
Master Computer Science

On adaptive multi-modal trajectory prediction

Name: Tobias Florin Oberkofler
Student ID: s2965003

Date: 30/10/2023

Specialisation: Data Science

1st supervisor: Dr. Mitra Baratchi
2nd supervisor: Dr. Javier Alonso-Mora, Prof. dr.
Holger H. Hoos

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Abstract

Prediction of human motions is key for a variety of direct applications, such as developing
safe and intelligent autonomous systems and derivative applications, such as urban planning
or sports analytics. Human behaviour is inherently stochastic, and at any given time point in
any given scene, multiple valid motion hypotheses might exist. It remains an open challenge to
accurately predict future human motion, incorporating this uncertainty. Furthermore is human
motion context and state-dependent. Hence, different motion models must exist for different
scenarios, like driving a car or walking. In this thesis, we present AutoTraj, a flexible AutoML
approach for short-term trajectory prediction. Contrary to previous work, we propose to use
a combined neural architecture search and hyperparameter optimisation instead of designing
domain-specific hand-crafted architectures. We achieve this by introducing a novel search
space inspired by the recent successes of Conditional Variational Autoencoders in short-term
trajectory prediction. The search space builds upon a wide range of operations for social-
interaction encoding, intention encoding and generative procedures.

Our results show that our AutoTraj significantly outperforms current state-of-the-art short-
term trajectory prediction methods in two out of three diverse real-world datasets. Our ap-
proach also achieves on-par results on the popular ETH/UCY benchmark, outlining its ability
to generalise to new scenes within a fixed mode of movement. AutoTraj outperforms a simpler
vanilla deep neural network-based AutoML approach every time, underscoring the merit of a
customised search space for AutoML in the domain of short-term trajectory prediction. Our
approach is easily extendable and allows researchers from any adjacent domain, even without
a computer science background, to deploy powerful computational motion models for their
work. We outline the potential for interdisciplinary research by developing a physics-inspired
simulation-based decoder, which allows us to combine interpretable motion models with the
power of per-case parameter estimation. By making our code publicly available, we hope to
inspire more research into understanding human motion and facilitating safe and risk-aware
autonomous systems.

2

Contents

1 Introduction 4

2 Problem statement 7

3 Background and Definitions 9

3.1 Trajectory data . 9

3.2 Automated Machine Learning . 9

3.3 Generative Artificial Intelligence and Stochastic networks 12

4 Related Work 13

4.1 Trajectory modeling . 13

4.2 Automated Machine Learning . 15

4.3 Summary and evaluation of related literature 16

5 Methodology 17

5.1 AutoTraj framework . 18

5.2 Network architecture . 19

5.3 Feature selection . 21

5.4 Search space . 22

5.5 Search Strategy . 23

6 Experiments 24

6.1 ETH/UCY benchmark . 24

6.2 Diversity benchmark . 24

6.3 Data properties . 26

6.4 Metrics . 27

7 Results 30

7.1 ETH/UCY benchmark . 30

7.2 Diversity benchmark . 31

7.3 Parameter importance . 33

8 Discussion 36

8.1 Limitations . 38

9 Conclusion 40

9.1 Future research . 40

9.2 Braoder applicability . 41

10 Appendix 51

3

AutoTraj: An adaptive multi-modal short-term
trajectory prediction framework

1 Introduction

The ability to predict human movement in complex environments is crucial in developing safe
and intelligent autonomous systems (AS) that directly interact with humans within a shared
cyber-physical environment. Applications like self-driving cars and social service robots hold
immense promises for saving and bettering the lives of millions that can only be redeemed
by acquiring a deep understanding of human movement. Besides the use in AS, accurately
predicting human movement is critical in a number of derivative applications such as urban
planning, crowd flow management, evacuation situation analysis and sports analytics.

In this work, we focus on the challenging task of predicting trajectories from short-term his-
torical observations with multiple moving agents. Short-term trajectory prediction is essential
in domains such as transportation, robotics, and sports, as it can improve safety and efficiency
in traffic, enable autonomous vehicles to avoid collisions and enhance athletes’ performance.

Humans have an innate capacity to navigate social scenarios. We naturally reason and make
predictions about other objects’ movements, usually without ever having to think about it con-
sciously. However, accurately predicting human behaviour is algorithmically very challenging:

(i) Movement patterns can be highly complex with many aleatory influences.

(ii) We need to find good representations for the spatial, temporal and social dimensions to
be able to model the interaction effects at play.

(iii) Furthermore, we are often confronted with an epistemic lack of an agent’s goals in the
real world, forcing us to formulate the task as a multi-modal problem. Hence, we need
a model that can make probabilistic estimates about the future and predict multiple
possible future paths.

(iv) Moreover, patterns can be highly context-dependent. A model optimised for one scenario
might completely fail in a different one. For example, the movements learned from a
crowd scenario will only partially translate to the ones observed in a basketball game
and will completely fail to apply when predicting car movements.

4

(v) Lastly, movements can be susceptible to influence from exogenous variables. For example,
pedestrians might adapt their movements during heavy wind, but the wind might not
be recorded in the recorded data. Similarly, semantic clues like the street layout heavily
influence behaviour but might be unknown to us at the time of prediction.

Various methods have been proposed to address the challenges of multi-agent short-term
trajectory prediction, ranging from deterministic, physical law or social rules-based models to
deep generative models [32, 62, 82, 43, 16, 1, 30, 47, 3, 19, 96, 94]. Although tremendous
progress has been made in the last decade, most of this progress can be attributed to combining
ever-larger models with domain-specific insights. However, no model has yet been proposed to
unify the various trajectory prediction problems into one framework. Such a unified framework
can significantly speed up the development process of new models for different domains by
introducing a shared vocabulary and operating process between them. For instance, a company
developing software for autonomous vehicles has to incorporate various mechanisms to model
the behaviour of car traffic, pedestrians, cyclists, etc. By treating these tasks as instances of
one united problem, significant engineering effort can be saved that would have gone into
hand-crafting each task individually from scratch. Moreover, can a unified framework help us
uncover new insights and place data in context, as it provides us with the tools to compare
data from different sources.

We propose an automated machine learning (AutoML) based approach to trajectory prediction
by using building blocks from various state-of-the-art methods and combining them via an
efficient macro neural architecture search. We introduce a novel, domain-inspired search space
that allows us to effectively pick data representations, pooling methods and the recurrent
structure of the network based on data properties. By keeping the architecture general and
easy to adapt, we allow practitioners to adjust the model to their needs and reduce the search
space by using their domain knowledge as inductive bias, for example, through the use of a
physics-based forward module. Within this framework, we address challenges (i) to (iv) by
proposing a stochastic network which can meaningfully deal with the presented uncertainty
and a robust feature- and representation-search mechanism that can adapt to different physical
and social settings. This work does not address the challenge of missing semantic knowledge.
In line with previous work [1, 30, 73, 60, 49, 19, 94, 96] we operate under the “open world
hypothesis”, assuming a flat open-space environment. We furthermore present a newly curated
diverse benchmark for trajectory prediction in the form of “diversity bench” to illustrate the
ability of different state-of-the-art methods to provide short-term trajectory predictions in
different contexts.

The main contributions of our work are thereby the following:

• We introduce an openly available, flexible AutoML framework for multi-modal trajectory
prediction problems - the first of its kind.

• We propose a novel search space based on extensive analysis of prior work and investigate
the effects of the tailored search space on the algorithm’s performance.

• We provide interpretations for the found architectures and their respective interaction
with problem domains, outlining a potential pathway to foster more interpretable deep
learning models and inspire future lines of research.

• We show how our approach can be incorporated into various domains, achieving better
or on-bar results with state-of-the-art methods.

5

In the following, we first formalise the problem of short-term trajectory prediction and introduce
the required notation and background in Sections 2 and 3. Section 4 provides an overview of
existing related literature divided by model complexity and considered problem dimensions.
Next, a detailed outline of our methods and models is given in Section 5. A comprehensive
analysis of our data and the proposed curated benchmark, as well as our experimental setup,
is provided in section 6. The results and discussion are found in Section 7 and 8. Concluding,
we summarise our findings and put them in perspective to current state-of-the-art methods
and real-world practices in section 9. We give examples of possible practical applications and
outline pathways to potential fruitful future applications.

6

2 Problem statement

Socio-spatio-temproal data

In contrast to most prominent applications of deep learning, which either focus on the spatial
(e.g. image classification, segmentation, object detection) or the temporal dimension (e.g.
time-series-forecasting, time-series-classification), trajectory prediction requires modelling de-
pendencies on both dimensions. Furthermore, there is a social aspect to short-term trajectory
prediction. Besides physical feasibility (e.g., collision avoidance), we also have to consider the
social comfort of a given agent (e.g., avoiding direct eye contact) that will lead to changes
in his short-term behaviour [3, 22, 32, 45]. Understanding these interaction effects and their
drivers is of particular importance to facilitate safe and meaningful interactions based on our
predictions.

Problem formulation

Formally we can represent the past multi-agent trajectories X of length h in the form of

Xt−h:t = (Xt−h,Xt−(h−1), ...,Xt)

Each X t represents the state of an environment E at a given time t filled with a variable
number of N actors, hence X t = (X t

1, X
t
2, ..., X

t
n). We refer to the collection of all agent

states, past and future, as a scene S. Disregarding exogenous factors such as the layout of the
environment and social-visual cues such as head position, we can represent each agent’s past
trajectory by its coordinates xt

i ∈ Rd and their derivative attributes such as speed, acceleration,
heading angle, or relative position between two agents. For the short-term trajectory prediction
task, our goal is to predict k future values

Xt+1:t+k
i = (Xt+1

i ,Xt+2
i , ...,Xt+k

i)

based on h past observations Xt−h:t.

Predictions can be performed jointly for all actors at once [1, 30, 49] or iteratively [74, 19, 94]
for a given primary agent i, X t+1:t+k

i = (X t+1
i , X t+2

i , ..., X t+k
i) which is often referred to as

ego-agent as predictions are performed from his respective point of view.

As it is often impossible to know the exact intent of an agent from the given observations,
trajectory prediction is usually posed as a multi-modal prediction problem where instead of the
deterministic future (X t+1

i , X t+2
i , ..., X t+k

i) we are trying to predict the conditional distribution
pθ(X

t+1:t+k
i |Xt−h:t), where X t+1:t+k

i is one of the possible future trajectories. We can translate
this formulation back into the single-modal version by ranking the predictions and prompting
the most likely of the predicted futures at each time-point as output.

In line with the majority of recent work, we facilitate this prediction through a neural network
with trainable parameters θ. In contrast to other work, however, we strive to optimize the
architecture parameters ω and hyperparameters λ, in addition to the network parameters. For
reasons of simplicity, we will refer to architectural parameters and hyperparameters jointly as
Λ = Λ1 × Λ2 × · · · × Λn for the rest of this work. Based on the presented data, our network
not only optimises its weights towards the approximated optimum θ∗ but also the underlying
structure of the network itself Λ∗. This makes our work the first proposal of AutoML for
multi-modal trajectory prediction.

7

In alignment with the existing related literature, we measure our performance by using the
minimal average displacement and minimal final displacement error [1, 30, 96, 94, 63, 3, 21].

8

3 Background and Definitions

This section is dedicated to providing readers unfamiliar with the domain with the required
vocabulary and notation to more easily follow along with the main propositions of this work. It
is directed towards people with a basic understanding of prevalent computer science concepts
such as deep learning but does not assume familiarity with more advanced or specialised topics
such as AutoML or socio-spatio-temporal data tasks.

3.1 Trajectory data

According to the definition by Zheng [99], Trajectory data can be understood as a trace
generated by a moving object in space consisting of a series of points represented by a time
stamp and a spatial location. Hence, a point p ∈ R2 is represented by p = (x, y) and a
trajectory would be a chronologically ordered collection of points connected to a given moving
object X = p1, p2, .., pn. For our purpose, we define trajectory data as spatio-temporal data
tied to a uniquely identifiable moving agent. Particularly, in the context of human agents, there
is a significant social component at play. In many scenarios, human movement is governed
by a plethora of social norms and conventions [32, 65, 30]. In this scenario, it is vital to
consider the social interactions within a group of agents to better understand the resulting
movement patterns. It can, therefore, be useful to add relative positions of coexisting agents
to the individual trajectory data.

3.2 Automated Machine Learning

Automated machine learning can broadly be understood as the task of automating deep learn-
ing pipelines [40, 81]. Deep learning has demonstrated incredible success in recent years.
However, it has also become increasingly more complex, time- and resource-consuming. To
address these demands and lower the entry barrier established by the cost of obtaining the
required expert knowledge, the field of automated machine learning established itself with the
broader goal of automating the derivation of insight from raw data and, in particular, to auto-
mate model-building. Automated machine learning combines various sub-fields such as Neural
Architecture Search (NAS), Hyperparameter optimisation (HPO), or joint tasks such as Com-
bined Algorithm Selection and Hyperparameter optimisation (CASH). An extended summary
of AutoML can be found in the work of Hutter et al. [40] and Baratchi et al. [6]. A schematic
of the AutoML paradigm can be seen in Figure 1.

Hyperparameter optimization: HPO [25] is a broad subfield of AutoML, focusing on
tuning the meta parameters that define the methods learning process. Such parameters include,
for example, the learning rate or weight regularisation. However, the HPO framework can also
be applied to NAS [40]. Through the lens of HPO, we look at each architecture as a (discrete)
parameter choice. NAS, thereby, may be viewed as a special case of HPO. A classical HPO
approach towards NAS requires sequential evaluation of each possible parameter space and
is, therefore, very costly in practice. One-shot techniques, such as Liu et al. [56] or Pham
et al. [68], that perform neural architecture search on a super-network can get around this
sequential performance evaluation, drastically speeding up the search process at the cost of
extended memory usage.

9

Neural Architecture Search: NAS can be understood as the subfield of AutoML that
focuses on the design of the network architecture. In most current deep learning projects, this
is by far the most costly and expensive process. It requires considerable thought and manual
effort by human experts to decide on the best architecture for a given task. NAS already has
been shown to outperform state-of-the-art manually designed architectures in various tasks
such as Image classification [103, 56], object detection [103], semantic segmentation [18],
time series prediction [41, 66] or natural language processing [56, 68] among various more
[23]. This is achieved by a combination of creating insightful search spaces as well as utilising
efficient search methods. So far, no NAS solutions have been provided for trajectory prediction.
For a more complete overview of NAS, we refer the interested reader to the works of Elksen
et al. [23], White et al. [89] and Ren et al. [70].

Search Space: Loosely speaking, we can define the search space as the range of design
choices of a given neural architecture. It defines the operations and connections that the
network can perform. More precisely, it is the set of Operations O, such as convolutions, linear
transformations or activation functions, that together with their connection to each other α(i,j)

and to the input data x define the network Nθ. A common categorisation in regards to search
space is in macro- and micro-architecture. The micro- or cell-based search space is motivated
by the omnipresence of repeating structures (often called cells or blocks) in state-of-the-art
neural architectures [23]. The main idea is to use a limited set of handcrafted operations to
form a basic unit, such as a convolutional or recurrent block, which then can be stacked to
obtain a deep network. Successful early examples of such attempts include Zoph et al. [103],
Liu et al. [56], and Pham et al. [68]. This approach has the advantage of drastically reducing
the search space and increasing search speed. However, it does not answer the question of
how the final architecture should interconnect but rather just what pieces can be used to
assemble it. The question of the overall structure is addressed in the macro-search. Unrestricted
macro-search, however, can be prohibitively expensive. In recent years, a trend toward a mix
of both approaches can be witnessed. An example that has proven very useful, particularly
in parameter-sensitive domains such as network compression, is block-based or chain-based
architecture search, where a predefined macro-architecture is used, and promising operations
are sampled for each layer of the network [92, 84]. For our work, we utilise a block-based
approach building on the strong baseline performance of a variational auto-encoder backbone
architecture, which has been consistently used in recent state-of-the-art methods. We thereby
limit our search space to embedding and pooling operations inspired by the work of Kothari et
al. [49] as well as various different decoder network typologies inspired by the work of Helbing
and Molnar [33], Alahi et al. [1], Gupta et al. [30], Mersch et al. [60], Cheng et al. [19] and
Xu et al. [94].

At first glance, it might appear beneficial to have a vast search space and, therefore, a very
expressive network; however, the practical drawbacks of such a vast exploration space almost
always outweigh its benefits and make such an approach infeasible in reality. Consequently,
incorporating prior knowledge in the form of human priors is essential to simplifying the search
space and thereby improving the chances of obtaining good results [23, 54, 66]. Nonetheless,
the reduced search space often comes at the cost of preventing the discovery of entirely novel
architectures. It is, therefore, a balancing act to define the search space to be expressive
enough to find close to optimal solutions but small enough to be computationally feasible.
Defining an effective search space, therefore, is a crucial part of Neural Architecture Search,

10

which requires both domains as well as machine learning knowledge. We address this issue
by identifying critical differences and overlap between state-of-the-art methods through an
extensive review of domain literature which inspire our operators. In particular, we restrict our
search space by recognising the importance of recurrent cell structures across different baseline
approaches to model the sequential nature of trajectories in the temporal domain as well as
the common embedding and pooling operations which take place in the socio-spatial domain
to model interaction effects between agents.

Figure 1: Schemata of the Neural Architecture search process when carried out automat-
ically versus when performed via manual iterations. Inspired by a sketch from Song et al.
[77]

.

Search Strategy: The search strategy formalises the optimisation technique, which is used
to efficiently traverse the search space by selecting promising candidate solutions. In the early
days, search spaces were often small enough to be explored exhaustively. However, this has
become increasingly infeasible in practical modern applications with search spaces reaching
1020 possible configurations. In its simplest form, the search space might just be traversed
randomly in a process accordingly known as “random search”.

For higher-dimensional search spaces (more than five dimensions), random search often be-
comes too inefficient to achieve satisfactory results [6]. Bayesian optimisation (BO) or Se-
quential Model-Based Optimisation (SMBO) seeks to reduce the number of necessary function
evaluations by incorporating acquired knowledge about the search space. The key components
of BO are the surrogate model and the acquisition function. The surrogate model is used to
approximate the objective function f . The acquisition function is used to determine the follow-
ing configuration to be sampled, controlling the trade-off between expected performance and
information gain. The most widely used surrogate models are Gaussiaun processes [91], which
are most suitable for continuous search spaces. However, adaptions have been proposed to
extend the method to integer and categorical hyperparameters [27]. Other popular surrogate
models include random forest-based methods such as SMAC [39] or tree-based models such as
TPE [10]. The acquisition function, in turn, controls the balance between the surrogates model
prediction and the reaming posterior uncertainty to balance exploration and exploitation. The
most popular example is Expected improvement (EI) [42], which combines the mean value and
variance of the estimated objective function to perform the exploration-exploitation trade-off.

11

For even higher dimensional search spaces(more than 100 dimensions), the performance of BO
methods tends to deteriorate [6]. Gradient-based or differentiable methods provide a promising
paradigm for these hyperparameter spaces. Differentiable architecture search, such as proposed
by Liu et al. [56], addresses the challenge of high dimensional hyperparameter spaces by
relaxing the bi-level optimisation problem into a tandem problem where we do not optimise
each architecture to the optimum but instead iteratively switch between network-weight and
architecture updates. This approach increases search efficiency at the cost of increased memory
requirements to store all intermediate variables. Provided the substantial memory costs this
carries for today’s large SOTA neural networks, this approach is not yet as widely utilised as
BO.

3.3 Generative Artificial Intelligence and Stochastic networks

The origins of generative modelling can be traced back way into the 1950s with the emergence
of Hidden Markov Models (HMMs) and Gaussian Mixture Models (GMMs) for sequential data
such as speech and time series problems [17]. It has since experienced periodic revivals, such
as in the 1980s and especially recently with the advent of large language models (LLMs) and
large image diffusion models [14, 17]. Generative methods are usually trained self-supervised
or unsupervised, making them distinctly different from the classical, well-explored, supervised
machine learning paradigm. This makes them particularly powerful and flexible but also hard
to train. As generative models are often used in tasks that deal with inherent uncertainty,
such as predicting human utterance or predicting a person’s future movements, methods have
been proposed to incorporate stochastic elements into the model. This methods provide a
way to deal with aleatoric uncertainty, which is inevitable in trajectory prediction. Over the
past decade, especially two types of generative models have been pursued to achieve SOTA
performance in the short-term trajectory prediction task: generative adversarial networks and
variational autoencoders. In recent years, the focus has increasingly shifted towards variational
autoencoders, which have taken the top spots in various widely adapted benchmarks [19, 94].

12

4 Related Work

Trajectory forecasting problems come in various forms, each demanding a unique set of so-
lutions. Historically, a shift from theory-driven to data-driven methods can be observed. Fur-
thermore has the multi-modal nature of trajectory prediction tasks lately received increasing
attention. The following provides a short overview outlining the key avenues leading to the
latest advancements in short-term trajectory prediction and AutoML techniques.

4.1 Trajectory modeling

Explicit motion modelling

The arguably oldest form of trajectory prediction is by incorporating knowledge of the physical
dynamics which govern the process. Often, such models can be based on classical mechanics,
assuming the laws of motion to be the central driving forces of action. Examples of such
kinematic models can be found in the work of Miller et al. [62], Hillenbrand et al. [35], or
Bektache et al. [9], expiring a height of research interest in the early 2000s. A more abstract
spin to the rule-based modelling can be found in the social forces model by Helbing [32],
which assumes that pedestrian motion can be approximated as the sum of a limited number of
forces, each capturing a distinct attracting or repulsing interaction effect. Enforcing physical
limitations into our model often yields more realistic patterns; however, it is very restrictive in
the number of manoeuvres it can express. Recently, Helbling’s method has found a revival in
its fusion with data-driven methods, such as in the work of Sven Kreiss [51].

Data-driven modeling

Even before the arrival of the “Big Data Era” the focus of a significant portion of the research
community can be observed shifting from rule-based toward data-driven systems. In such
a framework, we do not make explicit assumptions about the governing dynamics of the
interactions but instead strive to extract these effects from the data itself. For example, by
exploiting the prevalent structure of street layouts and approximating the underlying probability
distributions of the traffic process to create prototype trajectories. Examples of motion pattern-
based prototype sampling approaches can be found in the work of Vasquez et al. [82] or
Hermes et al. [34]. This prototype-based approach is often limited by its demand for very
large training sets to accurately learn to represent the vast variation in existing movement
patterns. Gaussian Processes, on the other hand, allow for a time-independent representation
of motion patterns, which reduces the need for training examples but drastically increases the
computational demands of the model. Examples of the Bayesian learning approach can be found
in the work of Joseph et al. [43], Tran et al. [80], and Hu et al. [37]. When considering data-
driven models, the separation between single and multi-modal is important. As the deterministic
case is conceptually simpler and usually cheaper to compute, past research often focused on
the single trajectory case. However, in recent years, the focus has shifted more and more
towards multi-modal prediction to better incorporate the inherent uncertainty of the problem
and minimise the risk of catastrophic failure. In contrast to rule-based models, data-driven
models are not able to restrain physically impossible trajectories from being sampled and,
therefore, sometimes might create unrealistic or infeasible predictions.

13

Sequence modelling (Recurrent Neural Networks)

One of the most common ways of modelling trajectories today is by representing them as
a sequence. An agent motion is then predicted step by step. Traditionally, Kalman filters,
Markov decision processing, or Gaussian processes have been used to that extent. Due to
the recent deep learning revolution, more and more models are based on recurrent neural
networks (RNN) and their derivatives, such as the Long-Short-Term Memory module (LSTM).
A popular example of the use of RNNs for trajectory forecasting is the Social-LSTM [1], which
uses multiple LSTM modules to jointly predict the paths of multiple pedestrians in crowded
scenes. Another example is the Sr-LSTM by Zhang et al. [98], which uses a states refinement
module to jointly refine the hidden states of all observed agents through iterative message
passing, considering their intentions and social interactions, as well as the MX-LSTM by
Hasan et al. [31], which uses a combination of tracklets and vislets exploiting head pose
information of agents to improve estimations of its moving intention. Recently, take-ups of
the Variational Recurrent Neural Network architecture [20] (VRNN) have been deployed for
short-term trajectory prediction to better model the inherent multi-modality [16, 94].

Spatial modelling (Convolutional Neural Networks)

Next to the sequential representation, it is common to model movement patterns conditioned
on their spatial location. Suggestions in traditional manoeuvre-based motion models go as far
as to eliminate the temporal dependencies completely by mapping locations to velocities [43].
Mersch et al. [60] take a similar approach by using a Fully Convolutional Network to model
trajectory offset and manoeuvre intentions. They, however, include not only velocities as input
to their network but also acceleration and position values.

Latent modelling (Autoencoders and Transformers)

With the success of transformer models in various domains, such as natural language processing
(NLP) and computer vision, researchers have begun to adapt transformer models for trajectory
forecasting. These models have shown impressive performance leaves, among other things, due
to their strong ability to capture long-range dependencies[88]. Classical transformer models
require sequential data. To circumvent this limitation and allow joint modelling of temporal
and spatial dependencies, data is often flattened into a single dimension and the transformer
is equipped with costume time encoders and spatial attention modules, such as in the case of
the Agentformer model by Yaun et al. [96] or costume temporal attention as in the case of
Cheng et al. [19].

Autoencoders work by learning mappings of high dimensional input data to low dimensional
manifolds and back to high dimensional outputs. The classical architecture consists of an
encoder module, often a simple convolutional network, and a decoder network, often described
as a “deconvolutional” network. This architecture type can create a latent representation of
the temporal and spatial dimension and then learn to create a joint trajectory prediction.
Examples include the Social-LSTM [1] and Convolutional social pooling [21]. It can be argued
that such a dense representation furthermore improves the reasoning quality of the model, as
it is closer aligned with the way humans tend to think about their movements, rather in low
dimensional vague ideas instead of exact coordinate sequences [61].

14

Generative modelling (Variational Autoencoders and Generative Adversarial
Network)

Trajectory forecasting is a problem of commonly high uncertainty. This is in stark contrast
to the deterministic nature of classical rule-based, prototype, and neural network-based ap-
proaches, which are all deterministic in their outcome. In order to adapt to this specific chal-
lenge, recent approaches have focused increasingly on modelling not only a single trajectory
but providing multi-modal predictions for any given agent, allowing accurate modelling of
trajectories for different unknown intentions (and updating those beliefs based on new infor-
mation). By using generative models, we can better model this uncertainty. Particularly by
using (Conditional) Variational Autoencoders (CVAE), we can draw samples from a continu-
ous latent space, which we can explore via a latent vector. Variational Autoencoders share a
lot of similarities with the deterministic counterpart of a simple Autoencoder. However, they
differ significantly in the decoder part of the architecture, which is used as a generative model
in the Variational Autoencoder. This enables us to create various prototype trajectories from
the same latent space, which might be conceptualised as representing a continuous inten-
tion/behaviour space. Many current state-of-the-art architectures such as [11, 19, 96, 94] rely
on CVAEs as generative models.

Generative Adversarial Networks (GANs), on the other hand, work by using a competing
generator and discriminator module where the generator draws samples from a random latent
space, and the discriminator has to learn between samples produced by the generator module
and real-world samples. Conceptually, one might picture this process as the discriminator
supervising the generator to produce as realistic data samples as possible. Again, we can
sample the latent space to achieve different outputs in the real space. This approach has also
been used in various state-of-the-art models, including [30, 47, 3, 73].

4.2 Automated Machine Learning

Automated Machine Learning can be traced as far back as 1976 and the work of Rice on
Algorithm selection [71]. The field, since then, has made incremental progress throughout the
years. Besides its focus on the algorithm selection problem and hyperparameter optimisation,
the challenge of Neural Architecture Search, the search for optimal network topology, has
gained increasing importance within the field in recent years. Although Neural Architecture
Search ideas can be traced back to as early as 2002 [78], it was not until very recently that the
field took off, exemplified by successes in the fields of image processing and natural language
processing. The pioneering work of Zoph and Le [102] and Baker et al. [5] has given an
immense boost to the field and reinforced beliefs in the potential it holds. In NAS, a common
distinction is between Macro- and Micro search spaces, based on whether we optimise macro
hyperparameters of the entire network or the singular cell design, forming part of a larger
network. Micro search space-based methods have the advantage of allowing to find very fine-
grained and detailed novel cell structures but come at the drawback of being restricted to a
singular repeated cell design, while macro search spaces allow for a diversity of cell architectures
that can differ at each level of the network. Given that most current SOTA work in trajectory
predictions relies on an array of different and non-repeating building blocks for encoding and
generating trajectories, our work focuses on Macro search spaces such as found in the work of
Tan et al. [79] and Zimmer et al. [101] to facilitate this qualification.

15

Automated Machine Learning for socio-spatio-temporal data

Li et al. [54] and Pan et al. [66] propose a domain-guided neural architecture search for a
convolutional and a graph-convolutional network for the traffic forecasting task. They show
that a restricted and domain-adapted search space can greatly improve the efficiency of the
neural architecture search and lead to better prediction results than various baseline models.
Furthermore, various approaches for neural architecture search on video data have natural
parallels to the type of spatio-temoral data investigated in our work [83, 100, 87]. Critically,
however, video data usually relies on the presence of dense grid representations, whereas in
trajectory prediction, we are usually dealing with very sparse grids, which are often better
represented using graph-like structures rather than grid-based approaches.

To the best of our knowledge, no work has yet been carried out in the direction of neural
architecture search for multi-modal trajectory prediction. A neural-architecture-search-based
approach has the advantage of being adaptive to the underlying problem, allowing a generalised
framework for problems that would otherwise require considerable individual network design
efforts.

4.3 Summary and evaluation of related literature

There can be learned a lot from existing rule-based and data-driven methods. Each approach
has its strengths, such as the effective interaction pooling mechanism of Kothari et al. [49]
to capture pedestrian interaction in narrow spaces. The flexible time-wise latent variables
introduced in the work of Xu et al. [94] to facilitated fast-evolving latent intentions in dynamic
environments, or the restrictive model of Helbing et al. [33] which offers great interpretability
and is well-suited for applications in crowd flow management. However, all these methods
struggle when brought into new contexts where the adequacy of this mechanism needs to
be assessed and often restructured. Based on the existing body of work, we can derive an
evident need for a new, adaptable and robust method for multi-modal short-term trajectory
prediction. Although not without merit, current SOTA methods for trajectory prediction require
intensive domain-specific architecture structuring, which is tedious and costly. Old rule-based
and manoeuvre-based methods are very robust and interpretable but unflexible and often subpar
performant due to the inherent complexity of trajectory data, which can not well be represented
in a number of rules without them growing exponentially large with the number of movement
options and interacting agents. Current state-of-the-art deep learning methods lack the direct
physical interpretability of rule-based methods and the data insights gained from manoeuvre-
based methods. Within our framework, we address this by proposing a combination of deep
learning encoder methods with interpretable physical simulation methods. We, moreover, derive
valuable insights into training data by using statistical methods to analyse the results of
architecture searches across different datasets. This provides a new paradigm of data-guided
methods in which our learning process is not only driven by data but also enables us to uncover
new insights from data through its interaction with the search space. This process can steer
further refinements and again lead to the discovery of new data and network properties.

16

5 Methodology

Our AutoTraj approach builds upon four main building blocks: (i) a strong backbone archi-
tecture, introduced in Section 5.2, (ii) data-guided feature selection presented in Section 5.3,
(iii) an expressive domain-inspired search space, outlined in Section 5.4 and (iv) an efficient
search strategy summarised in Section 5.5. In this following subsections, we introduce and
motivate our reasoning behind the choices for each of these building blocks. We follow a
“programming by optimisation” [36] approach, which makes our method extendable to al-
most any type of trajectory prediction problem. Given a dataset D consisting of multiple
scenes S, our method approximates an optimal model to estimate the next k positions of
all fully observed agents based on their last h observations. Concretely, for each scene of N
agents moving in Rd we take their past observations Xt−h:t = X t−h:t

0 , X t−h:t
1 , ..., X t−h:t

n where

X t−h:t
i = (X t−h

i , X
t−(h−1)
i , ..., X t

i) and predict p(X t:t+k
i |Xt−h:t). X t−h:t

i thereby has to be un-
derstood not only as a representation of the trajectory coordinates but also of derivative and
social features such as relative position to other agents or acceleration. Selecting the right
combination of these representation states is a vital component of our method. We estimate
the future positions of each agent individually and iteratively, making the process independent
of the total number of agents present in a scene.

In this section, we first outline the overall design of the AutoTraj framework. We then outline
the backbone macro structure of the model. Subsequently, we discuss the importance of various
feature types for the trajectory prediction problem. Then, our search space is introduced, and
lastly, we motivate our search strategy.

17

5.1 AutoTraj framework

Input Feature Selector ENCODER

Stochastic element

Decoder Output

Eval

Config

Build model

Select Config

Train

Figure 2: Outline of the AutoTraj framework. We search through a domain-inspired search
space of operations to fill predefined blocks of our network design. By evaluating against
the validation set, we can score each network configuration and use the obtained insight
to pick the next promising configuration.

The framework consists of a unified data pre-processing module, which converts any given
trajectory data consisting of at least an agent identifier, a timestamp and a position value per
agent-timestamp combination. Besides the pre-processing module, a macro skeleton network
architecture is provided. This skeleton defines the overall structure of the network. Based on
the successes of previous work [94, 96, 19, 74], we use a conditional Variational Autoencoder
as backbone architecture; however, our framework allows that choice to be easily adjusted. A
search space is provided that defines the possible configuration choices of the network, such
as the number of layers, the selected features, the pooling mechanism or the type of recurrent
operations used. Given a training dataset D, the data is split into a train set DT and a
validation set DV . The train set is used to optimise the trainable network parameters θ, while
the validation set is used to optimise the hyperparameters λ. The possible hyperparameter
choices can be summarized by Λ = Λ1 × Λ2 × · · · × Λn. We then aim to find the optimal
parameter configuration λ∗ ∈ argmin

λ∈Λ

1
k
Σk

i=1L (Mλ,Di
T ,Di

V) where our network M is trained

on DT and evaluated, using the ADE performance metric, on DV . A combination of Bayesian
Optimisation (BO) and hyperband (HB) [24] is used to select candidate configurations of the
network architecture. After a fixed amount of time or number of runs m, the best-performing

18

network is chosen, and the topology parameters are fixed. Optionally, a second search through
network hyperparameters such as learning rate and batch size can be performed with the
architecture parameters frozen. The result is a unique per-dataset adapted model. An overview
of the schematics is presented in Figure 2. A listing of all the hyperparameter choices is given
in Section 10.3.

5.2 Network architecture

Figure 3: The overall outline of the AutoTraj macro architecture. The input data is
processed by a feature selector and passed to an Encoder module. The encoder module
creates a dense latent representation, which is passed in combination with a stochastic
element to the decoder. The decoder generates possible future trajectories.

As sketched, we use a CVAE as our backbone architecture, building upon the positive recent
results in the domain of short-term trajectory prediction [19, 96, 94, 74]. The CVAE has the
decisive advantage of being able to explicitly handle the multi-modality of the problem by
leveraging a latent variable z. The dimensionality of this latent variable can be adapted to the
complexity of the irreducible aleatory variability in the data. The observation that the generative
mechanisms of the VAE outperform the ones of a GAN may find motivation in the recent work
of Bardes et al. [7] and LeCun [52] outlining relatively bad generalisation qualities and high
computational demands of contrastive methods such as GANs over information maximising
methods such as VAEs.

The network consists of a feature processor, an encoder, and a decoder module. Their inter-
action is illustrated in Figure 3.

Feature Processor: In the feature processor, various physical and social features are com-
puted, such as an agent’s velocity and relative velocity to other agents. Drawing on existing
literature, we base our selection on well-established features for multi-modal short-term tra-
jectory prediction, as found in the work of Xu et al. [94], Kothari et al. [49] and Amirian et
al. [3]. An overview of them can be found in Section 10.1 of the appendix. In each network
initialisation, only a subset of the possible features is selected as input to the encoder.

19

Encoder Module: The encoder module, in turn, consists of three components. A social
interaction, an individual representation and a social representation module. The social interac-
tion module pools all agents’ information nt and relates it to the primary agent xt. The individ-
ual and social representation creates a dense representation of the trajectory data via recurrent
operations performed on a per-agent basis. Similar to previous work [1, 30, 74, 49, 19, 94],
the individual representation module is applied to the primary agent, while other agents are
passed through the social representation module. As we only predict future timesteps for the
primary agent, this separation aids the network in extracting the maximum amount of direct
movement information from his trajectory data and the maximum amount of relative move-
ment information from his surrounding agents. The representation states from the encoder
module are concatenated at each timestep t to create a joint representation state st, which
is passed through a recurrent cell together with the previous hidden state to create the next
hidden state.

st = ϕθ(xt);ϕθ(nt)

ht = RNNθ(st;ht−1)

During training time, we similarly encode the information from future timepoints. The final
hidden representation of the past and future data is passed through dense layers to obtain the
parameters of a normal distribution µf , σ

2
f . In parallel, parameters µk, σ

2
k are estimated using

only the past information. The difference between the two distributions is calculated using the
Kullback-Leibler information divergence (KL-Loss) as described in the work of Xu et al. [94].
During inference time, only the information from the past timepoints is given, and the latent
variable z is drawn from the conditioned prior distribution pk. Using the latent variable, we
can facilitate a one-to-many mapping via repeated sampling.

Decoder Modules: The decoder module takes the final dense hidden representation h of
the past and the drawn latent variable z as input. The concatenated information is passed
through either a dense layer, a recurrent network or a simulation process based on the chosen
architecture parameter. Hence the output can be either a direct nonlinear transformation of
X t+1:t+k

i = ϕθ(h; z), a recurrence relation with a single latent ht+1 = RNNθ(z;ht) or multiple
time-wise latent variables ht+1 = RNNθ(zt;ht) where zt = ϕθ(ht−1) and X t

i = ϕθ(ht; zt).
Lastly, a simulation-based approach, similar to the social force model [33], is possible where
a desired destination rα = ϕθ(h; z) is estimated from the latent information together with a
desired velocity vα and estimations for the repulsion and attraction forces FαB of other agents
B towards the primary agent α. The desired location is assumed to have an attraction force
Gα and the desired velocity a modulating force Mα. The trajectory can then be estimated by
iteratively calculating the next velocity values vt+1 = vt + Gα + Mα +

∑
B FαB. All four of

these approaches have their merits in different circumstances. So might, a direct decoder lead
to more stable predictions, while a timewise-latent decoder might be preferred in fast-changing
dynamic environments. On the other hand, there might exist situations in which more control
over the model is required, which can best be achieved via the simulation-based approach.
Making these different generating networks part of our search space allows our method to pick
the best choice for a given context adaptively.

Depending on whether the network configuration has set position, velocity or acceleration
values for the output and the metric calculation, the respective mean squared difference is
taken as loss and added to the weighted KL-loss. Formally, the loss term may then be defined
by LCV AE =

∑k
t=1 ||xt

i − x̃t
i||22 + λDKL(pk(z|X t−h:t)||pf (z|X t−h:t, X t+1:t+k)), where xt

i is the

20

true and x̃t
i the estimated state of agent i at time t and pk, pf are the parameterised Gaussian

distributions outlined in the Encoder section.

5.3 Feature selection

To be able to model the variety of complex social interactions and physical realities of short-
term trajectory prediction, we found that it is necessary to compute a large array of representa-
tive features such as acceleration values, heading angles, relative distances, minimum predicted
relative distances, etc. The relevance of those features might vary per dataset. To address this
challenge, we leave the decision for or against a given feature group open in our search space
and use the search procedure to find the optimal input as well as target representation. As
the number of observable actors within a scene can change over time, a number of difficulties
are introduced for various machine-learning methods. To combat this challenge, we implement
the common approach to focus only on the k-closest agents or only consider agents within a
fixed radius r and apply pooling or padding strategies accordingly to ensure all vectors have
the same dimension [19, 49, 96]. A graphical intuition of movement features such as velocity,
relative velocity and relative distance is given in Figure 4.

Figure 4: An overview of some of the possible features that can be extracted from scene
context. The past movements and multi-agent relations are used to inform the future
movement prediction. The black arrows represent the agent’s velocity, and the coloured
arrows represent the relative speed towards the agent opposing him. The blue line indicates
the Euclidean distance between the agents.

Besides input values, the target value representation can greatly impact the learning process
as the optimisation against velocity or position values leads to largely varying loss landscapes.
Although we expect velocities to be the preferred mode of optimisation as they are independent
of an agent’s initial position, heavily reducing the amount of required training data to model
the movement process, there are some scenarios in which it might be an advantage to use

21

positional or acceleration information as state representation. This might, for example, be
true for an aeroplane performing a landing manoeuvre or a basketball player trying to score
on a standard court, where knowledge of the initial location is critical in assessing the likely
future positions. By leaving the framework to pick the features per dataset, we avoid making
assumptions about the data and instead let the data guide the process towards an optimal
bias.

5.4 Search space

Our AutoTraj framework introduces a novel domain-inspired search space that builds upon a
long history of research into short-term trajectory prediction [1, 30, 73, 3, 74, 49, 19, 94].
Attempting to summarise previous literature from various contexts we find that despite big
differences in implementation, they overwhelmingly draw from the same set of ideas. They
propose task-specific features, social interaction mechanisms mostly based around attention
and pooling, information encoders to create a dense representation of the trajectory data
and generative mechanisms to create a probability distribution for future movements. In the
face of these similarities, the detailed implementation between the different models, however,
deviates greatly. Moreover, there does not seem to be a consistent best operation over the
different contexts. We address this challenge by keeping our base design flexible and using
the possible reasonable choices as building blocks of our search space. Concretely, our search
space encompasses the following architectural choices: choice of input features, target and
metric representation, the depth, width, activation function and dropout value of dense layers,
the choice between a gated recurrent unit (GRU) and long short term memory (LSTM) for
the recurrent operations, the preference to encode the Time Series forward or in reverse, the
pooling operations and its settings and the decoder type. In addition, hyperparameters such as
learning rate, batch size, missing value imputation method, KL loss weighting, etc, are included
in the search space, and optimised jointly with the architectural parameters. A full listing of the
search space can be found in the appendix. These design choices find their motivation in related
literature and practical reasoning. For example, the choice between a time-wise latent or a single
latent value can be understood as a trade-off between consistency and dynamic abilities. In the
case of predicting car coordinates on a highway, it can be more beneficial to use a single latent
variable representing basic manoeuvres such as accelerating, deaccelerating, left-turn and right-
turn; While to predict the movements during a basketball game, it will likely be more beneficial
to use time-wise latent variables to capture the fast-evolving dynamics and intends of the
game. Similarly, some contexts might require interpretable models excluding all but simulation
scenarios as valid decoders. Kothari et al. [49] have carried out large-scale experiments on
determining good social pooling mechanisms and found that simple concatenation was most
effective in dense crowd scenarios; however, in different contexts, different pooling mechanisms
performed better [60, 96, 94, 19]. In a similar line of argumentation, Xu et al. [94] found that
using reverse time-coded trajectory data works best with their recurrent network, while most
other work uses simple forward time-coded input. Similar differences can be observed for the
type of recurrent operator, such as whether to use an LSTM or GRU. By making our search
space span these differences, we hypothesise that our framework can better adapt to new
contexts than current stationary state-of-the-art models.

It is also important to note that although we strive for the search space to be as expressive
as possible, we also want the resulting model to be robust and function on all data within a
certain context distribution. Hence, we want to avoid “optimising” the model so far to a given

22

training set that it no longer generalises to other data from the same context. For example, a
model trained on pedestrian data from one street should also work with pedestrian data from
a different street. For that, it is important to use human prior in designing a restrictive search
space and validate that no configuration can perfectly map all training data for a reasonable-
sized training set. We validate the robustness of our model by running it on the ETH/UCY
benchmark, which follows a leave-one-out approach for training and testing on different scenes.

To gain insights into the impact of the search space on the performance, we compare our base
approach to a

(i) Basic AutoML approach, where we simply search through the width and depth of fully
connected layers that transform the input features into the target predictions.

(ii) We furthermore introduce a minimalistic setting, which we shall refer to as Minimal Auo-
Traj, of our full search space, which also builds upon the conditional variational autoencoder
as backbone architecture; however, it does not contain social-pooling or decoding mecha-
nisms. Hence, the minimalistic search space is limited to the input and target feature selector,
embedding sizes, network width and depths and activation functions, and the same training
hyperparameters, such as learning rate and batch size, as used for the full search space. All
the included parameters are also listed in Section 10.3.

5.5 Search Strategy

As search strategy, we utilise Bayesian optimisation in combination with hyperband. Concretely,
we use the BOHB [24] implementation of the Weights and Biases (wandb) python library [12].
We choose BOHB for its efficiency, enabling us to search through the vast parameter search
space, allocating computational resources judiciously, and ensuring a more rapid convergence.
It provides a good balance between observed any-time performance as well as final performance.
Particularly through the inclusion of the feature selection, we found that an aggressive early
stopping mechanism such as successive halving is necessary to not overload the framework
with unpromising runs taking up a large amount of computation while not leading to much
information gain in the regions around the optimal result.

It is worth pointing out that among close inspection of the source code, we found some notable
differences to the original proposal of Falkner et al. [24]. In this implementation, a Gaussian
Process is used as the surrogate model for BO. In particular, we find that the Scikit-Learn
implementation for Gaussian processes is used1, which builds upon the work of Rasmussen et
al. [69]. Runtime is determined via an online version of the successive halving method. There
is no initial space budget for a run other than the maximum run time bmax. However, runs are
checked every bηmin epochs, with η being a hyperparameter controlling the aggressiveness of
the pruning. If a run falls beyond the 1/η fraction, it is stopped.

1https://scikit-learn.org/stable/modules/gaussian_process.html

23

https://scikit-learn.org/stable/modules/gaussian_process.html

6 Experiments

We carry out two sets of experiments:

(i) To demonstrate the robustness of our approach against overfitting of the architecture,
we illustrate results on the widely used ETH/UCY benchmark. Using a leave-one-out
strategy to train on four scenarios and make predictions for a fifth one.

(ii) To illustrate the adaptiveness of trajectory prediction models in different scenarios, we
perform tests on three datasets of the curated diversity benchmark.

We investigate the case-by-case prediction quality of the methods for each scenario and rank
the methods’ overall ability to adapt to the different scenarios. We thereby focus on the
following questions:

• Can AutoTraj achieve lower prediction errors compared to baseline methods?

• How well can these models generalize across different scenarios?

• What conclusions can we derive on the importance of different parameters of the neural
network architecture?

6.1 ETH/UCY benchmark

To directly compare related literature, we use the well-established [1, 30, 73, 3, 74, 94, 16,
96, 95, 93, 85, 61], public ETH/UCY benchmark [53, 67]. The benchmark is widely used
with a standard protocol for which dozens of papers have reported results throughout the
years, permitting large-scale comparisons. We obtained the dataset directly from the official
GitHub repository of the work of Mohamed et al. [64]2. A general risk of optimising a network
architecture based on a subset of data is to overfit and no longer generalize to other data,
even when the data stems from the same context. As the ETH/UCY dataset consists of
five individual sets, we can test the generalizability of our produced models by optimising
on four sets and testing the performance on the fifth one, using the standard leave-one-out
cross-validation approach.

The ETH/UCY contains data from 1, 536 pedestrians recorded at four locations and five
different time points, with a frame rate of 2.5 Hertz. A more detailed exploration of the
datasets’ properties can, for example, be found in the work of Becker et al. [8] and Amirian
et al. [3].

We forecast trajectories of 12 timesteps (4.8s) based on observations from 8 timesteps (3.2s).
In line with previous work, we do not use any semantic information to aid predictions.

6.2 Diversity benchmark

To test the ability of the different methods to adapt to different contexts, we curated an
expressive and diverse real-life benchmark, which we refer to as diversity benchmark. The
benchmark consists of data from three datasets: the HighD [50], InD [13] and the SportsVU

2https://github.com/abduallahmohamed/Social-Implicit/tree/main/datasets

24

https://github.com/abduallahmohamed/Social-Implicit/tree/main/datasets

dataset [48]. Each dataset aims to represent a different real-world scenario, each with varying
properties (such as linearity, speed, goal positions, interaction effects, etc.) of the underlying
trajectories. The scenarios span from basketball gameplay to car and mixed traffic data. To
enable as many researchers as possible to benchmark their performance with this dataset,
we randomly selected 2, 500 representative trajectories per dataset to limit the computational
burden while training to facilitate a 5-fold cross-validation within feasible time constraints.
Typical methods can be trained and benchmarked on the dataset within less than a week of
GPU runtime.

To provide a deeper understanding of the benchmark dataset, we briefly lay out the fundamental
properties and background for each candidate set. A short summary is also given in table 1
and Figure 5.

Datasets

HighD: With the rise of autonomous driving applications, traffic datasets have become an
increasingly important field of research for the trajectory prediction community. The HighD
[50] provides a high-quality, large-scale naturalistic vehicle trajectory dataset with trajectories
from over 110, 000 drivers (including cars and trucks) taken on six different locations of the
German highway. Observations were taken by drones flying stable over a fixed piece of the
highway for a total of 16.5 hours. The original data was recorded at 25 frames per second. We
down-sample the data by a factor of 10 to 2.5 Hz to be more comparable to the ETH/UCY
benchmark. Visual tracking in combination with Rauch-Tung-Striebel (RTS) Smoothing was
applied to obtain the coordinate data.

InD: The InD [13] dataset provides drone-captured trajectories for four German intersections
from 11, 500 traffic participants (including pedestrians, cyclists, cars, trucks and buses). The
original data was recorded at 25 frames per second. We again down-sample the data by
a factor of 10 to 2.5 Hz. Visual tracking in combination with Bayesian Smoothing and a
constant acceleration model was applied to obtain refined coordinate data.

SportVU - NBA: SportVU is a commercial provider of motion tracking in professional
sports. In the 2015-2016 NBA season, the complete tracking information of each game of
the year was provided online for public access. Recently an active field of research around
the dataset has been established, including studies into various trajectory prediction tasks
[94, 2, 57, 97]. It provides data for over 500 basketball games with two teams of 5 players and
the ball. For our use case, we limit the focus to interesting gameplay moments in the form of
scoring events similar to related work [2, 94]. Details on the data extraction process can be
found in the appendix 10.2.

25

Figure 5: Illustration of the speed and directional distribution of the datasets. From left
to right: HighD, InD, SportVU-NBA. The yellow line indicates the median speed per
heading angle, and the underlying blue colouring indicates the density (dividing the angle
into 64 and the speeds into 16 bins). Note how the car-centric data consists mostly out of
fast linear movement, while the mixed data is very centred around movement within the
field of view of a given agent, and the basketball data shows a lot more range, almost to
the extent of seemingly erratic movement.

Dataset Properties Source Applications
InD non-homogenous intersection data, mostly non-linear Bock et al. [13] [13, 19, 29]
HighD highway car data, mostly linear Krajewski et al. [50] [50, 60, 86]
SportVU - NBA basketball game data, highly non-linear Linou et al. [48] [94, 2, 57, 97]

Table 1: A short summary of critical data properties.

Protocol We follow a 5-fold cross-validation procedure to validate our results for each
dataset. This means we split each dataset into 5 equal parts. For each run, we use 4 non-
overlapping parts, hence 80% of the data, for training and the remaining 20% for testing. Each
trajectory consists of 20 frames, of which 8 are past observations and 12 future observations,
which we attempt to predict.

Each fold from each dataset constitutes a separate experiment. We run our AutoML approach
from scratch for each experiment and perform a separate search to avoid data leakage. Due
to the time-intensive nature of these runs, we are only able to test with one random seeding
per fold and dataset.

6.3 Data properties

Having a solid understanding of the data is critical in understanding the trajectory prediction
task and its difficulties, and it is worth looking into the unique properties of the trajectory data
in more detail. The attributes outlined in the following section are common to all trajectory
data; however, they are here, mainly analysed in the context of our datasets. They all represent
different sources of real-world difficulties of the trajectory prediction task. Our selected datasets
are also composed of the ambition to be a fair and diverse representation of those attributes.

Physics of movement: Although as Mangalam et al. [58] eloquently stated: “humans
are not inanimate Newtonian entities, slave to predetermined physical laws & forces”, it is
evident that humans are, at least on a macro scale, also no quantum particles, tunnelling
between places. Large parts of naturalistic trajectories do in fact follow simple mechanics. We

26

can use these simple mechanics to generate hypotheses about important aspects of human
motion modelling. A critical variable is the field-of-view (FOV) of an agent, which (in the
absence of auditory stimuli) restricts the range of its reactive space. Following, most of the
social interaction effects occur when neighbouring agents appear within the cone of the FOV
of the agent. Apart from interactions, human motion tends to be mostly linear. This can be
explained by the body mechanics that make it far less convenient for humans to walk backwards
or sidewards than straight. Without interference, most pedestrian and traffic trajectories will
follow a more or less linear path. A clear exception to this can be found in the basketball
data, where it is crucial for the players of each team to ”surprise” their opponent with fast,
unexpected movement to get past them or anticipate the opponents’ movement to hinder
them from passing. This leads to a much broader distribution of heading angles and speeds in
the sports data than the commonly analyzed pedestrian datasets.

Sources of randomness: The provided data tries to capture the socio-spatio reasoning of
human agents in different environments. We dissect this short-term reasoning into three main
drivers: spatial attention, social attention, and goal-directed attention. The first incorporates
the physical possibilities and limitations of a given environment. The second includes all social
cues given from one agent to another reflected in the agent’s interpretation of the clues. Lastly,
goal-directed attention drives the agent’s more long-term behaviour. It is important to note
that of those three drivers, we can only accurately reconstruct the spatial and social attention
given an agent’s trajectory without further information. Mangalam et al. [58] categorize these
sources of randomness into epistemic uncertainty (e.g., uncertainty caused by hidden variables
like long-term goals) and aleatoric variability (e.g., random decision variables such as environ-
mental factors). Andel et al. [4] provide a methodological evaluation of the impact of missing
goal information on the example of the Stanford drone dataset. Hence, no prediction can be
expected to be perfect as the true generating process can never be fully estimated from the
given data. However, it should also be clear that a dataset representing cars on a highway will
show far less short-term divergence than, for example, a dataset of crowded pedestrian scenes.

6.4 Metrics

We report the minimum average-displacement-error (mADE) and the minimum final-displacement-
error (mFDE), which are the standard evaluation metrics for the trajectory prediction task
[1, 30, 96, 94, 63, 3, 21]. In particular we use the best-of-20 ADE/FDE. The ADE defines
the average aligned euclidean distance between the ground truth y and the ŷ or in the case of
multi-modal predictions the minimum of such distances[1, 30]

ADEK =
1

T

K

min
k=1

Tpred∑
t=Tobs +1

∥∥ŷt,(k)
n − yt

n

∥∥2

The FDE measures the Euclidean distance between the final time-step of the ground truth
and prediction data.

FDEK =
K

min
k=1

∥∥ŷT,(k)
n − yT

n

∥∥2

Here and throughout, ŷ
t,(k)
n denotes the estimated future position of agent n at time t in the

k-th sample of a multi-sample prediction and yT
n is the corresponding ground truth.

27

Baselines and Methods

For the diversity benchmark, we compare against three popular state-of-the-art baseline meth-
ods for short-term trajectory prediction, which we outline briefly:

• Linear: simple baseline based on a continuous and steady movement assumption.

• AMENet [19]: A conditional variational auto-encoder based on a mixture of dynamic
convolutional and recurrent operations. SOTA model for the Trajnet dataset. The source
code can be found on github.

• SocialVAE [94]: A timewise variational autoencoder combined with social attention for
multi-modal predictions. Claimed SOTA for various trajectory prediction settings, in-
cluding SportVU-NBA. For our experiments, we use the SVAE version without post-
processing. The source code can be found on github.

• Minimal Autoraj: To further investigate the importance of the search space design, we
provide a stripped-down version of our approach. The model uses the same feature se-
lection and backbone model as the full AutoTraj method; however, it does not include
social pooling operations or decoder mechanisms and instead just includes fully con-
nected neural networks and simple recurrent networks of variable width and depth in the
search space.

We chose the AMENet and SocialVAE as they are SOTA models for at least one dataset and
were already trained and tested for different scenarios in their original papers. We, therefore,
expect them to perform better than methods just trained for pedestrian prediction on our
diverse benchmark. We conduct 100 runs of hyperparameter optimisation for each baseline
method, tuning the key parameters of a given method using Bayesian Optimisation. These
include learning rate, batch size and latent dimensions. The search space is based on established
reasonable intervals from previous work and the original hyperparameter settings reported in
the respective papers. The exact search intervals per method are reported in section 10.3 of
the appendix.

For the ETH/UCY experiments, we use the results as reported by Xu et al. [94], Lian et
al. [55] or self-reported from a wide range of methods to present a detailed picture of how
our method compares to different current state-of-the-art architectures. For baseline meth-
ods for which no results had been published prior, namely Kalman [44] and Social Force
[33], we ran the experiments ourselves, using the same standard evaluation protocol as pre-
vious work [1, 30, 73, 3, 74, 94, 16, 96, 95, 93]. We do not consider methods such as
AgentFormer[96], PECNet[59] and MemoNet[93] who depend on costly post-processing steps.
For the Trajectron++[74], SGNet-ED[85] and BiTraP[95], where the original papers have
known bugs in their implementation, we took over the adjusted values from the work of Xu et
al. [94] who recomputed them with the fixed code provided by the respective authors.

Implementation Details

During training, we use the mean squared error as the learning criterion for the network, which
enforces the minimization of the average displacement error. We utilize a Xavier initialisation
strategy [28] to set the initial network weights. We use rotation and flipping augmentations

28

https://github.com/haohao11/AMENet
https://github.com/xupei0610/SocialVAE

to regularize the models. Instead of creating new data samples, we randomly replace existing
samples with transformed versions, keeping the amount of data constant. We deal with the
variable number of neighbouring agents by only considering the 16 closest agents (based on
Euclidean distance) and padding with a large value when less than 16 agents are observed.
We use an Adam optimizer[46]. Hyperparameters such as learning rate, drop out, batch size,
missing value fill strategy, etc., along with architectural parameters such as the dimensions
of the hidden state of encoder and decoder, latent dimension or pooling method, are set per
run configuration. We use the top-20 minimal average displacement error over the validation
set as the criterion for the meta-optimisation on the hyperparameter level. For the diversity
benchmark, we run AutoTraj for each experiment for a maximum of 500 runs or five days,
followed by 100 runs of fine-tuning, optimising only hyperparameters but keeping architectural
parameters frozen. In a second set of experiments for the ETH/UCY benchmark with a reduced
search space, we run AutoTraj for 100 runs without fine-tuning.

The experiments were carried out on the Data Science Lab cluster of Leiden University with
a 48-core machine using the Intel(R) Xeon(R) Silver 4214R CPU clocked at 2.40GHz with a
total of 252GB of RAM and 2 NVIDIA GeForce-RTX 3090 with 24 GB of graphic-ram each.

29

7 Results

7.1 ETH/UCY benchmark

For the ETH/UCY benchmark, we find that our method performs on par or better than any
non-postprocessing method in terms of ADE. Regarding FDE, several baselines outperform
our approach. However, this is expected as we explicitly optimise for minimal ADE in our
framework during the architecture selection process.

ADE/FDE top20 ETH Hotel Univ Zara01 Zara02 Average
Linear1 1.07/2.28 0.31/0.61 0.52/1.16 0.42/0.95 0.32/0.72 0.53/1.14
Kalman1 1.20/2.41 0.26/0.48 0.75/1.44 0.61/1.19 0.46/0.90 0.66/1.28

Social Force1 1.32/2.28 0.65/1.16 0.90/1.63 1.38/2.53 0.82/1.50 1.01/1.82

SocialGAN 0.64/1.09 0.46/0.98 0.56/1.18 0.33/0.67 0.31/0.64 0.46/0.91
SoPhie 0.70/1.43 0.76/1.67 0.54/1.24 0.30/0.63 0.38/0.78 0.54/1.15

SocialWays 0.39/0.64 0.39/0.66 0.55/1.31 0.44/0.64 0.51/0.92 0.46/0.83

Social-STGCNN 0.64/1.11 0.49/0.8 0.56/0.98 0.44/0.79 0.34/0.53 0.49/0.84
PTP-STGCN 0.63/1.04 0.34/0.45 0.48/0.87 0.37/0.61 0.30/0.46 0.42/0.69

STAR 0.36/0.65 0.17/0.36 0.31/0.62 0.29/0.52 0.22/0.46 0.27/0.52
TransformerTF 0.61/1.12 0.18/0.30 0.35/0.65 0.22/0.38 0.17/0.32 0.31/0.55

MANTRA 0.48/0.88 0.17/0.33 0.37/0.81 0.22/0.38 0.17/0.32 0.28/0.54

Social-LSTM1 1.09/2.35 0.79/1.76 0.67/1.40 0.47/1.00 0.56/1.17 0.72/1.54
SR-LSTM-21 0.63/1.25 0.37/0.74 0.51/1.10 0.41/0.90 0.32/0.70 0.45/0.94
Trajectron ++ 0.54/0.94 0.16/0.28 0.28/0.55 0.21/0.42 0.16/0.32 0.27/0.5

BiTraP 0.56/0.98 0.17/0.28 0.25/0.47 0.23/0.45 0.16/0.33 0.27/0.5
SGNet-ED 0.47/0.77 0.21/0.44 0.33/0.62 0.18/0.32 0.15/0.28 0.27/0.49
SocialVAE 0.47/0.76 0.14/0.22 0.25/0.47 0.20/0.37 0.14/0.28 0.24/0.42

Basic AutoML 2.90/3.71 2.75/3.72 2.37/2.49 2.23/4.32 1.96/3.02 2.44/3.46
Minimal AutoTraj 0.64/1.20 0.20/0.37 0.29/0.58 0.38/0.76 0.20/0.41 0.34/0.66

AutoTraj 0.46/0.82 0.14/0.24 0.24/0.49 0.20/0.42 0.17/0.32 0.24/0.46

Table 2: Results for the ETH/UCY benchmark. As per convention, we report the best-
of-20 ADE/FDE. We divide the results into five main sections: classical baselines, GAN-
based methods, spatio-temporal-graph-based methods, transformer and memory-based
methods, methods that are potentially included in our search space and AutoML-based
methods. We observe that CVAE-based methods significantly outperform GAN-based
methods. Our method performs on par or better than any baseline method in terms of
ADE. Methods marked with 1 are non-probabilistic methods.

We likewise see a dominance of CVAE-based approaches over GAN-based approaches. Spatio-
temporal-graph-based methods tend to outperform classical and GAN-based methods but stay
behind other architecture types. Moreover, we find that the basic AutoML approach with a
simple feed-forward network-based search space cannot catch on to the complex dynamics
required to create accurate trajectory representations. Figure 6 provides a visual overview of
the relevant methods that fall within our search space as outlined in section 5. We find that on
average, over all the datasets, we perform on par with the SocialVAE model. On two datasets,

30

namely the Eth and Univ dataset, we performed slightly better; on two datasets, the Zara1
and hotel, we achieved the same results, and on Zara2 we performed worse. The higher error
on the Zara2 dataset significantly impacts our overall result.

Figure 6: Minimal average displacement error for the ETH/UCY benchmark. Visualizing
the most relevant methods for direct multi-modal short-term trajectory prediction. Each
triangle symbol represents a dataset, and the black + the average over the datasets. On
the x-axis, we see the different methods and on the y-axis, the ADE on a log-scale.

7.2 Diversity benchmark

For the diversity benchmark we trained the SocialVAE, AMENet, a basic AutoML approach
in the form of Minimal AutoTraj and the full-scale AutoTraj model on the sampled version
of the HighD, InD and SportVU NBA dataset. The SocialVAE is a state-of-the-art model for
the ETH/UCY and SportVU NBA dataset, the AMENET is state-of-the-art for the Trajnet
[72] and the InD dataset. Hence, other than most short-term trajectory prediction work, they
were already explicitly trained on multiple datasets and furthermore have an overlap with
the datasets used in our experiments. We, therefore, believe that they can provide a strong
baseline comparison. We furthermore include the classical constant velocity model as a base
measurement from a deterministic method to provide further context on the magnitude of
performance achievements.

On the diversity benchmark, we find that our method can adapt well between highly linear
car trajectories and non-linear basketball-player trajectories. On the HighD dataset, AutoTraj
outperforms the second-best method by nearly 25% and 26% in terms of ADE and FDE.
Our approach outperforms the next best baseline by 4% and 21% on the InD dataset and
is outperformed by 3% and 32% on the Sport-VU NBA dataset. The AMENET performs

31

relatively well in mixed traffic scenarios for which it was optimised but does not generalize as
well as other methods. Figure 7 shows box plots of the results with the mean signalised by the
dotted green line and the median by the continuous orange line. The average score over the
5-folds per dataset and method can be found in Table 3.

Figure 7: A boxplot for the performance on the HighD, InD and NBA dataset respectively,
from left to right. The mean performance in terms of ADE is signalised by the dotted
green line and the median by the continuous orange line.

32

Table 3: Results for HighD, InD, and NBA datasets. We report the mean best-of-20
ADE/FDE. We observe that our method outperforms all other baselines in two datasets
and performs second best on the third one.

ADE/FDE top20 HighD InD NBA
Linear 1.10/2.67 1.28/2.46 1.48/3.35

SVAE 0.57/1.38 0.60/2.08 0.61/0.96
AMENET 1.98/3.68 0.98/1.87 1.08/2.29

Minimal AutoTraj 0.63/1.60 0.84/1.81 0.69/1.17
AutoTraj 0.43/1.02 0.58/1.65 0.63/1.12

As the error values from the different datasets are not on the same scale, averaging them
can not give us a good estimate of the actual preference between methods. To find the best
overall method, we need to perform a ranking between the candidate methods. Comparing the
different methods by bootstrapping the results with 1000 samples of size three and performing
a Wilcoxon signed-rank test[90] for non-normally distributed samples to award rankings based
on significantly better performance, we find the average ranking outlined in Table 4. With
an average rank of 1.33 AutoTraj achieves the lowest average ranking, followed by the Social
Variational Autoencoder. In third place, we find the minimal version of AutoTraj with a simple
search space. This is followed by the AMENet. As expected, in the last place, we find the
classical rule-based approach of constant velocity.

Table 4: Average ranking across the benchmark
Model Average Ranking
Linear 4.66

SVAE 1.67
AMENET 4.33

Minimal AutoTraj 3.00
AutoTraj 1.33

7.3 Parameter importance

Gaining insights into the performance of different network components can help us develop a
further understanding of the data as well as guide us towards more efficient search spaces by
outlining which parts of the search space underperformed on a given dataset. Such insights may
then, in turn, be used to create a more restrictive arrangement that can be searched quicker
or more precisely, with longer training times per configuration. Studies into the marginal
performance and influence of the parameter choices can additionally aid interpretability by
being able to pinpoint the strengths and weaknesses of different settings. To obtain insights
into the importance of various parts of our architecture, we perform a functional ANOVA
[76] employing the efficient random forest-based procedure of Hutter et al. [38]. Leveraging
this framework, we obtain estimates of the marginal effect of single hyperparameters and
interactions between hyperparameters by analysing the performance of different architectures
on the validation set. We observe that, in particular, hyperparameters such as learning rate
but also feature selection settings have a significant contribution to a model’s performance.
We find that to be true in terms of input feature selection as well as target feature selection.
We often achieve better results when using velocity or acceleration values as prediction targets

33

than when using position directly. This indicates that the behavioural change can encode
information more universal than the direct positional state. This can be expected as it imposes
a form of normalization on the training samples, making them independent from their starting
position and likely aiding a better gradient flow. This indicates the importance of utilizing the
correct coordinate system even when dealing with universal function approximators such as
neural networks. It should be noted that the stark differences in performance might also be
a consequence of the limited training time and that with longer training runs, the network
could learn better mappings of the positional information. Further investigations into the
interactions between the hyperparameter choices under different computational budgets open
up a promising avenue for further research.

Figure 8: Marginal importance of hyperparameters on the InD dataset. On the left:
Marginal performance achieved when varying the learning rate over the x-axes. The solid
blue line is the mean, and the shaded red area indicates one standard deviation. On the
right: Marginal performance for different target representation features. The boxplot rep-
resents their range and mean of observed results. To avoid outliers distorting the image,
we resort to visualizing results from the top-50% quantile.

Besides hyperparameters, we also find functional choices such as the type of network activa-
tion and the hidden and latent dimensions of the network of central importance to a given
network performance. As the performance of a network architecture is highly sensitive to the
hyperparameter settings chosen for training, the joint optimisation of hyperparameters and
architectural parameters is important to obtain an accurate proxy of the true optimal network
performance. An illustration of the effects at play between learning rate and decoder type is
shown in Figure 9. Our findings suggest that particularly for our highway data, feature options
using pure position information could be pruned from the search space as velocity or accel-
eration information was shown to be always preferred by our feature selection. Furthermore,
can the width of some of the parameter ranges regarding the dimensions of fully connected
networks potentially be reduced without leading to a significant performance decrease. Further
investigations are warranted to delve deeper into these findings.

34

Figure 9: An illustration of the possible interactions between different parameter choices.
Here, we show the pairwise marginal computed on the validation set of the InD subset.
Different architecture types might have different optimal learning rates. To get a good
estimation of the true optimal network performance, we need to find the right combination.

35

8 Discussion

We find that AutoTraj provides a convenient framework for multi-modal short-term trajectory
prediction. AutoTraj easily adapts to different scenarios while still not overfitting the provided
training data, as shown by the robust performance on the ETH/UCY benchmark and the best
score on the diversity benchmark. Our experiments on the diversity benchmark demonstrate
that the model can make accurate predictions for car-centric as well as human-centric data.
This illustrates the advantage of an adaptive AutoML approach versus a static domain-specific
design. Analysing the performance of different parameter settings provides us with a valuable
tool for examining the impact of various design choices, reflecting the interplay between data
properties and model properties. We observe that the physics-inspired decoder module is cho-
sen in many configurations for pedestrian data. This outlines the importance of solid priors
in human-centric trajectory prediction. This is especially significant when considering that the
social-force model, which inspires the decoder, achieves very poor performance. We conjecture
this is primarily related to three properties: i) Better goal condition. In contrast to the deter-
ministic and linear goal prediction of the original social force model, the destination encodings
extracted from our encoder provide a much stronger approximation of the actual agents’ de-
sired location. ii) Sample-specific estimation. Other than the social force model, we estimate
the parameters governing the attracting and repelling forces on a per-case basis and infer them
from the observed past trajectory, while the original model keeps the parameters fixed for all
samples. iii) Better noise handling. Our model is better able to handle noise, as instead of
using the raw past trajectory to estimate parameters like the agents’ destination, we use the
compressed, dense latent representation to reason. This makes the model less susceptible to
single outliers in the raw trajectory data.

It should be noted that within our work, we did not compare against methods that employ post-
processing techniques. Post-processing methods [59, 93, 96] have the significant drawback of
needing to carry out vastly more computations at inference time, hence introducing further
complexity and latency into the system. The main improvement of such methods is often
achieved by producing more diverse prediction anchors and, therefore, optimizing for variability
at the cost of confidence. This might reflect in better best-of-20 metrics; however, it will often
lead to undesired effects in real-world deployment, for example, in planning applications, as it
may increase the number of trajectories required to be considered. In general, we found that
the standard metrics in the form of ADE and FDE tend to favour methods with more diverse
predictions, disregarding their actual plausibility. However, as short-term trajectory prediction
is inherently multi-modal, there is a difficult trade-off between diverse sampling and concise
directed predictions as we want to achieve both, namely high sample efficiency and high sample
diversity. Inherently, these two goals are often opposing. Low sample efficiency would lead to
increased latency, while low sample diversity would lead to unsafe planning in a real-world
environment. Further research into this area appears highly worthwhile.

Training a generative information maximizing method such as the conditional variational au-
toencoder is challenging. The model performance relies on the right balance between recon-
struction loss and the Kullback–Leibler divergence term, which is notoriously hard to set in
auto-regressive settings[26]. In addition, our non-normalized mean-squared error term leads to
a significant imbalance between the KL and the reconstruction error term. The terms must be
weighted to ensure the model optimizes for both aspects. If the weighting is off, KL-vanishing,
in which the model completely ignores the latent dimensions and only optimizes for the prior,
or KL-term explosion, in which the model does not optimize the KL-term at all, leading to an

36

unrepresentative and meaningless latent space, can appear. Various techniques, such as Mono-
tonic scheduling [15] or cyclic annealing [26] have been proposed. For our work, we found that
cyclic annealing provides a good mode for balancing KL-loss and reconstruction loss. The pre-
cise trade-off between the two terms can then be optimised via parameter optimisation within
the AutoTraj framework.

Qualitatively looking at the results, we found that for the physics-inspired and direct decoder
module, our method tends to produce more coherent but less varied predictions than ap-
proaches like the SVAE. We notably observed this pattern on the HighD dataset, where our
AutoML approach preferred a direct decoder method over a VRNN approach. This holds less
so for the stepwise-latent-based decoders, where the predictions are much more varied. We
hypothesise that the direct decoding mechanism leads to more stable predictions at the cost of
dynamic range. On the NBA dataset, our models’ predictions are more varied, as expected by
the fast and high-powered movements. However, the predictions still do not manage to cover
all movement modes, making it perform slightly worse than the SVAE. For predictions from
AMENet, on the other hand, we often observe a mode collapse ending up with many similar
predictions covering only one movement option. Figure 10 shows examples of the predicted
trajectories.

Figure 10: Example of the predictions from various models. In blue, the observed input
data. In red is the ground truth. In purple, the AMENet; in orange, the SVAE; and in
green, the AutoTraj predictions. Scenes from left to right taken from the HighD, InD and
NBA datasets.

This qualitative observation best reflects quantitively in the score for the HighD dataset, where
the AutoTraj performs significantly better by having the predictions focused on the most
realistic path while other models spread around unrealistic scenarios. Conversely, in the UCY
Zara scenario, where pedestrians walk around the corner of a shopping street, this likely leads to
worse performance as the probability of pedestrians taking a turn is often underestimated. The
inclusion of semantic information could significantly improve prediction quality. An example of
the predictions overlayed on the video of the Zara scene can be seen in Figure 11. From the
Figure, we can see various insightful scenarios. In the second image, we can notice an attempt
at collision avoidance of our model. In the third image, we can observe an attraction force
towards a near pedestrian, likely wrongly attributed to enacting a group cohesive force on the
other pedestrian as one of the possible movement scenarios. Lastly, we can see the model’s
ability to predict the turn based on limited observation data.

37

Figure 11: Example of the predictions on Zara1. For all pedestrians at once, and for a
clearer view for some individual examples. In blue, the observed input data. In red is the
ground truth. In orange the AutoTraj predictions.

To investigate our models’ ability to represent the actual underlying motion hypothesis of a
given scenario, we prepared a synthetic dataset similar to the one outlined in the work of
Mészáros et al. [61]. We created the synthetic data by using a shared sequence of 8 timesteps
for all trajectories followed by 12 timesteps of logarithmically either moving left or right,
creating a bi-module distribution. To prevent perfect memorization and mode collapse, we add
slight random variations to the x and y coordinates. The resulting synthetic dataset can be seen
on the left in Figure 12. In the same fashion, we also create a synthetic validation and test set
with the same underlying distribution. From the results, we can observe that our method can
capture the underlying distribution and truthfully reproduce the principal movement modes.
Looking at the KDE of our test predictions in the rightmost part of Figure 12, we can see
that, indeed, the most likely path for our predictions lies along the bi-modal distribution of the
generated synthetic data. It should be noted that this movement can not have been extracted
from the observed past trajectories as it is shared for both movement modes, however, it is
“stored” in the learned latent distribution of our model.

Figure 12: Left: he generated synthetic dataset. We can clearly observe the bi-modal
distribution of the prediction targets that need to be learned by the model via its condi-
tioning. Middle: an example prediction from our model on the synthetic test set. Right:
The estimated Kernel density for all our test data predictions.

8.1 Limitations

As our approach currently does not consider semantic information, the prediction quality is
limited in environments with many natural obstacles unknown to the model. However, this
could easily be addressed by merging the current trajectory encoder with an environment
encoder to create a shared representation of the agent and surrounding state. Furthermore,

38

the stepwise decoder modules are limited by their auto-regressive nature, resulting in a linear
increase of inference time as the number of predicted time steps increases. However, this
challenge is by no means unique to our approach, and previous work has demonstrated that
this does not need to be detrimental to the use of the model in a real-world application
[61, 94]. Lastly, although not very memory intensive, our approach is very time intensive and,
therefore, still requires significant computational resources. Our experiments were, therefore,
limited to relatively small datasets of about 2, 500 scenes per dataset. Large-scale experiments
investigating the various models’ performance given more training data pose an interesting
question for future research.

39

9 Conclusion

In this thesis, we have investigated AutoTraj, an AutoML approach for short-term trajectory
prediction. We considered the restricted case, where no semantic scene information is given,
and no post-processing is applied to the predictions. Our experiments on the ETH/UCY and
the diversity benchmark, consisting of subsets from the InD, HighD and Sports-VU NBA
datasets, demonstrated that our approach can learn complex behaviour mechanisms from
real-world datasets. We verified that it can adapt to various scenarios such as predicting car
trajectories, mixed traffic data, basketball player or pedestrian movement. We found that
it can adapt better to different scenarios than any baseline method, achieving the highest
ranking in two of the three diversity benchmark datasets and on-par results on ETH/UCY
while providing a vastly more controllable and often more interpretable model for this dataset
than comparable state-of-the-art methods. Through the combination of data-guided feature
selection, an adaptive variety loss and a well-conditioned prior distribution, our model can
effectively pick up on modes of movement, providing a good balance between exploring a variety
of possible actions and exploiting knowledge of high-probability regions. We found strong
evidence that different scenarios necessitate different encoding and decoding mechanisms. In
particular, we have found that car data can best be directly predicted, while the NBA data
required a more dynamic time-wise latent-based approach. For pedestrian data, we found
that a physics-inspired framework can achieve on-par results to state-of-the-art while allowing
insights into the model’s inner workings. We believe that the data-guided “optimisation by
design” approach of AutoTraj will provide many practitioners from adjacent fields an accessible
way to deploy powerful computational models without the necessity of a deep computer science
background. By making our code publicly available, we hope to inspire more researchers to
experiment with additional trajectory datasets, further extending the diversity benchmark.

9.1 Future research

In this work, we introduced a flexible approach toward short-term trajectory prediction. Our
approach was focused on extracting information from agent behaviour and did not consider
semantic information such as street layouts. A combination of agent trajectory and semantic
scene information could allow us to model agent-space and agent-agent interaction. We believe
a fusion of multiple systems, such as video and navigation data, where available, with agent
information can lead to significant performance improvements. Particularly for heterogeneous
data and scenes with many physical barriers considered in an agent’s movement planning.
Further investigation into how to include AutoML capabilities into this process lays out an
especially promising pathway for future research. In our experiments, we furthermore focused
on optimising the average displacement error. However, optimising other criteria, such as the
final displacement error or negative log-likelihood, provides an exciting area of further study to
generalise the outlined approach to different tasks, such as goal point estimation. Additionally,
our experiments have so far been limited by tight computational constraints. Investigating
the model’s performance when given more training data as well as longer training times per
instance could provide even better insights into a model’s true underlying optimal predictive
power. Given the complexity of our models, it is very possible that the current performance un-
derestimates the true optimal performance. Running experiments, increasing a single model’s
runtime up to 500 epochs will likely lead to substantial performance improvements. To in-
vestigate the reliability of models for real-world use cases, it would be beneficial to employ

40

a team of human annotators to predict the future trajectory of an agent provided the same
information as our algorithm. Such an experiment could provide valuable perspective into the
difference between current human-level and machine-level performance. Studying trajectory
prediction in entirely new contexts, such as ship or aeroplane traffic, even further removed
from common pedestrian trajectory prediction, could give valuable further insights into the
transferability of interaction-aware approaches to interaction-free scenarios. We hypothesise
that the ability of automated feature selection, along with a joint hyperparameter and archi-
tectural optimisation, will provide even greater advantages over traditional baselines in such
applications. In this context, we also believe that developing new automated feature extraction
methods provides a promising track towards end-to-end learning. Towards the end of such a
goal, investigations into using data properties, such as linearity, path length or prediction hori-
zon, as initial priors or heuristics for the search space design and model selection appear to be
a promising track to improve the efficiency of the AutoML framework further. Further explo-
ration of the necessity, sufficiency, and influence of different network architecture components
with extensive ablation studies could give valuable insights into the potential for network com-
pression. Along the lines of such research, examining multi-objective optimisation for improving
latency alongside the prediction error does outline an interesting path for further improving
the usability of such methods in real-world systems. Lastly, subsequent research might include
the integration of AutoTraj within a motion planning framework and, thereupon, into a full
perception-prediction-planning pipeline.

9.2 Braoder applicability

Our work provides a first study of AutoML for multi-modal short-term trajectory prediction,
introducing a unified framework which can be adapted to different contexts. In this thesis,
we have shown the potential for such an approach on various real-world trajectory prediction
datasets. For it to be employed in practice, further research is needed to integrate it with
common motion planning and perception systems. Identifying the models’ ability to handle
measurement errors and other imperfections introduced by the perception pipeline will be of
crucial importance for its application in practice.

A well-integrated prediction module can help facilitate critical applications such as autonomous
driving, potentially helping to save numerous lives. Another promising area of application lies
in social service robots. In the near future, these robots could assist with tasks such as food
delivery and elderly care, reducing operational costs and improving living standards worldwide.
Lastly, we hope that our work may also be a stepping stone for the further development
of autonomous agents. Such agents may recognise by themselves when their current motion
model fails in a given environment or for a given entity and adapt accordingly by learning a
new motion model from the observation of the given context or entity. Such an online learning
approach could make agents more resilient and reliable.

41

References

[1] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese. Social lstm:
Human trajectory prediction in crowded spaces. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 961–971, 2016.

[2] M. A. Alcorn and A. Nguyen. baller2vec: A multi-entity transformer for multi-agent
spatiotemporal modeling. arXiv preprint arXiv:2102.03291, 2021.

[3] J. Amirian, J.-B. Hayet, and J. Pettré. Social ways: Learning multi-modal distributions
of pedestrian trajectories with gans. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, pages 0–0, 2019.

[4] J. J. Andle, N. Soucy, S. Socolow, and S. Y. Sekeh. The stanford drone dataset is
more complex than we think: An analysis of key characteristics. IEEE Transactions on
Intelligent Vehicles, 2022.

[5] B. Baker, O. Gupta, N. Naik, and R. Raskar. Designing neural network architectures
using reinforcement learning. arXiv preprint arXiv:1611.02167, 2016.

[6] M. Baratchi. Automated machine learning: Past, present and future, under review.

[7] A. Bardes, J. Ponce, and Y. LeCun. Vicreg: Variance-invariance-covariance regularization
for self-supervised learning. arXiv preprint arXiv:2105.04906, 2021.

[8] S. Becker, R. Hug, W. Hübner, and M. Arens. An evaluation of trajectory prediction
approaches and notes on the trajnet benchmark. arXiv preprint arXiv:1805.07663, 2018.

[9] D. Bektache, C. Tolba, and N. Ghoualmi-Zine. Forecasting approach in vanet based on
vehicle kinematics for road safety. International Journal of Vehicle Safety, 7(2):147–167,
2014.

[10] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter
optimization. Advances in neural information processing systems, 24, 2011.

[11] A. Bhattacharyya, B. Schiele, and M. Fritz. Accurate and diverse sampling of sequences
based on a “best of many” sample objective. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 8485–8493, 2018.

[12] L. Biewald. Experiment tracking with weights and biases, 2020. Software available from
wandb.com.

[13] J. Bock, R. Krajewski, T. Moers, S. Runde, L. Vater, and L. Eckstein. The ind dataset:
A drone dataset of naturalistic road user trajectories at german intersections. In 2020
IEEE Intelligent Vehicles Symposium (IV), pages 1929–1934. IEEE, 2020.

[14] S. Bond-Taylor, A. Leach, Y. Long, and C. G. Willcocks. Deep generative modelling:
A comparative review of vaes, gans, normalizing flows, energy-based and autoregressive
models. IEEE transactions on pattern analysis and machine intelligence, 2021.

[15] S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Jozefowicz, and S. Bengio. Generating
sentences from a continuous space. arXiv preprint arXiv:1511.06349, 2015.

42

[16] B. Brito, H. Zhu, W. Pan, and J. Alonso-Mora. Social-vrnn: one-shot multi-modal
trajectory prediction for interacting pedestrians. arXiv preprint arXiv:2010.09056, 2020.

[17] Y. Cao, S. Li, Y. Liu, Z. Yan, Y. Dai, P. S. Yu, and L. Sun. A comprehensive survey
of ai-generated content (aigc): A history of generative ai from gan to chatgpt. arXiv
preprint arXiv:2303.04226, 2023.

[18] L.-C. Chen, M. Collins, Y. Zhu, G. Papandreou, B. Zoph, F. Schroff, H. Adam, and
J. Shlens. Searching for efficient multi-scale architectures for dense image prediction.
Advances in neural information processing systems, 31, 2018.

[19] H. Cheng, W. Liao, M. Y. Yang, B. Rosenhahn, and M. Sester. Amenet: Attentive
maps encoder network for trajectory prediction. ISPRS Journal of Photogrammetry and
Remote Sensing, 172:253–266, 2021.

[20] J. Chung, K. Kastner, L. Dinh, K. Goel, A. C. Courville, and Y. Bengio. A recurrent
latent variable model for sequential data. Advances in neural information processing
systems, 28, 2015.

[21] N. Deo and M. M. Trivedi. Convolutional social pooling for vehicle trajectory prediction.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, pages 1468–1476, 2018.

[22] C. Dias, O. Ejtemai, M. Sarvi, and N. Shiwakoti. Pedestrian walking characteris-
tics through angled corridors: An experimental study. Transportation research record,
2421(1):41–50, 2014.

[23] T. Elsken, J. H. Metzen, and F. Hutter. Neural architecture search: A survey. The
Journal of Machine Learning Research, 20(1):1997–2017, 2019.

[24] S. Falkner, A. Klein, and F. Hutter. Bohb: Robust and efficient hyperparameter opti-
mization at scale. In International conference on machine learning, pages 1437–1446.
PMLR, 2018.

[25] M. Feurer and F. Hutter. Hyperparameter optimization. In Automated machine learning,
pages 3–33. Springer, Cham, 2019.

[26] H. Fu, C. Li, X. Liu, J. Gao, A. Celikyilmaz, and L. Carin. Cyclical annealing schedule:
A simple approach to mitigating kl vanishing. arXiv preprint arXiv:1903.10145, 2019.

[27] E. C. Garrido-Merchán and D. Hernández-Lobato. Dealing with categorical and integer-
valued variables in bayesian optimization with gaussian processes. Neurocomputing,
380:20–35, 2020.

[28] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pages 249–256. JMLRWorkshop and Conference Proceedings,
2010.

[29] C. Graber and A. Schwing. Dynamic neural relational inference for forecasting trajec-
tories. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 1018–1019, 2020.

43

[30] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi. Social gan: Socially ac-
ceptable trajectories with generative adversarial networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2255–2264, 2018.

[31] I. Hasan, F. Setti, T. Tsesmelis, A. Del Bue, F. Galasso, and M. Cristani. Mx-lstm: mixing
tracklets and vislets to jointly forecast trajectories and head poses. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 6067–6076,
2018.

[32] D. Helbing. Physikalische modellierung des dynamischen verhaltens von fußgängern
(physical modeling of the dynamic behavior of pedestrians). Available at SSRN 2413177,
1990.

[33] D. Helbing and P. Molnar. Social force model for pedestrian dynamics. Physical review
E, 51(5):4282, 1995.

[34] C. Hermes, C. Wohler, K. Schenk, and F. Kummert. Long-term vehicle motion predic-
tion. In 2009 IEEE intelligent vehicles symposium, pages 652–657. IEEE, 2009.

[35] J. Hillenbrand, A. M. Spieker, and K. Kroschel. A multilevel collision mitigation ap-
proach—its situation assessment, decision making, and performance tradeoffs. IEEE
Transactions on intelligent transportation systems, 7(4):528–540, 2006.

[36] H. H. Hoos. Programming by optimization. Communications of the ACM, 55(2):70–80,
2012.

[37] W. Hu, X. Xiao, Z. Fu, D. Xie, T. Tan, and S. Maybank. A system for learning statis-
tical motion patterns. IEEE transactions on pattern analysis and machine intelligence,
28(9):1450–1464, 2006.

[38] F. Hutter, H. Hoos, and K. Leyton-Brown. An efficient approach for assessing hyperpa-
rameter importance. In International conference on machine learning, pages 754–762.
PMLR, 2014.

[39] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for
general algorithm configuration. In Learning and Intelligent Optimization: 5th Interna-
tional Conference, LION 5, Rome, Italy, January 17-21, 2011. Selected Papers 5, pages
507–523. Springer, 2011.

[40] F. Hutter, L. Kotthoff, and J. Vanschoren. Automated machine learning: methods,
systems, challenges. Springer Nature, 2019.

[41] R. Jie and J. Gao. Differentiable neural architecture search for high-dimensional time
series forecasting. IEEE Access, 9:20922–20932, 2021.

[42] D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expensive
black-box functions. Journal of Global optimization, 13:455–492, 1998.

[43] J. Joseph, F. Doshi-Velez, A. S. Huang, and N. Roy. A bayesian nonparametric approach
to modeling motion patterns. Autonomous Robots, 31(4):383–400, 2011.

44

[44] R. E. Kalman et al. A new approach to linear filtering and prediction problems [j].
Journal of basic Engineering, 82(1):35–45, 1960.

[45] O. Khatib, E. Demircan, V. De Sapio, L. Sentis, T. Besier, and S. Delp. Robotics-based
synthesis of human motion. Journal of physiology-Paris, 103(3-5):211–219, 2009.

[46] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[47] V. Kosaraju, A. Sadeghian, R. Mart́ın-Mart́ın, I. Reid, S. H. Rezatofighi, and S. Savarese.
Social-bigat: Multimodal trajectory forecasting using bicycle-gan and graph attention
networks. arXiv preprint arXiv:1907.03395, 2019.

[48] M. d. B. Kostya Linou, Dzmitryi Linou. Nba player movements. https://github.

com/linouk23/NBA-Player-Movements, 2016.

[49] P. Kothari, S. Kreiss, and A. Alahi. Human trajectory forecasting in crowds: A deep
learning perspective. IEEE Transactions on Intelligent Transportation Systems, 2021.

[50] R. Krajewski, J. Bock, L. Kloeker, and L. Eckstein. The highd dataset: A drone dataset of
naturalistic vehicle trajectories on german highways for validation of highly automated
driving systems. In 2018 21st International Conference on Intelligent Transportation
Systems (ITSC), pages 2118–2125. IEEE, 2018.

[51] S. Kreiss. Deep social force. arXiv preprint arXiv:2109.12081, 2021.

[52] Y. LeCun. A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27.
2022.

[53] A. Lerner, Y. Chrysanthou, and D. Lischinski. Crowds by example. In Computer graphics
forum, volume 26, pages 655–664. Wiley Online Library, 2007.

[54] T. Li, J. Zhang, K. Bao, Y. Liang, Y. Li, and Y. Zheng. Autost: Efficient neural
architecture search for spatio-temporal prediction. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 794–
802, 2020.

[55] J. Lian, W. Ren, L. Li, Y. Zhou, and B. Zhou. Ptp-stgcn: pedestrian trajectory prediction
based on a spatio-temporal graph convolutional neural network. Applied Intelligence,
53(3):2862–2878, 2023.

[56] H. Liu, K. Simonyan, and Y. Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

[57] O. Makansi, J. Von Kügelgen, F. Locatello, P. Gehler, D. Janzing, T. Brox, and
B. Schölkopf. You mostly walk alone: Analyzing feature attribution in trajectory predic-
tion. arXiv preprint arXiv:2110.05304, 2021.

[58] K. Mangalam, Y. An, H. Girase, and J. Malik. From goals, waypoints & paths to
long term human trajectory forecasting. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 15233–15242, 2021.

45

https://github.com/linouk23/NBA-Player-Movements
https://github.com/linouk23/NBA-Player-Movements

[59] K. Mangalam, H. Girase, S. Agarwal, K.-H. Lee, E. Adeli, J. Malik, and A. Gaidon. It
is not the journey but the destination: Endpoint conditioned trajectory prediction. In
Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part II 16, pages 759–776. Springer, 2020.

[60] B. Mersch, T. Höllen, K. Zhao, C. Stachniss, and R. Roscher. Maneuver-based trajec-
tory prediction for self-driving cars using spatio-temporal convolutional networks. arXiv
preprint arXiv:2109.07365, 2021.

[61] A. Mészáros, J. Alonso-Mora, and J. Kober. Trajflow: Learning the distribution over
trajectories. arXiv preprint arXiv:2304.05166, 2023.

[62] R. Miller and Q. Huang. An adaptive peer-to-peer collision warning system. In Vehicular
Technology Conference. IEEE 55th Vehicular Technology Conference. VTC Spring 2002
(Cat. No. 02CH37367), volume 1, pages 317–321. IEEE, 2002.

[63] A. Mohamed, K. Qian, M. Elhoseiny, and C. Claudel. Social-stgcnn: A social spatio-
temporal graph convolutional neural network for human trajectory prediction. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 14424–14432, 2020.

[64] A. Mohamed, D. Zhu, W. Vu, M. Elhoseiny, and C. Claudel. Social-implicit: Rethinking
trajectory prediction evaluation and the effectiveness of implicit maximum likelihood
estimation. In European Conference on Computer Vision, pages 463–479. Springer,
2022.

[65] M. Moussäıd, N. Perozo, S. Garnier, D. Helbing, and G. Theraulaz. The walking
behaviour of pedestrian social groups and its impact on crowd dynamics. PloS one,
5(4):e10047, 2010.

[66] Z. Pan, S. Ke, X. Yang, Y. Liang, Y. Yu, J. Zhang, and Y. Zheng. Autostg: Neural
architecture search for predictions of spatio-temporal graph. In Proceedings of the Web
Conference 2021, pages 1846–1855, 2021.

[67] S. Pellegrini, A. Ess, K. Schindler, and L. Van Gool. You’ll never walk alone: Modeling
social behavior for multi-target tracking. In 2009 IEEE 12th international conference on
computer vision, pages 261–268. IEEE, 2009.

[68] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean. Efficient neural architecture search via
parameters sharing. In International conference on machine learning, pages 4095–4104.
PMLR, 2018.

[69] C. E. Rasmussen, C. K. Williams, et al. Gaussian processes for machine learning, vol-
ume 1. Springer, 2006.

[70] P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, X. Chen, and X. Wang. A compre-
hensive survey of neural architecture search: Challenges and solutions. arXiv preprint
arXiv:2006.02903, 2020.

[71] J. R. Rice. The algorithm selection problem. In Advances in computers, volume 15,
pages 65–118. Elsevier, 1976.

46

[72] A. Sadeghian, V. Kosaraju, A. Gupta, S. Savarese, and A. Alahi. Trajnet: Towards a
benchmark for human trajectory prediction. arXiv preprint, 2018.

[73] A. Sadeghian, V. Kosaraju, A. Sadeghian, N. Hirose, H. Rezatofighi, and S. Savarese.
Sophie: An attentive gan for predicting paths compliant to social and physical con-
straints. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 1349–1358, 2019.

[74] T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone. Trajectron++: Dynamically-
feasible trajectory forecasting with heterogeneous data. In European Conference on
Computer Vision, pages 683–700. Springer, 2020.

[75] N. Seward. Nba player movements. https://github.com/sealneaward/

nba-movement-data, 2018.

[76] I. Soból. Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput.
Exp., 1:407, 1993.

[77] Q. Song, H. Jin, and X. Hu. Automated Machine Learning in Action. Manning, 2022.

[78] K. O. Stanley and R. Miikkulainen. Evolving neural networks through augmenting topolo-
gies. Evolutionary computation, 10(2):99–127, 2002.

[79] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and Q. V. Le.
Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 2820–2828,
2019.

[80] Q. Tran and J. Firl. Online maneuver recognition and multimodal trajectory prediction for
intersection assistance using non-parametric regression. In 2014 ieee intelligent vehicles
symposium proceedings, pages 918–923. IEEE, 2014.

[81] L. Tuggener, M. Amirian, K. Rombach, S. Lörwald, A. Varlet, C. Westermann, and
T. Stadelmann. Automated machine learning in practice: state of the art and recent
results. In 2019 6th Swiss Conference on Data Science (SDS), pages 31–36. IEEE, 2019.

[82] D. Vasquez and T. Fraichard. Motion prediction for moving objects: a statistical ap-
proach. In IEEE International Conference on Robotics and Automation, 2004. Proceed-
ings. ICRA’04. 2004, volume 4, pages 3931–3936. IEEE, 2004.

[83] M. Verma, M. S. K. Reddy, Y. R. Meedimale, M. Mandal, and S. K. Vipparthi. Au-
tomer: Spatiotemporal neural architecture search for microexpression recognition. IEEE
Transactions on Neural Networks and Learning Systems, 2021.

[84] A. Wan, X. Dai, P. Zhang, Z. He, Y. Tian, S. Xie, B. Wu, M. Yu, T. Xu, K. Chen, et al.
Fbnetv2: Differentiable neural architecture search for spatial and channel dimensions. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 12965–12974, 2020.

[85] C. Wang, Y. Wang, M. Xu, and D. J. Crandall. Stepwise goal-driven networks for
trajectory prediction. IEEE Robotics and Automation Letters, 7(2):2716–2723, 2022.

47

https://github.com/sealneaward/nba-movement-data
https://github.com/sealneaward/nba-movement-data

[86] X. Wang, J. Alonso-Mora, and M. Wang. Probabilistic risk metric for highway driving
leveraging multi-modal trajectory predictions. IEEE Transactions on Intelligent Trans-
portation Systems, 2022.

[87] Z. Wang, C. Lin, L. Sheng, J. Yan, and J. Shao. Pv-nas: Practical neural architecture
search for video recognition. arXiv preprint arXiv:2011.00826, 2020.

[88] Q. Wen, T. Zhou, C. Zhang, W. Chen, Z. Ma, J. Yan, and L. Sun. Transformers in time
series: A survey. arXiv preprint arXiv:2202.07125, 2022.

[89] C. White, M. Safari, R. Sukthanker, B. Ru, T. Elsken, A. Zela, D. Dey, and F. Hutter.
Neural architecture search: Insights from 1000 papers. arXiv preprint arXiv:2301.08727,
2023.

[90] F. Wilcoxon. Individual comparisons by ranking methods. In Breakthroughs in statistics,
pages 196–202. Springer, 1992.

[91] C. K. Williams and C. E. Rasmussen. Gaussian processes for machine learning, volume 2.
MIT press Cambridge, MA, 2006.

[92] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda, Y. Jia, and
K. Keutzer. Fbnet: Hardware-aware efficient convnet design via differentiable neural
architecture search. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 10734–10742, 2019.

[93] C. Xu, W. Mao, W. Zhang, and S. Chen. Remember intentions: Retrospective-memory-
based trajectory prediction. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 6488–6497, 2022.

[94] P. Xu, J.-B. Hayet, and I. Karamouzas. Socialvae: Human trajectory prediction using
timewise latents. arXiv preprint arXiv:2203.08207, 2022.

[95] Y. Yao, E. Atkins, M. Johnson-Roberson, R. Vasudevan, and X. Du. Bitrap: Bi-
directional pedestrian trajectory prediction with multi-modal goal estimation. IEEE
Robotics and Automation Letters, 6(2):1463–1470, 2021.

[96] Y. Yuan, X. Weng, Y. Ou, and K. Kitani. Agentformer: Agent-aware transformers for
socio-temporal multi-agent forecasting. arXiv preprint arXiv:2103.14023, 2021.

[97] Y. Yue, P. Lucey, P. Carr, A. Bialkowski, and I. Matthews. Learning fine-grained spatial
models for dynamic sports play prediction. In 2014 IEEE international conference on
data mining, pages 670–679. IEEE, 2014.

[98] P. Zhang, W. Ouyang, P. Zhang, J. Xue, and N. Zheng. Sr-lstm: State refinement
for lstm towards pedestrian trajectory prediction. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 12085–12094, 2019.

[99] Y. Zheng. Trajectory data mining: an overview. ACM Transactions on Intelligent Systems
and Technology (TIST), 6(3):1–41, 2015.

[100] Y. Zhou, B. Li, Z. Wang, and H. Li. Video action recognition with neural architecture
search. In Asian Conference on Machine Learning, pages 1675–1690. PMLR, 2021.

48

[101] L. Zimmer, M. Lindauer, and F. Hutter. Auto-pytorch: Multi-fidelity metalearning for
efficient and robust autodl. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 43(9):3079–3090, 2021.

[102] B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning. arXiv
preprint arXiv:1611.01578, 2016.

[103] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning transferable architectures for
scalable image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 8697–8710, 2018.

49

ACKNOWLEDGMENTS

I very deeply want to thank Mitra for her continuous support during this incredible long, hard
and inspiring research period. I furthermore want to thank Javier for his valuable insights and
suggestions during our common meetings as well as Holger for his support and for welcoming
me as a part of the ADA group.

50

10 Appendix

10.1 Features

For the feature selection of our approach, we build on established choices from the literature.
In particular, we orient our choice on features that have been used for multi-modal short-term
trajectory prediction, such as in the work of Xu et al. [94], Kothari et al. [49] and Amirian et
al. [3]. As individual features per agent, we use the position and approximated velocity and
acceleration information extracted from the recorded positional displacements. For the social
inter-agent features, we consider the relative position, velocity and acceleration defined by
xt
i − xt

j, as well as the Euclidean distance between agents, the bearing angle between them
and the distance of the closest approach (e.g. the projected minimal distance between two
agents, assuming constant velocity).

10.2 Additional notes on data extraction

Additional notes on the HighD and InD data extraction: The HighD[50] and
InD[13] data is openly available for research purposes from leveLXData 3 and the Institute for
Automotive Engineering (ika) of RWTH Aachen University4. Request for the data can be made
via email. We processed the data by concatenating all recordings together and downsample
them by a factor of 10 from 25 to 2.5 Hertz as used in the ETH/UCY benchmark. We divide
the data into scenes of 8 seconds coinciding with 20 frames and randomly select 2.500 scenes
from those.

Additional notes on the NBA-SportVU data extraction: We use the publicly
available GitHub repository of Neil Seward [75]5 to obtain the raw movement data. Following
we take the event log provided to identify moments labeled as “score” events. We divide these
events up into scenes of constant 4s (20 frames) length and randomly select scenes from those,
excluding scenes without movement (eg. where the primary agent moves less than a threshold
of 1m). In total, we collected 2.500 unique scenes.

10.3 Search Space

The following section outlines the possible parameter choices for each method where parameter
optimisation was applied.

AutoTraj Search Space A listing of the parameters used in the AutoTraj search space:

batch_size:

values: [16, 32, 64, 128, 256, 512]

lr:

distribution: "log_uniform_values"

min: 0.00001

3https://levelxdata.com/
4https://www.ika.rwth-aachen.de/de/
5https://github.com/sealneaward/nba-movement-data/tree/master/data/events

51

https://levelxdata.com/
https://www.ika.rwth-aachen.de/de/
https://github.com/sealneaward/nba-movement-data/tree/master/data/events

max: 0.1

grad_clip:

distribution: "uniform"

min: 0.1

max: 5

beta:

distribution: "uniform"

min: 0.1

max: 100

input_representation_state:

values: ["v", "va", "p", "pv", "pa", "pva", "a"]

input_representation_rel_state:

values: ["d", "db", "dbm", "b", "bm", "m", "v", "va", "p", "pv", "pa",

"pva", "a"]

num_rel_state_embedding:

values: [16, 32, 64, 128, 256, 512]

num_state_embedding:

values: [16, 32, 64, 128, 256, 512]

layer_attributes_embedding:

values: ["custom_linear"]

num_layers_attributes_embedding:

values: [1, 2, 3, 4, 5]

num_units_attributes_embedding:

values: [16, 32, 64, 128, 256, 512]

num_units_attributes_embedding:

values: [16, 32, 64, 128, 256, 512]

dropout_attributes_embedding:

values: [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]

activation_attributes_embedding:

values: ["relu", "tanh", "sigmoid", "relu6", "leaky_relu", "elu"]

num_hidden_embedding:

values: [16, 32, 64, 128, 256, 512]

num_hidden_future_embedding:

values: [16, 32, 64, 128, 256, 512]

layer_hidden_init:

values: ["linear", "deep_linear"]

layer_hidden_step:

values: ["gru", "lstm"]

future_use_neighbour:

values: [0, 1]

future_direction:

values: ["forwards", "backwards"]

neighbourhood_width:

distribution: "uniform"

min: 1

max: 32

neighbourhood_height_front:

52

distribution: "uniform"

min: 1

max: 16

neighbourhood_height_back:

distribution: "uniform"

min: 1

max: 16

dd_dim:

values: [1,2]

gridding_divisions:

values: [4, 16, 32, 64]

layer_embedding_querry:

values: ["linear", "deep_linear"]

target_representation:

values: ["position", "velocity", "acceleration"]

metric_representation:

values: ["position", "velocity", "acceleration"]

not_present_fill:

values: [-1000000, 0, 1000000]

lambda_importance:

distribution: "uniform"

min: 0.1

max: 10

gamma:

distribution: "uniform"

min: 0.1

max: 1

decoder_type:

values: ["stepwise_rnn", "stepwise_latent_rnn", "direct_rnn", "physics

"]

z_dim:

values: [16, 32, 64, 128, 256, 512]

hidden_dim:

values: [16, 32, 64, 128, 256, 512]

hidden_dim_future:

values: [16, 32, 64, 128, 256, 512]

embed_dim:

values: [16, 32, 64, 128, 256, 512]

layer_step_decoder:

values: ["lstm", "gru"]

pooling_attribute:

values: ["hidden", "direct", "proxy", "rel_dist", "rel_vel", "rel_acc"

]

pooling_mechanism:

values: ["attention", "gridding", "concat", "maxpool", "sumpool"]

explicit_predictions:

values: [0, 1]

53

n_train_predictions:

distribution: "q_uniform"

min: 1

max: 20

q: 1

layer_interaction_embedding:

values: ["custom_linear"]

num_interaction_embedding:

values: [16, 32, 64, 128, 256, 512]

num_layers_interaction_embedding:

values: [1, 2, 3, 4, 5]

dropout_interaction_embedding:

values: [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]

activation_interaction_embedding:

values: ["relu", "tanh", "sigmoid", "relu6", "leaky_relu", "elu"]

num_units_interaction_embedding:

values: [16, 32, 64, 128, 256, 512]

Refined AutoTraj Search Space for ETH/UCY A listing of the parameters used for
the refined search space for the AutoTraj framework as applied on the ETH/UCY benchmark:

batch_size:

values: [64, 128, 256, 512]

lr:

distribution: "log_uniform_values"

min: 0.0001

max: 0.01

grad_clip:

distribution: "uniform"

min: 2

max: 4

beta:

distribution: "uniform"

min: 10

max: 50

input_representation_state:

values: ["v", "a", "pa", "pva"]

input_representation_rel_state:

values: ["d", "db", "dbm", "b", "bm", "m", "v", "va", "p", "pv", "pa"]

num_rel_state_embedding:

values: [16, 32, 64, 128, 256, 512]

num_state_embedding:

values: [16, 32, 64, 128, 256, 512]

layer_attributes_embedding:

values: ["custom_linear"]

num_layers_attributes_embedding:

values: [1, 2, 3, 4, 5]

54

num_units_attributes_embedding:

values: [16, 32, 64, 128, 256, 512]

num_units_attributes_embedding:

values: [16, 32, 64, 128, 256, 512]

dropout_attributes_embedding:

values: [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]

activation_attributes_embedding:

values: ["relu", "tanh", "sigmoid", "relu6", "leaky_relu"]

num_hidden_embedding:

values: [16, 32, 64, 128, 256]

num_hidden_future_embedding:

values: [16, 32, 64, 128, 256]

layer_hidden_init:

values: ["linear", "deep_linear"]

layer_hidden_step:

values: ["gru", "lstm"]

future_use_neighbour:

values: [0, 1]

future_direction:

values: ["forwards", "backwards"]

neighbourhood_width:

distribution: "uniform"

min: 1

max: 32

neighbourhood_height_front:

distribution: "uniform"

min: 1

max: 12

neighbourhood_height_back:

distribution: "uniform"

min: 1

max: 16

dd_dim:

values: [1,2]

gridding_divisions:

values: [16, 32]

layer_embedding_querry:

values: ["linear", "deep_linear"]

target_representation:

values: ["velocity", "acceleration"]

metric_representation:

values: ["position", "velocity"]

not_present_fill:

values: [-1000000, 0, 1000000]

lambda_importance:

distribution: "uniform"

min: 1

55

max: 9

gamma:

distribution: "uniform"

min: 0.2

max: 0.8

decoder_type:

values: ["stepwise_rnn", "stepwise_latent_rnn", "physics"]

z_dim:

values: [16, 32, 64, 128, 256, 512]

hidden_dim:

values: [16, 32, 64, 128, 256, 512]

hidden_dim_future:

values: [16, 32, 64, 128, 256, 512]

embed_dim:

values: [16, 32, 64, 128, 256, 512]

layer_step_decoder:

values: ["lstm", "gru"]

pooling_attribute:

values: ["direct", "proxy", "rel_vel"]

pooling_mechanism:

values: ["attention", "gridding", "concat", "maxpool", "sumpool"]

explicit_predictions:

values: [0, 1]

n_train_predictions:

distribution: "q_uniform"

min: 5

max: 20

q: 1

layer_interaction_embedding:

values: ["custom_linear"]

num_interaction_embedding:

values: [16, 32, 64, 128]

num_layers_interaction_embedding:

values: [1, 2, 3, 4, 5]

dropout_interaction_embedding:

values: [0.0, 0.1, 0.2, 0.3, 0.4]

activation_interaction_embedding:

values: ["relu", "tanh", "sigmoid", "relu6", "leaky_relu"]

num_units_interaction_embedding:

values: [16, 32, 64, 128, 256, 512]

Hyperparameter optimisation search space for AutoTraj A listing of the param-
eters used for the hyperparameter optimisation phase of the AutoTraj framework:

batch_size:

values: [16, 32, 64, 128, 256, 512, 1024]

lr:

56

distribution: "log_uniform_values"

min: 0.00001

max: 0.1

grad_clip:

distribution: "uniform"

min: 0.1

max: 10

beta:

distribution: "uniform"

min: 0.01

max: 10

lambda_importance:

distribution: "uniform"

min: 0.01

max: 10

gamma:

distribution: "uniform"

min: 0.01

max: 10

n_cycles:

values: [1, 2, 4, 6, 8, 16]

cycle_ratio:

distribution: "uniform"

min: 0.1

max: 1

cycle_min:

distribution: "uniform"

min: 0

max: 0.5

cycle_max:

distribution: "uniform"

min: 0.5

max: 1

n_train_predictions:

distribution: "q_uniform"

q: 2

min: 2

max: 40

Minimal AutoTraj Search Space A listing of the parameters for the simpler AutoML
search space:

encoder_embed_dim:

values: [32, 64, 128, 256]

encoder_num_layers:

values: [2, 3, 4, 5]

encoder_num_units:

57

values: [64, 128, 256, 512]

encoder_activation:

values: ["relu", "tanh", "sigmoid", "relu6", "leaky_relu", "elu"]

encoder_dropout:

values: [0.0, 0.1, 0.2]

encoder_use_batchnorm:

values: [True, False]

encoder_future_embed_dim:

values: [32, 64, 128, 256]

encoder_future_num_layers:

values: [2, 3, 4, 5]

encoder_future_num_units:

values: [64, 128, 256, 512]

encoder_future_activation:

values: ["relu", "tanh", "sigmoid", "relu6", "leaky_relu", "elu"]

encoder_future_dropout:

values: [0.0, 0.1, 0.2]

encoder_future_use_batchnorm:

values: [True, False]

distribution_num_layers:

values: [2, 3, 4, 5]

distribution_num_units:

values: [64, 128, 256, 512]

distribution_activation:

values: ["relu", "tanh", "sigmoid", "relu6", "leaky_relu", "elu"]

distribution_dropout:

values: [0.0, 0.1, 0.2]

distribution_use_batchnorm:

values: [True, False]

decoder_num_layers:

values: [2, 3, 4, 5]

decoder_num_units:

values: [64, 128, 256, 512]

decoder_activation:

values: ["relu", "tanh", "sigmoid", "relu6", "leaky_relu", "elu"]

decoder_dropout:

values: [0.0, 0.1, 0.2]

not_present_fill:

values: [-1000000, 0, 1000000]

decoder_use_batchnorm:

values: [True, False]

lr:

distribution: "log_uniform_values"

min: 0.00001

max: 0.1

beta:

distribution: "uniform"

58

min: 0.1

max: 100

grad_clip:

distribution: "uniform"

min: 0.1

max: 5

n_train_predictions:

distribution: "q_uniform"

min: 1

max: 20

q: 1

lambda_importance:

distribution: "uniform"

min: 0.1

max: 10

gamma:

distribution: "uniform"

min: 0.1

max: 1

batch_size:

values: [32, 64, 128, 256]

ar:

values: [True, False]

input_representation_state:

values: ["v", "va", "p", "pv", "pa", "pva", "a"]

input_representation_rel_state:

values: ["d", "db", "dbm", "b", "bm", "m", "v", "va", "p", "pv", "pa",

"pva", "a"]

target_representation:

values: ["position", "velocity", "acceleration"]

metric_representation:

values: ["position", "velocity", "acceleration"]

z_dim:

values: [16, 32, 64, 128, 256]

num_hidden_embedding:

values: [32, 64, 128 ,256]

embed_dim:

values: [32, 64, 128, 256]

layer_step_decoder:

values: ["gru", "lstm"]

rnn_decoder:

values: [True,False]

neighbourhood_width:

distribution: "uniform"

min: 1

max: 16

neighbourhood_height_front:

59

distribution: "uniform"

min: 1

max: 16

neighbourhood_height_back:

distribution: "uniform"

min: 1

max: 16

Hyperparameter optimisation search space for SVAE The following parameters
were used:

batch_size:

values: [8, 16, 32, 64, 128, 256]

lr:

distribution: "log_uniform_values"

min: 0.00001

max: 0.1

epochs:

distribution: "int_uniform"

min: 10

max: 200

rnn_hidden_dim:

values: [8, 16, 32, 64, 128, 256, 512]

Hyperparameter optimisation search space for AMENet The following parame-
ters were used:

batch_size:

values:

- 16

- 32

- 64

- 128

- 256

- 512

- 1024

epochs:

distribution: int_uniform

max: 200

min: 10

hidden_size:

values:

- 4

- 8

- 16

- 32

- 64

60

- 128

- 256

- 512

- 1024

lr:

distribution: log_uniform_values

max: 0.1

min: 1.0e-05

10.4 Optimal selected architecture and parameter settings

To give an intuition of the type of architectures selected by our AutoML procedure we hereunder
list the selection with minimal validation error for each dataset and each of the five folds.

HighD :

{'lr': 0.001871284874821101, 'beta': 10.629943437807665, 'gamma':
0.6949478174063634, 'z_dim': 16.0, 'dd_dim': 2.0, 'embed_dim': 128.0,

'grad_clip': 1.2189471957365376, 'batch_size': 512.0, 'hidden_dim':
128.0, 'normalizer': 'none', 'decoder_type': 'direct_rnn', '
pooling_method': 'sumpool_hidden', 'metric_is_polar': 0.0, '
target_is_polar': 0.0, 'future_direction': 'forwards', '
not_present_fill': 1000000.0, 'hidden_dim_future': 64.0, '
lambda_importance': 3.62889353970355, 'layer_hidden_init': 'linear', '
layer_hidden_step': 'lstm', 'pooling_attribute': 'hidden', '
pooling_mechanism': 'sumpool', 'gridding_divisions': 64.0, '
layer_step_decoder': 'lstm', 'num_state_features': 2.0, '
n_train_predictions': 8.0, 'neighbourhood_width': 17.075128893810508,

'num_state_embedding': 64.0, 'explicit_predictions': 1.0, '
future_use_neighbour': 1.0, 'num_hidden_embedding': 32.0, '
seperate_interaction': 0.0, 'metric_representation': 'position', '
target_representation': 'acceleration', 'layer_embedding_querry': '
deep_linear', 'num_rel_state_features': 6.0, 'num_rel_state_embedding
': 512.0, 'neighbourhood_height_back': 9.471169204745804, '
num_interaction_embedding': 512.0, 'input_representation_state': 'a',
'layer_attributes_embedding': 'custom_linear', '
neighbourhood_height_front': 10.456941587630393, '
layer_interaction_embedding': 'custom_linear', '
num_hidden_future_embedding': 32.0, 'dropout_attributes_embedding':
0.1, 'dropout_interaction_embedding': 0.2, '
batchnorm_attributes_embedding': 0.0, 'input_representation_rel_state
': 'pva', 'num_units_attributes_embedding': 16.0, '
activation_attributes_embedding': 'elu', '
batchnorm_interaction_embedding': 0.0, '
num_layers_attributes_embedding': 2.0, '
num_units_interaction_embedding': 16.0, '

61

activation_interaction_embedding': 'relu6', '
num_layers_interaction_embedding': 4.0}

{'lr': 0.0005485335156951346, 'beta': 5.250345525933247, 'gamma':
0.5070119446339979, 'z_dim': 256.0, 'dd_dim': 1.0, 'embed_dim': 256.0,

'grad_clip': 1.3590890123589998, 'batch_size': 64.0, 'hidden_dim':
256.0, 'normalizer': 'none', 'decoder_type': 'direct_rnn', '
pooling_method': 'sumpool_rel_acc', 'metric_is_polar': 0.0, '
target_is_polar': 0.0, 'future_direction': 'backwards', '
not_present_fill': 1000000.0, 'hidden_dim_future': 512.0, '
lambda_importance': 8.79145098470304, 'layer_hidden_init': 'linear', '
layer_hidden_step': 'lstm', 'pooling_attribute': 'rel_acc', '
pooling_mechanism': 'sumpool', 'gridding_divisions': 16.0, '
layer_step_decoder': 'gru', 'num_state_features': 4.0, '
n_train_predictions': 16.0, 'neighbourhood_width': 9.191567277177944,

'num_state_embedding': 512.0, 'explicit_predictions': 1.0, '
future_use_neighbour': 0.0, 'num_hidden_embedding': 128.0, '
seperate_interaction': 0.0, 'metric_representation': 'position', '
target_representation': 'acceleration', 'layer_embedding_querry': '
deep_linear', 'num_rel_state_features': 4.0, 'num_rel_state_embedding
': 128.0, 'neighbourhood_height_back': 15.59359098885803, '
num_interaction_embedding': 256.0, 'input_representation_state': 'pv',
'layer_attributes_embedding': 'custom_linear', '

neighbourhood_height_front': 11.381529560252728, '
layer_interaction_embedding': 'custom_linear', '
num_hidden_future_embedding': 64.0, 'dropout_attributes_embedding':
0.0, 'dropout_interaction_embedding': 0.3, '
batchnorm_attributes_embedding': 0.0, 'input_representation_rel_state
': 'pv', 'num_units_attributes_embedding': 128.0, '
activation_attributes_embedding': 'tanh', '
batchnorm_interaction_embedding': 0.0, '
num_layers_attributes_embedding': 3.0, '
num_units_interaction_embedding': 256.0, '
activation_interaction_embedding': 'sigmoid', '
num_layers_interaction_embedding': 4.0}

{'lr': 0.001733731734610129, 'beta': 5.6934429843431245, 'gamma':
0.15411676672344485, 'z_dim': 128.0, 'dd_dim': 1.0, 'embed_dim':
256.0, 'grad_clip': 3.526728887140914, 'batch_size': 64.0, 'hidden_dim
': 64.0, 'normalizer': 'none', 'decoder_type': 'direct_rnn', '
pooling_method': 'gridding_direct', 'metric_is_polar': 0.0, '
target_is_polar': 0.0, 'future_direction': 'backwards', '
not_present_fill': 0.0, 'hidden_dim_future': 32.0, 'lambda_importance
': 1.7295968180764674, 'layer_hidden_init': 'deep_linear', '
layer_hidden_step': 'gru', 'pooling_attribute': 'direct', '
pooling_mechanism': 'gridding', 'gridding_divisions': 64.0, '
layer_step_decoder': 'gru', 'num_state_features': 2.0, '
n_train_predictions': 12.0, 'neighbourhood_width': 21.150008752776, '
num_state_embedding': 64.0, 'explicit_predictions': 0.0, '

62

future_use_neighbour': 0.0, 'num_hidden_embedding': 32.0, '
seperate_interaction': 0.0, 'metric_representation': 'acceleration', '
target_representation': 'acceleration', 'layer_embedding_querry': '
deep_linear', 'num_rel_state_features': 4.0, 'num_rel_state_embedding
': 512.0, 'neighbourhood_height_back': 13.89266510897011, '
num_interaction_embedding': 256.0, 'input_representation_state': 'a',
'layer_attributes_embedding': 'custom_linear', '
neighbourhood_height_front': 9.792813381627402, '
layer_interaction_embedding': 'custom_linear', '
num_hidden_future_embedding': 16.0, 'dropout_attributes_embedding':
0.1, 'dropout_interaction_embedding': 0.0, '
batchnorm_attributes_embedding': 0.0, 'input_representation_rel_state
': 'va', 'num_units_attributes_embedding': 64.0, '
activation_attributes_embedding': 'elu', '
batchnorm_interaction_embedding': 0.0, '
num_layers_attributes_embedding': 5.0, '
num_units_interaction_embedding': 32.0, '
activation_interaction_embedding': 'sigmoid', '
num_layers_interaction_embedding': 1.0}

{'lr': 0.0007243026341478893, 'beta': 49.51575987055742, 'gamma':
0.4122696621369472, 'z_dim': 128.0, 'dd_dim': 2.0, 'embed_dim': 256.0,

'grad_clip': 1.6695702218093782, 'batch_size': 32.0, 'hidden_dim':
64.0, 'normalizer': 'none', 'decoder_type': 'direct_rnn', '
pooling_method': 'maxpool_direct', 'metric_is_polar': 0.0, '
target_is_polar': 0.0, 'future_direction': 'backwards', '
not_present_fill': -1000000.0, 'hidden_dim_future': 256.0, '
lambda_importance': 9.198549771058037, 'layer_hidden_init': '
deep_linear', 'layer_hidden_step': 'gru', 'pooling_attribute': 'direct
', 'pooling_mechanism': 'maxpool', 'gridding_divisions': 32.0, '
layer_step_decoder': 'lstm', 'num_state_features': 2.0, '
n_train_predictions': 13.0, 'neighbourhood_width': 26.27988407920095,

'num_state_embedding': 256.0, 'explicit_predictions': 0.0, '
future_use_neighbour': 0.0, 'num_hidden_embedding': 128.0, '
seperate_interaction': 0.0, 'metric_representation': 'velocity', '
target_representation': 'acceleration', 'layer_embedding_querry': '
linear', 'num_rel_state_features': 2.0, 'num_rel_state_embedding':
512.0, 'neighbourhood_height_back': 6.286021204608768, '
num_interaction_embedding': 256.0, 'input_representation_state': 'a',
'layer_attributes_embedding': 'custom_linear', '
neighbourhood_height_front': 8.890878310063822, '
layer_interaction_embedding': 'custom_linear', '
num_hidden_future_embedding': 16.0, 'dropout_attributes_embedding':
0.5, 'dropout_interaction_embedding': 0.3, '
batchnorm_attributes_embedding': 0.0, 'input_representation_rel_state
': 'v', 'num_units_attributes_embedding': 256.0, '
activation_attributes_embedding': 'leaky_relu', '
batchnorm_interaction_embedding': 0.0, '

63

num_layers_attributes_embedding': 2.0, '
num_units_interaction_embedding': 256.0, '
activation_interaction_embedding': 'sigmoid', '
num_layers_interaction_embedding': 4.0}

{'lr': 0.00012564682513588392, 'beta': 50.07895194925274, 'gamma':
0.16488176095282453, 'z_dim': 256.0, 'dd_dim': 2.0, 'embed_dim': 32.0,

'grad_clip': 0.1613073103362389, 'batch_size': 128.0, 'hidden_dim':
32.0, 'normalizer': 'none', 'decoder_type': 'direct_rnn', '
pooling_method': 'concat_rel_acc', 'metric_is_polar': 0.0, '
target_is_polar': 0.0, 'future_direction': 'backwards', '
not_present_fill': -1000000.0, 'hidden_dim_future': 256.0, '
lambda_importance': 3.0623938423960624, 'layer_hidden_init': 'linear',
'layer_hidden_step': 'gru', 'pooling_attribute': 'rel_acc', '

pooling_mechanism': 'concat', 'gridding_divisions': 64.0, '
layer_step_decoder': 'gru', 'num_state_features': 2.0, '
n_train_predictions': 7.0, 'neighbourhood_width': 25.65988347121772, '
num_state_embedding': 512.0, 'explicit_predictions': 1.0, '
future_use_neighbour': 1.0, 'num_hidden_embedding': 64.0, '
seperate_interaction': 0.0, 'metric_representation': 'position', '
target_representation': 'acceleration', 'layer_embedding_querry': '
linear', 'num_rel_state_features': 1.0, 'num_rel_state_embedding':
256.0, 'neighbourhood_height_back': 15.33109788084968, '
num_interaction_embedding': 128.0, 'input_representation_state': 'a',
'layer_attributes_embedding': 'custom_linear', '
neighbourhood_height_front': 14.420131737031737, '
layer_interaction_embedding': 'custom_linear', '
num_hidden_future_embedding': 32.0, 'dropout_attributes_embedding':
0.0, 'dropout_interaction_embedding': 0.0, '
batchnorm_attributes_embedding': 0.0, 'input_representation_rel_state
': 'b', 'num_units_attributes_embedding': 32.0, '
activation_attributes_embedding': 'relu6', '
batchnorm_interaction_embedding': 0.0, '
num_layers_attributes_embedding': 5.0, '
num_units_interaction_embedding': 256.0, '
activation_interaction_embedding': 'sigmoid', '
num_layers_interaction_embedding': 2.0}

InD :

{'lr': 0.001871284874821101, 'beta': 10.629943437807665, 'gamma':
0.6949478174063634, 'z_dim': 16.0, 'dd_dim': 2.0, 'embed_dim': 128.0,

'grad_clip': 1.2189471957365376, 'batch_size': 512.0, 'hidden_dim':
128.0, 'normalizer': 'none', 'decoder_type': 'direct_rnn', '
pooling_method': 'sumpool_hidden', 'metric_is_polar': 0.0, '
target_is_polar': 0.0, 'future_direction': 'forwards', '
not_present_fill': 1000000.0, 'hidden_dim_future': 64.0, '
lambda_importance': 3.62889353970355, 'layer_hidden_init': 'linear', '

64

layer_hidden_step': 'lstm', 'pooling_attribute': 'hidden', '
pooling_mechanism': 'sumpool', 'gridding_divisions': 64.0, '
layer_step_decoder': 'lstm', 'num_state_features': 2.0, '
n_train_predictions': 8.0, 'neighbourhood_width': 17.075128893810508,

'num_state_embedding': 64.0, 'explicit_predictions': 1.0, '
future_use_neighbour': 1.0, 'num_hidden_embedding': 32.0, '
seperate_interaction': 0.0, 'metric_representation': 'position', '
target_representation': 'acceleration', 'layer_embedding_querry': '
deep_linear', 'num_rel_state_features': 6.0, 'num_rel_state_embedding
': 512.0, 'neighbourhood_height_back': 9.471169204745804, '
num_interaction_embedding': 512.0, 'input_representation_state': 'a',
'layer_attributes_embedding': 'custom_linear', '
neighbourhood_height_front': 10.456941587630393, '
layer_interaction_embedding': 'custom_linear', '
num_hidden_future_embedding': 32.0, 'dropout_attributes_embedding':
0.1, 'dropout_interaction_embedding': 0.2, '
batchnorm_attributes_embedding': 0.0, 'input_representation_rel_state
': 'pva', 'num_units_attributes_embedding': 16.0, '
activation_attributes_embedding': 'elu', '
batchnorm_interaction_embedding': 0.0, '
num_layers_attributes_embedding': 2.0, '
num_units_interaction_embedding': 16.0, '
activation_interaction_embedding': 'relu6', '
num_layers_interaction_embedding': 4.0}

{'lr': 0.0005485335156951346, 'beta': 5.250345525933247, 'gamma':
0.5070119446339979, 'z_dim': 256.0, 'dd_dim': 1.0, 'embed_dim': 256.0,

'grad_clip': 1.3590890123589998, 'batch_size': 64.0, 'hidden_dim':
256.0, 'normalizer': 'none', 'decoder_type': 'direct_rnn', '
pooling_method': 'sumpool_rel_acc', 'metric_is_polar': 0.0, '
target_is_polar': 0.0, 'future_direction': 'backwards', '
not_present_fill': 1000000.0, 'hidden_dim_future': 512.0, '
lambda_importance': 8.79145098470304, 'layer_hidden_init': 'linear', '
layer_hidden_step': 'lstm', 'pooling_attribute': 'rel_acc', '
pooling_mechanism': 'sumpool', 'gridding_divisions': 16.0, '
layer_step_decoder': 'gru', 'num_state_features': 4.0, '
n_train_predictions': 16.0, 'neighbourhood_width': 9.191567277177944,

'num_state_embedding': 512.0, 'explicit_predictions': 1.0, '
future_use_neighbour': 0.0, 'num_hidden_embedding': 128.0, '
seperate_interaction': 0.0, 'metric_representation': 'position', '
target_representation': 'acceleration', 'layer_embedding_querry': '
deep_linear', 'num_rel_state_features': 4.0, 'num_rel_state_embedding
': 128.0, 'neighbourhood_height_back': 15.59359098885803, '
num_interaction_embedding': 256.0, 'input_representation_state': 'pv',
'layer_attributes_embedding': 'custom_linear', '

neighbourhood_height_front': 11.381529560252728, '
layer_interaction_embedding': 'custom_linear', '
num_hidden_future_embedding': 64.0, 'dropout_attributes_embedding':

65

0.0, 'dropout_interaction_embedding': 0.3, '
batchnorm_attributes_embedding': 0.0, 'input_representation_rel_state
': 'pv', 'num_units_attributes_embedding': 128.0, '
activation_attributes_embedding': 'tanh', '
batchnorm_interaction_embedding': 0.0, '
num_layers_attributes_embedding': 3.0, '
num_units_interaction_embedding': 256.0, '
activation_interaction_embedding': 'sigmoid', '
num_layers_interaction_embedding': 4.0}

{'lr': 0.001733731734610129, 'beta': 5.6934429843431245, 'gamma':
0.15411676672344485, 'z_dim': 128.0, 'dd_dim': 1.0, 'embed_dim':
256.0, 'grad_clip': 3.526728887140914, 'batch_size': 64.0, 'hidden_dim
': 64.0, 'normalizer': 'none', 'decoder_type': 'direct_rnn', '
pooling_method': 'gridding_direct', 'metric_is_polar': 0.0, '
target_is_polar': 0.0, 'future_direction': 'backwards', '
not_present_fill': 0.0, 'hidden_dim_future': 32.0, 'lambda_importance
': 1.7295968180764674, 'layer_hidden_init': 'deep_linear', '
layer_hidden_step': 'gru', 'pooling_attribute': 'direct', '
pooling_mechanism': 'gridding', 'gridding_divisions': 64.0, '
layer_step_decoder': 'gru', 'num_state_features': 2.0, '
n_train_predictions': 12.0, 'neighbourhood_width': 21.150008752776, '
num_state_embedding': 64.0, 'explicit_predictions': 0.0, '
future_use_neighbour': 0.0, 'num_hidden_embedding': 32.0, '
seperate_interaction': 0.0, 'metric_representation': 'acceleration', '
target_representation': 'acceleration', 'layer_embedding_querry': '
deep_linear', 'num_rel_state_features': 4.0, 'num_rel_state_embedding
': 512.0, 'neighbourhood_height_back': 13.89266510897011, '
num_interaction_embedding': 256.0, 'input_representation_state': 'a',
'layer_attributes_embedding': 'custom_linear', '
neighbourhood_height_front': 9.792813381627402, '
layer_interaction_embedding': 'custom_linear', '
num_hidden_future_embedding': 16.0, 'dropout_attributes_embedding':
0.1, 'dropout_interaction_embedding': 0.0, '
batchnorm_attributes_embedding': 0.0, 'input_representation_rel_state
': 'va', 'num_units_attributes_embedding': 64.0, '
activation_attributes_embedding': 'elu', '
batchnorm_interaction_embedding': 0.0, '
num_layers_attributes_embedding': 5.0, '
num_units_interaction_embedding': 32.0, '
activation_interaction_embedding': 'sigmoid', '
num_layers_interaction_embedding': 1.0}

{'lr': 0.0007243026341478893, 'beta': 49.51575987055742, 'gamma':
0.4122696621369472, 'z_dim': 128.0, 'dd_dim': 2.0, 'embed_dim': 256.0,

'grad_clip': 1.6695702218093782, 'batch_size': 32.0, 'hidden_dim':
64.0, 'normalizer': 'none', 'decoder_type': 'direct_rnn', '
pooling_method': 'maxpool_direct', 'metric_is_polar': 0.0, '
target_is_polar': 0.0, 'future_direction': 'backwards', '

66

not_present_fill': -1000000.0, 'hidden_dim_future': 256.0, '
lambda_importance': 9.198549771058037, 'layer_hidden_init': '
deep_linear', 'layer_hidden_step': 'gru', 'pooling_attribute': 'direct
', 'pooling_mechanism': 'maxpool', 'gridding_divisions': 32.0, '
layer_step_decoder': 'lstm', 'num_state_features': 2.0, '
n_train_predictions': 13.0, 'neighbourhood_width': 26.27988407920095,

'num_state_embedding': 256.0, 'explicit_predictions': 0.0, '
future_use_neighbour': 0.0, 'num_hidden_embedding': 128.0, '
seperate_interaction': 0.0, 'metric_representation': 'velocity', '
target_representation': 'acceleration', 'layer_embedding_querry': '
linear', 'num_rel_state_features': 2.0, 'num_rel_state_embedding':
512.0, 'neighbourhood_height_back': 6.286021204608768, '
num_interaction_embedding': 256.0, 'input_representation_state': 'a',
'layer_attributes_embedding': 'custom_linear', '
neighbourhood_height_front': 8.890878310063822, '
layer_interaction_embedding': 'custom_linear', '
num_hidden_future_embedding': 16.0, 'dropout_attributes_embedding':
0.5, 'dropout_interaction_embedding': 0.3, '
batchnorm_attributes_embedding': 0.0, 'input_representation_rel_state
': 'v', 'num_units_attributes_embedding': 256.0, '
activation_attributes_embedding': 'leaky_relu', '
batchnorm_interaction_embedding': 0.0, '
num_layers_attributes_embedding': 2.0, '
num_units_interaction_embedding': 256.0, '
activation_interaction_embedding': 'sigmoid', '
num_layers_interaction_embedding': 4.0}

{'lr': 0.00012564682513588392, 'beta': 50.07895194925274, 'gamma':
0.16488176095282453, 'z_dim': 256.0, 'dd_dim': 2.0, 'embed_dim': 32.0,

'grad_clip': 0.1613073103362389, 'batch_size': 128.0, 'hidden_dim':
32.0, 'normalizer': 'none', 'decoder_type': 'direct_rnn', '
pooling_method': 'concat_rel_acc', 'metric_is_polar': 0.0, '
target_is_polar': 0.0, 'future_direction': 'backwards', '
not_present_fill': -1000000.0, 'hidden_dim_future': 256.0, '
lambda_importance': 3.0623938423960624, 'layer_hidden_init': 'linear',
'layer_hidden_step': 'gru', 'pooling_attribute': 'rel_acc', '

pooling_mechanism': 'concat', 'gridding_divisions': 64.0, '
layer_step_decoder': 'gru', 'num_state_features': 2.0, '
n_train_predictions': 7.0, 'neighbourhood_width': 25.65988347121772, '
num_state_embedding': 512.0, 'explicit_predictions': 1.0, '
future_use_neighbour': 1.0, 'num_hidden_embedding': 64.0, '
seperate_interaction': 0.0, 'metric_representation': 'position', '
target_representation': 'acceleration', 'layer_embedding_querry': '
linear', 'num_rel_state_features': 1.0, 'num_rel_state_embedding':
256.0, 'neighbourhood_height_back': 15.33109788084968, '
num_interaction_embedding': 128.0, 'input_representation_state': 'a',
'layer_attributes_embedding': 'custom_linear', '
neighbourhood_height_front': 14.420131737031737, '

67

layer_interaction_embedding': 'custom_linear', '
num_hidden_future_embedding': 32.0, 'dropout_attributes_embedding':
0.0, 'dropout_interaction_embedding': 0.0, '
batchnorm_attributes_embedding': 0.0, 'input_representation_rel_state
': 'b', 'num_units_attributes_embedding': 32.0, '
activation_attributes_embedding': 'relu6', '
batchnorm_interaction_embedding': 0.0, '
num_layers_attributes_embedding': 5.0, '
num_units_interaction_embedding': 256.0, '
activation_interaction_embedding': 'sigmoid', '
num_layers_interaction_embedding': 2.0}

{'lr': 0.0009849023776411182, 'beta': 30.0385402041938, 'gamma':
0.28075874198252565, 'z_dim': 32.0, 'dd_dim': 2.0, 'embed_dim': 256.0,

'grad_clip': 3.643101627463447, 'batch_size': 128.0, 'hidden_dim':
256.0, 'normalizer': 'none', 'decoder_type': 'direct_rnn', '
pooling_method': 'sumpool_hidden', 'metric_is_polar': 0.0, '
target_is_polar': 0.0, 'future_direction': 'backwards', '
not_present_fill': -1000000.0, 'hidden_dim_future': 64.0, '
lambda_importance': 7.564493274359233, 'layer_hidden_init': 'linear',
'layer_hidden_step': 'gru', 'pooling_attribute': 'hidden', '
pooling_mechanism': 'sumpool', 'gridding_divisions': 64.0, '
layer_step_decoder': 'gru', 'num_state_features': 2.0, '
n_train_predictions': 5.0, 'neighbourhood_width': 6.009149142999294, '
num_state_embedding': 64.0, 'explicit_predictions': 0.0, '
future_use_neighbour': 0.0, 'num_hidden_embedding': 256.0, '
seperate_interaction': 0.0, 'metric_representation': 'velocity', '
target_representation': 'acceleration', 'layer_embedding_querry': '
linear', 'num_rel_state_features': 3.0, 'num_rel_state_embedding':
32.0, 'neighbourhood_height_back': 11.462160531997329, '
num_interaction_embedding': 256.0, 'input_representation_state': 'a',
'layer_attributes_embedding': 'custom_linear', '
neighbourhood_height_front': 4.614985495199063, '
layer_interaction_embedding': 'custom_linear', '
num_hidden_future_embedding': 128.0, 'dropout_attributes_embedding':
0.5, 'dropout_interaction_embedding': 0.4, '
batchnorm_attributes_embedding': 0.0, 'input_representation_rel_state
': 'dbm', 'num_units_attributes_embedding': 256.0, '
activation_attributes_embedding': 'leaky_relu', '
batchnorm_interaction_embedding': 0.0, '
num_layers_attributes_embedding': 2.0, '
num_units_interaction_embedding': 128.0, '
activation_interaction_embedding': 'relu', '
num_layers_interaction_embedding': 2.0}

{'lr': 0.0012383128479368905, 'beta': 2.462578522241241, 'gamma':
0.8825587980631394, 'z_dim': 128.0, 'dd_dim': 1.0, 'embed_dim': 256.0,

'grad_clip': 1.6841935506475347, 'batch_size': 256.0, 'hidden_dim':
16.0, 'normalizer': 'none', 'decoder_type': 'direct_rnn', '

68

pooling_method': 'maxpool_direct', 'metric_is_polar': 0.0, '
target_is_polar': 0.0, 'future_direction': 'backwards', '
not_present_fill': -1000000.0, 'hidden_dim_future': 256.0, '
lambda_importance': 6.563668830665317, 'layer_hidden_init': 'linear',
'layer_hidden_step': 'lstm', 'pooling_attribute': 'direct', '
pooling_mechanism': 'maxpool', 'gridding_divisions': 32.0, '
layer_step_decoder': 'lstm', 'num_state_features': 2.0, '
n_train_predictions': 8.0, 'neighbourhood_width': 2.1138183092631464,

'num_state_embedding': 128.0, 'explicit_predictions': 1.0, '
future_use_neighbour': 1.0, 'num_hidden_embedding': 16.0, '
seperate_interaction': 0.0, 'metric_representation': 'position', '
target_representation': 'acceleration', 'layer_embedding_querry': '
deep_linear', 'num_rel_state_features': 3.0, 'num_rel_state_embedding
': 32.0, 'neighbourhood_height_back': 2.2229321214993933, '
num_interaction_embedding': 64.0, 'input_representation_state': 'a', '
layer_attributes_embedding': 'custom_linear', '
neighbourhood_height_front': 13.300122026542429, '
layer_interaction_embedding': 'custom_linear', '
num_hidden_future_embedding': 128.0, 'dropout_attributes_embedding':
0.4, 'dropout_interaction_embedding': 0.1, '
batchnorm_attributes_embedding': 0.0, 'input_representation_rel_state
': 'dbm', 'num_units_attributes_embedding': 32.0, '
activation_attributes_embedding': 'tanh', '
batchnorm_interaction_embedding': 0.0, '
num_layers_attributes_embedding': 2.0, '
num_units_interaction_embedding': 256.0, '
activation_interaction_embedding': 'sigmoid', '
num_layers_interaction_embedding': 5.0}

{'lr': 0.0006912167047430998, 'beta': 13.870549759519514, 'gamma':
0.7349153630288328, 'z_dim': 32.0, 'dd_dim': 2.0, 'embed_dim': 512.0,

'grad_clip': 1.6372606478740337, 'batch_size': 128.0, 'hidden_dim':
16.0, 'normalizer': 'none', 'decoder_type': 'stepwise_rnn', '
pooling_method': 'sumpool_direct', 'metric_is_polar': 0.0, '
target_is_polar': 0.0, 'future_direction': 'backwards', '
not_present_fill': -1000000.0, 'hidden_dim_future': 64.0, '
lambda_importance': 4.815990416640407, 'layer_hidden_init': '
deep_linear', 'layer_hidden_step': 'lstm', 'pooling_attribute': '
direct', 'pooling_mechanism': 'sumpool', 'gridding_divisions': 32.0, '
layer_step_decoder': 'gru', 'num_state_features': 4.0, '
n_train_predictions': 4.0, 'neighbourhood_width': 9.022686481496356, '
num_state_embedding': 128.0, 'explicit_predictions': 0.0, '
future_use_neighbour': 1.0, 'num_hidden_embedding': 128.0, '
seperate_interaction': 0.0, 'metric_representation': 'acceleration', '
target_representation': 'acceleration', 'layer_embedding_querry': '
deep_linear', 'num_rel_state_features': 1.0, 'num_rel_state_embedding
': 512.0, 'neighbourhood_height_back': 7.960384888347766, '
num_interaction_embedding': 128.0, 'input_representation_state': 'va',

69

'layer_attributes_embedding': 'custom_linear', '
neighbourhood_height_front': 7.057854177205689, '
layer_interaction_embedding': 'custom_linear', '
num_hidden_future_embedding': 512.0, 'dropout_attributes_embedding':
0.3, 'dropout_interaction_embedding': 0.4, '
batchnorm_attributes_embedding': 0.0, 'input_representation_rel_state
': 'm', 'num_units_attributes_embedding': 512.0, '
activation_attributes_embedding': 'tanh', '
batchnorm_interaction_embedding': 0.0, '
num_layers_attributes_embedding': 3.0, '
num_units_interaction_embedding': 64.0, '
activation_interaction_embedding': 'sigmoid', '
num_layers_interaction_embedding': 2.0}

{'lr': 0.00282162953278939, 'beta': 46.13907961289852, 'gamma':
0.5265736972326339, 'z_dim': 16.0, 'dd_dim': 1.0, 'embed_dim': 64.0, '
grad_clip': 4.299662885523541, 'batch_size': 32.0, 'hidden_dim':
128.0, 'normalizer': 'none', 'decoder_type': 'stepwise_latent_rnn', '
pooling_method': 'gridding_rel_dist', 'metric_is_polar': 0.0, '
target_is_polar': 0.0, 'future_direction': 'backwards', '
not_present_fill': 1000000.0, 'hidden_dim_future': 128.0, '
lambda_importance': 1.1376385441900638, 'layer_hidden_init': '
deep_linear', 'layer_hidden_step': 'gru', 'pooling_attribute': '
rel_dist', 'pooling_mechanism': 'gridding', 'gridding_divisions': 4.0,

'layer_step_decoder': 'gru', 'num_state_features': 2.0, '
n_train_predictions': 9.0, 'neighbourhood_width': 7.692591420821943, '
num_state_embedding': 16.0, 'explicit_predictions': 1.0, '
future_use_neighbour': 0.0, 'num_hidden_embedding': 16.0, '
seperate_interaction': 0.0, 'metric_representation': 'velocity', '
target_representation': 'acceleration', 'layer_embedding_querry': '
deep_linear', 'num_rel_state_features': 2.0, 'num_rel_state_embedding
': 64.0, 'neighbourhood_height_back': 15.767476341792984, '
num_interaction_embedding': 32.0, 'input_representation_state': 'a', '
layer_attributes_embedding': 'custom_linear', '
neighbourhood_height_front': 13.637952338768024, '
layer_interaction_embedding': 'custom_linear', '
num_hidden_future_embedding': 16.0, 'dropout_attributes_embedding':
0.2, 'dropout_interaction_embedding': 0.1, '
batchnorm_attributes_embedding': 0.0, 'input_representation_rel_state
': 'db', 'num_units_attributes_embedding': 128.0, '
activation_attributes_embedding': 'relu', '
batchnorm_interaction_embedding': 0.0, '
num_layers_attributes_embedding': 5.0, '
num_units_interaction_embedding': 128.0, '
activation_interaction_embedding': 'sigmoid', '
num_layers_interaction_embedding': 1.0}

{'lr': 0.0003350377920122411, 'beta': 24.87004153547444, 'gamma':
0.7232060810622909, 'z_dim': 32.0, 'dd_dim': 2.0, 'embed_dim': 128.0,

70

'grad_clip': 4.449465749614174, 'batch_size': 256.0, 'hidden_dim':
32.0, 'normalizer': 'none', 'decoder_type': 'direct_rnn', '
pooling_method': 'attention_rel_acc', 'metric_is_polar': 0.0, '
target_is_polar': 0.0, 'future_direction': 'forwards', '
not_present_fill': -1000000.0, 'hidden_dim_future': 64.0, '
lambda_importance': 9.25266580391018, 'layer_hidden_init': '
deep_linear', 'layer_hidden_step': 'gru', 'pooling_attribute': '
rel_acc', 'pooling_mechanism': 'attention', 'gridding_divisions':
16.0, 'layer_step_decoder': 'gru', 'num_state_features': 2.0, '
n_train_predictions': 19.0, 'neighbourhood_width': 6.23914563724863, '
num_state_embedding': 64.0, 'explicit_predictions': 1.0, '
future_use_neighbour': 0.0, 'num_hidden_embedding': 128.0, '
seperate_interaction': 0.0, 'metric_representation': 'velocity', '
target_representation': 'acceleration', 'layer_embedding_querry': '
linear', 'num_rel_state_features': 2.0, 'num_rel_state_embedding':
32.0, 'neighbourhood_height_back': 12.6992986473658, '
num_interaction_embedding': 256.0, 'input_representation_state': 'a',
'layer_attributes_embedding': 'custom_linear', '
neighbourhood_height_front': 1.7393222681545977, '
layer_interaction_embedding': 'custom_linear', '
num_hidden_future_embedding': 64.0, 'dropout_attributes_embedding':
0.2, 'dropout_interaction_embedding': 0.2, '
batchnorm_attributes_embedding': 0.0, 'input_representation_rel_state
': 'a', 'num_units_attributes_embedding': 512.0, '
activation_attributes_embedding': 'elu', '
batchnorm_interaction_embedding': 0.0, '
num_layers_attributes_embedding': 3.0, '
num_units_interaction_embedding': 256.0, '
activation_interaction_embedding': 'elu', '
num_layers_interaction_embedding': 5.0}

NBA :

{'lr': 0.001871284874821101, 'beta': 10.629943437807665, 'gamma':
0.6949478174063634, 'z_dim': 16.0, 'dd_dim': 2.0, 'embed_dim': 128.0,

'grad_clip': 1.2189471957365376, 'batch_size': 512.0, 'hidden_dim':
128.0, 'normalizer': 'none', 'decoder_type': 'direct_rnn', '
pooling_method': 'sumpool_hidden', 'metric_is_polar': 0.0, '
target_is_polar': 0.0, 'future_direction': 'forwards', '
not_present_fill': 1000000.0, 'hidden_dim_future': 64.0, '
lambda_importance': 3.62889353970355, 'layer_hidden_init': 'linear', '
layer_hidden_step': 'lstm', 'pooling_attribute': 'hidden', '
pooling_mechanism': 'sumpool', 'gridding_divisions': 64.0, '
layer_step_decoder': 'lstm', 'num_state_features': 2.0, '
n_train_predictions': 8.0, 'neighbourhood_width': 17.075128893810508,

'num_state_embedding': 64.0, 'explicit_predictions': 1.0, '
future_use_neighbour': 1.0, 'num_hidden_embedding': 32.0, '

71

seperate_interaction': 0.0, 'metric_representation': 'position', '
target_representation': 'acceleration', 'layer_embedding_querry': '
deep_linear', 'num_rel_state_features': 6.0, 'num_rel_state_embedding
': 512.0, 'neighbourhood_height_back': 9.471169204745804, '
num_interaction_embedding': 512.0, 'input_representation_state': 'a',
'layer_attributes_embedding': 'custom_linear', '
neighbourhood_height_front': 10.456941587630393, '
layer_interaction_embedding': 'custom_linear', '
num_hidden_future_embedding': 32.0, 'dropout_attributes_embedding':
0.1, 'dropout_interaction_embedding': 0.2, '
batchnorm_attributes_embedding': 0.0, 'input_representation_rel_state
': 'pva', 'num_units_attributes_embedding': 16.0, '
activation_attributes_embedding': 'elu', '
batchnorm_interaction_embedding': 0.0, '
num_layers_attributes_embedding': 2.0, '
num_units_interaction_embedding': 16.0, '
activation_interaction_embedding': 'relu6', '
num_layers_interaction_embedding': 4.0}

{'lr': 0.0005485335156951346, 'beta': 5.250345525933247, 'gamma':
0.5070119446339979, 'z_dim': 256.0, 'dd_dim': 1.0, 'embed_dim': 256.0,

'grad_clip': 1.3590890123589998, 'batch_size': 64.0, 'hidden_dim':
256.0, 'normalizer': 'none', 'decoder_type': 'direct_rnn', '
pooling_method': 'sumpool_rel_acc', 'metric_is_polar': 0.0, '
target_is_polar': 0.0, 'future_direction': 'backwards', '
not_present_fill': 1000000.0, 'hidden_dim_future': 512.0, '
lambda_importance': 8.79145098470304, 'layer_hidden_init': 'linear', '
layer_hidden_step': 'lstm', 'pooling_attribute': 'rel_acc', '
pooling_mechanism': 'sumpool', 'gridding_divisions': 16.0, '
layer_step_decoder': 'gru', 'num_state_features': 4.0, '
n_train_predictions': 16.0, 'neighbourhood_width': 9.191567277177944,

'num_state_embedding': 512.0, 'explicit_predictions': 1.0, '
future_use_neighbour': 0.0, 'num_hidden_embedding': 128.0, '
seperate_interaction': 0.0, 'metric_representation': 'position', '
target_representation': 'acceleration', 'layer_embedding_querry': '
deep_linear', 'num_rel_state_features': 4.0, 'num_rel_state_embedding
': 128.0, 'neighbourhood_height_back': 15.59359098885803, '
num_interaction_embedding': 256.0, 'input_representation_state': 'pv',
'layer_attributes_embedding': 'custom_linear', '

neighbourhood_height_front': 11.381529560252728, '
layer_interaction_embedding': 'custom_linear', '
num_hidden_future_embedding': 64.0, 'dropout_attributes_embedding':
0.0, 'dropout_interaction_embedding': 0.3, '
batchnorm_attributes_embedding': 0.0, 'input_representation_rel_state
': 'pv', 'num_units_attributes_embedding': 128.0, '
activation_attributes_embedding': 'tanh', '
batchnorm_interaction_embedding': 0.0, '
num_layers_attributes_embedding': 3.0, '

72

num_units_interaction_embedding': 256.0, '
activation_interaction_embedding': 'sigmoid', '
num_layers_interaction_embedding': 4.0}

{'lr': 0.001733731734610129, 'beta': 5.6934429843431245, 'gamma':
0.15411676672344485, 'z_dim': 128.0, 'dd_dim': 1.0, 'embed_dim':
256.0, 'grad_clip': 3.526728887140914, 'batch_size': 64.0, 'hidden_dim
': 64.0, 'normalizer': 'none', 'decoder_type': 'direct_rnn', '
pooling_method': 'gridding_direct', 'metric_is_polar': 0.0, '
target_is_polar': 0.0, 'future_direction': 'backwards', '
not_present_fill': 0.0, 'hidden_dim_future': 32.0, 'lambda_importance
': 1.7295968180764674, 'layer_hidden_init': 'deep_linear', '
layer_hidden_step': 'gru', 'pooling_attribute': 'direct', '
pooling_mechanism': 'gridding', 'gridding_divisions': 64.0, '
layer_step_decoder': 'gru', 'num_state_features': 2.0, '
n_train_predictions': 12.0, 'neighbourhood_width': 21.150008752776, '
num_state_embedding': 64.0, 'explicit_predictions': 0.0, '
future_use_neighbour': 0.0, 'num_hidden_embedding': 32.0, '
seperate_interaction': 0.0, 'metric_representation': 'acceleration', '
target_representation': 'acceleration', 'layer_embedding_querry': '
deep_linear', 'num_rel_state_features': 4.0, 'num_rel_state_embedding
': 512.0, 'neighbourhood_height_back': 13.89266510897011, '
num_interaction_embedding': 256.0, 'input_representation_state': 'a',
'layer_attributes_embedding': 'custom_linear', '
neighbourhood_height_front': 9.792813381627402, '
layer_interaction_embedding': 'custom_linear', '
num_hidden_future_embedding': 16.0, 'dropout_attributes_embedding':
0.1, 'dropout_interaction_embedding': 0.0, '
batchnorm_attributes_embedding': 0.0, 'input_representation_rel_state
': 'va', 'num_units_attributes_embedding': 64.0, '
activation_attributes_embedding': 'elu', '
batchnorm_interaction_embedding': 0.0, '
num_layers_attributes_embedding': 5.0, '
num_units_interaction_embedding': 32.0, '
activation_interaction_embedding': 'sigmoid', '
num_layers_interaction_embedding': 1.0}

{'lr': 0.0007243026341478893, 'beta': 49.51575987055742, 'gamma':
0.4122696621369472, 'z_dim': 128.0, 'dd_dim': 2.0, 'embed_dim': 256.0,

'grad_clip': 1.6695702218093782, 'batch_size': 32.0, 'hidden_dim':
64.0, 'normalizer': 'none', 'decoder_type': 'direct_rnn', '
pooling_method': 'maxpool_direct', 'metric_is_polar': 0.0, '
target_is_polar': 0.0, 'future_direction': 'backwards', '
not_present_fill': -1000000.0, 'hidden_dim_future': 256.0, '
lambda_importance': 9.198549771058037, 'layer_hidden_init': '
deep_linear', 'layer_hidden_step': 'gru', 'pooling_attribute': 'direct
', 'pooling_mechanism': 'maxpool', 'gridding_divisions': 32.0, '
layer_step_decoder': 'lstm', 'num_state_features': 2.0, '
n_train_predictions': 13.0, 'neighbourhood_width': 26.27988407920095,

73

'num_state_embedding': 256.0, 'explicit_predictions': 0.0, '
future_use_neighbour': 0.0, 'num_hidden_embedding': 128.0, '
seperate_interaction': 0.0, 'metric_representation': 'velocity', '
target_representation': 'acceleration', 'layer_embedding_querry': '
linear', 'num_rel_state_features': 2.0, 'num_rel_state_embedding':
512.0, 'neighbourhood_height_back': 6.286021204608768, '
num_interaction_embedding': 256.0, 'input_representation_state': 'a',
'layer_attributes_embedding': 'custom_linear', '
neighbourhood_height_front': 8.890878310063822, '
layer_interaction_embedding': 'custom_linear', '
num_hidden_future_embedding': 16.0, 'dropout_attributes_embedding':
0.5, 'dropout_interaction_embedding': 0.3, '
batchnorm_attributes_embedding': 0.0, 'input_representation_rel_state
': 'v', 'num_units_attributes_embedding': 256.0, '
activation_attributes_embedding': 'leaky_relu', '
batchnorm_interaction_embedding': 0.0, '
num_layers_attributes_embedding': 2.0, '
num_units_interaction_embedding': 256.0, '
activation_interaction_embedding': 'sigmoid', '
num_layers_interaction_embedding': 4.0}

{'lr': 0.00012564682513588392, 'beta': 50.07895194925274, 'gamma':
0.16488176095282453, 'z_dim': 256.0, 'dd_dim': 2.0, 'embed_dim': 32.0,

'grad_clip': 0.1613073103362389, 'batch_size': 128.0, 'hidden_dim':
32.0, 'normalizer': 'none', 'decoder_type': 'direct_rnn', '
pooling_method': 'concat_rel_acc', 'metric_is_polar': 0.0, '
target_is_polar': 0.0, 'future_direction': 'backwards', '
not_present_fill': -1000000.0, 'hidden_dim_future': 256.0, '
lambda_importance': 3.0623938423960624, 'layer_hidden_init': 'linear',
'layer_hidden_step': 'gru', 'pooling_attribute': 'rel_acc', '

pooling_mechanism': 'concat', 'gridding_divisions': 64.0, '
layer_step_decoder': 'gru', 'num_state_features': 2.0, '
n_train_predictions': 7.0, 'neighbourhood_width': 25.65988347121772, '
num_state_embedding': 512.0, 'explicit_predictions': 1.0, '
future_use_neighbour': 1.0, 'num_hidden_embedding': 64.0, '
seperate_interaction': 0.0, 'metric_representation': 'position', '
target_representation': 'acceleration', 'layer_embedding_querry': '
linear', 'num_rel_state_features': 1.0, 'num_rel_state_embedding':
256.0, 'neighbourhood_height_back': 15.33109788084968, '
num_interaction_embedding': 128.0, 'input_representation_state': 'a',
'layer_attributes_embedding': 'custom_linear', '
neighbourhood_height_front': 14.420131737031737, '
layer_interaction_embedding': 'custom_linear', '
num_hidden_future_embedding': 32.0, 'dropout_attributes_embedding':
0.0, 'dropout_interaction_embedding': 0.0, '
batchnorm_attributes_embedding': 0.0, 'input_representation_rel_state
': 'b', 'num_units_attributes_embedding': 32.0, '
activation_attributes_embedding': 'relu6', '

74

batchnorm_interaction_embedding': 0.0, '
num_layers_attributes_embedding': 5.0, '
num_units_interaction_embedding': 256.0, '
activation_interaction_embedding': 'sigmoid', '
num_layers_interaction_embedding': 2.0}

{'lr': 0.0009849023776411182, 'beta': 30.0385402041938, 'gamma':
0.28075874198252565, 'z_dim': 32.0, 'dd_dim': 2.0, 'embed_dim': 256.0,

'grad_clip': 3.643101627463447, 'batch_size': 128.0, 'hidden_dim':
256.0, 'normalizer': 'none', 'decoder_type': 'direct_rnn', '
pooling_method': 'sumpool_hidden', 'metric_is_polar': 0.0, '
target_is_polar': 0.0, 'future_direction': 'backwards', '
not_present_fill': -1000000.0, 'hidden_dim_future': 64.0, '
lambda_importance': 7.564493274359233, 'layer_hidden_init': 'linear',
'layer_hidden_step': 'gru', 'pooling_attribute': 'hidden', '
pooling_mechanism': 'sumpool', 'gridding_divisions': 64.0, '
layer_step_decoder': 'gru', 'num_state_features': 2.0, '
n_train_predictions': 5.0, 'neighbourhood_width': 6.009149142999294, '
num_state_embedding': 64.0, 'explicit_predictions': 0.0, '
future_use_neighbour': 0.0, 'num_hidden_embedding': 256.0, '
seperate_interaction': 0.0, 'metric_representation': 'velocity', '
target_representation': 'acceleration', 'layer_embedding_querry': '
linear', 'num_rel_state_features': 3.0, 'num_rel_state_embedding':
32.0, 'neighbourhood_height_back': 11.462160531997329, '
num_interaction_embedding': 256.0, 'input_representation_state': 'a',
'layer_attributes_embedding': 'custom_linear', '
neighbourhood_height_front': 4.614985495199063, '
layer_interaction_embedding': 'custom_linear', '
num_hidden_future_embedding': 128.0, 'dropout_attributes_embedding':
0.5, 'dropout_interaction_embedding': 0.4, '
batchnorm_attributes_embedding': 0.0, 'input_representation_rel_state
': 'dbm', 'num_units_attributes_embedding': 256.0, '
activation_attributes_embedding': 'leaky_relu', '
batchnorm_interaction_embedding': 0.0, '
num_layers_attributes_embedding': 2.0, '
num_units_interaction_embedding': 128.0, '
activation_interaction_embedding': 'relu', '
num_layers_interaction_embedding': 2.0}

{'lr': 0.0012383128479368905, 'beta': 2.462578522241241, 'gamma':
0.8825587980631394, 'z_dim': 128.0, 'dd_dim': 1.0, 'embed_dim': 256.0,

'grad_clip': 1.6841935506475347, 'batch_size': 256.0, 'hidden_dim':
16.0, 'normalizer': 'none', 'decoder_type': 'direct_rnn', '
pooling_method': 'maxpool_direct', 'metric_is_polar': 0.0, '
target_is_polar': 0.0, 'future_direction': 'backwards', '
not_present_fill': -1000000.0, 'hidden_dim_future': 256.0, '
lambda_importance': 6.563668830665317, 'layer_hidden_init': 'linear',
'layer_hidden_step': 'lstm', 'pooling_attribute': 'direct', '
pooling_mechanism': 'maxpool', 'gridding_divisions': 32.0, '

75

layer_step_decoder': 'lstm', 'num_state_features': 2.0, '
n_train_predictions': 8.0, 'neighbourhood_width': 2.1138183092631464,

'num_state_embedding': 128.0, 'explicit_predictions': 1.0, '
future_use_neighbour': 1.0, 'num_hidden_embedding': 16.0, '
seperate_interaction': 0.0, 'metric_representation': 'position', '
target_representation': 'acceleration', 'layer_embedding_querry': '
deep_linear', 'num_rel_state_features': 3.0, 'num_rel_state_embedding
': 32.0, 'neighbourhood_height_back': 2.2229321214993933, '
num_interaction_embedding': 64.0, 'input_representation_state': 'a', '
layer_attributes_embedding': 'custom_linear', '
neighbourhood_height_front': 13.300122026542429, '
layer_interaction_embedding': 'custom_linear', '
num_hidden_future_embedding': 128.0, 'dropout_attributes_embedding':
0.4, 'dropout_interaction_embedding': 0.1, '
batchnorm_attributes_embedding': 0.0, 'input_representation_rel_state
': 'dbm', 'num_units_attributes_embedding': 32.0, '
activation_attributes_embedding': 'tanh', '
batchnorm_interaction_embedding': 0.0, '
num_layers_attributes_embedding': 2.0, '
num_units_interaction_embedding': 256.0, '
activation_interaction_embedding': 'sigmoid', '
num_layers_interaction_embedding': 5.0}

{'lr': 0.0006912167047430998, 'beta': 13.870549759519514, 'gamma':
0.7349153630288328, 'z_dim': 32.0, 'dd_dim': 2.0, 'embed_dim': 512.0,

'grad_clip': 1.6372606478740337, 'batch_size': 128.0, 'hidden_dim':
16.0, 'normalizer': 'none', 'decoder_type': 'stepwise_rnn', '
pooling_method': 'sumpool_direct', 'metric_is_polar': 0.0, '
target_is_polar': 0.0, 'future_direction': 'backwards', '
not_present_fill': -1000000.0, 'hidden_dim_future': 64.0, '
lambda_importance': 4.815990416640407, 'layer_hidden_init': '
deep_linear', 'layer_hidden_step': 'lstm', 'pooling_attribute': '
direct', 'pooling_mechanism': 'sumpool', 'gridding_divisions': 32.0, '
layer_step_decoder': 'gru', 'num_state_features': 4.0, '
n_train_predictions': 4.0, 'neighbourhood_width': 9.022686481496356, '
num_state_embedding': 128.0, 'explicit_predictions': 0.0, '
future_use_neighbour': 1.0, 'num_hidden_embedding': 128.0, '
seperate_interaction': 0.0, 'metric_representation': 'acceleration', '
target_representation': 'acceleration', 'layer_embedding_querry': '
deep_linear', 'num_rel_state_features': 1.0, 'num_rel_state_embedding
': 512.0, 'neighbourhood_height_back': 7.960384888347766, '
num_interaction_embedding': 128.0, 'input_representation_state': 'va',
'layer_attributes_embedding': 'custom_linear', '

neighbourhood_height_front': 7.057854177205689, '
layer_interaction_embedding': 'custom_linear', '
num_hidden_future_embedding': 512.0, 'dropout_attributes_embedding':
0.3, 'dropout_interaction_embedding': 0.4, '
batchnorm_attributes_embedding': 0.0, 'input_representation_rel_state

76

': 'm', 'num_units_attributes_embedding': 512.0, '
activation_attributes_embedding': 'tanh', '
batchnorm_interaction_embedding': 0.0, '
num_layers_attributes_embedding': 3.0, '
num_units_interaction_embedding': 64.0, '
activation_interaction_embedding': 'sigmoid', '
num_layers_interaction_embedding': 2.0}

{'lr': 0.00282162953278939, 'beta': 46.13907961289852, 'gamma':
0.5265736972326339, 'z_dim': 16.0, 'dd_dim': 1.0, 'embed_dim': 64.0, '
grad_clip': 4.299662885523541, 'batch_size': 32.0, 'hidden_dim':
128.0, 'normalizer': 'none', 'decoder_type': 'stepwise_latent_rnn', '
pooling_method': 'gridding_rel_dist', 'metric_is_polar': 0.0, '
target_is_polar': 0.0, 'future_direction': 'backwards', '
not_present_fill': 1000000.0, 'hidden_dim_future': 128.0, '
lambda_importance': 1.1376385441900638, 'layer_hidden_init': '
deep_linear', 'layer_hidden_step': 'gru', 'pooling_attribute': '
rel_dist', 'pooling_mechanism': 'gridding', 'gridding_divisions': 4.0,

'layer_step_decoder': 'gru', 'num_state_features': 2.0, '
n_train_predictions': 9.0, 'neighbourhood_width': 7.692591420821943, '
num_state_embedding': 16.0, 'explicit_predictions': 1.0, '
future_use_neighbour': 0.0, 'num_hidden_embedding': 16.0, '
seperate_interaction': 0.0, 'metric_representation': 'velocity', '
target_representation': 'acceleration', 'layer_embedding_querry': '
deep_linear', 'num_rel_state_features': 2.0, 'num_rel_state_embedding
': 64.0, 'neighbourhood_height_back': 15.767476341792984, '
num_interaction_embedding': 32.0, 'input_representation_state': 'a', '
layer_attributes_embedding': 'custom_linear', '
neighbourhood_height_front': 13.637952338768024, '
layer_interaction_embedding': 'custom_linear', '
num_hidden_future_embedding': 16.0, 'dropout_attributes_embedding':
0.2, 'dropout_interaction_embedding': 0.1, '
batchnorm_attributes_embedding': 0.0, 'input_representation_rel_state
': 'db', 'num_units_attributes_embedding': 128.0, '
activation_attributes_embedding': 'relu', '
batchnorm_interaction_embedding': 0.0, '
num_layers_attributes_embedding': 5.0, '
num_units_interaction_embedding': 128.0, '
activation_interaction_embedding': 'sigmoid', '
num_layers_interaction_embedding': 1.0}

{'lr': 0.0003350377920122411, 'beta': 24.87004153547444, 'gamma':
0.7232060810622909, 'z_dim': 32.0, 'dd_dim': 2.0, 'embed_dim': 128.0,

'grad_clip': 4.449465749614174, 'batch_size': 256.0, 'hidden_dim':
32.0, 'normalizer': 'none', 'decoder_type': 'direct_rnn', '
pooling_method': 'attention_rel_acc', 'metric_is_polar': 0.0, '
target_is_polar': 0.0, 'future_direction': 'forwards', '
not_present_fill': -1000000.0, 'hidden_dim_future': 64.0, '
lambda_importance': 9.25266580391018, 'layer_hidden_init': '

77

deep_linear', 'layer_hidden_step': 'gru', 'pooling_attribute': '
rel_acc', 'pooling_mechanism': 'attention', 'gridding_divisions':
16.0, 'layer_step_decoder': 'gru', 'num_state_features': 2.0, '
n_train_predictions': 19.0, 'neighbourhood_width': 6.23914563724863, '
num_state_embedding': 64.0, 'explicit_predictions': 1.0, '
future_use_neighbour': 0.0, 'num_hidden_embedding': 128.0, '
seperate_interaction': 0.0, 'metric_representation': 'velocity', '
target_representation': 'acceleration', 'layer_embedding_querry': '
linear', 'num_rel_state_features': 2.0, 'num_rel_state_embedding':
32.0, 'neighbourhood_height_back': 12.6992986473658, '
num_interaction_embedding': 256.0, 'input_representation_state': 'a',
'layer_attributes_embedding': 'custom_linear', '
neighbourhood_height_front': 1.7393222681545977, '
layer_interaction_embedding': 'custom_linear', '
num_hidden_future_embedding': 64.0, 'dropout_attributes_embedding':
0.2, 'dropout_interaction_embedding': 0.2, '
batchnorm_attributes_embedding': 0.0, 'input_representation_rel_state
': 'a', 'num_units_attributes_embedding': 512.0, '
activation_attributes_embedding': 'elu', '
batchnorm_interaction_embedding': 0.0, '
num_layers_attributes_embedding': 3.0, '
num_units_interaction_embedding': 256.0, '
activation_interaction_embedding': 'elu', '
num_layers_interaction_embedding': 5.0}

{'lr': 5.003116235175852e-05, 'beta': 76.46229511412517, 'gamma':
0.29966434764739824, 'z_dim': 32.0, 'dd_dim': 2.0, 'embed_dim': 64.0,

'grad_clip': 1.8812745476626016, 'batch_size': 32.0, 'hidden_dim':
128.0, 'normalizer': 'none', 'decoder_type': 'direct_rnn', '
pooling_method': 'maxpool_proxy', 'metric_is_polar': 0.0, '
target_is_polar': 0.0, 'future_direction': 'forwards', '
not_present_fill': -1000000.0, 'hidden_dim_future': 64.0, '
lambda_importance': 5.773556207324463, 'layer_hidden_init': '
deep_linear', 'layer_hidden_step': 'lstm', 'pooling_attribute': 'proxy
', 'pooling_mechanism': 'maxpool', 'gridding_divisions': 64.0, '
layer_step_decoder': 'lstm', 'num_state_features': 6.0, '
n_train_predictions': 6.0, 'neighbourhood_width': 16.78066998369117, '
num_state_embedding': 256.0, 'explicit_predictions': 1.0, '
future_use_neighbour': 0.0, 'num_hidden_embedding': 256.0, '
seperate_interaction': 0.0, 'metric_representation': 'velocity', '
target_representation': 'velocity', 'layer_embedding_querry': '
deep_linear', 'num_rel_state_features': 6.0, 'num_rel_state_embedding
': 16.0, 'neighbourhood_height_back': 5.450585946506681, '
num_interaction_embedding': 512.0, 'input_representation_state': 'pva
', 'layer_attributes_embedding': 'custom_linear', '
neighbourhood_height_front': 1.260724107286125, '
layer_interaction_embedding': 'custom_linear', '
num_hidden_future_embedding': 512.0, 'dropout_attributes_embedding':

78

0.2, 'dropout_interaction_embedding': 0.5, '
batchnorm_attributes_embedding': 0.0, 'input_representation_rel_state
': 'pva', 'num_units_attributes_embedding': 128.0, '
activation_attributes_embedding': 'tanh', '
batchnorm_interaction_embedding': 0.0, '
num_layers_attributes_embedding': 5.0, '
num_units_interaction_embedding': 32.0, '
activation_interaction_embedding': 'relu', '
num_layers_interaction_embedding': 3.0}

{'lr': 0.000370159582919456, 'beta': 10.823624849500655, 'gamma':
0.3827151945980989, 'z_dim': 16.0, 'dd_dim': 2.0, 'embed_dim': 256.0,

'grad_clip': 4.454783812664381, 'batch_size': 64.0, 'hidden_dim':
64.0, 'normalizer': 'none', 'decoder_type': 'direct_rnn', '
pooling_method': 'sumpool_proxy', 'metric_is_polar': 0.0, '
target_is_polar': 0.0, 'future_direction': 'forwards', '
not_present_fill': -1000000.0, 'hidden_dim_future': 256.0, '
lambda_importance': 1.2017653635234251, 'layer_hidden_init': 'linear',
'layer_hidden_step': 'lstm', 'pooling_attribute': 'proxy', '

pooling_mechanism': 'sumpool', 'gridding_divisions': 16.0, '
layer_step_decoder': 'lstm', 'num_state_features': 4.0, '
n_train_predictions': 9.0, 'neighbourhood_width': 28.85926079161925, '
num_state_embedding': 512.0, 'explicit_predictions': 0.0, '
future_use_neighbour': 1.0, 'num_hidden_embedding': 32.0, '
seperate_interaction': 0.0, 'metric_representation': 'position', '
target_representation': 'acceleration', 'layer_embedding_querry': '
deep_linear', 'num_rel_state_features': 2.0, 'num_rel_state_embedding
': 32.0, 'neighbourhood_height_back': 12.354547294915404, '
num_interaction_embedding': 256.0, 'input_representation_state': 'va',
'layer_attributes_embedding': 'custom_linear', '

neighbourhood_height_front': 13.638442092641183, '
layer_interaction_embedding': 'custom_linear', '
num_hidden_future_embedding': 32.0, 'dropout_attributes_embedding':
0.5, 'dropout_interaction_embedding': 0.4, '
batchnorm_attributes_embedding': 0.0, 'input_representation_rel_state
': 'a', 'num_units_attributes_embedding': 128.0, '
activation_attributes_embedding': 'relu', '
batchnorm_interaction_embedding': 0.0, '
num_layers_attributes_embedding': 4.0, '
num_units_interaction_embedding': 256.0, '
activation_interaction_embedding': 'relu', '
num_layers_interaction_embedding': 2.0}

{'lr': 0.002897450705468912, 'beta': 75.17653774541392, 'gamma':
0.6126137887436076, 'z_dim': 256.0, 'dd_dim': 2.0, 'embed_dim': 16.0,

'grad_clip': 1.1791225757286417, 'batch_size': 16.0, 'hidden_dim':
32.0, 'normalizer': 'none', 'decoder_type': 'physics', 'pooling_method
': 'sumpool_direct', 'metric_is_polar': 0.0, 'target_is_polar': 0.0, '
future_direction': 'backwards', 'not_present_fill': -1000000.0, '

79

hidden_dim_future': 512.0, 'lambda_importance': 4.013541394899489, '
layer_hidden_init': 'deep_linear', 'layer_hidden_step': 'gru', '
pooling_attribute': 'direct', 'pooling_mechanism': 'sumpool', '
gridding_divisions': 64.0, 'layer_step_decoder': 'gru', '
num_state_features': 4.0, 'n_train_predictions': 9.0, '
neighbourhood_width': 19.29697963820832, 'num_state_embedding': 128.0,

'explicit_predictions': 0.0, 'future_use_neighbour': 0.0, '
num_hidden_embedding': 256.0, 'seperate_interaction': 0.0, '
metric_representation': 'position', 'target_representation': 'velocity
', 'layer_embedding_querry': 'deep_linear', 'num_rel_state_features':
2.0, 'num_rel_state_embedding': 64.0, 'neighbourhood_height_back':
9.641398755622053, 'num_interaction_embedding': 32.0, '
input_representation_state': 'pv', 'layer_attributes_embedding': '
custom_linear', 'neighbourhood_height_front': 14.7672981412385, '
layer_interaction_embedding': 'custom_linear', '
num_hidden_future_embedding': 64.0, 'dropout_attributes_embedding':
0.4, 'dropout_interaction_embedding': 0.1, '
batchnorm_attributes_embedding': 0.0, 'input_representation_rel_state
': 'v', 'num_units_attributes_embedding': 128.0, '
activation_attributes_embedding': 'tanh', '
batchnorm_interaction_embedding': 0.0, '
num_layers_attributes_embedding': 2.0, '
num_units_interaction_embedding': 32.0, '
activation_interaction_embedding': 'elu', '
num_layers_interaction_embedding': 4.0}

{'lr': 0.00011006232009122806, 'beta': 84.3090602459455, 'gamma':
0.828503296745276, 'z_dim': 256.0, 'dd_dim': 2.0, 'embed_dim': 512.0,

'grad_clip': 1.24774261067126, 'batch_size': 16.0, 'hidden_dim':
128.0, 'normalizer': 'none', 'decoder_type': 'direct_rnn', '
pooling_method': 'sumpool_rel_acc', 'metric_is_polar': 0.0, '
target_is_polar': 0.0, 'future_direction': 'backwards', '
not_present_fill': 1000000.0, 'hidden_dim_future': 256.0, '
lambda_importance': 8.433254408816271, 'layer_hidden_init': '
deep_linear', 'layer_hidden_step': 'gru', 'pooling_attribute': '
rel_acc', 'pooling_mechanism': 'sumpool', 'gridding_divisions': 32.0,

'layer_step_decoder': 'gru', 'num_state_features': 2.0, '
n_train_predictions': 17.0, 'neighbourhood_width': 3.061300813200284,

'num_state_embedding': 512.0, 'explicit_predictions': 1.0, '
future_use_neighbour': 1.0, 'num_hidden_embedding': 128.0, '
seperate_interaction': 0.0, 'metric_representation': 'velocity', '
target_representation': 'acceleration', 'layer_embedding_querry': '
linear', 'num_rel_state_features': 4.0, 'num_rel_state_embedding':
256.0, 'neighbourhood_height_back': 9.863578946786957, '
num_interaction_embedding': 256.0, 'input_representation_state': 'p',
'layer_attributes_embedding': 'custom_linear', '
neighbourhood_height_front': 13.30340746965446, '
layer_interaction_embedding': 'custom_linear', '

80

num_hidden_future_embedding': 256.0, 'dropout_attributes_embedding':
0.5, 'dropout_interaction_embedding': 0.0, '
batchnorm_attributes_embedding': 0.0, 'input_representation_rel_state
': 'pv', 'num_units_attributes_embedding': 128.0, '
activation_attributes_embedding': 'sigmoid', '
batchnorm_interaction_embedding': 0.0, '
num_layers_attributes_embedding': 4.0, '
num_units_interaction_embedding': 64.0, '
activation_interaction_embedding': 'relu6', '
num_layers_interaction_embedding': 2.0}

{'lr': 0.00031955143583573106, 'beta': 55.7764372356832, 'gamma':
0.973939605868919, 'z_dim': 64.0, 'dd_dim': 2.0, 'embed_dim': 64.0, '
grad_clip': 2.378743716578445, 'batch_size': 16.0, 'hidden_dim':
128.0, 'normalizer': 'none', 'decoder_type': 'stepwise_rnn', '
pooling_method': 'sumpool_rel_acc', 'metric_is_polar': 0.0, '
target_is_polar': 0.0, 'future_direction': 'forwards', '
not_present_fill': -1000000.0, 'hidden_dim_future': 16.0, '
lambda_importance': 5.135268935204726, 'layer_hidden_init': 'linear',
'layer_hidden_step': 'gru', 'pooling_attribute': 'rel_acc', '
pooling_mechanism': 'sumpool', 'gridding_divisions': 4.0, '
layer_step_decoder': 'gru', 'num_state_features': 4.0, '
n_train_predictions': 17.0, 'neighbourhood_width': 15.876558845674875,

'num_state_embedding': 256.0, 'explicit_predictions': 1.0, '
future_use_neighbour': 0.0, 'num_hidden_embedding': 256.0, '
seperate_interaction': 0.0, 'metric_representation': 'velocity', '
target_representation': 'velocity', 'layer_embedding_querry': '
deep_linear', 'num_rel_state_features': 2.0, 'num_rel_state_embedding
': 256.0, 'neighbourhood_height_back': 5.401240257359211, '
num_interaction_embedding': 128.0, 'input_representation_state': 'va',
'layer_attributes_embedding': 'custom_linear', '

neighbourhood_height_front': 11.833233487627249, '
layer_interaction_embedding': 'custom_linear', '
num_hidden_future_embedding': 128.0, 'dropout_attributes_embedding':
0.3, 'dropout_interaction_embedding': 0.4, '
batchnorm_attributes_embedding': 0.0, 'input_representation_rel_state
': 'a', 'num_units_attributes_embedding': 256.0, '
activation_attributes_embedding': 'relu6', '
batchnorm_interaction_embedding': 0.0, '
num_layers_attributes_embedding': 4.0, '
num_units_interaction_embedding': 256.0, '
activation_interaction_embedding': 'relu', '
num_layers_interaction_embedding': 4.0}

ETH,Hotel,Zara1,Zara2,UNIV :

{'lr': 0.0001800228519791787, 'beta': 54.12278285548539, 'gamma':
0.9964492297093844, 'z_dim': 512.0, 'dd_dim': 2.0, 'embed_dim':

81

128.0, 'grad_clip': 1.725972658708054, 'batch_size': 32.0, '
hidden_dim': 16.0, 'normalizer': 'none', 'decoder_type': 'physics
', 'pooling_method': 'gridding_direct', 'metric_is_polar': 0.0, '
target_is_polar': 0.0, 'future_direction': 'backwards', '
not_present_fill': -1000000.0, 'hidden_dim_future': 256.0, '
lambda_importance': 9.231358185121133, 'layer_hidden_init': '
linear', 'layer_hidden_step': 'gru', 'pooling_attribute': 'direct
', 'pooling_mechanism': 'gridding', 'gridding_divisions': 32.0, '
layer_step_decoder': 'lstm', 'num_state_features': 4.0, '
n_train_predictions': 10.0, 'neighbourhood_width':
23.247259254450473, 'num_state_embedding': 16.0, '
explicit_predictions': 1.0, 'future_use_neighbour': 1.0, '
num_hidden_embedding': 64.0, 'seperate_interaction': 0.0, '
metric_representation': 'position', 'target_representation': '
velocity', 'layer_embedding_querry': 'linear', '
num_rel_state_features': 2.0, 'num_rel_state_embedding': 16.0, '
neighbourhood_height_back': 12.423163843924597, '
num_interaction_embedding': 256.0, 'input_representation_state': '
pv', 'layer_attributes_embedding': 'custom_linear', '
neighbourhood_height_front': 1.9072409754882504, '
layer_interaction_embedding': 'custom_linear', '
num_hidden_future_embedding': 256.0, 'dropout_attributes_embedding
': 0.1, 'dropout_interaction_embedding': 0.1, '
batchnorm_attributes_embedding': 0.0, '
input_representation_rel_state': 'p', '
num_units_attributes_embedding': 32.0, '
activation_attributes_embedding': 'tanh', '
batchnorm_interaction_embedding': 0.0, '
num_layers_attributes_embedding': 5.0, '
num_units_interaction_embedding': 512.0, '
activation_interaction_embedding': 'relu6', '
num_layers_interaction_embedding': 2.0}

{'lr': 0.0009032429519430018, 'beta': 57.5818234268588, 'gamma':
0.4672615133854059, 'z_dim': 512.0, 'dd_dim': 1.0, 'embed_dim': 128.0,

'grad_clip': 3.992368789542757, 'batch_size': 256.0, 'hidden_dim':
16.0, 'normalizer': 'none', 'decoder_type': 'physics', 'pooling_method
': 'gridding_rel_acc', 'metric_is_polar': 0.0, 'target_is_polar': 0.0,

'future_direction': 'backwards', 'not_present_fill': 1000000.0, '
hidden_dim_future': 32.0, 'lambda_importance': 3.673604292838199, '
layer_hidden_init': 'deep_linear', 'layer_hidden_step': 'gru', '
pooling_attribute': 'rel_acc', 'pooling_mechanism': 'gridding', '
gridding_divisions': 16.0, 'layer_step_decoder': 'lstm', '
num_state_features': 4.0, 'n_train_predictions': 17.0, '
neighbourhood_width': 3.61981864251481, 'num_state_embedding': 512.0,

'explicit_predictions': 1.0, 'future_use_neighbour': 1.0, '
num_hidden_embedding': 32.0, 'seperate_interaction': 0.0, '
metric_representation': 'velocity', 'target_representation': 'velocity

82

', 'layer_embedding_querry': 'deep_linear', 'num_rel_state_features':
4.0, 'num_rel_state_embedding': 128.0, 'neighbourhood_height_back':
6.809267306781644, 'num_interaction_embedding': 256.0, '
input_representation_state': 'pv', 'layer_attributes_embedding': '
custom_linear', 'neighbourhood_height_front': 1.2786971914559184, '
layer_interaction_embedding': 'custom_linear', '
num_hidden_future_embedding': 64.0, 'dropout_attributes_embedding':
0.4, 'dropout_interaction_embedding': 0.0, '
batchnorm_attributes_embedding': 0.0, 'input_representation_rel_state
': 'pa', 'num_units_attributes_embedding': 128.0, '
activation_attributes_embedding': 'tanh', '
batchnorm_interaction_embedding': 0.0, '
num_layers_attributes_embedding': 3.0, '
num_units_interaction_embedding': 64.0, '
activation_interaction_embedding': 'tanh', '
num_layers_interaction_embedding': 1.0}

{'lr': 0.00012836192304400713, 'beta': 24.22825654979371, 'gamma':
0.2911909856469384, 'z_dim': 256.0, 'dd_dim': 2.0, 'embed_dim': 32.0,

'grad_clip': 0.9757009902026637, 'batch_size': 64.0, 'hidden_dim':
128.0, 'normalizer': 'none', 'decoder_type': 'physics', '
pooling_method': 'maxpool_rel_dist', 'metric_is_polar': 0.0, '
target_is_polar': 0.0, 'future_direction': 'backwards', '
not_present_fill': 1000000.0, 'hidden_dim_future': 16.0, '
lambda_importance': 0.21853923525714797, 'layer_hidden_init': 'linear
', 'layer_hidden_step': 'gru', 'pooling_attribute': 'rel_dist', '
pooling_mechanism': 'maxpool', 'gridding_divisions': 32.0, '
layer_step_decoder': 'lstm', 'num_state_features': 2.0, '
n_train_predictions': 13.0, 'neighbourhood_width': 15.262069789237444,

'num_state_embedding': 128.0, 'explicit_predictions': 0.0, '
future_use_neighbour': 1.0, 'num_hidden_embedding': 16.0, '
seperate_interaction': 0.0, 'metric_representation': 'velocity', '
target_representation': 'velocity', 'layer_embedding_querry': '
deep_linear', 'num_rel_state_features': 2.0, 'num_rel_state_embedding
': 64.0, 'neighbourhood_height_back': 3.358019053938518, '
num_interaction_embedding': 16.0, 'input_representation_state': 'v', '
layer_attributes_embedding': 'custom_linear', '
neighbourhood_height_front': 10.633442693407336, '
layer_interaction_embedding': 'custom_linear', '
num_hidden_future_embedding': 16.0, 'dropout_attributes_embedding':
0.4, 'dropout_interaction_embedding': 0.0, '
batchnorm_attributes_embedding': 0.0, 'input_representation_rel_state
': 'db', 'num_units_attributes_embedding': 128.0, '
activation_attributes_embedding': 'sigmoid', '
batchnorm_interaction_embedding': 0.0, '
num_layers_attributes_embedding': 1.0, '
num_units_interaction_embedding': 512.0, '
activation_interaction_embedding': 'elu', '

83

num_layers_interaction_embedding': 3.0}

{'lr': 0.0008407870842467528, 'beta': 62.0771117466555, 'gamma':
0.1286660076081022, 'z_dim': 16.0, 'dd_dim': 2.0, 'embed_dim': 256.0,

'grad_clip': 3.090252383329071, 'batch_size': 256.0, 'hidden_dim':
16.0, 'normalizer': 'none', 'decoder_type': 'physics', 'pooling_method
': 'maxpool_rel_vel', 'metric_is_polar': 0.0, 'target_is_polar': 0.0,

'future_direction': 'forwards', 'not_present_fill': 0.0, '
hidden_dim_future': 512.0, 'lambda_importance': 9.964529731773396, '
layer_hidden_init': 'deep_linear', 'layer_hidden_step': 'gru', '
pooling_attribute': 'rel_vel', 'pooling_mechanism': 'maxpool', '
gridding_divisions': 4.0, 'layer_step_decoder': 'lstm', '
num_state_features': 4.0, 'n_train_predictions': 20.0, '
neighbourhood_width': 19.94206767269679, 'num_state_embedding': 16.0,

'explicit_predictions': 0.0, 'future_use_neighbour': 0.0, '
num_hidden_embedding': 128.0, 'seperate_interaction': 0.0, '
metric_representation': 'velocity', 'target_representation': 'velocity
', 'layer_embedding_querry': 'deep_linear', 'num_rel_state_features':
1.0, 'num_rel_state_embedding': 16.0, 'neighbourhood_height_back':
5.332332023991855, 'num_interaction_embedding': 256.0, '
input_representation_state': 'va', 'layer_attributes_embedding': '
custom_linear', 'neighbourhood_height_front': 4.691796266029817, '
layer_interaction_embedding': 'custom_linear', '
num_hidden_future_embedding': 128.0, 'dropout_attributes_embedding':
0.3, 'dropout_interaction_embedding': 0.2, '
batchnorm_attributes_embedding': 0.0, 'input_representation_rel_state
': 'b', 'num_units_attributes_embedding': 128.0, '
activation_attributes_embedding': 'sigmoid', '
batchnorm_interaction_embedding': 0.0, '
num_layers_attributes_embedding': 5.0, '
num_units_interaction_embedding': 32.0, '
activation_interaction_embedding': 'elu', '
num_layers_interaction_embedding': 4.0}

{'lr': 0.0014228671772788368, 'beta': 54.09287170526349, 'gamma':
0.9191417073768892, 'z_dim': 32.0, 'dd_dim': 2.0, 'embed_dim': 256.0,

'grad_clip': 2.3660076254032028, 'batch_size': 256.0, 'hidden_dim':
64.0, 'normalizer': 'none', 'decoder_type': 'physics', 'pooling_method
': 'gridding_direct', 'metric_is_polar': 0.0, 'target_is_polar': 0.0,

'future_direction': 'forwards', 'not_present_fill': -1000000.0, '
hidden_dim_future': 16.0, 'lambda_importance': 2.6042251797828273, '
layer_hidden_init': 'deep_linear', 'layer_hidden_step': 'gru', '
pooling_attribute': 'direct', 'pooling_mechanism': 'gridding', '
gridding_divisions': 32.0, 'layer_step_decoder': 'gru', '
num_state_features': 2.0, 'n_train_predictions': 9.0, '
neighbourhood_width': 6.413262767737724, 'num_state_embedding': 32.0,

'explicit_predictions': 1.0, 'future_use_neighbour': 1.0, '
num_hidden_embedding': 64.0, 'seperate_interaction': 0.0, '
metric_representation': 'velocity', 'target_representation': 'velocity

84

', 'layer_embedding_querry': 'linear', 'num_rel_state_features': 1.0,

'num_rel_state_embedding': 256.0, 'neighbourhood_height_back':
3.2497057832937424, 'num_interaction_embedding': 32.0, '
input_representation_state': 'a', 'layer_attributes_embedding': '
custom_linear', 'neighbourhood_height_front': 3.0128549014073203, '
layer_interaction_embedding': 'custom_linear', '
num_hidden_future_embedding': 64.0, 'dropout_attributes_embedding':
0.0, 'dropout_interaction_embedding': 0.4, '
batchnorm_attributes_embedding': 0.0, 'input_representation_rel_state
': 'd', 'num_units_attributes_embedding': 64.0, '
activation_attributes_embedding': 'leaky_relu', '
batchnorm_interaction_embedding': 0.0, '
num_layers_attributes_embedding': 2.0, '
num_units_interaction_embedding': 128.0, '
activation_interaction_embedding': 'tanh', '
num_layers_interaction_embedding': 2.0}

85

	Introduction
	Problem statement
	Background and Definitions
	Related Work
	Methodology
	Experiments
	Results
	Discussion
	Conclusion
	Appendix

