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Abstract

In this thesis, we introduce a two part sequential program which attempts to both track
cells visible within a dataset of frames of microscopic cells. The program also aims to find
the actions each cell performs within this dataset, noting which cell performed what action,
and when this action was performed. We use an object detection network, to detect the cells
within each frame and find the path each cell has walked. Using these paths, we look at each
cell individually with an action recognition network to find the actions performed. We have
created our own annotated dataset of cell actions and cells with their locations to be able
to train and test the networks used in this project. We have found our approach to action
detection and cell tracking to be fairly inaccurate and unreliable, particularly when dealing
with data containing a large number of densely distributed cells. As a result, we propose
different strategies to enhance our program and make it more reliable.
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1 Introduction

Microscopic video data analysis plays a crucial role in various scientific domains, particularly in the
field of cell biology. The ability to accurately detect and track cellular actions from these videos can
provide valuable insights into the behavior and functioning of cells. However, manual analysis of
these videos is a time-consuming and labour-intensive task, prone to human error and subjectivity.
Therefore, there is a growing need for automated methods that can effectively detect and classify
actions in microscopic video data.
In this bachelor thesis conducted at LIACS and the MI under the supervision of Dr. D.M. Pelt,
Prof. Dr. R.M.H. Merks and T.M. Vergroesen MSc we investigated the application of machine
learning in microbiological video data analysis to determine the viability of using this tool for this
purpose.

1.1 Problem Statement

In this thesis, we explore the application of neural networks for automatic action detection in
microscopic video data of cells. By leveraging the power of deep learning techniques, we aim to
develop an efficient and reliable system that can accurately identify and classify various cellular
actions, thereby reducing the burden of manual analysis and enabling researchers to extract
meaningful information from large-scale video data.
We developed a two-part consecutive program which aims to achieve this goal. In the first program,
we use the Fast R-CNN object detection network[20] to find cells within a given image sequence.
Using the Intersection over Union (or Jaccard Index) [11] as a sort of reverse distance measure, we
link the cells of two consecutive frames in such a way that the combined distance between the cells
is as small as possible, essentially creating an assignment problem [19]. Repeating this process over
multiple frames gives us a path following each cell. We tried experimenting with optical flow [5] to
predict the location of cells in consecutive frames in order to increase tracking accuracy.
The second program takes the tracking information from the first program and uses the C3D[24]
network to perform action recognition over video clips of each individual cell. This gives us a list of
actions each cell has performed and when these actions were performed.

1.2 Thesis overview

This thesis is organised as follows:
Section 1 Provides an overview of the research problem and the structure of the thesis.
Section 2 Discusses research and algorithms necessary for understanding this thesis.
Section 3 Describes the research methodology and gives a technical explanation of the proposed
neural network based system for action detection in cells.
Section 4 presents an evaluation and analysis of developed system.
Section 5 Provides a discussion of the findings and the limitations of the program.
Section 6 Discusses future research directions and concludes the thesis.

1



2 Background

2.1 Cell Tracking

Cell tracking is a fundamental aspect of biology, crucial for understanding cell behaviour in various
environments. In microscopic video data of cells where only a few cells are visible, it relatively easy
and straightforward to perform cell tracking. But given data where a few dozen, or even hundreds
of cells are visible in each frame, tracking cells becomes a very tedious and time-consuming task.
For this reason, a lot of research has been done on automated cell tracking programs ([22, 18, 13]),
Emami et al. discusses different approaches to cell tracking in [3]. We take the tracking-by-detection
approach[9], where we first detect the cells visible in each frame, and then attempt to link cells
across each frame to track their movement over time.

2.2 Optical Flow

To be able to link cells across multiple frames, we can try to predict the location of the cells in the
next frame; this can be done by using optical flow. Optical flow is an estimation of velocity of objects
between image sequences, allowing to guess where objects will be in future frames. This is done by
taking the intensity of each pixel at a specific point in time, denoted as I(x, y, t). The assumption
is that the intensity of an object will not change over time, thus an object at point x, y at time t
will have moved to x+ δx, y + δy at time t+ δt, and we assume I(x, y, t) = I(x+ δx, y + δy, t+ δt).
By taking the-first order Taylor expansion, we obtain the equation

∂I

∂x
δx+

∂I

∂y
δy +

∂I

∂t
δt = 0

Which simplifies to
∂I

∂x
Vx +

∂I

∂y
Vy +

∂I

∂t
= 0

Here Vx, Vy represent the optical flow of I(x, y, t). Solving for the optical flow can be done in
multiple ways[27, 1, 5]. We will make use of the Farneback algorithm proposed by Farneback [5]
which looks at the intensity changes of a neighbourhood of each pixel to calculate the magnitude
and direction of flow.

2.3 Assignment Problem

To actually link cells across frames, we make use of the assignment problem. The assignment
problem [19] is a combinatorial optimization problem where, given a number of agents and tasks,
we want to assign each task to an agent such that the total cost required to perform all tasks is
minimal. There has been a lot of research on various methods for the assignment problem, several
of these methods are compared by Ramshaw and Tarjan in [2].
In our case, we consider the cells in a certain frame as the agents and the distance to a cell in the
next frame as the cost. We want to assign each cell in the next frame to a cell in the current frame.
For this task, we use the Hungarian algorithm [8].
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Figure 1: A visual representing the structure of NNs

2.4 Intersection over Union

The Jaccard Index, also known as the Intersection over Union, is a metric used to assess the
similarities between sample sets [11]. When given two sample sets A and B, the Jaccard Index is
defined as

J(A,B) =
|A ∩B|
|A ∪B|

(1)

Resulting in a value between 1 and 0 where 1 means that A = B and 0 means that A ∩ B = ∅.
Since we measure the similarity of two sets, it is conventional to take J(A,B) = 1 when A = B = ∅
even though A ∩B = ∅.
This allows us to measure the accuracy of a calculated prediction compared to the given truth. In
case of two areas in an image, say area A and area B, we can simply take the area of the overlap of
A and B, divided by the area of the union of A and B.
In this thesis we refer to this measure as the Intersection over Union (IoU)

2.5 Neural Networks

Neural networks (NNs) are powerful tools used for machine learning tasks, including image processing
tasks. The structure of these NNs is inspired by the structure of a brain, using artificial neurons
and layers to extract meaningful patterns and features from data and allowing the NN to draw
conclusions on the inputs given to the network. Therefore NNs are well-equipped for processing
visual data, predicting what is depicted in said visual data and labelling it accordingly.
An NN consists of an input, several hidden layers, and an output, where each layer consists of a
certain amount of nodes (Figure 1).
A single node takes a certain number of inputs, makes some calculations, and produces an output
which is then fed to nodes in the next layer as an input value (Figure 2). Through this process
each node detects certain patterns or features found in the output of the previous layer.
If we consider the j’th node in a certain layer of an NN with n input values, we can express the
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Figure 2: A visual of the structure of a node with n inputs

formula for the output of the node as

gj(x) = max{x · wj + bj, 0} (2)

Here we take x = (x1, ..., xn) to be the inputs of the node, wj = (wj,1, ..., wj,n) the pre-determined
weights and bj the bias of this specific node. The weights are essential to make sure that each node is
able to properly extract patterns from the input. They are adjustable parameters which determine
the strength of the connection between nodes in different layers. Each weight essentially represents
the importance of the input connected to it and determines how much each input contributes to
the neuron’s output.
After we take the inner product of the inputs and the weights, we add a bias value which determines
how strong the output signal of a node must be for the node to activate and send its output to the
next layer. We feed this value to an activation function. In our case the used activation function is
the rectified linear unit (ReLU) as suggested by Hington and Nair [17] which simply checks whether
the input value is greater than zero or not, as seen in (2).
Given that an NN feeds information sequentially through its layers consisting of these nodes, we
can write the output of an NN (f(x)) with N layers, given an input vector x as

f(x) = GN ◦GN−1 ◦ · · · ◦G1(x)

Where Gi(x) = (gi1(x), . . . , g
i
j(x)) is the output function for the i’th layer, and gij the node function

for the j’th node in the i’th layer as described in (2). For ease of notation, we say that if xk is not
an input for a specific node, that the weight wk for this node is equal to 0.
We can see how the output of an NN heavily depends on the choice of weights and biases at each
node. Since a bias is essentially a weight where the input value is always 1, we will from now on
treat the bias to be part of the set of weights.
If we have a dataset that is already labeled, referred to as a training set, we can determine how
accurate an NN is by comparing the predicted output of the NN f(x) with the label corresponding
to the given input y. From now on we will denote y as the expected output of x. This is done by
means of a loss function L(x, y) = l which calculates the loss (or error) l and thereby quantifies the
difference between the predicted output and the actual label, providing a measure of how well the
NN is performing.
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Naturally, we want to set the weights such that l is as small as possible. We achieve this by training
the NN by means of backpropagation[10]. Backpropagation is done in a couple of steps:

1. Initialization: We first initialise the NN with random weights (and thus also biases) and feed
it the training set.

2. Loss Computation: We then compute the loss of the output using the loss function. Here, the
input and desired output are fixed while the weights are adjustable variables.

3. Gradient Calculation: To determine how the weights influence the output and set them to
minimise loss, we calculate the gradient of the loss function with regards to w. The gradient,
denoted as ∇L(w) is represented as a vecotor =

→
c , where the gradient ∇ is defined to be

∇f(
→
x) =


∂f
∂x1

f(x)
∂f
∂x2

f(x)

. . .
∂f
∂xn

f(x)


This vector

→
c indicates what changes to the weights cause the most significant change to the

value of the loss function.

4. Weight Adjustment : Since we want the loss function to be as small as possible, we will adjust
the weights with some small multiple of −∇L(w) to try and find a smaller value of L.

5. Repetition: Repeating steps 2-4 multiple times provides us an estimation of the minimum
value of L with associated values for the weights and biases.

Afterwards the trained NN can be used to label unlabelled data.
Our program intends to track cells in a sequence of frames and determine the actions these cells
perform. For this we make use of two types of neural networks: an action recognition neural network
which has a video of certain size as input and returns the action performed within this video, and
an object detection network which has an image as input and returns a set of boxes around objects
the network finds within this image. Both of these networks are so-called convolutional networks,
which use convolution between an input matrix and some kernel matrix to break the input down
into smaller sections to analyse those before taking the results of these smaller sections to make an
overall conclusion about the entire input.

2.5.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [21, 10] are often used to capture spatial information. This
is done by breaking an image down into smaller areas and recognising certain patterns within these
smaller areas, from which we conclude what is visible in the entire image. The breaking down of an
image and finding certain patterns is done by means of convolution, therefore the layers in which
this happens are called convolutional layers.
Convolution is a mathematical operation expressing how the shape of two functions (in our case
matrices) impact each other. Convolutional layers consist of an n× n input matrix (X), an n′ × n′

kernel matrix (K) where n′ < n, and an activation function.
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Figure 3: Visual representation of the working of a convolutional layer. Zero padding, which is the
action of extending the input matrix with a border of elements of value zero, is used to make sure
the feature map has the same dimensions as the input matrix.

The output of a convolutional layer is calculated by taking the two dimensional discrete convolution
of X and K which is given by

oi,j(X) := (X ⋆K)(i, j) =
n′∑
l=1

n′∑
m=1

xi−l,j−m · kl,m

Here, oi,j(X) is the value of the output matrix O at position (i, j) when given the input matrix X.
O is an n× n matrix called a feature map, where each element oi,j in O contains information about
the n′ × n′ area around xi,j from the input matrix X. A visual representation of the convolution
operation between two matrices can be found in Figure 3. Note that we are essentially using a
sliding window, taking the dot product of the kernel matrix and an n′ × n′ window over the input
matrix.
In terms of a neural network layer, we consider the kernel matrix to be the weights shared by each
node in the same layer, and the input of each node is then an n′ ×n′ submatrix of the input matrix.
Thus we find the node function for the node (i, j) to be

gi,j(X) = max{oi,j(X) + b, 0} (3)

Where X is the input of the convolutional layer and b the threshold value which allows us to write
the resulting feature map as

G =


g1,1(X) g1,2(X) · · · g1,n(X)
g2,1(X) g2,2(X) · · · g2,n(X)

...
...

. . .
...

gn,1(X) gn,2(X) · · · gn,n(X)

 (4)

Since patterns crucial to recognising objects or actions can be found at different scales of an image,
we want to study our input at different scales. This is done by downsampling in between different
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Figure 4: An example of max pooling with pooling size 2 where the maximum value of each 2× 2
section of the input matrix will be the value representing this area in the down sampled output
matrix

convolutional layers, essentially lowering their resolution. This allows us to take a convolution over
a bigger area without increasing computational cost for each layer. The downsampling is done using
max pooling layers which take a small subarea of a matrix and take the maximum value to be the
new value representing this entire area as seen in Figure 4.
After alternating convolutional layers and pooling layers, we end with a fully connected layer in
which every node takes the entire previous layer as input to obtain a final output. During the
training of a CNN, the network aims to find the best kernel values for its task given a training
dataset. The kernel size and the pooling size are set before training starts and do not change
throughout training.

2.5.2 Object Detection

Object Detection is the task of finding objects within an image and labeling what these objects are.
Unlike with instance segmentation tasks, where for each object the program aims to find which
pixels are and are not part of the object, object detection simply provides boxes around each object
found. A survey on various object detection models using neural networks has been conducted by
Zaidi and Ansari et al [26]. For our purpose of object detection, we use a network called Faster
Region-based Convolutional Network (Faster R-CNN), proposed by Ren et al. [20].

Faster R-CNN Faster R-CNN consists of two components; a region proposal network (RPN)
which takes the input image and outputs a set of boxes called region proposals where objects might
be, and the region classification network Fast R-CNN [6], which takes an image together with
region proposals and classifies the object found within each proposed region (if any).
The RPN takes a sliding window over a generated feature map to find a set of region proposals
where each proposal contains the coordinates of the bounding box of this region, and the estimated
probability of the region containing an object and not containing an object. This is done by
evaluating a set of anchor boxes at each sliding window position, where the anchor boxes are set
by a predetermined set of scales and aspect ratios. Thus if we decide to use s different scales and
n aspect ratios, we will have sn anchors for each window position. These boxes are resized and
grouped together based on their IoU and their probability of containing an object which results in
the outputted region proposals.
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Figure 5: feature maps generated from convolutional layers are both used to generate region
proposals, as well as classify what is visible within these regions (Ren et al. [20])

Fast R-CNN is a region classification network. It takes the convolutions of each proposed region
given to the network and predicts the probability of certain objects being contained within these
regions.
Faster R-CNN is build in such a way that generated feature maps are simultaneously used by the
RPN and the Fast R-CNN, decreasing computation by sharing convolution computations over both
networks as is illustrated in Figure 5.

2.5.3 Action Recognition

Action Recognition is the task of recognising what action is occurring in a short video and labeling
said video accordingly. This can also be done by using convolutional networks. A lot of research
has been done on video recognition, a study on multiple papers on this topic done by Zhu and Li
et al can be found in [28]. One of the neural networks designed for the task of action recognition is
the C3D network.

C3D To be able to detect actions visible in a video clip or series of frames, we not only need to
be able to recognise spatial data and extract spatial features, but we also need to be able to extract
temporal features. The Convolutional 3 Dimensional network (C3D network), proposed by Tran et
al. [24] does this by expanding the kernel of a CNN to have three dimensions. This allows each
node in the output to also say something about what was visible in the previous and next frames.
If we take the depth of the kernel to be smaller than the number of input frames, we can slide the
kernel over space and time calculating the 3 dimensional convolution between the kernel and input
to capture both spatial and temporal information of the video as seen in Figure 6. Another option
would be to have the kernel have the same depth as the input matrix, but this has the disadvantage
that we cannot slide over time, which results in our output being two dimensional. This means
that after the first convolution, temporal information will be lost, while using 3D convolution will
preserve temporal information over multiple convolutions. The output of the C3D network is a list
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Figure 6: (a) 2D convolution over an image gives a two dimensional output (b) applying 2D
convolution over multiple frames gives a two dimensional output (c) 3D convolution over multiple
frames gives a three dimensional output (Tran et al. [24])

of n values for the n possible actions the network is trained to recognise, where each value gives
the certainty of the network that the given input video depicts the output corresponding to this
coordinate in the output.

2.5.4 Action Detection

While action recognition focuses on identifying a single action occurring in a short video, action
detection has the task of taking a longer video, and finding when certain actions took place and
what actions these are. This can be considered as a temporal version of object detection where,
instead of region proposals to find locations of objects, temporal proposals are generated to find
the time intervals of actions. There are multiple methods that, similarly to the RPN network
discussed in 3.2, analyse multiple predetermined overlapping temporal windows of different scales.
These windows are later combined and resized into action proposals [23, 7, 4]. A temporal proposal
model like BSN [12] determines at each temporal location the probability of said location being the
start of an action, the end of an action, inside an action instance, or outside an action instance.
Using this information, they generate temporal proposals by combining moments with high starting
probability to moments with high ending probability, where the moments in between have a high
chance of being inside an action instance. A survey on action detection methods has been done by
Vahdani and Tian [25]. In this thesis, we will instead use a sliding window technique to determine
when actions took place.

3 Methodology

For this project, we developed two programs: one which uses Faster R-CNN to track cells over
multiple frames and outputs this information, and one program which takes this output to perform
action recognition on each cell using the C3D network. In this section, we will delve into how these
programs were constructed and how the networks used in them were trained.

3.1 Object Tracking

The object tracking program performs object detection on each frame of the input data and
attempts to link every cell found in a frame to a cell found in the next frame of data. To store the
tracking data, we wrote a tracker class which stores the id number and location history of a single
cell along with the frame in which this cell was first detected. This tracking data is stored in a .pkl
file to be read by the action detection program.
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Figure 7: A frame of the output of Faster R-CNN with as input the BF-C2DL-MuSC-01 dataset
where we can see that a lot of bounding boxes refer to the same cell

3.1.1 Object Detection

Object detection over each frame is performed using the Faster R-CNN model from the mmdetection
Python framework [16]. The output consists of a list of bounding boxes that encase each cell found
in the current frame, together with an object score indicating how confident the program is that
this box contains a cell.
If left unmodified, the output of the Faster R-CNN model occasionally results in multiple cells
being detected where only one cell exists, or cells being found where there are actually none (as
shown in Figure 7). To address these errors, experiments were conducted to determine when two
bounding boxes refer to the same cell and combining these boxes in such a way that each cell
only has one bounding box referring to it. We did this by assuming that when a bounding box is
completely contained within another bounding box, one of the two boxes is redundant. We also
tried looking at the IoU of each set of boxes, where we assumed that if two bounding boxes are
very similar, they must refer to the same cell. When the program determines that two boxes refer
to the same cell, we want to keep the bounding box which best encompasses the cell and discards
the other. This is done by keeping the bounding box with the larger object score. Lastly, to remove
the false positive cell findings, we experimented with removing bounding boxes with small object
score. After this, we are left with a list of bounding boxes which supposedly tells us the location of
each cell in a certain frame. We define Ln to be the list obtained from frame n.

3.1.2 Tracking

Once the list of bounding boxes Ln is obtained, we need to update the trackers to store one of the
Ln boxes as the next location where the tracked cell is found. If the current frame is the first frame
of the sequence, a new tracker is created for each cell found in this frame. Otherwise, the program
calculates the distance of each box in Ln to each box of the cells found in the previous frame.
This distance is determined by the IoU. If we consider two boxes Bi ∈ LN−1, Bj ∈ LN in frame
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N − 1 and N respectively, we calculate the distance to be

di,j = −Bi ∩Bj

Bi ∪Bj

Using this we obtain a matrix of distances

DN,N+1 =


d1,1 d1,2 · · · d1,m
d2,1 d2,2 · · · d2,m
...

...
. . .

...
dn,1 dn,2 · · · dn,m


Using this matrix, we want to link each cell tracked in frame N − 1 to a cell in frame N such that
the distances between these cells are as small as possible. Therefore creating an assignment problem
where our goal to minimize the total distance of assigned cells in consecutive frames. This is done
using the Hungarian algorithm [8].
We want to take into account the possibility of new cells appearing and other cells disappearing
from view. In order to do this, we check each assigned pair to see if their IoU> 0. If not, it means
that the cell in the previous frame frame is assigned to a region box it does not overlap with. In
this case, it is assumed that this means the tracked cell and the cell it has been assigned to in the
next frame are two different cells. This assigned pair is then removed from the list of assignments
obtained using the Hungarian algorithm, and we assume the cell to have gone out of view and will
thus no longer update the tracker associated with this cell.
After going through the list of assigned pairs and removing the invalid assignments, the program
checks if there are any cells found in the next frame that haven’t been assigned to a cell in the
current frame. If this is the case, the program assumes this is a newly found cell yet to be tracked.
A new tracker with a unique id is created to start tracking the newly found cell.
We tried to increase tracking accuracy by using optical flow to predict the likely location of the
cells in the next frame. Using optical flow the program generated a predicted area for each cell in
the next frame, and used the IoU of this predicted area and the cells found in the next frame to fill
the matrix of distances and assign each cell. Thus tracking cells based on the predicted locations of
each cell rather than their actual location.
After iterating through each frame using this approach, the found trackers were stored in a list and
saved in a .pkl file. This file is intended to be read by the second program.

3.2 Action detection

Our action detection program takes the generated .pkl file and the associated sequence of frames
as input. For each tracker, the location history of the tracked cell is used to to create a path that
this cell has walked. Additionally, the maximum width and height (wm, hm) of the bounding boxes
of this cell is used to create a wm by hm pixel image sequence which follows the cell throughout
its existence. Since the model accepts video data with resolution of at least 122× 122 pixels, we
increased the width and height of these image sequences to 122 if necessary.
Since we not only want to recognise what actions each cell performs but also when and where
these actions have been performed, the program takes a sliding window approach on this image
sequence. The window size is 16 frames, which is the minimum number of frames accepted by the
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C3D network, and a stride of 8 frames. Action recognition is performed over each window using the
C3D model from the mmaction2 Python framework [14].
We once again experiment with a certainty threshold, where an action is only considered to have
occurred if the C3D model outputs the action with a certainty exceeding a specified threshold.
Thus a list of actions is obtained representing the actions a cell has performed. Since each frame is
part of two windows, the program checks if each detected action is found in at least two consecutive
windows. When an action is found to have taken place over multiple consecutive windows, a time
interval is obtained where this action has been observed. The center frame of this interval is taken
to represent the moment this action took place. Thus the program produces a list of trackers, and
an associated list of actions and frame numbers. Using these we are able to determine where each
action has taken place and which cell performed said action.

3.3 Training the neural networks

Since we want to use the neural networks for a very specific purpose, we need to train our networks
appropriately to be able to recognise cells and the actions they perform. To do this, we need to
construct an appropriate training set to train and test our network on. In the following section we
will describe the construction of these data sets and how we trained on them.

3.3.1 Faster R-CNN

The Faster R-CNN model used in this project is derived from the pre-trained
faster-rcnn r50 fpn 1x coco.py model from the mmdetection framework[16]. We changed the
configuration to make the model fit to train on microscopy time lapses of cells by decreasing the
number of classes to one, since we are only interested in looking at cells and no other objects, and
trained it using the training script provided by the framework.
We trained our network on data from the Cell Tracking Challenge (CTC) website [13] which contains
a collection of annotated cell data, specifically created for the purpose of training, testing, and
bench-marking cell tracking programs. This dataset includes various cell types in various conditions
and imaging modalities. Here, we took the training set and used the available segmentation files to
generate our own annotation files for training and testing purposes. We do this by creating boxes
around each segment in the segmentation file and storing their coordinates in appropriate format
in our own annotation files. From the data available on the website we used the 2D+Time data
sets, since we want our program to recognise cells in two dimensional video images. We did not use
the N3DH footage, since in this data set only the cell nucleus is visible where we are interested in
actions of the entire cell body.
We train this network with scales = [8, 16, 32, 64] and an aspect ratio of [1 : 1]. The training was
carried out on the Leiden University High Performing Computing Facility ALICE.

3.3.2 C3D

The C3D network we used is derived from the pretrained C3D model found in the mmaction2
framework [14]. For training the C3D network we used the data from the CTC website, alongside
published time lapses of endothelial cells. We went through this data and created clips of minimum
size 122× 122 pixels and length of at least 16 frames where a specific action could be observed and
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Figure 8: An image of a cluster of cells

Figure 9: Loss curve for training of the C3D network

created annotation files in a format accepted by the network. In this way we build a training and
testing data sets.
We trained the data to be able to recognise two different actions: clustering and cell division.
Clustering is defined as the action where multiple cells group together in a distinct cluster, as
depicted in Figure 8. Cell division refers to the action of a single cell dividing into two.
The loss curve associated with the training of the C3D network can be found in Figure 9,
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Figure 10: Number of found objects on the BF-C2DL-HSC-02, and both the PhC-C2DL-PSC data
sets

4 Experimental Results

When experimenting, we used the already annotated data from the CTC website [13]. This makes
it possible to evaluate the performance of our program without needing to build a testing dataset
from the ground up.

4.1 Object Detection

The network cannot find more than 100 objects per frame because of the configuration used
when trained. This can easily be changed by changing its configuration, but for time preserving
purposes, we keep this limitation. Therefore we will not look at the PhC-C2DL-PSC footage and
the BF-C2DL-HSC-02 footage since, due to cell division, they eventually have more cells than the
network can detect in a single frame resulting in an output as displayed in Figure 10. This does not
tell us anything about the performance of the program itself and instead tells us there is a limit of
number of cells visible in one image.

Anchor box sizes We trained the faster R-CNN network with different anchor box scales:
4, 8, 16, 32, 64, 128, and one configuration using multiple scales: [8, 16, 32, 64], the loss and accuracy
values of this training process can be seen in Figure 11. In all further experiments, we used the
network configured to use the four anchor box scales to perform the cell detection task.
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Figure 11: Accuracy and loss of rcnn network with different anchor box scales.

Figure 12: Result of object detection performed on frames of the PhC-C2DL-PSC dataset from the
CTC[13] website with, from left to right, anchor box scales 4, 16 and 64

We also took some individual frames of data and performed object detection to gain a better
understanding of how the object detection behaves on different footage (Figure 12, 13).

Data cleansing We tried to improve the object detection model by filtering out redundant
bounding boxes through various methods. We evaluated the different methods of cleansing our data
by assessing the number of cells the program found in specific frames of the input. It is important to
note that when the number of cells detected by the program is equal to the number of cells visible
in a frame, it does not necessarily mean that the program has found every cell in this frame. It is
possible that n bounding boxes containing a cell have been discarded, and n redundant bounding

Figure 13: Result of object detection performed on frames of the PhC-C2DH-U373 datset from the
CTC[13] website with, from left to right, anchor box scales 4, 16, 32 and 64
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Figure 14: Number of cells found in every tenth frame in the, from left to right, BF-C2DL-HSC 01,
BF-C2DL-MuSC 02 and DIC-C2DH-HeLa 02 data sets, where we discard found cells when their
bounding boxes are contained within one another, or their IoU is greater than a certain threshold.
Here IoU:1.00 means it only discards boxes when they are exactly the same or a box is contained
in another box, Ground Truth is the actual amount of cells present in this frame, and Unaltered
means we did not discard any found boxes

boxes are being kept. Still, we believe that using this method of evaluation gives us a general sense
of the accuracy of the program.
One method of data cleansing involves assuming that two bounding boxes refer to the same cell
when one bounding box is contained within another, or when the IoU of two bounding boxes
exceed a certain threshold. When the program determines two bounding boxes refer to one cell,
the bounding box with the greater object score is kept and the other one is discarded. We ran the
program with different threshold values while noting the amount of cells found every 10 frames, the
results are presented in Figure 14a
Upon analyses, we observed that an IoU threshold of 1.00, 0.80, and 0.60 do not significantly
impact the number of found cells and that for an IoU≤ 0.40 the number of boxes found can often
drop below the actual number of cells (ground truth). Thus we repeated the experiment with IoU
thresholds between 0.40 and 0.60(Figure 14b)
Another method of data cleansing involves assuming that bounding boxes with an object score
smaller than some threshold do not actually refer to a cell. If the program determines a bounding
box does not contain a cell, the program discards it. We ran our program with different object
score threshold values. During this experiment we did not data cleanse using the previous method
in order to only evaluate the efficacy of the object score threshold. The results of this experiment
can be found in Figure 15a.
Here we find that when using a threshold value over 0.30, the number of cells the program finds
can drop below the actual number of visible cells. Thus we repeated the experiment with threshold
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Figure 15: Number of cells found in every tenth frame in the, from left to right, BF-C2DL-HSC
01, BF-C2DL-MuSC 02 and DIC-C2DH-HeLa 02 data sets, where we discard any found bounding
boxes where the confidence of the box containing a cell is less than the threshold value. In a) we do
not discard any boxes based on how similar it is to another box, in b) we discard the least confident
box when the IoU of two boxes are greater than 0.50, or when a box is completely contained in
another box.

values between 0.10 and 0.30, this time we also used an IoU threshold of 0.50, and asserted that
when a bounding box is contained within another, they refer to the same cell, the results can be
found in Figure 15b. We find that, by both using a confidence threshold and an IoU threshold, the
number of detected cells gets closer to the Ground Truth value than when we only use one of the
two methods.

4.2 Object Tracking

Using the models we obtained we ran our cell tracking program, we experimented with predicting
cell locations to aid in cell tracking using optical flow. These can be found in Appendix A Where
the paths of the cells the program created without using optical flow and with using optical can be
compared to the actual paths taken by the cells.

4.3 Action Detection

To test and experiment with the action detection program, we used the ground truth tracking data
already available in the CTC website as input to test the action detection program. Since these
sets of data only contain footage of cell division, we removed clustering from the possible outcomes
to test this part of the program. To take into account the sliding window size of 16 and stride of 8,
we put 8 buffer frames both in front of and behind the frames in which the cell is visible allowing
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the action detection program to view the entire lifespan of the cell, and we say each action has a
temporal margin of error of 8 frames.
Since the action recognition network gives for each possible action a confidence value signifying
how certain the network is that the corresponding action has taken place in the input, we can
experiment with using different confidence thresholds (CT). If the confidence of an action falls
below this threshold we consider this action to not have taken place, even if said action has the
highest probability of having occurred. To quantify the accuracy of this part of the program, we
once again used the IoU [11] to measure the similarity of the actions the program found, with the
actions that are actually visible. The results of this experiment can be found in Table 1

Action Detection Results
Input data (GT) CT FP TP FS DA IoU

BF-C2DL-HSC 01 (11)
50% 7 2 2 4 0.100
60% 4 1 1 2 0.063
70% 3 1 1 1 0.067

BF-C2DL-HSC 02 (157)
50% 0 3 3 1 0.019
60% 0 1 0 0 0.006
70% 0 0 0 0 0

BF-C2DL-MuSC 01 (22)
50% 4 11 0 1 0.423
60% 3 9 0 2 0.360
70% 3 8 0 2 0.320

BF-C2DL-MuSC 02 (22)
50% 1 0 0 0 0
60% 0 0 0 0 0
70% 0 0 0 0 0

DIC-C2DH-HeLa 01 (8)
50% 3 1 0 2 0.091
60% 3 0 0 0 0
70% 1 0 0 0 0

DIC-C2DH-HeLa 02 (5)
50% 2 1 0 1 0.143
60% 0 0 0 0 0
70% 0 0 0 0 0

Fluo-C2DL-Huh7 01 (1)
50% 0 0 0 0 0
60% 0 0 0 0 0
70% 0 0 0 0 0

Fluo-C2DL-Huh7 02 (6)
50% 9 1 0 0 0.067
60% 9 0 0 0 0
70% 9 0 0 0 0

Fluo-C2DL-MSC 01 (0)
50% 9 0 0 0 0
60% 9 0 0 0 0
70% 9 0 0 0 0

Fluo-C2DL-MSC 02 (0)
50% 4 0 0 0 0
60% 4 0 0 0 0
70% 3 0 0 0 0

PhC-C2DH-U373 01 (0)
50% 0 0 0 0 1
60% 0 0 0 0 1
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Action Detection Results (cont.)
Input data (GT) CT FP TP FS DA IoU

70% 0 0 0 0 1

PhC-C2DH-U373 02 (0)
50% 0 0 0 0 1
60% 0 0 0 0 1
70% 0 0 0 0 1

PhC-C2DL-PSC 01 (570)
50% 0 1 0 0 0.002
60% 0 0 0 0 0
70% 0 0 0 0 0

PhC-C2DL-PSC 02 (429)
50% 0 2 0 0 0.005
60% 0 0 0 0 0
70% 0 0 0 0 0

Table 1: Output of Action Detection experiment where we
look at the output accuracy using different CTs, Here we
list every dataset used as input together with the number
of cell divisions that are visible in the data set (GT),
we list the number of false positives detected (FP), the
number of true positives detected (TP), the number of
actions detected but assigned to a cell id than the cell
performing the action (FS), and the number of actions
detected multiple times (DA). For example, if cell A di-
vides into B and C and we observe cell division at that
time and location in cells A, B, C and D. We will have
one count in TP, two counts in DA and one count in FS.
Lastly, the IoU between TP and FP is given. Here we
disregard DA and consider the observations of FS to be a
false positive.

We can see that in general, a lower action threshold results in a better IoU output.
Furthermore, for the sake of experimentation, we ran the entire program on these datasets without
omitting the action of clustering. This output can be found in Appendix B

5 Discussion

5.1 Object Detection

We can see in Figure 14 and Figure15 that it is possible to use various methods of data cleansing
to have the number of cells the program detects to come closer to the true number of cells in each
frame. However, the configurations which results in the number of found cells being closest to the
truth also occasionally find less cells than there actually are, which indicates that the program now
does not consider every cell to be a cell. At the same time, the configuration in which the number
of cells never go below the truth value also have a lot of frames where the program finds a lot
more cells than there actually are. Indicating that with using the data cleansing methods we used,
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Figure 16: Case where two boxes find the same cell, but they are too different to have a large
enough IoU to be considered boxes around the same cell, and one is not completely contained
within another

there is a limit to how accurate the object detection model will be. This indicates that there are
multiple cases when bounding boxes are dissimilar, but are viewing the same cell and both have
high object score (an example of this can be found in 16), or that a bounding box not containing a
cells has high object score. If the latter is often the case, it would mean that the network is not
properly trained, but viewing all other results we do not believe this to be the case. The former
often happens in data where cells can be of very inconsistent size, as is the case in figure 16. To
further increase accuracy we would need to use different methods of data cleansing alongside the
methods we used here.

5.2 Object Tracking

In the case of object tracking, it often happens that a single cell changes id because the program
finds two boxes where there is only one cell, and the old tracker gets discarded and the newly
found tracker continues tracking the cell. This can be seen in figure 17. This problem would likely
be largely solved if the object detection network was more accurate, since the best candidate for
the next cell is correct, but since the program finds two bounding boxes for one cell, tracking
becomes difficult. When viewing the first column in Appendix A, we can see that the tracking
algorithm is able to find the track of the cells fairly accurately, though sometimes a tracker seems
to select the wrong cell and starts tracking a different cell than it started with. We can see that
this most often happens when multiple cells are right next to each other. Therefore, in datasets like
PhC-C2DH-U373, where the cells are widely distributed, this seems to be less of a problem. We
suspect the incorrect tracking happens when a bounding box is created containing multiple cells
giving the tracker an opportunity to use the box containing the multiple cells as a bridge to start
tracking a different cell. Though we have not confirmed this to be the case.
We see that using optical flow to assist in tracking results in tracks jumping from location to
location (Appendix A). This jumping of the cell tracks happens when the tracker switches from one
cell to another. This is very prevalent when using optical flow, we think this is because the optical
flow algorithm has difficulty understanding where a cell is going. Optical flow is developed with
”normal” frame rate in mind, thus anything above 1 fps, but the frame rate of the data we work
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Figure 17: A cell from the BF-C2DL-HSC-01 footage[13] changing id, on the left: the cell with its
original id of 0, in the middle: two boxes being found around the same cell, but different enough
that one of them does not get discarded. One of them considered a continuation of the cell with id
0, the other seen as a new cell and given the id of 1, on the right: The network finds only one cell
but the tracking algorithm considers the found box to be the continuation of tracker 1, discarding
the original tracker with id 0

with is usually very low, having one frame per several minutes. This can result in cells drastically
changing shape or direction from one frame to another which makes predicting location difficult.
This results in the optical flow algorithm to think that the cell is moving differently than it is, both
in direction and in speed, thus resulting in the predicted location box to be in a very different place
than it should be, which causes it to be linked to a bounding box of a different cell.

5.3 Action Detection

Looking at the results in table 1 using the CTC data [11], we find that the action detection program
is far from accurate. But we can see that a lower confidence threshold has consistently a higher IoU.
It is noticeable that the program does not recognise the cell divisions at all in the BF-C2DL-HSC
02 and both the PhC-C2DL-PSC data sets, which contain data of many small cells very close to
each other, and a lot of cell divisions. This is probably mainly due to the fact that the cells are
smaller than the minimal clip dimension size, and that there are a lot of cells close to each other.
This results in each clip following a single cell looking for actions said cell performs, to be also
looking at a lot of other cells. This makes it hard for the program to determine what is happening
at any moment, making the confidence that a division has taken place very small. This is somewhat
supported by the BF-C2DL-HSC 01 output which has found more cell divisions that have taken
place.
We can also see that in both the BF-C2DL-HSC data sets, it happens that cell division of a certain
cell, has been linked to a different cell than the cell actually performing the action. This is probably
once again due to the fact that the cells in this data set are smaller than the minimum window
size required for the action recognition network, resulting in multiple cells being visible in a clip
following the track of a single cell. Thus when we are looking at the action of a specific cell, say cell
A, but a cell nearby, cell B, performs an action visible by the action recogniser, the program will
mistakenly say the action is being performed by cell A because that is the cell we are currently
observing.
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When looking at the output in Appendix B, we can see that in a data input as PhC-C2DL-PSC
01, we often observe clustering. This is probably caused in a similar way as why the program has
difficulty detecting cell division. When a lot of cells are visible in a clip, the program tends to
observe clustering instead of cell division while clustering might not even be taking place.
In general, because the program is trained to only look at a single cell and determine the action of
a single cell, it has difficulty with cells smaller than the minimal input window size. But even when
we only feed cells bigger than a certain size in the action detection program, it will not be able to
properly detect actions as clustering since this is an action involving multiple cells. Therefore, if we
only look at a single cell it will be hard to accurately detect larger scale actions as clustering.

5.4 General Limitations

The fact that the program is split into two is a result of both the C3D and Faster R-CNN models
both sharing the same mmcv [15] library. Thus when trying to initiate both models in the same
program, there will be some conflict withing this mmcv library. Though having the program split
in two was fairly convenient for testing purposes.
The biggest limitation in this project was the size of the training data and the hardware with
which with which we could train the neural networks. Since we had to build a data set for the cell
actions ourselves, we were not able to have a data set as expansive as we ideally would have wanted.
For example in the CTC Dataset[13], the Fluo-C2DL-Huh7 and the Fluo-C2DL-MSC data sets
were both far smaller than other data sets, both in number of frames and in the number of cells
found in every frame. This limits the training we can do for both tracking and action detecting for
these specific types of cells. Sadly, we also did not have access to hardware able to train the object
detection model with anchor boxes of different aspect ratios, resulting in the program terminating
due to a lack of memory before reaching a single epoch when trying to do so. Thus we could only
train the program with anchor boxes of different sizes, but a single shape which may have limited
our ability to recognise cells of unconventional shapes.

6 Conclusion and Future Research

There are several ways we would like to try to improve this program.
Firstly, with stronger GPUs, it would be interesting to see if training the object detection program
with both multiple anchor sizes and shapes could result in the program being more capable of
detecting cells of various shapes. It might also be interesting to look at using a masking program
for object detection and tracking. This would tell exactly which pixels in the image belong to
each cell instead of a general box surrounding a cell. This could be used to improve the tracking
program, where we can see in more detail if the shape of the cells we wish to link are similar. It also
might help increasing action recognition accuracy, as we could mask out everything that is not the
cell when performing action recognition, potentially solving the problem of mistakenly recognising
actions of other cells in the vicinity of the cell we are looking at.
To increase the tracking program, it may be a good idea to create a set of conditions of when a
new cell can appear or disappear, ensuring that the condition for a new tracker being initialised is
not only finding a candidate cell which is not linked to a cell in the previous frame, but also, for
example, that cell division has taken place, or that the cell appeared on the edge of frame. The
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former condition brings new problems since, given the construction of this program, we can only
tell what actions have taken place after tracking all cells over the input data.
Secondly, it might be possible to develop a program that achieves the same goals as the one set
in this thesis using a slightly different approach by using some sort of pattern recognition and
object detection to decide on spatio-temporal candidate actions. Since object detection programs
are able to detect different types of objects, we may be able to detect different behavioural patterns
as different objects. For example, a dead cell can be recognised as one using the object detection
program, thus the frames around when a living cell box is first linked to a dead cell box can be
candidates for the action cell death which can be confirmed by the action recognition program. We
could also take the appearance of new cells in the middle of the frame as a candidate for cell division.
Besides this, object detection could be used to recognise actions which involve multiple cells. For
example clustering: if we can see the entire image, a cluster of cells can more easily be recognised
than when we only look at clips of a single cell. Therefore, to recognise actions involving multiple
cells, it may be more accurate and beneficial to use the object detection part of the program to
look at these actions from a larger scale.
The use of different action detection, and object detection networks instead of Faster R-CNN and
C3D could also help in improving accuracy of the program.
In conclusion, it is probably possible to create a spatio-temporal action detection program which
properly analyzes video data of microscopic cells. The program developed as part of this thesis
was an attempt to achieve this, though we were unable to create a program accurate enough for
researching microscopic cells. Despite this, there are a lot of ways that this specific approach to
automatic action detection in cells could be improved on.
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A Results Object Tracking with Multiple Anchor Box

Scales

Below are the results shown of object tracking using an object detection model that has anchor box
scales 8, 16, 32 and 64. From the left to the right are displayed the tracking results of the model
without using optical flow, the tracking results of the model using optical flow, the ground truth
paths of the cells stored as truth values in the data set and a single frame of the input data.
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B Results Complete Program

Output when certain data sets are put through the entire program

PhC-C2DL-PSC-01.txt

cellid: 201

action: clustering

frame: 20

coordinates: 162, 347

action: clustering

frame: 24

coordinates: 165, 350

cellid: 20

action: clustering

frame: 71

coordinates: 203, 311

action: clustering

frame: 45

coordinates: 204, 316

cellid: 269

action: clustering

frame: 19

coordinates: 233, 350

cellid: 571

action: clustering

frame: 2

coordinates: 171, 350

action: clustering

frame: 9

coordinates: 172, 353

cellid: 1655

action: clustering

frame: 4

coordinates: 166, 355

action: clustering

frame: 9

coordinates: 165, 355

cellid: 3065

action: clustering

frame: 1

coordinates: 174, 227

DIC-C2DH-HeLa-02.txt

cellid: 3

action: cell division

frame: 25

coordinates: 181, 197

cellid: 2
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action: cell division

frame: 25

coordinates: 336, 213

cellid: 6

action: cell division

frame: 28

coordinates: 141, 264

cellid: 1

action: cell division

frame: 53

coordinates: 307, 442

cellid: 77

action: clustering

frame: 11

coordinates: 34, 329

cellid: 85

action: cell division

frame: 1

coordinates: 384, 134

cellid: 28

action: cell division

frame: 32

coordinates: 202, 472

cellid: 0

action: cell division

frame: 49

coordinates: 424, 304

cellid: 4

action: clustering

frame: 25

coordinates: 92, 42

action: cell division

frame: 53

coordinates: 95, 64

cellid: 7

action: cell division

frame: 24

coordinates: 418, 157

action: cell division

frame: 55

coordinates: 433, 123
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