
Opleiding Informatica

Optimizing AES for RISC-V Cores

Imke van Ooijen

Supervisors:
Todor Stefanov & Abolfazl Sajadi

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 28/07/2024

www.liacs.leidenuniv.nl

Abstract

The PROACT project, a collaboration between Leiden University, Radboud University, and
Riscure, aims to enhance physical attack resistance on IoT devices by developing new silicon
chips and cryptographic algorithms, as well as optimizing existing algorithms. This thesis
presents an optimized implementation of the Advanced Encryption Standard (AES) encryption
and decryption algorithm for the PROACT chip, which features 32-bit RISC-V Ibex cores.
The implementation in C completes encryption in 1218 clock cycles, which is only 3.4% slower
than the existing assembly implementation while offering improved readability, portability, and
extensibility. Furthermore, it extends the functionality by including decryption functionalities,
as well as cipher block chaining (CBC) and counter (CTR) modes of operation. A 10%
performance improvement was achieved in CTR mode through known optimization techniques
from the literature. Additionally, a graphical user interface has been developed to facilitate
testing and further research on the PROACT chip.

Contents

1 Introduction 1
1.1 Contributions . 2
1.2 Thesis overview . 2

2 Related Work 3

3 Background 4
3.1 The Advanced Encryption Standard . 4
3.2 The RISC-V ISA . 10
3.3 Main PROACT chip hardware components . 10

4 Methodology 12
4.1 Overview . 12
4.2 Single-block encryption implementation . 12
4.3 Complete AES implementation . 15
4.4 Compilation . 17
4.5 Experimental setup . 17

5 Experimental Results 19
5.1 Single-block encryption . 19
5.2 Complete AES implementation . 25
5.3 Verification on the PROACT chip prototype . 31

6 Discussion 34
6.1 Evaluation of key findings . 34
6.2 Applications and implications . 35
6.3 Limitations . 36
6.4 Conclusion . 36

References 38

A PROACT Chip GUI User Manual 39
A.1 Requirements and setup . 39
A.2 Usage . 39
A.3 Notes on developing experiments for the PROACT Chip GUI 41

B AES Implementation Code 43
B.1 Code repository structure . 43
B.2 Instructions to run experiments . 43

1 Introduction

Due to the rapid growth of the Internet of Things (IoT), an increasing amount of devices use
the internet to communicate, which also increases the need for adequate protection mechanisms
for these devices. Physical Attack Resistance of Cryptographic Algorithms and Circuits with
Reduced Time to Market (PROACT) is a collaborative research project including Leiden University,
Radboud University and Riscure that aims at developing new silicon chips and algorithms that
enhance the protection against physical attacks on IoT devices. An example of a physical attack
is a side-channel power analysis attack [RD20], where the power consumption of a device that is
performing cryptographic operations is monitored. The collected data can be used to infer the
private encryption key, which can lead to privacy violations. To identify the possibility and prevent
attacks like these, researchers within the PROACT project have been developing a silicon chip
that facilitates the collection of power traces in order to analyze side-channel power leakage. The
prototype of this chip features two RISC-V 32-bit Ibex cores [Saj23]. One core serves as a controller
to set up a wide range of experiments on the chip, while the other is dedicated to executing
cryptographic algorithms that are part of the experiments. Each core is equipped with a separate
64 KB data and instruction memory.

This thesis focuses on developing an Advanced Encryption Standard (AES) [NIS01a] encryption
and decryption software implementation optimized for the PROACT chip, featuring cipher block
chaining and counter mode as modes of operation. The AES algorithm has been one of the most
widely used encryption algorithms since it became the standard in 2001 [NIS01b]. Considering that
the PROACT chip will mainly be concerned with running cryptographic algorithms, it is important
that there is an AES implementation which efficiently utilizes the available resources on this chip.

The designers of the AES algorithm themselves described an efficient implementation on 32-bit plat-
forms using look-up tables. While offering performance improvement, table-based implementations
are generally vulnerable to cache-based timing attacks [Ber05, BM06]. However, the PROACT chip
does not have a data cache and is thus assumed to be excluded from this vulnerability. Therefore,
this work employs a table-based AES approach. An optimized implementation of AES encryption for
the RISC-V instruction set architecture has been proposed in [Sto19]. However, this implementation
was developed using RISC-V assembly for a key size of 128 bits and does not feature any modes of
operation. While developing encryption algorithms using assembly code can be very efficient in
terms of performance, such implementations lack the readability, maintainability, portability, and
expandability that is offered by using higher-level languages like C. In addition to this advantage of
high-level languages, modern compilers have advanced capabilities for optimizing code during the
compilation stage. Therefore, this thesis explores the possibilities of developing AES encryption in
C while maintaining a performance comparable to that of the assembly implementation. Efforts
are made to write C code in a manner that allows the compiler to recognize certain optimizations,
thereby generating more efficient assembly code. Based on the difference in the performance of the
implementations, the decryption and modes of operation are implemented and optimized in either
RISC-V assembly or C. The performance of the implementations is measured in clock cycles on an
Ibex emulator and is verified on the PROACT chip prototype on an FPGA board.

1

1.1 Contributions

The two main contributions of this thesis are:

• A C-based implementation of AES encryption and decryption featuring cipher block chaining
and counter mode, optimized for the PROACT chip. This implementation can also be used
for other RISC-V-based platforms that do not feature a data cache.

• A graphical user interface that enables the user to experiment with cryptographic algorithms
on the PROACT chip by providing their source code and the data to encrypt or decrypt.
This user interface is beneficial for further research and development on the PROACT chip.

1.2 Thesis overview

Section 2 gives an overview of the research that has already been conducted in this field. Section 3
explains the functionality of the AES algorithm and provides the specifications of the RISC-V
ISA and the PROACT chip. In Section 4, the methodology to develop and optimize the AES
implementation is discussed. Section 5 describes and interprets the results of the experiments.
Section 6 summarizes the key findings and limitations of this work and offers concluding remarks.

This bachelor thesis is supervised by Dr. T.P. Stefanov and Mr. A. Sajadi at the Leiden Institute
of Advanced Computer Science. The source code for the developed AES implementations and the
graphical user interface is available at https://git.liacs.nl/s3293912/bachelor_thesis.

2

https://git.liacs.nl/s3293912/bachelor_thesis

2 Related Work

Since the Rijndeal block cipher [DR02] was announced as the AES, research efforts have been di-
rected towards optimizing the algorithm in various contexts. This section offers an overview of these
efforts while also highlighting the scarcity of studies specifically focused on RISC-V architecture.

Efficient AES implementations for ARM-based platforms are discussed in [OBSC10] and [ABM04].
While both the ARM and the RISC-V ISA employ a reduced instruction set, the former is more
elaborate. For example, the ARM ISA provides instructions to shift or rotate data before it is
processed without any penalty to the number of instruction cycles. The proposed implementations
make heavy use of these instructions, that are not supported by the RISC-V ISA. Thus, these
optimizations can not be directly translated to the target RISC-V ISA of this work.

A general optimization technique which can be applied to AES-CTR implementations is counter-
mode caching, where values that are unchanged between multiple blocks are saved and reused.
This technique was first introduced for the eSTREAM AES implementation [Wu07]. The authors
of [PL18] developed this technique further and claim a performance improvement of 15%–20% for
table-based AES. Their test environments are more advanced compared to the PROACT chip
prototype. On the low-resource Ibex cores that are used in this work, the proposed techniques lead
to a 10% improvement in performance.

Little research has been done into optimizing the AES algorithm specifically for the RISC-V ISA.
In [BS08], several architecture-dependent techniques are discussed to optimize the table-based AES
implementation by reducing the number of instructions. However, most of these techniques can not
be used for the limited instruction set of the RISC-V architecture. In [Sto19], the proposed baseline
implementation and the applicable optimization techniques are applied to develop the first AES
encryption implementation optimized for the RISC-V architecture. However, as mentioned in the
introduction, this implementation features neither decryption nor modes of operation. Furthermore,
readability, maintainability, portability, and extensibility are sacrificed by using assembly code
instead of a higher-level language. The optimized assembly implementation has been translated into
C [CJL+20], but due to the literal translation approach that was taken to perform this translation,
only a slight improvement is provided in the listed shortcomings of the assembly code. On the
contrary, this thesis focuses on maintaining the benefits of high-level programming languages and
extending the existing partial implementations into complete AES implementations.

Research on non-table-based AES is conducted in [AP20], setting new bit-sliced AES speed records
for the RISC-V ISA. However, the bit-sliced implementation is still slower compared to the table-
based approach. Since the PROACT chip does not have a cache, this work explores the possibilities
of using a table-based approach to achieve greater efficiency.

3

3 Background

This section gives an overview of the relevant background for this thesis. Its primary focus lies on
the AES algorithm, discussing the functionality of both the encryption and decryption ciphers,
along with the key expansion process. It also explores implementation aspects, including the use of
look-up tables, and examines two modes of operation. The end of the section focuses on the main
hardware components of the PROACT chip, providing information on the RISC-V Instruction Set
Architecture and the Ibex cores that are used in the PROACT chip.

3.1 The Advanced Encryption Standard

The Advanced Encryption Standard, as described in the FIPS publication [NIS01a], is a symmetric
block cipher that operates on blocks with a size of sixteen bytes, which are structured as a two-
dimensional, column-major array with four rows. This array is denoted as the state array or solely
the state (see Figure 1). The size of the key can be specified to be 128, 192, or 256 bits, where a
larger key size offers a higher level of security. The process of expanding the key into different round
keys is called key expansion and is explained in Section 3.1.1. The number of rounds (Nr) of the
cipher is dependent on the size of the key, where for key sizes of 128, 192, and 256 bits, the number
of rounds is 10, 12, and 14, respectively. At the start of each encryption process, the first round key
is added to the state (AddRoundKey). After this, four mathematical operations are performed on the
state in each round: SubBytes, ShiftRows, MixColumns and AddRoundKey. These mathematical
operations treat the bytes in the state as polynomials in the field GF (28). Knowledge of this field
is not necessary to understand the overall behaviour of the algorithm and is therefore not discussed
in detail. The key point is that addition and multiplication operate differently for numbers in this
field.

Figure 1: The plaintext input of 16 bytes is mapped into a four-by-four array called the
state [NIS01a].

Listing 1 shows the pseudocode for the encryption of one block of plaintext. The four round
operations, that are represented as function calls in the pseudocode, and their inverses are specified
as follows:

1. SubBytes: each byte is substituted by a byte specified in the substitution table (S-box). This
operation can be inverted by using the inverse of the S-box as the substitution table.

2. ShiftRows: the three bottom rows of the state array are cyclically shifted to the left by a
specified offset, where the offset is equal to the row number. This means that the top row

4

(denoted as row 0) is not shifted, row 1 is cyclically shifted with one byte to the left, etc. This
operation can be inversed by shifting the rows to the right with the same offset.

3. MixColumns: each column is multiplied by a fixed polynomial in the field of GF (28). This
multiplication can be described as a matrix multiplication, where Si,j are the bytes of a
column j in the state and S ′

i,j are the bytes of the same column in the state after the matrix
multiplication is performed:

S ′
0,j

S ′
1,j

S ′
2,j

S ′
3,j

 =

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

×

S0,j

S1,j

S2,j

S3,j

 (1)

Note that after this transformation, each byte S ′
i,j of column j will consist of a combination

of bytes S0,j, S1,j, S2,j and S3,j of column j before the transformation. The MixColumns

operation is left out in the last round. The inverse of this operation is similar, but the matrix
shown in Equation (2) is used for the multiplication. Note that the entries in this matrix are
hexadecimal values.

0E 0B 0D 09
09 0E 0B 0D
0D 09 0E 0B
0B 0D 09 0E

 (2)

4. AddRoundKey: In the field of GF (28), addition is specified as a bitwise exclusive-or operation.
Therefore, the AddRoundKey operation performs a bitwise XOR with the state and the round
key. Since an XOR operation can be inversed by performing the same XOR operation again,
the inverse for the AddRoundKey operation is identical to the regular operation.

1 Cipher(State, RoundKey) {

2 AddRoundKey(State, RoundKey, 0);

3
4 for (i = 1; i < Nr; i += 1) {

5 SubBytes(State);

6 ShiftRows(State);

7 MixColumns(State);

8 AddRoundKey(State, RoundKey, i);

9 }

10
11 SubBytes(State);

12 ShiftRows(State);

13 AddRoundKey(State, RoundKey, Nr);

14 }

Listing 1: Pseudocode for the encryption of one block of plaintext.

5

3.1.1 Key expansion

The process of generating Nr + 1 round keys from the original cipher key is called key expansion.
Let RoundKey be the array of words in which the expanded key is stored. Let Nk denote the number
of words in the original key, so Nk = 4 for a key size of 128 bits. The formula below shows how the
word RoundKeyi is generated. In this formula, Sub is the per-byte substitution of the word with the
values stored in the S-box. Rotate is a cyclic left-shift of the bytes in a word. Lastly, Rcon denotes
an array of round constants. It can be seen that the key for the first Nk words is the same as the
cipher key. After that, the words in the round key are built from previous words.

RoundKeyi =

Keyi i < Nk

RoundKeyi−Nk⊕
Sub(Rotate(RoundKeyi−1)⊕ Rcon[i/Nk]) i ≥ Nk, i ≡ 0 (mod Nk)

RoundKeyi−Nk ⊕ Sub(RoundKeyi−1) i ≥ Nk,Nk = 6, i ≡ 4 (mod Nk)

RoundKeyi−Nk ⊕ RoundKeyi−1 otherwise

3.1.2 Decryption

The cipher can be inversed by applying the inverse of the four round operations in the opposite order
(AddRoundKey, InvMixColumns, InvShiftRows, InvSubBytes). Listing 2 shows the pseudocode for
this straightforward method of decryption. Note that InvMixColumns is now absent in the first
round and an additional AddRoundKey operation is performed after the last round. Both the ci-
pher and inverse cipher use the same round keys but the inverse cipher applies them in opposite order.

1 InvCipher(State, RoundKey) {

2 AddRoundKey(State, RoundKey, Nr);

3 InvShiftRows(State);

4 InvSubBytes(State);

5
6 for (i = Nr - 1; i > 0; i -= 1) {

7 AddRoundKey(State, RoundKey, i);

8 InvMixColumns(State);

9 InvShiftRows(State);

10 InvSubBytes(State);

11 }

12
13 AddRoundKey(State, RoundKey, 0);

14 }

Listing 2: Pseudocode for the straightforward decryption of one block of ciphertext.

Apart from this straightforward method of decryption, the standard specifies an equivalent de-
cryption method which preserves the order of the round operations from the encryption algorithm.
Preserving the general structure of the cipher can be beneficial for optimizing the implementa-
tion. For example, this structure is needed to implement decryption using look-up tables (see

6

Section 3.1.3). It should be clear that the order of InvShiftRows and InvSubBytes can be reversed,
since InvSubBytes operates on individual bytes and InvShiftRows does not affect individual bytes.
The operations InvMixColumns and AddRoundKey can also be reversed if the round keys are changed
accordingly. InvMixColumns is a linear operation and for any linear operation f , it holds that
f(x⊕ y) = f(x)⊕ f(y). Thus, the order of the two operations can be reversed if InvMixColumns is
applied to each of the round keys, except for the first and the last one. The restructured equivalent
decryption algorithm is shown in Listing 3. Notice that apart from rearranging the order of the
operations, the first InvShiftRows and InvSubBytes operations have been moved inside the loop
and the last InvShiftRows and InvSubBytes have been moved outside the loop so that the struc-
ture of the rounds and final round for the decryption algorithm is identical to the structure of the
rounds and final round of the encryption algorithm.

1 EqInvCipher(State, EqRoundKey) {

2 AddRoundKey(State, EqRoundKey, Nr);

3
4 for (i = Nr - 1; i > 0; i -= 1) {

5 InvSubBytes(State);

6 InvShiftRows(State);

7 InvMixColumns(State);

8 AddRoundKey(State, EqRoundKey, i);

9 }

10
11 InvSubBytes(State);

12 InvShiftRows(State);

13 AddRoundKey(State, EqRoundKey, Nr);

14 }

Listing 3: Pseudocode for the decryption of one block of ciphertext using the equivalent
decryption method.

3.1.3 Implementation using look-up tables

The designers of the block cipher describe an efficient implementation of AES on 32-bit plat-
forms [DR02, Ch. 4.2]. Research has shown that table-based implementations are generally vulnera-
ble to cache-based timing attacks [Ber05, BM06], where the key can be inferred by analyzing the
timing delays of accessing table elements that are stored in different cache levels. However, the
PROACT chip does not have a cache and is therefore assumed to be immune to attacks based on
this vulnerability.

The table-based implementation significantly reduces execution time by combining the SubBytes and
MixColumns steps into look-up table operations. Using basic linear algebra, the matrix multiplication
for a single column shown in Equation (1) can be written as a linear combination of four vectors.
Since the matrix is fixed, each of these vectors can be precomputed for all 256 possibilities of the
coefficients after the SubBytes operation is performed on the coefficients. This creates four look-up
tables (T0, T1, T2 and T3) with 256 word-sized entries each.

7

T0[a] =

02 · sbox[a]
01 · sbox[a]
01 · sbox[a]
03 · sbox[a]

 , T1[a] =

03 · sbox[a]
02 · sbox[a]
01 · sbox[a]
01 · sbox[a]

 , T2[a] =

01 · sbox[a]
03 · sbox[a]
02 · sbox[a]
01 · sbox[a]

 , T3[a] =

01 · sbox[a]
01 · sbox[a]
03 · sbox[a]
02 · sbox[a]

(3)

The computation of the SubBytes and MixColumns step for one column of the state can now be
written as follows:

S ′
0,j

S ′
1,j

S ′
2,j

S ′
3,j

 = T0[S0,j]⊕ T1[S1,j]⊕ T2[S2,j]⊕ T3[S3,j] (4)

where S0,j . . . S3,j are the bytes of column j in the old state after ShiftRows has been performed
and S ′

0,j . . . S
′
3j

denotes the same column j in the new state.

The decryption look-up tables can be computed and applied in the same manner as the encryption
look-up tables if the equivalent decryption algorithm described in Section 3.1.2 is used. This results
in a combined size of 8 KB for the encryption and decryption look-up tables.

3.1.4 Modes of operation

The AES algorithm is a block cipher and thus only specifies how a single block of plaintext is
encrypted. A mode of operation defines how subsequent blocks of plaintext are processed such that
it is possible to encrypt data with a size larger than sixteen bytes. Five modes of operation are
recommended and described by the National Institute of Standards and Technology (NIST) to be
used in combination with AES [Dwo01]. This section briefly discusses the two modes of operation
that are relevant to this research.

In Cipher Block Chaining Mode (CBC), each block of plaintext is XOR-ed with the previous block
of ciphertext before it is encrypted. The first block of plaintext is XOR-ed with an Initialization
Vector (IV). The IV should be unpredictable, which can be achieved by initializing the IV randomly.
For decryption in this mode, the AES inverse is applied to each ciphertext block and the output is
XOR-ed with the previous ciphertext block to obtain the plaintext block. The first block is XOR-ed
with the IV after the inverse of AES has been applied. Figure 2 shows a visual representation
of this mode. To use this mode of operation, the input must be padded to a multiple of the block size.

The second mode of operation that is relevant to this research is the Counter Mode (CTR). In this
mode, a counter sequence Counter1 . . . Countern is chosen. The sequence of natural numbers is
often used for this purpose. Each counter is encrypted by the AES block cipher and produces one
output block. This output block is then XOR-ed with the plaintext block to produce the ciphertext.
Decryption is done in the same way, except that the encrypted counter is now XOR-ed with the
ciphertext block to obtain the plaintext block. See Figure 3 for a visual representation of this mode.

8

Figure 2: The CBC mode [Dwo01]

Figure 3: The CTR mode [Dwo01]

9

3.2 The RISC-V ISA

The PROACT chip features two cores that employ the open-source, royalty-free RISC-V [RIS24]
Instruction Set Architecture (ISA). As indicated by the name, this ISA is based on the Reduced
Instruction Set Computer (RISC) principles, that are characterized by simple instructions to
minimize execution time. The RISC-V ISA is a load/store architecture and has, in its basic imple-
mentation, 32 general-purpose registers. It uses little-endian byte ordering, which means that the
least significant byte of a word is stored at the lowest memory address. There are different variants
of the instruction set for 32-bit and 64-bit address spaces but since the Ibex cores that are used in
the PROACT chip are 32-bit cores, only the former variant is considered.

The RISC-V ISA defines the Base Integer Instruction Set (RV32I) as the minimum instruction set
that should be supported by hardware implementing the RISC-V architecture. This instruction
set features basic arithmetic and bitwise instructions in two variants: register-register and register-
immediate instructions. The latter category is indicated by placing an ‘i‘ after the instructions (e.g.
add becomes addi). Furthermore, the RV32I features control transfer instructions and instructions
to load and store words, half words and bytes. In addition to this Base Integer Instruction Set,
hardware may support one or multiple extensions. The PROACT chip supports the Standard
Extension for Integer Multiplication and Division (M) and the Standard Extension for Compressed
Instructions (C). Compressed instructions have a length of 16 bits instead of the normal 32 bits
and can therefore reduce code size.

3.3 Main PROACT chip hardware components

This thesis focuses on optimizing the AES algorithm for the PROACT chip. The main components
of the PROACT chip are two Ibex [ETH20] cores, which are 32-bit open-source RISC-V cores.
Figure 4 shows a block diagram of the Ibex core. These cores are well suited for embedded systems

Figure 4: Block diagram of the Ibex core [ETH20]

10

due to their simple design and highly parameterizable nature. One of the two cores is dedicated
to running the cryptographic algorithms, while the second one acts as a controller. Both cores on
the PROACT chip prototype have separate 64 KB data and 64 KB instruction memories. The
address space theoretically allows each memory section to be extended to 32 MB, except for the
instruction memory of the cryptographic core, which can be extended to 64 MB [Saj23]. This thesis
is concerned with the core that runs the cryptographic algorithms, with an instruction and data
memory size of 64 KB each.

As previously stated, the Ibex core is customizable in various ways. The cores that are used in the
PROACT chip support the Base Integer Instruction Set (RV32I) and are configured to support the
Integer Multiplication and Division (M) and Compressed (C) instruction extensions. The writeback
stage, branch predictor and physical memory protection (PMP) are disabled. The prefetch buffer
(using a FIFO algorithm) is enabled. Since the prefetch buffer and the instruction cache can not
be enabled at the same time, the instruction cache is disabled. The execute stage features a fast
multi-cycle multiplier, which means that the execution of an integer multiplication instruction
requires three clock cycles to complete. The integer instructions within the base instruction set
execute within a single clock cycle, whereas aligned load and store instructions on the PROACT
chip require two clock cycles to complete. Misaligned memory accesses are supported but introduce
an additional stall cycle.

11

4 Methodology

The aim of this research is to develop optimized AES encryption and decryption implementations
for the PROACT chip with the CBC and CTR modes of operation. The optimization objective is
the reduction of clock cycles required to execute these algorithms. This section provides a detailed
explanation of the approach undertaken to achieve this objective.

4.1 Overview

An optimized implementation for encrypting a single block of plaintext is written in C, using the
same algorithmic approach as the assembly implementation that is developed and optimized by
Stoffelen [Sto19], while maintaining readability and extensibility. The performance in clock cycles
of the C implementation is compared to the performance of the assembly implementation. The
assembly code generated from the C code by the compiler is examined and compared to the RISC-V
assembly implementation to ascertain how the C code can be improved. This process of measuring
the performance of the C implementation and comparing the generated assembly code to the
handwritten assembly code continues until the performance of the C implementation is comparable
to that of the assembly implementation, or until it is clear that this objective can not be reached. In
this study, ‘comparable performance‘ is defined as a margin of 5% increase in the number of clock
cycles compared to the number of clock cycles required by the assembly implementation executing
the same functionality. If comparable performance can be achieved, the key expansion, decryption
and modes of operation are be implemented in C. If this is not possible, the same components
are implemented in RISC-V assembly. To optimize AES in CTR mode, optimization techniques
proposed by Park and Lee [PL18] are employed.

4.2 Single-block encryption implementation

An AES encryption implementation featuring a key size of 128 bits is written in C to approximate
Stoffelens assembly code [Sto19], while still maintaining the benefits that are offered by using a
high-level language. Both implementations use the same algorithmic approach to AES and both
use identical look-up tables. The function that encrypts one block of plaintext is called encrypt

1 static inline void encrypt(const uint8_t *roundKey, const uint8_t *in,

2 uint8_t *out) {

3 for (int i = 0; i < 4; i++)

4 ((uint32_t *)out)[i] = ((uint32_t *)in)[i] ^ ((uint32_t *)roundKey)[i];

5
6 for (int round = 1; round < Nr; round++)

7 encrypt_round(out, roundKey, round);

8
9 encrypt_final_round(out, roundKey);

10 }

Listing 4: C-code for the encrypt function.

12

and is shown in Listing 4. The contents of the roundKey array should be computed by the function
that performs the key expansion before the encrypt function is called. The parameters in and out

correspond to pointers to the input and output arrays respectively. The assembly code loads four
bytes from the input array into the same register at once. In C, this is emulated by casting the
uint8_t pointer to a uint32_t pointer before it is dereferenced, as shown in Listing 4, line 4. Note
that each of the four words loaded from the input in this manner corresponds to a column of the state.

The function encrypt adds the first round key to the input and stores it in the output, as can be
seen in Listing 4, lines 3–4. Subsequently, the function enters a loop with Nr−1 iterations to execute
the encryption rounds (Listing 4, lines 6–7). In the loop, the out pointer is passed to the function
encrypt round(uint8 t *state, const uint8 t *roundKey, uint32 t round), where round

denotes the number of the round. Most of the computational work of the encryption algorithm
is handled within this function. Listing 5 shows the pseudocode for it. In reality, the inner loop
of the encrypt round function (lines 6–18) is unrolled and the array tempa declared in line 2 is
replaced by four distinct variables to improve performance. The castings from uint8_t pointers
to uint32_t pointers for the state and roundKey parameters are omitted in the pseudocode. All

1 static inline void encrypt_round(state, roundKey, round) {

2 tempa[4] = {roundKey[4 * round], roundKey[4 * round + 1],

3 roundKey[4 * round + 2], roundKey[4 * round + 3]};

4
5 for (int i = 0; i < 4; i += 1) {

6 for (int j = 0; j < 4; j += 1) {

7 // Shift rows with offset i.

8 // The rows are shifted to the right because RISC-V is little-endian.

9 temp = state[(j + i) % 4];

10
11 // Extract byte i from the column.

12 // This is the index into the look-up table.

13 LUT_i = (temp >> (i * 8)) & 0xff;

14
15 // Index into the look-up table and XOR this value with the previous

16 // result. Note that this is the round key in the first iteration.

17 tempa[j] ^= TableEncrypt[(LUT_i * 4) + i];

18 }

19 }

20
21 // Store the result back into the state

22 for (int i = 0; i < 4; i++) {

23 state[i] = tempa[i];

24 }

25 }

Listing 5: Pseudocode for the encrypt round function.

13

variables and arrays, except for the loop variables, should be interpreted as variables and arrays
of the type uint32_t. The four look-up tables as described in Equation (3) are combined into
one large look-up table (TableEncrypt), where the elements with the same indices in different
tables are stored adjacent to each other, in the following order: T2[0], T0[0], T1[0], T3[0], . . . ,
T2[255], T0[255], T1[255], T3[255]. By positioning T2[i] as the first word in each group of four words,
the first byte of each group of sixteen bytes can be readily extracted to form the S-box. The actual
encrypt round function features logic to add the correct offset to the look-up table index instead
of adding the loop index i.

Equation (4) shows how the SubBytes and MixColumns operations can be combined using look-up
tables. While the formula implies separate calculations for each column, it is evident that an
alternative approach is also possible: computing all values that use T0 first, followed by those
using T1, and so forth, with the intermediate results stored in four temporary variables. This is
the approach taken in the assembly implementation and the same approach is employed in the
C implementation. The AddRoundKey operation is performed by XOR-ing the results of the first
iteration of the outer for-loop with the round key for the corresponding round, as shown in Listing 5,
line 17. Once the computation for one round is completed, the temporary variables are stored back
into the state. This operation is performed in Listing 5, lines 22–24.

1 static inline void encrypt_final_round(state, roundKey, round) {

2 tempa[4] = {roundKey[4 * round], roundKey[4 * round + 1],

3 roundKey[4 * round + 2], roundKey[4 * round + 3]};

4
5 for (int i = 0; i < 4; i += 1) {

6 for (int j = 0; j < 4; j += 1) {

7 // Shift rows with offset i.

8 temp = state[(j + i) % 4];

9
10 // Extract byte i from the column. This is the index into the S-box.

11 LUT_i = (temp >> (i * 8)) & 0xff;

12
13 // Retrieve the S-box value and shift the extracted byte to the

14 // correct position. XOR the value with the previous result.

15 tempa[j] ^= (TableEncrypt[LUT_i * 4] & 0xff) << (i * 8);

16 }

17 }

18
19 // Store the result back into the state

20 for (int i = 0; i < 4; i++) {

21 state[i] = tempa[i];

22 }

23 }

Listing 6: Pseudocode for the encrypt final round function.

14

After the firstNr−1 rounds have been completed inside the loop, the function encrypt_final_round
is called to perform the final round (Listing 4, line 9). The pseudocode encrypt_final_round is
shown in Listing 6. Recall that this round is the same as all previous rounds, except for the absence
of the MixColumns operation. Therefore, the implementation is similar to the encrypt_round

function, except that the S-box instead of the look-up table is indexed with the computed value
of LUT_i, as shown in line 15. This line also shows that an additional AND and shift instruc-
tion is needed to extract the first byte of the word-sized value obtained from the look-up table
and to shift this value back to the correct place in the state array. Because the AND instruc-
tion ‘masks‘ the right-most byte in the register, this operation is also referred to as a mask operation.

While the C implementation is developed to approximate the assembly implementation, some
differences are present to maintain a high-level language approach.

• All loops are unrolled in the assembly implementation. However, the C implementation uses
loops to perform the first AddRoundKey operation and to iterate over the encryption rounds.

• In the assembly implementation, the code that performs the round operations for each of
the four rows is nearly identical. These computations are combined into a loop in the C
implementation, which is the outer loop in Listing 5. Due to the use of this loop, some extra
computations need to be performed. For example, to extract the correct byte of a column to
compute the look-up table index, the 32-bit value of the column needs to be shifted i × 8
bits to the right. This multiplication is not present in the assembly code, as the offset can be
hardcoded when the loop is unrolled.

• The code that executes one encryption round is implemented in an inline function, while
this is a macro in the assembly code. This functionality is not implemented as a macro in
C, because an inline function still eliminates the function call overhead while maintaining
benefits like type-checking.

• Initially, shift operations were used in the C code for all occurrences of shift instructions in the
assembly code. However, this degraded the performance in some instances because the compiler
was not able to combine two subsequent shift instructions into one. When multiplication is
used in those instances, the compiler can combine the generated shift instructions with other
shift instructions, leading to a better performance. Thus, multiplication is used instead of
shift operations in those cases.

4.3 Complete AES implementation

The choice of the language (C or assembly) in which the key expansion, decryption and modes
of operation are implemented is dependent on the performance of the C implementation of the
encryption algorithm. In the case that the performance of the encryption implementation in C is
comparable (with a margin of 5%) to that of the assembly implementation, the AES implementation
is completed and optimized in C. Otherwise, the same is done using the RISC-V assembly.

15

4.3.1 Key expansion

The encryption algorithm’s key expansion is already present in the assembly code. If the AES
implementation is to be completed in C, the same approach as with the encryption algorithm is
applied. This means that the code is developed using the same algorithmic procedure employed
in the assembly key expansion implementation. Subsequently, the compiled C code is analyzed to
enhance its performance until it is comparable to that of the assembly code.

In Section 3.1.2, it is discussed that an adapted key expansion algorithm is required for decryption
when a table-based approach is used to implement AES. This algorithm is referred to as the
decryption or equivalent key expansion algorithm. The algorithm begins by executing the standard
key expansion process with the encryption key. Subsequently, all round keys, except for the first
and last one, are transformed by applying the MixColumns operation. Regardless of the choice of
language for the implementation of the key expansion, the MixColumns operation can be performed
similarly as it is performed in the encryption algorithm, but utilizing the decryption look-up table
instead of the encryption look-up table. An additional S-box look-up operation is also needed to
reverse the effect of the inverse S-box that is present in the decryption look-up table.

4.3.2 Decryption

Due to the use of the equivalent decryption algorithm, the implementation of the decryption is
straightforward. However, there are two notable distinctions: the round keys must be applied in
inverse order, and during the InvShiftRows operation, the rows are shifted to the right instead of
the left. Since the algorithm is not fundamentally different, our choice is to adopt the optimized
version of the encryption algorithm without any further optimizations. Note that an extra table
with 256 byte-sized entries is required to store the values of the inverse S-box for the final round
because the inverse S-box can not be directly extracted from the decryption look-up table. This will
presumably result in a slightly improved performance in the last round compared to the encryption
algorithm because the mask (AND) operation that is needed in the encryption final round to obtain
the S-box value from the look-up table is eliminated.

4.3.3 CBC mode

The implementation of cipher block chaining is relatively straightforward, as it primarily revolves
around additional XOR operations. The focus in optimizing this mode therefore lies in reducing the
number of assembly instructions. Programming this mode of operation directly in assembly would
facilitate precise control to minimize the number of instructions. If a C implementation is chosen,
the compiled C code is examined to identify redundant instructions and the C code is modified to
eliminate these instructions.

4.3.4 CTR mode

The second mode of operation that is implemented is counter mode. To optimize this mode, some
of the techniques mentioned by Park and Lee in [PL18] are applied. Recall that in CTR mode, a
counter value is encrypted and XOR-ed with the block of plaintext. The counter value is increased
by one for the next block of plaintext. In 28 − 1 of the cases, this increase only affects the last

16

byte of the counter, thereby creating the opportunity to reuse certain results from the previous
encryption of the counter. Park and Lee propose five optimizations based on this observation. Three
of the proposed optimizations are implemented and tested for performance gain. The two other
techniques that are described in the paper are only beneficial if the input size exceeds 256 blocks
(4 KB) and the speedup that is achieved with these additional optimizations is relatively small.
Therefore, our choice is to focus solely on the other three optimizations. These optimizations are:

• FACErd0: This technique optimizes the first AddRoundKey operation that is performed at the
start of the process of encrypting each block of plaintext. The first three columns of the
result state are cached and reused. This means that in most cases, only one XOR operation
is needed to compute the initial AddRoundKey operation.

• FACErd1: This optimization utilizes the fact that a change in the last byte of the CTR value
only affects the last column of the state in the first round. Therefore, the other three columns
can be cached and reused in the first round.

• FACErd2: The input block of round two is equal to the output block of round one. Therefore,
the subsequent input blocks of round two only differ from each other in the last column in
most cases. After the ShiftRows operation is performed, each column of the state contains
exactly one byte that is different from the previous block computation. This difference will
have spread throughout the whole state by the end of round two. However, intermediate
calculation results of the MixColumns and AddRoundKey operations can still be cached and
reused since three of the four bytes in each column are identical to those of the previous block
after the ShiftRows operation.

4.3.5 Expansion to larger key sizes

Regardless of whether the C implementation reaches comparable performance to the assembly
code, it is expected that the C implementation still has a slightly lower performance. Should the
AES implementation be completed in C, the algorithm is extended to support key sizes of 192
and 256 bits to demonstrate the advantage of the flexibility that is provided by programming in a
higher-level language. These larger key sizes provide a higher level of security compared to a key
size of 128 bits.

4.4 Compilation

Cross-compilation for RISC-V is achieved using the rv32imc GCC toolchain. The RISC-V ISA
that is used in the PROACT chip (RV32IMC) can be configured with the compilation options
-march=rv32imc -mabi=ilp32. All code is compiled with the optimization option -O3 enabled to
optimize for execution speed.

4.5 Experimental setup

During the process of developing the optimized AES implementations, the performance is measured
in clock cycles with Simple System1, which uses Verilator to emulate an Ibex based system. This

1See https://github.com/lowRISC/ibex/tree/master/examples/simple_system for more information about
Simple System.

17

https://github.com/lowRISC/ibex/tree/master/examples/simple_system

emulator is also used to verify the correctness of the implementations against the AES test vectors
provided by NIST [NIS01a]. Simple System can be configured to use different Ibex configurations.
The provided ‘simple‘ configuration matches the configuration of the Ibex cores that are integrated
into the PROACT chip. Simple System provides functions to reset, enable and disable the per-
formance counters. Measuring the performance of a function encrypt can be done as shown in
Listing 7. The statements to enable and disable the performance counters are placed around the
function call in all experiments. This means that the overhead of the function call is also measured,
which is a realistic scenario for the use of external functions.

1 int main() {

2 pcount_enable(0);

3 pcount_reset();

4
5 // Some code ...

6
7 pcount_enable(1);

8 encrypt();

9 pcount_enable(0);

10
11 // Some more code ...

12
13 return 0;

14 }

Listing 7: Example of performance measurement with Simple System.

Once the process of developing the optimized AES implementations is completed, the performance
results and cryptographic correctness of the implementations are verified on the PROACT chip
prototype using the PYNQ-Z2 FPGA development board [Xil20]. A graphical user interface is
developed to enhance the efficiency of this process and to aid further research and development on the
PROACT chip. The implementation of this graphical user interface is based on the implementation
of a basic user interface that has already been developed for this chip [Saj23]. However, the previous
interface requires the user to have an understanding of the specific design of the PROACT chip,
whereas the new interface enables the user to supply their encryption algorithm written in C or
RISC-V assembly and test this implementation on the chip without specifying any additional
details. A user manual for the new graphical user interface can be found in Appendix A.

18

5 Experimental Results

The results of the analysis of the instructions present in the compiled C code of the AES encryption
implementation are presented in Section 5.1. Optimizations based on this analysis are explained
along with the performance results. The final version of the C encryption implementation reaches
a comparable performance to the assembly implementation. Thus, the AES implementation is
completed in C. Implementation details and performance results for the completed AES implemen-
tation are provided in Section 5.2. Lastly, Section 5.3 presents the results that are obtained on the
PROACT chip prototype.

5.1 Single-block encryption

Single-block encryption is implemented in C as explained in Section 4.2. This implementation is
referred to as the C implementation with optimization level 0 (opt 0). Based on the insights gained
in the analysis of this implementation, a new version of the encryption algorithm has been written,
which is referred to as the implementation with optimization level 1 (opt 1). A final version, where
the main encryption loop is unrolled, has also been implemented. This version is denoted as the
implementation with optimization level 2 (opt 2). Table 1 displays a summary of the performance
results on the Ibex emulator.

Assembly C (opt 0) C (opt 1) C (opt 2)
Clock cycles (absolute) 1121 1384 1189 1149
Clock cycles (relative to [Sto19]) 0% +23% +6.1% +2.5%

Table 1: Performance in clock cycles of single-block encryption, measured on the Ibex emulator.

5.1.1 First version

The C implementation with optimization level 0 is approximately 23% slower than the assembly
implementation. The number of instructions and the instruction types are examined to explain
this difference. Any instruction denoted as the type ‘int‘ requires one clock cycle to execute,
as well as any branch instruction that is not taken. All load and store instructions require two
clock cycles to complete. Lastly, instructions for taken branches require three clock cycles to execute.

A general examination of the compiled C code shows that all loops, except for the main loop that
iterates over the rounds, are unrolled by the compiler. The compiled C code reserves more space
on the stack to store callee-saved registers than the assembly code does. Table 2 shows how the
instructions are distributed over the code’s functionalities. The largest difference in the number of
instructions can be found within the main loop, for which a closer examination is needed.

5.1.2 Analysis of instructions per round

The compiler generates twelve additional integer instructions per encryption round to compute
the addresses for the table look-up operation compared to the assembly code. In Listing 5, the
outer loop can be seen as iterating over the rows (0 up to 3) of the state, while the inner loop

19

Instruction purpose Type Assembly C (opt 0) Total difference

Stack sw/lw 12 22 +10
int 2 2 0

Loading / creating constants int 7 5 −2
First AddRoundKey lw 8 8 0

int 4 4 0
sw 0 4 +4

Loop initialization int 0 2 +2
Encryption round lw/sw 20 24 +36
(per round) int 64 76 +108
Loop increment and compare int 0 1 +9
(per round) branch 0 1 +9
Final round lw 4 16 +12

lbu 16 4 −12
sw 4 4 0
int 76 96 +20

Table 2: The number and types of instructions for the initial single-block encryption implemen-
tation compared to the assembly implementation. In the last column, the number of instructions
executed for encrypting one block in the C implementation is compared to the number of
instructions executed for the same task in the assembly implementation.

iterates over the columns (0 up to 3) of the state. The look-up table addresses for rows 0 and 3 are
computed with three instructions in both the assembly and C code.

For the computation of the addresses for row 1, the compiled C code uses two extra instructions
per column. The computation is shown in Listing 8. Each column is right-shifted with six bits (line
4) and masked with the value 0x3fc (line 5) to extract the second byte of the original column.
Due to the structure of the combined look-up table, the value 3 is added to this result (line 6).
Lastly, the value is shifted to the left with two bits (line 7) to compute the table offset in bytes.
In the assembly code, the same result is achieved by right-shifting the column with four bits and
masking the result with 0xff0, as can be seen in Listing 9. There is no need to add the value 3 to

1 ; Pre: a1 contains column 1 of the state.

2 ; Pre: LUT contains the address of the combined look-up table.

3 ; Post: t4 contains the computed address.

4 srli t0, a1, 6

5 andi t0, t0, 0x3fc

6 addi t0, t0, 3

7 slli t0, t0, 2

8 add t4, t0, \LUT

Listing 8: Look-up table address computation for row 1 (column 0) in the encrypt round

function of the generated assembly code.

20

1 ; Pre: a1 contains column 1 of the state.

2 ; Pre: LUT3 contains the address of the fourth word in the combined look-up

3 ; table.

4 ; Post: t4 contains the computed address.

5 srli t0, a1, 4

6 andi t0, t0, 0xff0

7 add t4, t0, \LUT3

Listing 9: Look-up table address computation for row 1 (column 0) in the encrypt round

function of the written assembly code.

index the correct look-up table because the addresses to the first four words in the look-up table
are stored in registers and can therefore be directly accessed. Contrarily, the compiler does not
automatically store these addresses in registers and it also fails to combine the two shift instructions.

The compiler generates one extra instruction per column for the computation of the look-up table
addresses for row 2. Listing 10 shows this computation. Each column is right-shifted with sixteen
bits (line 5), the lowest byte is extracted with a mask (line 6) and then left-shifted with four bits to
compute the table offset (line 7). In the assembly code, the same result is achieved by right-shifting
the column with twelve bits and masking the result with the value 0xff0, as shown in Listing 11.

1 ; Pre: a2 contains column 2 of the state.

2 ; Pre: LUT contains the address of (the first word of) the combined look-up

3 table.

4 ; Post: t4 contains the computed address.

5 srli t0, a2, 16

6 andi t0, t0, 0xff

7 slli t0, t0, 4

8 add t4, t0, \LUT

Listing 10: Look-up table address computation for row 2 (column 0) in the encrypt round

function of the generated assembly code.

1 ; Pre: a2 contains column 2 of the state.

2 ; Pre: LUT0 contains the address of the first word in the combined look-up

3 ; table.

4 ; Post: t4 contains the computed address.

5 srli t0, a2, 12

6 andi t0, t0, 0xff0

7 add t4, t0, \LUT0

Listing 11: Look-up table address computation for row 2 (column 0) in the encrypt round

function of the written assembly code.

Apart from the extra integer instructions that are generated for each round, the compiler generates
four extra store instructions to store the new state at the end of each round. This is also the

21

case after the first AddRoundKey operation. These instructions are unnecessary, as computation
continues in the new round with the same register values that were just stored, and the registers
are once again stored in the same locations.

5.1.3 Analysis of instructions in the final round

Table 2 shows that the compiled C code contains twenty additional integer instructions to com-
plete the final round. As is the case with the rounds of the main loop, the number of additional
instructions differs per row. The number of instructions in the compiled C code and the assembly
code is the same for the computation of the values in row 3.

One additional shift instruction per column is generated by the compiler for the computation of
the values for row 0. The code for the computation of ShiftRows and SubBytes for a column of
row 0 can be seen in Listing 12. Note that the ShiftRows operation does not have any effect on
row 0. The compiled C code shifts the column value to the left with two bits (line 4), masks the
value with 0x1fe to extract the last byte of the column (line 5) and shifts the value to the left
again to compute the table offset in bytes (line 6). Note that the value is not first masked and
then shifted to the left with four bits, even though the compiler does generate this version for the
encrypt_round function. This can be explained by the fact that code within loops is generally
subject to stricter optimization compared to code outside of loops. The assembly code combines
the two shift instructions, as shown in Listing 13. Both the assembly and the C implementations
use the lbu (load byte unsigned) instruction to eliminate the need for any masking that would
otherwise be required to extract the correct byte from the obtained word.

1 ; Pre: a0 contains column 0 of the state.

2 ; Pre: LUT contains the address of the combined look-up table.

3 ; Post: t0 contains the obtained S-box value.

4 slli t0, a0, 2

5 andi t0, t0, 0x1fe

6 slli t0, t0, 2

7 add t4, t0, \LUT

8 lbu t0, (t4)

Listing 12: computation of (ShiftRows and) SubBytes for row 0 (column 0) in the
encrypt final round function of the generated assembly code.

1 ; Pre: a0 contains column 0 of the state.

2 ; Pre: LUT contains the address of the combined look-up table.

3 ; Post: t0 contains the obtained S-box value.

4 slli t0, a0, 4

5 andi t0, t0, 0xff0

6 add t4, t0, \LUT

7 lbu t0, (t4)

Listing 13: computation of (ShiftRows and) SubBytes for row 0 (column 0) in the
encrypt final round function of the written assembly code.

22

To compute the look-up table addresses for rows 1 and 2, the compiled C code follows the same
procedure as it does for row 0, except for the obvious difference in the number of bytes that the
column is shifted. Listing 14 displays an example for row 1. The value stored at the computed
address is loaded with a lw instruction, as shown in line 10. After this, the value is shifted and
masked (lines 11 and 12) to extract the desired byte at the correct place. The assembly code uses
one instruction less for address computation, as explained for row 0. Additionally, the need for a
final mask operation is eliminated through the use of a lbu instruction instead of a lw instruction,
which can be seen in Listing 15, line 8.

1 ; Pre: a1 contains column 1 of the state.

2 ; Pre: LUT contains the address of the combined look-up table.

3 ; Pre: C contains the value 0xffff.

4 ; Post: t0 contains the obtained S-box value, shifted to the correct place

5 ; in the column.

6 srli t0, a1, 6

7 andi t0, t0, 0x1fe

8 slli t0, t0, 2

9 add t4, t0, \LUT

10 lw t0, (t4)

11 slli t0, t0, 8

12 and t0, t0, \C

Listing 14: computation of ShiftRows and SubBytes for row 1 (column 0) in the
encrypt final round function of the generated assembly code.

1 ; Pre: a1 contains column 1 of the state.

2 ; Pre: LUT contains the address of the combined look-up table.

3 ; Post: t0 contains the obtained S-box value, shifted to the correct place

4 ; in the column.

5 srli t0, a1, 4

6 andi t0, t0, 0xff0

7 add t4, t0, \LUT

8 lbu t0, (t4)

9 slli t0, t0, 8

Listing 15: computation of ShiftRows and SubBytes for row 1 (column 0) in the
encrypt final round function of the written assembly code.

5.1.4 Optimizations and second version

The assembly code utilizes the fact that the right shift to extract a specific byte from the column
and the left shift that is needed to compute the table offset in bytes can be combined if the
appropriate mask is used. Simply rearranging the order of the operations so that the two shift
operations are subsequent to each other in the C code does not help the compiler recognize the
possibility of combining the shift operations. However, the table offset can be directly computed
in bytes if the uint32_t pointer to the encryption table is cast to a uint8_t pointer. After

23

the offset has been added to the look-up table address, the value is cast back to a uint32_t

pointer to access the look-up table value. Note that the approach for row 0 is slightly different
from the other rows because the value needs to be shifted to the left instead of to the right.
While this introduces the need for a case distinction within the loop that iterates over the rows, it
does not lead to the execution of additional instructions because the loop is unrolled by the compiler.

In the final round, performance can also be improved if the address of the look-up table value is
directly computed in bytes. Contrary to the other rounds, the obtained pointer is not cast to a
uint32_t pointer but is used to extract a single byte from the table. If this approach is employed,
the compiler generates a lbu instruction instead of a lw instruction to load the look-up table value,
eliminating the need for an additional mask operation. After the look-up table value has been
obtained, it is cast back to a uint32_t variable and shifted to place the extracted byte at the
desired place in the register.

The dead stores that are present at the end of each round can be eliminated by storing the state in
a local array at the beginning of the encrypt function and passing the pointer to this local array
to the encrypt_round function instead of directly passing the out parameter, as initially explained
in Section 4.2. The inability of the compiler to eliminate the dead stores without this local array
can be explained by observing that any changes to the memory location out have an impact on the
global state of the program. If concurrent behaviour that would access the same memory location
is present in the program, eliminating the stores in the function encrypt could lead to incorrect
results. It should be noted that even though using a local array to store the state improves the
performance for the encryption of a single block, this optimization can work conversely for modes of
operation like CTR mode, where a local array is already used within the mode to store the counter
that is passed to the encryption function.

The improved version (optimization level 1) requires 1189 clock cycles to encrypt a single block
of plaintext, which is approximately 6.1% more than the assembly code. Table 3 shows the new
distribution of the number of instructions and their types. The implemented optimizations are
successful in reducing the number of instructions for the encryption rounds and the final round.
The dead stores in the first AddRoundKey operation are also eliminated.

5.1.5 Further optimizations and final version

The remaining difference in the performance of the assembly code and the C code can be attributed
to the loop overhead, the slightly larger number of callee-saved registers that are used during
encryption and a difference in the way that the addresses for the four look-up tables are computed
(these are referred to as constants in Table 3). The loop overhead can be eliminated by unrolling the
main loop. The implementation with optimization level 2 features this optimization and requires
1149 clock cycles for the encryption of a single block, which is only 2.5% more than the assembly code.

The performance of the C implementation can be improved even further. Each of the three table
addresses that are not directly passed to the encrypt function is loaded once at the beginning of
the function with a la (load address) instruction. This is a pseudo instruction and translates to
two integer instructions. However, these addresses can be computed with one integer instruction

24

Instruction purpose Type Assembly C (opt 1) Total difference

Stack sw/lw 12 26 +14
int 2 2 0

Loading / creating constants int 7 10 +3
First AddRoundKey lw 8 8 0

int 4 4 0
Loop initialization int 0 2 +2
Encryption round lw 20 20 0
(per round) int 64 64 0
Loop increment and compare int 0 1 +9
(per round) branch 0 1 +9
Final round lw 4 4 0

lbu 16 16 0
sw 4 4 0
int 76 76 0

Table 3: The number and types of instructions for the single-block encryption implementation
with optimization level 1 compared to the assembly implementation. In the last column, the
number of instructions executed for encrypting one block in the C implementation is compared
to the number of instructions executed for the same task in the assembly implementation.

by adding the offsets (four, eight or twelve bytes) to the starting address of the combined look-up
table. The code has not been modified to support this optimization because it would not lead to a
significant performance gain.

There is no straightforward way to decrease the number of callee-saved registers that are used
during encryption in the C code, because this is mainly determined by the register scheduling
algorithm of the compiler. However, the overhead that is produced by the additional load and
store instructions is small. Moreover, once modes of operation are incorporated into the code, the
overhead will be further reduced. The reason for this is that multiple blocks are encrypted within
one function call, while stack-related instructions are executed only once.

5.2 Complete AES implementation

Since the performance difference between the C implementation with optimization level 2 and the
assembly implementation is within the previously established margin (5%), the performance of the
C code is comparable to the performance of the assembly code. Therefore, the AES implementation
is completed in C.

5.2.1 Encryption key expansion

The encryption key expansion algorithm has been implemented in C as explained in Section 4.3.1.
This implementation is referred to as the encryption key expansion with optimization level 0.
Similarly to the single-block encryption implementations, there are two optimized versions of this

25

algorithm (optimization levels 1 and 2). Table 4 displays a summary of the performance results of
the different key expansion implementations.

Assembly2 C (opt 0) C (opt 1) C (opt 2)
Clock cycles (absolute) 410 497 443 424
Clock cycles (relative to [Sto19]) 0% +21% +8.0% +3.4%

Table 4: Performance in clock cycles of the encryption key expansion process, measured on the
Ibex emulator.

Optimization level 0 The algorithmic approach taken in the assembly code is employed to
develop the C code with optimization level 0, but a loop is introduced to iterate over the key
expansion rounds. Another difference between the two implementations is that the original key
is copied into the first four words of the round keys array in the C implementation, whereas this
has to be done by the user in the assembly implementation. The C implementation requires 497
clock cycles to complete the key expansion, which is approximately 21% more than the assembly
implementation. Table 5 shows the distribution of the number and types of the instructions of the
assembly and compiled C code. The four additional sw instructions that are needed to store the
original key in the round keys array are not considered in the table. The table visualizes that the
code for the actual computation of the round keys uses nearly the same quantity and types of
instructions in both the compiled C code and the assembly code. One additional lbu instruction
for each key expansion round is required by the C code to load the round constants. These round
constants can be hardcoded in the assembly implementation because the loop that iterates over the
key expansion rounds is unrolled.

Instruction purpose Type Assembly C (opt 0) Total difference

load key lw 4 7 +3
loading/creating constants int 4 4 0
loop overhead (once) int 0 5 +5
loop overhead (per round) int 0 2 +20

branch 0 1 +10
round (per round) int 23 23 0

sw 4 4 0
lbu 4 5 +10

Table 5: The number and types of instructions for the encryption key expansion implementation
with optimization level 0 compared to the assembly implementation. In the last column, the
number of instructions executed for the complete key expansion process in the C implementation
is compared to the number of instructions executed for the same task in the assembly implemen-
tation.

2The C implementation of the key expansion algorithm copies the original key into the first sixteen bytes of the
round keys array. This operation is not present in the assembly implementation and would require eight additional
clock cycles.

26

Optimization level 1 The loop overhead accounts for the largest difference in performance,
which can be eliminated by unrolling the loop. Note that this would also discard the need for the
additional lbu instruction. In the implementation with optimization level 1, the main loop has
been unrolled. This new implementation requires 443 clock cycles to compute all round keys. A
difference of 72 clock cycles is expected (25 for integer instructions, 27 for taken branches and 20 for
the lbu instructions), but only a difference of 54 clock cycles is found. An analysis of the compiled
C code shows that there are nineteen extra slli instructions present in the key expansion function.
Similar to the encrypt function, the compiler does not manage to combine a shift instruction in
the C code with the shift instruction that is needed to compute the S-box table offset in bytes,
leading to the generation of additional shift instructions. The presence of these instructions in the
unrolled version of the loop can again be explained by the compiler’s focus on optimizations within
loop constructs.

Optimization level 2 The shift instructions are removed by using a different mask in the final
key expansion implementation, similar to the approach used in the encryption function. The new
implementation (optimization level 2) requires 424 clock cycles to compute the round keys. Eight
of the fourteen extra clock cycles, compared to the assembly code, are due to the four additional
sw instructions needed to store the first round key. The other six clock cycles can be accounted for
by the generation of three redundant lw instructions at the beginning of the function. It is unclear
why these instructions are generated, but this is not further investigated because it only accounts
for a 1.5% increase in execution time.

5.2.2 Decryption key expansion

The algorithm of the equivalent decryption key expansion is implemented by generating the encryp-
tion round keys with the encryption key expansion function and performing the InvMixColumns
operation on all round keys except for the first and the last one. The InvMixColumns operation
is implemented in the same way as in the encrypt_round function with optimization level 1/2.
One additional application of the S-box is needed to invert the effect of the inverse S-box that is
present in the decryption look-up table. This operation is performed in the same manner as in the
encrypt_final_round function.

The generation of the round keys for the first version (optimization level 0) of the equivalent key
expansion algorithm requires 2102 clock cycles. This version uses the encryption key expansion
with optimization level 0. An implementation where the loop that iterates over the rounds for the
InvMixColumns operation is unrolled is also developed (optimization level 2). This implementation
uses the encryption key expansion with optimization level 2 and completes the computation process
within 2051 clock cycles.

C (opt 0) C (opt 2)
Clock cycles (absolute) 2102 2051
Clock cycles (relative to opt 0) 0% −3.4%

Table 6: Performance in clock cycles of the equivalent decryption key expansion process,
measured on the Ibex emulator.

27

5.2.3 Decryption

The decryption algorithm is implemented at optimization levels 1 and 2. These implementations
employ the same approach as the encryption implementations with the same optimization levels.
The performance results of the implementations are shown in Table 7. The process of decryption
is slightly faster than encryption. In Section 4.3.2, this is said to be expected as a result of the
redundancy of mask operations after the inverse S-box lookup in the final round. However, the
encryption algorithm at optimization levels 1 and 2 does not use any mask instructions because the
value is loaded with a lbu instruction. The higher clock cycle count of the encryption algorithm
can still be explained. An additional slli is needed in the encryption final round for each byte of
row 0 to index the look-up table because the S-box elements are stored at each sixteenth byte of
the look-up table.

C (opt 1) C (opt 2)
Clock cycles (absolute) 1177 1142
Clock cycles (relative to opt 1) 0% −3.0%

Table 7: Performance in clock cycles of single-block decryption, measured on the Ibex emulator.

5.2.4 CBC mode

A baseline encryption implementation for the CBC mode is developed. The analysis of the generated
assembly code reveals the presence of dead stores. Each time the plaintext block is XOR-ed with
the previous ciphertext block or with the Initialization Vector, the output is stored at the location
of the out parameter, even though this memory location is overwritten during the execution of the
encrypt function. These dead stores are eliminated successfully in the optimized version of the CBC
implementation, using the same approach as in Section 5.1.4. The CBC decryption implementation
is based on the optimized CBC encryption implementation.

The results of the performance measurements on the Ibex emulator for the encryption and de-
cryption implementations are displayed in Table 8. The results reveal that for inputs of 64 and
256 blocks, the number of clock cycles that is required for decryption is nearly identical to those
required for encryption, even though the single-block decryption algorithm is slightly faster than
the single-block encryption algorithm. This can be explained by the four extra lw instructions that
are present in the main loop of the CBC decryption implementation. The presumed purpose of
these instructions is to load the previous ciphertext block in registers, which is then XOR-ed with
the current output block to obtain the plaintext. In the encryption process, there are no extra lw

Number of blocks 4 64 256
CBC encryption baseline 1120.0 1102.2 1101.3
CBC encryption optimized 1111.3 1092.3 1091.3
CBC decryption 1109.5 1092.2 1091.3

Table 8: Average number of clock cycles per encrypted block for CBC mode, measured on the
Ibex emulator. The underlying cipher with optimization level 2 is used for all tests.

28

instructions needed because the produced ciphertext block is immediately utilized in the XOR
operation with the next plaintext block.

The test results also show that the number of clock cycles that is required on average to encrypt
or decrypt data is larger for small data sizes and stabilizes as the data size grows. This can be
accounted for by the overhead that is produced by the function call and the function prologue and
epilogue, which becomes neglectable for larger data sizes.

5.2.5 CTR mode

A baseline CTR implementation, which directly follows the specifications of the CTR mode, is
developed. Since this implementation uses a local array to store the counter, the optimization to
eliminate dead stores described in Section 5.1.4 is not employed. The performance results of this
implementation are shown in the first row of Table 9.

To optimize AES in CTR mode, the techniques FACErd0 up to FACErd2 have been implemented.
Table 9 displays the results of these optimizations. Concerning the second column of the table,
the FACE techniques could only be used for two of the four blocks because the last byte of the
initial counter value is set to 255. For this reason, the results for this small input size should not
be used to draw any conclusions regarding which FACE techniques are the most beneficial, but
are reported nonetheless to show that the performance results somewhat stabilize for larger input
sizes. The results show that the isolated use of FACErd0 does not improve the performance, but
employing FACErd1 and FACErd2 separately does. While FACErd0 does not reduce the execution
time when used in isolation, the performance does benefit from it when it is used in combina-
tion with the other FACE optimizations. This observation can be explained by the overhead
of checking whether the cache is still valid after the counter value is increased. When FACErd0

is used in isolation, the overhead is too large compared to the benefits of saving three XOR
operations in the initial AddRoundKey operation. However, when the other FACE optimizations
are also employed, this overhead is present anyway, allowing FACErd0 to be used without any
additional performance cost. All other combinations of the FACE techniques have been tested,
but none of them outperformed the combination of all techniques as shown in the last row of Table 9.

Number of blocks 4 64 256
Baseline 1128 1105 1104
FACErd0 +26 +15 +14
FACErd1 −21 −63 −65
FACErd2 −30 −103 −107
FACErd0 & FACErd1 −23 −71 −73
FACErd0 up to FACErd2 −23 −109 −114

Table 9: Average number of clock cycles per block for encryption in CTR mode, measured on
the Ibex emulator. The results for the baseline implementation are absolute. All other results are
reported relative to this baseline. The underlying cipher with optimization level 2 is used for all
tests.

29

A notable observation is that employing FACErd2 alone leads to a lower clock cycle count than the
isolated use of FACErd1. This is unexpected because three entire columns can be reused in the first
round, while only intermediate results can be reused in the second round. Further investigation
reveals that whenever FACErd2 can be used for an input block, the compiler generates a shortened
version for the first round, essentially employing FACErd1. This optimization can be performed
because, when FACErd2 is used in the second round, only the first column is loaded from the state.
The rest of the columns, which are intermediate results from the previously encrypted counter
value, are loaded from the cache. Since the values of the last three columns of the state are not
accessed, the compiler can remove the computations of these values in the first round.

5.2.6 Expansion to larger key sizes

The complete AES implementation has been extended to support key sizes of 192 and 256 bits
in addition to the size of 128 bits. All versions of optimization are available for single-block
encryption and decryption, as well as all discussed versions of the modes of operation. The key
expansion algorithm for the larger key sizes is only implemented at optimization level 0, but this
functionality can also be optimized for these key sizes, using the same techniques that are discussed
in Sections 5.2.1 and 5.2.2.

128 192 256
base opt base opt base opt

Key expansion encryption 497 −14.7% 511 - 726 -
Key expansion decryption 2102 −2.4% 2514 - 3093 -
Single-block encryption 1384 −17.0% 1650 −18.0% 1896 −17.5%
CBC encryption (average of 64 blocks) 1102 −0.9% 1308 −0.5% 1518 −0.7%
CTR encryption (average of 64 blocks) 1105 −9.9% 1316 −8.5% 1522 −7.3%

Table 10: Performance results for all key sizes, measured on the Ibex emulator. The clock cycle
counts of the optimized (opt) implementations are relative to the baseline (base) implementations.
The baseline implementations are the implementations that have previously been referred to as
‘baseline‘ or ‘optimization level 0‘. For single-block encryption, the optimized implementation is
the implementation with optimization level 2. For the CTR mode, it is the implementation with
all FACE techniques enabled.

Table 10 shows the performance of a subset of the AES implementations with all key sizes. Only
the performance of the most important implementations is measured and reported because all
obtained results align with our expectations. We assume that this is also the case for the other
implementations. Regarding the baseline (or optimization level 0) implementations for single-block
encryption and the modes of operation, the number of clock cycles grows almost proportionally
to the number of rounds performed during encryption, as expected. The table shows that the
optimization techniques for single-block encryption and the CBC mode have a similar effect on the
larger key sizes as they have on a key size of 128 bits. The FACE techniques that are applied to
optimize AES in CTR mode yield a slightly lower performance gain for larger key sizes because the
proportion of rounds where FACE can be applied is smaller for these key sizes. This observation
aligns with the trend in the paper where the FACE techniques are originally proposed [PL18].

30

5.3 Verification on the PROACT chip prototype

All tests that are executed on the emulator are also carried out on the PROACT chip prototype.
The cryptographic correctness of all implementations is ensured and the execution time is measured
in clock cycles. Table 11 shows the obtained performance results for the single-block encryption,
decryption and key expansion process. The same information, extended with the performance
results on the emulator, is represented visually in Figure 5. All measurements are slightly higher (4%
- 12%) than their respective measurements on the Ibex emulator, with most of the measurements
being on the low end of this difference. However, it is still the case that each new optimization
level for the single-block encryption, decryption, key expansion process and CBC mode offers
improvements with regard to the previous level. The performance of the single-block encryption
implementation with optimization level 2 is 3.4% slower than the assembly implementation, which
is still within the pre-established margin.

S
B
E
(a
sm

)
S
B
E
(o
p
t
0)

S
B
E
(o
p
t
1)

S
B
E
(o
p
t
2)

S
B
D

(o
p
t
1)

S
B
D

(o
p
t
2)

K
E
E
(a
sm

)
K
E
E
(o
p
t
0)

K
E
E
(o
p
t
1)

K
E
E
(o
p
t
2)

K
E
D

(o
p
t
0)

K
E
D

(o
p
t
2)

400

600

800

1000

1200

1400

1600

1800

2000

2200

C
lo
ck

cy
cl
es

PROACT chip prototype
Emulator

Figure 5: Performance comparison between the PROACT chip prototype and the emulator
for the single-block encryption (SBE), single-block decryption (SBD), key expansion encryption
(KEE) and key expansion decryption (KED) implementations. All measurements are for the key
size of 128 bits.

31

Assembly C (opt 0) C (opt 1) C (opt 2)
Single-block encryption (absolute) 1178 1450 1259 1218
Single-block decryption (absolute) - - 1246 1212
Key expansion encryption (absolute) 452 547 493 474
Key expansion decryption (absolute) - 2294 - 2203
Single-block encryption (relative to [Sto19]) 0% +23% +6.9% +3.4%
Key expansion encryption (relative to [Sto19]) 0% +21% +9.1% +4.9%

Table 11: Performance in clock cycles for a key size of 128 bits, measured on the PROACT chip
prototype.

All clock cycle counts for the modes of operation are 4.1%–6.7% higher than their respective
measurements on the emulator. The bar plot in Figure 6 displays these differences. The exact clock
cycle counts are reported in Table 12. Regarding the CTR mode, it is still the case that employing
FACE all through round zero, one and two leads to the best performance for larger inputs. For an
input size of four blocks, using only FACErd0 and FACErd1 led to the best result. However, the
difference is minor, and as explained in Section 5.2.5, this input size is too small to draw definitive
conclusions regarding the most efficient employment of the FACE techniques.

Number of blocks 4 64 256

CBC encryption baseline 1173 1149 1147
CBC encryption optimized 1164 1138 1136
CBC decryption 1162 1139 1127
Baseline 1183 1154 1152
FACErd0 +37 +20 +19
FACErd1 −17 −62 −64
FACErd2 −14 −93 −97
FACErd0 & FACErd1 −18 −72 −75
FACErd0 up to FACErd2 −5 −102 −106

Table 12: Average number of clock cycles per block for the modes of operation, measured on
the PROACT chip prototype. The results for the optimized implementations in CTR mode are
relative to the baseline implementation. The underlying cipher with optimization level 2 is used
for all tests.

32

C
B
C
-E

b
as
e

C
B
C
-E

op
t

C
B
C
-D

C
T
R
b
as
e

C
T
R

rd
0

C
T
R

rd
1

C
T
R

rd
2

C
T
R

rd
0
&

rd
1

C
T
R

rd
0
,
rd
1
&

rd
2

900

950

1000

1050

1100

1150

1200

1250

1300

C
lo
ck

cy
cl
es

PROACT chip prototype
Emulator

Figure 6: Performance comparison between the PROACT chip prototype and the emulator
for the CBC encryption (CBC-E) and CBC decryption (CBC-D) implementations, as well
as the CTR mode implementations with different configurations of the FACE techniques. All
measurements are for the key size of 128 bits. The full bars represent the average number of clock
cycles required for one block, for an input size of 4 blocks. The two lower ticks represent the
measurements for input sizes of 64 and 256 blocks, where the input of 256 blocks is represented
by the lowest tick out of the two.

33

6 Discussion

The work, presented in this thesis, aims at developing and optimizing a table-based AES imple-
mentation for the PROACT chip, featuring the CBC and CTR mode of operation. The potential
for doing this in the C programming language has been explored, revealing that it is possible to
develop the encryption algorithm in a manner that allows the compiler to generate code that is
only 3.4% slower than the assembly implementation developed by Stoffelen [Sto19]. Two proposed
techniques help the compiler recognize the possibility of certain optimizations. First, creating local
arrays instead of directly dereferencing the pointers provided in the function parameters reduces the
generation of dead stores. Second, for array index computations involving shifts or multiplications,
computing the array offset directly in bytes proves beneficial. This can bypass the generations of
additional shift instructions in the compiled code. Apart from these techniques, loop unrolling is
successfully used to enhance the performance of the implementations.

Only a slight performance improvement has been achieved for the CBC mode of operation by
eliminating redundant store instructions. However, implementing three of the five proposed FACE
techniques in [PL18] significantly improves the performance of AES in the CTR mode. The combined
employment of the three techniques leads to the highest performance.

The clock cycle counts that are measured on the Ibex emulator for single-block encryption, decryption
and the key expansion process are compared to measurements obtained from the PROACT chip
prototype. While the performance gain that is achieved at different optimization levels is very close
to the performance gain on the emulator, the absolute clock cycle counts on the PROACT chip
prototype are generally higher than those measured on the emulator.

6.1 Evaluation of key findings

This work reveals that it is possible to develop an efficient AES implementation in a high-level
language like C. This is expected, given the advanced optimization techniques available in the GCC
compiler used in this research. Another key aspect that contributes to this result is the use of the
C programming language as the choice of high-level language. This language is still considerably
close to the hardware compared to other high-level languages. For example, it is possible to load
four bytes of an array of bytes into one word-sized variable, which can significantly speed up the
performance of the AES cipher.

Utilizing local arrays for function parameters and computing array offsets in bytes are techniques
found to help the compiler generate more efficient assembly code. The efficiency of the first tech-
nique can be explained by the fact that changing a memory location pointed to by a function
parameter affects the program’s global state, which likely prevents the compiler from performing
this optimization automatically. The second technique suggests that the GCC compiler could be
improved in its ability to recognize and apply this optimization.

Throughout various parts of the AES implementation, loop unrolling is used as an optimization
technique. This is a well-known optimization technique and, in theory, eliminates any loop overhead.
However, in the case of the encryption key expansion at optimization level 1, it does not improve

34

the performance as much as expected. Compilers typically focus their optimizations on loops, as
these sections generally consume the most execution time. Thus, when a loop is unrolled, some
optimizations that would normally be applied within the loop are not performed.

The paper [PL18] where the FACE optimization techniques are proposed shows a performance gain
of 21%–23% for table-based AES with a key size of 128 bits and inputs of 64 and 256 blocks. Yet, a
performance gain of only 10% is observed in our work. The results in [PL18] are measured using all
five FACE techniques, while our work utilizes three of those techniques. However, the techniques
that are not employed can only be applied to inputs larger than 256 blocks, thus they cannot account
for the observed difference. One possible explanation for the difference is that the test environments
described in [PL18] feature a data cache, allowing the (intermediate) results of previous rounds
to be cached. This feature is not present on the PROACT chip. Additionally, the presence of
the branch predictor on the test environments in [PL18] could potentially mitigate the overhead
associated with checking if the caches require updating. Furthermore, although the Ibex core con-
sistently stalls on a memory load or store, this may not be the case for higher-performance CPUs,
thereby reducing the overhead associated with updating and retrieving the results of previous rounds.

The measurements on the PROACT chip prototype consistently show higher cycle counts than
those obtained with the emulator. Further investigation reveals that the extra clock cycles are due
to a delay in misaligned load and store instructions. When compiling code for the chip, the compiler
does not always place byte-sized arrays aligned on a word boundary. This leads to an additional
stall cycle during load and store instructions. However, this misaligned placement of byte-sized
arrays is not present when the code is compiled for the emulator. Even though the compile options
are identical, the linker file that is used for the experiments on the PROACT chip prototype is
different from the one that is used for the emulator. This explains the subtle difference in the
compiled code.

6.2 Applications and implications

A complete AES implementation optimized for the PROACT chip has been developed. This imple-
mentation can be used for efficient data encryption and decryption. Additionally, it can be employed
on other RISC-V platforms that do not have a data cache. The provided single-block encryption
and decryption functions offer versatility, allowing any mode of operation to be built around
it. Furthermore, the development of a graphical user interface that allows a user to conveniently
interact with the PROACT chip aids further research and development within the PROACT project.

Apart from the delivered software, the insights that are gained with this work are beneficial
for subsequent research. Contrary to some beliefs, efficient AES cryptography does not have to
be implemented in assembly. Additionally, the techniques that are applied to help the compiler
recognize the possibility of certain optimizations can be applied to optimize other time-sensitive
software. Novel compiler optimization techniques that combine subsequent shift instructions in new
contexts could also be explored and implemented.

35

6.3 Limitations

There are several limitations to this work. First of all, while the developed C implementation does
have a performance comparable to that of the assembly implementation proposed in [Sto19], it is
still slightly slower. If limiting execution time is crucial and code extensibility and portability are
not of importance, using an optimized assembly implementation might be preferred.

Secondly, the performance results on the PROACT chip prototype differ slightly from the results
on the emulator because of misaligned memory accesses. Further performance improvement on
the PROACT chip can be achieved by modifying the memory address of the stack region in the
linker file so that this address is divisible by sixteen. Unfortunately, this issue has been identified
relatively late in the research process, and there is not sufficient time to test this optimization in
the context of this thesis project.

Furthermore, the optimized AES implementation has been tailored specifically to the PROACT
chip in its current state. This means that it can not be used for platforms with a data cache, as
this would make the implementation vulnerable to cache-based timing attacks [Ber05, BM06]. This
vulnerability also implies that the implementation can not be used if the PROACT chip is ever
extended to feature a data cache.

Lastly, this work focuses on AES with a key size of 128 bits. While the implementation has been
extended to support larger key sizes, there might be optimizations that are beneficial when these
key sizes are used that are not present in the current implementation. This is especially applicable
to the key expansion algorithm, as it accounts for the most significant differences between the
implementations with different key sizes.

6.4 Conclusion

This thesis focuses on developing a table-based AES implementation optimized for the PROACT
chip. The implementation is written in the programming language C because it is possible to
reach a comparable performance to existing single-block encryption code optimized for the RISC-V
ISA. The C implementation offers significant improvements in code readability, portability, and
extensibility compared to the assembly implementation, and provides decryption functionalities
as well as two modes of operation, that are not present in the assembly implementation. The
implementation completes the encryption of one block in 1218 clock cycles on the PROACT chip
prototype. To optimize AES in CTR mode, three techniques proposed in the literature are applied,
which leads to a performance improvement of approximately 10% compared to the baseline CTR
implementation. The optimized implementation can be used for efficient cryptography on the
PROACT chip and other RISC-V platforms without a data cache. The graphical user interface
that has been developed eases further development and research on the PROACT chip.

36

References

[ABM04] Kubilay Atasu, Luca Breveglieri, and Marco Macchetti. Efficient AES implementations
for ARM based platforms. In Proceedings of the 2004 ACM Symposium on Applied Com-
puting, SAC ’04, page 841–845, New York, NY, USA, 2004. Association for Computing
Machinery.

[AMD24] AMD. Vivado Overview. https://www.xilinx.com/products/design-tools/vivado.
html, 2024. Accessed: 25-06-2024.

[AP20] Alexandre Adomnicai and Thomas Peyrin. Fixslicing AES-like Ciphers: New bitsliced
AES speed records on ARM-Cortex M and RISC-V. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2021:402–425, 12 2020.

[Ber05] Daniel J. Bernstein. Cache-timing attacks on AES. Technical report, The University of
Illinois at Chicago, 2005.

[BM06] Joseph Bonneau and Ilya Mironov. Cache-Collision Timing Attacks Against AES.
In Louis Goubin and Mitsuru Matsui, editors, Cryptographic Hardware and Embed-
ded Systems - CHES 2006, pages 201–215, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg.

[BS08] Daniel J. Bernstein and Peter Schwabe. New AES Software Speed Records. In Dipan-
wita Roy Chowdhury, Vincent Rijmen, and Abhijit Das, editors, Progress in Cryptology -
INDOCRYPT 2008, pages 322–336, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[CJL+20] Fabio Campos, Lars Jellema, Mauk Lemmen, Lars Müller, Amber Sprenkels, and Benoit
Viguier. Assembly or Optimized C for Lightweight Cryptography on RISC-V? In
Stephan Krenn, Haya Shulman, and Serge Vaudenay, editors, Cryptology and Network
Security, pages 526–545, Cham, 2020. Springer International Publishing.

[DR02] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES — the Advanced
Encryption Standard. Springer-Verlag, 2002.

[Dwo01] Morris J. Dworkin. Recommendation for Block Cipher Modes of Operation: Methods
and Techniques. Technical report, Gaithersburg, MD, USA, 2001.

[ETH20] ETH Zurich and University of Bologna. Ibex Documentation, 2020.

[NIS01a] Advanced Encryption Standard (AES). Federal Information Processing Standards
Publication 197, 2001. Updated 2023.

[NIS01b] Specification for the Advanced Encryption Standard (AES). Federal Information Pro-
cessing Standards Publication 197, 2001.

[OBSC10] Dag Arne Osvik, Joppe W. Bos, Deian Stefan, and David Canright. Fast Software AES
Encryption. In Seokhie Hong and Tetsu Iwata, editors, Lecture Notes in Computer
Science, vol 6147, pages 75–93, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

37

https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html

[PL18] Jin Park and Dong Lee. FACE: Fast AES CTR mode Encryption Techniques based
on the Reuse of Repetitive Data. IACR Transactions on Cryptographic Hardware and
Embedded Systems, pages 469–499, 08 2018.

[RD20] Mark Randolph and William Diehl. Power Side-Channel Attack Analysis: A Review of
20 Years of Study for the Layman. Cryptography, 4(2), 2020.

[RIS24] RISC-V International. The RISC-V Instruction Set Manual Volume I, 2024. Available
at https://github.com/riscv/riscv-isa-manual/releases/tag/20240411.

[Saj23] Abolfazl Sajadi. PROACT – CARDIS 2023 Poster. https://project-proact.nl/

about-the-project/, 2023. Accessed: 18-02-2024.

[Sto19] Ko Stoffelen. Efficient Cryptography on the RISC-V Architecture. In Peter Schwabe
and Nicolas Thériault, editors, Progress in Cryptology – LATINCRYPT 2019, pages
323–340, Cham, 2019. Springer International Publishing.

[Wu07] HongJun Wu. Hongjun’s optimized C-code for AES-128 and AES-256. eS-
TREAM Project, http://www.ecrypt.eu.org/stream/svn/viewcvs.cgi/ecrypt/

trunk/benchmarks/aes-ctr/aes-128/hongjun/v1/?rev=203#dirlist, 2007.

[Xil20] Xilinx. Python productivity for Zynq (Pynq) Documentation, release 2.5 edition, Oct
2020. Available at https://pynq.readthedocs.io/en/v2.5/.

38

https://github.com/riscv/riscv-isa-manual/releases/tag/20240411
https://project-proact.nl/about-the-project/
https://project-proact.nl/about-the-project/
http://www.ecrypt.eu.org/stream/svn/viewcvs.cgi/ecrypt/trunk/benchmarks/aes-ctr/aes-128/hongjun/v1/?rev=203#dirlist
http://www.ecrypt.eu.org/stream/svn/viewcvs.cgi/ecrypt/trunk/benchmarks/aes-ctr/aes-128/hongjun/v1/?rev=203#dirlist
https://pynq.readthedocs.io/en/v2.5/

A PROACT Chip GUI User Manual

The PROACT Chip GUI is developed to aid further research and development on the PROACT
chip. The graphical user interface enables the user to easily execute cryptographic algorithms
written in C or RISC-V assembly on the PROACT chip. The GUI application has been designed to
be used in a Linux environment in combination with an FPGA development board running the
PROACT chip prototype.

A.1 Requirements and setup

The following tools and libraries are required to use the PROACT Chip GUI:

• riscv32imc GCC toolchain is needed to cross-compile for RISC-V. The toolchain can be
downloaded from https://github.com/lowRISC/lowrisc-toolchains/releases. An ex-
ample would be ‘lowrisc-toolchain-rv32imcb-20240206-1‘. The directory in which the toolchain
is placed should be added to the PATH environment variable and this variable should be
accessible in superuser mode.

• cmake is needed for the compilation process and can be installed with sudo apt-get

install cmake.

• srec cat is needed for the compilation process and can be installed with sudo apt-get

install srecord.

• xcb-cursor0 or libxcb-cursor0 is needed to start the graphical user interface and can be
installed with sudo apt-get install libxcb-cursor-dev.

To set up the GUI application, execute the following two steps.

1. Download and extract PROACT_GUI.tar.xz from https://git.liacs.nl/s3293912/bachelor_

thesis/-/releases.

2. Navigate to the folder that contains main.py.

3. The use of a virtual Python environment is recommended to safely access the required
packages in superuser mode. Installing these packages directly in superuser mode can lead
to broken permissions. To create a virtual Python environment, use the command python3

-m venv <name of venv>. Then, activate the virtual environment with the command source

<name of venv>/bin/activate.

4. Install all necessary Python packages inside the virtual environment by running the command
pip install -r python requirements.txt.

A.2 Usage

To use the GUI, connect the FPGA board to your computer and upload the bitstream file
PROACT_top.bit to the board. This can, for instance, be done with Vivado [AMD24]. The bit-
stream file can be found in the downloaded folder. Then, navigate to the folder that contains main.py

39

https://github.com/lowRISC/lowrisc-toolchains/releases
https://git.liacs.nl/s3293912/bachelor_thesis/-/releases
https://git.liacs.nl/s3293912/bachelor_thesis/-/releases

Figure A.1: The PROACT Chip graphical user interface

and start the GUI with the command sudo su -c "<name of venv>/bin/python3 main.py". It
is necessary to run the GUI in superuser mode to communicate with the board and access peripherals.

Figure A.1 shows the application upon startup.

• The connect button initiates the connection between the computer and the FPGA board.

• The select folder button is used to choose a folder that contains the source code for an
experiment.

• The compile button compiles the code from the selected folder and converts it to a VMEM
file.

• The fast send/secure send drop-down list is used to select a send method. In most cases,
‘fast send‘ is preferred. ‘Secure send‘ verifies whether the data is correctly written to the
memory. This can be useful for debugging purposes.

• The upload program button uploads the generated VMEM file to the memory of the chip.

• The input field can be used to provide a hexadecimal input for the encryption algorithm.
Alternatively, the browse functionality can be used to select an input file. The input field
can also be left empty.

• The encrypt button starts the execution of the uploaded program. Once the execution is
finished, the output of the algorithm is displayed in the output field. The output has the
same length as the provided input.

40

• The save output button can be used to save the output to a text file.

• The select comparison file and compare buttons can be used to compare the algorithm
output with a text file of choice.

• The timer functionality can be enabled to measure the execution time of the algorithm. See
Section A.3 for instructions on how to use this functionality. The timer option is disabled by
default and should only be enabled if the uploaded program uses the timer.

A.3 Notes on developing experiments for the PROACT Chip GUI

Code structure To ensure that the user-provided program can be compiled correctly, a one-level
directory structure should be used. The use of subfolders within the main program folder is currently
not supported due to time constraints, but this functionality could be implemented in a future
version of the GUI application. Additionally, the main function should be written in C and should
always contain a return statement.

Input and output When programming in C, the input and output of the algorithm can be
accessed using the pointers uint8_t* PROACT_IN and uint8_t* PROACT_OUT, respectively. The
pointers need to be declared by the user before use, as shown in Listing A.1. Alternatively, two
arrays with the same names as the pointers can be declared, e.g. uint8_t PROACT_IN[16]. This
method is shown in Listing A.2. During the compilation process, code will be generated to make
these pointers reference the memory locations 0x800F400 (input) and 0x800F800 (output). When
programming in assembly, these addresses can directly be accessed to control the input and the
output. The size of the input and the output arrays is limited to 1024 bytes each.

Timer The timer functionality can be used to measure the execution time of an algorithm. The
user can specify the moments to start and stop the timer by making the following function calls:
Trigger(1) (start the timer) and Trigger(0) (stop the timer). Listing A.2 shows an example
where the execution time of the for-loop is measured. When these function calls are inserted in the
source code and the timer function in the GUI is enabled, a message will appear once execution has
finished reporting the measured time in clock cycles and nanoseconds for a clock frequency of 50 MHz.

1 int main() {

2 uint8_t* PROACT_IN;

3 uint8_t* PROACT_OUT;

4
5 // copy input to output

6 for (int i = 0; i < 16; i++)

7 PROACT_OUT[i] = PROACT_IN[i];

8
9 return 0;

10 }

Listing A.1: Using pointers to access the input and output.

41

1 int main() {

2 uint8_t PROACT_IN[16];

3 uint8_t PROACT_OUT[16];

4
5 Trigger(1);

6
7 // copy input to output

8 for (int i = 0; i < 16; i++)

9 PROACT_OUT[i] = PROACT_IN[i];

10
11 Trigger(0);

12
13 return 0;

14 }

Listing A.2: Using arrays to access the input and output and using the timer functionality.

42

B AES Implementation Code

The Git repository containing all AES implementations that are developed for this thesis project is
available at https://git.liacs.nl/s3293912/bachelor_thesis.

B.1 Code repository structure

The repository is structured into three folders.

• The folder GUI contains the source code for the graphical user interface. Appendix A provides
a manual for the GUI.

• The folder aes contains the developed AES implementations, as well as the source code for
the experiments that have been carried out on the Ibex emulator with Simple System.

• The folder aes_on_PROACT contains the developed AES implementations, as well as the source
code for the experiments that have been carried out on the PROACT chip prototype. Note
that the files regarding the AES implementations (aes.c, aes.h and tables.h) are identical
in the folders aes and aes_on_PROACT. The files are present in both folders to ease testing
on the PROACT chip prototype.

B.2 Instructions to run experiments

The code repository provides files to run experiments on the Ibex emulator, as well as on the
PROACT chip prototype. As an example, let us consider the implementation for single-block encryp-
tion at optimization level 0 which is described in Section 5.1.1. The experiment can be configured
in aes/experiment_config.h (for the Ibex emulator) or aes_on_PROACT/experiment_config.h
(for the PROACT chip prototype). Both files define the same parameters, which are explained
in Table B.1. To configure the implementation of Section 5.1.1, the settings in the last column
should be used. Note that the different modes of operation, including single-block encryption, can
be enabled simultaneously, but this causes the clock cycle count to accumulate. Therefore, such
a configuration can not be used to obtain performance results. The same concept applies to the
parameters that disable and enable encryption and decryption.

In the file experiment.c, which is present in the folder aes as well as aes_on_PROACT, the function
calls to enable and disable the timer are placed so that the clock cycles for the encryption or
decryption process are measured. If measuring the performance of the key expansion process is
desired, these function calls need to be moved so that they are placed around the function call to
the key expansion function. Information on the timer function for the emulator (pcount_enable)
is provided in Section 4.5 and Appendix A.2 provides information on the timer function for the
PROACT chip (Trigger).

The code for the experiment is now correctly configured. The remainder of this section is split into
two parts because the execution of the experiment on the emulator differs from the execution on
the PROACT chip prototype.

43

https://git.liacs.nl/s3293912/bachelor_thesis

Parameter Explanation Possible values Example
KEYSIZE Size of the encryption key (in bits) 128, 192, 256 128
OPT_KS Optimization level of the key expansion 0, 1, 2 3 2
OPT_CIPHER Optimization level of the AES cipher 0, 1, 2 0
SINGLE_BLOCK Dis- or enable single-block encryption 0, 1 1
CBC Dis- or enable the CBC mode 0, 1 0
CTR Dis- or enable the CTR mode 0, 1 0
OPT_CBC Dis- or enable optimization for CBC mode 0, 1 x
CTR_CACHE_0 Dis- or enable FACErd0 for CTR mode 0, 1 x
CTR_CACHE_1 Dis- or enable FACErd1 for CTR mode 0, 1 x
CTR_CACHE_2 Dis- or enable FACErd2 for CTR mode 0, 1 x
ENCRYPTION Dis- or enable encryption 0, 1 1
DECRYPTION Dis- or enable decryption 0, 1 0
INPUT_SIZE Size of input for CBC or CTR mode (in bytes) 64, 1024, 4096 x

Table B.1: Possible experiment parameters. The last column shows the configuration for the
single-block encryption implementation with optimization level 0, as described in Section 5.1.1.
An ‘x‘ indicates that the parameter does not have any influence on the outcome of the experiment.

Ibex emulator Simple System is required to run the experiments inside the aes folder. For
instructions on how to set up and use Simple System, refer to https://github.com/lowRISC/

ibex/tree/master/examples/simple_system. The folder aes contains a makefile that can be
used in combination with Simple System. In the last line of this file, the path to the Ibex repository
containing Simple System must be specified. An example of the bash commands that can be used
to run the experiment after configuring the makefile is shown in Listing B.3. The paths can differ
based on the Simple System installation.

PROACT chip prototype The PROACT Chip GUI is required to run the experiments
inside the aes_on_PROACT folder. For instructions on how to set up and use the GUI, refer
to Appendix A. Once the GUI is set up, select the aes_on_PROACT folder in the GUI and
compile and upload the experiment. To run the experiment, provide an input of choice, e.g.
aes_on_PROACT/testfiles/AES128_16_in1.txt, and select the ‘encrypt‘ button.

1 cd <path_to>/ibex

2 make clean -C <path_to>/bachelor_thesis/aes

3 make -C <path_to>/bachelor_thesis/aes

4 ./build/lowrisc_ibex_ibex_simple_system_0/sim-verilator/Vibex_simple_system \

5 [-t] --meminit=ram,<path_to>/bachelor_thesis/aes/experiment.elf

Listing B.3: Example of bash commands to run an experiment with Simple System

3The key expansion optimization levels 1 and 2 are only available for a key size of 128 bits.

44

https://github.com/lowRISC/ibex/tree/master/examples/simple_system
https://github.com/lowRISC/ibex/tree/master/examples/simple_system

	Introduction
	Contributions
	Thesis overview

	Related Work
	Background
	The Advanced Encryption Standard
	The RISC-V ISA
	Main PROACT chip hardware components

	Methodology
	Overview
	Single-block encryption implementation
	Complete AES implementation
	Compilation
	Experimental setup

	Experimental Results
	Single-block encryption
	Complete AES implementation
	Verification on the PROACT chip prototype

	Discussion
	Evaluation of key findings
	Applications and implications
	Limitations
	Conclusion

	References
	PROACT Chip GUI User Manual
	Requirements and setup
	Usage
	Notes on developing experiments for the PROACT Chip GUI

	AES Implementation Code
	Code repository structure
	Instructions to run experiments

