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1 Introduction

The success of deep learning is undeniable. Recent developments in commercially available AI show
that if suitable training data is abundant, deep learning systems with impressive capabilities are
possible. Especially in computer vision, better performance is expected as the amount of data in-
creases [1]. Unfortunately, many domains and contexts exist where data and resources are scarce,
and similar impressive machine-learning results cannot be achieved from scratch.

This problem has inspired computer scientists to search for ways to employ other, auxiliary data
when data on the target task itself is sparse. Two active research fields that apply this idea from dif-
ferent perspectives are deep metalearning and deep transfer learning. The field of deep metalearning
uses auxiliary data to create deep learning systems that can adapt quickly to different tasks [2]. These
systems then require less data to adapt to the target tasks. In contrast, the field of deep transfer
learning focuses on reusing previously acquired knowledge for a new task rather than creating systems
that can quickly adapt to new tasks. In practice, this commonly involves using the auxiliary data to
pre-train large deep learning models (or foundation models) and subsequently adapting these systems
to new input data, e.g. by fine-tuning the parameters of a pre-trained model [3].

Although deep metalearning has brought forth many successful methods to train efficiently adaptable
deep learning systems, its success has yet to go beyond experimental contexts. We believe a reason
for this restraint is the unknown a priori meaning of related data in the context of machine learning.
In other words: it is unclear what properties make a potential auxiliary dataset related to the target
dataset so that the metalearning method is successful. This is especially a problem for real-world
scenarios, where self-collected data is unlikely to resemble research datasets. Furthermore, we believe
that research datasets might be more related than expected, which can make methods seem more
successful than they are. For example, an N -way k-shot classification experiment within MiniIma-
geNet might result in biased outcomes, as the examples and classes within this dataset could be more
related than expected. This moves us to investigate how different datasets relate to each other in a
deep learning context, and to challenge intuitions that are based on the conceptual relatedness found
within (scientific) datasets and dataset domains.

A similar problem is found in the field of deep transfer learning. As more fully trained neural
models are publicly released, model hubs or model zoos offer an ever-growing collection of resources
that can be used to transfer to a different task [4, 5]. This can for example be achieved by fine-tuning
pre-trained models, where only a small part of the model parameters is adjusted to new data, which
is found to be an effective method for alleviating the training data requirement [6, 7]. However, a
successful selection strategy to equip the optimal pre-trained model for a target task does not exist
yet. Since deep learning methods often require computationally expensive operations before they can
be evaluated (e.g. training via backpropagation), it is unrealistic to search exhaustively for the best
match. This motivates us to develop a data-centric method to select the right auxiliary data for a
deep metalearning or deep transfer learning problem.

Since the field of deep metalearning currently primarily focuses on computer vision problems, the
scope of this work is also limited to this problem domain. For our experiments, we employ the
recently published Meta-Album [8], which currently bundles 30 image datasets from 10 different
domains (such as plants and remote-sensing). The diversity of Meta-Album allows us to test how
meta-train and meta-test datasets relate to each other in a deep learning context for three differ-
ent dataset relationships. same-source (where the meta-train and meta-test dataset originate from
the same source), same-domain (where the meta-train and meta-test dataset belong to the same
domain but do not have the same source), and cross-domain (where the meta-train and meta-test
dataset belong to different domains). We use the different datasets of Meta-Album to record how well
different pre-trained models can be fine-tuned to tasks from various datasets and domains. Then, we
train meta-models to predict this performance for a given pre-trained model and task combination,
using primarily basic pixel-based statistics of the datasets. Using this method, we try to answer the
following research questions.
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1. Can we expect pre-trained models to transfer well to tasks from the same source dataset via
fine-tuning?

2. Do pre-trained models transfer better within their domain than cross-domain?

3. Given an image classification task and a collection of pre-trained classification models, can we
select the best pre-trained model using pixel-based meta-features of the source datasets of the
model and task?

We use the following structure to present our work. We start by providing all related background
in Section 2. This includes the principles of supervised deep machine learning, deep metalearning,
deep transfer learning, and automated algorithm selection. We continue with an overview of related,
recent work in Section 3. Then, we explain our proposed methods and how we implemented them
in Section 4. The setup and results of our experiments are divided over Section 5, corresponding
to research questions 1 and 2, and Section 6, corresponding to research question 3. We conclude
this work by reviewing the research questions in the context of the obtained results in Section 7 and
provide suggestions for future work based on our observations.
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2 Background

This section gives an overview and clarification of the concepts that form the foundation of this
research. First, the principles and challenges of deep machine learning are discussed. Then, we
introduce two research fields, deep metalearning and deep transfer learning, that aspire to solve some
of these challenges. We continue with an outline of the field of automated algorithm selection. Finally,
we provide some more practical background information on the data that we used for our experiments,
and on specific methods and concepts that play a role in our work, like residual neural networks and
box plots.

2.1 Supervised deep machine learning

Machine learning is a subfield of artificial intelligence that brings forth systems that can learn from
data to solve problems without the need for explicit instructions on how to solve the task. In super-
vised machine learning, this is achieved by providing the system with examples of the problem and
their corresponding solutions, and subsequently allowing the model to learn from these examples.
In more formal terms, a supervised machine learning system is given the task of finding a function
f : X → Y that maps values in some input space X to the right values in some output space Y . For
example, finding a function that maps any vector input x to its Euclidean norm y.

Machine learning systems that apply this principle come in various forms and sizes. A rapidly
growing and successful subfield of machine learning is deep learning [9]. Deep learning systems aim
to model f with multi-layered or deep neural networks that represent a parameterized function fθ.
How a neural network transforms a given input is determined by its parameters θ. Given a dataset
D containing m pairs of complementary inputs and outputs (xi, yi)

m
i=1, the goal is to find optimal

parameters θ∗ that satisfy

θ∗ := argmin
θ

LD(θ) (1)

Where LD is an empirical loss function that measures how well the function outputs correspond to
the intended outputs from dataset D.

The search space increases rapidly with the number of parameters in θ. Finding the globally op-
timal parameters for deep neural networks that embody a large number of parameters is therefore
infeasible. However, it is possible to iteratively approximate locally optimal parameters. This is
achieved by applying gradient descent with respect to the loss function, also known as training, al-
lowing adjustment of the parameters along the steepest descent of the loss function. Gradient descent
is applied iteratively, where each iteration takes the following form

θ(t+1) = θ(t) − α∇θ(t)LD(θ(t)) (2)

Where ∇θ(t) is the gradient with respect to θ(t), t the iteration number and α a constant that deter-
mines how pronounced the updates of the parameters are, also known as the learning rate. Determin-
ing how many gradient steps are needed to arrive at a good parameter configuration is a research field
on its own [10]. In this research, we use a fixed number of iterations to train our deep neural networks.

There are many variations on gradient descent as described above. A commonly used form of gradient
descent is stochastic gradient descent (SGD). In stochastic gradient descent, the parameters of the
neural network are updated for every batch of the training dataset (a fixed-sized sub-collection of the
training dataset), instead of per epoch (a full run over all the training data). The size of the batches
in SGD forms an additional hyper-parameter. An added benefit of using SGD with a relatively small
batch size is a faster convergence rate [11]. In this work, we use exclusively SGD with a batch size of
16, replicating the settings that were used in the work of Ullah et al. [8].

Another common addition to gradient descent is the usage of momentum [12]. Momentum can
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be implemented in different ways. In our implementation, the formula for gradient descent with
momentum becomes as follows

v(t+1) = µv(t) +∇θ(t)LD(θ(t)) (3)

θ(t+1) = θ(t) − αv(t+1) (4)

Where µ is the momentum coefficient, which is another hyper-parameter. The main intuition behind
momentum in gradient descent is to allow the gradient descent to pick up speed when the gradient
repeatedly points into the same direction, which helps to reach local minima with fewer iterations.
Using momentum is therefore found to often improve the convergence of neural networks. It is for
this reason that we use SGD with momentum for our experiments, with a momentum coefficient of
0.9 (again, replicating the settings that were used in the work of Ullah et al. [8]).

After a deep learning system has been trained, the desired outcome is that the system general-
izes. This means that the system also performs well on problem examples beyond the examples that
the system was allowed to learn from. A common problem in supervised machine learning that makes
this goal difficult to achieve is overfitting [13]. This happens when a system learns to model the pro-
vided problem examples and their solutions instead of a general method to solve them. An example
would be memorizing multiplication tables instead of learning how to perform multiplication. If a
multiplication problem is presented that was not included in the tables, you will not be able to solve
it. Similarly, overfitted systems cannot solve problem instances beyond the problem instances that
they were allowed to learn from.

Overfitting can happen for different reasons. However, in general, it is caused by models that provide
more complexity than what is needed to solve the problem. In the case of deep neural networks, we
often have limited control over the complexity of the resulting model besides the choice of architec-
ture. Therefore, it is key to provide enough diverse training data to fully employ the complexity a
deep neural network can provide to prevent overfitting. From this follows that more complex neu-
ral network architectures generally require more training data to be properly trained, and it is for
this reason that deep machine learning systems often require vast amounts of data to achieve good
results. Besides providing enough training data, applying other methods to limit the risk of over-
fitting is known as regularization [14]. Examples of regularization in deep learning are dropout [15]
(temporarily disabling a subset of the network connections to prevent co-adaptations of neurons,
or neurons fixing the problems that other neurons create), early-stopping (stopping gradient descent
at the right moment to prevent the model from learning specific features of the training data) and
weight-decay (preventing weights in a neural network to become too large) [16].

2.2 Deep metalearning

As described in the previous section, deep learning is facilitated by gradient descent, which allows us
to tune the parameters of deep learning systems so that they generate the desired output. However,
iteratively approximating good parameters, or learning, is expensive. It requires extensive training
data and many iterations to train a deep learning system properly. Even when these conditions
are met, deep learning systems are not guaranteed to yield the desired results, for example, due to
suboptimal parameter initialization [17] or overfitting (see the previous section). Therefore, methods
that optimize the deep learning process and require less data to train a good deep learning model are
in high demand.

One field of research that aims to optimize the deep learning process is metalearning. The lit-
eral meaning of metalearning is beyond learning. In practice, this means analyzing and evaluating
how machine learning systems learn and subsequently learning to optimize the learning process from
this prior learning experience. This effectively allows the employment of other (auxiliary) data to
optimize the learning process on tasks for which there is little training data.

This general description holds for most metalearning methods. However, the term metalearning
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is used in various scopes, which can lead to confusion. In this research, we distinguish two forms of
metalearning: traditional metalearning, which is used in the context of algorithm selection and hyper-
parameter optimization, and deep metalearning, which focuses on the optimization of the learning
process of deep learning methods. In this section, we discuss the principles of deep metalearning.

Deep metalearning aims to minimize the amount of target data needed by deep learning systems,
by producing adaptable deep learning systems. A deep learning system is considered to be adaptable
when it can learn an unseen task quickly with limited associated training data [2]. In other words,
the metalearning objective is for the system to learn how to learn. This can also be stated more
formally. We define gω as a deep metalearning method that we apply to create an adaptable system.
How we apply gω depends on ω, which we define as meta-knowledge. Meta-knowledge can come in
many forms, like trainable parameters, distance measures, and initialization algorithms. If we apply
our method gω to a distribution of tasks T , we can formulate the metalearning objective as follows [2]

ω∗ := argmin
ω

ETj∼T [LTj
(gω(Tj ,LTj

))] (5)

We can dissect the metalearning objective in two parts. The first part is stated between the square
brackets and is known as the inner learning level. In this part of the equation, we apply our
metalearning method g on task Tj using previously acquired meta-knowledge ω. After our metalearn-
ing method has been applied, we evaluate how well the system has learned task Tj by computing
the loss with respect to the task symbolized by LTj . The rest of the equation is known as the outer
learning level and states that we want to find meta-knowledge ω that minimizes the probable loss
after applying metalearning method g on any task from our task distribution T .

The field of deep metalearning has brought forth various successful methods that find and apply
meta-knowledge to create deep learning systems that can adapt quickly to new tasks. They can be
roughly divided into three classes

• Metric-based. Metalearning methods from this class aim to find feature spaces that are
useful for a range of tasks. Examples of metric-based metalearning methods are prototypical
networks [18], Siamese networks [19] and matching networks [20].

• Model-based. Metalearning methods from this class learn to (partially) adapt the deep learn-
ing model to a presented task. Examples are memory augmented neural networks (MANNs) [21]
and Meta Networks [22].

• Optimization-based. Metalearning methods from this class regard metalearning as a bi-level
optimization problem. The first optimization level is a model learning a given task. The second
optimization level is identified as the tuning of ω to provide maximum adaptation abilities
in the first optimization level. Examples of optimization-based metalearning techniques are
model-agnostic metalearning (MAML) [23] and long short-term memory metalearning (LSTM
metalearner) [24].

2.3 Evaluation of deep metalearning systems

Since the goal of deep metalearning systems is to adapt to unseen tasks quickly, they are often
evaluated in few-shot learning settings. This means that the system is only given very few training
examples (shots) to learn a new task. Currently, deep metalearning methods are mostly applied
to image classification tasks. In these contexts, few-shot learning translates to N -way (number of
classes) k-shot classification with low values for k. An illustration of N -way k-shot classification can
be found in Figure 1.
The three main forms of few-shot learning for classification problems can be identified as follows.

• Zero-shot learning. This means that the learning system is provided with no training ex-
amples to learn a new task [26, 27]. In computer vision, methods that solve zero-shot learning
problems often rely on pre-trained representations and use distance measures to distinguish the
representations of different classes.
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Figure 1: N -way k-shot learning with N = 5 and k = 1. The support set of each meta-train or meta-test
dataset consists of 5 classes with only 1 example. The query set of each meta-train or meta-test set includes
different examples of the classes that were present in the support set. This image was adapted from Ravi and
Larochelle [25].

• One-shot learning. Here, the learning system is provided with a single example per class.
Examples of applied one-shot learning can be found in the works of Vinyals et al. [20] and Fei-Fei
et al. [28].

• Multi-shot learning. This describes all contexts where the learning system is provided with
more than one example per class. There is no exact boundary where multi-shot learning can
no longer be considered few-shot learning. However, for proper evaluation of deep metalearning
methods, the number of training examples should be much smaller than the number of examples
that are required to train a model from scratch.

In addition to few-shot learning, deep metalearning systems can also be evaluated in their ability
to adapt to tasks that are less related to the training data. In this research, we distinguish three
different data relationships (as also stated in the introduction in Section 1).

• same-source. In this category, both the training and evaluation tasks originate from the
same source dataset. Experiments within this category are the easiest to set up compared to
the other categories, as they only require a single dataset with a large number of classes (e.g.
miniImageNet [20]). However, these experiments fail to resemble real-world scenarios, where
the target task is unlikely to originate from the same source as the auxiliary data. An example
of this setup can be found in [23].

• same-domain. In this category, the training and evaluation tasks originate from different
datasets that are considered to belong to the same domain. There is no exact definition of what
a domain is. Examples of domains in image classification are Optical Character Recognition [29],
Microscopy [30] and Remote Sensing [31].

• cross-domain. In this category, the training and evaluation tasks originate from different
datasets that do not belong to the same domain. This is considered the most challenging cate-
gory, as training and evaluation data are unlikely to be related. Examples of deep metalearning
in few-shot cross-domain settings can be found in [32, 33].

2.4 Deep transfer learning and fine-tuning

Another field that investigates the adaptability of machine learning models is the field of transfer
learning. The main idea of transfer learning is to transfer knowledge from one machine learning task
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to help solve another machine learning task more efficiently [3]. In deep transfer learning, we apply
this idea to deep machine learning systems. In this regard, deep transfer learning shares many simi-
larities to deep metalearning, where previously obtained knowledge is also used to help solve a new
task via deep learning. However, a key distinction is that deep transfer learning assumes previously
acquired knowledge and focuses on the transfer of this knowledge, whereas deep metalearning focuses
on the acquisition and application of knowledge that leads to adaptability.

Examples of deep transfer learning are reusing feature representations [34, 35, 36], sharing, com-
bining, or exchanging parameters between models [37, 38], and (partially) fine-tuning previously
trained neural networks to solve new tasks [39, 40].

A basic form of deep transfer learning is fine-tuning, which involves making small and partial adjust-
ments to the parameters of a pre-trained deep machine-learning model to adapt it to a new target
task. The method is based on the expectation that if the pre-training data and target-task data can
be described by similar features, the optimal parameters of the pre-trained model are close to the
optimal parameters for the target-task data. In other words: the features that are encoded by the
different layers of the pre-trained model are expected to be informative for the new task. In practice,
fine-tuning means freezing most layers (or features) of the pre-trained model from input to output,
except for the last layer(s). The partially frozen pre-trained network is then trained on the new data,
only applying gradient descent for the non-frozen layers. Because most model parameters are fixed,
much fewer gradient descent update steps are needed for the model to converge and the gradient is
easier to compute. This makes fine-tuning less computationally expensive than regular training and
lowers the amount of data needed to train the model for the given task. However, good results can
only be expected if enough parameters can be shared between the pre-training and target-task data.

2.5 Residual neural networks (ResNets)

Deeper neural networks yield better performance on image classification tasks [9, 41]. However, deeper
networks are much harder to optimize compared to their shallower counterparts. The sub-optimal
convergence of deeper neural networks is known as the degradation problem. To solve this problem,
He et al. [42] introduce a residual learning framework: Instead of a series or block of neural network
layers representing a function h(x), with x the input vector, they are trained to represent the residual
function h(x)−x. This is achieved by adding the original input to the layer block output, or f(x)+x.
A residual neural network consists of a series of these residual blocks. Each block contains 2 or more
neural layers and represents the function y = fθ(x) + x, with θ the parameters of the considered
layers. Chaining many of these residual blocks allows for the creation of very deep neural networks
while mitigating the effect of the degradation problem. It is for this reason residual neural networks
or ResNets have become a conventional framework for the creation of deep neural networks. In this
research, a ResNet consisting featuring 18 convolutional layers (or short ResNet18) is used for the
models, where every pair of two layers features a residual connection.

2.6 Automated algorithm selection and meta-models

If we regard a collection of pre-trained models as a set of algorithms that can solve tasks, we can
rephrase the problem that we described in the introduction as follows: given a set of algorithms
that solve a type of problem, which algorithm should be chosen for a specific problem instance or
task? The field of automated algorithm selection investigates methods to resolve this question. More
formally, given a set of tasks T = {T1, ... Tk} of problem type P , a set of applicable algorithms
A = {A1, ... An}, and a metric m that measures how well an algorithm A ∈ A performs on a task
T ∈ T, the goal is to find a selection strategy S that maximizes the overall performance on T by
applying the right algorithm to the individual tasks [43].

The selection strategy S is always based on previously acquired data on the performance of the
available algorithms on different tasks of type P . Depending on certain characteristics of task T , a
given algorithm A might perform well or poorly on T . In automated algorithm selection, we search
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for computable characteristics or features that best predict the performance of an algorithm from set
A on a task from T. If these features are found, a selection strategy can determine which algorithm
should be chosen for a previously unseen task based on its features. Ideally, the features should be
easy to compute and provide a computational advantage over iteratively finding the best algorithm
for a task. Additionally, the features should be computable and informative for a large variety of
tasks. Which features are informative enough to guide a selection strategy depends on the problem
type and the considered algorithms.

An important part of creating a successful selection system is then to find the right features for
the right problems. For example, these works investigate feature sets for the propositional satisfiabil-
ity problem (SAT) [44, 45, 46]. Similarly, feature sets for other problem types are investigated, like the
traveling salesman problem (TSP) [47] and constant satisfaction problems (CSP) [48]. In this work, we
make a first attempt to find features that can predict dataset compatibility in a metalearning context.

An algorithm selection strategy can come in different forms. In this research, we train a random
forest regressor to act as an algorithm selector. Random forest regression is an ensemble learning
strategy for solving regression problems. It involves creating a collection of regression trees and taking
the mean of their outputs to form a final prediction. In our application, the final prediction resembles
the expected performance of an algorithm-task pair. During the formation of the regression trees,
bootstrap aggregating or bagging is applied, meaning that the trees are trained on different random
subsets of the training data. Similarly, the features that a regression tree can consider for its next
data split is also a random subset of the total features, also known as feature bagging. The synergy
of ensembling, bagging, and feature bagging reduces the risk of overfitting the model to the training
data.

2.7 Data

We use Meta-Album as the main data source for our experiments. Meta-Album is a collection of
image classification datasets designed for metalearning research [8]. The current version of Meta-
Album features 30 datasets from 10 different domains, with each domain contributing 3 datasets to
the total. An overview of all domains and corresponding datasets can be seen in Table 1. The diverse
and extensive set of domains that Meta-Album offers makes it a suitable choice for experiments in
cross-domain settings. It is for this reason that Meta-Album was chosen to form the heart of this
research.

Each dataset of Meta-Album is available in four different versions.

• Original data. This version features the dataset as it was originally published. The resolution
and processing of images differ between datasets. See Table 1 for references to the sources of
the original data.

• Extended. In the extended version, all images have been up- or down-scaled to a resolution
of 128x128 using various processing steps, depending on the original data. All classes of the
dataset have at least 40 examples. The number of classes per dataset is at least 20 and differs
between different datasets.

• Mini. The mini version is the same as the extended version, with the exception that it is
class-balanced. Each class now has exactly 40 examples. The number of classes is still at least
20 and differs between datasets.

• Micro. The micro version is the same as the mini version, but now every dataset features
exactly 20 classes.

In this work, we exclusively use the mini version of the Meta-Album datasets, to ensure class-balance
in our experiments.

The creators of Meta-Album have carefully processed all images to remove potential biases between
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Domain Name Dataset Name Dataset ID #Classes #Images Source

Birds BRD 315 12600 Birds 400 [49]

Large Animals Dogs DOG 120 4800 Stanford Dogs [50]

Animals with Attributes AWA 50 2000 AWA [51]

Plankton PLK 86 3440 WHOI [52]

Small Animals Insects 2 INS 2 102 4080 Pest Insects [53]

Insects INS 104 4120 SPIPOLL [54]

Flowers FLW 102 4080 Flowers [55]

Plants PlantNet PLT NET 25 1000 PlantNet [56]

Fungi FNG 25 1000 Danish Fungi [57]

PlantVillage PLT VIL 38 1520 PlantVillage [58]

Plant Diseases Medicinal Leaf MED LF 25 1000 Medicinal Leaf [59]

PlantDoc PLT DOC 27 1080 Plant Doc [60]

Bacteria BCT 33 1320 DiBas [30]

Microscopy PanNuke PNU 19 760 PanNuke [61, 62]

Subcel. Human Protein PRT 21 840 Protein Atlas [63]

RESICS RESISC 45 1800 RESICS45 [31]

Remote Sensing RSICB RSICB 45 1800 RSICB 128 [64]

RSD RSD 38 1520 RSD46 [65, 66]

Cars CRS 196 7840 Cars [67]

Vehicles Airplanes APL 21 840 Multi-type Aircraft [68]

Boats BTS 26 1040 MARVEL [69]

Textures TEX 64 2560 KTH-TIPS Kylberg UIUC [70, 71, 72, 73]

Manufacturing Textures DTD TEX DTD 47 1880 Texture DTD [74]

Textures ALOT TEX ALOT 250 10000 Texture ALOT [75]

100 Sports SPT 73 2920 100 Sports [76]

Human Actions Stanford 40 Actions ACT 40 39 1560 Stanford 40 Actions [77]

MPII Human Pose ACT 410 29 1160 MPII Human Pose [78]

OmniPrint-MD-mix MD MIX 706 28240

Optical Char. Recog. OmniPrint-MD-5-bis MD 5 BIS 706 28240 OmniPrint [29]

OmniPrint-MD-6 MD 6 703 28120

Table 1: An overview of all featured datasets of Meta-Album with their corresponding domains.

the different datasets. This includes up- or down-scaling all images to a resolution of 128x128. The
processing steps were adapted to the different datasets to reduce artifacts and to facilitate the up-
or down-scaling. These processing steps were also adjusted to preserve recognizability by the human
eye.

2.8 Box and violin plots

Throughout this work, we will present data using box plots, violin plots, and ensembles of both
visualizations. This subsection explains how both types of plots are constructed and how to interpret
them.

Box plots The box plot was first formally introduced in 1977 by Tukey et al. [79]. Its main purpose
is to provide a robust summary of the distribution of numerical data. This is achieved by visualizing
the following statistical features of the data at hand:

• The median, which is the data point that separates the higher half of the data from the lower
half. The median is shown as a line within the box of the boxplot.

• The quartiles, which are medians of the higher and lower half of the data. The quartiles are
indicated by the edges of the box.
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• The extremes, which are often chosen to be the last data points within the range of 1.5 times
the interquartile range (IQR, the distance between the quartiles) above and below the quartiles.
The extremes are indicated by the whiskers that stick out of the box.

• The outliers, which are all the data points that are found beyond the extremes. They are
presented as dots or circles beyond the whiskers. Outliers are sometimes omitted from the figure
to improve readability.

Box plots allow for quick inspection and comparison of distributions of data. Another advantage is
that all indicators always correspond to actual data points. However, in the case of multimodal data,
box plots are unable to properly visualize the different modes.

The box plots that we use in this work show all characteristics as explained in the listing. We
often omit the outliers to make the figures more readable. In some cases we let the whiskers resemble
the complete range of the data instead of 1.5 times the IQR. This exception is explicitly stated for
the corresponding figures.

Violin plots Violin plots were introduced by Hintze and Nelson [80] in 1998 as an improvement
on box plots. In contrast to box plots, violin plots show the full (estimated) distribution of the data.
This allows violin plots to visualize multimodal data.

Violin plots are formed by kernel density estimation (KDE). The KDE is formed by applying a
kernel function to each data point and summing up the results. More formally, given data points
(x1, x2, ..., xn), we can define an estimate f̂ of the actual density function f as follows:

f̂h(x) =
1

nh

n∑
i−1

K(
x− xi

h
) (6)

Where K(x) is the kernel function. The parameter h is known as the bandwidth and controls the
range of influence of a single data point, in turn controlling how smooth the KDE will be. Since
the KDE is an estimation of the true density function, assumptions are made that fill in gaps in the
provided data. This means that some parts of a violin plot do not correspond to actual data points, in
contrast to box plots. Another possible distortion of violin plots is that the smooth kernel functions
can cross the natural boundaries of the data (e.g. probability always falling in the range between 0
and 1). This can be resolved by cutting the kernel functions at the lowest and highest data points.

In this work, violin plots are created by the use of a standard normal kernel function. The value
for h is chosen according to Scott’s rule [81]. We cut the KDE at the lowest and highest data points
to prevent the KDE from passing natural boundaries.
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3 Related work

In this section, we present published research from recent years that has a scope that is similar to
the work that we present. Specifically, we look at research that incorporates a selection strategy in
the context of deep metalearning to improve performance.

Selecting feature representations

A possible method to adapt previously trained models to a new task is to gather a collection of
pre-trained models and subsequently select and combine their individual feature representations de-
pending on the given task.

Dvornik et al. [82] propose a system called SUR (Selecting from Universal Representations). SUR
is a selection algorithm that learns how to linearly combine different feature representations for the
best results on a given target task. In this sense, SUR can be regarded as a metric-based method
(see Section 2). The different feature representations are generated by feature extractors that are
pre-trained on different datasets. They apply their method to image classification datasets and tasks,
where a nearest-centroid classifier is trained on the selected feature representations of the support set
to make predictions on the query set. They find that the selection algorithm creates mostly sparse
linear combinations of the different feature representations. In most cases, the feature representation
that is assigned the highest weight originates from the same domain as the target task or same-source.

Liu et al. [83] expand on the work of Dvornik et al. by employing a transformer network to adapt
the combined outputs of different pre-trained models (the universal representation) to the provided
target task. Similarly to the work of Dvornik et al., a single-head universal representation transform
(URT) can provide a linear combination of feature representations of different pre-trained models.
In addition, they propose a multi-headed URT, which allows for the linear combination of different
linear combinations of pre-trained models. Depending on how the URT heads are initialized, they
form feature representations from different pre-trained models. The authors show an example of a
URT head that selects primarily feature representations from pre-trained models that were created
using the same source data as the task.

Li et al. [33] propose to adapt a distance-based classifier to new tasks by calibrating the distance
matrix to an unseen task with the help of its support data. To achieve this, the original distance
matrix is complemented by a non-linear transformed version of itself. The non-linear transformation
is formed by principle component analysis and aims to reduce the distance representation to the
most informative features while suppressing uninformative training features, which in essence can
be regarded as selecting feature representations. Before the two distance matrices are combined,
they are both calibrated by linearly combining a Euclidean-distance-based ranking with a more class
contextual ranking representation of the feature-mapped instances.

Task selection

Another way to incorporate selection to improve metalearning performance, is to select meta-train
tasks instead of random sampling. The meta-train tasks are selected to provide the most benefit to
the metalearning system. The work of Yao et al. [84] is an example of this. They strive to optimize
the meta-model training process by selecting tasks from a task distribution more informedly, instead
of uniform sampling. For this, they propose an adaptive task scheduler (ATS). The ATS is formed
by training a neural scheduler that considers the effect different candidate tasks have on the meta-
model parameters. Using this method, they can better select tasks that are more beneficial to the
meta-model training progress, at the cost of higher computational demand for training the scheduler.
Yao et al. tested this by applying the ATS in a situation where the distribution of meta-train tasks
was supplemented with noisy tasks, and they found that the ATS was able to assign a lower sampling
weight to the noisy tasks. Because the ATS capitalizes on the dynamics of bi-level optimization, it
can only be applied to the optimization-based metalearning methods as discussed in Section 2.1.
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Selecting parameters

It is also possible to partially select the initialisation parameters of a neural network based on the given
task. Triantafillou et al. [85] consider a metalearning system where a pre-trained universal template of
parameters can be adapted to new tasks by providing additional, task-specific parameters. To achieve
this, they form a feature extractor by combining pre-trained (universal) parameters and a selection
of dataset-specific parameters. The task-specific parameters are initialized by a pre-trained set that
corresponds to one of the pre-training datasets. To determine which set of task-specific initialization
parameters should be used, the authors propose a dataset classification network that can predict
from which dataset a set of images originates. The output of this network is used to determine the
compatibility between a set of examples and a set of initialization parameters. This is key according
to the authors, as they report that the system is unlikely to recover from a bad initialization.

Selecting pre-trained models

Finally and most closely related to our work is the work of Pineda-Arango et al. [86]. They propose a
Combined Algorithm Selection and Hyperparameter Optimization (CASH) technique which they call
Quick-Tune. Quick-Tune uses Bayesian optimization to determine which pre-trained models are most
likely to be successful candidates to be fine-tuned to a given task. For this, they use the validation
error during fine-tuning. More time is invested in pre-trained models that show the most promising
progress in their validation accuracy over the fine-tuning epochs. They conclude that their method
outperforms large transformer backbones for computer-vision tasks. In contrast to their work, we
base our selection strategy on additional meta-features that are based on the raw data of the datasets.
However, we have also found that the fine-tuning validation accuracy has high predictive value for
selecting the best performing pre-trained model.
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4 Methods and general experimental setup

This section explains the different stages and components that form the methods of this research.
For clarity, we divide the methods into five consecutive stages.

1. Data preparation. In this stage, we split datasets from Meta-Album into meta-train datasets
and meta-test tasks, that are used later to create pre-trained models and fine-tune them. See
Section 4.1.

2. Training. In this stage, we create a pre-trained model for each meta-train dataset. See Sec-
tion 4.2.

3. Fine-tuning. In the fine-tuning stage, we take the pre-trained models we created in Stage 2
and fine-tune them to the meta-test tasks we created in Stage 1. After fine-tuning, we record
the accuracy of the fine-tuned network, which we will use later as the target value of our
meta-dataset in Stages 4 and 5. See Section 4.3.

4. Meta-data and meta-model. This stage involves extracting features from the meta-train
datasets and meta-test tasks and pairing them with the recorded accuracies to form our meta-
data. We then use a part of the meta-data to train a meta-model to predict the recorded
accuracy based on the provided dataset-specific features. See Section 4.4.

5. Meta-model validation. Finally, we use the remaining part of the meta-data to validate the
meta-model. We rank the absolute accuracy predictions of the meta-model and compare the
predicted ranking to the true ranking of our meta-data. See Section 4.5.

As can be distilled from this overview, many parts of the methods involve the division of datasets
into train datasets and test datasets or tasks. We use different random seeds to control how data
is randomly split in these operations. Seed s is used to split datasets from Meta-Album into meta-
train and meta-test splits. Therefore, by changing the seed s, the composition of these data subsets
changes, ultimately leading to different pre-trained models and fine-tuning tasks. Seed t is used to
split meta-test datasets further into tasks, and corresponds to the task number. Finally, a fixed,
singular seed is used throughout the stages to split datasets into support and query datasets.

Throughout this section, we refer to various entities that play a role in our methods. Here, we
present an overview of the most important entities and their corresponding description.

• Source dataset. A complete dataset that forms the source of different, class-separate meta-
train and meta-test datasets.

• Meta-train dataset. A subset of a source dataset that is used to pre-train a model.

• Meta-test dataset. A subset of a source dataset that is used to create different tasks to which
pre-trained models are fine-tuned.

• Meta-test task. A subset of a meta-test dataset that forms a task to which a pre-trained model
is fine-tuned. In a classification context, a meta-test task forms an N -way k-shot classification
task (see Section 2.3).

• (Pre-trained) models. Deep learning models that were pre-trained on a meta-train dataset
and that are later fine-tuned to a meta-test task.

• Meta-models. Models that predict the validation accuracy of a pre-trained model on the
query set of a meta-test task after it was fine-tuned to its corresponding support set.

• Support set. The portion of a dataset that is used to train or fine-tune a deep learning model.

• Query set. The portion of a dataset that is used to validate the performance of a deep learning
model (the model is not allowed to change its parameters with this data).
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Further details on the different stages of our methods are outlined in the following subsections. The
final subsection explains our actual implementation of the methods that form the general setup for our
experiments in the subsequent sections. Further details on the experiment-specific implementations
can be found in Section 5 and Section 6.

4.1 Data preparation

To achieve a fair evaluation of the fine-tuning performance of the different pre-trained networks, we
need to ensure that the classes of the meta-train dataset do not overlap with the classes of the meta-
test dataset. For this, we carefully split each Meta-Album dataset into two random, class-separate
partitions. The random class-based split is controlled by a single seed s. Since seed s controls which
classes are used to train the pre-trained models and which classes are used to fine-tune these models
later on, we can create different models by changing s. The resulting meta-test dataset after the
random class-split is split further on a class level into p different N -way tasks. This task split is also
performed randomly using seed t, which corresponds directly to the number of the task. This process
is illustrated in Figure 2.

Figure 2: A schematic example of how we prepare the data for our experiments. We start with Meta-Album,
which is a collection of datasets from various domains (see Section 2.7). Each dataset of Meta-Album consists
of multiple classes (typically > 25, see Table 1). We select a dataset (in this case DOG) and randomly
split it on a class level using a random seed s (in this case s = 77). This results in a meta-train dataset
(top) and a meta-test dataset (bottom), which we label DOG-mtr-s77 and DOG-mts-s77 respectively. The
meta-test dataset is split further into p N -way meta-test tasks. The meta-train set is used to create a pre-
trained network (see Figure 3). The meta-test tasks are used to later fine-tune the pre-trained models to (see
Figure 6). This data preparation is applied to all datasets of Meta-Album and can be repeated for multiple
seeds s to form different pre-trained models and tasks.

4.2 Pre-training models

To create a pre-trained classification model, we use a meta-train dataset that we created in the
previous stage. We split the meta-train dataset on an instance level into two stratified sets: a
support set, which contains the training examples, and a query set, which we will use to validate the
performance of the model in between training epochs. Since the split is stratified, both sets contain
the same amount of examples per class. We perform this split randomly based on a fixed seed. For
each training epoch, we record the loss and accuracy of the model on the support (training) and query
(validation) set. Figure 5 shows an example of the development of these measures for each epoch.
After the model is trained, we store it to be used later in the fine-tuning stage of our method. See
Figure 3 for a schematic example.

4.3 Fine-tuning

After all meta-test tasks have been formed and all models have been pre-trained, we fine-tune every
pre-trained model to every task (that was generated using the same seed s to ensure class separation).
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Figure 3: A schematic example of how we create the pre-trained models. We take a meta-train dataset
(for example, DOG-mtr-s77) as created in Figure 2, and randomly split it further into a meta-train support
dataset and a meta-train query dataset. The split is performed on an instance level and in a stratified fashion,
meaning that both the support and query datasets contain different examples from the same classes and that
the classes are equally represented. The support set is then used to train a neural network, while the query
set is used to validate the performance during training. An example of train and validation accuracy and
loss during training can be observed in Figure 5. After training has been completed, the neural network
resembles a pre-trained model of the source dataset (DOG-s77), which will later be fine-tuned for new tasks
(see Figure 6). In this way, a pre-trained model is created for every dataset of Meta-Album. The procedure
can be repeated for multiple seeds s to create different pre-trained models for the same source dataset.

We refer to the act of fine-tuning a single pre-trained model to a single task as a fine-tuning job. For
each fine-tuning job, the meta-test task is split into a support and query set, similar to how the
meta-train dataset was split in the previous step. The support set is then provided to the pre-trained
model as training data. In contrast to the training stage, only the last non-output layer is adjusted
this time. We record the loss and accuracy on the support and query set for each epoch of fine-tuning.
An example of these values over the epochs is shown in Figure 4. The final validation accuracy on
the query set is later used to train the meta-models. A schematic overview of the fine-tuning stage is
shown in Figure 6.

Figure 4: The training and validation loss and accuracy per fine-tuning epoch of a ResNet18 trained on the
PLK (plankton) meta-train dataset transferred to task 0 of the MD MIX (OmniPrint-MD-mix) meta-test
dataset. The dashed black line shows the baseline performance of 1/c · 100% with c the number of classes in
the meta-train dataset, in this case c = 5
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Figure 5: The training and validation loss and accuracy per training epoch of a ResNet18 architecture trained
on the PLK (plankton) meta-train dataset. The dashed black line shows the baseline performance of 1/c·100%
with c the number of classes in the meta-train dataset, in this case c = 68.

4.4 Meta-model training

Using the validation accuracy values from all fine-tuning jobs, we construct a dataset, where each
record of this dataset is complemented by features that correspond to the concerning fine-tuning job.
An overview of all the different meta-features that we use in this work is shown in Table 4 (more
details about the used features can be found in Section 6). This dataset forms our meta-dataset
and serves as training and test data for different meta-models that predict the fine-tuning validation
accuracy. After the meta-dataset is constructed, it is split into a training and test partition. In the
implementation we use for our experiments, we split the data for leave-one-out cross-validation on a
meta-test task level (see Section 6 for more details). The training partition is used to train different
meta-models and create baseline models. The test split is used to validate the performance of these
models. A schematic overview of the fine-tuning stage is shown in Figure 7.

4.5 Meta-model validation

The different meta-models and baseline models are evaluated on their ability to select the right pre-
trained model for a given meta-test task. In essence, this is similar to the principles of automated
algorithm selection (see Section 2.6). The meta-test tasks can be regarded as the different tasks
T of problem type P, in this case image classification. The pre-trained models can be regarded as
the different algorithms A, that we apply, in this case fine-tune, to solve the tasks. We apply the
meta-models to the test split of our meta-dataset and collect their predictions. Since the meta-
models predict absolute fine-tuning validation accuracy, we transform the predictions into a ranked
representation. In this form, the predictions of the meta-models can be used as a selection strategy,
where we pick the pre-trained model with the highest predicted rank for a given fine-tuning task. To
evaluate a predicted ranking, we compare it to the actual ranking of the recorded performances in
the test split of the meta-dataset. See Figure 8 for a schematic representation of this procedure.

4.6 General experimental setup

For our experiments, we apply the methods described in the previous sections as follows. In the data
preparation stage as described in Section 4.1, we use an 80 versus 20 percent train-test ratio for the
meta-train and meta-test datasets respectively. This means that the meta-train dataset contains 80
percent of the original dataset classes versus 20 percent in the meta-test dataset. The class split is
performed randomly, based on a chosen seed s. The meta-test datasets are split further into 5 5-way
tasks, again using an 80 versus 20 percent ratio for the support-set and query-set. The task split is
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Figure 6: A schematic example of the fine-tuning of a pre-trained model to a new task. We select a meta-test
task (DOG-mts-s77) as created in Figure 2 and split it further into a meta-test task support dataset and a
meta-test task query dataset, similarly to Figure 3. Next, we select a pre-trained network (Cars with s = 77,
or CRS-s77) as created in Figure 3. The layers of the pre-trained network are frozen, except for the last
layer. Then, the partially frozen pre-trained network is trained (fine-tuned) to the meta-test task support set.
The fine-tuning process is validated with the meta-test task query set. An example of train and validation
accuracy and loss during fine-tuning can be observed in Figure 4. After fine-tuning has been completed, the
validation accuracy (accuracy of the fine-tuned network on the query set) is recorded. In this example, the
CRS-s77 model was able to correctly classify 34% of the examples of the query set of the DOG-mts-s77 task
after fine-tuning. The recorded validation accuracy is later used as the target value for the meta-models (see
Figure 7). This procedure is repeated for all possible pairs of tasks and pre-trained models that originate from
the same seed. Tasks and pre-trained models from different seeds are never combined, as the class separation
between meta-train and meta-test is not guaranteed between different seeds.

also performed randomly, this time based on a chosen seed t, where t corresponds directly to the task
number. Since every class has exactly 40 examples (we use the mini version of each Meta Album
dataset, see Section 2.7), this results in a 32-image per class support-set and an 8-image per class
query-set for every task. We repeat the procedure for every dataset of Meta-Album, resulting in a
collection of 30 meta-train datasets and 150 meta-test tasks per seed s.

We use the meta-train datasets to create pre-trained models. A ResNet18 neural network archi-
tecture, as described in Section 2.5, is used as the backbone of the models. We split the meta-train
dataset into a support and query set, again using an 80 versus 20 percent ratio. The support set is
provided to the model as training data in batches with a size of 16 examples. The network output is
evaluated using cross-entropy-loss with respect to the true label of the provided examples. Stochastic
gradient descent (SGD) is used to tune the model parameters with respect to the loss, using a learning
rate of 1e−3 and a momentum of 0.9. After all batches of training data are processed in this way,
the model is evaluated using the query set, on which it is not allowed to tune its parameters. The
loss and accuracy of the model on the query set are recorded and later used to inspect how the model
progressed through the epochs. See Figure 5 for an example of the recorded validation accuracy and
loss over the epochs. In total, we repeat this procedure for 50 epochs. After 50 epochs, the model is
stored and forms the pre-trained model.

After all pre-trained models are formed, we fine-tune them to the previously created meta-test tasks.
This is done similarly to how the models were trained. We split the meta-test task on an instance
level into a support and query set using an 80 versus 20 percent ratio. Again, 50 epochs are per-
formed, using the same criterion, optimizer, and corresponding hyper-parameters as we used during
pre-training. This time, however, we freeze all layers of the ResNet18 architecture, except for the last
layer before the output layer. After each epoch, we record the validation accuracy on the query set
of the meta-test task. See Figure 4 for an example of the validation and training accuracy over the

17



Figure 7: A schematic example of the assembly of meta-data and the training of meta-models. The meta-data
consists of the recorded fine-tuning accuracy and meta-features of the involved datasets per fine-tuning job.
The meta-data is split into a train and test set. The train set of the meta-data is used to train a meta-model
that predicts the validation accuracy using the provided features.

Figure 8: A schematic example of the meta-model validation. The test split of the meta-data is given to
a trained meta-model. The meta-model then outputs the predicted values for the validation accuracy. The
predictions are ranked and compared to the ranking of the true ranking of the validation accuracy.

epochs during fine-tuning. After the 50 epochs have been completed, we take the mean validation
accuracy of the last 10 epochs and include it in our meta-dataset. For the sake of readability, we
will refer to this average of the validation accuracy of the last 10 epochs as the fine-tuning perfor-
mance. The reason we use the average of the last 10 epochs instead of the last epoch is to mitigate
stochastic effects that are present in the training procedure, as can be seen in Figure 4. We repeat this
for every model and task combination within a seed s, resulting in 30×30×5 = 4500 records per seed.

We accompany every record in our meta-dataset with features that correspond to the involved
datasets. An overview of the different features that we use is shown in Table 4. Averages and
standard deviations of color channels are calculated over all pixels, to prevent possible distortions
from taking double averages. In contrast, averages and standard deviations of colorfulness and en-
tropy are calculated per image and then averaged. More details on how we formed and applied our
feature sets can be found in Section 6.

We repeat the complete procedure as described above for 3 seeds. The complete meta-dataset then
contains 3× 4500 = 13500 entries, combining the validation accuracy of the fine-tuning jobs with at
most 40 features of their corresponding datasets, depending on the chosen feature set. The complete
procedure was also repeated using a ResNet34 network backbone but resulted in no noteworthy dif-
ference in performances across the models.

The scripts and procedures that were used to run the experiments can be found via the following
GitHub link: https://github.com/MTTVDN/data-centric-meta-learning.
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5 Transferability of datasets

In this section, we aim to answer research questions 1 and 2 (see Section 1). For this, we compare
pre-trained models from a given Meta-Album dataset in their ability to transfer to tasks from another
given Meta-Album dataset. We refer to this ability of different pre-trained models from dataset A
to transfer to different tasks from dataset B as the transferability of A to B. The transferability is
expressed in percentages and is defined as the average fine-tuning performance per meta-train dataset
(pre-trained models) and meta-test dataset (tasks) combination. For example: the transferability of
the BRD dataset to the PLK dataset is the average fine-tuning performance of all models that were
pre-trained on the BRD meta-train dataset in fine-tuning jobs to tasks from the PLK meta-test
dataset. We compare this measure of transferability for the three different categories that describe
the relationship between the meta-train dataset and the meta-test dataset (a more general description
of the categories can be found in Section 2.3):

• same-source. The meta-train dataset and the meta-test dataset originate from the same source
dataset. For example, a model trained to classify 50 classes of birds from the BRD dataset is
fine-tuned to solve a 5-way task with different classes of birds from the BRD dataset.

• same-domain. The meta-train dataset and meta-test dataset originate from different source
datasets that are considered to belong to the same domain (note that this relationship is disjoint
from the same-source relationship). For example: a model trained to classify 50 classes of
birds from the BRD dataset is fine-tuned to a task with 5 different classes of dogs from the
DOG dataset. Both the BRD and DOG dataset belong to the domain large animals.

• cross-domain. The meta-train dataset and the meta-test dataset originate from different
source datasets that are also not in the same domain. For example: a model trained to classify
40 classes of insects from the INS dataset is fine-tuned to a classification task involving 5 classes
of boats from the BTS dataset. The INS dataset belongs to the small animals domain, whereas
the BTS dataset belongs to the vehicles domain.

In the following subsections, we first describe how the different visualizations are created to analyze
our meta-dataset and transferability. We continue with a discussion where we share our observations
of the statistical properties of the meta-dataset and relate our observations to the initial research
questions.

5.1 Setup and results

To visualize the transferability between the meta-train datasets and meta-test datasets for the dif-
ferent dataset relationships, we created a matrix where rows represent the meta-train dataset and
columns represent the meta-task dataset. We refer to this type of matrix as a transferability matrix.
In addition to the singular cells that are separated by white lines, the transferability matrix also shows
thicker, black lines between groups of cells to indicate the domains as defined by the authors of Meta-
Album. All cells within a box with a black outline belong to the same domain. The transferability
matrix that visualizes the true recorded transfer performances is referred to as the true transferability
matrix and is shown in Figure 9. We make this distinction, as the following sections will also introduce
transferability matrices for the predictions of meta-models. The cells of a transferability matrix rep-
resent all fine-tuning jobs that involve pre-trained models that were trained on a meta-train dataset
derived from the corresponding row dataset, and tasks from a meta-test dataset of the corresponding
column dataset. Inside the cells, the mean and corresponding standard deviation of the fine-tuning
performance of these fine-tuning jobs are reported. The fine-tuning performance of an individual
fine-tuning job is measured as the mean validation accuracy of the last 10 fine-tuning epochs out of
50 (for example, Figure 4 shows a fine-tuning job with a transfer performance of ∼ 20%). The color of
the cells illustrates the transferability relative to the transferability of other cells in the same column.
A green cell has a relatively high transferability and a red cell has a relatively low transferability. We
also show the same data in a transferability matrix with a color scale that corresponds to the range
of the complete matrix in Figure 11.
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Since our experiments with meta-models in Section 6 are focused on the rank of the pre-trained
models for a given task, we also present the true transferability matrix in a rank-based format in
Figure 10 to allow for better comparison. In this representation, cells report how often the concerned
pre-trained models occur in the top-5 of models, given the target tasks from a given column. Since
each cell represents 15 different tasks, the cell values range from 0 (red) to 15 (green) and the total
sum per column is always 5× 15 = 75. The right-most column shows the sum per row and the top-5
row sums have been accented. The cell in the right-bottom corner reports the trace of the matrix.

Additionally, we show violin plots with embedded box plots of the fine-tuning performance, where
we compare the distributions of different subsets of the meta-dataset. Examples are Figure 12 and
Figure 13. The box plots inside the violin plots show the global median (central white line) and the
lower and higher quartile (as shown by the boundaries of the thicker rectangle). The vertically ex-
tending lines of the box plots resemble the whiskers, which indicate 1.5 times the interquartile range
(IQR, the distance between the lower and higher quartile) above the higher quartile and below the
lower quartile.

5.2 Discussion

Our first observations are concerned with Figure 9, showing the true transferability matrix. In the
coloring of this matrix, we observe an accented diagonal structure, corresponding to the same-source
category. This indicates that models that were pre-trained on data from the same source dataset as
the meta-test task perform better than models that were pre-trained on other datasets. The same
diagonal is also present in the coloring of the rank-based representation in Figure 10. In total, the
fine-tuning jobs that are represented by the diagonal belong to the top-5 models in 298 out of the 450
cases (66%) (for comparison: if all pre-trained models are equally likely to be part of the top-5, the
expected sum of the diagonal is 5

30 ×15×30 = 75 or 17%). These observations indicate that in terms
of rank (relative to other pre-trained models), we can expect pre-trained models to transfer well to
tasks from the same source dataset via fine-tuning.

In terms of absolute performance, this picture is more nuanced. In Figure 12, we see that fine-tuning
jobs that belong to the same-source category do not necessarily yield good absolute performance. It
is not uncommon for a pre-trained model that is involved in a same-source fine-tuning context to only
mildly improve on the baseline fine-tuning performance of 20%, as can be observed in the lower ranges
of the same-source distribution plot in Figure 12. Examples of low performance by the same-source
model can also be seen in Figure 15. We are therefore unable to conclude that pre-trained models
are always well-adaptable to tasks from the same source dataset in a fine-tuning context in terms of
absolute performance. However, since we know that fine-tuning jobs from the same-source category
rank generally higher than other model-task combinations, regardless of absolute performance, we
can expect fine-tuning jobs from the other categories to perform worse, even if the performance on the
diagonal is already low. This suggests the existence of hard tasks, which are tasks to which no pre-
trained model can be fine-tuned well, regardless of their dataset relationship. In Figure 15, we show
examples of meta-task datasets that show these characteristics. In total, we have recorded 15 tasks on
which models from the same-source category reached a performance of less than 30%. We see that for
most of these tasks, few or no other models could perform notably better than the same-source models.

To gain more insight into the range of performances across the different datasets, we created Fig-
ure 14. This figure shows box plots of the recorded fine-tuning performances for all meta-test datasets,
where the box plots are ordered left to right from smallest to largest range. The whiskers of the box
plots show the full range of the considered data subset (instead of the conventional 1.5× IQR, see
Section 2.8). Inspection of the left-most box plots reveals that there exist meta-test datasets that
bring forth tasks that are exclusively easy or exclusively hard for the available pre-trained models to
solve.

One other notable observation from Figure 12 is the bimodal distribution of fine-tuning performance
values in the same-source category. The same bimodal distribution is not found in the other cate-
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gories. This suggests that there is a specific advantage that pre-training on the same source dataset
gives and that it is not always applicable. Further comparison of the distributions reveals that in the
lower end of performances, the same-source category improves on the same-domain category, which
in turn improves on the cross-domain category. Especially for fine-tuning jobs that were least suc-
cessful in a given category, we see improvement as we go from right to left. A portion of fine-tuning
performances in the cross-domain category even falls below the 20% baseline performance, which
corresponds to random guessing the class in the classification task. In the same-source category, only
improvements with respect to random guessing can be observed.

In addition to the diagonal, we observe pronounced rows in the coloring of both Figure 9 and Fig-
ure 10. This implies the existence of foundation models that generalize over all different tasks better
than others. From the top-5 ranking counts shown in the right-most column of Figure 10, we find that
pre-trained models from the datasets BRD, FLW, RSICB, TEX and TEX ALOT form the overall
top-5. We compare the absolute fine-tuning performance of this overall top-5 to the rest in Figure 13.
For better comparison of the distributions, we exclude the same-source records from the top-5 records.
We observe that in terms of absolute performance, the difference between the top-5 models and the
other models is again less clear-cut. The distribution of the top-5 models category has slight bimodal
features, again suggesting that in some specific cases, these models offer an advantage.

The apparent effect of the meta-train and meta-test dataset belonging to the same domain is in-
conclusive. The advantage of the two datasets belonging to the same domain is most strongly visible
for the OCR domain (Optical Character Recognition, see Table 1) in both Figure 9 and Figure 10.
The Large Animals domain (BRD, DOG, AWA) and the Remote Sensing domain (RESICS, RSICB,
RSD) also hint at this effect in Figure 10. However, since both domains happen to include a meta-
train dataset that produces models that belong to the overall top-5, it is unclear how much of the
advantage can be attributed to the same-domain category. For the other domains, a possible cor-
relation is even more inconclusive. This is also reflected in Figure 12, where the difference between
the same-domain and cross-domain distribution is small. The most notable difference is the distribu-
tion of the mid-range performances between 50% and 80%, where we see a slight advantage for the
same-domain category.
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Figure 12: Violin plots with embedded box plots of the fine-tuning performance for records that belong to
the same-source (diagonal), same-domain and cross-domain dataset relationships. The dashed red line
indicates the baseline fine-tuning performance at 20%.
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Figure 13: Violin plots with embedded box plots of the fine-tuning validation accuracy for different subsets of
the meta-data. The violin plot labeled same-source presents the fine-tuning validation accuracy of all records
that lie on the diagonal of the true rank-count matrix shown in Figure 10. The violin plot labeled top-5
corresponds to records that involve a pre-trained model that belongs to the top-5 models as identified in the
true rank-count matrix. Finally, the violin plot labeled other models corresponds to all records that do not
involve pre-trained models from the top-5. The dashed red line indicates the baseline fine-tuning performance
at 20%.
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Figure 14: A series of box plots, showing the distribution of fine-tuning performances for all meta-test datasets,
ordered from smallest to largest range (left to right). For each boxplot, the orange line indicates the median,
the box shows the range of the 1st and 3rd quartile, and the whiskers indicate the full range of the data (in
contrast to other box plots).
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Figure 15: 15 examples of hard tasks, where the fine-tuning performance of the same-source models was below
30% (indicated by the blue dashed line). The dashed red line indicates the baseline fine-tuning performance
at 20%. The circles display the outlying data points.
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Parameter Value
n estimators 500
criterion squared error
max depth 7
min samples split 2
min samples leaf 1
max features 0.5

Table 2: Overview of the parameters that we used to create the random forest models with the scikit-learn
RandomForestRegressor class implementation of random forest regression [87].

6 Selecting pre-trained models

In this section, we aim to answer research question 3 as follows. With the data from our meta-dataset,
we train different meta-models to predict fine-tuning performance. The meta-models are created using
random forest regression, by providing various feature sets that are based on dataset characteristics.
The purpose of these meta-models is to select the best pre-trained model for a meta-test task, given
the features corresponding to the meta-test task and the available pre-trained models. In the follow-
ing experiments, we evaluate the meta-models on their ability to select the best available pre-trained
model for a given meta-test task. We supplement the evaluation of the meta-models with various
baseline measures, to put the performances of the meta-models into perspective.

The next subsections are structured as follows. We start by explaining how we trained our meta-
models, how we created our baselines, and what experiments we conducted to evaluate and compare
their performance. Next, we present the results of our experiments in two sections. In the first sec-
tion, we show the results of the experiments that adhere to the scientific context, where we include
the pre-trained models that were trained on data from the same source dataset as the task. In other
words: the same-source pre-trained model for a given task is available for selection. In the second
section, we show the results of the experiments that resemble a more realistic context, where we
exclude these pre-trained models. We finish with a discussion of all results, where we compare the
results from both contexts and share our observations.

6.1 Setup

The previously introduced meta-dataset provides the training data and validation data for the dif-
ferent meta-models and baseline meta-models. From this meta-dataset, we split off all records where
the meta-test task is derived from a specific meta-test dataset, and use the remainder as training
data for the meta-model. The meta-models are created using random forest regression. We use the
implementation provided by the scikit-learn Python package under the class RandomForestRegres-
sor [87] using the parameters shown in Table 2. Once the meta-model is trained, it predicts the
transfer validation accuracy of the split-off records. The model predictions are then ranked according
to the predicted transfer validation accuracy. For each meta-test task, the top-ranking combination
is selected. When multiple combinations are given the same top-ranking prediction, the candidate
with the actual lowest fine-tuning performance is selected to mitigate potential randomness in the
evaluation. In other words: if a model cannot decide between multiple models, the worst possible
model is selected (the following results therefore all show the worst-case scenario for the meta-models
and baselines). Then, the selected combinations are ranked according to their true rank. Finally, we
count how many times the meta-model selected a pre-trained model in the top-1 (best), top-2, top-3,
top-4, and top-5 for the given tasks of the split-off meta-test dataset. This procedure is repeated
for all meta-test datasets, resulting in a leave-one-out (the chosen meta-test dataset) cross-validation
setting. When all folds of the leave-one-out cross-validation have been completed, we compare the
meta-models and baselines on their achieved ranking score for the former five categories (best, top-2,
etc).
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Feature set
Separate pixel-based
features for meta-train
and meta-test dataset

Differences in pixel-based
features between meta-train
and meta-test dataset

Validation accuracy
after one epoch
of fine-tuning

rf separate ✓ ✗ ✗
rf difference ✗ ✓ ✗
rf separate LCP ✓ ✗ ✓
rf difference LCP ✗ ✓ ✓
rf full LCP ✓ ✓ ✓

Table 3: Overview of the different feature sets that were used to train the different meta-models via random
forest regression. The different pixel-based features are shown in the top part of Table 4.

In addition to counting the ranks of the model selection, we use a selection loss metric on which we
also evaluate the meta-models and baselines. The selection loss is defined as the difference between
the actual fine-tuning performance of the selected pre-trained model and the actual fine-tuning per-
formance of the best pre-trained model. A low selection loss therefore means that the meta-model
selected a pre-trained model that performed similarly to the actual best pre-trained model in terms
of absolute fine-tuning performance, regardless of its rank.

We test the different meta-models according to this procedure in 2 different contexts. First, a sci-
entific context where a pre-trained model originating from the same dataset as the target task is
available for selection (same-source). Second, a realistic context, where a pre-trained model origi-
nating from the same dataset is not available for selection.

For both contexts, we evaluate meta-models that were trained with different feature sets. We re-
fer to these meta-models by the name of their feature set. We start with two feature sets that include
only statistical measures of the raw data, which are shown in the upper section of Table 4. Since
these features are calculated using only the pixel values of all images that are included in a dataset,
we refer to these features as pixel-based. The pixel-based features are initially calculated separately
for the meta-train dataset and the meta-test task. The first feature set is labeled as rf separate and
includes the pixel-based features of the meta-train dataset and the meta-test task separately. The
second feature set is labeled as rf difference and only includes the absolute difference between the
pixel-based features of the meta-train dataset and the meta-test task.

We continue by adding a low-cost proxy (LCP) feature to the former pixel-based features. We
define the LCP as the validation fine-tuning accuracy after one epoch of fine-tuning. Using the LCP,
we create three new feature sets. A complete overview of the different feature sets and how they are
composed is shown in Table 3.

The meta-models that result from using the former feature sets are compared with three baseline
meta-models. The model average baseline model uses the average fine-tuning performance value of a
pre-trained model as the prediction for a fine-tuning job involving this pre-trained model. This can
be interpreted as taking all values of a row (corresponding to a model dataset), except for a single cell
(corresponding to a column of the meta-test dataset), from Figure 11, and using the average value
as a prediction for the excluded cell. An example of the predictions of the model average baseline
model is shown in Figure 16. For comparison, we show the predictions of the rf separate meta-model
in Figure 17. The random expected baseline model visualizes the expected outcome of a model that
randomly selects a pre-trained model for a given task. The same-source baseline model always selects
the pre-trained model that was pre-trained on the same source dataset from which the given task
originates. This baseline model can only be applied in the scientific context, where this pre-trained
model can be selected. Finally, we use the LCP baseline model, which selects pre-trained models
purely on the fine-tuning validation accuracy after one epoch of fine-tuning. This baseline is only
included when meta-models using the LCP feature are involved.
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Feature name Description

global mean the mean pixel brightness value of the dataset.

global std the standard deviation of the pixel brightness values of the dataset.

mean c* the mean pixel value in channel c (r, g or b) of the dataset.

std c* the standard deviation of pixel values in channel c (r, g or b) of the dataset.

colorfulness mean the mean colorfulness of the dataset (as defined by Hasler and Susstrunk [88]).

colorfulness std the standard deviation in colorfulness, as defined by Hasler and Susstrunk, of the dataset.

entropy mean the mean Shannon entropy of the dataset

entropy std the standard deviation in Shannon entropy of the dataset

low-cost proxy the validation accuracy of the first fine-tuning epoch

target accuracy
the average validation accuracy of the last 10 fine-tuning steps

of a foundation model applied to the target task

Table 4: A descriptive overview of the different meta-features that are calculated for all meta-training-set and
meta-test-task pairs. Features with the c* placeholder are calculated separately for the red, green, and blue
channels of the images. Except for target accuracy and low-cost proxy, all features are calculated equally for
the meta-training-set and the meta-test-task.

6.2 Results pixel-based features

In Figure 18 we compare the meta-models rf separate and rf difference and the baseline meta-models
in their ability to select pre-trained models from top-5 for a given meta-test task in the scientific
context. We use a bar chart to show how often the selection of a meta-model belonged to the top-1,
top-2, top-3, top-4 and top-5 for all meta-models and baseline meta-models. In Figure 19 we present
violin plots with embedded box plots to show the selection loss for the same meta-models and baseline
meta-models in the scientific context.

We continue by showing the same plots for the realistic context in Figure 20 and Figure 21. In these
plots, the same-source baseline model is omitted, as these pre-trained models cannot be selected in
the realistic context.

6.3 Results low-cost proxy

The results involving the LCP feature are structured similarly to the previous results. In Figure 22
we compare the meta-models rf separate LCP, rf difference LCP and rf full LCP, and the baseline
meta-models in their ability to select pre-trained models from top-5 for a given meta-test task in the
scientific context. In addition to the previous baselines, we add an LCP baseline, which predicts the
rank of a pre-trained model based on its first fine-tuning epoch validation accuracy. In Figure 19 we
present violin plots with embedded box plots to show the selection loss for the same meta-models
and baseline meta-models in the scientific context.

The same plots are shown in Figure 23 and Figure 25 for the realistic context. In these plots,
the same-source baseline model is omitted, as these pre-trained models cannot be selected in the
realistic context.

In addition, we show the distribution of the difference between the validation accuracy after one
epoch of fine-tuning and the final fine-tuning performance in Figure 27.

6.4 Discussion

In the first set of experiments, we use feature sets that only consist of pixel-based features. In Fig-
ure 18 we observe that the random forest meta-model that uses the difference in pixel-based features
performs worse than selecting pre-trained models at random (random expected). In this regard, this
meta-model proves to be unusable for model selection. Next, we find that the rf separate meta-model,
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which bases its predictions on the separate pixel-based features of the meta-train dataset and meta-
test task, improves on the other random forest meta-model. For selecting the best pre-trained model,
the rf separate model performs similarly to the model average baseline. However, both meta-models
are only able to select the best-performing model in ∼ 7% of cases. For identifying models from the
other ranks, the model average baseline proves to be better than the rf separate model. Similarly
to our observations from Section 5, we find that same-source pre-trained models often belong to the
top-5 performing pre-trained models for a given task.

In Figure 19 we get a better view of the selection distribution of the meta-models. The biggest
difference in the distributions of rf separate and rf difference is found in the density around a loss
of 0%, which is reflected in the bars for the best category shown in Figure 18. In other ranges of
the graph, we see that the distributions of both meta-models are similar. Both meta-models have
selected pre-trained models that have a loss of more than 70%. The model average baseline is slightly
better compared to the two random forest meta-models, but the difference is small. The same-source
baseline outperforms all other shown meta-models and baselines. It made no selection with a loss of
more than 35%. This further shows that if the same-source model is not the best-performing model,
other models rarely perform much better.

We show the same plots for the realistic setting in Figure 20 and Figure 21. Apart from a slight
improvement in the model average baseline, the performance of the meta-models and baselines re-
mains similar to the realistic setting in terms of rank counts. In the case of the distributions, we also
see no mentionable differences apart from the shortening of the tail. We suspect this is due to the
smaller differences between the fine-tuning performances that exclude the same-source performances.

The unimpressive results from using solely pixel-based features inspired us to explore the use of
a low-cost proxy (LCP) in the form of the fine-tuning validation accuracy after one epoch of fine-
tuning. In Figure 22 we show the rank-counts after introducing the LCP feature to our feature sets
for the scientific context. We observe a great improvement of the meta-models in comparison to the
results shown in Figure 18. Using the rf full LCP feature set, we were able to correctly identify the
best-performing pre-trained model in more than a third of the cases. The figure also shows that with
the rf full LCP feature set, we slightly improve upon the same-source baseline. The rf separate LCP
and rf difference LCP feature set perform slightly worse than the rf full LCP feature set. We also
observe that these two meta-models add little to no benefit to the LCP baseline.

In terms of selection loss, we also see large differences after introducing the LCP feature in Fig-
ure 24. All meta-models were able to select models that never miss out on more than 40% fine-tuning
performance. We also observe that in terms of distribution, all meta-models and the LCP and same-
source baselines are very similar.

In the realistic context, shown in Figure 23, we see a small decrease in performance across all random
forest meta-models in contrast to the scientific context. In addition, the difference in performance
between the feature sets has disappeared. The performance difference between the LCP baseline
and the meta-models is also further decreased. In terms of selection loss, shown in Figure 25, we
observe that the distributions of the meta-models have become thicker in the 0% to 20% range. This
shows us that when the meta-models are not able to select the best-performing pre-trained model,
the pre-trained model they do select often performs slightly worse than the best option.

Finally, we wanted to investigate how similar the LCP feature is to the final fine-tuning perfor-
mance, to rule out the possibility that the pre-trained models had already converged after one epoch
of fine-tuning. For this, we created Figure 27, where we show a histogram for the differences between
the value for the LCP feature and the final fine-tuning performance for all records in our meta-dataset.
We find that the LCP value is not exclusively equal to the final fine-tuning performance and that
different developments of the fine-tuning accuracy are possible after the first fine-tuning epoch.
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Figure 18: Bar chart showing how often different meta-models and baseline meta-models selected a pre-
trained model that belongs to the top-1 (best), top-2, top-3, top-4, and top-5 for a given meta-test task
in the scientific context. Both rf separate and rf difference correspond to random forest meta-models that
were trained on the corresponding feature sets. The model average baseline uses the average performance
of a pre-trained model on the training data as the prediction for the fine-tuning performance. The random
expected baseline model shows the expected number of predictions in a given rank group when selecting at
random. The same-source baseline model always selects the pre-trained model that was trained on the same
source data as the meta-test task.
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Figure 19: Violin plot with embedded box plots showing the selection loss of different meta-models and
baseline meta-models in the scientific context. Both rf separate and rf difference correspond to random
forest meta-models that were trained on different feature sets. The model average baseline uses the average
performance of a pre-trained model on the training data as the prediction for the fine-tuning performance.
The random baseline model shows the expected loss when selecting pre-trained models at random, which is
calculated as the average loss of all pre-trained models per meta-test task. The same-source baseline model
always selects the pre-trained model that was trained on the same source data as the meta-test task.
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Figure 20: Bar chart showing how often different meta-models and baseline meta-models selected a pre-trained
model that belongs to the top-1 (best), top-2, top-3, top-4, and top-5 for a given meta-test task in the realistic
context. Both rf separate and rf difference correspond to random forest meta-models that were trained on
different feature sets. The model average baseline uses the average performance of a pre-trained model on
the training data as the prediction for the fine-tuning performance. The random expected baseline model
shows the expected number of predictions in a given rank group when selecting at random. The same-source
baseline model as included in Figure 18 is excluded from this figure, as the realistc context does not allow
selection of a pre-trained model that was trained on the same source data as the given meta-test task.
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Figure 21: Violin plot with embedded box plots showing the selection loss of different meta-models and
baseline meta-models in the realistic context. Both rf separate and rf difference correspond to random
forest meta-models that were trained on different feature sets. The model average baseline uses the average
performance of a pre-trained model on the training data as the prediction for the fine-tuning performance.
The random expected baseline model shows the expected number of predictions in a given rank group when
selecting at random. The same-source baseline model always selects the pre-trained model that was trained
on the same source data as the meta-test task.
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Figure 22: Bar chart showing how often different meta-models and baseline meta-models selected a pre-
trained model that belongs to the top-1 (best), top-2, top-3, top-4, and top-5 for a given meta-test task in
the scientific context. Both rf separate and rf difference correspond to random forest meta-models that were
trained on different feature sets. The model average baseline uses the average performance of a pre-trained
model on the training data as the prediction for the fine-tuning performance. The random expected baseline
model shows the expected number of predictions in a given rank group when selecting at random. The same-
source baseline model always selects the pre-trained model that was trained on the same source data as the
meta-test task.
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Figure 23: Bar chart showing how often different meta-models and baseline meta-models selected a pre-trained
model that belongs to the top-1 (best), top-2, top-3, top-4, and top-5 for a given meta-test task in the realistic
context. Both rf separate and rf difference correspond to random forest meta-models that were trained on
different feature sets. The model average baseline uses the average performance of a pre-trained model on
the training data as the prediction for the fine-tuning performance. The random expected baseline model
shows the expected number of predictions in a given rank group when selecting at random. The same-source
baseline model as included in Figure 18 is excluded from this figure, as the realistc context does not allow
selection of a pre-trained model that was trained on the same source data as the given meta-test task.
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Figure 24: Violin plot with embedded box plots showing the selection loss of different meta-models and
baseline meta-models in the scientific context. Both rf separate and rf difference correspond to random
forest meta-models that were trained on different feature sets. The model average baseline uses the average
performance of a pre-trained model on the training data as the prediction for the fine-tuning performance.
The random expected baseline model shows the expected number of predictions in a given rank group when
selecting at random. The same-source baseline model always selects the pre-trained model that was trained
on the same source data as the meta-test task.
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Figure 25: Violin plot with embedded box plots showing the selection loss of different meta-models and
baseline meta-models in the realistic context. Both rf separate and rf difference correspond to random
forest meta-models that were trained on different feature sets. The model average baseline uses the average
performance of a pre-trained model on the training data as the prediction for the fine-tuning performance.
The random expected baseline model shows the expected number of predictions in a given rank group when
selecting at random. The same-source baseline model always selects the pre-trained model that was trained
on the same source data as the meta-test task.
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Figure 27: Histogram of the difference between the final fine-tuning performance and the low-cost proxy
(fine-tuning performance after 1 epoch of fine-tuning).
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7 Conclusion and future work

The large amount of high-quality training data that is needed to properly train a deep learning system
forms an obstacle to its application in domains where data is sparse. This problem has led to the idea
of employing auxiliary data to support the learning process, which is applied in the research fields of
deep metalearning and deep transfer learning. Both research fields bring forth successful methods to
train well-performing deep learning systems with auxiliary data and a small amount of training data
for the target task. However, they also rely on the condition that the auxiliary data is related to the
target task. Currently, no proven method exists for selecting the right auxiliary data for a given deep
learning task, making it difficult to use scientific solutions in real-life applications. This has inspired
us to investigate dataset relatedness in the context of deep metalearning and deep transfer learning.

Specifically, we were interested to know how well pre-trained image classification models from a
given dataset can be fine-tuned to tasks from another dataset depending on the relationship between
these datasets. Using the recently published Meta-Album dataset, we were able to test this for 30 dif-
ferent datasets, that originate from 10 different domains. The structure of Meta-Album then allowed
us to formulate and compare three different dataset relationships: same-source, same-domain,
and cross-domain.

Our initial research question regarded the same-source dataset relationship. Since image datasets
generally contain classes that are conceptually related, we intuitively expect the classes to also be
related in a computer-vision context. We wanted to test this intuition and asked

Can we expect pre-trained models to transfer well to tasks from the same source dataset
via fine-tuning?

In terms of absolute achieved accuracy on the target task, we found that we cannot expect this. Half
of the fine-tuning performances that we recorded for the same-source category are less than 60% and
a quarter of the performances are less than 45%. We have also observed that pre-trained models reg-
ularly achieved a fine-tuning performance that is comparable to random guessing. At the same time,
we found that a quarter of the recorded performances are more than 85%. Both extremes form a bi-
modality in the distribution of fine-tuning performances, which is not observed in the distributions of
the same-domain and cross-domain categories. Therefore, we conclude that in some cases, fine-tuning
a pre-trained model that was pre-trained on the same source dataset as the task is advantageous. It
remains unknown why this does not apply to all records that belong to the same-source category.

In terms of relative performance, the same-source category outperforms the other categories. In
66% of cases, the pre-trained model from the same-source category belonged to the top-5 performing
models out of 30 for a given task and in more than 33% cases the same-source model performed best.
This means that when same-source instances have a low absolute performance, instances from the
other categories in general have a similar or lower performance. We have found datasets that bring
forth exclusively easy tasks, where the fine-tuning performance is high, regardless of which pre-trained
model is employed. Similarly, we have found datasets that bring forth exclusively hard tasks, where
all pre-trained models show weak performance. What makes datasets exclusively easy or hard in this
fine-tuning context is to be discovered in future work.

In a similar style, we wanted to know if the dataset domain relationship was reflected in the fine-
tuning performance. As datasets that belong to the same domain are usually conceptually more
related than datasets from different domains, we expected them to be more related in a fine-tuning
context as well. Based on this intuition, we asked

Do pre-trained models transfer better within their domain than cross-domain?

We have found no decisive evidence to conclude this. Of all the domains that were featured in our
experiments, we have only found strong same-domain versus cross-domain performance differences for
the Optical Character Recognition (OCR) domain. For other domains, there were either no or unclear
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indications to suspect an advantage with respect to the cross-domain category. This is reflected in
the distributions of fine-tuning performances, where we observed no notable difference between the
same-domain and cross-domain categories.

Finally, our third research question involves the idea of selecting the best pre-trained model for a
given task, using only pixel-based information about the datasets of the pre-trained model and the
task. Specifically, we asked

Given an image classification task and a collection of pre-trained classification models, can
we select the best pre-trained model using pixel-based meta-features of the source datasets
of the model and task?

To answer this question, we created different feature sets that are based on the statistical prop-
erties of the raw data of the image datasets. Using the feature set, we trained various statistical
meta-models. Unfortunately, we were unable to successfully select the top-performing models for a
given task using meta-models that base their predictions exclusively on pixel-based meta-features
of the involved datasets. Although our best pixel-based meta-model performed better than random
selection, we could only identify the best-performing pre-trained model in 7% of cases. We were
also unable to outperform the model average baseline, which selects a pre-trained model for a task
based on its average performance on all other tasks. To put our rank-based performance measure
in perspective, we defined a selection loss metric that captures how much worse the selected pre-
trained is with respect to the best-performing pre-trained model. In terms of this selection loss, the
performance of our meta-model is comparable to the performance of the model average baseline, and
half of the selections of our meta-model lose out on approximately 25% to 5% fine-tuning performance.

To improve the performance of our meta-models, we introduced an additional low-cost proxy feature,
which we defined as the validation accuracy after one epoch of fine-tuning. Using this additional
feature, we were able to greatly improve the performance of our meta-models, where the best one was
able to identify the best-performing pre-trained model in more than a third of the cases. In addi-
tion, our best meta-model performed better than the same-source baseline, where the selected model
always originates from the same source dataset as the given task. The pixel-based meta-features
proved to be of added benefit, as our best meta-model also improves on the low-cost proxy baseline,
where the pre-trained model with the highest low-cost proxy value is selected. We conclude that the
validation accuracy after one epoch of fine-tuning has great predictive power and that it can enable
statistical meta-models to effectively select the right pre-trained model for a given fine-tuning task.

Many questions have also remained unsolved, which we will state here for inspiration for future work.
First, we were unable to find an explanation for why there are two local peaks in the distribution
of fine-tuning performances for the same-source category. We wonder what causes some pre-trained
models to transfer exceptionally well to tasks from the same source dataset and why some pre-trained
models do not have this apparent advantage in this context. Second, we have found datasets that
produce tasks to which no pre-trained model could be fine-tuned with good performance. Similarly,
we have found datasets for which the opposite is true. We currently have no explanation of what
causes some datasets to produce exclusively hard or easy tasks in the context of our experiments.
A third remarkable observation is the apparent cohesion within the optical character recognition do-
main, which is not observed in other domains. It remains unclear why only this domain has this
feature. A fourth question that remains unanswered is what causes pre-trained models to sometimes
perform worse than random guessing when they are fine-tuned to tasks from other domains. Finally,
we see potential in the idea of selecting auxiliary data on a class level or even instance level using the
pixel-based features that were used to train the meta-models. In this way, pre-training datasets can
be formed from a larger data collection to specifically suit the intended target task.
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