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Abstract

This thesis explores how OpenAI’s technologies can enhance data-driven decision-
making in the face of increasing data volumes. It evaluates the effectiveness of OpenAI’s
large language models (LLMs) compared to traditional methods in information retrieval
and answer generation. The findings suggest that while OpenAI’s embeddings do not
surpass traditional retrieval techniques in document identification, GPT-3.5 Turbo
excels in generating clear and comprehensive answers. However, its reliability as a
sole decision-making tool is limited and requires careful validation. Future research
should focus on integrating OpenAI’s embedding models with other retrieval methods
to boost effectiveness and explore their potential for improving information retrieval
and summarization processes. Such studies could uncover more efficient ways to leverage
these models, potentially revolutionizing data analysis and decision-making strategies.
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1 Introduction

The amount of data organizations generate has grown exponentially. Big Data refers to
extremely large and complex datasets characterized by the ”Three Vs”: Volume, the vast
amount of data generated; Velocity, the speed at which this data is created and processed;
and Variety, the different types and sources of data (1). Understanding Big Data is essential
for organizations to maintain their competitive advantage, create business strategies (2), and
make decisions effectively (3). By leveraging insights from these vast and varied datasets,
organizations can drive innovation, optimize operations, and better meet customer needs.
For instance, data in customer relationship management (CRM) systems can be analyzed to
identify sales trends, predict customer behavior, and tailor marketing efforts. Other data, such
as social media posts, can provide insights into customer sentiment and brand perception,
helping companies to adjust their public relations strategies.
Research shows that Big Data has disrupted the decision-making at the board-level manage-
ment of organizations (4). However, the same research also suggests board members and
directors do not possess the capabilities to deal with Big Data which can negatively impact
the decisions made.
Powerful technologies are required to make the Big Data interpretable. Recent developments
have introduced new possibilities for data analysis. Generative Artificial Intelligence (GAI),
such as Large Language Models (LLM), has grown exponentially in recent years. The
disruptive development is rapidly changing various industries, including business. The rise of
GAI has sparked the need for research on its possibilities and effects on business processes.
One comprehensive research (5) has made an overview of how LLM are currently employed
in marketing, customer service, finance, and many more business processes. The majority of
the tasks relate to automation, personalization, and assistance.
Currently, data scientists are responsible for transforming Big Data into valuable insights.
This task requires a multidisciplinary skill set, including expertise in Python and SQL (6).
The work of decision makers is therefore at a standstill until the data report is provided which
might cost valuable time and money. But what if decision-makers could extract valuable
insight from the data themselves without learning statistics or programming skills?
Organizations accumulate a large volume of financial reports each year, all containing valuable
information. Navigating this vast landscape to find the right data source can be challenging.
Furthermore, analyzing these diverse data sources is often time-consuming and may require
specialized expertise. This research aims to use LLMs, specifically OpenAI’s technologies,
to simplify business analysis so that decision-makers can easily access key insights from
data. Examples of questions that this study will focus on include ”what is the net change
in net revenue during 2015?” or ”what was the percentage change in rental expense for
operating leases from 2015 to 2016?”. This way, decision makers will have direct access to
the information they need which could save money and time. In addition, the feasibility of
eliminating data scientists from data-driven decision-making will be explored. The saved
resources during decision-making could be redistributed to data-driven research to provide
decision-makers with innovative and futuristic insights.
The specific research questions are the following:

1. How can LLMs be used to simplify the statistical analysis needed for data-driven
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business decisions?

2. To what extent can LLMs make statistical analysis accessible in business to those with
limited knowledge of statistics?

3. How can the performance of an LLM be examined in a Question Answering (QA) use
case?

Firstly, previous research will be discussed in the Related Works section (Section 2). This
will include an overview of the evolution leading up to the current state of Large Language
Models (LLMs), providing insights into the developments that preceded this technology. The
focus will then shift to the reasoning capabilities of LLMs, exploring their proficiency in logic
and how to fully exploit these abilities to enhance performance. Additionally, we will examine
the application of LLMs in finance and their capability to perform mathematical operations.
Following the discussion of related works, the experimental setup will be explained in the
Experiment section (Section 3). To research how LLMs can simplify business analysis,
traditional information retrieval and text generation methods will be compared to OpenAI’s
equivalents. A novel additional step during the information retrieval will be introduced which
aims to increase accuracy. The proposed information retrieval method will be tested and
compared to sparse retrieval techniques. To what extent LLMs can make statistical analysis
accessible will be assessed on their ability to select the most relevant documents and answer
financial questions. The research will also assess the performance of the language models
using standard text generation metrics alongside OpenAI’s GPT-3.5 Turbo, to determine the
quality of the answers and to see which approach provides a more accurate picture of their
effectiveness.
The results of the experiment will be discussed in the Results section (Section 5). While
OpenAI’s embeddings and information retrieval architecture seem to perform worse than
traditional methods, their question-answering abilities demonstrate substantial improvements
compared to the established T5 language model by Google AI.
To conclude the research, future research directions will be proposed to further explore the
potential of the methods proposed in this study.

2 Related Work

2.1 The Evolution of Large Language Models

Throughout the years, humans have gone to great lengths to speak the language of computers.
By creating and mastering programming languages, the power of technology can be effectively
leveraged. However, AI has seen rapid developments in the last few years that have caused a
switch; computers are starting to speak our language. Large Language Models (LLMs) have
seen tremendous growth and can speak and understand our natural language (7). Leveraging
the power of technology no longer requires programming knowledge with the rise of LLMs.
While it might seem like an overnight development, the history of current LLMs is long and
rich.
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For any models to understand a language, they must be able to create a Language Model (8).
Language Modeling (LM) is crucial for Natural Language Processing (NLP) tasks, which are
tasks that converse written and spoken natural languages into structured data (9). With the
help of a large text corpus, models learn the patterns and structure of natural languages. The
process of Language Modeling enables the models to understand and generate text. Since the
1980s there have been 4 major developments in Language Modeling.

2.1.1 Statistical Language Models

The first major development was the creation of Statistical Language Models (SLMs) in the
1980s. Before the 1980s, Language Models were rule-based and relied on their creators to
provide them with a set of well-defined rules to understand and generate language (10). SLMs
completely changed that and were the first language models that learned from a text corpus.
From this large text corpus, SLMs learn probability distributions for the next word based on
the previous words using statistical estimations (11).
SLMs were originally intended for speech recognition; spoken words could be recognized more
accurately when considering the previous words. However, due to its flexible nature, it was
applied to various other NLP tasks such as machine translation and information retrieval.
The performance of SLMs greatly depended on the amount of available training data. The
rise of the internet happened alongside the rise of SLMs. This meant that there was plenty of
textual data available to train the models with. This resulted in significant improvements
in their performance. However, after 20 years it seemed like SLMs had reached their full
potential. No amount of extra data could improve their performance.
SLMs simply learn the order in which words occur to give a probability distribution. A
limitation of this type of modeling is that it does not take language into account. The
probability distribution can be made without actual understanding of the human language.
The same model would work on an arbitrary language with arbitrary symbols (12). The need
to develop Language Models that understood human language grew.
Since SLMs use the preceding words in a sequence as parameters to determine the probability
distribution of the next word, the number of parameters can grow significantly. This issue
is known as the curse of dimensionality and especially becomes an issue when generating
large pieces of text. N-gram models became the new state-of-the-art model. While traditional
SLMs used all preceding words in a sequence, N-grams only used the preceding N words to
make a probability distribution. The N-grams served as approximation methods for SLMs
and were therefore widely used (13).

2.1.2 Neural Network Language Models

Neural Network Language Models (NLMs) were developed to address the curse of dimen-
sionality. NLMs use neural networks to learn distributed representations of words (14). The
distributed representations, also known as embeddings, represent words as vectors. These em-
beddings can capture the meaning and semantic relationship between words. The embeddings
are continuous vectors that are updated during training to reflect their meaning and usage
in the different contexts the model encounters. It aims to capture words in a way where a
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closer distance in the vector space indicates similarity between the words. This enables more
understanding and linguistic knowledge.
Unlike SLMs, NLMs are able to predict words in sequences even if those sequences were
not seen during training. NLMs can use similar word contexts it has encountered instead.
Because of their effective distributed representations, NLMs use fewer parameters than SLMs
and generalize well. This makes them appropriate for larger datasets and more complex tasks
as well.
To predict the probability distribution of the next word, NLMs transform the preceding words
into a sequence of feature vectors. These feature vectors represent the semantic meaning of
the words in the sequence. Essentially, the model predicts what word is likely to follow based
on the context provided by the sequence.

2.1.3 Pre-trained Language Models

The introduction of Pre-trained Language Models (PLMs) marked a significant advancement
in NLP tasks. PMLs are context-aware; they capture the meaning of individual words as well
as the context in which those words appear. PMLs are trained on vast amounts of text data,
enabling them to understand and predict language more accurately (15).
PMLs ability to capture nuanced language features has made them highly effective in
understanding the broader context and subtleties of natural language. They demonstrated
superior performance in NLP tasks such as sentiment analysis and text classification (16).
Despite their impressive linguistic understanding, PLMs had a few limitations. They possessed
limited knowledge which made them unable to perform various NLP tasks. The models must
be fine-tuned before they can be used for various tasks (17). The need for further fine-tuning
meant that, while powerful, PLMs were not immediately applicable for widespread use across
diverse tasks.

2.1.4 Large Language Models

This brings us to the current landscape of Language Models. Large Language Models (LLMs)
were developed to achieve exceptional performance across a wide range of NLP tasks (12).
LLMs are trained on a massive amount of data. It is due to this extensive training that LLMs
possess so such versatile capabilities and knowledge.
LLMs are also highly adaptable. They can be fine-tuned to excel in particular applications
(12). Its adaptability offers great opportunities for highly customized utilization, allowing
organizations and researchers to tailor these models to meet specific needs and objectives.
The evolution of language models continues to drive innovation in NLP, promising even more
sophisticated and context-aware AI systems. These advancements are further bridging the
gap between human and computer communication.

2.2 Exploring the Reasoning Capabilities of LLMs

Fundamentally, LLMs generate text by predicting the next word in a sentence. According to
the Cambridge Dictionary, intelligence is ”the ability to learn, understand and make judgments
or have opinions that are based on reason” (18). While LLMs learn from a vast amount of
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data and understand the relationships between words, the question remains whether they
simply replicate patterns found in their training data or if they engage in logical reasoning.
This distinction is crucial in evaluating the true capabilities and limitations of LLMs as it
delves into the deeper issue of whether these models demonstrate genuine understanding and
cognitive processes similar to human intelligence.

2.2.1 The Fundamental Logic of LLMs

Research has explored whether the reasoning and judgments of LLMs stem from genuine
intelligence or merely from the numerical patterns of words and their relationship (19).
Although LLMs perform well on complex reasoning tasks, they can easily be misled and often
struggle to stand their ground when challenged with flawed or nonsensical arguments. This
suggests that LLMs still lack a deep understanding of logic and language. Their responses
seem more reflective of statistical correlations learned from the data rather than true cognitive
reasoning, highlighting the gap between human-like intelligence and AI capabilities.

2.2.2 Techniques to Optimize Reasoning

While it is still unclear whether LLMs possess genuine intelligence, they perform quite well
on complex reasoning tasks [?]. Drawing inspiration from human practices where knowledge
is effectively gathered through debates, researchers have explored the concept of multi-agent
debates among LLMs (20). This approach allows LLMs to learn from each other, improving
their ability to handle tasks and capitalize on each other’s strengths. By engaging in debates,
LLMs can enhance their performance across various tasks. However, research indicates that
comparable results can be achieved using a single LLM with a well-designed prompt which is
known as prompt engineering
Prompt engineering is an effective approach to enhance the performance of LLMs (21). It
involves carefully crafting the input prompts to provide clear context and guidance, helping
the LLM better understand the task. Prompt engineering can significantly improve the
model’s ability to process complex information and produce more accurate responses by
supplying the necessary context and information for better reasoning.
Few-shot learning is a prompt engineering method where a model is provided with a small
number of labeled examples that serve as instances or demonstrations of the task at hand
(22). These examples guide the model to improve its performance on similar tasks. Few-
shot learning aims to provide task-specific customization similar to fine-tuning but with
reduced computational costs and minimal data requirements (23). This approach makes
models tailored for specific tasks more accessible compared to traditional fine-tuning methods.
Studies have demonstrated that few-shot models can achieve performance comparable to
fine-tuned models, even without altering the model architecture itself (24). However, the
effectiveness of few-shot learning depends on the similarity between the provided examples
and the target task (25). If the new task significantly differs from the examples used during
few-shot learning, the model’s performance may worsen due to its limited adaptability and
flexibility to handle slightly different tasks. While effective in specific scenarios, few-shot
learning may struggle to generalize to tasks that significantly deviate from its training
examples.
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Conversely, zero-shot learning, another prompt engineering method, operates without relying
on labeled examples. Instead, it utilizes the foundational knowledge ingrained in the model
during its training phase. Zero-shot learning tasks the model with applying its learned
understanding to novel tasks it has not been explicitly trained on, deriving responses based on
its existing knowledge and contextual comprehension (26). Therefore, while few-shot learning
refines the model with specific examples, zero-shot learning relies on the model’s ability to
generalize and utilize its acquired knowledge autonomously.
Due to its adaptable nature, zero-shot learning is typically employed for tasks that span a
wide range or evolve (27). However, zero-shot learning faces challenges when confronted with
specific or nuanced tasks (28), which can result in sub-optimal and inconsistent performance
for such scenarios.

2.2.3 Advanced Complex Reasoning and Multi-Hop Abilities

Data-driven decision-making often involves gathering insights from multiple sequential rea-
soning steps. LLMs do not possess the inherent multi-hope reasoning abilities and require
specialized training to do so (29). There is growing research on enhancing their performance
in addressing queries that involve multi-step reasoning. This includes developing methods
that enable LLMs to analyze complex patterns, interpret relationships between those patterns,
and generate informed insights. These enhanced capabilities would allow LLMs to be used
for more sophisticated and data-informed business strategies.
A survey on multi-hop question answering (MHQA) defines a multi-step reasoning agent as
one that derives one or more intermediate conclusions necessary to reach the final answer
(30). To assist LLMs in performing complex reasoning tasks, a straightforward yet effective
technique is the Chain-of-Thought (CoT) approach. Implementing CoT can be as simple
as incorporating prompts like ’Let’s think step by step’ into the model’s input. Despite its
simplicity, CoT has been shown to significantly enhance the ability of LLMs to engage in
complex reasoning (31).
CoT can also be integrated with few-shot learning by providing the model with examples of
CoT reasoning patterns. Research indicates that CoT prompts can achieve high accuracy in
solving linguistic math problems, often outperforming models that have been fine-tuned for
specific tasks (31). However, its efficacy varies with model size. LLMs with 100 billion or more
parameters benefit the most from CoT prompting, demonstrating improved performance
and logical coherence in their reasoning processes. Smaller LLMs may struggle with CoT
prompting, producing illogical intermediate steps that reduce overall accuracy compared
to standard prompting methods. Improper intermediate steps in reasoning could lead to
incorrect responses known as hallucinations.
Hallucinations refer to any output of an LLM that deviates from the user’s intended query,
lacks consistency, or contains inaccuracies (32). They pose a significant challenge for LLMs.
To address hallucinations within the context of the CoT process, researchers have introduced
the Chain of Question (CoQ) framework (33). This approach breaks down complex questions
into multiple sub-questions, each contributing to the overall answer. Instead of generating
potentially inaccurate intermediate statements, CoQ focuses on straightforward sub-questions
that the model can answer with higher confidence. This approach effectively reduces the
occurrence of hallucinations compared to traditional CoT methods.
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Furthermore, the CoQ approach aligns with the Chain-of-Verification (CoVe) strategy, known
for its effectiveness in reducing hallucinations (34). CoVe involves generating an initial response
and posing verification questions to fact-check the response. These questions are answered
independently to mitigate bias, ensuring a verified response with greater accuracy. This
method highlights the importance of breaking down complex queries into smaller, verifiable
sub-questions to lessen hallucinations effectively.
Tree-of-Thought (ToT), building upon the principles of Chain-of-Thought, introduces a
strategy aimed at enhancing extensive problem-solving capabilities (35). Inspired by human
cognitive processes, ToT initiates a multi-round conversation with the LLM to construct a
solution space. The interaction begins with a user prompt, prompting the LLM to generate
an initial intermediate step. This step undergoes evaluation for validity and quality. If deemed
sufficient, the model proceeds along that path, continuing to generate subsequent intermediate
steps similarly. When an intermediate step fails the validity test, the model can backtrack to
the last confirmed step and explore alternative paths. This iterative method allows LLMs to
explore various ideas while preventing errors from spreading throughout the entire thought
process, thereby improving the robustness of the model.
However, the world of LLMs continues to undergo significant developments. Artificial General
Intelligence (AGI) refers to artificial intelligence that can perform any intellectual task that a
human can do, with the same level of understanding and skill without needing specialized
prompting (36). The GPT-4 model from OpenAI has demonstrated exceptional performance
across diverse tasks and domains. Early research even suggests that its capabilities are
approaching human-level performance and it may even exhibit traits of AGI (37).

2.3 Enriching data with tailored data/tailoring LLMS to specific
use cases

LLMs are trained on vast amounts of data, enabling them to acquire understanding and
knowledge across various domains and be widely applicable. However, their performance
on specific tasks is contingent on the presence of relevant data during training. When an
LLM lacks specific knowledge, it cannot perform those tasks adequately. This limitation
is particularly problematic when deploying LLMs in unfamiliar environments they were
not initially trained for. To address this issue, research has explored numerous methods
for integrating custom data into LLMs, thereby enhancing their applicability in new and
specialized environments.

2.3.1 Fine-tuning

The first method is fine-tuning an LLM. This process involves taking a pre-trained LLM
and providing it with additional data specific to a particular task or domain. By further
training the model on this new data, its parameters and weights are adjusted to optimize
performance for the given use case (38). Fine-tuned models excel at providing clear and
precise responses for specialized tasks and can manage large datasets during the fine-tuning
process (39). However, fine-tuned models, like pre-trained ones, are static. To update them
with new knowledge, they must undergo retraining. One significant drawback of fine-tuning
is its computational expense, making it a costly process. As a result, fine-tuned models can
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quickly become outdated in fast-changing environments and may be inaccessible to various
organizations and teams due to the high costs involved.

2.3.2 Retrieval Augmented Generation

Another method to provide an LLM with more knowledge is Retrieval Augmented Generation
(RAG). RAG enhances the LLM’s performance by providing additional context and knowledge.
It works by retrieving relevant data sources based on the user input. The retrieved data,
combined with the original user query, is fed into the LLM, enabling it to respond with
the newly acquired knowledge. Unlike fine-tuning, which alters the LLM model, RAG
enriches the user prompt with more context. The data sources are pulled from a dynamic
knowledge base that can be updated regularly, unlike the static knowledge base of an
LLM. Implementing RAG allows LLMs to possess specific and current knowledge without
the expensive computational costs of fine-tuning a model. Research also shows RAG can
consistently outperform unsupervised fine-tuned models (40).
Despite the flexibility and cost-efficiency of RAG, the process does have limitations (38).
RAG can struggle with semantic search, as its sensitivity to language nuances can negatively
impact performance. Additionally, chunking, the process of breaking up the knowledge base
into manageable segments, can lead to information loss if not designed optimally (41). These
factors can detract from the overall effectiveness of the model.
To effectively manage the library of data sources, it is crucial to store them in an organized
manner that optimizes the RAG pipeline. Typically, RAG pipelines use fixed chunk sizes,
but this approach may not always be ideal given the varying sizes and nature of data sources.
For instance, in financial reports, element-based chunking has been shown to yield better
retrieval scores than static chunking strategies (42). In element-based chunking, the creation
of new chunks is triggered by new titles and tables, aligning the chunks more closely with the
document’s structure. This method not only improves retrieval accuracy but also requires
fewer chunks, making it a more efficient and optimal technique. Additionally, adapting
chunking strategies to the specific nature of the data can enhance the overall performance of
the RAG pipeline, ensuring more relevant and accurate responses.
In the context of multi-hop question answering (QnA), research indicates that traditional
RAG systems are often inadequate (43). As a result, adapting RAG systems to better support
multi-hop QnA has become a significant area of interest. One approach is multi-hop dense
retrieval, which iteratively encodes the user query and previously retrieved documents in
a vector space to find the next relevant document (44). When introduced, the multi-hop
dense retrieval method matched the performance of the best existing methods while being
ten times faster, making it a highly efficient alternative. This method involves a continuous
process where each step builds upon the previous one, ensuring that the system can handle
complex, multi-step queries more effectively. The efficiency and effectiveness of this approach
make it a promising solution for enhancing the capabilities of RAG systems in multi-hop
QnA scenarios.
There are several RAG strategies available, typically categorized into sparse and dense
retrieval methods. Sparse retrieval methods use Bag-of-Words (BOW) vectors to represent
text for natural language processing (NLP). In this representation, text is considered an
unordered collection of words, and a BOW vector is a sparse vector that records the word
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count for every word in a corpus for each text element (45). While this model is simple and
can be effective for certain tasks, it has notable downsides, including high dimensionality,
extreme sparsity, and an inability to capture the actual meaning of textual data.
To address these limitations, researchers have explored ways to enhance the BOW model by
integrating it with newer technologies that can better capture semantic meaning.
This hybrid approach aims to retain the simplicity and computational efficiency of BOW
while mitigating its drawbacks by leveraging the strengths of more advanced language models.
Dense retrieval methods utilize word embeddings to enhance information retrieval. By
capturing language through dense vector representations, dense retrieval (DR) models can
more effectively understand the meaning and semantics of text in fewer dimensions. Word
embeddings translate words into continuous vector spaces where semantically similar words
are located closer together, thereby improving the model’s ability to comprehend and retrieve
relevant information. In this approach, both the knowledge base and the query are embedded
into a vector space. The system then retrieves the closest knowledge vectors to the query,
which are used to generate the answer (46).
The use of dense retrieval methods offers significant advantages over traditional sparse
methods. For example, dense vectors can encapsulate nuanced meanings and relationships
between words that sparse methods like Bag-of-Words cannot. This results in more accurate
and contextually relevant information retrieval, making dense retrieval methods particularly
valuable for complex queries requiring a deep understanding of language.
RAG strategies are often evaluated based on the top k passages retrieved, as LLMs can usually
only consider a limited number of passages when generating responses. Therefore, ensuring
that these top few passages are precise is crucial for the effectiveness of RAG methods (47).
A common practice to enhance the quality of these top passages is re-ranking them, which
improves the overall results of RAG strategies (48). The retrieval process then becomes
a two-step procedure: initial retrieval and subsequent re-ranking. Various approaches to
re-ranking exist. A common method involves initially retrieving a large set of documents using
simpler, sparse models. These documents are then re-ranked using dense retrieval methods
that leverage neural models, which are more adept at capturing the semantic meaning of the
text (49). Such hybrid approaches effectively combine the strengths of both sparse and dense
retrieval methods; by first casting a wide net with sparse retrieval and then honing in on the
most relevant documents with dense re-ranking, these strategies can significantly improve the
performance of LLMs in RAG frameworks, making them more capable of handling complex
and nuanced queries.

2.4 LLMs in Finance

Large Language Models (LLMs) are revolutionizing finance by leveraging advanced natural
language processing capabilities to address complex challenges in financial analysis and
decision-making. These models excel in analyzing diverse data sources and performing multi-
hop numerical reasoning, essential for tasks such as financial report analysis.
LLMs play a crucial role in enhancing decision-making processes in finance. They provide
accurate insights through tasks like financial sentiment analysis, where they achieve high
accuracy by uncovering nuanced sentiments in reports and financial statements (50). This
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ability significantly reduces the time and effort traditionally required for analyzing financial
reports across various firms (51).
Moreover, LLMs contribute to portfolio optimization by providing investors with nuanced
risk and reward analyses based on textual data (52). They also aid in market forecasting,
complementing quantitative methods with qualitative insights to predict market trends and
stock prices (53).
In addition to their prowess in textual data analysis, LLMs leverage their computational
power to analyze real-time market data and customer preferences. This capability has led
to the development of Robo-advisors, which offer personalized financial advice tailored to
individual preferences, including strategies for risk management (54).
One of the key strengths of LLMs is their adaptability to different market environments
and client needs. They mitigate human bias in decision-making processes by providing
insights based on comprehensive data analysis (55). Fine-tuned LLMs excel in responding to
user queries, simplifying complex financial terms, and improving overall question-answering
capabilities (56).
In conclusion, LLMs are transforming finance by enhancing analytical capabilities, improving
decision-making processes, and providing innovative solutions that adapt to the dynamic
nature of financial markets and individual client needs. Their integration marks a significant
advancement in leveraging artificial intelligence for strategic and informed financial decision-
making.

2.4.1 Arithmic capabilities of LLMs

Large Language Models (LLMs) are designed primarily for natural language understanding
and generation rather than mathematical computations, which are crucial in finance. Tasks
such as solving math word problems and answering financial questions often involve complex
mathematical operations beyond basic arithmetic like addition, subtraction, and simple
multiplication. LLMs typically struggle with these tasks, particularly when confronted with
large numbers or lengthy mathematical queries (57). Their limitations in handling intricate
mathematical computations pose challenges in applications requiring precise numerical
analysis and computation-heavy tasks within the finance domain.
To address this limitation, researchers have explored various techniques to enhance the
accuracy of LLMs in numerical reasoning tasks. One effective approach involves replacing
numerical symbols with their corresponding English expressions. Studies have demonstrated
that this method can significantly improve the model’s performance when processing numerical
information (58). This approach aids LLMs in comprehending and manipulating numerical
data within the framework of natural language, aligning it with the data format that the
LLM is intended for.
Using zero-shot Chain-of-Thought (CoT) has been demonstrated to enhance results in
mathematical reasoning tasks (59). To further refine the accuracy of LLMs in numerical
reasoning, Program-of-Thoughts (PoT) complements CoT by employing language models
to generate a program encapsulating the necessary reasoning and calculations, which are
then executed to derive the answer (60). This approach directs LLMs to produce a program
that encodes the required logic, outsourcing the computations to more suitable tools like
Python, thereby ensuring precise arithmetic calculations (61). Self-verification of responses

10



and outcomes also increases mathematical performance (62).
In addition to these methods designed for pre-trained LLMs, fine-tuning can further improve
LLMs’ mathematical proficiency by training models to generate intermediate steps or refining
them with specific mathematical datasets (63).

3 Methodology

The aim of this research is to determine whether large language models (LLMs) can serve as
a comprehensive solution for assisting business stakeholders in making data-driven decisions.
Specifically, this study will compare traditional data analysis methods with the advanced
capabilities offered by OpenAI’s embeddings models and the GPT-3.5 Turbo LLM. The
effectiveness of these technologies will be evaluated in terms of their capacity and additional
value they may provide.
The research process is divided into two main components: information retrieval and response
generation. Each of these processes will be tested and analyzed independently to assess their
performance and applicability in business contexts.
The methodology is designed to be as flexible and straightforward as possible, accommodating
the dynamic environments in which businesses operate. The chosen approaches aim to closely
mirror real-life applications, ensuring practical relevance. Moreover, this study emphasizes
democratizing data analysis by employing simple and accessible techniques, recognizing that
not all stakeholders have access to extensive resources.
OpenAI’s technologies, specifically the GPT-3.5 Turbo and their embeddings models, will
be utilized in this research. OpenAI has been at the forefront of making AI accessible and
practical for a broad audience, making its tools highly appealing for business integration.
Given OpenAI’s prominence and widespread adoption, its models will serve as the benchmark
for new technology in this study.
Fine-tuning models is computationally intensive and lacks the agility needed for frequent
updates, which is contrary to the study’s objectives. Few-shot learning, while useful, requires
regular updates and careful design to cover a wide range of tasks, leading to significant
maintenance overhead. Therefore, zero-shot learning is considered the most suitable approach
for this experiment, as it relies on robust prompting and can yield satisfactory results without
the need for extensive customization.

3.1 Information retrieval

The RAG (Retrieval-Augmented Generation) process will be explored through three distinct
methods, each compared against the others. The baseline traditional methods include BM25
and Dense Passage Retrieval (DPR).
BM25 is a well-established ranking function used for information retrieval. It assesses document
relevance based on term frequency and inverse document frequency, where the latter measures
how common or rare a term is across all documents. By ranking documents according to
these criteria, BM25 retrieves the top k most relevant documents for a given search query.
Dense Passage Retrieval (DPR) represents a breakthrough in information retrieval, surpassing
the effectiveness of BM25 in certain contexts (64). DPR employs a passage encoder to convert
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text passages into dense, real-valued vectors. Simultaneously, it uses another encoder to
embed the user’s query into the same vector space. The similarity between the query and
passages is then computed using the dot product of their vectors, enabling DPR to retrieve
the top k passages that are most similar to the query. Leveraging the FAISS library for
efficient indexing, DPR can efficiently handle vast amounts of data, facilitating scalable
clustering and similarity searches.
In contrast to DPR’s focus on passage retrieval, OpenAI’s text embeddings specialize in
measuring the relatedness between textual elements. These embeddings are versatile, sup-
porting tasks beyond document retrieval, such as classification and recommendation systems.
OpenAI employs a unified model for embedding both passages and queries. Utilizing cosine
similarity, which calculates the angle between vectors, OpenAI retrieves the passages that
are most closely related to the query based on semantic similarity.
OpenAI models are versatile language models capable of handling broad variety of tasks
such as text generation, translation, and summarization. In contrast, DPR (Dense Passage
Retrieval), developed by Facebook AI, is tailored for retrieval tasks.
It is standard practice to retrieve a set of top k passages during the RAG process. However,
when generating the final response, typically only one passage can be included in the prompt.
Ensuring the selected passage is accurate is essential for the LLM to answer the query
correctly, especially considering the answers to the questions are not covered by publicly
available data.
To optimize this process, an intermediate step will be introduced between retrieval and
generation. Once the IDs of the top 5 most relevant passages are collected, summaries
generated by the models themselves will be retrieved. Alongside the original user query, these
pre-generated summaries will be presented to the LLM. Using this brief summary and the
context provided by the query, the LLM will then select the most suitable passage from the
identified top 5 options. This method aims to aid the language model in accurately selecting
the relevant passage for generating the final response. Without the correct context, the LLM
cannot accurately answer the query as. With the top 5 passages, there is ample diversity
in potential results, yet the number remains conducive for effective decision-making by the
LLM.
The following images further illustrate and clarify the novel approach.
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Figure 1: The top 5 most relevant documents to the user query are retrieved using BM25.

Figure 2: Based on the summaries of the top 5 retrieved documents, the language models
pick the most relevant summary to the user query.
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Figure 3: The language models generate a response to the user query with the full context of
the chosen document.

This methodological step is designed to refine the retrieval and generation process, leveraging
summary information to guide the LLM toward producing more accurate and contextually
appropriate responses.
To assess the effectiveness of the RAG strategies, we will examine whether the top 5 retrieved
passages include the intended passage. This evaluation involves two main metrics: Accuracy
and Mean Reciprocal Rank at 5 (MRR@5). Accuracy is particularly crucial here as it directly
measures the accuracy of including the correct passage essential for answering the query.
Following the initial retrieval phase, the analysis will focus on whether the precision of the
RAG process improves when the LLM selects the most relevant passage. While MRR@5
provides a broader understanding of how often the intended passage ranks highly, precision
focuses specifically on the accuracy of selection, aligning closely with practical applicability
in real-world scenarios.
This dual evaluation approach ensures a comprehensive assessment of RAG strategies,
emphasizing both the ability to retrieve relevant content and the accuracy in choosing
the correct passage for generating responses.

3.2 Generating final response

A critical aspect of this study focuses on the final generation of answers. It aims to determine
whether language models can accurately produce correct answers given the appropriate
context. To achieve this, all data entries will be tested under the assumption that the retriever
has successfully identified the relevant contextual information. This comprehensive analysis
will thoroughly assess the capabilities of LLMs in practical applications.
For generating the final answers, two models will be compared. ChatGPT, widely recognized
for its text generation capabilities, will serve as the benchmark against which OpenAI’s
technologies are evaluated.
T5, developed by Google AI, will be used as the base model (65). T5 approaches various
NLP tasks as text-to-text problems, enabling its application across a diverse range of tasks
including question answering. Trained on extensive datasets, T5 has consistently achieved
state-of-the-art performance in multiple benchmarks.
Given the requirement for logical reasoning, the models will be encouraged to adopt a step-by-
step reasoning approach aligned with the CoT methodology to enhance their mathematical
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proficiency and overall accuracy.
The output of both models will be assessed using various BLUE and ROUGE scores; two
widely recognized metrics for evaluating NLP tasks. These metrics gauge the quality of text
generated by the models compared to the expected answers.
ROUGE-L measures the longest common subsequence between the generated text and the
reference text. It emphasizes the order of words, crucial for preserving the intended meaning
of the text.
BLEU-4 is a precision-based metric that evaluates up to 4-grams (sequences of 4 words) in
the generated text against the reference text. It calculates how many of these n-grams from
the reference appear in the generated text, penalizing shorter outputs to ensure fluency and
accuracy.
To ensure the accuracy and reliability of these metrics, evaluations will involve both automated
assessments using GPT and a partial manual review to validate the results. This dual approach
aims to provide robust validation of the models’ performance in generating accurate and
contextually appropriate responses.

3.3 Dataset

The proposed methodology will undergo testing using the FinQA dataset (66), renowned
for its extensive question-answering tasks designed by financial experts. This dataset is
particularly suitable for this study due to its emphasis on multi-step numerical reasoning
within the context of financial reports. It comprises 6,251 data entries extracted from 2,700
financial reports.
A data entry consists of the following elements:

pre text: The texts before the table; #important shows what is in table/acts as
header.

post text: The text after the table; #gives clarification + more info.

table: The table.

id: Unique example ID. Composed by the original report name plus example index for
this report. #unique ID I need.

qa:
question: The question.
program: The reasoning program.
gold inds: The gold supporting facts.
exe ans: The gold execution result.
program re: The reasoning program in nested format.
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To prepare the data entries from the FinQA dataset (66) for embedding, an element-based
chunking approach will be employed. The dataset is already pre-divided into different elements
for every data entry. These chunks will then be individually processed for embedding purposes.
This approach ensures that all relevant information within each data entry is effectively
captured and encoded, ready for further analysis.

4 Experiment

All experiments will be conducted in Python with various libraries to ensure both efficiency
and accessibility. Python is chosen due to its widespread use and accessibility, making it an
ideal language for conducting experiments in data science and machine learning.

4.1 The Retrieval Process

First, the data must be prepared for analysis. The data entries, already separated into key
elements such as pre-text, post-text, and tables, are further divided into chunks of 500 tokens
each. These chunks are then processed based on the chosen embedding method.
For OpenAI embeddings, the OpenAIEmbeddings function from the LangChain library is used.
LangChain simplifies working with large language models (LLMs) by providing easy access to
various LLM functionalities. With a valid API key, this function generates embeddings with
1536 dimensions. Since OpenAI is a closed-source platform, the exact details of how these
embeddings are generated are not publicly available. The embeddings are then stored in a
Chroma database, which efficiently manages high-dimensional vectors. The same embedding
process is applied to user queries, and Chroma’s similarity search function is used to retrieve
the top 5 most relevant documents.
In this research, the DPR (Dense Passage Retrieval) model from Hugging Face’s Transformers
library is employed to generate embeddings. The process starts by tokenizing the text
into manageable units, which are then processed by the model’s encoder to produce 768-
dimensional vectors. Questions undergo the same encoding process. These embeddings are
indexed using Facebook AI Similarity Search (FAISS), which facilitates quick retrieval of the
most relevant passages through a nearest-neighbor search. The top 5 most similar passages
to each query are then extracted.
The BM25Retriever from the LangChain library simplifies the implementation of the BM25
retrieval model. Data entries are retrieved based on their segmented elements, and the IDs of
the top 5 relevant items are identified.
The top 5 retrieved document IDs are stored in Pandas dataframes, and these results are then
compared to the true IDs of the questions. By performing straightforward column matching
and comparisons, the accuracy of the results can be evaluated.

4.2 The Revised Method Process

To implement the new revised method, summaries will first be generated for the data entries.
The language models will then be provided with the full context and will produce responses
based on these summaries. The following is the prompt used for generating the summaries:
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Summarize the following text in 1-2 sentences ,

mentioning the year if included and detailing any information

↪→ found in tables:

{text chunk}

Summary:

The summaries are stored in DataFrames for easy access during the revised prompt phase.
Using the top 5 retrieved IDs, the corresponding summaries are fetched. The language models
then use these summaries to identify and return the most relevant ID.

Given the question {user query}, and the following

↪→ retrieved IDs and their summaries:

1. ID: {1st most relevant ID}, Summary: {summary of 1st

↪→ most document}

2. ID: {2nd most relevant ID}, Summary: {summary of 2nd

↪→ most document}

3. ID: {3rd most relevant ID}, Summary: {summary of 3rd

↪→ most document}

4. ID: {4th most relevant ID}, Summary: {summary of 4th

↪→ most document}

5. ID: {5th most relevant ID}, Summary: {summary of 5th

↪→ most document}

Pick the most relevant ID strictly based on the

↪→ information provided above and return it exactly

↪→ as it is shown.

Relevant ID:

4.3 Final Response Generation Process

The comparison will involve Google AI’s T5 language model and OpenAI’s GPT-3.5 Turbo.
The base T5 model will generate responses with no maximum length constraint. All responses
will be recorded in a Pandas DataFrame for further analysis and evaluation. For OpenAI, the
GPT-3.5 Turbo version will be utilized. The following prompt will be employed to generate
the final responses:

Given the following text:

{full passage}

Answer the following question:
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Question: {user query}

Answer:

4.4 Evaluation Process

To calculate BLEU and ROUGE scores, two Python libraries can be used. The NLTK library
provides the sentence-bleu function to compute BLEU scores from the DataFrames, while
the rouge-scorer library facilitates the calculation of various ROUGE scores.
For automatic evaluation, the GPT language model is given the true answers along with
those generated by T5 and GPT. It is then tasked with comparing and identifying the correct
answers based on the true responses. The following prompt is used during this automatic
evaluation:

Compare the following answers to determine if they are

↪→ the same as the model answer.

Answer "1" if they are the same and "0" if they are not

↪→ .

Return the result as a list in the format: [id,

↪→ ans1_binary , ans2_binary]

ID: {ID}

Model Answer: "{true answer }"

Generated Answer 1: "{GPT generated answer }"

Is this essentially the same as the model answer? (1

↪→ for Yes , 0 for No)

Generated Answer 2: "{T5 generated answer }"

Is this essentially the same as the model answer? (1

↪→ for Yes , 0 for No)

The responses are then processed and converted into DataFrames for analysis and to obtain
the final results.

5 Experimental results

5.1 Retrieval Results

After preparing the text chunks in their respective formats, the retrievers were assigned
the task of retrieving the 5 most relevant documents for each question from the dataset.
The retrieved documents were then ranked from most to least relevant. Each question was
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associated with a single target document that it should ideally retrieve. By comparing the
true ID of the required document with the retrieved IDs, we can calculate metrics such as
accuracy and MRR@5 (Mean Reciprocal Rank at 5). The table below illustrates the matches
between the retrieved document IDs and the true IDs.

BM25 DPR OpenAI Embeddings
1st retrieved document match 564 621 392
2nd retrieved document match 536 576 346
3rd retrieved document match 425 463 288
4th retrieved document match 339 388 271
5th retrieved document match 239 209 186

Total 2103 2257 1483

Table 1: Comparison of retrieval performance across BM25, DPR, and OpenAI embeddings.
The table displays the number of correctly retrieved documents for each rank (1st through
5th) and the total number of matches for each method. Traditional methods BM25 and DPR
consistently show higher accuracy in retrieving relevant documents than OpenAI embeddings.

BM25 DPR OpenAI Embeddings
Accuracy 9,0% 9,9% 6,3%
MRR@5 33,6% 36,1% 23,7%

Table 2: Comparison of retrieval performance metrics between BM25, DPR and OpenAI
embeddings. The table presents two key metrics: Accuracy and Mean Reciprocal Rank at
5 (MRR@5). BM25 and DPR perform better with higher values for Accuracy and MRR@5
compared to OpenAI embeddings.

With a dataset comprising 6251 entries, there is still considerable room for improvement in
terms of retrieval accuracy and overall performance. The BM25 method demonstrated more
effectiveness by correctly retrieving 2103 relevant IDs from the top 5 documents, whereas
OpenAI’s method retrieved only 1484 relevant elements. DPR was the most effective by
retrieving 2257 documents when considering the top 5. Despite OpenAI’s advanced dense
embeddings, which are designed to capture intricate textual nuances, it has not surpassed
the performance of established technologies. In fact, OpenAI’s information retrieval method
is 30% less accurate than BM25 and 36,4% accurate than DPR. Traditional methods, such
as BM25, continue to prove more effective and efficient for information retrieval tasks. This
highlights the relevance of classic retrieval techniques, even in the face of OpenAI’s newer
technologies.
Beyond the final retrieval results, the underlying processes for each method also differ
significantly. OpenAI’s information retrieval involves substantial computational costs due to
its complex embedding procedures. This process entails generating embeddings for each text
segment and mapping them into a high-dimensional vector space, which is computationally
intensive. These tasks are performed in batches, making it particularly taxing when dealing
with large volumes of text. Despite this, once the embeddings are created, they only need
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to be computed once for a persistent database, and subsequent updates or additions can be
embedded in smaller batches.
DPR is even more computationally demanding than both OpenAI embeddings. It requires
substantial processing power and a large amount of RAM for embedding and retrieving vectors.
This high demand for computational resources may not be feasible for many organizations,
limiting accessibility. Additionally, the time required to retrieve the most similar embeddings
is longer, further reducing its practicality in real-world applications.
In contrast, BM25 is much less demanding on computational resources. Its efficiency stems
from its reliance on traditional sparse retrieval techniques, which do not require the extensive
processing associated with dense embeddings. As a result, BM25 is more streamlined and less
resource-intensive, making it well-suited for environments where computational efficiency is
crucial. This efficiency in BM25 highlights a practical advantage over more computationally
heavy methods like those used by OpenAI, especially when handling large datasets.
The storage requirements for different retrieval methods are also a crucial factor. Dense
retrieval techniques necessitate significant storage capacity due to the need to manage
large volumes of multi-dimensional vectors. These vectors represent complex embeddings for
each text chunk, which can demand substantial data storage. Although efficient indexing
can alleviate some of these concerns, the sheer volume of data involved remains a critical
consideration, particularly when dealing with extensive datasets.
On the other hand, sparse retrieval methods offer a more storage-efficient alternative. These
methods rely on simpler representations, such as term frequency-inverse document frequency
(TF-IDF) scores or other sparse vector forms, which require less storage space. Even as
the dataset scales up, the storage needs for sparse retrieval methods increase at a slower
rate compared to dense methods. This inherent efficiency makes sparse retrieval techniques
advantageous in scenarios where storage resources are limited or when managing very large
volumes of data.
The retrieval process also varies significantly between methods. Sparse retrieval techniques,
such as BM25, are markedly faster than dense retrieval methods. This speed advantage
becomes particularly evident when handling large-scale retrieval tasks, such as processing
thousands of documents in batches. In real-world scenarios, where individual retrieval requests
are typically made one at a time, the difference in speed may seem less critical. However,
as the size of the knowledge base grows, the efficiency of the retrieval process can become
increasingly important.
Despite the advanced nature of OpenAI’s embedding techniques, they do not yet surpass older
technologies like BM25 and DPR in terms of retrieval performance. Dense retrieval methods,
while sophisticated, incur high computational costs due to the complex embedding and
retrieval processes. In contrast, BM25 remains a straightforward and effective approach with
significantly lower computational requirements. This efficiency highlights BM25’s practical
advantages, particularly in scenarios where computational resources are constrained or where
rapid, scalable retrieval is essential.

5.2 Revised result

The quality of summaries generated by OpenAI’s GPT and Google AI’s T5 varied. GPT
provided more detailed and comprehensive summaries, adhering closely to the prompt’s
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instructions and including more nuanced information. In contrast, T5 produced more concise
and straightforward summaries, though it often omitted relevant details. As a result, GPT’s
summaries were more aligned with the prompt’s requirements, but some information was
still lost in the process.
The following are the summaries generated by GPT and T5 about the same document:

ChatGPT Summary

The table shows annual aircraft fuel consumption and costs for mainline and regional
operations in 2018, 2017, and 2016. The company does not currently have any fuel
hedging contracts and is susceptible to fluctuations in fuel prices. Various factors such as
natural disasters, political disruptions, and changes in fuel-related governmental policy
could impact fuel supply and prices in the future, affecting the company’s operating
results and liquidity.

T5 Summary

A significant portion of our business is dependent on the price and availability of aircraft
fuel.

After the initial retrieval of 5 documents, the language models were asked to pick the most
relevant ID based on self-generated summaries. For this, the BM25 retrieval method was
used as it’s the most accurate. Out of 6251 data entries, 2103 true IDs were included in the
top 5 most relevant. So if the LLM retrieved the perfect summary every time, the accuracy
of the revised retrieval would be 2103.
When presented with the ID and summaries of the 5 retrieved documents, OpenAI’s large
language model was able to pick the right ID of 569 instances. The accuracy of BM25 without
any additional steps is 564. The increase in precision is negligible considering the additional
steps required to implement the revision. The T5 language model performed worse and was
only able to correctly pick 76 true ids. After reviewing the output generated by T5, the
output of the model seemed to not follow the stick instruction given to the output. So while
76 true ids were retrieved clearly, the amount of id’s retrieved while correcting for small
mistakes from the language model is unclear.

5.3 Answer generation result

For the final answer generation, all 6251 questions, along with their relevant contexts, were
provided to the language models.
The quality of responses from the two models varies notably. T5 tends to deliver more
straightforward answers with minimal elaboration, while GPT provides more comprehensive
responses that often include detailed reasoning. This additional context and explanation
can enhance the user’s understanding of the answers and reveal potential errors, thereby
improving the transparency and reliability of the information.
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The answers produced were then assessed using various BLUE and ROUGE scores. The
average scores for these metrics are summarized in the table below.

Model BLEU-1 BLEU-2 BLEU-3 ROUGE-L ROUGE-1 ROUGE-2
OpenAI 0.0077 0.0029 0.0020 0.0476 0.0482 0.0116

T5 0.0047 0.0017 0.0012 0.0224 0.0226 0.0017
Significant? Yes Yes Yes Yes Yes Yes

Table 3: This table presents the average performance scores of two models, OpenAI and T5,
evaluated using BLEU-1, BLEU-2, BLEU-3, ROUGE-L, ROUGE-1, and ROUGE-2 metrics.
The scores indicate how well each model performs in generating text, with higher values
representing better performance. OpenAI outperforms T5 across all metrics, with notably
higher BLEU and ROUGE scores. The ”Significant?” row confirms that these differences are
statistically significant across all evaluated metrics, highlighting a meaningful performance
gap between the two models.

The scores of the standard metrics are low, with many values being zero for both models.
The table below shows the counts of zero values. Despite the low metric scores, OpenAI’s
model appears to outperform the T5 model in generating answers with 4617%.

BLEU-1 BLEU-2 BLEU-3 ROUGE-L ROUGE-1 ROUGE-2
OpenAI 5615 5615 5615 2775 2775 5384
T5 6183 6183 6183 5926 5926 6234

Table 4: This table displays the count of zero scores for BLEU-1, BLEU-2, BLEU-3, ROUGE-
L, ROUGE-1, and ROUGE-2 metrics across two models, OpenAI and T5.

However, assessing numerical results posed significant challenges for automatic evaluations.
GPT’s language model tends to present numerical answers in a more natural language format.
For instance, while a specific table might represent $3.8 million as 3800, GPT often responds
with ”3.8 million” rather than adhering strictly to the table’s representation. This discrepancy
complicates the process of automatically and uniformly integrating and correcting numerical
values across different tables.
OpenAI’s language model GPT3.5 Turbo was presented with the true answer, GPT3.5 Turbo’s
answer, and T5’s answer. The LLM was asked whether or not the answers generated by
the language models corresponded with the true answer. Out of the 6251 responses, 5089
successfully adhered to the task. The results of the automatic evaluation can be found in the
following table:
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Model Identified as Correct Percentage
GPT-3.5 Turbo 1438 28.3%

T5 Model 30 0.6%

Table 5: This table compares the performance of two models, GPT-3.5 Turbo and T5, in
terms of the number and percentage of responses identified as correct by ChatGPT. GPT-3.5
Turbo outperforms the T5 model, with 1,438 correct identifications, representing 28.3% of
the total, while the T5 model has only 30 correct identifications, accounting for just 0.6%.
This contrast suggests the superior accuracy and reliability of GPT-3.5 Turbo compared to
the T5 model in generating correct responses.

A manual review was conducted on 100 random responses of those flagged by GPT3.5 Turbo
as incorrect for both models. The review revealed that 54 of these GPT responses were
correct, despite being marked as incorrect during the automated evaluation. Conversely, 4
responses from the T5 model were identified as false negatives. This highlights the need for
clear and consistent evaluation guidelines. The discrepancies often arose from inconsistencies
in numeral formatting or the number of decimal places used.
Regarding computational resource requirements, there are notable differences between the
two models. T5, being a locally run model, can place a substantial strain on computational
resources, especially with large datasets. In contrast, OpenAI’s model operates via server
calls, thereby minimizing the demand on local resources. When running on a server, this
distinction becomes less significant, as both models exhibit negligible differences in response
times.

6 Discussion

The retrieval results from the experiment demonstrate that BM25 surpasses OpenAI Em-
beddings in both accuracy and computational efficiency for retrieving the top 5 relevant
documents from a dataset of 6,251 entries. Although dense embeddings are theoretically
beneficial for capturing semantic similarities, the current implementation of OpenAI’s method
does not outperform the established BM25 technology.
To enhance document selection, summaries were generated using OpenAI’s GPT and Google
AI’s T5 models. These summaries were then used to determine the most relevant document
among five options. The improvement in accuracy was minimal, indicating that while language
models excel at understanding and generating text, they may still struggle with comprehending
nuanced relevance without the support of dense vectors. This suggests that their ability to
accurately identify relevant information remains limited when not guided by numerical data
representations.
For the final answer generation, despite both models scoring relatively low on standard metrics,
OpenAI’s language model outperforms the T5 model. OpenAI’s model not only demonstrates
greater accuracy but also delivers more comprehensive and interpretable responses. Its ability
to provide detailed explanations and clearer answers makes it a valuable tool for users,
particularly in breaking down complex tasks and aiding in the democratization of data
analytics. This enhanced capability positions OpenAI’s model as a superior choice for tackling
intricate queries and improving overall understanding.
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While research shows remarkable results with OpenAI’s GPT4 LLM when it comes to financial
statement analysis (67), this study has shown the opposite. This could be due to the nature
of the task being different in both studies. The tasks in the mentioned study were mainly
focused on analyzing textual data. The tasks in this study mainly focused on successfully
interpreting tables and numbers to answer questions. This could explain the difference in the
results.
To address the first research question:

How can large language models (LLMs) be used to simplify the statistical analysis needed for
data-driven business decisions?

LLMs can streamline the process of analyzing textual data by presenting it in a more accessible
format. They provide enhanced interaction with the data, which can be particularly useful
for users who may not fully understand complex concepts. LLMs can facilitate statistical
analysis and potentially save time during in-depth evaluations.
OpenAI’s language model outperformed the T5 model by an impressive 4616%, making it a
powerful tool for simplifying data-driven business decisions. This drastic increase in perfor-
mance allows for more accurate and efficient decision-making compared to older technologies.
However, this research also highlights that while LLMs like GPT can assist in contextualizing
information, they are not yet fully reliable for determining the most relevant context on
their own. This limitation underscores the need for integrating LLMs with other analytical
methods to ensure comprehensive and accurate data analysis.
To address the second research question:

To what extent can large language models (LLMs) make statistical analysis accessible in
business for those with limited knowledge of statistics?

LLMs have the potential to simplify text analysis and make interactions with complex data
more user-friendly. They can facilitate understanding by breaking down information and
providing explanations that can aid users with limited statistical knowledge. While LLMs
can enhance accessibility and speed up the analytical process, they cannot be relied upon
entirely; users must still have some foundational knowledge to verify and interpret results
accurately. GPT’s accuracy of 28.3% indicates that there is substantial room for improvement
before it can be considered a reliable tool for data analysis.
Despite their advancements, OpenAI’s embedding models, in particular, seem to not currently
match the performance of traditional information retrieval methods. They perform roughly
30% worse than traditional methods like BM25 and DPR.Their primary strength remains in
text generation rather than in retrieval efficiency.
To address the third research question:

How can the performance of a large language model (LLM) be assessed in a Question
Answering (QA) use case?

Evaluating the performance of language models in QA scenarios has been proven to be
challenging, particularly due to discrepancies between numerals in tables, model answers,
and generated responses. These inconsistencies complicate the assessment of model accuracy
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and relevance. To improve evaluation, it may be beneficial to preprocess and standardize the
dataset, tables, and answers to ensure alignment. This preprocessing would help in making
the performance assessment clearer and more straightforward. Additionally, leveraging GPT
to review and validate answers, provided numerical representations are straightened out,
could further enhance the accuracy of performance evaluations.
Although OpenAI’s embedding methods have not shown superiority over existing techniques
in isolation, they could potentially offer advantages when combined with sparser retrieval
approaches. Integrating OpenAI’s embeddings with a sparse retrieval method might enhance
their effectiveness compared to traditional methods. This combined approach could be
particularly advantageous given that embeddings are less computationally intensive than
Dense Passage Retrieval (DPR) methods. By focusing on a reduced set of passages to embed
and compare, OpenAI’s embeddings may yield better performance and efficiency, especially in
scenarios where computational resources are limited. Further investigation into this combined
approach could reveal its full potential and practical benefits.
Since the revised information retrieval relied on summaries, the quality and content of these
summaries could have impacted the results. The effectiveness of self-generated summaries and
their ability to highlight key information likely influenced the accuracy of the revised document
retrieval. Additionally, presenting the language models with five summaries might have been
too much, potentially affecting their ability to discern relevance accurately. Testing with fewer
summaries could help the models better differentiate between options and improve accuracy.
Further research is needed to explore this approach and to determine whether language models
can effectively identify the most relevant passages without relying on numerical vectors.
One limitation of this study is the dataset used. Although the method was tailored specifically
for the FinQA dataset, which minimized the need for extensive preprocessing, the dataset’s
chunked structure—where elements are already separated—might not represent real-world
scenarios accurately. In practical applications, more nuanced chunking approaches would likely
be necessary, potentially affecting both the information retrieval process and the accuracy of
the final results. Additionally, while the data entries were sized appropriately to fit within
the prompt constraints, it may not always be the case with broader datasets which could
introduce new complexities to the implementation of the approach.
Another limitation of the dataset pertains to the nature of the questions. Many questions are
broad in scope, and the dataset includes over 2,700 reports, making it challenging to pinpoint
the specific report relevant to each question. The accuracy of information retrieval often
relies on specific details, such as specific years or companies, which are crucial for identifying
the correct report. To address this, requiring users to provide additional specifications could
help narrow the search space and improve retrieval accuracy. Further research should focus
on developing strategies to refine the search space for financial reports by leveraging key
distinguishing features to enhance precision in information retrieval.
Implementing and utilizing OpenAI’s language models in contexts where they interact with
internal documents requires trust. The integration of these models involves granting them
access to potentially sensitive and proprietary information. This access raises significant
concerns, as the models process large volumes of data without a clear understanding of how
this data is managed, stored, or protected. Consequently, organizations may hesitate to adopt
and deploy large language models due to the potential risks associated with data security
and privacy breaches.
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7 Conclusions and Further Research

The volume of data generated by companies has increased significantly. Yet, top management
and decision-makers often struggle to make sense of this vast amount of information. Large
language models (LLMs) present a promising solution for enhancing data accessibility and
comprehension. This research aimed to evaluate whether OpenAI’s technologies could serve
as a comprehensive solution for data-driven business decisions, effectively bridging the gap
between complex data and actionable insights.
This study compared traditional methods to OpenAI’s technologies to research if LLMs have
additional value during data-driven decision-making. OpenAI’s technology was applied in two
distinct processes: information retrieval and answer generation. The dense vector embeddings
generated by OpenAI have not proven to surpass traditional retrieval methods in effectiveness.
Even when given the task of selecting the correct ID from the top 5 most relevant documents,
OpenAI’s system struggles to consistently identify the correct one.
Final answer generation is an area where OpenAI’s LLMs excels. It provides interpretable
and comprehensive answers that can significantly aid decision-makers by supporting their
data analysis efforts. However, while GPT-3.5 Turbo offers valuable insights, it is not yet
reliable enough to serve as a sole decision-making tool. It requires careful verification and
should be used with caution to ensure accuracy.
Further research should focus on integrating OpenAI’s embedding models with other methods
to fully explore their potential. By combining these embeddings with complementary retrieval
techniques, it may be possible to enhance their effectiveness and determine whether they can
outperform traditional methods. Additionally, given their potential for lower computational
costs compared to conventional dense retrieval approaches, such research could uncover ways
to leverage these models more efficiently and economically.
The proposed method of using language models to select summaries warrants additional
research. Future research could explore whether this approach holds promise for simplifying
information retrieval. If language models can effectively identify and prioritize key passages
from summaries, it could significantly streamline and enhance the retrieval process. Addition-
ally, strategically narrowing the search space using distinctive textual elements, rather than
relying solely on numerical embeddings, could further improve the efficiency and accuracy of
information retrieval.
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