
Master Computer Science

Quantum Checkers: The development and

analysis of a quantum combinatorial game

Name: Luuk van den Nouweland

Student ID: s2175355

Date: July 4, 2024

Specialisation: Artificial Intelligence

1st supervisor: Dr. E.P.L. van Nieuwenburg

2nd supervisors: Dr. M. Preuss

M.F.T. Müller-Brockhausen MSc

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Abstract

This thesis focuses on the development and analysis of a quan-
tum combinatorial game: quantum checkers. Multiple concepts from
quantum computing are implemented into the game of checkers. More
specifically: superpositions, entanglement and measurement. We im-
plemented the previously mentioned concepts successfully by translat-
ing each checker piece to a qubit. From this, it is possible to derive
rules as to how these concepts will work in the game. Subsequently, an
analysis will be done on checkers with different levels of quantumness
to see if new strategies emerge. Next, we developed an AI to analyse
the game. This analysis showed that new strategies emerged when
quantumness is introduced.

2

Contents

1 Introduction 5
1.1 Thesis structure . 6

2 Fundamentals of quantum computing 7
2.1 Quantum bits . 7
2.2 Superpositions . 7
2.3 Measurement . 7
2.4 Entanglement . 7

3 Related Work 8
3.1 Monte Carlo Tree Search . 9

3.1.1 Selection . 10
3.1.2 Expansion . 11
3.1.3 Simulation . 11
3.1.4 Backpropagation . 11
3.1.5 Summary . 12

4 Design & Implementation 13
4.1 Original rule-set: classic checkers 13

4.1.1 Setup . 13
4.1.2 Movement . 13
4.1.3 Capturing . 14
4.1.4 Results . 15

4.2 Quantum rule-set . 15
4.2.1 Checkers with superpositions 15
4.2.2 Checkers with entanglement 18

4.3 No double occupancy rule . 20
4.4 Summary of all possible states and moves 21

4.4.1 Possible states . 21
4.4.2 Possible moves . 21

4.5 Unitary . 22

5 Experimental setup and analysis 23
5.1 Setup . 23

5.1.1 Random agent . 23
5.1.2 Heuristic agent . 24

3

5.1.3 MCTS agents . 24
5.2 Complexity . 24
5.3 MCTS performance . 25
5.4 TrueSkill . 27

5.4.1 Results 5x5 . 28
5.4.2 Results 8x8 . 29

6 Discussion 31
6.1 Complexity . 31
6.2 MCTS performance . 31
6.3 TrueSkill . 32

6.3.1 5x5 board . 32
6.4 8x8 board . 32

7 Conclusion 34
7.1 Future work . 34

4

1 Introduction

Quantum computing is a relatively new research field. Unlike classical com-
puters, which use bits to process information, quantum computers use quan-
tum bits or qubits, which can exist in multiple states simultaneously. These
properties allow quantum computers to solve some problems significantly
faster than classical computers. However, public knowledge about the prop-
erties of quantum computers is lacking. This gap in understanding can
largely be attributed to the fact that quantum phenomena are inherently
counter-intuitive and are not experienced in the daily lives of the average
person.

Games could be used to introduce and explain these quantum concepts in an
accessible manner, since they provide the perfect playground to get familiar
with the concepts. Much research is done into using games as educational
tools [13]. This thesis however, will not focus on the effectiveness of games
as educational tools.

Various different quantum games have already been created, like quantum
chess [4, 2], quantum minesweeper [9], quantum prisoners dilemma [5], quan-
tum tic-tac-toe (or tiq taq toe) [8, 19] to give a few examples. This thesis
focuses on the development of quantum checkers.

The development of quantum checkers will focus on implementing the con-
cepts of quantum computing in a way that is easy to grasp. The game also
allows us to analyse how the game of checkers changes when introducing the
principles of quantum computing.

This thesis aims to design and implement a functional version of quantum
checkers, with a focus on an accessible design. We also implement an AI
for quantum checkers, which subsequently is used to analyse the game by
measuring and comparing the performance of different types of agents playing
it. Using this the differences between classical checkers and quantum checkers
will be analysed. Two main question will be answered in this thesis:

• How to quantize the game of checkers?

• What new strategies emerge from the quantum version of the game
compared to the classical version?

5

1.1 Thesis structure

This thesis is organised into several chapters. Section 2 will introduce some
fundamentals of quantum computing necessary to understand this thesis.
Section 3 discusses background and related work. Section 3.1 discusses the
implementation of Monte Carlo Tree Search for the game of quantum check-
ers. Section 4 discusses the design and implementation of the concepts of
quantum computing into the rules of classical checkers. Section 5 discusses
the experimental setup and the results of the experiments. Section 6 discusses
the results of the experiments. Section 7 concludes the thesis.

6

2 Fundamentals of quantum computing

To understand concepts introduced in this thesis a short introduction to
quantum computing will be given. For more in-depth explanations, see
Quantum Computation and Quantum Information by Nielsen and Chuang
[14].

2.1 Quantum bits

Similarly to bits in classical computers quantum computers have quantum
bits, or in short qubits. A qubit can either be in a state of |0⟩ or |1⟩.

2.2 Superpositions

The difference between classical bits and qubits is that qubits can exist in
superposition. Superpositions allow qubits to be in a combination of both
0 and 1 simultaneously, rather than being confined to a single binary state.
This is formulated as

|ψ⟩ = α |0⟩+ β |1⟩

2.3 Measurement

When measuring a qubit in superposition it will collapse back to a classical
state. You will observe either state |0⟩ or |1⟩ with probability |α|2 or |β|2
where to probability of |α|2 + |β|2 = 1. An example of a equal probability
between two qubits would be

|ψ⟩ = 1√
2
|0⟩+ 1√

2
|1⟩

2.4 Entanglement

Entanglement is a superposition of multiple qubits where the state of one
qubit directly influences the state of another qubit. When one of the qubits
is measured, the state of the other qubit instantly collapses.

7

3 Related Work

Dorbec and Mhalla propose a standardised framework for introducing quantum-
inspired moves in combinatorial games [6]. This framework proposes several
different rule-sets for developing quantum games. Burke et al. do further
research into quantum combinatorial games and the previously mentioned
ruleset, which are called quantum flavors in their research [3]. Their re-
search is primarily focused on quantum flavor D, which is in their opinion
the most natural expansion of quantum combinatorial games. Citing Dorbec
and Mhalla ruleset D states that “unsuperposed moves are always allowed
(seen as the superposition of two identical moves).” [6]. In more accessible
terms this means that a player can always choose between executing classi-
cal moves or quantum moves. This ruleset will also be used when developing
quantum checkers.

Quantum Chess [4] is a version of chess in which players are able to use
quantum moves to their advantage. The game includes, according to them,
the trifecta of quantum phenomena: superposition, entanglement, and in-
terference. Chess pieces are able to become superposed and entangled and
executing quantum moves can lead to destructive and constructive interfer-
ence, which players are able to use to their advantage. In their research the
“no double occupancy” rule is proposed, which will also be used in quantum
checkers. This rule will be explained in Section 4.3.

In another implementation of quantum chess [2, 1], all pieces exist in a quan-
tum superposition of two piece-type states. A piece collapses to a classical
known state when touched. The initial version of the game only has su-
perpositions, but a second version is proposed where each piece is initially
entangled with another piece.

Both quantum minesweeper [9] and quantum tic-tac-toe [8] have been created
as educational tools to teach the concepts of quantum mechanics in more
accessible manner. In quantumminesweeper there are several classical boards
in superposition. The goal is to figure out the layout of all the mines in all the
superposed classical boards. In quantum tic tac toe the player has to place
two marks on two different squares. These marks exist in superposition.
When measurement happens, the marks collapse back to a classical state.
Another version of quantum tic tac toe named Quantum TiqTaqToe, created
by Evert van Nieuwenburg, can be found at [19]. This version introduces

8

the concepts of superpositions and entanglement. A superposition happens
when a player marks two different squares, similarly to the other version of
quantum tiq tac toe. Entanglement happens when the opponent occupies a
square which is already occupied by the opponent. Measurement happens
when all squares have been occupied.

All these games share a common goal of teaching the concepts of quantum
mechanics in an engaging and accessible manner. Quantum games also serve
as a playground for the development of Artificial Intelligence for quantum
systems.

This thesis will not focus on the effectiveness of games as educational tools,
but engagement and accessibility will still be important design goals.

3.1 Monte Carlo Tree Search

Monte Carlo Tree search [12] (MCTS) is a multi-armed bandit search algo-
rithm that is used for decision making, which works especially well in board
games. It has already been implemented in many combinatorial games like
Chess, Poker, Settlers of Catan, Othello [17]. More recently MCTS has been
combined with deep reinforcement learning to achieve expert level play in
the game of Go [16].

The success of MCTS in these diverse games lies in its ability to construct and
navigate a game tree, where each node represents a state of the game. In the
case of quantum checkers, this means that each node is a possible board state.
Each child node is a board state reachable from the parent node by doing a
legal move. Each node contains information about the number of times this
node has been visited and the number of games won from the node. MCTS
uses this information together with the following four steps called selection,
expansions, simulation and propagation to select which move to do. For an
schematic overview of the algorithm, see Figure 1.

The big difference between games like Chess and Go in comparison to quan-
tum checkers is the former are deterministic, while the latter is stochastic.
The stochastic nature of the game will introduce chance nodes into the game
tree, which will impact the performance of MCTS.

9

Figure 1: An schematic overview of the four steps of the MCTS algorithm
[11]. These steps are repeated to build the MCTS tree.

3.1.1 Selection

First, a node needs to be selected that is going to be expanded. For this the
Upper Confidence Bound (UCB) algorithm is used. Starting from the root
node, continuously select child nodes using UCB until a leaf node is reached.
A leaf node is a node that has not yet been fully expanded, or where the
node is in a terminal state; i.e. the game is finished.

ki · (
wi

ni

+ c ·
√

lnN

ni

) (1)

• wi: the number of times a simulation from this node has resulted in a
win.

• ni: the total number of simulations run from this node.

• N : the total number of simulations from the parent node.

• c: constant exploration parameter.

• ki: weight of the current node.

This formula consists of two parts that balance exploration and exploita-
tion.

10

The first part of the formula, the exploitation term wi

ni
, increases the more

simulations are won from this node.

The second part of the formula, the exploration term c
√

lnN
ni

, increases when

the total number of simulations N grow and decreases when more simulations
have been run from this node. c is the exploration parameter. A higher value
means more exploration will happen.

Because quantum checkers is stochastic, a weight ki is added. This weight is
an approximation of the probability this game state will be reached from a
specific node.

3.1.2 Expansion

Once a node has been selected and it is not in a terminal state, a child node
will be added. A random move is chosen from all possible legal moves that
can be executed from this node, which have not already been chosen. E.g.
moving a piece on a diagonal. All possible states that can result from this
move will be added to the node. This means that if this move causes a
measurement to happen, multiple nodes will be added.

3.1.3 Simulation

For each node that has been added during the expansion phase, a simulation
will be run. A simulation is a random play-out of the game from the current
state with a play-out meaning playing the game until it ends by either a
player winning or the game drawing. The results of these simulations will
be backpropagated through the tree. If the game ends in a loss from the
perspective of the MCTS agent, a value of 0 will be returned. If the game
ends in a win for the MCTS agent, a value of 1 will be returned. If the game
ends in a draw, a value of 0.5 will be returned. This is done to prevent the
algorithm losing a game that could also end in a draw.

3.1.4 Backpropagation

The value that is returned in the simulation phase will be backpropagated
through the search tree. The visit count and win count for each node will
updated.

11

3.1.5 Summary

These four steps, which can be seen in Figure 1, are repeated until the budget
of the algorithm runs out. For quantum checkers, the budget is a fixed
parameter that is determined beforehand. The value of this parameter affects
the performance of MCTS significantly. The higher the value, the better the
performance, but the slower the algorithm. The value for this parameter will
be specified for each experiment in Section 5.1.

12

4 Design & Implementation

In this section the implementation and ruleset of quantum checkers is ex-
plained. For the experiments three different implementations will be used.
Classic checkers, which used the original ruleset. Checkers with superposi-
tions, which introduces superpositions and measurement to the game. And
checkers with entanglement, which introduces superpositions, entanglement
and measurement to the game. The source code for the game can be found
at [18].

Section 4.1 introduces the rules of normal checkers on which quantum check-
ers is based. Section 4.2 explains how superpositions and entanglement are
introduced. Section 4.3 explains the no double occupancy rule. Section 4.4
summarises all possible moves following these rule-sets. Section 4.5 intro-
duces the Python library used to implement the game.

4.1 Original rule-set: classic checkers

The implementation of quantum checkers is based on the official rule-set for
English Draughts. The rules of the International Draughts Federation [7] are
used.

4.1.1 Setup

English draught is a game played between 2 players on an 8 by 8 board with
alternating black and white tiles. The game is only played on the black tiles,
and therefore only 32 tiles are used. The board has to be placed so that each
player has a black square in the bottom left from their own perspective.

The game is played with 12 white pieces and 12 black/dark pieces. These
pieces are placed on the black tiles on the first three rows from the perspective
of each player.

In this implementation the white player always starts, similarly to chess.

4.1.2 Movement

• A piece can either be a man and a king.

• All pieces start as men.

13

• A man can only move forwards (from their perspective) on the diag-
onals to an empty square. See Figure 2 for an example.

• If a man reaches the end of the board, it is kinged.

• A king is able to move on all diagonals.

Figure 2: A normal move in classical checkers.

4.1.3 Capturing

• When a piece encounters an opponent’s piece, on the diagonal it is able
to move, and there is an empty square behind the opponent’s piece, the
player is obligated capture the opponent’s piece by jumping over it. See
Figure 3.

• If a piece just captured an opponent’s piece, and it encounters another
opponent’s piece on the diagonal it is able to move, and there is an
empty square behind the opponent’s piece, the player is again obligated
capture the opponent’s piece by jumping over it. This rule is repeated
for as long as the piece is able to capture the opponent’s pieces.

14

Figure 3: A move where the red player takes a piece of the black player.

4.1.4 Results

A player wins when his opponent:

• Has no pieces left.

• Has no legal moves left (e.g. all pieces are blocked).

The game ends in a draw when:

• There have been more than 40 moves without any player capturing a
piece.

For a more in-depth explanation of the official rules, see the rules of the
International Draughts Federation [7].

4.2 Quantum rule-set

The game of quantum checkers uses the previously mentioned rules, unless
mentioned otherwise. This section is split into two parts. First, checkers
with superpositions will be explained in Section 4.2.1. Next, checkers with
entanglement will be explained in Section 4.2.2.

4.2.1 Checkers with superpositions

In this version of the game, superpositions are introduced. The most natural
way to introduce superpositions into the game of checkers is to see each
piece as a qubit. Since a qubit can exist in superposition, a piece will also
be able to exist in superposition. Instead of doing a classical move where a
piece moves to only one tile, a piece will be able to move to multiple tiles at
once and therefore exist in superposition. This reasoning implies that two

15

different pieces can exist in superposition on the same tile. This would make
both the game itself and the implementation of the game more complicated.
Therefore the no double occupancy rule, which will be described in Section
4.3, is enforced. It states that no two pieces can exist on the same tile.

With the introduction of superpositions, the rules of measurement also need
to be defined. Again the most natural way to implement this is to measure
when trying to capture a piece. If you attempt to capture a piece in super-
position, you first need to verify it is actually there. If the piece collapses
to the square that you were attempting to capture, you will be able to take
the piece. However, if the piece collapses to a different square on the board
than the square you tried to capture, your move “failed”. This results in
your piece not moving and your turn being wasted. This also means that in
checkers with superpositions you are able to reach states that you are not
able to in classic checkers, since you are not able to “pass” a turn in classical
checkers. This measurement rule also applies in reverse, i.e. when you try
to capture a piece with a piece in superposition, that piece first needs to be
measured.

This version of quantum checkers is inherently probabilistic. When doing a
split move, the probability for each piece is (approximately) half of that of
the original piece. Therefore, all possible outcomes for a measurement can
be calculated relatively easy.

In section 4.2.1.1 the movement of checkers with superpositions will be for-
mally defined. Section 4.2.1.2 defines the capturing mechanics. Finally, Sec-
tion 4.2.1.3 defines when measurement happens for checkers with superposi-
tions.

4.2.1.1 Movement

• When a man is able to move in both diagonals, meaning both squares
in front of the piece are empty, instead of moving to the left or right
diagonal, it is also possible to move to both diagonals at the same time.
This causes the piece to be in an equal superposition. Both squares will
be occupied by the piece. No other pieces can occupy these squares.

• A king can move to a maximum of four diagonals. If possible, it can
create a superposition for any combination of pairs of these four diag-
onals. It is not possible to move to more than two squares at a time.

16

• All rules apply to a piece in superposition, which means that it can
again move in a superposition.

• See Figure 4 for an example of how a split move looks.

Figure 4: A move where the red player moves his piece into superposition
multiple times. The pieces are connected by a blue line to indicate that it is
the same piece in superposition.

4.2.1.2 Capturing

• If a piece that is not in superposition tries to capture a piece that is
in superposition, a measurement happens on the piece that is trying
to capture. If it turns out the piece that you are trying to capture is
actually there, you will take the opponents piece. If it is not there,
nothing happens and your turn is wasted. See Figure 5 for an example.

• If a piece that is in superposition tries to capture a piece that is not
in superposition, a measurement happens on the piece that it is trying
to capture. If it turns out the piece that you are using to capture is
actually there, you will take the opponents piece. If it is not there,
nothing happens and your turn is wasted.

• If a piece that is in superposition tries to capture a piece that is in
superposition, a measurement happens on the piece that is trying to
capture. If the measurement reveals that the piece you are using is
actually there, a measurement happens on the piece that is captured.
Otherwise, your turn ends here and the opponents piece is never mea-
sured.

4.2.1.3 Measurement

If a piece needs to be measured, it reverts back to a classical state. This
means that of all possible squares the piece can exist in, only one will be

17

Figure 5: Two outcomes for a black piece trying to take a red piece in
superposition for checkers with only superpositions.

true.

• For a piece in a superposition this means that for all possible positions
the piece can be in, only one will be true. Only on this square the piece
will remain. All other squares will be emptied.

4.2.2 Checkers with entanglement

Introducing entanglement into the game of checkers is already less straight-
forward. Checkers with superpositions can simply defined as probabilistic
or stochastic checkers. Entanglement however, adds a layer of complexity
that can’t directly be translated to a simple definition. Entanglement hap-
pens when the state of one qubit directly relates to the state of another
qubit. In quantum chess, entanglement happens when a piece tries to move
directly through another piece in superposition [4]. E.g. when a pawn tries
to move two tiles as its first move, but a piece in superposition is blocking
its path.

In checkers you are never able to move through another piece like in chess,
so this is not an option. Therefore, we decided that in quantum checkers
entanglement happens when a classical piece tries to capture a piece in su-
perposition. To reduce complexity, a piece can not be entangled with a piece
that is already entangled. This does mean that the measurement rule for

18

checkers with superpositions need to be modified. Measurement no longer
always happen when trying to capture a piece, since there is the possibil-
ity for entanglement to happen. Instead, measurement happens in all the
scenario’s where entanglement does not happen. E.g. it does not happen
when you try to capture a piece in superposition with a classical piece, but
it does happen when you try to capture an entangled piece with a classical
piece.

In Section 4.2.2.1 the movement of checkers with entanglement will be for-
mally defined. Section 4.2.2.2 defines the capturing mechanics. Finally, Sec-
tion 4.2.2.3 defines when measurement happens for checkers with superposi-
tions and entanglement.

4.2.2.1 Movement

• An entangled piece is able to do a classical move or move itself into a
superposition.

4.2.2.2 Capturing

• If a classical piece tries to capture a piece that is in superposition, this
piece will become entangled with the piece that it was trying to capture.
This means that the captured piece remains on the board. See Figure
6.

• If a piece that is not in superposition/entangled tries to capture a
piece that is in superposition/entangled, a measurement happens on
the piece that it is trying to capture. If it turns out the piece that it is
trying to capture is actually there, the opponents piece will be taken.
If it is not there, nothing happens and your turn is wasted.

• If an entangled piece tries to capture a piece that is not in superpo-
sition/entangled, a measurement happens on the piece that is trying
to capture. If it turns out the piece that you are using to capture is
actually there, you will take the opponents piece. If it is not there,
nothing happens and your turn is wasted.

• If a piece that is in superposition/entangled tries to capture a piece that
is in superposition/entangled, a measurement happens on the piece that
is trying to capture. If the measurement reveals the piece that is trying

19

to capture is actually there, a measurement happens on the piece that
is being captured.

Figure 6: A black piece tries to take an opponents piece in superposition.
The black and red pieces become entangled as indicated by the blue line.

4.2.2.3 Measurement

If a piece needs to measured, it reverts back to a classical state. This means
that of all possible squares the piece can inhabit, only one will be true. This
can mean two things:

• For an entangled piece from the perspective of the piece that was being
captured, this can imply that it was initially captured. If it wasn’t
captured due to the piece never occupying that position, it indicates
it occupies another square. Subsequently, all other squares will be
emptied. In the event it was positioned on the square that was being
captured, the piece will be taken off the board and all other squares
will be emptied.

• For an entangled piece from the perspective of the piece that was trying
to capture, this can imply that it never captured the piece it was trying
to take. If that is the case, its state will collapse to a position where
the opponents piece was never taken. If it was successful in taking the
opponents piece, their piece will be removed from the board and the
piece that was trying to capture will collapse to a position where it was
successful in taking the opponents piece.

4.3 No double occupancy rule

Because a piece can exist in superposition, it implies that it is possible for
a square to be occupied by two different pieces at the same time. This
would make both the implementation of the game and the game itself more

20

complicated. Therefore the no double occupancy rule, which is also used in
quantum chess [4], is implemented. This rule states that a square cannot be
occupied by two different pieces at the same time.

4.4 Summary of all possible states and moves

When taking all these considerations, the followings moves are possible:

4.4.1 Possible states

There are three possible states for a piece to be in:

• Classical state: A piece that only occupies one square.

• Superposed state: A piece that occupies multiply squares. This state
collapses to a classical state when measured.

• Entangled state: A piece that occupies multiply squares. This piece
is entangled with an opponents piece and its position depends on the
position of the opponents piece. This state collapses to a classical state
when the piece itself is measured or the opponents piece is measured.

4.4.2 Possible moves

There are 4 possible moves a piece can do:

• Classic move: If the diagonal on which the piece can move is unoccu-
pied, it can move there.

• Split move: If both diagonals on which the piece can move are unoc-
cupied, it can move into a superposition on both diagonals, regardless
of whether the piece is already in superposition or entangled.

• Entangled move: If a classical piece attempts to capture a piece in
superposition, both pieces become entangled.

• Capture move: If a piece attempts to capture an opponent’s piece
and entanglement will not occur, a measurement is performed on both
pieces. This means both pieces return to a classical state. If the mea-
surement confirms the move is legal, the capture is carried out. If not,
no pieces move, but all measured pieces remain in their classical state.

21

4.5 Unitary

To develop quantum checkers, the python library Unitary [15] is used. This
library is an extension of Google’s Cirq library. It has been designed to
make quantum game development more accessible to developers with little
experience in quantum mechanics, like myself. Quantum chess has also been
made with unitary [4, 15].

22

5 Experimental setup and analysis

This section discusses the setup and the results for three different experi-
ments. The setup for the different experiments will be explained in Section
5.1.

The three different experiments will be discussed in the following sections:

First, the complexity of the game will be measured in Section 5.2. This
is done by letting two random agents play against each other on different
board sizes for each level of quantumness and comparing their performances.
Next, the performance of the MCTS agent will measured in Section 5.3.
This is achieved by letting the MCTS agent playing against random agent
and heuristic agent and evaluating its win rate. Lastly, in Section 5.4, a
TrueSkill rating will be calculated by letting the random agent, heuristic
agent and two types of agents based on MCTS play in a tournament.

The white player starts for all experiments.

5.1 Setup

All experiments will be performed on games of checkers with varying levels
of quantumness:

• Classical checkers: Normal checkers as explained in Section 4.1.

• Checkers with superpositions: The version of checkers where superpo-
sitions are added to the game as explained in Section 4.2.1.

• Checkers with entanglement: The version of checkers where entangle-
ment is added to the game as explained in Section 4.2.2.

There are four different agents that can be used in each experiment. They
will be explained here:

5.1.1 Random agent

The random agent is the easiest opponent to play against, as it always selects
a move randomly from all possible legal moves.

23

5.1.2 Heuristic agent

The heuristic agent employs a straightforward look-ahead strategy. For all
possible moves, it recursively evaluates the number of classical pieces on the
board. A classic piece is worth one point. A piece in superposition, therefore
occupying multiple squares, still counts as one piece. King pieces are worth
double. Opponent pieces are worth negative points. Using these scores it
selects the move with the highest score.

The heuristic agent used in the experiments will look two moves ahead. One
move by itself and one move by its opponent.

5.1.3 MCTS agents

The workings of the MCTS agent are explained in Section 3.1. For the
following experiments two types of MCTS agents will be utilised: The low
MCTS agent and the high MCTS agent. The terms low and high refer to the
different values for the rollout parameter. the low MCTS agent has a rollout
value of 200, while the high MCTS agent has a rollout value of 800. Both
agents have an exploration parameter c of

√
2.

5.2 Complexity

First, we measure the performance of two random agents on different board
sizes. Important to note is that for all board size, only the first row for each
player will be filled with pieces.

We look both at the average number of moves and the average time in seconds
it takes for a game to end. These results can be found in Figures 7 through
10. In Figures 7 and 8 the results are obtained for a normal game specified
by the rules in Section 4. In Figures 9 and 10 the draw condition for the
game is removed. This means that the game will only end once one of the two
players has no more legal moves. All averages have been calculated over a 100
games. These figures show that as board size increases, the average number
of moves also increase, until a certain point. When there is no draw involved,
the average number of moves and average time grow exponentially.

Following these results, the percentage of draws for different board sizes is
calculated. These can be found in Table 1. As can be seen, the bigger the

24

5x5 6x6 7x7 8x8 10x10 12x12 14x14
Board Size

0

20

40

60

80

Av
er
ag

e
nu

m
be

r o
f m

ov
es

Average number of moves for different board sizes
Classic checkers
Checkers with superpositions
Checkers with entanglement

Figure 7: Average number of
moves for a game of checkers for
two random agents playing against
each other for different board sizes.

5x5 6x6 7x7 8x8 10x10 12x12 14x14
Board Size

0.0

0.2

0.4

0.6

0.8

1.0

Av
er
ag

e
tim

e
(s
)

Average time per game different board sizes
Classic checkers
Checkers with superpositions
Checkers with entanglement

Figure 8: Average time in sec-
onds for a game of checkers with
two random agents playing against
each other for different board sizes.

board size, the higher the chance two random agents playing against each
other will result in a draw.

5x5 6x6 7x7 8x8 10x10 12x12 14x14

Classic checkers 0.1 1.7 9.2 20.3 52.1 73.4 96.9
Checkers with superpositions 1.8 8.6 27.3 38.0 69.9 92.7 99.7
Checkers with entanglement 2.2 9.4 25.4 43.1 69.9 94.1 99.7

Table 1: Percentage of draws for two random agents over 1000 games.

5.3 MCTS performance

In this section, the parameters for the MCTS agent are defined as follows: a
budget of 800, which means that the rollout value for the agent is 800 and a
c value of

√
2.

In Figure 11 the performance of the MCTS agent against a random agent
can be seen for a 5x5 board. The first thing we can see is that the black
agent slightly outperforms the white agent. From this we can conclude that
black has a slight advantage on the 5x5 board.

The second thing to notice is that the performance of the MCTS decreases
with a higher level of quantumness. For checkers with superpositions, the

25

5x5 6x6 7x7 8x8 10x10 12x12 14x14
Board Size

0

200

400

600

800

1000

Av
er
ag

e
nu

m
be

r o
f m

ov
es

Average number of moves for different board sizes
Classic checkers
Checkers with superpositions
Checkers with entanglement

Figure 9: Average number of
moves of a game of checkers for
two random agents playing against
each other for different board sizes
without being able to draw.

5x5 6x6 7x7 8x8 10x10 12x12 14x14
Board Size

0

20

40

60

80

100

120

Av
er

ag
e

tim
e

(s
)

Average time per game different board sizes
Classic checkers
Checkers with superpositions
Checkers with entanglement

Figure 10: Average time in second
a game of checkers for two random
agents playing against each other
for different board sizes without
being able to draw.

MCTS agent only manages to win 81 percent of the time. For checkers with
entanglement, the MCTS agent only wins 74 percent of the time. This can
also be concluded with Figure 7, which indicates a higher branching factor
when more quantumness is added to the game. The performance of MCTS
suffers with a higher branching factor.

In another experiment, the MCTS agent played against a random agent
on a standard 8x8 checkerboard, both as the black and white pieces. The
board was set up with the usual three rows of pieces for each side. The
larger board size substantially increases the number of possible moves for
the MCTS agent. Additionally, the simulation phase for the MCTS agent
continues until a player wins. Both of these factors mean these experiments
take significantly longer to run. As a result, only ten games were conducted
for each type of checkers (classic, superposition, and entanglement). Despite
the increased complexity, the MCTS agent managed to win all the games for
each type of checkers, even when playing as white.

This experiment was repeated for the MCTS agent against the heuristic
agent for a total of 10 games. For classical checkers, the MCTS agent man-
aged to win all games. For checkers with superpositions, the MCTS agent
managed to seven times and drawing three times. For entanglement, the
MCTS managed to win all games. It is worth noting that the MCTS agent

26

performed better on checkers with entanglement in comparison to checkers
with superpositions.

0

10

20

30

40

50

60

70

80

90

100

MCTS wins random wins MCTS wins random wins MCTS wins random wins

Classical Superpositions Entanglement

MCTS vs random random vs MCTS

Figure 11: Win rate as percentage of MCTS agent against random agent
both as the white and black player on a 5x5 board over a 100 games. The
legend should be read as white versus black.

5.4 TrueSkill

TrueSkill is a ranking system for competitive games developed by Microsoft
Research [10]. For this experiment, we will use four different agents and
compare their performances to each other using the TrueSkill rating system.
The four agents are:

• Random agent (Section 5.1.1)

• Heuristic agent (Section 5.1.2)

• Low MCTS agent: 200 rollouts (Section 5.1.3)

• High MCTS agent: 800 rollouts (Section 5.1.3)

27

Random Heuristic Low MCTS High MCTS
Agents

10

15

20

25

30

35

Tr
ue

Sk
ill

ra
tin

g

TrueSkill ratings for different agents in various checkers variants on a 5x5 checkerboard

Classic
Superpositions
Entanglement

Figure 12: TrueSkill rating for 150 games per agent over a total of 300
matches on a 5x5 checkerboard with one row of pieces.

A players skill is represented as a Gaussian distribution, using two param-
eters. µ represent the average skill of a player, σ is the confidence of the
guessed rating. Each agent will start with the default TrueSkill rating which
is a skill level µ of 25 and a confidence rating σ of 8.333. The skill level will
be adjusted when a player wins or loses a game. For each game played the
confidence rating will go down. A lower confidence rating means that the
rating is more accurate.

5.4.1 Results 5x5

The TrueSkill ratings after a tournament on the 5x5 board for each type of
checkers (classic checkers, checkers with superpositions, checkers with entan-
glement) can be seen in Figure 12.

On the 5x5 board, the random agent performs the worst and has therefore
the lowest rating across all types of checkers. The rating of the random agent
increases as more quantumness is added to the game. The heuristic agent
already performs significantly better as the random agent. This is to be
expected, as the agent tries to maximise the number of pieces it has. Both
MCTS agents outperform the random and heuristic agent, with the high
MCTS agent performing the best.

28

Random Heuristic Low MCTS High MCTS
Agents

10

15

20

25

30

35

Tr
ue

Sk
ill

ra
tin

g

TrueSkill ratings for different agents in various checkers variants on a normal 8x8 checkerboard

Classic
Superpositions
Entanglement

Figure 13: TrueSkill rating for 60 games per agent over a total of 120 matches
on a standard 8x8 checkerboard.

When comparing the final ratings to the default ratings the agents started
with, both the random and heuristic agent ended up losing some points, while
the MCTS agent increased their rating.

When comparing the MCTS agent, their best performance is in classical
checkers. Their rating gradually decreases as the quantumness increases.
This is caused by the higher branching factor, which was indicated by Figure
7.

For classical checkers, the high MCTS agent outperforms the low MCTS
agent. For checkers with superpositions, both agents demonstrate similar
performance levels. In checkers featuring entanglement, the low MCTS agent
slightly outperforms the high MCTS agent.

5.4.2 Results 8x8

The TrueSkill ratings after a tournament on the standard checkerboard (three
starting rows of pieces) for each type of checkers (classic checkers, check-
ers with superpositions, checkers with entanglement) can be seen in Figure
13.

The standard deviation for each entry in the figure is notably higher. Because

29

the game tree for an 8x8 board is remarkably bigger, the number of games
to get a rating had to be decreased. This results in lower confidence for each
rating.

Nonetheless, we can still see the same linear trend where the random agent
performs the worst, and the high MCTS agent performs the best. Interesting
to see here is that the high MCTS agent has a significantly better rating on
the 8x8 board in comparison to the 5x5 board, even when taking the standard
deviation in account.

Another interesting thing to note is that the trend for the ratings for both
MCTS bots differs on the 5x5 board. For the 5x5 board the rating decreases
the more quantumness is added to the game. However, on the 8x8 board the
agents seems to perform better with the introduction of entanglement. As
to why this is will be discussed in next section, Section 6.

30

6 Discussion

6.1 Complexity

The first thing to notice in Figures 7 and 8 is that the average number of
moves and average time increase when superpositions are introduced. This
is to be expected, considering introducing superpositions adds a probabilistic
nature to the game.

An interesting observation that can be made is that the average time and
number of moves for checkers with entanglement is lower, especially when the
game doesn’t draw, than that for checkers with superpositions. Apparently
introducing entanglement to the game also introduce mechanics to the game
that allow it to end quicker.

For big enough board sizes, the average number of moves and average time
decreases again. This is caused by the fact that on board sizes this big, a
draw happens much quicker.

When the draw rule is removed, the number of moves and time per game
grows exponentially. (Figures 9, 10). This it to be expected, since the board
size also grow exponentially.

Following these results, the percentage of draws for different board sizes is
calculated. These can be found in Table 1. As expected, the bigger the board
size and the more quantumness added to the game, the more games end in
a draw.

From this we can conclude that the complexity of the game of checkers in-
creases by introducing more quantumness to game.

6.2 MCTS performance

As depicted in Figure 5.3 the performance of the MCTS agent decreases on
the 5x5 board with increasing levels of quantumness. This decline in perfor-
mance can be attributed to both the higher complexity, and the increased
level of randomness when the quantumness is increased.

Some smaller experiments were executed on the 8x8 board. In the experi-
ments where the MCTS agent played against the random agent the MCTS
agent was able to win all games. In the experiments where the MCTS agent

31

played against the heuristic agent, the MCTS agents was able to win all
games, except for checkers with superpositions. There the heuristic agent
managed to draw three times. The sample size is insufficiently small to draw
any conclusions, but it is still interesting to note that the MCTS agent per-
formed better on checkers with entanglement in comparison to checkers with
superpositions.

6.3 TrueSkill

6.3.1 5x5 board

As expected, the rating for the random agent is the lowest for all types of
checkers. It is worth mentioning that the random agent performs signifi-
cantly better when superposition and entanglement are introduced to the
game. The random agent does not suffer from the increased complexity
when introducing quantum mechanics to the game, since there is no strat-
egy involved in choosing its moves. If the agent loses less games due to the
increased complexity, and consequently draws/wins more games, its rating
will remain higher.

As anticipated, the heuristic agent performs better than the random agent,
and the MCTS agents perform better than both of them. Also, the per-
formance of the MCTS degrades as the quantumness of the game increases.
This is to be expected, as previous experiments showed introducing more
quantumness increases the complexity of the game.

6.4 8x8 board

The most interesting observation from these results is that the MCTS agents
perform better when entanglement is introduced in comparison to when only
superposition is introduced. This is in contradiction with the results on the
5x5 board. Previously, in Figure 9, we have seen that the average number
of moves for a game of two random agents is also lower for checkers with
entanglement than for checkers with superpositions. There are two possible
explanations for this.

The first one is that introducing entanglement to the game allows for a strat-
egy to emerge. This strategy would not be possible on the 5x5 board, since
it is too small and games end to quickly. Both the low and high MCTS

32

agents perform better when entanglement is introduced, so it would seem
both agents were able exploit this strategy.

Another possibility is that to prevent losing, agents will keep repeating su-
perposition moves to reduce the possibility of their pieces being captured,
and as a logical consequence the games will last longer. However, this strat-
egy should also be feasible to a certain extent in checkers with entangle-
ment.

An analysis of the gameplay itself will need to be done to determine if it is
true that the agent is able to exploit a new strategy.

33

7 Conclusion

The first research question: How to quantize the game of checkers? directly
relates to the implementation of the game itself.

In this thesis we presented the first quantized version of checkers. This im-
plementation is successful in introducing several concepts of quantum com-
puting. The execution of superpositions and measurement into checkers are
straightforward and easy to grasp. However, implementing entanglement was
significantly more difficult, as the concept itself is already more difficult to
grasp. Nonetheless, the current version successfully introduces entanglement
in an accessible manner.

The most difficult part was not the implementation of the game itself, but the
implementation of Monte Carlo Tree Search. By introducing more quantum-
ness, probabilities are introduced to the game. The original implementation
of MCTS [12] does not work with probabilities, and therefore some modifi-
cations had to be done to the algorithm. The experiments show that these
modifications were successful, since the MCTS agent was able to outperform
the heuristics agent.

The second research question What new strategies emerge from the quantum
version of the game compared to the classical version? asks if new strategies
emerge when introducing quantumness to the game. The experiments show
that this is the case. On the 5x5 board, there was a 100 percent chance for the
black player to never lose. However, with the introduction of superpositions
and entanglement, the white player is able to win. This already demonstrates
that new strategies allow the player to win, if they use quantum moves to
their advantage.

Also, the improvement of the performance of the MCTS agent for checkers
with entanglement in relation to checkers with superpositions shows that the
agent was able to use a new strategy that was not yet possible in checkers
with superpositions.

7.1 Future work

In this implementation of quantum checkers we introduce the concepts of
superpositions, entanglement and measurement. In quantum chess they

34

also implement interference [4]. They claim that interference allows for new
strategies to emerge in their game, by deliberately causing constructive and
destructive interference. It would be interesting to see how interference could
best be represented in the game of quantum checkers.

The experiments showed that a new strategy emerged when introducing en-
tanglement. However, the analysis only showed that this strategy emerged,
and not what the strategy is. It would be interesting to see what strategy
the MCTS agent was able to take advantage of.

The current implementation of MCTS plays entire games in the simulation
phase of a iteration of MCTS instead of having a budget cut-off (e.g. time).
This causes the run-time of the algorithm to be unnecessarily long. Especially
at the beginning of a game, such extensive simulations are not necessary and
waste resources. A heuristic would need to be implemented that can be used
to evaluate the board when the algorithm reaches a certain threshold. E.g.
when the simulation has been running for a specified maximum duration or
when a maximum number of moves has been reached.

35

References

[1] Selim G Akl. On the importance of being quantum. Parallel processing
letters, 20(03):275–286, 2010.

[2] Selim G Akl. The quantum chess story. Int. J. Unconv. Comput., 12(2-
3):207–219, 2016.

[3] Kyle Burke, Matthew Ferland, and Shang-Hua Teng. Quantum com-
binatorial games: Structures and computational complexity. arXiv
preprint arXiv:2011.03704, 2020.

[4] Christoph M. Cantwell. Quantum chess: Developing a mathematical
framework and design methodology for creating quantum games. arXiv:
Quantum Physics, 2019.

[5] LK Chen, Huiling Ang, D Kiang, LC Kwek, and CF Lo. Quantum
prisoner dilemma under decoherence. Physics Letters A, 316(5):317–
323, 2003.

[6] Paul Dorbec and Mehdi Mhalla. Toward quantum combinatorial games.
arXiv preprint arXiv:1701.02193, 2017.

[7] International Draughts Federation. Rules of the game - IDF — In-
ternational Draughts Federation — idf64.org. https://idf64.org/

rules-of-the-game/. [Accessed 08-04-2024].

[8] Allan Goff. Quantum tic-tac-toe: A teaching metaphor for superposition
in quantum mechanics. American Journal of Physics, 74(11):962–973,
2006.

[9] Michal Gordon and Goren Gordon. Quantum computer games: quan-
tum minesweeper. Physics Education, 45(4):372, 2010.

[10] Ralf Herbrich, Tom Minka, and Thore Graepel. Trueskill™: a bayesian
skill rating system. Advances in neural information processing systems,
19, 2006.

[11] Steven James, George Konidaris, and Benjamin Rosman. An analysis
of monte carlo tree search. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 31, 2017.

36

https://idf64.org/rules-of-the-game/
https://idf64.org/rules-of-the-game/

[12] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo plan-
ning. In European conference on machine learning, pages 282–293.
Springer, 2006.

[13] Richard E Mayer. Computer games in education. Annual review of
psychology, 70:531–549, 2019.

[14] Michael A. Nielsen and Isaac L. Chuang. Quantum computation and
quantum information. Cambridge University Press, Cambridge ; New
York, 10th anniversary ed edition, 2010.

[15] quantum chess engineering group at google. Unitary. https://github.
com/quantumlib/unitary. [Accessed 08-04-2024].

[16] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou,
Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. nature, 529(7587):484–489,
2016.

[17] Maciej Świechowski, Konrad Godlewski, Bartosz Sawicki, and Jacek
Mańdziuk. Monte carlo tree search: A review of recent modifications
and applications. Artificial Intelligence Review, 56(3):2497–2562, 2023.

[18] Luuk van den Nouweland. Quantum checkers. Source code
availible at https://github.com/LuukvandenNouweland/quantum_

checkers. [Accessed 08-04-2024].

[19] Evert van Nieuwenburg. Quantum tiq taq toe. https://

quantumtictactoe.com/play/, 2019. [Accessed 08-04-2024].

37

https://github.com/quantumlib/unitary
https://github.com/quantumlib/unitary
https://github.com/LuukvandenNouweland/quantum_checkers
https://github.com/LuukvandenNouweland/quantum_checkers
https://quantumtictactoe.com/play/
https://quantumtictactoe.com/play/

	Introduction
	Thesis structure

	Fundamentals of quantum computing
	Quantum bits
	Superpositions
	Measurement
	Entanglement

	Related Work
	Monte Carlo Tree Search
	Selection
	Expansion
	Simulation
	Backpropagation
	Summary

	Design & Implementation
	Original rule-set: classic checkers
	Setup
	Movement
	Capturing
	Results

	Quantum rule-set
	Checkers with superpositions
	Checkers with entanglement

	No double occupancy rule
	Summary of all possible states and moves
	Possible states
	Possible moves

	Unitary

	Experimental setup and analysis
	Setup
	Random agent
	Heuristic agent
	MCTS agents

	Complexity
	MCTS performance
	TrueSkill
	Results 5x5
	Results 8x8

	Discussion
	Complexity
	MCTS performance
	TrueSkill
	5x5 board

	8x8 board

	Conclusion
	Future work

