXX to show that it starts another entity.” [35]. The models
will be examined on the test split of this specific dataset. It is also important to reduce the amount
of ambiguity in the results and to improve the model’s accuracy. It is the goal to see how well LLMs
perform in NER, that is why it was chosen to leave out examples where the miscellaneous tag was
given. Seeing as how this reduced the ambiguity for the models to understand what miscellaneous
is defined as this could lead to more accurate results. To get a better understanding of the CoNLL
dataset, an example is presented in figure 4.

Sentence 16: Italy recalled Marcello Cuttitta

NER tags: [5, @, 1, 2]

Figure 4: Example CoNLL Dataset

Here we can see that Italy is a location that consists of one token, so the assigned entity is B-LOC,
which denotes to 5 in the ner_tags. The next entity is Marcello, which is the first part of the name
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so we assign B-PER to Marcello which then denotes to 1. Cuttitta is the second part of the entity,
so we assign I-PER to Cuttitta which denotes to 2.

Sentence 3: AL-AIN , United Arab Emirates 1996-12-86

MER tags: [5, @, 5, 6, 6, 8]

Figure 5: Example CoNLL Dataset 2

In this next example, we can see that AL-AIN is a location that consists of one part, so the assigned
entity is B-LOC, which denotes to 5 in the ner_tags. The next entity is United Arab Emirates, with
the first part of this entity being United. This is assigned as B-LOC and denotes to 5. The next
two parts of this entity is Arab Emirates, which are assigned I-LOC, which then denotes to 6 in
the ner_tags.

To load the CoNLL dataset into the Kaggle environment we use the following pseudo-code and logic:

Input: CoNLL 2003 dataset , maximum number of instances
to collect max_instances = 100.

1. Load the CoNLL 2003 dataset .
2. Initialize an empty list filtered_selected_instances
to store selected instances.
3. Set the maximum number of instances to collect to max_instances.
4. For each instance in the test set of the CoNLL 2003 dataset ,
do the following:
1. Retrieve the ner_tags of the instance.
2. Check if neither 7 nor 8 is present in ner_tags.
3. If the condition is met, append the instance
to filtered_selected_instances.
4. If the number of collected instances reaches max_instances,
stop the iteration.
5. Initialize two empty lists: all_sentences and all_ner_tags.
6. For each instance in filtered_selected_instances , do the following:
1. Convert the tokens of the instance into a sentence.
2. Retrieve the ner_tags of the instance.
3. Append the sentence to all_sentences.
4. Append the ner_tags to all_ner_tags.
7. Retrieve the mapping of NER tags from the dataset’s features.
8. Initialize an empty list list_ner_tags.
9. For each NER tag number and name, append a string
representation to list_ner_tags.
0. Initialize an empty dictionary tag_dict.
1. For each item in list_ner_tags , do the following:
1. Split the item by the ’: ’ separator to extract the key and value.
2. Convert the key to an integer.
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3. Add the key—value pair to tag_dict.
2. Output all_sentences and all_ner_tags (if needed).
3. Output the tag_dict mapping NER tag numbers to their entity types.

Output: List of sentences (all_sentences), list of NER tags (all_ner_tags),
dictionary mapping NER tag numbers to their entity types (tag_dict).

In this pseudo-code, the datasets library is used to load in the CoNLL dataset. We want to collect
the number of sentences we want to use and filter out the instances with miscellaneous in the
sentence. In this code, we also add each token together to form sentences, to input into the model
for it to perform NER. We also want to store the sentences and NER tags to evaluate the model
responses later.

4.2.2 Business Specific Dataset

A possible application of NER is in articles. Specifically, the focus of this thesis is on business
related articles. The goal is to analyze how well these models perform in business specific NER.
Two articles were chosen in an attempt to reduce any outliers in the performance of these models.
These articles were chosen in the business category of the BBC website. "Instagram and Facebook
ads drive profit surge” by the BBC®, "Intel axes 15,000 jobs after sales tumble” by Nick Edser &
Natalie Sherman”’, are the articles that were chosen for the experiment.

4.3 Evaluation
4.3.1 CoNLL

Following the spaCy documentation®, it was possible to set up the config file for the NER task.
The possible labels are given to the config file under the variable "labels”. The @llm_models
and name variables can be changed to any of these options to fit the loaded model respectively:
(spacy.OpenLLaMA.v1, open_llama_3b), (spacy.Dolly.v1l, dolly-v2-3b), (spacy.PaL.M.v1, text-bison-
001) and (spacy.Falcon.v1, falcon-rw-1b). In the code provided above, the PalLM model was being
used at the time.

9999 9

config =
[nlp]

lang = "en”
pipeline = [ 1lm”]

[components |

[components . 1lm ]
factory = "1lm”

[components.llm . task]

Shttps : / Jwww.bbe.com /news/articles/cOdmel29mkdo
Thttps : | Jwww.bbe.com/news /articles/c16;3318n080
8https : //spacy.io/usage/large — language — model s#rexample — 2
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@llm _tasks = "spacy.NER.v3”
labels = ["PERSON”, "ORGANISATION” , "LOCATION" |

[components . llm . model |
@llm_models = "spacy.PaLM.v1”
name = " text—bison —001"

299999

with open(” config.cfg”, "w”) as file:
file.write(config)

To evaluate the model responses, we have to store the model responses somewhere first. With the
pseudo-code provided below, we use the spaCy NLP pipeline from the previously mentioned config
file and it iterates through a list of all the filtered sentences to identify the named entities in each
sentence. The identified entities are stored in the list ”model_answers”, and the results are printed
for convenience. If no entities are found in a sentence, a message is printed stating that there are
no entities found.

Input: NLP pipeline configuration file config.cfg,
list of sentences all_sentences.

1. Import the necessary libraries for NLP pipeline and memory management .
2. Invoke garbage collection to clear unused objects from memory.
3. Clear the GPU memory cache.
4. Attempt to load the NLP pipeline using the configuration file config.cfg.
5. if the NLP pipeline is loaded successfully
then Print ”Model loaded successfully?”
6: else Print "Error loading model” Wlth the exception details.
7: Initialize an empty list model_answers to store identified entities.
8: for each sentence in all_sentences do the follwing;
1. Process the sentence using the NLP pipeline to get doc.
2. Extract entities and their labels from doc and store them in entities.
3. Append entities to model_answers.
4. if no entities are found in entities then Print "No entities found”.
5. else Print the entities found.
15. Print the model _answers list containing all identified entities.

Output: List of identified entities (model_answers) for
each processed sentence.processing.

The following piece of code evaluates the model responses and calculates the accuracy and F1-scores.
This piece of code imports the libraries such as NumPy and f1_score from sklearn.metrics to
calculate certain operations and the F1 score. Two variables are initialized to keep track of the
correct predictions and the total predictions made by the model excluding 'O’ tags. The other
two variables y_true and y_pred are initialized to calculate the F1 score later with the f1_score library.

A loop is created that loops over the interlocked variables of three lists: all_sentences, all ner_tags
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and model_answers. In this loop, two lists are created to store token-level NER tags which can be
compared later. For the label encoding, a certain tag mapping is used [30] to later translate certain
tags to numerical values and vice versa.

To map the model output to token-level tags, we follow the following process. For each entity
detected by the model, the corresponding tokens are marked with 'B-’, for the beginning of an
entity or 'I-’) for being inside an entity. This is done depending on their position within an entity.
This piece of code also utilizes a try-except function to handle cases where the entity tokens might
not be recognizable within the tokenized sentences.

Similarly, the true NER tags are converted to token-level tags using. When these values are trans-
lated to token-level tags, these tags are then filtered to exclude 'O’ tags. This is done to later
calculate an accuracy that focuses on the true values of entities instead of focusing on when a word
is predicted as no entity is correct.

In the following step, the code calculates the number of correct predictions by comparing the two
variables, adding one increment to the variable of the correct prediction for each match. The total
number of predictions, which is stored in the variable filtered total pred is updated with the length
of filtered_expected _tags.

After the processing of all sentences is done, the code then calculates the filtered accuracy. This is
done by dividing two variables, filtered_correct_pred and filtered_total_pred.

Following the sklearn.metrics.f1_score documentation?, we process the two variables, y_true and
y_pred. The F1 score is calculated using the previously mentioned method with the macro averaging
method which weighs each class equally.

1. Import necessary libraries for numerical operations and F1 score calculation
2. Initialize counters for correct and total predictions.
3. Initialize lists for true and predicted labels.
4. For each sentence, corresponding NER tags, and model answers:
1. Extract model output and ground truth labels.
Tokenize the sentence.
Initialize lists for token—level tags with O’ (outside).
Define mappings for label encoding.
Map model output to token—level tags based on entity type and position.
Convert numerical truth labels to token—level tags.
Filter out 'O’ tags from both model and expected tags.
Calculate accuracy excluding 'O’ tags.
9. Create a reverse dictionary for tag mapping.
10. Translate tags to numbers using the reverse dictionary.
11. Append translated tags to the lists for true and predicted labels.
5. Calculate and print filtered accuracy:
1. Compute the accuracy as the ratio of correct to

00 3 O U i W I

9Documentation can be found at this web address:https://scikit-learn.org/0.15/modules/generated /sklearn.metrics.f1_score.html
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total predictions, excluding 'O’ tags.

2. Print correct predictions, total predictions, and filtered accuracy.
6. Calculate F1 score:

1. Flatten the lists of true and predicted labels into single lists.

2. Compute and print the F1 score using the flattened lists.

4.3.2 Business Specific NER

An important difference between a dataset and an article is that there are no existing ground
truths. Therefore, the evaluation of said responses will be done slightly differently. Three different
people with backgrounds in computer science and economics will rate the responses of the models
on a scale from one to five, with one being a completely wrong response and five being a perfect
identification of an entity.

The pseudo-code that is provided below, is to define the two articles so that we can process these
articles later in the notebook. What was discovered through testing, is that the ideal way to get
the models to generate entities was to loop over each sentence of the article. To split the article
into separate sentences, a small English model by spaCy was used.

Import the SpaCy library for natural language processing.

Load the SpaCy English model for sentence splitting.

Define the text of two articles.

Define a function to split an article into sentences:

1. Process the article using the SpaCy model to obtain a document object.
2. Extract sentences from the document object and

return them as a list of stripped text.

5. Use the function to split both articles into sentences and

store the results in separate lists.

=W N =

To get the model’s answers, we have to alter the code that was created for the CoNLL dataset.

To actually evaluate the model’s responses, we first create separate Excel sheets to allow the raters
to rate each model’s output without the influence of other rater’s ratings. The raters will receive an
Excel document containing the model’s responses from every article and a separate sheet where
they can note their rating. The raters will base their score on whether the model has identified
all entities in the article and if the model has mislabelled the entity or not. We will use all this
information to discuss if these models perform well on such business related articles. After collecting
the result, we enter all ratings into a single Excel sheet for an overview of all ratings for each
model. This is done to determine the reliability of measurements made by different raters in a
continuous data setting. To determine which form of ICC is needed for this experiment, the three
factors of ICC must be concluded. Looking at the factor of "model”, we select the " T'wo-way mixed
effects model”. We are interested in these three people, who specifically have expertise in computer

science and economics, to rate the outcomes of the four models [33]. Furthermore, looking at the
factor "type of relationship”, we select the ” Absolute agreement model”. This is because we are
interested in whether the judges rate similar subjects low and high [33]. Lastly, for the factor
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“unit”, we select the "Mean of raters model” because we do not want to use the ratings one a
singular rater as the basis for measurement [33]. In the paper of [32], figure 1 depicts ”A flowchart
showing the selection process of the ICC form based on the experimental design of a reliability
study”. Following this chart, which is depicted below in figure 6, the outcome of the form that is
necessary for this experiment is a ”Two-way mixed effects, consistency, mean of raters” ICC. This
form of ICC is commonly denoted as ICC(3,k) following the Shrout and Fleiss (1979) Convention [32].

Inter-rater

reliability

Teslt-retest/
Intra-rater reliability

Same set
of raters

Model

Based on single Based on mean of
measurement multiple measurements
1

l
- )

i

Based on mean

single rater of multiple raters

Absolute
agreement

~ Consistency

Definition m

Figure 6: Figure 1 of the paper [32], depicts a flowchart to select the appropriate form of ICC.

To calculate the ICC, we follow the code that is presented in this article [37]. After inputting the
correct data and formatting it to our data, we look at the results of the ICC(3,k), seeing as this is
the form of ICC that was chosen for this experiment.
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5 Experiments

5.1 CoNLL
5.1.1 CoNLL (Sampled 100) Results

English CoNLL2003 (Sampled 100)

Model Accuracy F1
Falcon-rw-1b 2.13 1.57
OpenLLaMA 3b 13.07 8.46
Dolly-v2-3b 6.38 11.65
PaLM 73.25 43.97

Table 2: Results of sampled 100 pieces of data for CoNLL2003 dataset.

Table 2 shows the results for the partially sampled CoNLL test set. 100 samples were used to save
computation power and time. The Falcon-rw-1b model scores an accuracy of 2.13 and a F1 score of
1.57. The OpenLLaMA 3b scores an accuracy of 13.07 and a F1 score of 8.46. The Dolly-v2-3b.
model scores an accuracy of 6.38 and a F1 score of 11.65. The PaLM model scored an accuracy of
73.25 and a F1 score of 43.97.

5.1.2 CoNLL (Sampled 1000) Results

English CoNLL2003 (Sampled 1000)

Model Accuracy F1
Falcon-rw-1b 2.78 4.15
OpenLLaMA 3b 8.35 10.70
Dolly-v2-3b 6.62 9.70
PaLM" 58.86 57.15

Table 3: Results of sampled 1000 pieces of data for CoNLL2003 dataset.

Table 3 shows the results for the partially sampled CoNLL test set. The Falcon-rw-1b model scores
an accuracy of 2.78 and a F1 score of 1.57. The OpenLLaMA 3b scores an accuracy of 8.35 and a
F1 score of 10.70. The Dolly-v2-3b model scores an accuracy of 6.62 and a F1 score of 9.70. The
PaLLM model scores a mean accuracy score of 58.86 and a mean F1 score of 57.15.

5.2 Business Specific NER Results

In tables 4 to 6, the model’s responses are placed into tables showing the model’s responses, to
identifying entities in two articles. As can be noticed, there is no table present for the Falcon-rw-1b
model. The reason for the absence of this table is that the Falcon model was unable to identify a
single entity in both articles.
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PaLM
Article 1 Article 2
(Meta’, ORGANISATION')
("people’, 'PERSON’)
(‘the US state of Texas’, 'LOCATION’)
("Mark Zuckerberg’, 'PERSON’)
("Meta’, 'ORGANISATION’) (
('Reality Labs’, "'ORGANISATION") (
(*Google’, 'ORGANISATION’) (
("Microsoft’, 'ORGANISATION’) (
(OpenAl’, "ORGANISATION’) (
("Max Willens’, 'PERSON”) g
E (
( (
( (
( (
(
(
(

'Tntel’”, "'ORGANISATION’)
'Nikkei’, 'ORGANISATION?)
’Amazon’, 'ORGANISATION’)
'Pat Gelsinger’, 'PERSON?)
'Intel’”, 'ORGANISATION’)
"Apple’, 'TORGANISATION?)
"Apple’;, 'ORGANISATION?)
'Apple’, "ORGANISATION)
"Tim Cook’, 'PERSON’)
"Apple’, 'TORGANISATION?)
"Apple’, 'TORGANISATION?)

'TikTok’, "ORGANISATION’)
'the US’, 'LOCATION?)

"Mike Prolux’, 'PERSON’)
"Facebook’, 'TORGANISATION’)
‘Instagram’, "'ORGANISATION’)
"Messenger’, 'ORGANISATION?)
"WhatsApp’, 'ORGANISATION’)
"Susan Li’, 'PERSON’)

Table 4: PaLLM model responses of both articles.

OpenLLaMA 3b
Article 1 Article 2
("The group’, 'ORGANISATION?)
("Mark Zuckerberg’, ’'PERSON’)  (company’, 'ORGANISATION’)
("Mike Prolux’, 'PERSON’)

Table 5: OpenLLaMA model responses of both articles.

Dolly-v2-3b
Article 1 Article 2
(Intel’, 'ORGANISATION?)
'said’, 'PERSON?)
‘catch up with competitors’, "PERSON’)
"Apple’;, 'PERSON’)
‘from its services division’, 'ORGANISATION’)

("In a way it’s a smart move

by the company to, effectively,

introduce Meta Al to its users

by forcing them to use it,”’, 'TLOCATION?)

N N N

Table 6: Dolly-v2-3b model responses of both articles.

Table 7, shows which value each rater gave to the model’s responses. There are no scores given to
the Falcon model because the model did not identify a single entity in both articles. The average
score of each model is also displayed in table 7. After calculating the ICC(3,k) value, we get a score
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of 0.971. Looking at the guidelines that are presented in [32], a score of 0.97 would be classified as
”Excellent reliability” [32].

Model Article Person 1 Person 2 Person 3 Average
OpenLLaMA 3b QEEEE ; ? ? ? 1.5
S e e
PaLM Aridde2 73 1 : 3.67
Falcon-rw-1b ﬁ?’;gi ; : : : -

Table 7: Table that shows the ratings that raters gave to each models response

6 Discussion

6.1 Findings

Looking at the results for the 100 samples cross cross-domain NER. The PaLLM model scores signifi-
cantly higher compared to the other open-sourced models. Out of the results of this smaller sample
size experiment, we can conclude that the open-sourced models all have a very low accuracy and
F1 score. With OpenLLaMA scoring the highest amongst the open-sourced models, we can also see
that the Falcon-rw-1b model achieves by far the lowest scores. This suggests that the open-sourced
models are underperforming and need improvements in predicting and handling class imbalances [33].

In a low sample environment, amongst the open-sourced models, we can conclude that the OpenlL-
LaMA model achieves the highest accuracy score. The highest F1 score was achieved by the Dolly
model.

In the larger sample size experiment, an internal error occurred on the Google Cloud’s services.
This issue made it so that the model would give an internal error in the middle of running the
experiment. Our solution was to repeatedly run the experiment to achieve sample sizes of 250
samples. We performed this experiment on four different chunks of the data, allowing us to compute
the mean accuracy and F1 score. Looking at the results of the larger, 1000 sample size experiment,
although the mean accuracy and F1 score were used, the PaLM model shows us a lower accuracy
score over a bigger sample size. However, the mean F'1 score is slightly higher than in the 100
sample size experiment. This suggests that the model is performing well and outperforming every
open-sourced model by a large margin.

In a larger sample environment, the Falcon model achieved a slightly higher accuracy and F1 score.
Even with a slight increase in performance, the Falcon model still performs the worst. Amongst the
open-sourced models, we can conclude the OpenLLLaMA model achieves the highest accuracy and
F1 score.

20



The results of our research which extended to the business specific NER show how detailed and
extended the PaLM model was in NER. Comparing these responses to one another, we can see that
many entities were left out or misidentified by the other open-sourced models. The rating results
also suggest that human raters rated the PaLM model better than the open-sourced models. While
not having identified every entity in both articles, the PaLM model does come very close to that
ideal result. We see that the open source models struggle in identifying entities, missing out on
entities such as "Microsoft”, ”Meta” and many more. We can also see that the open-source models
often misidentify certain entities. In the case of OpenLLAMA, it identified " The group” to be an
organization. Dolly-v2-3b identified ”In a way, it’s a smart move by the company to, effectively,
introduce Meta Al to its users by forcing them to use it” as a location. The model also identified
”from its service division” as an organization. As previously mentioned, the Falcon-rw-1b model
severely underperformed, not identifying a single entity in both articles. The open-sourced models
tend to still make many mistakes compared to the PaLM model.

6.1.1 Possible Explanations

An explanation of this difference in performance could be the size of the models. As previously
mentioned models with more parameters, it allows LLMs to capture more complex language
relationships [17], which is a big part of NER. In table 6, we can see the size of each model used in
the experiments. We see that Falcon-rw-1b is the smallest model, which performed by far the worst
in this experiment. Both Dolly-v2-3b and OpenL.LaMA 3b have 3 billion parameters, we can see
that their results are similar to each other, with OpenLLaMA slightly outperforming Dolly’s model.
OpenLLaMA technically has slightly more parameters than the Dolly model, which may explain
why OpenLLaMMA performs slightly better than the Dolly model. The biggest model by far is the
PaLLM model which has at a minimum 8 billion parameters. This increase in size can explain why
the PaLM model outclasses every other open-sourced model by far.

Another possible explanation for PaLLM’s superior performance may be the quality of its pre-training
data. The token count is crucial in the development of these models. Because these models are not
able to process whole sentences and paragraphs as humans can, they break the text into smaller
blocks. For example, the sentence “Obama walks in the White House” could be broken down into
tokens like “Obama”, “walks”, “in”, “the” and “White House”. The model must then process each
of these tokens separately to understand the whole sentence. If these models are able to process a
higher token count, the model will be able to retain more information, generate longer and more
detailed responses, and understand the context better.

The PaLLM model was pre-trained using 780 billion tokens. OpenLLaMa, the model that scored
second best, was trained for one trillion tokens. In contrast, Falcon-rw-1b was trained only on 350
billion tokens, which could explain its low ranking in the experimental results. The amount of
tokens used during training for the Dolly models was not publicly disclosed.

Dolly-3b-v2’s training data involved around 15k instruction/response fine-tuning records generated

by employees during a period of two months in 2023. This included passages from Wikipedia as
references for instruction classifications like close QA and summarization. The use of Wikipedia as
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a main source means that this AI model could contain factual errors. Besides linguistic flaws, the
dataset being trained manually by the company’s employees opens up the possibility of biases and in-
terests of the workers reflecting in the model’s answers and ability to identify certain entities in texts.

Possible reasons why Falcon-rw-1b received the lowest score during the experiment could be because
this model is trained on English data only. Training the model exclusively in English could bring
many limitations [39] such as language barriers, cultural bias, loss of information and an inability
to generalize appropriately to other languages. In addition to this, Falcon-rw-1b was trained on a
large-scale corpora representative of the web, meaning it would carry the stereotypes and biases
commonly encountered online.

In contrast, the PaLM pre-training dataset is comprised of a mixture of filtered webpages, Wikipedia
articles, news articles, source code, books, and even social media conversations [10]. So not only is
PaLLM developed using natural language data, but code obtained from open-source repositories is
also adopted in the pre-training dataset. Various amounts of the data sources were also multilingual,
such as social media conversations and Wikipedia.

6.2 Future works

A suggestion for future works would be to perform this research on larger open-sourced models
such as Mistral-7b and LLaMA 2. These models all have around 7 billion parameters which would
increase the performance significantly. Furthermore, another suggestion for future works would be
to perform the same experiments on the slightly larger models of this paper. These models would
be falcon-7b-instruct!'!, OpenLLaMA 7b(_v2)'? and Dolly-v2-7b'3,

Another suggestion would be to explore the benefits of fine-tuning the models for NER tasks.
Exploring how well the models perform after being fine-tuned for the NER tasks can yield valuable
insights into whether fine-tuning can enhance performance. This could steer the course of further
efforts into the correct direction.

6.3 Limitations

Firstly, due to the lack of resources concerning computing power, we were only able to experiment on
the smaller open-sourced LLMs. Although smaller LLMs may not perform as well as closed-sourced
LLMs, it is still possible for larger open-sourced LLMs to perform more evenly in NER. Furthermore,
there is another limitation concerning the methods for evaluating human experiments. The results
of these experiments are quite subjective, thus having such a small sample size, may affect the
outcome of said experiment. Although the ICC scores classify the score to be ”Excellent reliability”
[32], this does not take into account the small sample size of people we had to work with. Lastly,
due to Google Cloud’s services having internal server issues while testing the PaLM model, the

Yhttps : | /hugging face.co/tiiuae/ falcon — Tb — instruct
Lhttps : //hugging face.co/openlm — research/open_llama_7b
Bhttps : //hugging face.co/databricks/dolly — v2 — Tb
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results may also be affected by this. Instead of using the accuracy and F1 scores, the mean accuracy
and F1 scores were used for this. Also, due to the internal server errors that Google Cloud was
having, the responses of the model may have been affected without us knowing.

6.4 Conclusion

This paper wanted to look at and test how well open-sourced models performed in cross-domain
NER compared to propriety closed-sourced like Pal.M. Specifically, we wanted to see which (smaller
size) open-sourced LLM performed the best in cross-domain NER. The best performing (smaller
size) open-sourced model was the OpenLLaMA 3b model. However, even with it outperforming
the rest of the open-sourced models, it is still far behind the larger, closed-sourced model PaLLM.
We also wanted to see which (smaller size) open-sourced LLM performed the best in business
specific NER. In this instance, both the OpenLLaMA and Dolly models scored the same mean
score. We conclude that although most open-sourced models are somewhat capable of NER, smaller
open-sourced LLMs are outclassed by bigger proprietary, closed-sourced models. There might be
further explanations for this performance gap, other than only the size of the models. One of the
possible explanations for this performance gap could be the quality and variety of the pre-training
data. The amount of tokens used during the pre-training could also explain why certain models
perform better than others.
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