

Master Computer Science

Analyzing and Simplifying Contrastive
Reinforcement Learning

Name: Juri Morisse
Student ID: s3737764
Date: 25/08/2024

Specialisation: Artificial Intelligence [

Supervisor: Thomas Moerland
Supervisor: Felix Kleuker
2nd reader: Álvaro Serra-Gómez

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Abstract

Representation learning plays a crucial role in many machine learning tasks, includ-
ing reinforcement learning (RL). Traditionally, representations are learned either
end-to-end or in a decoupled fashion as part of a broader RL algorithm. This work
builds on a novel approach introduced by Eysenbach et al. (2023) who propose to not
learn representations as an ingredient for RL but, instead, learn representations that
directly solve goal-conditioned RL tasks. Using contrastive representation learning
on online collected trajectories, encoders are trained to produce representations that
capture temporal correlation. By applying this approach to learn state-action and
goal representations, representation similarities are trained to correspond to the like-
lihood of reaching the goal given the state-action pair. A critic defined as the inner
product between state-action and goal representations, thus, learns to approximate
a goal-conditioned Q-function and can be used to train a parameterized actor to
solve goal-conditioned RL problems. This technique integrates RL and represen-
tation learning into a single objective and can learn in a self-supervised manner
without the need of a reward function.

In our work, we perform an in-depth analysis of this approach which we call
contrastive reinforcement learning (CRL). We visualize CRL’s learned representa-
tion space and critic. Our visualizations support the claims made by CRL that
representations capture the environment’s actionable structure and can be used to
approximate the likelihood of reaching future states. Further, we analyze the behav-
ior of CRL’s trained actor and find it not to align with a strategy of selecting actions
greedily in regards to their critic value. Since our experiments also show that such
a greedy strategy allows for equal performance, we propose to replace the original
algorithm’s parameterized actor with a greedy actor already during training. We
show that this simplification leads to faster learning, higher final performance, and
reduced training time at the cost of increased inference time. While also exploring
simplification of CRL through the use of a single encoder, we find that this does not
allow for successful learning.

Our results provide insights into the workings of CRL and suggest that it can
be further simplified and improved by focusing on its core idea of learning a critic
that directly solves goal-conditioned RL problems. The implementation of our ex-
periments is open-source and available on GitHub1.

1https://github.com/jumorisse/Analyzing-and-Simplifying-Contrastive-RL

2

https://github.com/jumorisse/Analyzing-and-Simplifying-Contrastive-RL

Contents

1 Introduction 4

2 Related Work 7

3 Preliminaries 9
3.1 Goal-Conditioned Reinforcement Learning 9
3.2 Contrastive Representation Learning 10
3.3 Contrastive Learning as Goal-Conditioned Reinforcement Learning . . 11

4 Experiments 15
4.1 Analyzing Contrastive Reinforcement Learning 15

4.1.1 Visualizing Contrastive Reinforcement Learning 15
4.1.1.1 Visualizing the Representation Space 16
4.1.1.2 Visualizing the Critic 18
4.1.1.2.1 Critic Values for Varying Goals 18
4.1.1.2.2 Critic Values for Varying States 21

4.1.2 Action Selection Strategies . 21
4.1.2.1 Greedy vs. Parameterized Action Selection 22
4.1.2.2 Alignment of Parameterized and Greedy Actors . . . 23
4.1.2.2.1 Measuring Alignment of Parameterized and Greedy

Actors . 23
4.1.2.2.2 Visualizing Alignment of Parameterized and Greedy

Actors . 24
4.2 Simplifying Contrastive Reinforcement Learning 26

4.2.1 Greedy Contrastive Reinforcement Learning 26
4.2.2 Contrastive Learning with a Single Encoder 28

5 Discussion 31

6 Conclusion 34

7 Appendix 39
7.1 Spiral Maze Environment . 39
7.2 Dimensionality Reduction via t-SNE 39
7.3 Visualizations of Greedy CRL . 40

7.3.1 Visualizing the Greedy Representation Space 41
7.3.2 Visualizing the Greedy Critic 42

3

1. Introduction

For any intelligent actor, being able to interact with their environment requires
the actor to have a comprehensive internal representation of the environment’s cur-
rent state. In humans, sensory stimuli of different modalities are first processed
by specialized cortical regions before being fed into higher-level neural networks
which integrate sensory representations into a multi-modal representation of our
surroundings. Neuroscience research has further shown our brain does not only use
representations specific to sensory modalities but that different parts of a modality-
specific cortex also seem to produce representations for specific tasks. In the visual
cortex, for example, the ventral stream processes visual stimuli for object recog-
nition and categorization, while the dorsal stream does so for visual guidance of
movement (Goodale and Milner 1992). While our understanding of human sensory
processing is still limited and subject to ongoing research, it has already inspired
techniques to allow artificial agents to produce better representations of their inputs.
One prominent example of this are Convolutional Neural Networks which attempt
to replicate our understanding of the brain’s visual cortex’s hierarchical approach of
first recognizing basic features like edges before combining these basic into complex
features like objects (Riesenhuber and Poggio 1999; Kriegeskorte 2015). Our work
builds upon recent work using predictive representations, i.e. representations that
contain information that allows to reason about future outcomes instead of only
representing the current state. Interestingly, prior works in neuroscience suggest
that such representations are also used by the human brain (Friston 2005; Rao and
Ballard 1999), some even arguing they may be building blocks of intelligence of any
kind (Carvalho et al. 2024).

In reinforcement learning (RL), representations are the only information agents
have about their current environment. Therefore, good representations need to con-
tain any information required to decide on the optimal next action. One straight-
forward approach, used in early RL work, is to manually define representations
(Tesauro 1995). Given a game, for example, one could define representations as a
collection of player, NPC, and item coordinates. However, defining such a collection
of necessary information is not feasible for complex environments. As a result, RL
research has quickly focused on techniques that learn representation automatically
in an end-to-end fashion as part of the reinforcement learning process (V. Mnih et al.
2015; V. Mnih et al. 2013).

When enabling agents to learn their own representations, researchers have two
options. The first one is to give the agent full autonomy in learning its representation
function, focusing solely on maximizing the RL signal, i.e., the obtained rewards.
This approach, called end-to-end training, uses the RL signal to optimize both the
policy network and a prepended representation network (V. Mnih et al. 2013). The
second option is to define a representation objective that is used either to learn

4

Analyzing and Simplifying Contrastive RL 1. Introduction

representations on auxiliary tasks decoupled from the RL task (Stooke et al. 2021),
or as an auxiliary loss for end-to-end training (Mazoure et al. 2020). The RL field
has seen a shift towards the second option as it improves stability, and control of
what information representations contain (Eysenbach et al. 2023; Liang et al. 2015).
However, this approach requires defining objectives for both the RL problem and the
representation learning problem. This is problematic not only because the selection
and definition of auxiliary objectives is non-trivial but also because it can hinder
generalization if these objectives are domain- or task-specific (Lin et al. 2019; Lyle
et al. 2021).

In this work, we build upon a recently proposed approach that takes a new route.
Instead of doing representation learning through end-to-end RL, or in isolation, Ey-
senbach et al. (2023) propose to perform only representation learning in such a way
that it also directly solves goal-conditioned RL problems. This is achieved by learn-
ing representations of state-action pairs and states using contrastive learning that
pushes state-action and state representations to be similar if they are likely to ap-
pear in the same trajectories and dissimilar if they are unlikely to appear together.
As a result, the similarity between learned representations encodes the likelihood
of reaching a goal state given a state-action pair and, thus, directly corresponds to
a Q-function under the given goal state. This approach, which we call Contrastive
Reinforcement Learning (CRL), does not only reduce objectives of reinforcement
and representation learning into a single objective but also does not require defining
a reward function. While Eysenbach et al. (2023) conduct a comprehensive perfor-
mance evaluation of CRL, they do not provide an in-depth analysis of the resulting
representation space and actor behavior. Further, we see potential simplifications
to their approach in using representations directly for action selection and using
the same encoder for both state-action and state representations. To address these
points, we conduct a qualitative analysis of the approach by Eysenbach et al. (2023),
validate its assumptions experimentally, and explore potential simplifications. Our
aim is two-fold. First, we want to analyze CRL to better understand its learned
representation space, critic function, and the resulting actor behavior. Second, we
want to explore whether CRL can be simplified while maintaining its performance.
Specifically, our work addresses two research questions for each of these two aims:

1. Analyze: What representation space and critic function does CRL learn and
how can the critic be used to solve goal-conditioned RL problems?

1.1. Do the state-action, and goal representations learned by CRL encode the
structure of the given environment?

1.2. Does CRL indeed reduce the RL problem to choosing an action whose
state-action representation is closest to the goal representation?

2. Simplify: Can CRL be simplified?

2.1. Can the CRL actor network be substituted with a greedy actor and, if
so, how does this affect training and the final performance?

2.2. Can CRL be simplified to use only a single encoder for both state-action
pairs and goals?

We find that both, state-action and goal representations, encode the structure of the
environment while occupying disjoint regions of the representation space. Further,

5

Analyzing and Simplifying Contrastive RL 1. Introduction

visualizations of the critic function confirm that it indeed correlates with the prob-
abilities of state-action pairs to lead to a given goal state. We also quantitatively
confirm this finding by showing that a greedy action selection based only on actions’
critic values can achieve performance equal to that of the parameterized actor used
by Eysenbach et al. (2023). Following that, we show that such a greedy actor is
not only able to use the learned critic function but can also be used during training
to collect the experiences used to train the critic. In fact, we find that using a
greedy policy during training leads to faster training and higher final performance,
at least for our low-dimensional environment. Finally, we find that a simplification
by using a single encoder for state-action pairs and goals did not achieve competitive
results. Whether such a single-encoder approach is unfeasible or possible with more
fundamental changes is a question we leave to future work.

In the following, Chapter 2 provides an overview of prior work on representation
learning for reinforcement learning. Chapter 3 describes goal-conditioned reinforce-
ment learning, contrastive representation learning, and how Eysenbach et al. 2023
relate the two to arrive at the novel CRL approach. Following that, Chapter 4 de-
scribes the experiments designed to answer our research questions and presents their
results. We continue with a critical discussion of our work and point out potential
directions for future work in Chapter 5. Lastly, Chapter 6 reflects on our findings
and their implications.

6

2. Related Work

An agent’s understanding of its environment is crucial to its ability to perform tasks
within it. Thus, defining or learning good representations of environment states can
make the difference between successful and unsuccessful RL. Early work on RL com-
monly used manually defined representation schemes that encode the information
deemed relevant. The well-known backgammon algorithm TD-Gammon, for exam-
ple, represents the current game state using raw information (the positions of game
pieces) and higher-level features (e.g. the probability of being hit) that were com-
puted from the raw information following manually designed rules (Tesauro 1995).

Manually defining representations requires domain knowledge and does not allow
to adapt to environment changes. To overcome these limitations, RL research has
seen a shift towards end-to-end representation learning (V. Mnih et al. 2013; V. Mnih
et al. 2015). In such setups, a policy- or value-network takes in the raw environment
(e.g. as an image) and learns to produce its own representations in the hidden
layers. Because the network is optimized for maximizing the obtained rewards, it
also learns to produce those representations that lead to the highest rewards.

While manually defined representations provide full control of what to represent
at the cost of performance and manual work, end-to-end representation learning is
automatic and achieves better performance at the cost of producing uncontrollable
and uninterpretable representations. To provide more control and interpretability
in end-to-end approaches, prior work has utilized auxiliary losses that are computed
based on a network’s hidden layers and, together with the RL objective, make up
the loss for which the network is optimized (Liang et al. 2015; Jaderberg et al. 2017).
Through the definition of this auxiliary loss, hidden representation can be pushed to
conform to desired properties or to capture specific information (Bruin et al. 2018).
Another way to allow automatic representation learning with increased control is
to decouple representation from reinforcement learning (Stooke et al. 2021). Here,
a separate network is trained to produce representations for an auxiliary task like
image classification or reconstruction, and the resulting representations are then
used to train a RL agent.

Similar to applications of contrastive learning for tasks in computer vision (T.
Chen et al. 2020; He et al. 2020; Wu et al. 2018; Hjelm et al. 2019; Sermanet et al.
2018) and natural language processing (A. Mnih and Kavukcuoglu 2013; Mikolov et
al. 2013; Gao, Yao, and D. Chen 2021), RL has also been shown to benefit from con-
trastive learning (Oord, Li, and Vinyals 2018). Since then, contrastive learning has
been used for defining auxiliary representation losses (Mazoure et al. 2020; Laskin,
Srinivas, and Abbeel 2020) or as an objective for decoupled representation learning
(Stooke et al. 2021; Anand et al. 2019). The main appeal of using contrastive learn-
ing for RL lies in its ability to learn representations that encode temporal relations
from unlabeled experiences. Once state representations contain information about

7

Analyzing and Simplifying Contrastive RL 2. Related Work

their temporal correlation, this information can be used to predict the probability
of reaching one state from the other. This idea has been used by prior work to
learn models of the discounted state-occupancy-measure which describes a proba-
bility distribution over future states given a current state and action. Such a model
can then be used together with provided success examples (Hatch et al. 2023) or a
small set of reward-labeled states (Mazoure et al. 2023) to learn a policy.

Our work builds upon a recently proposed idea that goes a step further: In-
stead of performing representation learning as a means for RL, solve certain (i.e.
goal-conditioned) RL problems directly by learning representations whose similarity
encodes the Q-function and, thus, which action to take (Eysenbach et al. 2023).
We refer to this approach as Contrastive Reinforcement Learning (CRL). Like some
other works (most notably Hatch et al. 2023), CRL uses contrastive representation
learning from experiences to approximate a goal-conditioned Q-function and use it
to determine which action leads to a given goal. However, CRL does not require
a collection of previously gathered experiences but, instead, learns representations
from experiences collected online.

Since the proposition of CRL, additional work has explored how it can be applied
to robotics (Zheng et al. 2024), how it can be extended to use off-policy experiences
(Zheng, Salakhutdinov, and Eysenbach 2024), and how its learned representations
can be used for planning and inference (Eysenbach et al. 2024). In our work, we
focus on the originally proposed version of CRL and provide insights into its rep-
resentation space, and resulting actor behavior. Further, we explore possible CRL
simplifications, including a greedy CRL version that learns faster and achieves higher
final performance on a low-dimensional environment.

8

3. Preliminaries

3.1 Goal-Conditioned Reinforcement Learning

Reinforcement learning (RL) deals with problems of sequential decision-making
where an agent interacts with an environment. The agent observes the environ-
ment’s current state, selects and performs an action, and receives a reward together
with the environment’s next state. Assuming that the environment’s future only
depends on the current state and no past state, such problems are commonly re-
ferred to as Markov Decision Processes (MDP). We adopt the formalization used
by Silver et al. (2014) and define MDPs as a tuple of five elements: (S,A, p, r, γ).
S describes the set of all possible states the environment can be in. A denotes the
set of all actions the agent can select. The transition function p(s′|s, a) describes
the probability of the next state being s′ when performing action a in state s. The
reward function r(s, a) specifies which reward the agent gets when performing ac-
tion a in state s. The discount factor γ lies in the range [0, 1] and is used to weigh
current and future rewards. Since MDPs describe sequential problems, we use an
index t to denote states, actions, or rewards at specific timesteps. For example, s0
describes the initial state of our environment (at timestep 0) and s1 describes the
state at timestep 1, i.e. after performing the first action. Given an MDP, RL aims
to learn a policy π that maps states to a probability distribution over actions, from
which the agent can sample to select actions. The goal of RL is to find the optimal
policy π∗ that maximizes the expected cumulative reward the agent receives in the
future:

π∗ = argmax
π

Eπ
p

[
∞∑
t=0

γtr(st, at)

]
(3.1)

Goal-conditioned RL is a special case of RL in which we have determined a
certain state g ∈ S to be the goal that we are trying to get to. Its formalization
is almost identical to that of the MDP given above with the exceptions of using
a goal-conditioned reward function rg and policy πg. While the functionality of
these elements remains the same, i.e. the reward function maps state-action pairs
to rewards and the policy maps states to actions, they now do so differently given
different goals.

The goal-conditioned reward function can also be expressed as the probability
of reaching the goal with the next step:

rg(st, at) = (1− γ)p(st+1 = g|st, at) (3.2)

Further, the optimal goal-conditioned policy π∗
g and Q-function are defined as fol-

9

Analyzing and Simplifying Contrastive RL 3. Preliminaries

lows:

π∗
g = argmax

πg

Eπg
p

[
∞∑
t=0

γtrg(st, at)

]
(3.3)

Qπ(s, a) = Eπg
p

[
∞∑
t′=t

γt
′−trg(st′ , at′)|st = s, at = a

]
(3.4)

Lastly, the discounted state-occupancy-measure describes the expected frequency
with which a particular state, e.g. the goal state, is visited when following a certain
policy from a starting state. It is defined as:

pπg(st+ = s) = (1− γ)
∞∑
t=0

γtp
πg

t (st = s) (3.5)

with p
πg

t (s) describing the probability density over states at timestep t when follow-
ing policy π. Further, st+ denotes states that were sampled from the discounted
state occupancy measure.

3.2 Contrastive Representation Learning

The general idea of contrastive representation learning is simple: Given pairs of
inputs that are marked as positive and negative pairs, a representation function
should be learned that produces similar representations for positive pairs and dis-
similar representations for negative pairs. Unlike traditional methods such as max-
imum likelihood estimation, which often focus on fitting a model to the observed
data or predicting labels, contrastive learning emphasizes learning relationships be-
tween data points. Additionally, contrastive learning does not require labeled data
as long as positive and negative pairs are defined in a way that captures the desired
relationships. For learning word embeddings, for example, this could be done by
comparing the sentences in which words occur and defining them as positive pairs
if these sentences share a sufficient number of words. Because of these advantages,
contrastive representation learning is widely applied in fields like computer vision
and language modeling (Mikolov et al. 2013; T. Chen et al. 2020; He et al. 2020;
Oord, Li, and Vinyals 2018; Wu et al. 2018; Hjelm et al. 2019; Sermanet et al. 2018).

To capture meaningful relationships between data points, contrastive representa-
tion learning aims for a representation function that optimizes mutual information.
Mutual information measures how well the learned representations of positive pairs
are related compared to those of negative pairs. There are several formalizations
of this measure. Eysenbach et al. (2023) use the InfoMax objective (Hjelm et al.
2019). Given a first element u that forms a positive pair with element v+ sampled
from a joint distribution p(u, v) and a negative pair with element v− sampled from
the product of marginal distributions p(u)p(v), it is defined as:

max
f(u,v)

E(u,v+)∼p(u,v)
v−∼p(v)

[
log σ(f(u, v+)) + log(1− σ(f(u, v−)))

]
(3.6)

where f(u, v) = ϕ(u)Tψ(v) is a critic function that computes the similarity between
representations ϕ(u) and ψ(v) as their inner product.

10

Analyzing and Simplifying Contrastive RL 3. Preliminaries

3.3 Contrastive Learning as Goal-Conditioned Re-

inforcement Learning

In the previous two subsections, we introduced the fundamentals of goal-conditioned
RL and contrastive representation learning. We now focus on how Eysenbach et
al. (2023) connect these two concepts to introduce a novel approach, which we
refer to as contrastive reinforcement learning (CRL). CRL reframes goal-conditioned
RL as a contrastive representation learning problem, where state-action and goal
representations are learned in a way that their inner product directly corresponds
to a goal-conditioned Q-function.

The first step towards framing goal-conditioned RL as contrastive representation
learning is to express the goal-conditioned Q-function in probabilistic terms. This
is done using the goal-conditioned reward function expressed as the probability of
reaching the goal state g in the next step (Equation 3.2) to express the Q-function
(Equation 3.4) as the probability of reaching the goal state g given a current state
s and action a under the discounted state occupancy measure (Equation 3.5):

Qπg(s, a) = pπg(st+ = g|s, a) (3.7)

In other words, this Q-function can be understood as the probability of successfully
reaching the goal state g when starting from the state-action pair (s, a) and following
the policy πg.

To estimate the Q-function using contrastive learning, the pairs (u, v) are defined
to consist of a state-action pair u = (st, at) and a contrast state v. The state v is,
for positive pairs, a future state v+ = st+N , N > 0 from the same trajectory as u
or, for negative pairs, a contrast state v− = sc that is from a different trajectory
than u. The state-action pairs are sampled from the replay buffer, i.e. from one
of the transitions collected by our current or a previous policy. For positive pairs,
sampling future states from the same trajectory ensures that the state-action pair
u has previously led to state v+ = sf . For negative pairs, sampling a contrast
state v− = sc from a different trajectory means that it is much less likely to be
a state visited when starting with the state-action pair u and following the policy
after. Because of this sampling, positive and negative pairs capture the temporal
correlation of state-action pairs and states, i.e., the likelihood of reaching a particular
state from a given state-action pair. By using these positive and negative pairs
to optimize the representation functions for u and v according to the contrastive
learning objective (Equation 3.6), the learned representations are trained to encode
these temporal correlations. Together, these representation functions ϕ(u) and ψ(v)
form the critic function f(u, v):

f(u, v) = ϕ(u)Tψ(v) (3.8)

Here, ϕ : SxA 7→ RN is an encoder for state-action pairs (referred to as sa-encoder)
and ψ : S 7→ RN is an encoder for states (referred to as g-encoder due to its later
use for encoding goals). Both encoders map to the same N-dimensional represen-
tation space. Since the critic function is the inner product of state-action and goal
representations, it measures their similarity. Because of that and representation
similarities being trained to correspond to temporal correlations, the critic function

11

Analyzing and Simplifying Contrastive RL 3. Preliminaries

effectively returns the likelihood of reaching a goal given a particular state-action
pair. This makes the critic directly corresponding to a goal-conditioned Q-function.

It is important to note that the critic function learns to approximate the Q-
function for any goal, instead of being specific to a single goal. This is due to the
fact that the trajectories in our replay buffer from which we sample positive and
negative pairs were generated in pursuit of differing goals. Therefore, the critic is
trained using experiences collected by policies conditioned on many different goals.
When used as goal-conditioned Q-function, the critic can then be conditioned on
the goal by setting its second argument, the state, to be the goal state.

Algorithm 1 CRL Training Procedure

1: Input: Maximum actor steps S, Maximum trajectory length L, Minimum re-
play buffer size M , Batch size B

2: Initialize: Replay buffer D filled with M random transitions, policy network
πθ, sa-encoder ϕ(s, a), g-encoder ψ(s), critic function C = ϕ(u)Tψ(v)

3:

4: actor steps←M
5: while actor steps ≤ S do
6: Sample a task of B tuples (st, at, st+N) from D
7: Compute critic loss using batch of (st, at, st+N) tuples
8: Update critic function C using the computed critic loss
9:

10: Sample a batch of B start states and goal states (s0, g) from D
11: For each pair (s0, g), generate a trajectory using πθ
12: Add the generated trajectories to D
13: Compute actor loss for all states in the generated trajectories
14: Update policy network πθ using the computed actor loss
15: actor steps← actor steps+ length(generated trajectories)
16: end while

The CRL training procedure is outlined in Algorithm 1. It starts by using a
random actor to collect 100 trajectories with 100 steps each. These 10,000 collected
transitions then constitute the initial replay buffer which grows up to 1,000,000 tran-
sitions before older ones are replaced by new ones. After this initialization, CRL
training follows an actor-critic approach, alternating between contrastively learn-
ing the critic function using experiences from the replay buffer (policy evaluation),
updating the policy based on the critic (policy improvement), and gathering new
experiences with the current policy. To train the critic, a batch of 256 positive con-
trastive pairs, i.e. a state-action pair and later state from the same trajectory, are
sampled from the replay buffer. The negative pairs then consist of all other com-
binations of state-action pairs and states. Using these pairs, the critic function is
optimized for the objective given in Equation 3.6. In practice, this is done by using
the sa- and g-encoder to produce representations for all state-action pairs and states,
and computing the inner products of all combinations of these representations, re-
sulting in a matrix of critic values. This critic matrix is then compared against
a label matrix, which can be understood as a binary matrix where one dimension
corresponds to state-action pairs and the other to contrast states. The diagonal en-
tries represent positive pairs and all other entries represent negative pairs, making

12

Analyzing and Simplifying Contrastive RL 3. Preliminaries

Algorithm 2 Critic and actor losses, modified from Eysenbach et al. (2023)

from jax.numpy import einsum, eye

from optax import sigmoid_binary_cross_entropy

def critic_loss(states, actions, contrast_states):

Encode the state-action pairs

sa_repr = sa_encoder(states, actions)

Encode goal state

g_repr = g_encoder(contrast_states)

Compute inner product between all pairs of sa- and g-representations

logits = einsum(’ik,jk->ij’, sa_repr, g_repr)

Critic loss: match of max inner products and binary labels

return sigmoid_binary_cross_entropy(logits=logits, labels=eye(batch_size))

def actor_loss(states, goals):

Sample actions from policy network’s output distribution

actions = policy.sample(states, goals)

Encode pairs of given states and sampled actions

sa_repr = sa_encoder(states, actions)

Encode goals

g_repr = g_encoder(goals)

Compute inner product of all positive pairs of sa- and g-representations

logits = einsum(’ik,jk->i’, sa_repr, g_repr)

Actor loss: inverse of inner product for positive pairs

return -1.0*logits

the label matrix an identity matrix. Using the critic and label matrix, the critic
loss is computed as the sigmoid binary cross entropy and, thus, rewards high critic
values for positive pairs and low critic values for negative pairs while punishing
the reverse. Since the learned critic can serve as a goal-conditioned Q-function,
one might expect the policy to simply select actions greedily based on their critic
values. However, Eysenbach et al. (2023) instead use the critic to train a policy
implemented as a neural network. This network, parameterized by θ, takes in the
current state s and goal state g and outputs a distribution over actions p(a|s, g),
resulting in a stochastic policy. In practice, the policy network outputs a mean µ
and a standard deviation σ, i.e. a normal distribution, for each action dimension.
A full-dimensional action is then selected by sampling each of its dimensions from
the respective normal distribution:

a ∼ πg,θ(s) = pθ(a|s, g) = N
(
µθ(s, g), (σθ(s, g)

2)
)

(3.9)

To train the policy network, a batch of 256 starting states and goal states are sampled
from the replay buffer and the policy network is applied to attempt to reach the goals
from the start states. The resulting trajectories are then added to the replay buffer
and also used to train the policy network to select actions with high critic values,
i.e., those that are likely to lead to the goal according to the current critic. The
policy network’s loss, also called actor loss, is defined as the negative critic values of
the selected action and, thus, trains the policy to select actions that maximize the
critic values for a given goal. Training follows this alternating actor-critic schema
until a pre-defined amount of actor steps has been recorded. A JAX implementation
of the critic and actor loss, as used by Eysenbach et al. (2023), is given in Algorithm
2.

13

Analyzing and Simplifying Contrastive RL 3. Preliminaries

Eysenbach et al. (2023) explore several different policy losses and contrastive
learning objectives. In our work, we only discuss the ones used in the CRL imple-
mentation which we base our work on1. For details on further losses, objectives,
and further theoretical background of CRL that includes proofs and convergence
guarantees, we refer the reader to Eysenbach et al. (2023).

1https://github.com/google-research/google-research/tree/master/contrastive_rl

14

https://github.com/google-research/google-research/tree/master/contrastive_rl

4. Experiments

To provide a better understanding of CRL as introduced by Eysenbach et al. (2023)
and test possible simplifications of this approach, we perform several experiments.
Given the four research questions outlined in our introduction, the following four
experiments aim to provide answers while also revealing additional insights and pro-
viding inspiration for future explorations of CRL. All experiments are performed in
a 2D spiral maze environment with continuous states consisting of coordinate pairs
within [0, 11]2 and continuous actions within [−1, 1]2. The low dimensionality of this
environment simplifies visualizations and their interpretation, while its continuous
states and actions ensure that our findings are not limited to overly simplistic, dis-
crete setups. A detailed description of the environment is provided in Appendix 7.1.
We start with experiments that analyze CRL, before continuing with experiments
that explore possible simplifications to CRL.

4.1 Analyzing Contrastive Reinforcement Learn-

ing

4.1.1 Visualizing Contrastive Reinforcement Learning

Recapping Section 3.3, the core idea of CRL can be summarized as learning state-
action representations (produced by the sa-encoder ϕ : SxA 7→ R64) and goal rep-
resentations (produced by the g-encoder ψ : S 7→ R64) in such a way that their
similarity in the representation space corresponds to the likelihood of reaching the
goal when performing the action in the state. This implies that the learned repre-
sentations map the environment’s state space into the representation space in a way
that captures the environment’s underlying structure. After all, states close to each
other in the state space are also more likely to be reached from the respective other
than from one that is much further away. It is important to note that, for mea-
suring closeness in the state space, the actionable distance matters. The actionable
distance describes how many actions are necessary to reach one state from another.
It can, but often does not, correspond to the metric distance in the state space. For
example, two points in a maze can be only a single meter apart but, when sepa-
rated by a wall, the path leading from one to the other can be much longer. In this
example, the actionable distance would be much larger than the metric distance.

To investigate whether CRL learns representations that encode the actionable
structure of the state space, we produce several latent space visualizations. Eysen-
bach et al. (2023) already present one such visualization that suggests the actionable
structure is indeed preserved in the representation space. However, they only vi-
sualize state-action representations for fixed [0,0] actions and do not include goal

15

Analyzing and Simplifying Contrastive RL 4. Experiments

(a) (b)

(c)

Figure 4.1: We visualize representations for 217 states shown in (a). (b) shows
the 2D projections of the goal representations (left) and state-action representations
(right) for fixed [0,0]-actions. (c) shows 2D projection when additionally including 10
state-action representations with sampled actions for each state. States and their
representations are colored based on the states’ step distance to the center with
colors of sampled state-action pairs fading out with increasing action strengths.

representations or state-action representations for other actions. We expand their
performed visualizations by addressing these limitations. Beyond that, we also vi-
sualize the critic function and how it is affected by varying actions or states.

4.1.1.1 Visualizing the Representation Space

Experiment Setup To visualize the latent space of state-action and goal-representations,
we follow the approach by Eysenbach et al. (2023). We first generate 217 states
evenly spaced throughout the spiral maze as displayed in Figure 4.1a. This ensures
that we reliably and evenly cover the whole state space without introducing bias
into the dimensionality reduction by over- or underrepresenting certain parts of the
state space. Each generated state is used to produce 12 different representations:
1 goal representation, 1 state-action representation using action [0,0] (fixed state-
action representations), and 10 state-action representations with uniformly sampled
actions (sampled state-action representations). Once we have produced our repre-
sentations, we project them to 2D using t-SNE (van der Maaten and Hinton 2008).

16

Analyzing and Simplifying Contrastive RL 4. Experiments

However, we do so twice. Once using all 217 · 12 = 2604 representations (shown
in Figure 4.1c) and once using only the fixed state-action representations together
with the goal representations (shown in Figure 4.1b). This is done due to t-SNE
projection being heavily influenced by the set of high-dimensional vectors that are
to be projected. A more detailed explanation of this and the overall dimensionality
reduction can be found in Appendix 7.2.

Once representations are projected to 2D, they can simply be plotted. To relate
the state space with the representation space, we color code states and their repre-
sentations. Goal representations and fixed state-action representations are colored
based on the number of steps required to reach the spiral center from the respective
state. Sampled state-action representations are colored based on their state’s steps
to the center but fade towards white the stronger the action is.

Results Figure 4.1b displays the 2D projections of goal and fixed state-action
representations. It shows two trajectories of representations, one for goal represen-
tations (left) and one for fixed state-action representations (right). We can see that
both trajectories capture the actionable structure of the environment, i.e. states
which lie close in the environment also lead to representations that are close. Fur-
ther, they both have a similar orientation such that representations for center states
are at the top and states further from the center below. Another interesting observa-
tion is that the trajectories are never overlapping. These observations indicate that
goal and state-action encoders are occupying related but disjoint regions within the
representation space. Figure 4.1c displays the 2D projections when using all rep-
resentations, i.e. goal representations together with fixed and sampled state-action
representations. It is clearly observable that state-action and goal representations
still use disjoint regions of the representation space, suggesting this is a general char-
acteristic of the representations learned by CRL. Further, it seems like the sampled
state-action representations lie around the fixed state-action representations. How-
ever, Figure 4.1c also demonstrates the drawbacks of visualizing a high-dimensional
space in 2D. Compared to Figure 4.1b, the state-action representations cover a much
larger space while the scale of the goal representation space has shrunk. Further, the
continuous trajectory of the fixed state-action representations in Figure 4.1b is not
as continuous in Figure 4.1c but a general color gradient is still visible. These differ-
ences between Figure 4.1b and 4.1c are likely to be effects of applying t-SNE different
sets of representations. We further discuss how such effects limit our interpretations
of such visualizations in Chapter 5 and provide a more detailed explanation of these
effects in Appendix 7.2.

Overall, these visualizations of the contrastive latent space support the claim
that the state-action and goal representations capture the actionable structure of
the environment. All representation trajectories in Figure 4.1b and 4.1c show a
color gradient consistent with the environment’s structure. Additionally, the visual-
izations show that the state-action and goal encoders are using disjoint regions of the
representation space. While effects of t-SNE limit the interpretability of these 2D
projections, the consistency with which representations preserve the environment’s
structure and are separated into goal and state-action regions suggests that these
observations are also characteristics of the high-dimensional representation space.

17

Analyzing and Simplifying Contrastive RL 4. Experiments

4.1.1.2 Visualizing the Critic

As mentioned, the 2D visualizations of the representation space suffer from distor-
tions caused by the dimensionality reduction technique. To overcome this issue and
better understand how the distances between state-action and goal representations
relate to the likelihood of reaching a goal given a state-action pair, we also visualize
the critic. Since critic values are computed as the inner product between state-action
and goal representations (Equation 3.7), they directly correspond to similarities in
the representation space. We produce two types of visualization that aim to display
how critic values are affected by varying the goal while keeping the state fixed and
how they are affected when varying the state while keeping the action and goal fixed.

4.1.1.2.1 Critic Values for Varying Goals

Experiment Setup The CRL critic is trained so that its values tell us which
action is most likely to lead to a certain goal. To demonstrate how this looks, we
define a local neighborhood, depicted in Figure 4.2a, which consists of a starting state
and two neighbor states that can be reached in a single step. We always start from
the red state in the middle, the green state to its left can be reached by performing
action [0,-1], and the blue state to its right by performing action [0,1]. Critic values
are computed and visualized for three different goal states: the start state itself, the
left neighbor state, and the right neighbor state. To limit the required computations
and allow for an intuitive visualization, we discretize the continuous action space
into an action grid with 81 distinct and evenly distributed actions. We color action
grid cells based on the critic values from blue (low values) to red (high values).
Given the critic’s definition and training, we expect high critic values for actions
leading to or towards the goal, lower values for actions in directions orthogonal to
the goal, and the lowest values for actions leading in the opposite direction of the
goal.

Results Figure 4.2b shows the critic values when using the red middle state not
only as the starting state but also as the goal state. Consequently, one would expect
critic values to be highest for the [0,0] action and show a gradual decrease of values
based on how far a cell is from the center. The critic values shown in Figure 4.2b
do indeed resemble this expectation to a certain degree. Larger values are spread
out around the center where action [0,0] lies and a general gradient towards lower
values at the edges is visible. Figure 4.2c shows the critic values when setting the
left, green state as the goal state. Now, action [0,-1] would directly lead to the goal
and, thus, should ideally have the highest critic value with a gradient from higher
values on the left of the grid to lower values on the right. The values seen in Figure
4.2c do generally fulfill these expectations with some exceptions. The value peak lies
around action [0.25,-0.5] and the value decline towards the right of the action grid is
disrupted by actions in the second rightmost column which show higher critic values
than their surrounding. Nonetheless, there is a general divide with actions leading
to the left having higher values than those that lead to the right. Similar results
can be observed in Figure 4.2d which shows the critic values when setting the right
blue state as the goal state. The general distribution of critic values, again, shows
larger critic values for actions leading towards the goal and lower values for those
that don’t. The value peak is again not at the ideal action [0,1] but off by a few

18

Analyzing and Simplifying Contrastive RL 4. Experiments

(a) (b)

(c) (d)

Figure 4.2: To visualize the critic values for different actions under varying goals,
we consider a local neighborhood consisting of three states shown in (a). The middle
state (red) is always used as the start state. We depict critic values for action under
three different goal states: the middle state in (b), the left state in (c), and the right
state in (d). Actions are colored based on their critic values.

cells and the value decline is also disrupted as it is in Figure 4.2c. We hypothesize
that these disruptions are caused by trajectories in which an actor initially selected
a wrong action leading away from the goal before correcting this mistake and still
reaching the goal within the trajectory.

Overall, the results in Figure 4.2 show that, while not perfectly corresponding
to the likelihood of reaching the goal, critic values generally point in the goal’s di-
rection. Interestingly, the critic seems better at identifying goal-oriented actions
than distinguishing between actions that don’t lead to the goal or away from it.
Irregularities in the distribution and strength of critic values are to be expected as
the critic is not trained on trajectories gathered using an optimal policy. Never-
theless, the critic’s higher values for goal-directed actions support the idea that it
approximates the goal-conditioned Q-function. This also supports the assumption
that this learned critic can be directly used to solve goal-conditioned RL problems
by choosing actions solely based on their critic value. In the following experiment,
we investigate how such a greedy action selection strategy compares to the param-
eterized actor used by Eysenbach et al. (2023).

19

Analyzing and Simplifying Contrastive RL 4. Experiments

(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Critic values of various states when paired with [0,0] actions under
different goals: center (top), halfway point between entrance and center (middle),
and entrance (bottom). Goals are marked as X. The left plots show the states
colored based on the steps required to reach the goal from each state. The right
plots color states based on their critic values given the goal. In an ideal case, plots
on the same row would match.

20

Analyzing and Simplifying Contrastive RL 4. Experiments

4.1.1.2.2 Critic Values for Varying States

Experiment Setup The previous critic visualizations show that the critic func-
tion does, in general, indeed encode how likely a goal is reached given a state-action
pair. This might lead one to believe that it can also be used to generally assess how
close two states are in the environment. However, Figure 4.1 has already shown
that state-action and goal representations are disjoint. Further, Figure 4.1b shows
that, while sharing similarities, the two disjoint representation spaces do not seem
to allow to reliably infer the environment distance of two states based on their goal
and state-action representations. To investigate this further, we again generate the
same 217 states shown in Figure 4.2a. We then produce the goal and fixed state-
action representation of each of these states and use them to compute a critic value.
We do this once for three different goals: the spiral center, the spiral entrance, and
the state halfway between entrance and center.

Results Figure 4.3 displays the results. We can see that the critic values do encode
the environment distance relatively well when the goal is at either the entrance or the
center. When the goal is in the middle, however, critic values correspond much less
to environment distances. Interestingly, this is in line with Figure 4.1b where we can
see that the goal and state-action representations share a similar general orientation
with states close to the center being on top and states close to the entrance being
at the bottom. While this trend only holds to a certain degree, it still allows to
generally infer how close a state is to the entrance or center by determining how
low or high its representation is in the shown trajectory. However, when the goal is
in the middle, this general rule does not hold as strong because of the trajectories’
meandering form.

These findings suggest that the critic can reliably be used to decide which action
in a state makes it more likely to reach a given goal, but can not be reliably used
to determine how close two states are.

4.1.2 Action Selection Strategies

As stated in the original CRL paper ”The learned critic function not only tells
us the likelihood of future states, but also tells us how different actions change the
likelihood of a state occurring in the future. Thus, to learn a policy for reaching a
goal state, we choose the actions that make that state most likely to occur in the
future.” (Eysenbach et al. 2023, p. 5). This suggests that, once the critic function
is learned, the actor can reach a goal by greedily selecting actions solely based on
their critic value. In practice, however, Eysenbach et al. (2023) parameterize the
actor as a neural network that takes the current state and the goal as input and
outputs a distribution over actions (Equation 3.9). While the actor is optimized via
gradient descent using a loss that punishes the selection of actions with low critic
values (Algorithm 2), greedy action selection is never explicitly enforced. Given this
mismatch between the underlying idea of CRL and its actual implementation, we
want to better understand how competitive greedy action selection actually is and
to which degree the parameterized actor behaves greedily. To this end, we perform
two experiments. First, we evaluate whether greedy actors can indeed compete with
the parameterized actor when confronted with the same tasks. Second, we evaluate

21

Analyzing and Simplifying Contrastive RL 4. Experiments

and visualize to which degree actions align when chosen by different agents in the
same situation.

4.1.2.1 Greedy vs. Parameterized Action Selection

Experiment Setup Assuming that the trained critic indeed maps state-action
pairs and a goal state to the likelihood of reaching that goal when performing the
respective action in the state, an actor greedily choosing actions based on their critic
value should be able to compete with an actor which is parameterized by a neural
network trained to select greedily. To test this, we implement a simple evaluation
framework that evaluates actors across the same 500 randomly sampled tasks. Tasks
consist of a start state and a goal state which are both uniformly sampled from all
states which are valid candidates, i.e. which are not a wall. Actors have a maximum
of 100 steps per task to reach the goal. Task success is defined as coming within a
Euclidean distance of two at any timestep of a trajectory. We compare six actors:
the parameterized actor, four greedy actors that vary in their degree of random
exploration, and a baseline actor that selects actions at random. The parameterized
actor is the one used by Eysenbach et al. (2023) which consists of a neural network
that takes the current state and goal as input and outputs one distribution per
action dimension (Equation 3.9). The selected action is the result of sampling from
these distributions. The random actor uniformly samples an action from the given
action space. For the greedy actor, we discretize the action space so that it can
easily identify the action with the highest critic value. Identifying the greedy action
through continuous optimization is not feasible because the critic function’s shape
over all state-action pairs is not known but instead depends on the representations
for all currently possible state-action pairs. Discretization is done using the same
action grid as shown in Figure 4.2, i.e., the continuous action space is discretized
into 81 distinct and evenly spaced actions. We consider four variants of the greedy
actor, each with a different exploration probability ϵ. For instance, a 99% greedy
actor selects actions greedily 99% of the time and explores randomly 1% of the
time. Greedy agents with random exploration are considered due to strictly greedy
strategies being prone to get stuck in local optima. To account for random effects
during training that can influence the resulting policy network and critic, which is
used by the greedy actors, the results for each actor are not only averaged across the
500 tasks but also across five actor versions whose components were trained with
different random seeds.

Results Table 4.1 shows the different actors’ success rates averaged across all 100
tasks. Surprisingly, the random actor achieves a success rate of 44%. While this
is in line with the evaluation implemented by Eysenbach et al. (2023), this high
random performance does raise several questions regarding the environment and its
success definition. We discuss these in Chapter 5. The parameterized actor achieves
a success rate of 80%. The greedy actor’s performance increases with increasing
degrees of random exploration. The best greedy actor, who acts randomly in 10%
of cases, achieves a performance of 80% and, thus, matches the performance of the
parameterized actor. Given these results, we can conclude that the learned critic
indeed allows greedy actors to reach performance equal to that of the parameterized.
Interestingly, this is the case even when the critic is trained on experiences collected

22

Analyzing and Simplifying Contrastive RL 4. Experiments

Table 4.1: Average success rates and their standard deviations across five actor
versions whose components (critic or policy network) were trained using different
random seeds. A single seed’s success rate is an average across 500 randomly sampled
tasks. All values are rounded to two decimal points.

Actor Success Rate
Random 0.44± 0.02
Greedy, 100% 0.69± 0.03
Greedy, 99% 0.72± 0.03
Greedy, 95% 0.77± 0.02
Greedy, 90% 0.80± 0.02
Parameterized 0.80± 0.02

Table 4.2: The Euclidean distances and cosine similarities of actions chosen by
different actors in the same situation, i.e. same state and goal. All values are
rounded to three decimal points.

Compared Actors Avg. Eucl. Dist. Avg. Cosine Sim.
Parameterized & Parameterized 0.000± 0.000 1.000± 0.000

Parameterized & Greedy 0.838± 0.071 0.383± 0.051
Parameterized & Random 1.249± 0.030 0.001± 0.003

by the parameterized actor. While this parameterized actor is trained to select
actions greedily, this takes time. Considering that the replay buffer can contain up
to 1,000 max-length trajectories before new trajectories replace old ones, the replay
buffer is likely to contain a large portion of trajectories collected by a parameterized
policy that did not yet learn to select actions greedily based on their critic function.
In Experiment 4.2.1 we investigate how CRL training changes when using a greedy
actor also to collect the experiences used to train the critic and whether this critic
allows for even better evaluation performance for greedy actors.

4.1.2.2 Alignment of Parameterized and Greedy Actors

While the previous experiment explores whether the learned critic function enables
competitive performance of a greedy actor, it does not answer to which degree the
parameterized actor makes greedy decisions. To investigate this, we implement
another experiment in which the parameterized and greedy actors are confronted
with the same decision situations, i.e. the same current state and goal. We then
record their selected actions and compare them quantitatively. In addition, we
visualize their action selection for a few selected situations.

4.1.2.2.1 Measuring Alignment of Parameterized and Greedy Actors

Experiment Setup For the quantitative comparison, we again randomly sample
tasks in the same way as described in Section 4.1.2.1. This time, however, we only
sample 10 tasks. The parameterized agent then attempts to solve these tasks and
each of its selected actions is recorded. In addition, the task’s goal and the state of
each timestep are also fed to the 100% greedy agent whose action selection is also
recorded. This setup results in a collection of actions selected by the parameterized

23

Analyzing and Simplifying Contrastive RL 4. Experiments

and greedy actors under the same conditions. We then compute the average Eu-
clidean distance and cosine similarity of all collected action pairs. The Euclidean
distance between two actions measures how far apart the points are that these ac-
tions transition to. The given action space is the square [−1, 1]2 and, thus, the
Euclidean distance between two actions can range from 0 (if actions are identical)
to 2 ·

√
2 ≈ 2.828 (if actions point to opposite corners of the square). We chose to

also consider the actions’ cosine similarity as this only considers the orientation of
actions and does not take into account their strength. This is in line with the task
definition, as success is independent of how many steps were used to reach the goal
as long as it takes not more than 100 steps and, therefore, actions can be equally
good if pointing in the same direction with different magnitudes. Cosine similarity
ranges from -1, indicating opposing direction, to 1, indicating identical direction.
To put these measures into perspective, we also include two baseline comparisons.
For the first baseline, we compare parameterized with random action selection. This
comparison can be understood as a lower bound of alignment due to the random
selection. The second baseline is the comparison between two parameterized actors.
We included this baseline due to the stochastic process with which parameterized
actors select actions. Such stochasticity can lead to misalignment even when com-
paring two same actors which is why the comparison between two parameterized
actors serves as an upper bound of alignment.

Results Table 4.2 shows the results of the different comparisons. The two param-
eterized actors reach perfect alignment scores, i.e. an average Euclidean distance
of 0 and an average cosine similarity of 1. This lack of even minor misalignment
suggests that the normal distributions over actions output by the policy networks
have collapsed with very small standard deviations. The second baseline, the lower
bound of alignment, in which a parameterized actor is compared to a random actor
leads to an average Euclidean distance of 1.249 and an average cosine similarity of
0.001. These values lie around the middle of the metrics’ respective value ranges.
More extreme values, e.g. a cosine similarity of -1, would not indicate misalignment
but rather inverse alignment, i.e. actors always choosing the opposite action. Given
these lower and upper bounds of alignment, we can interpret the alignment between
the parameterized and the greedy agent. Actions selected by these two agents show
an average Euclidean distance of 0.838 and an average cosine similarity of 0.383.
Taking the baselines into account, these scores lie closer to the lower bound of align-
ment than they do to the upper bound. This indicates significant misalignment
between the parameterized and 100% greedy action selection. We do not consider
other variants of greedy action selection because the inclusion of random choices
would only lead to stronger misalignment.

4.1.2.2.2 Visualizing Alignment of Parameterized and Greedy Actors

Experiment Setup While the prior analysis looked at action differences across
a large number of samples, we also want to get a better insight by looking at a
few specific cases. To do so, we selected 55 states which are evenly distributed
throughout the spiral maze. Further, we set the maze’s center to be the goal. Given
that goal, we performed action selection for each of the 55 states and did so once
using the parameterized agent and once using the greedy agent.

24

Analyzing and Simplifying Contrastive RL 4. Experiments

Figure 4.4: Actions chosen by the greedy (red) and parameterized (blue) actors at
different states (green squares) when given the spiral center as the goal state. While
selected actions are almost identical for states close to the entrance of the spiral,
later states show very different and even opposing action selection.

Results Figure 4.4 visualizes the actions selected by each agent in each of the
55 states. For the considered situations, parameterized and greedy action selection
show different levels of alignment. In the nine states closest to the maze entrance,
parameterized and greedy actors choose practically identical actions. Action selec-
tion remains relatively similar for the following 11 states before becoming almost
completely opposed in the next three states. This large variety of alignment and
misalignment continues throughout the remaining states. Overall, there is no rec-
ognizable pattern of when action selections align and when they do not. Another
interesting observation is that both the parameterized and greedy agent seem to
always choose actions with a length close to 1, except when already having reached
the goal state. This is also the case when such strong actions lead into a wall. It
seems like the agents ignore the walls and, instead of reducing their actions, just
rely on the environment’s implementation which truncates actions that would lead
into walls.

Summing up, our experiments about alignment of parameterized and greedy
action selection have shown that there is a significant difference between the two.
Nonetheless, greedy action selection allows for almost matching performance when
using a strategy that occasionally performs random exploration to escape local min-
ima. This similar performance is especially surprising considering the occasionally
very poor greedy action selection observed in Figure 4.4. One possible explanation
would be that these bad actions are the results of locally unreliable critic values that
do not harm overall performance because these issues do not persist in the resulting
next state.

25

Analyzing and Simplifying Contrastive RL 4. Experiments

4.2 Simplifying Contrastive Reinforcement Learn-

ing

4.2.1 Greedy Contrastive Reinforcement Learning

Experiment Setup The previously discussed experiments showed that the pa-
rameterized actor used in the original implementation of CRL does not learn to act
greedily despite the fact that a greedy actor can use the learned critic to achieve
competitive performance. This led us to hypothesize that the actor does not need to
be parameterized and, instead, a greedy actor can be used already during the train-
ing procedure. Replacing a parameterized actor with a greedy actor has several
advantages. It allows us to remove the actor neural network and all its associated
model-, and hyperparameter. This also means no gradient has to be computed for
every time the actor is optimized which can noticeably reduce the training time.
This time advantage, however, depends on the number of discrete actions since the
greedy actor needs to, for each action, produce a state-action representation and
compute the critic value given the state-action and goal representation, before iden-
tifying which action has the highest critic value. An additional advantage is that
the greedy actor has only two parameters: the set of actions and the exploration
probability. A neural network, in contrast, requires the specification of many model
parameters (e.g. network depth and width, activation functions, and definition of
the output layer) and hyperparameters (e.g. learning rate, batch size, and loss func-
tion). Finally, we argue that our approach better captures the core idea of CRL
since it performs action selection directly based on the critic, instead of using the
critic to train an actor. This way, new experiences collected to update the critic also
precisely correspond to the strategy encoded by the previous critic.

We defined the set of possible actions by using action grids similar to those used
in Experiments 4.1.1.2 and 4.1.2.1. Given a current state and the goal, the greedy
actor then evaluates each of the actions within this grid and selects the one with the
highest critic value. We consider three versions of this greedy actor which differ in
regards to the number of actions considered. Specifically, we consider action grids
of sizes 3 × 3, 5 × 5, and 9 × 9. For this experiment, we do not compare greedy
actors with different degrees of exploration. Instead, we use the 95% greedy actor.
While our final results of Experiment 4.1.2.1 identified the 90% greedy actor as the
best performing, intermediate results favored the 95% greedy actor which is why we
chose this actor for this experiment. Besides replacing the actor, we preserve the
original implementation and do not change any hyperparameter. Therefore, we only
changed how the actor chooses actions from using a neural network to using greedy
selection based on the current critic.

We train until the actor has taken 500,000 steps. As baselines, we also perform
the same training using a random actor and the original CRL setup by Eysenbach
et al. (2023) which uses the parameterized actor. To account for possible variations
between training runs of the same setting, we perform each training procedure using
five different random seeds and average results over these seeds.

Tasks used during training are sampled from the replay buffer. To evaluate the
resulting actors on tasks sampled from the whole state space, we apply the evaluation
setup used in Experiment 4.1.2.1. We evaluate greedy actors with a 10% probability
for random exploration, differing from the 5% exploration probability used during

26

Analyzing and Simplifying Contrastive RL 4. Experiments

Figure 4.5: Success rates throughout training using the original (blue), random
(yellow), and our three 95% greedy actor versions who choose from 9, 25, or 81
actions (green, red, purple). Success rates are running averages over the last 1,000
trajectories. Shown curves are the means across five random seeds with the confi-
dence intervals showing the standard deviations across seeds.

training. This decision is motivated by the results of Experiment 4.1.2.1 in which
10% random actions led to the best performance for greedy actors.

Results Figure 4.5 shows the training curves of all compared variants. We can
see that for two of our greedy actors, the ones selecting from 25 or 81 actions,
performances increase faster than in the original setup. The setup with 81 actions
does not maintain this initially high performance and ends up with a final success
rate below that of the original setup. Using a greedy agent with 25 actions, however,
does not only allow an initially steep learning curve but also stable performance
throughout training which results in a final performance higher than that of the
original setup. A greedy agent which can select from only 9 actions does not allow
for competitive performance and is only slightly better than the random actor. These
results indicate that the number of discrete actions considered by greedy agents has
a strong influence not only on the maximum performance achieved but also on the
stability of learning. Using a too-small set of actions seems to not allow the selection
of certain actions which are required to reach a competitive performance. Using a
too-large set of actions, on the other hand, seems to cause learning instabilities
which can lead to performance decreases throughout learning. However, when the
set of actions is set to the right size, CRL using a greedy actor learns faster and
achieves better performance than the original setup.

Table 4.3 shows the results of evaluating the different greedy CRL versions com-
pared to the parameterized actor and a random actor. We can see the order of
evaluation performances matches that of the training performances. The greedy

27

Analyzing and Simplifying Contrastive RL 4. Experiments

Table 4.3: Mean success rates when evaluating the trained actors on 500 randomly
sampled tasks consisting of a start and goal state. Results are averaged across five
random seeds and shown with their standard deviations across seeds. All values are
rounded to two decimal points.

Actor Success Rate
Parameterized 0.80± 0.02

Random 0.44± 0.01
Greedy (9 actions) 0.57± 0.03
Greedy (25 actions) 0.84± 0.05
Greedy (81 actions) 0.66± 0.03

Table 4.4: Training and inference times of all actors. Training times were recorded
for training with 500,000 actor steps and are averaged across 5 training runs using
different random seeds. Inference times correspond to the times required to produce
a 100-step trajectory and are averaged across 500 trajectories.

Actor
Training Time

(hh:mm:ss)
Inference Time
(milliseconds)

Parameterized 02:23:32 140
Greedy (9 Actions) 01:24:44 310
Greedy (25 Actions) 01:28:16 700
Greedy (81 Actions) 01:33:10 2084

actor choosing from a set of 25 actions performs best and achieves a success rate of
84%, outperforming the parameterized actor who achieves 80%.

Table 4.4 shows the training and inference times of each actor. We can see
that the greedy actors train faster but at the cost of increased inference times.
Interestingly, the greedy actors only show minor differences in training time while
increasing the size of the action set leads to exponentially growing inference times.

Considering these results, we can confirm our hypothesis that CRL can be suc-
cessfully trained using a greedy actor instead of a parameterized one. Further,
greedy CRL, if using the right set of discrete actions, is more sample efficient and
maintains a higher final training and evaluation performance. Removing the need
to optimize the parameterized actor also allowed to reduce overall training time by
almost 40%. However, greedy actors have a slower inference time compared to the
parameterized actor.

4.2.2 Contrastive Learning with a Single Encoder

Experiment Setup The CRL method proposed by Eysenbach et al. (2023) makes
use of two encoders, one for state-action pairs (the sa-encoder) and one for goals
(the g-encoder). Experiment 4.1.1.1 has shown that both encoders preserve the
structure of their inputs in similar ways, i.e. inputs with state/goals that are close
in the state space also end up close in the representation space. In addition, we have
found that sa- and g-encoder seem to be mapping into disjoint representation spaces.
Nonetheless, one could imagine a setup in which both encoders map to the same
space and goal representations are identical with representations of the respective

28

Analyzing and Simplifying Contrastive RL 4. Experiments

Figure 4.6: Success rates throughout training using the original setup (blue), a
random actor (yellow), and our two single-encoder approaches that encode goals
with fixed (green) or sampled (red) actions. Success rates are running averages over
the last 1,000 trajectories. Shown curves are the means across five random seeds
with confidence intervals showing the standard deviations across seeds.

state paired with some fixed action like [0,0], or with the representation average
across all state-action pairs. Indeed, there is prior work on contrastive representation
learning of images in which two encoders are trained to encode differently augmented
images while sharing parameters (Laskin, Srinivas, and Abbeel 2020). Inspired by
this and motivated to further simplify CRL, we experiment with performing CRL
using only a single encoder.

To be able to perform action selection based on representations, the representa-
tions need to include potential actions. Therefore, CRL can not be done without a
state-action encoder, meaning a single-encoder approach must use the state-action
encoder to encode both state-action pairs and goals. There are several ways in
which a state-action encoder can be used to produce goal representations. We test
two approaches. In the first, goals are always encoded with a fixed action. Given
that no action, i.e. the [0,0] action, is the action that most likely leads to the current
state, a state-action representation should be closest to the state’s goal represen-
tation for action [0,0]. Our results shown in Figure 4.2b show that this indeed is
the case. That is why we decide, for our first approach, to produce goal represen-
tations by concatenating the goal with the [0,0] action before feeding it into the
state-action encoder. The second approach is to uniformly sample an action every
time a goal is encoded. This pushes a state’s goal representation to be the mean of
all its state-action representations. We train both approaches on the spiral environ-
ment for a maximum of 400,000 actor steps and their performances to the original
implementation by Eysenbach et al. (2023) and a random actor.

29

Analyzing and Simplifying Contrastive RL 4. Experiments

Results Figure 4.6 displays the results which show that neither of our approaches
for training with a single encoder shows successful learning. In fact, our single-
encoder setups perform worse than the random actor. Therefore, we can conclude
that our considered approaches of simplifying CRL to use only a single encoder
network are unsuccessful. Whether this means a single-encoder CRL is generally not
possible or what other reasons could have caused our approach to fail, is discussed
in the following chapter.

30

5. Discussion

The experiments and results presented in the previous section provide insights into
the workings of CRL, potential simplifications, and how one such simplification leads
to faster training and higher performance. However, our work also contains a failed
single encoder simplification and is subject to some limitations. In the following,
we discuss possible explanations for the failed single-encoder approach, point out
general limitations, and discuss if and how these limitations affect the interpretation
of our results. Following that, we provide a short outlook on how future work can
address our shortcomings and go beyond our work.

A considerable shortcoming of our work is the failed single encoder simplification
of CRL. We see several possible reasons for this with the most obvious being a lack
of thorough hyperparameter tuning, a limitation we further discuss below. Beyond
that, failure might be rooted in other methodological or conceptual flaws of our
approach. Experiment 4.1.1 revealed that the state-action and goal encoder of the
original CRL setup use disjoint regions of the representation space. Encoding goals
and state-action pairs with the same encoder, limits goal and state-action represen-
tations to use the same region of the representation space and may have prevented
to capture features distinct to each type of representation. Another possible reason
is that single-encoder CRL might require more fundamental changes to the original
framework, such as modifying the loss function or introducing a special token for
goal encoding instead of using fixed or sampled actions. Lastly, recent works that
build up on CRL provide more detailed reasoning for using two different encoders
(Eysenbach et al. 2024; Myers et al. 2024). They argue that encoding RL states
must allow for asymmetrical representations for them to be able to encode asym-
metric properties of the environment. Their given example is that it is more difficult
to climb the peak of a mountain from its foot than it is to slide from the peak to
the foot. Using our single encoder approach, the critic value would be the same no
matter whether the peak would be the goal and the foot the start or the reverse.
While this makes sense, we argue that such asymmetric actionable distances do not
exist in our environment and, therefore, a single encoder approach should still be
possible. In conclusion, we find that simplifying CRL to use only one encoder can
not be achieved through the minor changes we make to the original setup.

The primary limitation of our work lies in the use of only a single environment
for training and evaluation. This is especially problematic since we use a relatively
simple environment in which both action and state space are continuous but only
two-dimensional. On top of that, trajectory success is defined as any state of the
trajectory being within a Euclidean distance of two, allowing to reach goals even
through walls (as explained in Appendix 7.1). The random actor’s success rate of
around 44% demonstrates that this environment does not pose a significant chal-
lenge. While we adopted this environment and its success definition directly from

31

Analyzing and Simplifying Contrastive RL 5. Discussion

Eysenbach et al. (2023), their work tested CRL on a diverse set of environments, in-
cluding complex 3D robotics tasks with higher-dimensional state and action spaces,
as well as image-based environments where states consist of image encodings rather
than coordinates. Additionally, they also use offline setups where experiences used
for contrastive learning are not gathered by an actor but come from a previously
collected set of trajectories. Limiting our work to the spiral maze environment al-
lows for intuitive visualizations and computationally efficient experimentation, but
restricts us to draw conclusions only for this specific environment or, at most, for
environments that show similar characteristics, i.e. low dimensional continuous ac-
tion and state spaces. This limitation is especially relevant to the results obtained
in Experiment 4.2.1. While our greedy CRL approach achieves faster learning and
improved performance at reduced training time, we saw that these improvements
depend on the set of actions a greedy actor can choose from. Environments with
high-dimensional action spaces may pose significant challenges for the greedy CRL
approach, as the curse of dimensionality causes the number of value computations
needed for a greedy choice to grow exponentially with each additional dimension.
In such cases, the increased computational cost could outweigh the advantage of
bypassing the optimization of a parameterized actor. Furthermore, we observed
that increasing the number of possible actions in greedy CRL can lead to unstable
performance, a problem likely to worsen in higher-dimensional environments. For
discrete environments, although not being considered in our work, we do not expect
additional challenges. In fact, greedy CRL might be even more suitable for such
environments, as no discretization is necessary and the action and state spaces are
typically lower-dimensional. Validating our assumptions about how greedy CRL
translates to different environments is an interesting avenue for future work.

Another limitation of our work relates to our aim of providing a better un-
derstanding of CRL’s high-dimensional representation space via 2D visualizations
presented in Experiment 4.1.1.1. To produce such visualizations of high-dimensional
spaces requires the use of dimensionality reduction techniques like t-SNE. The prob-
lem with such techniques is that they are imperfect. It is generally not possible to
map a high-dimensional space to 2D while preserving all relations of the original
space. Therefore, one has to be careful not to confuse 2D observations that are
artifacts of the dimensionality reduction with those that actually depict properties
of the high-dimensional space. To account for that, we focus only on high-level
characteristics in the 2D visualizations and do not attempt to interpret low-level
features like the distance between two representations. High-level characteristics
are, for example, the fact that state-action and goal representations occupy disjoint
areas of the representation space and that both are arranged in an order that is
aligned with the actionable structure of the environment. A detailed explanation
of how we project representations to 2D and a further discussion of other limiting
factors like the effects of projection hyperparameters are discussed in Appendix 7.2.

As a last significant limitation, we did not perform thorough hyperparameter
tuning due to limited time and computational resources. This is the case for the
single encoder approach explored in Experiment 4.2.2, and the greedy actors used in
Experiments 4.1.2 and 4.2.1. For the latter, we did experiment with different values
for the exploration probability and size of the action set. However, we only consid-
ered three values each and evaluated these hyperparameters in isolation. Therefore,
further improvements of greedy CRL might be achievable with a more thorough

32

Analyzing and Simplifying Contrastive RL 5. Discussion

tuning regime. The same holds for the single-encoder approach. Here, we did not
perform any hyperparameter tuning and only compared the use of fixed versus sam-
pled actions to encode a goal with the state-action encoder. Considering that our
proposed single-encoder approach makes changes to the core functionality of CRL,
a thorough hyperparameter tuning would have been warranted to allow for reliable
insights into whether such a single-encoder version of CRL can be successful. Similar
to preventing thorough hyperparameter tuning, our limited resources also led us to
train our greedy CRL approach using a 95% greedy actor despite the final results
of Experiment 4.1.2.1 showing that a 90% greedy actor performs significantly bet-
ter. The choice for using the 90% greedy actor was based on preliminary results of
Experiment 4.1.2.1 and it was not possible to re-run the training of greedy CRL at
a later time. Nonetheless, our greedy CRL learned a critic function that allowed a
90% greedy actor to outperform original CRL on evaluation tasks. This leads us to
believe also using the 90% greedy actor during training of greedy CRL might allow
for even more performance gains.

Regarding avenues to extend our work, we are especially curious to see how
our proposed greedy CRL approach would fare in more complex environments like
the one used by Eysenbach et al. (2023). Besides that, we still see potential in a
continued pursuit of simplifying CRL through the use of a single encoder. Achieving
such a simplification would be especially valuable because it would be independent of
that achieved via greedy CRL. Therefore, a combination of both ideas into a single-
encoder greedy actor approach could potentially allow for improvements beyond
those achieved by greedy CRL. Our failed experiment on using a single-encoder
approach should not be understood as proof of such an approach being infeasible,
especially given that we did not try any fundamental changes to the original setup
and did not perform any hyperparameter tuning. We still think a single-encoder
approach is generally feasible and future work could explore it by addressing the
discussed possible reasons for failure. Besides addressing the limitations of our
work, we see large potential in extending CRL to problems beyond goal-conditioned
RL, as already pointed out by Eysenbach et al. (2023). It would be interesting
to see how CRL can be applied to general RL problems where no goal states are
defined. Inspiration for possible approaches is already given in prior work where
a learned model of the state occupancy measure is used together with a small set
of reward-labeled states to estimate the likelihoods of reaching the labeled states.
By weighing reward labels with these likelihoods a Q-function can be estimated
(Mazoure et al. 2023). For now, we remain with our work as a contribution to
better understanding the representation space and critic function of CRL, and to
the improvement through simplification of CRL for low dimensional environments.

33

6. Conclusion

In this work, we expanded on the approach proposed by Eysenbach et al. (2023),
who reframe goal-conditioned RL as a problem of contrastive representation learn-
ing. Our primary focus was to analyze this method’s representation space and its
use as a critic function that predicts the likelihood of reaching a goal state from
a given state-action pair. Through visualizations, we found the state-action and
goal encoders to use disjoint parts of the representation space, while successfully
capturing the actionable structure of the environment. Further visualizations re-
vealed that the critic function does indeed allow to discriminate actions that lead
towards a given goal. A quantitative evaluation revealed that a greedy use of this
critic function allows for performance competitive to that of a parameterized actor
which has to first learn to select actions based on their critic values. Additionally,
we found a considerable misalignment in the action selection behavior of the trained
parameterized actor and the greedy actor. Inspired by finding equal performance
for greedy action selection, we aimed to simplify CRL by substituting the param-
eterized actor with a greedy actor already during CRL training. This allowed for
faster training and higher final performance. Thus, this approach not only simplifies
CRL by removing a neural network and its optimization but also improves CRL, at
least for low-dimensional environments. A second attempt towards simplifying CRL
was to merge the state-action and goal encoders into one single encoder that is used
to produce both state-action and goal representations. However, this single-encoder
approach was not successful and did not allow for performance beyond that of a
random actor. We believe our work provides a more nuanced understanding of CRL
and demonstrates that the learned critic can indeed be used directly to select ac-
tions. In fact, such a direct use of the critic can simplify and improve CRL. We hope
our work inspires further research on approaching RL as a problem of contrastive
representation learning.

34

Bibliography

Anand, Ankesh, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre Côté,
and R. Devon Hjelm (2019). “Unsupervised State Representation Learning in
Atari”. In: Advances in Neural Information Processing Systems 32: Annual Con-
ference on Neural Information Processing Systems 2019, NeurIPS 2019, De-
cember 8-14, 2019, Vancouver, BC, Canada. Ed. by Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman
Garnett, pp. 8766–8779.

Bruin, Tim de, Jens Kober, Karl Tuyls, and Robert Babuška (2018). “Integrating
State Representation Learning Into Deep Reinforcement Learning”. In: IEEE
Robotics and Automation Letters 3.3, pp. 1394–1401. doi: 10.1109/LRA.2018.
2800101.

Carvalho, Wilka, Momchil S. Tomov, William de Cothi, Caswell Barry, and Samuel
J. Gershman (2024). Predictive representations: building blocks of intelligence.
arXiv: 2402.06590 [cs.AI].

Chen, Ting, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton (2020).
“A Simple Framework for Contrastive Learning of Visual Representations”. In:
Proceedings of the 37th International Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event. Vol. 119. Proceedings of Machine Learning
Research. PMLR, pp. 1597–1607.

Eysenbach, Benjamin, Vivek Myers, Ruslan Salakhutdinov, and Sergey Levine (2024).
Inference via Interpolation: Contrastive Representations Provably Enable Plan-
ning and Inference. arXiv: 2403.04082 [cs.LG].

Eysenbach, Benjamin, Tianjun Zhang, Ruslan Salakhutdinov, and Sergey Levine
(2023). Contrastive Learning as Goal-Conditioned Reinforcement Learning. arXiv:
2206.07568 [cs.LG].

Friston, Karl (2005). “A theory of cortical responses”. In: Philosophical transactions
of the Royal Society B: Biological sciences 360.1456, pp. 815–836.

Gao, Tianyu, Xingcheng Yao, and Danqi Chen (2021). “SimCSE: Simple Contrastive
Learning of Sentence Embeddings”. In: CoRR abs/2104.08821. arXiv: 2104.
08821.

Goodale, Melvyn A and A David Milner (1992). “Separate visual pathways for
perception and action”. In: Trends in neurosciences 15.1, pp. 20–25.

Hatch, Kyle, Benjamin Eysenbach, Rafael Rafailov, Tianhe Yu, Ruslan Salakhutdi-
nov, Sergey Levine, and Chelsea Finn (2023). “Contrastive Example-Based Con-
trol”. English (US). In: Proceedings of Machine Learning Research 211. Publisher
Copyright: © 2023 K. Hatch, B. Eysenbach, R. Rafailov, T. Yu, R. Salakhutdi-
nov, S. Levine & C. Finn.; 5th Annual Conference on Learning for Dynamics and
Control, L4DC 2023 ; Conference date: 15-06-2023 Through 16-06-2023, pp. 155–
169. issn: 2640-3498.

35

https://doi.org/10.1109/LRA.2018.2800101
https://doi.org/10.1109/LRA.2018.2800101
https://arxiv.org/abs/2402.06590
https://arxiv.org/abs/2403.04082
https://arxiv.org/abs/2206.07568
https://arxiv.org/abs/2104.08821
https://arxiv.org/abs/2104.08821

Analyzing and Simplifying Contrastive RL 6. BIBLIOGRAPHY

He, Kaiming, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross B. Girshick (2020). “Mo-
mentum Contrast for Unsupervised Visual Representation Learning”. In: 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR
2020, Seattle, WA, USA, June 13-19, 2020. Computer Vision Foundation /
IEEE, pp. 9726–9735. doi: 10.1109/CVPR42600.2020.00975.

Hjelm, R. Devon, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Philip
Bachman, Adam Trischler, and Yoshua Bengio (2019). “Learning deep represen-
tations by mutual information estimation and maximization”. In: 7th Interna-
tional Conference on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net.

Jaderberg, Max, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z.
Leibo, David Silver, and Koray Kavukcuoglu (2017). “Reinforcement Learning
with Unsupervised Auxiliary Tasks”. In: 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings. OpenReview.net.

Kriegeskorte, Nikolaus (2015). “Deep neural networks: a new framework for modeling
biological vision and brain information processing”. In: Annual review of vision
science 1, pp. 417–446.

Laskin, Michael, Aravind Srinivas, and Pieter Abbeel (2020). “Curl: Contrastive
unsupervised representations for reinforcement learning”. In: International con-
ference on machine learning. PMLR, pp. 5639–5650.

Liang, Yitao, Marlos C Machado, Erik Talvitie, and Michael Bowling (2015). “State
of the art control of atari games using shallow reinforcement learning”. In: arXiv
preprint arXiv:1512.01563.

Lin, Xingyu, Harjatin Singh Baweja, George A. Kantor, and David Held (2019).
“Adaptive Auxiliary Task Weighting for Reinforcement Learning”. In: Neural
Information Processing Systems.

Lyle, Clare, Mark Rowland, Georg Ostrovski, and Will Dabney (2021). On The Ef-
fect of Auxiliary Tasks on Representation Dynamics. arXiv: 2102.13089 [cs.LG].

Mazoure, Bogdan, Remi Tachet des Combes, Thang Doan, Philip Bachman, and
R. Devon Hjelm (2020). “Deep Reinforcement and InfoMax Learning”. In: Ad-
vances in Neural Information Processing Systems 33: Annual Conference on Neu-
ral Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual. Ed. by Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-
Florina Balcan, and Hsuan-Tien Lin.

Mazoure, Bogdan, Benjamin Eysenbach, Ofir Nachum, and Jonathan Tompson (2023).
“Contrastive Value Learning: Implicit Models for Simple Offline RL”. In: Con-
ference on Robot Learning, CoRL 2023, 6-9 November 2023, Atlanta, GA, USA.
Ed. by Jie Tan, Marc Toussaint, and Kourosh Darvish. Vol. 229. Proceedings of
Machine Learning Research. PMLR, pp. 1257–1267.

Mikolov, Tomás, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean
(2013). “Distributed Representations of Words and Phrases and their Compo-
sitionality”. In: Advances in Neural Information Processing Systems 26: 27th
Annual Conference on Neural Information Processing Systems 2013. Proceed-
ings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States.
Ed. by Christopher J. C. Burges, Léon Bottou, Zoubin Ghahramani, and Kilian
Q. Weinberger, pp. 3111–3119.

36

https://doi.org/10.1109/CVPR42600.2020.00975
https://arxiv.org/abs/2102.13089

Analyzing and Simplifying Contrastive RL 6. BIBLIOGRAPHY

Mnih, Andriy and Koray Kavukcuoglu (2013). “Learning word embeddings effi-
ciently with noise-contrastive estimation”. In: Advances in Neural Information
Processing Systems 26: 27th Annual Conference on Neural Information Process-
ing Systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe,
Nevada, United States. Ed. by Christopher J. C. Burges, Léon Bottou, Zoubin
Ghahramani, and Kilian Q. Weinberger, pp. 2265–2273.

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
DaanWierstra, and Martin Riedmiller (2013). “Playing atari with deep reinforce-
ment learning”. In: arXiv preprint arXiv:1312.5602.

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei Rusu, Joel Veness,
Marc Bellemare, Alex Graves, Martin Riedmiller, Andreas Fidjeland, Georg Os-
trovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, He-
len King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis
(Feb. 2015). “Human-level control through deep reinforcement learning”. In: Na-
ture 518, pp. 529–33. doi: 10.1038/nature14236.

Myers, Vivek, Chongyi Zheng, Anca Dragan, Sergey Levine, and Benjamin Eysen-
bach (2024). Learning Temporal Distances: Contrastive Successor Features Can
Provide a Metric Structure for Decision-Making. arXiv: 2406.17098 [cs.LG].

Oord, Aäron van den, Yazhe Li, and Oriol Vinyals (2018). “Representation Learning
with Contrastive Predictive Coding”. In: CoRR abs/1807.03748. arXiv: 1807.
03748.

Rao, Rajesh PN and Dana H Ballard (1999). “Predictive coding in the visual cor-
tex: a functional interpretation of some extra-classical receptive-field effects”. In:
Nature neuroscience 2.1, pp. 79–87.

Riesenhuber, Maximilian and Tomaso Poggio (1999). “Hierarchical models of object
recognition in cortex”. In: Nature neuroscience 2.11, pp. 1019–1025.

Sermanet, Pierre, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan
Schaal, and Sergey Levine (2018). “Time-Contrastive Networks: Self-Supervised
Learning from Video”. In: 2018 IEEE International Conference on Robotics and
Automation, ICRA 2018, Brisbane, Australia, May 21-25, 2018. IEEE, pp. 1134–
1141. doi: 10.1109/ICRA.2018.8462891.

Silver, David, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin
Riedmiller (2014). “Deterministic policy gradient algorithms”. In: International
conference on machine learning. Pmlr, pp. 387–395.

Stooke, Adam, Kimin Lee, Pieter Abbeel, and Michael Laskin (2021). “Decoupling
representation learning from reinforcement learning”. In: International Confer-
ence on Machine Learning. PMLR, pp. 9870–9879.

Tesauro, Gerald (Mar. 1995). “Temporal difference learning and TD-Gammon”. In:
Commun. ACM 38.3, pp. 58–68. issn: 0001-0782. doi: 10.1145/203330.203343.

van der Maaten, L.J.P. and G.E. Hinton (2008). “Visualizing High-Dimensional
Data Using t-SNE”. English. In: Journal of Machine Learning Research 9.nov.
Pagination: 27, pp. 2579–2605. issn: 1532-4435.

Wu, Zhirong, Yuanjun Xiong, Stella X. Yu, and Dahua Lin (2018). “Unsupervised
Feature Learning via Non-Parametric Instance Discrimination”. In: 2018 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake
City, UT, USA, June 18-22, 2018. Computer Vision Foundation / IEEE Com-
puter Society, pp. 3733–3742. doi: 10.1109/CVPR.2018.00393.

37

https://doi.org/10.1038/nature14236
https://arxiv.org/abs/2406.17098
https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/1807.03748
https://doi.org/10.1109/ICRA.2018.8462891
https://doi.org/10.1145/203330.203343
https://doi.org/10.1109/CVPR.2018.00393

Analyzing and Simplifying Contrastive RL 6. BIBLIOGRAPHY

Zheng, Chongyi, Benjamin Eysenbach, Homer Walke, Patrick Yin, Kuan Fang,
Ruslan Salakhutdinov, and Sergey Levine (2024). Stabilizing Contrastive RL:
Techniques for Robotic Goal Reaching from Offline Data. arXiv: 2306.03346
[cs.LG].

Zheng, Chongyi, Ruslan Salakhutdinov, and Benjamin Eysenbach (2024). Con-
trastive Difference Predictive Coding. arXiv: 2310.20141 [cs.LG].

38

https://arxiv.org/abs/2306.03346
https://arxiv.org/abs/2306.03346
https://arxiv.org/abs/2310.20141

7. Appendix

7.1 Spiral Maze Environment

All our experiments make use of the spiral maze environment as implemented by
Eysenbach et al. (2023). This environment is an 11× 11 square spiral path that is
bound by walls. While appearing like a discrete grid-world environment, the spiral
maze environment is actually continuous. States consist of XY coordinates from
within [0, 11]2 and actions lie within the square [0, 1]2. Tasks consist of a start and
a goal state which are independently and uniformly sampled from all coordinates
that are not walls. The environment does not terminate trajectories once a goal is
reached but, instead, always lets the actors reach the maximum trajectory length.
Task success is defined as reaching within a Euclidean distance of two at any timestep
of a trajectory. This is problematic as it allows to reach goals through walls, see
Figure 7.1. When sampling 10,000 tasks, 8.8% of them have a start state and goal
state that already fulfill the success criteria. It is due to these reasons that a random
actor can achieve a success rate of around 44% in this environment.

Figure 7.1: The spiral maze environment with a spiral path (white) and walls
(black). A randomly sampled task is displayed. Despite start state (blue) and the
goal (red) being separated by a wall, this task would be classified as successfully
solved as the Euclidean distance between start state and the goal is less than 2.

7.2 Dimensionality Reduction via t-SNE

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a technique for dimen-
sionality reduction introduced by van der Maaten and Hinton (2008). The core idea

39

Analyzing and Simplifying Contrastive RL 7. Appendix

behind t-SNE is to create two probability distributions that model the similarities of
data point pairs in the high-dimensional and low-dimensional spaces and then mini-
mize the difference between these two distributions. In the original high-dimensional
space, the similarities between data points are modeled using a Gaussian distribu-
tion. The projection to the low-dimensional space is done using a t-distribution

As seen in Figure 4.1, the result of the t-SNE projection is strongly affected by
the set of high-dimensional data points. Another factor that has a strong influence
on the resulting projection is the perplexity parameter. The perplexity controls
the balance between preserving relations of data points locally versus globally by
determining the neighborhood of each data point. A smaller perplexity value is
better suited to preserve local structures of the high-dimensional space while a larger
value better preserves its global structure. Figure 7.2 shows how different perplexity
values influence the resulting visualization for a fixed set of state-action and goal
representations.

(a) Perplexity = 5 (b) Perplexity = 8

(c) Perplexity = 10 (d) Perplexity = 12

Figure 7.2: 2D projections of the same set of state-action and goal representations
produced by t-SNE using different perplexity values of 5 (a), 8 (b), 10 (c), and 12
(d).

7.3 Visualizations of Greedy CRL

As we have demonstrated, greedy CRL (with a 5×5 action grid) is able to learn faster
and achieve higher final performance. To evaluate whether it also leads to significant
changes in the resulting representation space or critic function, we produce the same

40

Analyzing and Simplifying Contrastive RL 7. Appendix

visualizations shown for original CRL in Figures 4.1 and 4.2. We do so using the
same settings with the exception of using the 5 × 5 action grid used by the best-
performing greedy CRL setting.

(a) (b)

(c)

Figure 7.3: Visualizations of the representation space learned by greedy CRL (25
actions). We visualize representations for 217 states shown in (a). (b) shows the 2D
projections of the goal representations (left) and fixed state-action representations
(right). (c) shows the 2D projections when including sampled state-action represen-
tations.

7.3.1 Visualizing the Greedy Representation Space

Figure 7.3 shows the visualizations of the representation space learned by greedy
CRL. Figure 7.3b displays the representation of goal and fixed state-action repre-
sentations. Similarly to the visualization for original CRL shown in Figure 4.1b,
the greedily learned representations also lie on a trajectory that is consistent with
the actionable structure of the environment. For the fixed state-action pairs on the
right, however, this trajectory is not continuous but rather separated into three dis-
connected parts which in itself are consistent. Figure 7.3c shows the visualizations of
goal, fixed state-action, and sampled state-action representations learned by greedy
CRL. This visualization also shares the characteristics observed for original CRL in
Figure 4.1c.

41

Analyzing and Simplifying Contrastive RL 7. Appendix

In conclusion, the sa- and g-encoder trained via greedy CRL make use of dis-
joint regions of the representation space but learn to produce representations that
capture the actionable structure of the environment. Minor differences to the vi-
sualizations of original CRL, like the discontinuous trajectory of fixed state-action
representations in Figure 7.3b, might be due to using the t-SNE parameter tuned
for the visualization of original CRL.

(a) (b)

(c) (d)

Figure 7.4: Visualizations of the critic function learned by greedy CRL (25 ac-
tions). We consider a local neighborhood consisting of three states (a). The middle
state (red) is always used as the start state. We depict critic values of state-action
pairs for three different goal states: the middle state in (b), the left state in (c), and
the right state in (d). Action cells are colored based on their critic values.

7.3.2 Visualizing the Greedy Critic

Figure 7.4 shows the visualizations of the greedy critic using the same neighborhood
used for Figure 4.2. Again, the results show similar characteristics as those for
original CRL. In Figure 7.4b, for which the start state is also the goal state, we
can see the highest value for action [0,0] with a general decline for cells the further
they are from the center. In Figure 7.4c, where the goal is to the left of the start
state, goals on the left half of the grid have higher values than those on the right.
Figure 7.4d shows the critic values when the goal is to the right. Actions on the
right half have higher values than those on the left. Like for original CRL, the critic
trained via greedy CRL also allows to identify actions that lead towards the goal.

42

Analyzing and Simplifying Contrastive RL 7. Appendix

However, also similar to original CRL, the critic values do not perfectly correspond
to the expectations one would have of a critic which perfectly encodes the likelihood
of reaching a goal given a state-action pair. The optimal actions don’t have the
highest value, with the exception of Figure 7.4b, and the gradual decline of critic
values from actions leading towards the goal to actions leading away from the goal
is not smooth but rather noisy.

In conclusion, the visualizations of the critic trained via greedy CRL show the
same characteristics as observed for the critic trained via original CRL.

43

	Introduction
	Related Work
	Preliminaries
	Goal-Conditioned Reinforcement Learning
	Contrastive Representation Learning
	Contrastive Learning as Goal-Conditioned Reinforcement Learning

	Experiments
	Analyzing Contrastive Reinforcement Learning
	Visualizing Contrastive Reinforcement Learning
	Visualizing the Representation Space
	Visualizing the Critic
	Critic Values for Varying Goals
	Critic Values for Varying States

	Action Selection Strategies
	Greedy vs. Parameterized Action Selection
	Alignment of Parameterized and Greedy Actors
	Measuring Alignment of Parameterized and Greedy Actors
	Visualizing Alignment of Parameterized and Greedy Actors

	Simplifying Contrastive Reinforcement Learning
	Greedy Contrastive Reinforcement Learning
	Contrastive Learning with a Single Encoder

	Discussion
	Conclusion
	Appendix
	Spiral Maze Environment
	Dimensionality Reduction via t-SNE
	Visualizations of Greedy CRL
	Visualizing the Greedy Representation Space
	Visualizing the Greedy Critic

